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a b s t r a c t 

Background and objective: Advanced ultrasound computed tomography techniques like full-waveform in- 

version are mathematically complex and orders of magnitude more computationally expensive than con- 

ventional ultrasound imaging methods. This computational and algorithmic complexity, and a lack of 

open-source libraries in this field, represent a barrier preventing the generalised adoption of these tech- 

niques, slowing the pace of research, and hindering reproducibility. Consequently, we have developed 

Stride, an open-source Python library for the solution of large-scale ultrasound tomography problems. 

Methods: On one hand, Stride provides high-level interfaces and tools for expressing the types of optimi- 

sation problems encountered in medical ultrasound tomography. On the other, these high-level abstrac- 

tions seamlessly integrate with high-performance wave-equation solvers and with scalable parallelisation 

routines. The wave-equation solvers are generated automatically using Devito, a domain-specific language, 

and the parallelisation routines are provided through the custom actor-based library Mosaic. 

Results: We demonstrate the modelling accuracy achieved by our wave-equation solvers through a com- 

parison (1) with analytical solutions for a homogeneous medium, and (2) with state-of-the-art mod- 

elling software applied to a high-contrast, complex skull section. Additionally, we show through a series 

of examples how Stride can handle realistic numerical and experimental tomographic problems, in 2D 

and 3D, and how it can scale robustly from a local multi-processing environment to a multi-node high- 

performance cluster. 

Conclusions: Stride enables researchers to rapidly and intuitively develop new imaging algorithms and to 

explore novel physics without sacrificing performance and scalability. This will lead to faster scientific 

progress in this field and will significantly ease clinical translation. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Ultrasound computed tomography techniques such as full- 

aveform inversion (FWI) have the potential to produce high- 

esolution, 3D reconstructions of tissues such as the breast [1,2] , 

he limbs [3] , or the adult human brain [4] . However, generalised

doption of these techniques is hindered by the fact that tomog- 

aphy algorithms are computationally demanding and algorithmi- 

ally complex, while existing medical tomography codes are, as far 
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s we are aware, closed source, difficult to maintain, and slow to 

dapt to new research. 

FWI is a technique, originally developed in the field of geo- 

hysics, that produces reconstructions of tissue properties by solv- 

ng an associated inverse problem. FWI is computationally expen- 

ive because, for realistic 3D problems, it requires the solution of 

housands of partial-differential equations (PDEs) and the storage 

f hundreds of gigabytes of memory at every iteration in order 

o estimate billions of parameters. At the same time, FWI is algo- 

ithmically challenging due to the non-linear, non-convex nature of 

he inverse problem being solved. Therefore, any software for solv- 

ng FWI problems has to address its computational and algorithmic 

eeds, but should also emphasise the high-level, problem-specific 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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bstractions that are necessary to ease the adoption of these to- 

ographic techniques. 

In the fields of geophysics and seismic exploration, different ap- 

roaches have been taken by open-source libraries to solve these 

ssues. On one hand, libraries like Madagascar [5] , SimPEG [6] , and 

ySIT [7] , have managed to provide flexibility and high-level ab- 

tractions, but have done so at the expense of performance. On the 

ther hand, libraries like SAVA [8] and JavaSeis [9] have focused 

n performance at the expense of flexibility and extensibility. As a 

ay to bridge the gap between these two extremes, libraries such 

s SeisFlows and Pyatoa [10,11] , jInv [12] , and Waveform [13] pro- 

ide flexible interfaces in high-abstraction languages like Python, 

ulia or MATLAB that interface with high-performance, hand-tuned 

olvers. LASIF and Inversionson [14,15] have followed a similar ap- 

roach by providing modular seismic work-flow management that 

raps a high-performance tomography solver. 

Recently JUDI [16] , written in Julia, has gone a step further by 

roviding high-level abstractions in a modern language together 

ith high-performance solvers that are automatically generated by 

he domain-specific language (DSL) Devito [17,18] . Automatic code 

eneration for solvers is increasingly important with an ever grow- 

ng number of specialised architectures, from traditional central 

rocessing units (CPUs) to graphical processing units (GPUs) and 

eld-programmable gate arrays (FPGAs), as well as associated par- 

llel programming languages (Cuda, OpenACC, etc.). Fine tuning 

odes for each of them by hand would be a daunting task for most 

esearchers, whereas DSLs like Devito can generate code that is 

utomatically tuned for each target architecture and parallel lan- 

uage. In doing so, DSLs also increase productivity by simplifying 

he implementation of new types of physics and discretisations. 

The high computational complexity of FWI also requires, for re- 

listic problems, that codes can be deployed to specialised high- 

erformance computing (HPC) systems like multi-node clusters or 

loud computing services. This represents a further barrier for do- 

ain scientists, who are generally not proficient in the use of HPC 

ystems. Of the reviewed geophysical and seismic libraries, only 

ome of them, such as LASIF and Inversionson, and SeisFlows and 

yatoa, have been designed with HPC deployment and scaling in 

ind. 

Here, we present Stride, an open-source Python library for med- 

cal ultrasound tomography that emphasises flexibility and mod- 

larity, high performance, and scalability. It achieves this, firstly, 

hrough high-level, domain-specific abstractions and heuristics. 

econdly, by integrating with the automatic code generation library 

evito. Finally, we introduce a parallelisation library for seamless 

PC deployment and scaling. Stride is available on GitHub 1 and a 

omplete documentation of its interfaces is available online. 2 

The remaining of this paper is structured as follows: in 

ection 2 , we will present an overview of the structure of Stride, 

ollowed by a more detailed exploration of each of its compo- 

ents with accompanying examples; in Section 3 , we will assess 

he accuracy of the wave-equation solvers provided by Stride, and 

e will present examples of tomographic reconstructions in 2D 

nd 3D, using both numerical and experimental data; finally, we 

ill present our discussion and proceed to our conclusions in 

ections 4 and 5 , respectively. 

. Methods 

.1. Software structure 

Stride has been designed to address the computational and al- 

orithmic complexity of tomographic imaging by providing high- 
1 https://github.com/trustimaging/stride 
2 https://stridecodes.readthedocs.io 

∇

2

evel interfaces that are modular and extensible, and that closely 

atch the mental framework of domain specialists. It has been im- 

lemented in Python, a high-level, interpreted programming lan- 

uage that provides characteristics such as portability, ease of use, 

nd dynamic typing. We have chosen Python because it is the de 

acto language for scientific computing and machine learning, with 

 large community and package ecosystem. 

The high-level interfaces provided by Stride are aimed at ad- 

ressing five fundamental aspects in high-performance ultrasound 

omputed tomography ( Fig. 1 ): 

1. first, abstractions and tools are provided for the solution of op- 

timisation problems, which are the basis for most tomographic 

imaging algorithms; 

2. based on these, a series of classes encapsulate the definition 

of the tomographic problem being solved, e.g. the transducers 

employed or the signals used to excite them; 

3. the relevant physical processes, such as acoustic or elastic wave 

propagation, are then modelled by using appropriate solvers 

that execute high-performance code through DSLs like Devito; 

4. scaling of these algorithms, from a local workstation to HPC 

clusters, is achieved by using an integrated parallelisation li- 

brary called Mosaic; 

5. finally, tools are provided for saving and loading the different 

components of the problem using a standardised file format. 

Each of these will be presented in detail in the following five 

ections. 

.2. Abstractions for solving optimisation problems 

Techniques such as ultrasound computed tomography, optoa- 

oustic tomography [19] , or even ultrasound calibration techniques 

ike spatial response identification [20,21] , are commonly formu- 

ated as mathematical optimisation problems, which are solved nu- 

erically by using local methods like gradient descent. Therefore, 

 fundamental necessity when implementing these techniques is 

he availability of abstractions that allow us to pose our optimisa- 

ion problems, calculate gradients of those problems with respect 

o the relevant parameters, and then apply these gradients through 

ome local optimisation algorithm. In the next paragraphs, we in- 

roduce the abstractions that, being at the core of Stride, enable 

he solution of such inverse problems. 

Consider a continuously differentiable function f (y ) , which can 

e expressed as f (y ) = 

〈 
ˆ f (y ) , 1 

〉 
with some adequate function 

ˆ f (y ) 

nd some bilinear form 〈 α, β〉 . We know that the derivative of 

f (y ) with respect to y is, 

 y f (y ) δy = 

〈 
∇ y ̂

 f (y ) δy , 1 

〉 
= 

〈 
∇ y ̂

 f (y ) , δy 

〉 
(1) 

here ∇ y f (y ) δy represents the derivative of an operator f (y ) in

he direction δy , and the derivative is by definition linear in the 

ifferentiation direction. Consider now that y = g (z ) is another 

ontinuously differentiable function. Then the derivative of f (y ) 

ith respect to z is, 

 z f (y ) δz = 

〈 
∇ y ̂

 f (y ) , δy 

〉 
= 

〈 
∇ y ̂

 f (y ) , ∇ z g (z ) δz 

〉 
(2) 

y virtue of the product rule. At this point, we introduce the con- 

ept of the adjoint of an operator. Given an operator D ·, its adjoint

s D 

∗·, defined so that 〈 a, Db 〉 = 〈 b, D 

∗a 〉 . Then, we can rewrite the 

xpression as, 

 z f (y ) δz = 

〈 
∇ y ̂

 f (y ) , ∇ z g (z ) δz 

〉 

= 

〈 
∇ 

∗
z g (z ) ∇ y ̂

 f (y ) , δz 

〉 (3) 

https://github.com/trustimaging/stride
https://stridecodes.readthedocs.io
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Fig. 1. Schematic representation of the Stride software structure. A series of basic abstractions for solving optimisation problems are provided (1), based on which the 

tomographic problem is expressed (2). The tomographic problem becomes fully defined when appropriate physical modelling is introduced (3). The execution of Stride is 

parallelised using the custom library Mosaic (4), and tools are provided to save and load its details (5). 

 

c

p  

r

p

 

r

x

∇

a

o

T

i

t

t

u

f

c

Listing 1. Example calculation of the gradient of a chain of functions using Stride. 

Note the use of the await syntax that is needed for compatibility with the Mosaic 

parallelisation library. 

m

S

w

(

p

t

That is, the derivative of function f (y ) with respect to z can be

alculated by finding the derivative of ˆ f (y ) with respect to its in- 

ut y and then applying the adjoint of the Jacobian of g (z ) on the

esult. In the discrete case, this is equivalent to the vector-Jacobian 

roduct. 

Similarly, if we added a third function z = h (x ) , then the same

esult could be obtained for the derivative of f (y ) with respect to 

 , 

 x f (y ) δx = 

〈 
∇ 

∗
z g (z ) ∇ y ̂

 f (y ) , δz 

〉 

= 

〈 
∇ 

∗
z g (z ) ∇ y ̂

 f (y ) , ∇ x h (x ) δx 

〉 

= 

〈 
∇ 

∗
x h (x ) ∇ 

∗
z g (z ) ∇ y ̂

 f (y ) , δx 

〉 (4) 

nd the same procedure could be followed for any arbitrary chain 

f functions for whose inputs we wanted to calculate a derivative. 

his procedure, known as the adjoint method or backpropagation 

n the field of machine learning, is effectively the reverse mode 

hat automatic differentiation libraries provide to calculate deriva- 

ives, albeit in the continuous limit. This is the core abstraction 

sed in Stride. 

Stride considers all components in the optimisation problem, 

rom PDEs to objective functions, as mathematical functions that 

an be arbitrarily composed, and whose derivative can be auto- 
3 
atically calculated through the procedure presented above. In 

tride, each of these functions is a stride.Operator object, 

here their inputs and outputs are stride.Variable objects 

 Listing 1 ). 

When each stride.Operator is called, it is immediately ap- 

lied on its inputs to generate some outputs. At the same time, 

hese outputs keep a record of the chain of calls that have led 
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Listing 2. Example of gradient calculation for a PDE-constrained optimisation prob- 

lem like the one solved in FWI. 

Listing 3. Once a gradient has been calculated, a step in the optimisation algorithm 

can be taken by using a stride.LocalOptimiser . 

i

w

c

s
e

s

i

i

i

i

a

a

p

o them within a directed acyclic graph. When w.adjoint() is 

alled, this graph is traversed from the root w to the leaf x , calcu-

ating the gradient in the process. Only the leaves for which the 

ag needs_grad is set to True will have their gradient com- 

uted, which will be stored in the internal buffer of the variable 

.grad . 
Now, we proceed to apply these general abstractions to find the 

radient of a more practical optimisation problem. Consider the 

DE-constrained optimisation problem, 

 

∗ = arg min m 

J(u , m ) = arg min m 

〈 ̂  J (u , m ) , 1 〉 (5) 
s.t. L (u , m ) = 0 

iven some scalar objective function or loss function J(u , m ) and 

ome PDE L (u , m ) = 0 , for some vector of state variables u and a

ector of design variables m . Considering L (u , m ) to be an ade-

uate, continuously differentiable function in some neighbourhood 

f m , we can apply the implicit function theorem. Then L (u , m ) =
 has a unique continuously differentiable solution u (m ) and its 

erivative is given by the solution of, 

 u L (u (m ) , m ) ∇ m 

u (m ) δm + ∇ m 

L (u (m ) , m ) δm = 0 

 m 

u (m ) δm = −∇ u L 
−1 (u (m ) , m ) ∇ m 

L (u (m ) , m ) δm 

(6) 

We can then define a reduced objective F (m ) = J(u (m ) , m ) =
ˆ J (u (m ) , m ) , 1 

〉
, and we can take its derivative with respect to m 

y using the previously introduced procedure, 

 m 

F (m )(δm ) = 

〈∇ u ̂  J (u (m ) , m ) , ∇ m 

u (m ) δm 

〉
+ 

〈∇ m ̂

 J (u (m ) , m ) , δm 

〉
= 

〈∇ 

∗
m 

u (m ) ∇ u ̂  J (u (m ) , m ) , δm 

〉
+ 

〈∇ m ̂

 J (u (m ) , m ) , δm 

〉
(7) 

Substituting expression 6 into expression 7 we obtain, 

 m 

F (m )(δm ) = 

〈∇ 

∗
m 

u (m ) ∇ u ̂  J (u (m ) , m ) , δm 

〉
+ 

〈∇ m ̂

 J (u (m ) , m ) , δm 

〉
= −〈 ∇ m 

L ∗(u (m ) , m ) ∇ u L 
−∗(u (m ) , m ) 

∇ u ̂  J (u (m ) , m ) , δm 

〉
+ 

〈∇ m ̂

 J (u (m ) , m ) , δm 

〉
= 〈 ∇ m 

L ∗(u (m ) , m ) w (m ) , δm 〉 
+ 

〈∇ m ̂

 J (u (m ) , m ) , δm 

〉

(8) 

here w (m ) is the solution of the adjoint PDE, 

 (m ) = −∇ u L 
−∗(u (m ) , m ) ∇ u ̂  J (u (m ) , m ) (9)

In this optimisation problem, both L (u , m ) and J(u , m ) would

e stride.Operator objects. Adding new functions to Stride 

equires defining a new stride.Operator subclass that imple- 

ents two methods, forward and adjoint ( Listing 2 ). 

The abstractions presented allow us to intuitively pose optimi- 

ation problems and calculate derivatives of an objective function 

ith respect to the parameters of interest. However, in order to 

olve the problem, we have to apply this derivative to update our 

uess of the parameters and repeat the procedure iteratively until 

e are satisfied with the final result. 

Stride provides local optimisers of type 

tride.LocalOptimiser that determine how parameters 

hould be updated given an available derivative. For our previ- 

us example, we can follow the procedure in Listing 3 to apply 

 step of gradient descent in the direction of our calculated 

erivative. Writing new, user-defined optimisers only requires the 

reation of a stride.LocalOptimiser subclass that takes the 

tride.Variable being optimised when the class is instan- 

iated and that defines the method step() , which executes a 

ingle step in the optimisation process. 

In order to iterate through the optimisation procedure, we 

ould use a standard Python for loop. However, we also provide 
4 
n Stride a stride.OptimisationLoop to use in these cases, 

hich will help structure and keep track of the optimisation pro- 

ess. 

Iterations in Stride are grouped together in blocks, with the 

tride.OptimisationLoop containing multiple blocks and 

ach block containing multiple iterations. Partitioning the inver- 

ion in this way allows us to divide the optimisation more eas- 

ly into logical units that share some characteristics. For instance, 

n FWI it is common to gradually introduce frequency information 

nto the inversion to better condition the optimisation. In this case, 

t would make sense to assign one block to each frequency band, 

nd run that band for some desired number of iterations. Listing 4 

dds a stride.OptimisationLoop around our previous exam- 

le. 



C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855 

Listing 4. Running through multiple iterations in the optimisation can be easily 

structured using the stride.OptimisationLoop . 

Listing 5. Example spatiotemporal grid. 

Listing 6. Example stride.Medium containing the spatial distribution of longi- 

tudinal speed of sound and density. 

2

p

t

c

a

g

p

d

c

d

a

c

o

i

fi

t

L

Listing 7. Example geometry with its associated transducers. 

Listing 8. Example acquisition containing only one shot. 

s

s

p

t

I

a

s
q

e

a

t

u

s

s
m

2

s
t

p

c

t

.3. Problem definition 

In addition to providing abstractions for solving optimisation 

roblems, Stride introduces a series of utilities for users to specify 

he characteristics of the problem being solved, such as the physi- 

al properties of the medium or the sequence in which transducers 

re used. 

In Stride, the problem is first defined over a spatiotemporal 

rid, which determines the spatial and temporal bounds of the 

roblem and their discretisation ( Listing 5 ). Currently, we support 

iscretisations over rectangular grids, but other types of meshes 

ould be introduced in the future. On this spatiotemporal mesh, we 

efine a series of grid-aware data containers, which include scalar 

nd vector fields, and time traces. These data containers are sub- 

lasses of stride.Variable . 
Based on this, we can define a medium, a stride.Medium 

bject, a collection of fields that determine the physical properties 

n the region of interest. For instance, the medium could be de- 

ned by two stride.ScalarField objects containing the spa- 

ial distribution of longitudinal speed of sound and density, as in 

isting 6 . 
5 
Next, we can define the transducers, the computational repre- 

entation of the physical devices that are used to emit and receive 

ound, characterised by aspects such as their geometry and im- 

ulse response. These transducers are then located within the spa- 

ial grid by defining a series of locations in a stride.Geometry . 
n Listing 7 we instantiate some stride.Transducer objects 

nd then add them to a corresponding stride.Geometry . 
Finally, we can specify an acquisition sequence within a 

tride.Acquisitions object ( Listing 8 ). The acquisition se- 

uence is composed of shots ( stride.Shot objects), where 

ach shot determines which transducers at which locations act 

s sources and/or receivers at any given time during the acquisi- 

ion process. The shots also contain information about the wavelets 

sed to excite the sources and the data observed by the corre- 

ponding receivers if this information is available. 

All components of the problem definition can be stored in a 

tride.Problem object, which structures them in a single, com- 

on entity. 

.4. Physical modelling 

Physical modelling is defined in Stride through 

tride.Operator objects that represent specific implemen- 

ations of a numerical solver applied to a PDE. Stride does not 

rescribe a specific solver or numerical method, and different 

odes and implementations can be integrated with it as long as 

hey conform to the stride.Operator interface. 
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Listing 9. Basic usage of Mosaic to create remote objects, call their methods, and 

access their attributes. 
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By default, Stride integrates with the Devito library, a domain- 

pecific language that generates highly optimised finite-difference 

ode from high-level symbolic differential equations [17,18] . Us- 

ng Devito, we provide an out-of-the-box implementation of the 

econd-order isotropic acoustic wave equation, for which Devito 

utomatically generates code that can be readily executed in par- 

llel on CPUs using Open Multi-Processing (OpenMP), and on GPUs 

sing both OpenMP and OpenACC. 

Acoustic modelling in Stride is governed by the equation, 

1 

v 2 p 

∂ 2 p 

∂t 2 
= ρ∇ ·

(
1 

ρ
∇p 

)
+ η

∂ 

∂t 
(−∇ 

2 ) y/ 2 p (10) 

here p(t, x ) is the pressure, v p (x ) is the longitudinal speed of 

ound, ρ(x ) is the mass density, η = −2 α0 v 
y −1 
p , and α0 (x ) is the 

bsorption coefficient. The implementation of the acoustic wave 

quation is fourth-order accurate in time and tenth-order accurate 

n space. This results in a stability region with Courant-Friedrichs- 

ewy (CFL) constant of 0.80 in 2D and 0.66 in 3D [22] , as well as

he requirement of a minimum of 3 points per wavelength (PPW) 

o minimise numerical dispersion. Our solver includes options for 

oth constant and variable density and attenuation. Attenuation 

ollows a power law, with frequency dependence controlled by the 

arameter y in the equation, which can take values 0 and 2. In 

hese cases the implemented derivative is not fractional. 

In terms of boundary conditions, Stride includes options for 

 sponge absorbing boundary [23] or a perfectly matched layer 

24] . In all cases, sources and receivers can be defined in locations 

ff the grid, with both bi-/tri-linear interpolation and high-order 

inc interpolation [25] . It is important to note that current, out-of- 

he-box implementations of the adjoints of our PDE solvers con- 

ider domains to be unbounded, as these represent the most com- 

on scenario in ultrasound imaging. However, alternative bound- 

ry conditions can be readily accounted for through user-level ex- 

ensions of the PDE operators. 

Although physical modelling in Stride is currently focused on 

nite-difference methods, future releases could include integration 

ith pseudospectral-element DSLs such as Dedalus [26] or finite- 

lement DSLs like FEniCS/Firedrake [27,28] . 

.5. Parallelism 

In practice, derivatives of the optimisation problem are not cal- 

ulated one data point at a time, but in batches, and the result is 

veraged to obtain an estimate of the gradient for that iteration. 

ecause, in most cases, each of these data points is fully indepen- 

ent, this can be exploited so that they are calculated in parallel. 

or some simple problems, this can be done within a single work- 

tation. However, in most practical problems, compute and mem- 

ry demands require that these computations are mapped across 

ifferent interconnected sets of hardware, such as multi-GPU sys- 

ems and CPU clusters, running locally, remotely, or on the cloud. 

The most important limiting factor when scaling real-life FWI 

orkloads in parallel environments is memory allocation, man- 

gement, and communication, with potentially hundreds of giga- 

ytes being stored and transferred during the optimisation pro- 

ess. Therefore, a parallelisation framework is required that offers 

ne-grained control of the computational workload allocation and 

emory management for code developers, while also providing 

he end user with a high level of abstraction that integrates tightly 

ith the optimisation constructs provided by Stride. We have de- 

eloped Mosaic to facilitate the expression of parallelism in Stride 

n an intuitive manner. 

Mosaic is an actor-based parallelisation library based on asyn- 

hronous, zero-copy message passing through ZeroMQ sockets 

29] . Actors in Mosaic are called tessera, and can be generated by 
6 
ecorating any Python class using @mosaic.tessera . When in- 

tantiating a class that has been decorated, Mosaic will start a re- 

ote instance of that class in one of the workers. At this point, 

emote method calls to that tessera can be executed and the at- 

ributes of that remote object can be accessed. An example of how 

osaic is used can be found in Listing 9 . 

In Mosaic, subsequent method calls to a remote object are guar- 

nteed to be executed in order, but calls to different remote objects 

re not. However, if there are explicit dependencies between two 

r more remote method calls, Mosaic will ensure that these are 

xecuted in the right order ( Listing 10 ). 

The structure of the Mosaic runtime, which can be seen in 

ig. 2 , is composed by a series of processing units, which could 

e located in a single, local workstation or distributed across a re- 

ote network. The first of such units contains a monitor process, a 

arehouse process, and a head process. The monitor process collects 

nformation about the Mosaic network, including occupation rate, 

esource use and connection state. The warehouse process acts as a 

entralised key-value storage location that is accessible from across 

he whole Mosaic network. The head process is the place where 

he main user code is executed. In each of the remaining process- 

ng units, a node monitor and one or more workers are allocated. 

he node monitor keeps track of the runtime status of its local pro- 

essing unit and oversees the life cycle of each of the workers in its 

nit. Finally, the workers act as containers for tessera actors, whose 

ethods can be executed remotely. All processing units in the Mo- 
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Listing 10. Expressing parallelism and dependencies in Mosaic. 
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Fig. 2. Schematic representation of the Mosaic runtime. The runtime is divided into 

several logical processing units, which could represent, for instance, processes in a 

local multi-processing environment or different machines in a multi-node cluster. In 

the first processing unit, the user code is executed in the head , while the monitor 

tracks the status of the runtime and the warehouse acts as a central storage unit. 

In the remaining processing units, a node monitor is allocated to track the status 

of that local unit and communicate this to the global monitor , and one or more 

workers are also created to execute tessera calls. All endpoints in the Mosaic 

runtime are interconnected to each other. 

a

2

5

c

p  

t

w

m

a

(  

t

m

c

c

aic network are directly interconnected to each other, creating a 

ecentralised communication mesh. 

Mosaic can be run in interactive mode in a Jupyter notebook, 

r from a terminal window using the mrun command. The Mosaic 

untime can be used without any code changes in a local multi- 

rocessing environment or a multi-node cluster. Therefore, Mosaic 

ives us the flexibility to parallelise work across multiple CPUs 

ithin a single compute node, as well as across multiple intercon- 

ected nodes, with the distribution topology related to the specific 

pplication at hand. Additionally, our Devito solvers can parallelise 

he execution of the wave equation across multiple CPU cores by 

sing thread-level parallelism. 

.6. File input and output 

As the popularity of ultrasound tomography increases, the num- 

er and size of datasets are also growing, but no standard format 

xists for their exchange. This slows algorithm development and 

imits research reproducibility. In order to address this, we have 

ntroduced with Stride a standardised file specification and a set 

f tools to interact with it. 

In the setup of ultrasound tomography workflows, there are 

sually a number of intermediate files that are generated describ- 

ng aspects such as medium properties, transducer impulse re- 

ponses or data recorded during laboratory experiments. In Stride, 

e use the Hierarchical Data Format (HDF5) [30] for saving and 

oading these datasets and provide a series of tools to conveniently 

nteract with them. Figure 3 shows the basic file specification pro- 

osed in Stride for the different components of a standard tomo- 

raphic workflow. 

. Results 

.1. Modelling accuracy 

We have validated the accuracy of the acoustic solver by com- 

aring it against an analytical solution of the wave equation for 
7 
 homogeneous medium [31] . The comparison was performed, in 

D and 3D, by transmitting a three-cycle tone burst centred at 

00 kHz into a medium with constant speed of sound of 1500 m/s, 

onstant density, and no attenuation. The employed grid was sam- 

led at 0.250 mm in space (minimum of 8 PPW) and 0.060 μs in

ime (maximum CFL constant of 0.36). The resulting acoustic wave 

as then recorded at 51 equispaced points, starting at the trans- 

ission location and increasing in distance up to a maximum sep- 

ration of 300 mm. 

Results for the comparison are shown in Fig. 4 , both for the 2D 

 Fig. 4 -A) and the 3D cases ( Fig. 4 -B), where errors with respect to

he analytical solution were calculated using the normalised root- 

ean-square error. We can see how the Stride numerical solutions 

losely match the analytical ones, remaining accurate at a signifi- 

ant distance from the transmission site. 
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Fig. 3. Specification of the Stride file format. The definition of the spatiotemporal grid is the basis upon which different types of data containers and the various components 

of the problem are then specified. 

Fig. 4. Accuracy of the acoustic wave equation solver against analytical solution. The numerical solution of the acoustic wave equation calculated by Stride is compared to 

the analytical solution for a medium with homogeneous speed of sound. The comparison is performed in 2D (A) and 3D (B), at a distance to the emitter ranging from 0 to 

300 mm. Error is calculated as the normalised root-mean-square error with respect to the analytical solution. 
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We have performed a further validation of the Stride acoustic 

olvers on a more complex medium with inhomogeneous speed of 

ound, density, and attenuation of order zero, for which an analyt- 

cal solution is not available, by comparing it against kWave [32] , 

 state-of-the-art ultrasound modelling library written in MATLAB 

nd based on pseudospectral element methods. The comparison 

as performed using a human skull section, seen in Fig. 5 -A, sam- 
8

led at 0.125 mm (minimum of 24 PPW), and illuminated by a 

owl ultrasound transducer with a 64 mm radius of curvature and 

 64 mm aperture diameter. The transducer surface was discretised 

sing 20,0 0 0 point sources, evenly distributed using Fibonacci spi- 

als [33] . This example forms part of a transcranial ultrasound 

imulation benchmarking and intercomparison exercise organised 

y the ITRUSST (International Transcranial Ultrasonic Stimulation 
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Fig. 5. Accuracy of the acoustic wave equation solver against state-of-the-art solver. The 3D numerical model (A) contains a human skull section (blue) and a bowl ultrasound 

transducer (red). We compare a 2D slice through the resulting steady-state wavefield for the state-of-the-art solver kWave (B) and for Stride (C). Additionally, we compare 

two 1D profiles through the centre of the transducer focus (D-E). 
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afety and Standards) planning group [34] . The transducer was ex- 

ited by a continuous sinusoidal wave at 500 kHz and the simu- 

ation was run with a step size of 0.016 μs (maximum CFL con- 

tant of 0.36) until steady state was reached. The magnitude of 

he pressure field at the excitation frequency was then extracted 

fter Fourier transform. Fig. 5 -B and C show a 2D slice through 

he resulting 3D wavefield, from which we can observe the good 

greement between both solutions. A similar conclusion can be ex- 

racted from the 1D profiles, seen in Fig. 5 -D and E. The agreement

etween both solvers is quantitatively confirmed by a relative error 

f 1.64%, calculated over the entire 3D volume. Existing differences 

etween the results of both solvers are likely due to the use of 

ifferent numerical methods to solve the wave equation, as well 

s differences in source injection routines and boundary condition 

mplementation. It is important to note that implementation dif- 

erences cannot be fully eliminated, even in the limit where both 

umerical methods converge, due to the fact that Stride and kWave 

re solving fundamentally different equations in order to model 

coustic wave propagation: Stride solves the second-order linear 

coustic wave equation, whereas kWave solves three coupled equa- 

ions that are equivalent to a generalized Westervelt equation. 

.2. Imaging in 2D 

For our first imaging experiment, we extract a 2D slice from a 

umerical breast model as seen in Fig. 6 -A. The resulting 2D model 

an be seen in Fig. 7 -A. The model has been obtained from an open
9 
atabase [35] , and has been adapted by populating it with acoustic 

issue properties and by adding a tumour. From here onwards, all 

xamples were run with constant density and no attenuation. The 

odel, sampled with a spacing of 0.500 mm (minimum of 3.73 

PW), has a size of 456 ×485. The model is surrounded by 128 

oint transducers, seen as blue dots in Fig. 6 -A, all of which act 

s sources and receivers. Imaging is performed using a three-cycle 

one burst centred at 500 kHz, and is carried out over 200 μs in

teps of 0.080 μs (maximum CFL constant of 0.26). Both temporal 

nd spatial sampling are kept constant during modelling and in- 

ersion, for this and all subsequent examples. However, this is not 

equired and users could exploit different dispersion and stability 

onditions by changing the discretisation across different imaging 

locks. 

To make use of the gradient-calculation capabilities 

f Stride, we instantiate our speed-of-sound field with 

eeds_grad = True , and set the starting model to a con- 

tant sound speed of 1500 m/s ( Fig. 7 -B). We also instantiate a 

radient descent optimiser to update our variable ( Listing 11 ). 

We can see in Listing 11 how the stride.ScalarField has 

een instantiated by calling parameter() . Using this method 

ill ensure that, as the field is sent across the Mosaic network, a 

eference to the original object will always be maintained. This will 

llow us to calculate the gradient in different workers and then 

ropagate the results back to the local runtime. 

Then, we can instantiate our operators remotely, creating one 

opy for each available worker ( Listing 12 ). In this case, we use 
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Fig. 6. Setup used in the numerical experiments. For the 2D experiment (A), a slice 

is taken across a numerical 3D model of the breast and 128 point transducers, 

which can be seen as blue dots, are distributed around it. For the 3D experiment 

(B), a numerical head model is imaged by surrounding it with 1024 transducers 

(also visible as blue dots). The scale shown at the bottom of the numerical models 

applies equally in all spatial directions. 
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Fig. 7. Stride reconstruction in 2D. A 2D acoustic breast model (A) is imaged start- 

ing from a homogeneous distribution of speed of sound (B). Stride manages to ac- 

curately reconstruct the target model (C). The mean of the absolute value of the 

difference between the ground-truth model and the inversion is displayed here as 

ε. 

Listing 11. To image the spatial distribution of speed of sound, we cre- 

ate a stride.ScalarField(..., needs_grad = True) and set 

the starting distribution to be 1500 m/s everywhere. We also create a 

stride.GradientDescent optimiser to update the variable at every iter- 

ation. 

Listing 12. We create the necessary operators for the reconstruction. The keyword 

argument len = num_workers controls the amount of copies of the operators to 

be instantiated by Mosaic in each remote worker. 
n operator for the PDE and another one for the objective func- 

ion, and we also create pre-processing operators for our source 

avelets and our output time traces. 

We perform the inversion by gradually introducing frequen- 

ies, starting at 300 kHz and going up to 600 kHz. We do this 

y running the optimisation loop in blocks, with each block us- 

ng a different frequency band. At each block, we complete 8 it- 

rations, randomly selecting 16 shots without replacement in each 

f them. That is, each shot is used once at every frequency band. 

e run the function in Listing 13 for every iteration of the re- 

onstruction loop in Listing 14 . We run this inversion on a local 

ulti-processing environment, within a Jupyter notebook, by sim- 

ly adding the command mosaic.interactive(‘‘on’’) at 

he beginning of our notebook. This workstation is equipped with 

4 GB of memory and 6 physical cores (Intel i7-8700K, 6 cores, 

.70 GHz). The acoustic Devito PDE was compiled using the GNU 

cc compiler version 7.5, and was executed on the Jupyter note- 

ook using 3 Mosaic workers and OpenMP thread-level parallelism 

ith 2 threads for each worker. Each of the Mosaic workers cal- 

ulates the gradient for a single shot at a time, which entails one 

orward propagation and one adjoint propagation of the acoustic 

olver, before combining the gradients for all shots at each itera- 
10 
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Listing 13. At every iteration, a subset of the available shots are selected randomly 

to calculate a gradient. The calculated gradient is then used to update the speed of 

sound distribution. 

Listing 14. The inversion is performed by selecting subsequent frequency bands 

and, in each band, a certain number of iterations are run to calculate a gradient. 
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11 
ion. With this configuration, each shot gradient calculation took a 

otal of 2.99 ± 0.30 s. 

Once the optimisation loop runs through all frequency bands, a 

nal reconstruction is obtained ( Fig. 7 -C). We calculate the mean of 

he absolute value of the difference between the final reconstruc- 

ion and the original model, which is displayed in Fig. 7 with the 

ymbol ε. We can see how the reconstruction closely matches the 

round-truth model, both qualitatively and quantitatively. As ex- 

ected, inaccuracies can be observed in the reconstruction, which 

an be explained through a number of factors. First, limited sam- 

ling of the wavefield is performed at the boundaries of the model 

ecause a finite number of receivers is used. Second, the available 

requency bandwidth is also necessarily finite, which will limit res- 

lution and prevent high-contrast interfaces from being perfectly 

ecovered. 

Next, we apply the same imaging script that we have just intro- 

uced to now image an experimental tissue-mimicking phantom. 

 polyvinyl alcohol (PVA) cryogel phantom was constructed with 

wo layers of different speed of sound values and an inner cav- 

ty filled with water [36] . The dimensions of the phantom are, ap- 

roximately, 57.4 mm in width, 70.4 mm in height, and 130 mm in 

epth. Speed-of-sound values for the different layers of the phan- 

om were experimentally measured using time of flight to be 1521 

3 m/s for the outer layer and 1502 ± 4 m/s for the inner layer. 

 photograph of the cross section of the phantom can can be seen 

n Fig. 8 -A. Data were then acquired using two P4-1 transducers 

ATL, USA), each of which contains 96 transmitting and receiving 

lements. The two P4-1 transducers were independently attached 

o two rotary motors, allowing them to move around the phan- 

om for full illumination. Data were acquired by transmitting with 

 centre frequency of 1.4 MHz. 

The inversion was performed over 120 μs, in steps of 0.048 

s (maximum CFL constant of 0.37), using a spatial sampling of 

.200 mm (minimum of 4.67 PPW) and a grid size of 890 ×890. 

maging was carried out using a single block and a single fre- 

uency band with an upper limit of 700 kHz across a total of 152 

terations. During each iteration, 10 shots were selected randomly 

ithout replacement so that each shot was used four times at the 

nd of the block. A single frequency band is sufficient in this ex- 

mple because, for this particular experiment, the starting point 

f our inversion is close enough to the minimum of the optimisa- 

ion to ensure convergence. Simultaneously, the resolution offered 

y this frequency band (with a half-wavelength of approximately 

 mm in water) is sufficient, given the size and level of detail of 

he phantom, to recover a high-resolution reconstruction. 

Using a starting model that contained homogeneous water 

 Fig. 8 -B), a high-resolution reconstruction of the phantom is ob- 

ained ( Fig. 8 -C). Stride can successfully recover the two layers of 

peed of sound, as well as the internal water cavity. The recon- 

truction shows high contrast between layers, and the correct re- 

overy of the complex details at the interface between them. We 

an also see how, at some points, the two layers of the phantom 

eem to gradually dissolve into one another instead of presenting 

harp interfaces. This could be an imaging artefact due to errors in 

he calibration of the data acquisition setup, but could also be due 

o the natural degradation of the phantom, which could have led 

o the two layers merging at these locations. 

We run this inversion on the same workstation as the 

revious example, using the same 3 Mosaic workers, so 

hat each shot gradient calculation took a total of 28.32 ±
.46 s. Adding a single argument to the PDE call, pde(..., 
latform = ‘‘nvidia-acc’’) , is sufficient to run the same in- 

ersion on an available GPU instead of the CPU. In this case, the 

evito-generated OpenACC solver is compiled using the PGI pgc++ 
ompiler version 21.2. Then, using the same workstation, equipped 

ith an NVIDIA GeForce RTX 2080 Ti with 11 GB of memory, and 
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Fig. 8. Experimental Stride reconstruction in 2D. A tissue-mimicking phantom (A) 

is imaged starting from a homogeneous distribution of speed of sound (B). The 

Stride reconstruction (C) closely matches the target phantom, is able to recover the 

different layers of speed of sound and the complex interface between those layers. 

We can also see the signal used experimentally for imaging (D) and its correspond- 

ing magnitude spectrum (E). 
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 single Mosaic worker, each shot gradient calculation took a total 

f 5.63 ± 0.07 s. 

.3. Imaging in 3D 

Although relevant when imaging structurally simple, soft tis- 

ues such as the breast, 2D imaging on its own is of limited appli-

ability in realistic tomographic reconstructions, where 3D mod- 

lling and inversion is needed to account for the full physics of 

ave propagation in the human body. At the same time, it is in 

hese 3D problems where the computational cost of FWI is most 

pparent and where tomography codes are required to scale ro- 

ustly. In order to showcase the scaling capabilities of Stride, we 

hoose for our second experiment a numerical 3D model of the 

dult human head ( Fig. 6 -B). The model is based on the MIDA 

odel [37] , to which acoustic properties were assigned as de- 

cribed by Guasch et al. [4] . Three slices through this numerical 

odel can be seen in Fig. 9 -A to C. The model is sampled with a

pacing of 0.750 mm (minimum of 3.22 PPW), resulting in a grid of 

ize 367 ×411 ×340 and more than 51 million unknown parameters 

o be estimated. A total of 1024 transducers were located around 

he head as seen in Fig. 6 -B, with all transducers acting both as
12 
ources and receivers. Imaging was performed with a three-cycle 

one burst centred at 500 kHz. Modelling was carried out over 300 

s, with time steps of 0.150 μs (maximum CFL constant of 0.60). 

Stride has been designed to seamlessly scale from 2D to 3D, and 

oving from one to the other only requires changing three lines 

f the code when defining the spatial grid. The remaining code 

an be run without any changes. In this case, the reconstruction is 

erformed in the frequency range between 100 kHz and 600 kHz, 

tarting from a model that only contains the skull ( Fig. 9 -D to F).

ach frequency band in the reconstruction is run for 8 iterations, 

nd 128 shots are randomly selected without replacement for each 

f them. 

Due to the higher computational requirements in 3D, we run 

his reconstruction in an HPC cluster environment. Except for 

emoving the mosaic.interactive(‘‘on’’) command, no 

hanges are required to the code when scaling from the local 

o the cluster environment. Each compute node in the cluster is 

quipped with 256 GB of memory and 128 cores (2xAMD Zen2 

PYC 7742, 64 cores, 2.25 Ghz). Nodes are connected using an HPE 

lingshot interconnect with 200 Gb/s signalling. The Devito solver 

s compiled using the GNU gcc compiler version 7.5, and is exe- 

uted using OpenMP thread-level parallelism across 32 threads. 

Each of the nodes calculates the gradient for a single shot at a 

ime, which once more entails one forward propagation and one 

djoint propagation of the acoustic solver, before combining the 

radients for all shots at each iteration. Work distribution across 

he different nodes is managed by the Mosaic runtime, with the 

ime taken to allocate this work generally dominated by the se- 

ialisation, communication, and processing of the data associated 

ith the execution of each shot. However, serialisation in Mosaic 

as a negligible impact due to its zero-copy implementation. Com- 

unication overheads could have an impact on performance, but 

hese are minimised by high-speed interconnects and by the asyn- 

hronous nature of Mosaic and its underlying ZeroMQ sockets. This 

eans that user code is not slowed down by the actual time taken 

o send messages across the network by allowing the overlap of 

omputation and communication: the head process dispatches all 

hots almost instantaneously, and independent worker processes 

cross the network start computing as soon as the first message ar- 

ives. Message processing, on the contrary, will have an impact on 

erformance due to the intrinsic single-threaded nature of Python. 

his could be alleviated by offloading some of this processing to 

ower-abstraction interfaces in C. With all this in mind, each shot 

radient calculation took 5.82 ± 0.36 min, including time spent in 

ork distribution. 

The high accuracy of the final reconstruction obtained using 

tride can be seen in Fig. 9 -G to I. Also in this case, we have cal-

ulated a corresponding quantitative error measure for the full 3D 

odel, shown in Fig. 9 with the symbol ε. Errors in the recon- 

truction can in this case be attributed to similar reasons to the 

revious numerical 2D case, with the added factor of limited illu- 

ination in certain regions of the model. We can see, for example, 

ow the regions close to the neck and around the sinuses are more 

oorly resolved due to the location of sources and receivers around 

he head. We can also see how resolution is degraded as we move 

loser to the upper regions of the skull due to lower ray density in 

hese areas. 

At this point, we explore the scaling capabilities of the Mosaic 

arallelisation layer by running a fixed number of individual shot 

radient calculations, 128, while increasing the number of compute 

odes used in the HPC cluster. The achieved acceleration is calcu- 

ated by comparing the amount of time taken to complete all gra- 

ient calculations using a certain number of nodes with respect to 

he time taken using a single node. Under ideal circumstances, this 

eans that, for example, an acceleration of 128 times is expected 

hen using 128 compute nodes. This test is repeated five times, 
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Fig. 9. Stride reconstruction in 3D. A 3D acoustic head model (top row) is imaged starting from a model that contains only the skull and is homogeneous otherwise (middle 

row). Stride manages to accurately reconstruct the target model (bottom row). The mean of the absolute value of the difference between the ground-truth model and the 

inversion is displayed here as ε. 

Fig. 10. Mosaic strong scaling for the 3D head model. Scaling obtained with Mo- 

saic (red, dashed line) is compared to the ideal scaling scenario (black, continuous 

line). Scaling is analysed by running 128 shot gradient calculations for the 3D head 

model across an increasing number of compute nodes. Acceleration is calculated 

as the amount of time taken to complete all gradient calculations using a certain 

number of nodes with respect to the time taken using a single node, averaged over 

5 experiments. 
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nd the final acceleration is taken as the average over all repeti- 

ions. 

Results for this strong scaling test can be seen in Fig. 10 , where

e can observe that Mosaic achieves nearly ideal scaling up to 

28 compute nodes. For the largest number of nodes, we can 

ee how the obtained acceleration deviates slightly from the ideal 

urve. This corresponds, approximately, to a 2% loss in perfor- 
13 
ance, which can be attributed to the effective single-threaded 

ature of Python programs that we have previously discussed. 

. Discussion 

We have shown that Stride provides an intuitive framework 

or the solution of ultrasound tomography problems, seamlessly 

witching between 2D and 3D applications, and between a local 

orkstation and a multi-node cluster. 

Implementations of ultrasound tomography methods like FWI 

ave to address their computational and algorithmic complexity. 

o do this, Stride has been designed to provide tailored optimisa- 

ion routines, high-performance PDE solvers, and scalability to HPC 

ystems, while simultaneously offering a high level of abstraction 

o ensure flexibility, productivity, and modularity. 

From the point of view of the optimisation, we have seen how 

tride closely matches the mathematical formulation of the in- 

erse problem, for which gradients can be intuitively calculated 

sing the adjoint method. Our approach here resembles that taken 

y machine learning libraries like PyTorch [38] , which have been 

ighly successful at broadening the reach of these technologies 

eyond computational experts. This serves the double purpose of 

asing adoption by users, some of which might already be familiar 

ith some of these libraries, and facilitating integration with these 

achine learning tools. 

We have to note that gradients for Stride problems are calcu- 

ated at a high level by treating the PDE or the loss functions 

s differentiable primitives, but no differentiation is happening 

hrough their internal mathematical operations. This is the subject 

f ongoing research and will be introduced in future versions of 

tride. 
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u

From the point of view of the PDE solver, Stride faces the 

erformance-flexibility dichotomy in a similar manner to the geo- 

hysical library JUDI [16] : we provide intuitive interfaces in a high- 

bstraction language, while using a DSL like Devito under the 

ood. From a symbolic specification of the PDE, Devito automat- 

cally generates architecture-specific C code that matches the per- 

ormance of hand-tuned implementations [17,18] . This offers a high 

egree of flexibility, allowing the inclusion of new physical models 

ith minimal effort and without hindering performance. It is this 

exibility that allows us to run the same wave equation solver on 

 CPU multi-threaded environment or a GPU with effectively no 

ode changes. 

Currently, Stride problems can only be defined on rectangular 

rids, on which finite-difference methods can be applied using De- 

ito. Nonetheless, Stride does not prescribe any of these, and fu- 

ure work will explore the inclusion of different discretisation ap- 

roaches and integration with other DSLs like FEniCS/Firedrake for 

nite-element methods [27,28] or Dedalus for spectral methods 

26] . 

Other open-source libraries exist for numerical modelling in 

ltrasound medical imaging, such as the previously mentioned 

Wave [32] , based on pseudospectral element methods; Field II 

39] , which uses a linear scattering approximation; or Bempp-cl 

40] , which employs a boundary element method, among others. 

hese libraries have been tailored to accurately model sound prop- 

gation in biological tissues and generally provide hand-tuned im- 

lementations that can achieve high performance. Stride is agnos- 

ic to the underlying solver employed and any of these could be 

eadily integrated with it. However, that would diminish the flex- 

bility that is achieved by using a DSL that can obtain comparable 

erformance for both the physical models currently available and 

ny new ones that could be introduced. 

Stride has been designed to tackle the problem of intuitively 

caling to HPC systems in a similar spirit as for the solver: high- 

evel interfaces hide from the user the complexity of deploying the 

lgorithms to target systems, allowing imaging scientists to focus 

n the reconstruction algorithms rather than the low-level details. 

e provide for this the custom parallelisation library Mosaic. 

Traditional HPC workloads usually rely on the message pass- 

ng interface (MPI) standard to express parallelism in applications. 

owever, originally designed in the 1990s, MPI has so far no ca- 

acity for fault tolerance and its interfaces are too cumbersome 

nd low level for most non-specialists. Other Python libraries exist 

or writing parallel applications, most notably Dask [41] , PyCOMPSs 

42] , and Ray [43] . Dask expresses parallelism as a series of state-

ess tasks that form a computational graph, which can be executed 

n parallel. PyCOMPSs uses tasks similarly to express parallelism, 

lthough these do not have to be stateless. However, PyCOMPSs 

mploys a Java-based runtime that requires the serialisation of ob- 

ects to file in order to communicate with Python, incurring in a 

erformance penalty. Contrarily, the Ray parallel framework is pri- 

arily based on the actor model. We have chosen to design Mo- 

aic using an actor-based model because, much like object-oriented 

rogramming, we consider that it better matches the world view 

nd the mental framework of domain specialists. It also allows 

s to keep objects and their allocated memory warm within a 

pecific compute node or associated accelerator, incidentally mak- 

ng it more intuitive for end users to manipulate remote mem- 

ry. We have chosen to implement a custom parallelisation library 

or Stride due to a need for fine-grained control of the computa- 

ional workload allocation and memory management that existing 

ibraries are unable to provide. 

Through the examples presented, we have seen that switch- 

ng from a local multi-processing environment to an HPC cluster 

ith Mosaic is straightforward and requires no significant code 

hanges. We have also seen through our 3D experiments that real- 
14 
stic Stride reconstructions could be potentially scaled across hun- 

reds of compute nodes thanks to the zero-copy, asynchronous 

ork allocation of the Mosaic library. However, work is still needed 

o fully understand and exploit the scaling capabilities of Mosaic 

cross large on-premises and cloud computing clusters, with par- 

icular interest in minimising data transfers across the network by 

xploiting caching mechanisms to detect redundant communica- 

ions. 

Additionally, while Mosaic offers the capacity to parallelise 

cross elements of an iteration batch, the integration with Devito 

ffers another degree of freedom to parallelise within PDE solves 

hrough MPI-based domain decomposition. Domain decomposition, 

hose use in Stride is being actively explored, allows a user to dis- 

ribute the computation of the PDE solution. This will be of impor- 

ance when solving large problems whose size exceeds memory 

vailable in any single node or memory available in a particular 

ccelerator such as a GPU. It will also allow for increased compu- 

ational performance by splitting PDE solves in a single node across 

vailable CPU sockets, thus enforcing data locality. 

There are two distinct applications for which Stride has been 

esigned: wave propagation modelling and tomographic imaging. 

n terms of modelling wave phenomena, a number of other li- 

raries are openly available to users, some of which include the 

lready mentioned Field II [39] , Bempp-cl [40] , or kWave [32] , 

mong others. The choice of one library over another will be down 

o the aims and requirements of a specific modelling exercise. For 

xample, Field II should be chosen when modelling accuracy can 

e traded off for shorter computational times, whereas the bound- 

ry element method in Bempp-cl will provide accurate modelling 

hat remains computationally efficient when the number of tis- 

ue interfaces in the model is low. As we have shown here, Stride 

nd kWave can achieve similar levels of modelling accuracy for 

omplex tissue geometries. Nonetheless, finite-difference solvers in 

tride will be more computationally efficient, whereas kWave will 

isplay smaller numerical dispersion for a similar discretisation 

rid thanks to its pseudospectral formulation. These differences 

ill, however, become irrelevant as other numerical methods are 

ntegrated into Stride: a different method will be chosen depend- 

ng on the specific application. 

In terms of tomographic imaging, it is important to distinguish 

etween full-wave methods, such as FWI, and others, such as time- 

f-flight tomography and diffraction tomography. Stride is, at the 

ime of this writing, the only openly available library for full-wave 

omographic imaging in the medical context. Stride, however, does 

ot currently provide solvers for other types of ultrasound tomog- 

aphy and other tools should be used in these cases [44] . 

In terms of compatibility, Stride can be installed on Unix oper- 

ting systems, and is compatible with Windows through the Win- 

ows Subsystem for Linux and through Docker containers. 

Through these design decisions, Stride achieves flexibility and 

odularity, allowing each of its components to be modified in- 

ependently or entirely substituted. At the same time, impor- 

ance has been placed on ensuring that lower-level interfaces can 

e used to provide users with increasingly fine-grained control 

ver the problem and its execution. Although we have designed 

tride with ultrasound tomography in mind, the formulation of 

he physics-constrained optimisation problem is related to other 

maging techniques, like optoacoustic tomography, and even cal- 

bration methods like spatial response identification. This makes 

tride readily applicable to a number of medical ultrasound prob- 

ems. 

. Conclusions 

Advances in ultrasound-based imaging methodologies such as 

ltrasound computed tomography and optoacoustic tomography 
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ely on increasingly complex mathematical and computational 

odels. This puts a strain on researchers to both develop novel 

maging algorithms and translate them into high-performance and 

calable code, thus slowing scientific progress. 

To bridge the gap between flexible development and real-life 

pplication, we have designed and developed Stride, an open- 

ource Python library that is both intuitive and efficient. Stride al- 

ows algorithms to be written for a 2D model and be easily scaled 

p to 3D, and allows code to be tested on a local workstation and

eadily deployed to an HPC cluster. We achieve this by combin- 

ng modular interfaces written in a high-abstraction language with 

utomatically-generated, high-performance solvers, and with tai- 

ored parallelisation routines. 

By providing high-level interfaces that intuitively match the 

epresentation of problems posed by domain specialists, and which 

re efficient and scalable out of the box, Stride has the potential to 

ramatically increase the productivity of imaging researchers. This 

ill have a significant impact by accelerating the development of 

ew ultrasound-based imaging technology and its translation from 

ench to bedside. Furthermore, other imaging applications where 

he efficient solution of physics-constrained optimisation problems 

s needed could also benefit from the general abstractions provided 

y Stride, such as non-destructive testing, aeronautics, or experi- 

ental fluid mechanics. 
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