
Computer Methods and Programs in Biomedicine 221 (2022) 106855

Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine

journal homepage: www.elsevier.com/locate/cmpb

Stride: A flexible software platform for high-performance ultrasound

computed tomography

Carlos Cueto

a , ∗, Oscar Bates a , George Strong

b , Javier Cudeiro

b , Fabio Luporini c ,
Òscar Calderón Agudo

b , Gerard Gorman

b , Lluis Guasch

b , ∗∗, Meng-Xing Tang

a , ∗∗

a Department of Bioengineering, Imperial College London,London,SW7 2AZ,United Kingdom

b Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, United Kingdom

c Devito Codes, London, United Kingdom

a r t i c l e i n f o

Article history:

Received 9 November 2021

Revised 25 April 2022

Accepted 3 May 2022

a b s t r a c t

Background and objective: Advanced ultrasound computed tomography techniques like full-waveform in-

version are mathematically complex and orders of magnitude more computationally expensive than con-

ventional ultrasound imaging methods. This computational and algorithmic complexity, and a lack of

open-source libraries in this field, represent a barrier preventing the generalised adoption of these tech-

niques, slowing the pace of research, and hindering reproducibility. Consequently, we have developed

Stride, an open-source Python library for the solution of large-scale ultrasound tomography problems.

Methods: On one hand, Stride provides high-level interfaces and tools for expressing the types of optimi-

sation problems encountered in medical ultrasound tomography. On the other, these high-level abstrac-

tions seamlessly integrate with high-performance wave-equation solvers and with scalable parallelisation

routines. The wave-equation solvers are generated automatically using Devito, a domain-specific language,

and the parallelisation routines are provided through the custom actor-based library Mosaic.

Results: We demonstrate the modelling accuracy achieved by our wave-equation solvers through a com-

parison (1) with analytical solutions for a homogeneous medium, and (2) with state-of-the-art mod-

elling software applied to a high-contrast, complex skull section. Additionally, we show through a series

of examples how Stride can handle realistic numerical and experimental tomographic problems, in 2D

and 3D, and how it can scale robustly from a local multi-processing environment to a multi-node high-

performance cluster.

Conclusions: Stride enables researchers to rapidly and intuitively develop new imaging algorithms and to

explore novel physics without sacrificing performance and scalability. This will lead to faster scientific

progress in this field and will significantly ease clinical translation.

© 2022 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

w

r

t

a

r

c

(

a

a

p

i

s

t

o

t

h

0

. Introduction

Ultrasound computed tomography techniques such as full-

aveform inversion (FWI) have the potential to produce high-

esolution, 3D reconstructions of tissues such as the breast [1,2] ,

he limbs [3] , or the adult human brain [4] . However, generalised

doption of these techniques is hindered by the fact that tomog-

aphy algorithms are computationally demanding and algorithmi-

ally complex, while existing medical tomography codes are, as far
∗ Corresponding author.
∗∗ Principal corresponding author.

E-mail addresses: c.cueto@imperial.ac.uk (C. Cueto), l.guasch08@imperial.ac.uk

L. Guasch), mengxing.tang@imperial.ac.uk (M.-X. Tang) .

r

t

i

n

ttps://doi.org/10.1016/j.cmpb.2022.106855

169-2607/© 2022 The Authors. Published by Elsevier B.V. This is an open access article u
s we are aware, closed source, difficult to maintain, and slow to

dapt to new research.

FWI is a technique, originally developed in the field of geo-

hysics, that produces reconstructions of tissue properties by solv-

ng an associated inverse problem. FWI is computationally expen-

ive because, for realistic 3D problems, it requires the solution of

housands of partial-differential equations (PDEs) and the storage

f hundreds of gigabytes of memory at every iteration in order

o estimate billions of parameters. At the same time, FWI is algo-

ithmically challenging due to the non-linear, non-convex nature of

he inverse problem being solved. Therefore, any software for solv-

ng FWI problems has to address its computational and algorithmic

eeds, but should also emphasise the high-level, problem-specific
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cmpb.2022.106855
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.106855&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:c.cueto@imperial.ac.uk
mailto:l.guasch08@imperial.ac.uk
mailto:mengxing.tang@imperial.ac.uk
https://doi.org/10.1016/j.cmpb.2022.106855
http://creativecommons.org/licenses/by/4.0/

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

a

m

p

i

P

s

o

o

w

a

v

J

s

p

w

p

w

t

g

i

p

fi

a

c

r

a

g

t

a

p

c

m

s

s

P

m

i

u

t

S

D

H

c

S

f

n

t

w

a

w

S

2

2

g

l

m

p

g

a

f

a

d

c

s

2

c

l

l

m

a

t

t

t

s

t

t

b

a

∇
w

t

d

c

w

∇
b

c

i

e

bstractions that are necessary to ease the adoption of these to-

ographic techniques.

In the fields of geophysics and seismic exploration, different ap-

roaches have been taken by open-source libraries to solve these

ssues. On one hand, libraries like Madagascar [5] , SimPEG [6] , and

ySIT [7] , have managed to provide flexibility and high-level ab-

tractions, but have done so at the expense of performance. On the

ther hand, libraries like SAVA [8] and JavaSeis [9] have focused

n performance at the expense of flexibility and extensibility. As a

ay to bridge the gap between these two extremes, libraries such

s SeisFlows and Pyatoa [10,11] , jInv [12] , and Waveform [13] pro-

ide flexible interfaces in high-abstraction languages like Python,

ulia or MATLAB that interface with high-performance, hand-tuned

olvers. LASIF and Inversionson [14,15] have followed a similar ap-

roach by providing modular seismic work-flow management that

raps a high-performance tomography solver.

Recently JUDI [16] , written in Julia, has gone a step further by

roviding high-level abstractions in a modern language together

ith high-performance solvers that are automatically generated by

he domain-specific language (DSL) Devito [17,18] . Automatic code

eneration for solvers is increasingly important with an ever grow-

ng number of specialised architectures, from traditional central

rocessing units (CPUs) to graphical processing units (GPUs) and

eld-programmable gate arrays (FPGAs), as well as associated par-

llel programming languages (Cuda, OpenACC, etc.). Fine tuning

odes for each of them by hand would be a daunting task for most

esearchers, whereas DSLs like Devito can generate code that is

utomatically tuned for each target architecture and parallel lan-

uage. In doing so, DSLs also increase productivity by simplifying

he implementation of new types of physics and discretisations.

The high computational complexity of FWI also requires, for re-

listic problems, that codes can be deployed to specialised high-

erformance computing (HPC) systems like multi-node clusters or

loud computing services. This represents a further barrier for do-

ain scientists, who are generally not proficient in the use of HPC

ystems. Of the reviewed geophysical and seismic libraries, only

ome of them, such as LASIF and Inversionson, and SeisFlows and

yatoa, have been designed with HPC deployment and scaling in

ind.

Here, we present Stride, an open-source Python library for med-

cal ultrasound tomography that emphasises flexibility and mod-

larity, high performance, and scalability. It achieves this, firstly,

hrough high-level, domain-specific abstractions and heuristics.

econdly, by integrating with the automatic code generation library

evito. Finally, we introduce a parallelisation library for seamless

PC deployment and scaling. Stride is available on GitHub 1 and a

omplete documentation of its interfaces is available online. 2

The remaining of this paper is structured as follows: in

ection 2 , we will present an overview of the structure of Stride,

ollowed by a more detailed exploration of each of its compo-

ents with accompanying examples; in Section 3 , we will assess

he accuracy of the wave-equation solvers provided by Stride, and

e will present examples of tomographic reconstructions in 2D

nd 3D, using both numerical and experimental data; finally, we

ill present our discussion and proceed to our conclusions in

ections 4 and 5 , respectively.

. Methods

.1. Software structure

Stride has been designed to address the computational and al-

orithmic complexity of tomographic imaging by providing high-
1 https://github.com/trustimaging/stride
2 https://stridecodes.readthedocs.io

∇

2

evel interfaces that are modular and extensible, and that closely

atch the mental framework of domain specialists. It has been im-

lemented in Python, a high-level, interpreted programming lan-

uage that provides characteristics such as portability, ease of use,

nd dynamic typing. We have chosen Python because it is the de

acto language for scientific computing and machine learning, with

 large community and package ecosystem.

The high-level interfaces provided by Stride are aimed at ad-

ressing five fundamental aspects in high-performance ultrasound

omputed tomography (Fig. 1):

1. first, abstractions and tools are provided for the solution of op-

timisation problems, which are the basis for most tomographic

imaging algorithms;

2. based on these, a series of classes encapsulate the definition

of the tomographic problem being solved, e.g. the transducers

employed or the signals used to excite them;

3. the relevant physical processes, such as acoustic or elastic wave

propagation, are then modelled by using appropriate solvers

that execute high-performance code through DSLs like Devito;

4. scaling of these algorithms, from a local workstation to HPC

clusters, is achieved by using an integrated parallelisation li-

brary called Mosaic;

5. finally, tools are provided for saving and loading the different

components of the problem using a standardised file format.

Each of these will be presented in detail in the following five

ections.

.2. Abstractions for solving optimisation problems

Techniques such as ultrasound computed tomography, optoa-

oustic tomography [19] , or even ultrasound calibration techniques

ike spatial response identification [20,21] , are commonly formu-

ated as mathematical optimisation problems, which are solved nu-

erically by using local methods like gradient descent. Therefore,

 fundamental necessity when implementing these techniques is

he availability of abstractions that allow us to pose our optimisa-

ion problems, calculate gradients of those problems with respect

o the relevant parameters, and then apply these gradients through

ome local optimisation algorithm. In the next paragraphs, we in-

roduce the abstractions that, being at the core of Stride, enable

he solution of such inverse problems.

Consider a continuously differentiable function f (y) , which can

e expressed as f (y) =

〈
ˆ f (y) , 1

〉
with some adequate function

ˆ f (y)

nd some bilinear form 〈 α, β〉 . We know that the derivative of

f (y) with respect to y is,

 y f (y) δy =

〈
∇ y ̂

 f (y) δy , 1

〉
=

〈
∇ y ̂

 f (y) , δy

〉
(1)

here ∇ y f (y) δy represents the derivative of an operator f (y) in

he direction δy , and the derivative is by definition linear in the

ifferentiation direction. Consider now that y = g (z) is another

ontinuously differentiable function. Then the derivative of f (y)

ith respect to z is,

 z f (y) δz =

〈
∇ y ̂

 f (y) , δy

〉
=

〈
∇ y ̂

 f (y) , ∇ z g (z) δz

〉
(2)

y virtue of the product rule. At this point, we introduce the con-

ept of the adjoint of an operator. Given an operator D ·, its adjoint

s D

∗·, defined so that 〈 a, Db 〉 = 〈 b, D

∗a 〉 . Then, we can rewrite the

xpression as,

 z f (y) δz =

〈
∇ y ̂

 f (y) , ∇ z g (z) δz

〉

=

〈
∇

∗
z g (z) ∇ y ̂

 f (y) , δz

〉 (3)

https://github.com/trustimaging/stride
https://stridecodes.readthedocs.io

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

Fig. 1. Schematic representation of the Stride software structure. A series of basic abstractions for solving optimisation problems are provided (1), based on which the

tomographic problem is expressed (2). The tomographic problem becomes fully defined when appropriate physical modelling is introduced (3). The execution of Stride is

parallelised using the custom library Mosaic (4), and tools are provided to save and load its details (5).

c

p

r

p

r

x

∇

a

o

T

i

t

t

u

f

c

Listing 1. Example calculation of the gradient of a chain of functions using Stride.

Note the use of the await syntax that is needed for compatibility with the Mosaic

parallelisation library.

m

S

w

(

p

t

That is, the derivative of function f (y) with respect to z can be

alculated by finding the derivative of ˆ f (y) with respect to its in-

ut y and then applying the adjoint of the Jacobian of g (z) on the

esult. In the discrete case, this is equivalent to the vector-Jacobian

roduct.

Similarly, if we added a third function z = h (x) , then the same

esult could be obtained for the derivative of f (y) with respect to

 ,

 x f (y) δx =

〈
∇

∗
z g (z) ∇ y ̂

 f (y) , δz

〉

=

〈
∇

∗
z g (z) ∇ y ̂

 f (y) , ∇ x h (x) δx

〉

=

〈
∇

∗
x h (x) ∇

∗
z g (z) ∇ y ̂

 f (y) , δx

〉 (4)

nd the same procedure could be followed for any arbitrary chain

f functions for whose inputs we wanted to calculate a derivative.

his procedure, known as the adjoint method or backpropagation

n the field of machine learning, is effectively the reverse mode

hat automatic differentiation libraries provide to calculate deriva-

ives, albeit in the continuous limit. This is the core abstraction

sed in Stride.

Stride considers all components in the optimisation problem,

rom PDEs to objective functions, as mathematical functions that

an be arbitrarily composed, and whose derivative can be auto-
3
atically calculated through the procedure presented above. In

tride, each of these functions is a stride.Operator object,

here their inputs and outputs are stride.Variable objects

 Listing 1).

When each stride.Operator is called, it is immediately ap-

lied on its inputs to generate some outputs. At the same time,

hese outputs keep a record of the chain of calls that have led

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

t

c

l

fl

p

x

g

P

m

g

s

v

q

o

0

d

∇
∇

 〈
b

∇

∇

w

w

b

r

m

s

w

s

g

w

s
s

o

a

d

c

s
t

s

c

Listing 2. Example of gradient calculation for a PDE-constrained optimisation prob-

lem like the one solved in FWI.

Listing 3. Once a gradient has been calculated, a step in the optimisation algorithm

can be taken by using a stride.LocalOptimiser .

i

w

c

s
e

s

i

i

i

i

a

a

p

o them within a directed acyclic graph. When w.adjoint() is

alled, this graph is traversed from the root w to the leaf x , calcu-

ating the gradient in the process. Only the leaves for which the

ag needs_grad is set to True will have their gradient com-

uted, which will be stored in the internal buffer of the variable

.grad .
Now, we proceed to apply these general abstractions to find the

radient of a more practical optimisation problem. Consider the

DE-constrained optimisation problem,

∗ = arg min m

J(u , m) = arg min m

〈 ̂ J (u , m) , 1 〉 (5)
s.t. L (u , m) = 0

iven some scalar objective function or loss function J(u , m) and

ome PDE L (u , m) = 0 , for some vector of state variables u and a

ector of design variables m . Considering L (u , m) to be an ade-

uate, continuously differentiable function in some neighbourhood

f m , we can apply the implicit function theorem. Then L (u , m) =
 has a unique continuously differentiable solution u (m) and its

erivative is given by the solution of,

 u L (u (m) , m) ∇ m

u (m) δm + ∇ m

L (u (m) , m) δm = 0

 m

u (m) δm = −∇ u L
−1 (u (m) , m) ∇ m

L (u (m) , m) δm

(6)

We can then define a reduced objective F (m) = J(u (m) , m) =
ˆ J (u (m) , m) , 1

〉
, and we can take its derivative with respect to m

y using the previously introduced procedure,

 m

F (m)(δm) =

〈∇ u ̂ J (u (m) , m) , ∇ m

u (m) δm

〉
+

〈∇ m ̂

 J (u (m) , m) , δm

〉
=

〈∇

∗
m

u (m) ∇ u ̂ J (u (m) , m) , δm

〉
+

〈∇ m ̂

 J (u (m) , m) , δm

〉
(7)

Substituting expression 6 into expression 7 we obtain,

 m

F (m)(δm) =

〈∇

∗
m

u (m) ∇ u ̂ J (u (m) , m) , δm

〉
+

〈∇ m ̂

 J (u (m) , m) , δm

〉
= −〈 ∇ m

L ∗(u (m) , m) ∇ u L
−∗(u (m) , m)

∇ u ̂ J (u (m) , m) , δm

〉
+

〈∇ m ̂

 J (u (m) , m) , δm

〉
= 〈 ∇ m

L ∗(u (m) , m) w (m) , δm 〉
+

〈∇ m ̂

 J (u (m) , m) , δm

〉

(8)

here w (m) is the solution of the adjoint PDE,

 (m) = −∇ u L
−∗(u (m) , m) ∇ u ̂ J (u (m) , m) (9)

In this optimisation problem, both L (u , m) and J(u , m) would

e stride.Operator objects. Adding new functions to Stride

equires defining a new stride.Operator subclass that imple-

ents two methods, forward and adjoint (Listing 2).

The abstractions presented allow us to intuitively pose optimi-

ation problems and calculate derivatives of an objective function

ith respect to the parameters of interest. However, in order to

olve the problem, we have to apply this derivative to update our

uess of the parameters and repeat the procedure iteratively until

e are satisfied with the final result.

Stride provides local optimisers of type

tride.LocalOptimiser that determine how parameters

hould be updated given an available derivative. For our previ-

us example, we can follow the procedure in Listing 3 to apply

 step of gradient descent in the direction of our calculated

erivative. Writing new, user-defined optimisers only requires the

reation of a stride.LocalOptimiser subclass that takes the

tride.Variable being optimised when the class is instan-

iated and that defines the method step() , which executes a

ingle step in the optimisation process.

In order to iterate through the optimisation procedure, we

ould use a standard Python for loop. However, we also provide
4
n Stride a stride.OptimisationLoop to use in these cases,

hich will help structure and keep track of the optimisation pro-

ess.

Iterations in Stride are grouped together in blocks, with the

tride.OptimisationLoop containing multiple blocks and

ach block containing multiple iterations. Partitioning the inver-

ion in this way allows us to divide the optimisation more eas-

ly into logical units that share some characteristics. For instance,

n FWI it is common to gradually introduce frequency information

nto the inversion to better condition the optimisation. In this case,

t would make sense to assign one block to each frequency band,

nd run that band for some desired number of iterations. Listing 4

dds a stride.OptimisationLoop around our previous exam-

le.

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

Listing 4. Running through multiple iterations in the optimisation can be easily

structured using the stride.OptimisationLoop .

Listing 5. Example spatiotemporal grid.

Listing 6. Example stride.Medium containing the spatial distribution of longi-

tudinal speed of sound and density.

2

p

t

c

a

g

p

d

c

d

a

c

o

i

fi

t

L

Listing 7. Example geometry with its associated transducers.

Listing 8. Example acquisition containing only one shot.

s

s

p

t

I

a

s
q

e

a

t

u

s

s
m

2

s
t

p

c

t

.3. Problem definition

In addition to providing abstractions for solving optimisation

roblems, Stride introduces a series of utilities for users to specify

he characteristics of the problem being solved, such as the physi-

al properties of the medium or the sequence in which transducers

re used.

In Stride, the problem is first defined over a spatiotemporal

rid, which determines the spatial and temporal bounds of the

roblem and their discretisation (Listing 5). Currently, we support

iscretisations over rectangular grids, but other types of meshes

ould be introduced in the future. On this spatiotemporal mesh, we

efine a series of grid-aware data containers, which include scalar

nd vector fields, and time traces. These data containers are sub-

lasses of stride.Variable .
Based on this, we can define a medium, a stride.Medium

bject, a collection of fields that determine the physical properties

n the region of interest. For instance, the medium could be de-

ned by two stride.ScalarField objects containing the spa-

ial distribution of longitudinal speed of sound and density, as in

isting 6 .
5
Next, we can define the transducers, the computational repre-

entation of the physical devices that are used to emit and receive

ound, characterised by aspects such as their geometry and im-

ulse response. These transducers are then located within the spa-

ial grid by defining a series of locations in a stride.Geometry .
n Listing 7 we instantiate some stride.Transducer objects

nd then add them to a corresponding stride.Geometry .
Finally, we can specify an acquisition sequence within a

tride.Acquisitions object (Listing 8). The acquisition se-

uence is composed of shots (stride.Shot objects), where

ach shot determines which transducers at which locations act

s sources and/or receivers at any given time during the acquisi-

ion process. The shots also contain information about the wavelets

sed to excite the sources and the data observed by the corre-

ponding receivers if this information is available.

All components of the problem definition can be stored in a

tride.Problem object, which structures them in a single, com-

on entity.

.4. Physical modelling

Physical modelling is defined in Stride through

tride.Operator objects that represent specific implemen-

ations of a numerical solver applied to a PDE. Stride does not

rescribe a specific solver or numerical method, and different

odes and implementations can be integrated with it as long as

hey conform to the stride.Operator interface.

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

s

c

i

s

a

a

u

w

s

a

e

i

L

t

t

b

f

p

t

a

[

o

s

t

s

m

a

t

fi

w

e

2

c

a

B

d

F

s

o

d

t

w

a

b

c

fi

m

t

w

v

i

c

[

Listing 9. Basic usage of Mosaic to create remote objects, call their methods, and

access their attributes.

d

s

m

r

t

M

a

a

o

e

F

b

m

w

i

r

c

t

t

i

T

c

u

m

By default, Stride integrates with the Devito library, a domain-

pecific language that generates highly optimised finite-difference

ode from high-level symbolic differential equations [17,18] . Us-

ng Devito, we provide an out-of-the-box implementation of the

econd-order isotropic acoustic wave equation, for which Devito

utomatically generates code that can be readily executed in par-

llel on CPUs using Open Multi-Processing (OpenMP), and on GPUs

sing both OpenMP and OpenACC.

Acoustic modelling in Stride is governed by the equation,

1

v 2 p

∂ 2 p

∂t 2
= ρ∇ ·

(
1

ρ
∇p

)
+ η

∂

∂t
(−∇

2) y/ 2 p (10)

here p(t, x) is the pressure, v p (x) is the longitudinal speed of

ound, ρ(x) is the mass density, η = −2 α0 v
y −1
p , and α0 (x) is the

bsorption coefficient. The implementation of the acoustic wave

quation is fourth-order accurate in time and tenth-order accurate

n space. This results in a stability region with Courant-Friedrichs-

ewy (CFL) constant of 0.80 in 2D and 0.66 in 3D [22] , as well as

he requirement of a minimum of 3 points per wavelength (PPW)

o minimise numerical dispersion. Our solver includes options for

oth constant and variable density and attenuation. Attenuation

ollows a power law, with frequency dependence controlled by the

arameter y in the equation, which can take values 0 and 2. In

hese cases the implemented derivative is not fractional.

In terms of boundary conditions, Stride includes options for

 sponge absorbing boundary [23] or a perfectly matched layer

24] . In all cases, sources and receivers can be defined in locations

ff the grid, with both bi-/tri-linear interpolation and high-order

inc interpolation [25] . It is important to note that current, out-of-

he-box implementations of the adjoints of our PDE solvers con-

ider domains to be unbounded, as these represent the most com-

on scenario in ultrasound imaging. However, alternative bound-

ry conditions can be readily accounted for through user-level ex-

ensions of the PDE operators.

Although physical modelling in Stride is currently focused on

nite-difference methods, future releases could include integration

ith pseudospectral-element DSLs such as Dedalus [26] or finite-

lement DSLs like FEniCS/Firedrake [27,28] .

.5. Parallelism

In practice, derivatives of the optimisation problem are not cal-

ulated one data point at a time, but in batches, and the result is

veraged to obtain an estimate of the gradient for that iteration.

ecause, in most cases, each of these data points is fully indepen-

ent, this can be exploited so that they are calculated in parallel.

or some simple problems, this can be done within a single work-

tation. However, in most practical problems, compute and mem-

ry demands require that these computations are mapped across

ifferent interconnected sets of hardware, such as multi-GPU sys-

ems and CPU clusters, running locally, remotely, or on the cloud.

The most important limiting factor when scaling real-life FWI

orkloads in parallel environments is memory allocation, man-

gement, and communication, with potentially hundreds of giga-

ytes being stored and transferred during the optimisation pro-

ess. Therefore, a parallelisation framework is required that offers

ne-grained control of the computational workload allocation and

emory management for code developers, while also providing

he end user with a high level of abstraction that integrates tightly

ith the optimisation constructs provided by Stride. We have de-

eloped Mosaic to facilitate the expression of parallelism in Stride

n an intuitive manner.

Mosaic is an actor-based parallelisation library based on asyn-

hronous, zero-copy message passing through ZeroMQ sockets

29] . Actors in Mosaic are called tessera, and can be generated by
6
ecorating any Python class using @mosaic.tessera . When in-

tantiating a class that has been decorated, Mosaic will start a re-

ote instance of that class in one of the workers. At this point,

emote method calls to that tessera can be executed and the at-

ributes of that remote object can be accessed. An example of how

osaic is used can be found in Listing 9 .

In Mosaic, subsequent method calls to a remote object are guar-

nteed to be executed in order, but calls to different remote objects

re not. However, if there are explicit dependencies between two

r more remote method calls, Mosaic will ensure that these are

xecuted in the right order (Listing 10).

The structure of the Mosaic runtime, which can be seen in

ig. 2 , is composed by a series of processing units, which could

e located in a single, local workstation or distributed across a re-

ote network. The first of such units contains a monitor process, a

arehouse process, and a head process. The monitor process collects

nformation about the Mosaic network, including occupation rate,

esource use and connection state. The warehouse process acts as a

entralised key-value storage location that is accessible from across

he whole Mosaic network. The head process is the place where

he main user code is executed. In each of the remaining process-

ng units, a node monitor and one or more workers are allocated.

he node monitor keeps track of the runtime status of its local pro-

essing unit and oversees the life cycle of each of the workers in its

nit. Finally, the workers act as containers for tessera actors, whose

ethods can be executed remotely. All processing units in the Mo-

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

Listing 10. Expressing parallelism and dependencies in Mosaic.

s

d

o

r

p

g

w

n

a

t

u

2

b

e

l

i

o

u

i

s

w

l

i

p

g

3

3

p

Fig. 2. Schematic representation of the Mosaic runtime. The runtime is divided into

several logical processing units, which could represent, for instance, processes in a

local multi-processing environment or different machines in a multi-node cluster. In

the first processing unit, the user code is executed in the head , while the monitor

tracks the status of the runtime and the warehouse acts as a central storage unit.

In the remaining processing units, a node monitor is allocated to track the status

of that local unit and communicate this to the global monitor , and one or more

workers are also created to execute tessera calls. All endpoints in the Mosaic

runtime are interconnected to each other.

a

2

5

c

p

t

w

m

a

(

t

m

c

c

aic network are directly interconnected to each other, creating a

ecentralised communication mesh.

Mosaic can be run in interactive mode in a Jupyter notebook,

r from a terminal window using the mrun command. The Mosaic

untime can be used without any code changes in a local multi-

rocessing environment or a multi-node cluster. Therefore, Mosaic

ives us the flexibility to parallelise work across multiple CPUs

ithin a single compute node, as well as across multiple intercon-

ected nodes, with the distribution topology related to the specific

pplication at hand. Additionally, our Devito solvers can parallelise

he execution of the wave equation across multiple CPU cores by

sing thread-level parallelism.

.6. File input and output

As the popularity of ultrasound tomography increases, the num-

er and size of datasets are also growing, but no standard format

xists for their exchange. This slows algorithm development and

imits research reproducibility. In order to address this, we have

ntroduced with Stride a standardised file specification and a set

f tools to interact with it.

In the setup of ultrasound tomography workflows, there are

sually a number of intermediate files that are generated describ-

ng aspects such as medium properties, transducer impulse re-

ponses or data recorded during laboratory experiments. In Stride,

e use the Hierarchical Data Format (HDF5) [30] for saving and

oading these datasets and provide a series of tools to conveniently

nteract with them. Figure 3 shows the basic file specification pro-

osed in Stride for the different components of a standard tomo-

raphic workflow.

. Results

.1. Modelling accuracy

We have validated the accuracy of the acoustic solver by com-

aring it against an analytical solution of the wave equation for
7
 homogeneous medium [31] . The comparison was performed, in

D and 3D, by transmitting a three-cycle tone burst centred at

00 kHz into a medium with constant speed of sound of 1500 m/s,

onstant density, and no attenuation. The employed grid was sam-

led at 0.250 mm in space (minimum of 8 PPW) and 0.060 μs in

ime (maximum CFL constant of 0.36). The resulting acoustic wave

as then recorded at 51 equispaced points, starting at the trans-

ission location and increasing in distance up to a maximum sep-

ration of 300 mm.

Results for the comparison are shown in Fig. 4 , both for the 2D

 Fig. 4 -A) and the 3D cases (Fig. 4 -B), where errors with respect to

he analytical solution were calculated using the normalised root-

ean-square error. We can see how the Stride numerical solutions

losely match the analytical ones, remaining accurate at a signifi-

ant distance from the transmission site.

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

Fig. 3. Specification of the Stride file format. The definition of the spatiotemporal grid is the basis upon which different types of data containers and the various components

of the problem are then specified.

Fig. 4. Accuracy of the acoustic wave equation solver against analytical solution. The numerical solution of the acoustic wave equation calculated by Stride is compared to

the analytical solution for a medium with homogeneous speed of sound. The comparison is performed in 2D (A) and 3D (B), at a distance to the emitter ranging from 0 to

300 mm. Error is calculated as the normalised root-mean-square error with respect to the analytical solution.

s

s

i

a

a

w

p

b

a

u

r

s

b

We have performed a further validation of the Stride acoustic

olvers on a more complex medium with inhomogeneous speed of

ound, density, and attenuation of order zero, for which an analyt-

cal solution is not available, by comparing it against kWave [32] ,

 state-of-the-art ultrasound modelling library written in MATLAB

nd based on pseudospectral element methods. The comparison

as performed using a human skull section, seen in Fig. 5 -A, sam-
8

led at 0.125 mm (minimum of 24 PPW), and illuminated by a

owl ultrasound transducer with a 64 mm radius of curvature and

 64 mm aperture diameter. The transducer surface was discretised

sing 20,0 0 0 point sources, evenly distributed using Fibonacci spi-

als [33] . This example forms part of a transcranial ultrasound

imulation benchmarking and intercomparison exercise organised

y the ITRUSST (International Transcranial Ultrasonic Stimulation

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

Fig. 5. Accuracy of the acoustic wave equation solver against state-of-the-art solver. The 3D numerical model (A) contains a human skull section (blue) and a bowl ultrasound

transducer (red). We compare a 2D slice through the resulting steady-state wavefield for the state-of-the-art solver kWave (B) and for Stride (C). Additionally, we compare

two 1D profiles through the centre of the transducer focus (D-E).

S

c

l

s

t

a

t

a

t

b

o

b

d

a

i

f

n

a

a

a

t

3

n

c

d

t

e

m

P

p

a

t

s

a

v

r

c

b

o

n
s

g

b

w

r

a

p

c

afety and Standards) planning group [34] . The transducer was ex-

ited by a continuous sinusoidal wave at 500 kHz and the simu-

ation was run with a step size of 0.016 μs (maximum CFL con-

tant of 0.36) until steady state was reached. The magnitude of

he pressure field at the excitation frequency was then extracted

fter Fourier transform. Fig. 5 -B and C show a 2D slice through

he resulting 3D wavefield, from which we can observe the good

greement between both solutions. A similar conclusion can be ex-

racted from the 1D profiles, seen in Fig. 5 -D and E. The agreement

etween both solvers is quantitatively confirmed by a relative error

f 1.64%, calculated over the entire 3D volume. Existing differences

etween the results of both solvers are likely due to the use of

ifferent numerical methods to solve the wave equation, as well

s differences in source injection routines and boundary condition

mplementation. It is important to note that implementation dif-

erences cannot be fully eliminated, even in the limit where both

umerical methods converge, due to the fact that Stride and kWave

re solving fundamentally different equations in order to model

coustic wave propagation: Stride solves the second-order linear

coustic wave equation, whereas kWave solves three coupled equa-

ions that are equivalent to a generalized Westervelt equation.

.2. Imaging in 2D

For our first imaging experiment, we extract a 2D slice from a

umerical breast model as seen in Fig. 6 -A. The resulting 2D model

an be seen in Fig. 7 -A. The model has been obtained from an open
9
atabase [35] , and has been adapted by populating it with acoustic

issue properties and by adding a tumour. From here onwards, all

xamples were run with constant density and no attenuation. The

odel, sampled with a spacing of 0.500 mm (minimum of 3.73

PW), has a size of 456 ×485. The model is surrounded by 128

oint transducers, seen as blue dots in Fig. 6 -A, all of which act

s sources and receivers. Imaging is performed using a three-cycle

one burst centred at 500 kHz, and is carried out over 200 μs in

teps of 0.080 μs (maximum CFL constant of 0.26). Both temporal

nd spatial sampling are kept constant during modelling and in-

ersion, for this and all subsequent examples. However, this is not

equired and users could exploit different dispersion and stability

onditions by changing the discretisation across different imaging

locks.

To make use of the gradient-calculation capabilities

f Stride, we instantiate our speed-of-sound field with

eeds_grad = True , and set the starting model to a con-

tant sound speed of 1500 m/s (Fig. 7 -B). We also instantiate a

radient descent optimiser to update our variable (Listing 11).

We can see in Listing 11 how the stride.ScalarField has

een instantiated by calling parameter() . Using this method

ill ensure that, as the field is sent across the Mosaic network, a

eference to the original object will always be maintained. This will

llow us to calculate the gradient in different workers and then

ropagate the results back to the local runtime.

Then, we can instantiate our operators remotely, creating one

opy for each available worker (Listing 12). In this case, we use

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

Fig. 6. Setup used in the numerical experiments. For the 2D experiment (A), a slice

is taken across a numerical 3D model of the breast and 128 point transducers,

which can be seen as blue dots, are distributed around it. For the 3D experiment

(B), a numerical head model is imaged by surrounding it with 1024 transducers

(also visible as blue dots). The scale shown at the bottom of the numerical models

applies equally in all spatial directions.

a

t

w

c

b

i

e

o

W

c

m

p

t

6

3

g
b

w

c

f

s

Fig. 7. Stride reconstruction in 2D. A 2D acoustic breast model (A) is imaged start-

ing from a homogeneous distribution of speed of sound (B). Stride manages to ac-

curately reconstruct the target model (C). The mean of the absolute value of the

difference between the ground-truth model and the inversion is displayed here as

ε.

Listing 11. To image the spatial distribution of speed of sound, we cre-

ate a stride.ScalarField(..., needs_grad = True) and set

the starting distribution to be 1500 m/s everywhere. We also create a

stride.GradientDescent optimiser to update the variable at every iter-

ation.

Listing 12. We create the necessary operators for the reconstruction. The keyword

argument len = num_workers controls the amount of copies of the operators to

be instantiated by Mosaic in each remote worker.
n operator for the PDE and another one for the objective func-

ion, and we also create pre-processing operators for our source

avelets and our output time traces.

We perform the inversion by gradually introducing frequen-

ies, starting at 300 kHz and going up to 600 kHz. We do this

y running the optimisation loop in blocks, with each block us-

ng a different frequency band. At each block, we complete 8 it-

rations, randomly selecting 16 shots without replacement in each

f them. That is, each shot is used once at every frequency band.

e run the function in Listing 13 for every iteration of the re-

onstruction loop in Listing 14 . We run this inversion on a local

ulti-processing environment, within a Jupyter notebook, by sim-

ly adding the command mosaic.interactive(‘‘on’’) at

he beginning of our notebook. This workstation is equipped with

4 GB of memory and 6 physical cores (Intel i7-8700K, 6 cores,

.70 GHz). The acoustic Devito PDE was compiled using the GNU

cc compiler version 7.5, and was executed on the Jupyter note-

ook using 3 Mosaic workers and OpenMP thread-level parallelism

ith 2 threads for each worker. Each of the Mosaic workers cal-

ulates the gradient for a single shot at a time, which entails one

orward propagation and one adjoint propagation of the acoustic

olver, before combining the gradients for all shots at each itera-
10

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

Listing 13. At every iteration, a subset of the available shots are selected randomly

to calculate a gradient. The calculated gradient is then used to update the speed of

sound distribution.

Listing 14. The inversion is performed by selecting subsequent frequency bands

and, in each band, a certain number of iterations are run to calculate a gradient.

t

t

fi

t

t

s

g

p

c

p

b

f

o

r

d

A

t

i

p

d

t

±
A

i

(

e

t

t

a

μ
0

I

q

i

w

e

a

o

t

b

1

t

(

t

s

s

c

c

s

s

t

t

t

p

t

4

p
v

D

c

w

11
ion. With this configuration, each shot gradient calculation took a

otal of 2.99 ± 0.30 s.

Once the optimisation loop runs through all frequency bands, a

nal reconstruction is obtained (Fig. 7 -C). We calculate the mean of

he absolute value of the difference between the final reconstruc-

ion and the original model, which is displayed in Fig. 7 with the

ymbol ε. We can see how the reconstruction closely matches the

round-truth model, both qualitatively and quantitatively. As ex-

ected, inaccuracies can be observed in the reconstruction, which

an be explained through a number of factors. First, limited sam-

ling of the wavefield is performed at the boundaries of the model

ecause a finite number of receivers is used. Second, the available

requency bandwidth is also necessarily finite, which will limit res-

lution and prevent high-contrast interfaces from being perfectly

ecovered.

Next, we apply the same imaging script that we have just intro-

uced to now image an experimental tissue-mimicking phantom.

 polyvinyl alcohol (PVA) cryogel phantom was constructed with

wo layers of different speed of sound values and an inner cav-

ty filled with water [36] . The dimensions of the phantom are, ap-

roximately, 57.4 mm in width, 70.4 mm in height, and 130 mm in

epth. Speed-of-sound values for the different layers of the phan-

om were experimentally measured using time of flight to be 1521

3 m/s for the outer layer and 1502 ± 4 m/s for the inner layer.

 photograph of the cross section of the phantom can can be seen

n Fig. 8 -A. Data were then acquired using two P4-1 transducers

ATL, USA), each of which contains 96 transmitting and receiving

lements. The two P4-1 transducers were independently attached

o two rotary motors, allowing them to move around the phan-

om for full illumination. Data were acquired by transmitting with

 centre frequency of 1.4 MHz.

The inversion was performed over 120 μs, in steps of 0.048

s (maximum CFL constant of 0.37), using a spatial sampling of

.200 mm (minimum of 4.67 PPW) and a grid size of 890 ×890.

maging was carried out using a single block and a single fre-

uency band with an upper limit of 700 kHz across a total of 152

terations. During each iteration, 10 shots were selected randomly

ithout replacement so that each shot was used four times at the

nd of the block. A single frequency band is sufficient in this ex-

mple because, for this particular experiment, the starting point

f our inversion is close enough to the minimum of the optimisa-

ion to ensure convergence. Simultaneously, the resolution offered

y this frequency band (with a half-wavelength of approximately

 mm in water) is sufficient, given the size and level of detail of

he phantom, to recover a high-resolution reconstruction.

Using a starting model that contained homogeneous water

 Fig. 8 -B), a high-resolution reconstruction of the phantom is ob-

ained (Fig. 8 -C). Stride can successfully recover the two layers of

peed of sound, as well as the internal water cavity. The recon-

truction shows high contrast between layers, and the correct re-

overy of the complex details at the interface between them. We

an also see how, at some points, the two layers of the phantom

eem to gradually dissolve into one another instead of presenting

harp interfaces. This could be an imaging artefact due to errors in

he calibration of the data acquisition setup, but could also be due

o the natural degradation of the phantom, which could have led

o the two layers merging at these locations.

We run this inversion on the same workstation as the

revious example, using the same 3 Mosaic workers, so

hat each shot gradient calculation took a total of 28.32 ±
.46 s. Adding a single argument to the PDE call, pde(...,
latform = ‘‘nvidia-acc’’) , is sufficient to run the same in-

ersion on an available GPU instead of the CPU. In this case, the

evito-generated OpenACC solver is compiled using the PGI pgc++
ompiler version 21.2. Then, using the same workstation, equipped

ith an NVIDIA GeForce RTX 2080 Ti with 11 GB of memory, and

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

Fig. 8. Experimental Stride reconstruction in 2D. A tissue-mimicking phantom (A)

is imaged starting from a homogeneous distribution of speed of sound (B). The

Stride reconstruction (C) closely matches the target phantom, is able to recover the

different layers of speed of sound and the complex interface between those layers.

We can also see the signal used experimentally for imaging (D) and its correspond-

ing magnitude spectrum (E).

a

o

3

s

c

e

w

t

a

b

c

a

m

s

m

s

s

t

t

s

t

μ

m

o

c

p

s

E

a

o

t

r

c

t

e

E

S

i

c

t

a

g

t

t

r

w

h

m

t

c

m

t

c

s

a

r

p

T

l

g

w

S

c

m

s

p

m

h

p

t

c

t

p

g

n

l

d

t

m

w

 single Mosaic worker, each shot gradient calculation took a total

f 5.63 ± 0.07 s.

.3. Imaging in 3D

Although relevant when imaging structurally simple, soft tis-

ues such as the breast, 2D imaging on its own is of limited appli-

ability in realistic tomographic reconstructions, where 3D mod-

lling and inversion is needed to account for the full physics of

ave propagation in the human body. At the same time, it is in

hese 3D problems where the computational cost of FWI is most

pparent and where tomography codes are required to scale ro-

ustly. In order to showcase the scaling capabilities of Stride, we

hoose for our second experiment a numerical 3D model of the

dult human head (Fig. 6 -B). The model is based on the MIDA

odel [37] , to which acoustic properties were assigned as de-

cribed by Guasch et al. [4] . Three slices through this numerical

odel can be seen in Fig. 9 -A to C. The model is sampled with a

pacing of 0.750 mm (minimum of 3.22 PPW), resulting in a grid of

ize 367 ×411 ×340 and more than 51 million unknown parameters

o be estimated. A total of 1024 transducers were located around

he head as seen in Fig. 6 -B, with all transducers acting both as
12
ources and receivers. Imaging was performed with a three-cycle

one burst centred at 500 kHz. Modelling was carried out over 300

s, with time steps of 0.150 μs (maximum CFL constant of 0.60).

Stride has been designed to seamlessly scale from 2D to 3D, and

oving from one to the other only requires changing three lines

f the code when defining the spatial grid. The remaining code

an be run without any changes. In this case, the reconstruction is

erformed in the frequency range between 100 kHz and 600 kHz,

tarting from a model that only contains the skull (Fig. 9 -D to F).

ach frequency band in the reconstruction is run for 8 iterations,

nd 128 shots are randomly selected without replacement for each

f them.

Due to the higher computational requirements in 3D, we run

his reconstruction in an HPC cluster environment. Except for

emoving the mosaic.interactive(‘‘on’’) command, no

hanges are required to the code when scaling from the local

o the cluster environment. Each compute node in the cluster is

quipped with 256 GB of memory and 128 cores (2xAMD Zen2

PYC 7742, 64 cores, 2.25 Ghz). Nodes are connected using an HPE

lingshot interconnect with 200 Gb/s signalling. The Devito solver

s compiled using the GNU gcc compiler version 7.5, and is exe-

uted using OpenMP thread-level parallelism across 32 threads.

Each of the nodes calculates the gradient for a single shot at a

ime, which once more entails one forward propagation and one

djoint propagation of the acoustic solver, before combining the

radients for all shots at each iteration. Work distribution across

he different nodes is managed by the Mosaic runtime, with the

ime taken to allocate this work generally dominated by the se-

ialisation, communication, and processing of the data associated

ith the execution of each shot. However, serialisation in Mosaic

as a negligible impact due to its zero-copy implementation. Com-

unication overheads could have an impact on performance, but

hese are minimised by high-speed interconnects and by the asyn-

hronous nature of Mosaic and its underlying ZeroMQ sockets. This

eans that user code is not slowed down by the actual time taken

o send messages across the network by allowing the overlap of

omputation and communication: the head process dispatches all

hots almost instantaneously, and independent worker processes

cross the network start computing as soon as the first message ar-

ives. Message processing, on the contrary, will have an impact on

erformance due to the intrinsic single-threaded nature of Python.

his could be alleviated by offloading some of this processing to

ower-abstraction interfaces in C. With all this in mind, each shot

radient calculation took 5.82 ± 0.36 min, including time spent in

ork distribution.

The high accuracy of the final reconstruction obtained using

tride can be seen in Fig. 9 -G to I. Also in this case, we have cal-

ulated a corresponding quantitative error measure for the full 3D

odel, shown in Fig. 9 with the symbol ε. Errors in the recon-

truction can in this case be attributed to similar reasons to the

revious numerical 2D case, with the added factor of limited illu-

ination in certain regions of the model. We can see, for example,

ow the regions close to the neck and around the sinuses are more

oorly resolved due to the location of sources and receivers around

he head. We can also see how resolution is degraded as we move

loser to the upper regions of the skull due to lower ray density in

hese areas.

At this point, we explore the scaling capabilities of the Mosaic

arallelisation layer by running a fixed number of individual shot

radient calculations, 128, while increasing the number of compute

odes used in the HPC cluster. The achieved acceleration is calcu-

ated by comparing the amount of time taken to complete all gra-

ient calculations using a certain number of nodes with respect to

he time taken using a single node. Under ideal circumstances, this

eans that, for example, an acceleration of 128 times is expected

hen using 128 compute nodes. This test is repeated five times,

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

Fig. 9. Stride reconstruction in 3D. A 3D acoustic head model (top row) is imaged starting from a model that contains only the skull and is homogeneous otherwise (middle

row). Stride manages to accurately reconstruct the target model (bottom row). The mean of the absolute value of the difference between the ground-truth model and the

inversion is displayed here as ε.

Fig. 10. Mosaic strong scaling for the 3D head model. Scaling obtained with Mo-

saic (red, dashed line) is compared to the ideal scaling scenario (black, continuous

line). Scaling is analysed by running 128 shot gradient calculations for the 3D head

model across an increasing number of compute nodes. Acceleration is calculated

as the amount of time taken to complete all gradient calculations using a certain

number of nodes with respect to the time taken using a single node, averaged over

5 experiments.

a

t

w

1

s

c

m

n

4

f

s

w

h

T

t

s

t

S

v

u

b

h

b

e

w

m

l

a

t

o

S

nd the final acceleration is taken as the average over all repeti-

ions.

Results for this strong scaling test can be seen in Fig. 10 , where

e can observe that Mosaic achieves nearly ideal scaling up to

28 compute nodes. For the largest number of nodes, we can

ee how the obtained acceleration deviates slightly from the ideal

urve. This corresponds, approximately, to a 2% loss in perfor-
13
ance, which can be attributed to the effective single-threaded

ature of Python programs that we have previously discussed.

. Discussion

We have shown that Stride provides an intuitive framework

or the solution of ultrasound tomography problems, seamlessly

witching between 2D and 3D applications, and between a local

orkstation and a multi-node cluster.

Implementations of ultrasound tomography methods like FWI

ave to address their computational and algorithmic complexity.

o do this, Stride has been designed to provide tailored optimisa-

ion routines, high-performance PDE solvers, and scalability to HPC

ystems, while simultaneously offering a high level of abstraction

o ensure flexibility, productivity, and modularity.

From the point of view of the optimisation, we have seen how

tride closely matches the mathematical formulation of the in-

erse problem, for which gradients can be intuitively calculated

sing the adjoint method. Our approach here resembles that taken

y machine learning libraries like PyTorch [38] , which have been

ighly successful at broadening the reach of these technologies

eyond computational experts. This serves the double purpose of

asing adoption by users, some of which might already be familiar

ith some of these libraries, and facilitating integration with these

achine learning tools.

We have to note that gradients for Stride problems are calcu-

ated at a high level by treating the PDE or the loss functions

s differentiable primitives, but no differentiation is happening

hrough their internal mathematical operations. This is the subject

f ongoing research and will be introduced in future versions of

tride.

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

p

p

a

h

i

f

d

w

fl

a

c

g

v

t

p

fi

[

u

k

[

[

T

a

p

t

r

i

p

a

s

l

a

o

W

i

H

p

a

f

[

l

i

a

e

j

p

m

s

p

a

u

s

i

o

f

t

l

i

w

c

i

d

w

t

a

t

e

t

a

o

t

w

t

t

a

a

t

a

d

I

b

a

a

t

e

b

a

t

s

a

c

S

d

g

w

i

i

b

o

t

t

n

r

a

d

m

d

t

b

o

S

t

i

i

S

l

5

u

From the point of view of the PDE solver, Stride faces the

erformance-flexibility dichotomy in a similar manner to the geo-

hysical library JUDI [16] : we provide intuitive interfaces in a high-

bstraction language, while using a DSL like Devito under the

ood. From a symbolic specification of the PDE, Devito automat-

cally generates architecture-specific C code that matches the per-

ormance of hand-tuned implementations [17,18] . This offers a high

egree of flexibility, allowing the inclusion of new physical models

ith minimal effort and without hindering performance. It is this

exibility that allows us to run the same wave equation solver on

 CPU multi-threaded environment or a GPU with effectively no

ode changes.

Currently, Stride problems can only be defined on rectangular

rids, on which finite-difference methods can be applied using De-

ito. Nonetheless, Stride does not prescribe any of these, and fu-

ure work will explore the inclusion of different discretisation ap-

roaches and integration with other DSLs like FEniCS/Firedrake for

nite-element methods [27,28] or Dedalus for spectral methods

26] .

Other open-source libraries exist for numerical modelling in

ltrasound medical imaging, such as the previously mentioned

Wave [32] , based on pseudospectral element methods; Field II

39] , which uses a linear scattering approximation; or Bempp-cl

40] , which employs a boundary element method, among others.

hese libraries have been tailored to accurately model sound prop-

gation in biological tissues and generally provide hand-tuned im-

lementations that can achieve high performance. Stride is agnos-

ic to the underlying solver employed and any of these could be

eadily integrated with it. However, that would diminish the flex-

bility that is achieved by using a DSL that can obtain comparable

erformance for both the physical models currently available and

ny new ones that could be introduced.

Stride has been designed to tackle the problem of intuitively

caling to HPC systems in a similar spirit as for the solver: high-

evel interfaces hide from the user the complexity of deploying the

lgorithms to target systems, allowing imaging scientists to focus

n the reconstruction algorithms rather than the low-level details.

e provide for this the custom parallelisation library Mosaic.

Traditional HPC workloads usually rely on the message pass-

ng interface (MPI) standard to express parallelism in applications.

owever, originally designed in the 1990s, MPI has so far no ca-

acity for fault tolerance and its interfaces are too cumbersome

nd low level for most non-specialists. Other Python libraries exist

or writing parallel applications, most notably Dask [41] , PyCOMPSs

42] , and Ray [43] . Dask expresses parallelism as a series of state-

ess tasks that form a computational graph, which can be executed

n parallel. PyCOMPSs uses tasks similarly to express parallelism,

lthough these do not have to be stateless. However, PyCOMPSs

mploys a Java-based runtime that requires the serialisation of ob-

ects to file in order to communicate with Python, incurring in a

erformance penalty. Contrarily, the Ray parallel framework is pri-

arily based on the actor model. We have chosen to design Mo-

aic using an actor-based model because, much like object-oriented

rogramming, we consider that it better matches the world view

nd the mental framework of domain specialists. It also allows

s to keep objects and their allocated memory warm within a

pecific compute node or associated accelerator, incidentally mak-

ng it more intuitive for end users to manipulate remote mem-

ry. We have chosen to implement a custom parallelisation library

or Stride due to a need for fine-grained control of the computa-

ional workload allocation and memory management that existing

ibraries are unable to provide.

Through the examples presented, we have seen that switch-

ng from a local multi-processing environment to an HPC cluster

ith Mosaic is straightforward and requires no significant code

hanges. We have also seen through our 3D experiments that real-
14
stic Stride reconstructions could be potentially scaled across hun-

reds of compute nodes thanks to the zero-copy, asynchronous

ork allocation of the Mosaic library. However, work is still needed

o fully understand and exploit the scaling capabilities of Mosaic

cross large on-premises and cloud computing clusters, with par-

icular interest in minimising data transfers across the network by

xploiting caching mechanisms to detect redundant communica-

ions.

Additionally, while Mosaic offers the capacity to parallelise

cross elements of an iteration batch, the integration with Devito

ffers another degree of freedom to parallelise within PDE solves

hrough MPI-based domain decomposition. Domain decomposition,

hose use in Stride is being actively explored, allows a user to dis-

ribute the computation of the PDE solution. This will be of impor-

ance when solving large problems whose size exceeds memory

vailable in any single node or memory available in a particular

ccelerator such as a GPU. It will also allow for increased compu-

ational performance by splitting PDE solves in a single node across

vailable CPU sockets, thus enforcing data locality.

There are two distinct applications for which Stride has been

esigned: wave propagation modelling and tomographic imaging.

n terms of modelling wave phenomena, a number of other li-

raries are openly available to users, some of which include the

lready mentioned Field II [39] , Bempp-cl [40] , or kWave [32] ,

mong others. The choice of one library over another will be down

o the aims and requirements of a specific modelling exercise. For

xample, Field II should be chosen when modelling accuracy can

e traded off for shorter computational times, whereas the bound-

ry element method in Bempp-cl will provide accurate modelling

hat remains computationally efficient when the number of tis-

ue interfaces in the model is low. As we have shown here, Stride

nd kWave can achieve similar levels of modelling accuracy for

omplex tissue geometries. Nonetheless, finite-difference solvers in

tride will be more computationally efficient, whereas kWave will

isplay smaller numerical dispersion for a similar discretisation

rid thanks to its pseudospectral formulation. These differences

ill, however, become irrelevant as other numerical methods are

ntegrated into Stride: a different method will be chosen depend-

ng on the specific application.

In terms of tomographic imaging, it is important to distinguish

etween full-wave methods, such as FWI, and others, such as time-

f-flight tomography and diffraction tomography. Stride is, at the

ime of this writing, the only openly available library for full-wave

omographic imaging in the medical context. Stride, however, does

ot currently provide solvers for other types of ultrasound tomog-

aphy and other tools should be used in these cases [44] .

In terms of compatibility, Stride can be installed on Unix oper-

ting systems, and is compatible with Windows through the Win-

ows Subsystem for Linux and through Docker containers.

Through these design decisions, Stride achieves flexibility and

odularity, allowing each of its components to be modified in-

ependently or entirely substituted. At the same time, impor-

ance has been placed on ensuring that lower-level interfaces can

e used to provide users with increasingly fine-grained control

ver the problem and its execution. Although we have designed

tride with ultrasound tomography in mind, the formulation of

he physics-constrained optimisation problem is related to other

maging techniques, like optoacoustic tomography, and even cal-

bration methods like spatial response identification. This makes

tride readily applicable to a number of medical ultrasound prob-

ems.

. Conclusions

Advances in ultrasound-based imaging methodologies such as

ltrasound computed tomography and optoacoustic tomography

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

r

m

i

s

a

s

l

u

r

i

a

l

r

a

d

w

n

b

t

i

b

m

D

A

b

E

t

T

P

N

A

l

s

o

k

s

M

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ely on increasingly complex mathematical and computational

odels. This puts a strain on researchers to both develop novel

maging algorithms and translate them into high-performance and

calable code, thus slowing scientific progress.

To bridge the gap between flexible development and real-life

pplication, we have designed and developed Stride, an open-

ource Python library that is both intuitive and efficient. Stride al-

ows algorithms to be written for a 2D model and be easily scaled

p to 3D, and allows code to be tested on a local workstation and

eadily deployed to an HPC cluster. We achieve this by combin-

ng modular interfaces written in a high-abstraction language with

utomatically-generated, high-performance solvers, and with tai-

ored parallelisation routines.

By providing high-level interfaces that intuitively match the

epresentation of problems posed by domain specialists, and which

re efficient and scalable out of the box, Stride has the potential to

ramatically increase the productivity of imaging researchers. This

ill have a significant impact by accelerating the development of

ew ultrasound-based imaging technology and its translation from

ench to bedside. Furthermore, other imaging applications where

he efficient solution of physics-constrained optimisation problems

s needed could also benefit from the general abstractions provided

y Stride, such as non-destructive testing, aeronautics, or experi-

ental fluid mechanics.

eclaration of Competing Interest

The authors declare no competing interests.

cknowledgements

This work was supported by the Wellcome Trust [grant num-

er 219624/Z/19/Z]. The work of Carlos Cueto was supported by the

ngineering and Physical Sciences Research Council Centre for Doc-

oral Training in Medical Imaging [grant number EP/L015226/1].

he work of Oscar Bates was supported by the Engineering and

hysical Sciences Research Council Centre for Doctoral Training in

eurotechnology [grant number EP/L016737/1]. This work used the

RCHER2 UK National Supercomputing Service. The authors would

ike to acknowledge the ITRUSST (International Transcranial Ultra-

onic Stimulation Safety and Standards) planning group who devel-

ped the benchmark example used in Section 3.1 and provided the

Wave simulation results. The work of Òscar Calderón Agudo was

upported by the UKRI Future Leaders Fellowship [grant number

R/V024086/10].

eferences

[1] J.W. Wiskin, D.T. Borup, E. Iuanow, J. Klock, M.W. Lenox, 3-D nonlinear acous-

tic inverse scattering: algorithm and quantitative results, IEEE Trans. Ultra-
son. Ferroelectr. Freq. Control 64 (8) (2017) 1161–1174, doi: 10.1109/TUFFC.2017.

2706189 .

[2] G.Y. Sandhu, C. Li, O. Roy, S. Schmidt, N. Duric, Frequency domain ultrasound
waveform tomography: breast imaging using a ring transducer, Phys. Med. Biol.

60 (14) (2015) 5381–5398, doi: 10.1088/0031-9155/60/14/5381 .
[3] J. Wiskin, B. Malik, D. Borup, N. Pirshafiey, J. Klock, Full wave 3D inverse scat-

tering transmission ultrasound tomography in the presence of high contrast,
Sci. Rep. 10 (1) (2020) 1–14, doi: 10.1038/s41598- 020- 76754- 3 .

[4] L. Guasch, O. Calderón Agudo, M.-X. Tang, P. Nachev, M. Warner, Full-waveform

inversion imaging of the human brain, npj Digit. Med. 3 (1) (2020) 1–12,
doi: 10.1038/s41746- 020- 0240- 8 .

[5] S. Fomel, P. Sava, I. Vlad, Y. Liu, V. Bashkardin, Madagascar: open-source soft-
ware project for multidimensional data analysis and reproducible computa-

tional experiments, J. Open Res. Softw. 1 (1) (2013) e8, doi: 10.5334/jors.ag .
[6] R. Cockett, S. Kang, L.J. Heagy, A. Pidlisecky, D.W. Oldenburg, SimPEG: an open

source framework for simulation and gradient based parameter estimation
in geophysical applications, Computers and Geosciences 85 (2015) 142–154,

doi: 10.1016/j.cageo.2015.09.015 .

[7] R. Hewett, L. Demanet, PySIT: Python seismic imaging toolbox https://github.
com/pysit/pysit .

[8] D. Koehn, SAVA: 3D seismic modelling, FWI and RTM code for wave propaga-
tion in isotropic (visco)-acoustic/elastic and anisotropic orthorhombic/triclinic

elastic media https://github.com/daniel-koehn/SAVA .
15
[9] S. Hassanzadeh, C.C. Mosher, JavaSeis: web delivery of seismic processing ser-
vices, in: 1997 SEG Annual Meeting, Society of Exploration Geophysicists, 1997,

pp. 2055–2057, doi: 10.1190/1.1885859 .
[10] R.T. Modrak, D. Borisov, M. Lefebvre, J. Tromp, SeisFlows flexible waveform in-

version software, Comput. Geosci. 115 (2018) 88–95, doi: 10.1016/j.cageo.2018.
02.004 .

[11] B. Chow, Y. Kaneko, C. Tape, R. Modrak, J. Townend, An automated work-
flow for adjoint tomography-waveform misfits and synthetic inversions for

the North Island, New Zealand, Geophys. J. Int. 223 (3) (2020) 1461–1480,

doi: 10.1093/gji/ggaa381 .
[12] L. Ruthotto, E. Treister, E. Haber, jInv–a flexible Julia package for PDE param-

eter estimation, SIAM J. Sci. Comput. 39 (5) (2017) S702–S722, doi: 10.1137/
16m1081063 .

[13] C. Da Silva, F. Herrmann, A unified 2D/3D large-scale software environment
for nonlinear inverse problems, ACM Trans. Math. Softw. 45 (1) (2019), doi: 10.

1145/3291042 .

[14] L. Krischer, A. Fichtner, S. Zukauskaite, H. Igel, Large-scale seismic inver-
sion framework, Seismol. Res. Lett. 86 (4) (2015) 1198–1207, doi: 10.1785/

0220140248 .
[15] S. Thrastarson, D.-P. van Herwaarden, A. Fichtner, Inversionson: fully auto-

mated seismic waveform inversions, EarthArXiv (2021), doi: 10.31223/X5F31V .
[16] P.A. Witte, M. Louboutin, N. Kukreja, F. Luporini, M. Lange, G.J. Gorman,

F.J. Herrmann, A large-scale framework for symbolic implementations of seis-

mic inversion algorithms in julia, Geophysics 84 (3) (2019) F57–F71, doi: 10.
1190/geo2018-0174.1 .

[17] M. Louboutin, M. Lange, F. Luporini, N. Kukreja, P.A. Witte, F.J. Herrmann, P. Ve-
lesko, G.J. Gorman, Devito (v3.1.0): an embedded domain-specific language for

finite differences and geophysical exploration, Geosci. Model Dev. 12 (3) (2019)
1165–1187, doi: 10.5194/gmd- 12- 1165- 2019 .

[18] F. Luporini, M. Louboutin, M. Lange, N. Kukreja, P. Witte, J. Hückelheim,

C. Yount, P.H. Kelly, F.J. Herrmann, G.J. Gorman, Architecture and performance
of Devito, a system for automated stencil computation, ACM Trans. Math.

Softw. 46 (1) (2020), doi: 10.1145/3374916 .
[19] S.R. Arridge, M.M. Betcke, B.T. Cox, F. Lucka, B.E. Treeby, On the adjoint op-

erator in photoacoustic tomography, Inverse. Probl. 32 (11) (2016) 115012,
doi: 10.1088/0266-5611/32/11/115012 .

20] C. Cueto, J. Cudeiro, O.C. Agudo, L. Guasch, M.-X. Tang, Spatial response identi-

fication for flexible and accurate ultrasound transducer calibration and its ap-
plication to brain imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68

(1) (2021) 143–153, doi: 10.1109/TUFFC.2020.3015583 .
[21] C. Cueto, L. Guasch, J. Cudeiro, O.C. Agudo, T. Robins, O. Bates, G. Strong, M.-

X. Tang, Spatial response identification enables robust experimental ultrasound
computed tomography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 (1)

(2022) 27–37, doi: 10.1109/TUFFC.2021.3104342 .

22] L. Amundsen, Ø. Pedersen, Time step n-tupling for wave equations, Geophysics
82 (6) (2017) T249–T254, doi: 10.1190/geo2017-0377.1 .

23] G. Yao, N.V. Da Silva, D. Wu, An effective absorbing layer for the boundary
condition in acoustic seismic wave simulation, J. Geophys. Eng. 15 (2) (2018)

495–511, doi: 10.1088/1742-2140/aaa4da .
24] Y. Gao, J. Zhang, Z. Yao, Unsplit complex frequency shifted perfectly matched

layer for second-order wave equation using auxiliary differential equations, J.
Acoust. Soc. Am. 138 (6) (2015) EL551–EL557, doi: 10.1121/1.4938270 .

25] G.J. Hicks, Arbitrary source and receiver positioning in finite-difference

schemes using Kaiser windowed sinc functions, Geophysics 67 (1) (2002) 156–
166, doi: 10.1190/1.1451454 .

26] K.J. Burns, G.M. Vasil, J.S. Oishi, D. Lecoanet, B.P. Brown, Dedalus: a flexible
framework for numerical simulations with spectral methods, Phys. Rev. Res. 2

(2) (2020) 23068, doi: 10.1103/physrevresearch.2.023068 .
27] A. Logg, K.A. Mardal, G. Wells, Automated solution of differential equations by

the finite element method: the FEnics book, Lecture Notes in Computational

Science and Engineering, vol. 84, 2012, doi: 10.1007/978- 3- 642- 23099- 8 .
28] F. Rathgeber, D.A. Ham, L. Mitchell, M. Lange, F. Luporini, A.T. McRae,

G.T. Bercea, G.R. Markall, P.H. Kelly, Firedrake: automating the finite element
method by composing abstractions, ACM Trans. Math. Softw. 43 (3) (2016) 24,

doi: 10.1145/2998441 .
29] ZeroMQ Development Team, ZeroMQ: an open-source universal messaging li-

brary https://zeromq.org/ .

30] The HDF Group, Hierarchical Data Format Version 5, Technical Report, http:
//www.hdfgroup.org/HDF5 .

[31] P. Morse, H. Feshbach, Methods of theoretical physics, no. v. 1 in International
Series in Pure and Applied Physics, McGraw-Hill, 1953 . https://books.google.co.

uk/books?id=atwEAAAACAAJ
32] B.E. Treeby, B.T. Cox, k-Wave: MATLAB toolbox for the simulation and recon-

struction of photoacoustic wave fields, J. Biomed. Opt. 15 (2) (2010) 021314,

doi: 10.1117/1.3360308 .
33] H. Vogel, A better way to construct the sunflower head, Math. Biosci. 44 (3–4)

(1979) 179–189, doi: 10.1016/0 025-5564(79)90 080-4 .
34] J.-F. Aubry, O. Bates, C. Boehm, K.B. Pauly, D. Christensen, C. Cueto, P. Gelat,

L. Guasch, J. Jaros, Y. Jing, R. Jones, N. Li, P. Marty, H. Montanaro, E. Neufeld,
S. Pichardo, G. Pinton, A. Pulkkinen, A. Stanziola, A. Thielscher, B. Treeby,

E.v.t. Wout, Benchmark problems for transcranial ultrasound simulation: inter-

comparison of compressional wave models, ArXiv (2022), doi: 10.48550/arxiv.
2202.04552 .

35] Y. Lou, W. Zhou, T.P. Matthews, C.M. Appleton, M.A. Anastasio, Generation of
anatomically realistic numerical phantoms for photoacoustic and ultrasonic

breast imaging, J. Biomed. Opt. 22 (4) (2017) 041015, doi: 10.1117/1.JBO.22.4.
041015 .

https://doi.org/10.1109/TUFFC.2017.2706189
https://doi.org/10.1088/0031-9155/60/14/5381
https://doi.org/10.1038/s41598-020-76754-3
https://doi.org/10.1038/s41746-020-0240-8
https://doi.org/10.5334/jors.ag
https://doi.org/10.1016/j.cageo.2015.09.015
https://github.com/pysit/pysit
https://github.com/daniel-koehn/SAVA
https://doi.org/10.1190/1.1885859
https://doi.org/10.1016/j.cageo.2018.02.004
https://doi.org/10.1093/gji/ggaa381
https://doi.org/10.1137/16m1081063
https://doi.org/10.1145/3291042
https://doi.org/10.1785/0220140248
https://doi.org/10.31223/X5F31V
https://doi.org/10.1190/geo2018-0174.1
https://doi.org/10.5194/gmd-12-1165-2019
https://doi.org/10.1145/3374916
https://doi.org/10.1088/0266-5611/32/11/115012
https://doi.org/10.1109/TUFFC.2020.3015583
https://doi.org/10.1109/TUFFC.2021.3104342
https://doi.org/10.1190/geo2017-0377.1
https://doi.org/10.1088/1742-2140/aaa4da
https://doi.org/10.1121/1.4938270
https://doi.org/10.1190/1.1451454
https://doi.org/10.1103/physrevresearch.2.023068
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1145/2998441
https://zeromq.org/
http://www.hdfgroup.org/HDF5
https://books.google.co.uk/books?id=atwEAAAACAAJ
https://doi.org/10.1117/1.3360308
https://doi.org/10.1016/0025-5564(79)90080-4
https://doi.org/10.48550/arxiv.2202.04552
https://doi.org/10.1117/1.JBO.22.4.041015

C. Cueto, O. Bates, G. Strong et al. Computer Methods and Programs in Biomedicine 221 (2022) 106855

[

[

[

[

[

[

[

[

36] A.J. Chee, C.K. Ho, B.Y. Yiu, A.C. Yu, Walled carotid bifurcation phantoms for
imaging investigations of vessel wall motion and blood flow dynamics, IEEE

Trans. Ultrason. Ferroelectr. Freq. Control 63 (11) (2016) 1852–1864, doi: 10.
1109/TUFFC.2016.2591946 .

37] M.I. Iacono, E. Neufeld, E. Akinnagbe, K. Bower, J. Wolf, I. Vogiatzis Oikono-
midis, D. Sharma, B. Lloyd, B.J. Wilm, M. Wyss, K.P. Pruessmann, A. Jakab,

N. Makris, E.D. Cohen, N. Kuster, W. Kainz, L.M. Angelone, MIDA: a multimodal
imaging-based detailed anatomical model of the human head and neck, PLoS

ONE 10 (4) (2015) e0124126, doi: 10.1371/journal.pone.0124126 .

38] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Automatic differentiation
in PyTorch, in: Conference on Neural Information Processing Systems (NIPS),

2017 .
39] J.A. Jensen, FIELD: a program for simulating ultrasound systems, in: 10th

Nordic Baltic Conference on Biomedical Imaging, vol. 34, 1996, p. 353 .
16
40] T. Betcke, M. Scroggs, Bempp-cl: a fast Python based just-in-time compiling
boundary element library, J. Open Source Softw. 6 (59) (2021) 2879, doi: 10.

21105/joss.02879 .
[41] Dask Development Team, Dask: library for dynamic task scheduling, 2016,

https://dask.org .
42] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R.M. Badia, J. Torres, T. Cortes,

J. Labarta, PyCOMPSs: parallel computational workflows in Python, Int. J. High
Perform. Comput. Appl. 31 (1) (2017) 66–82, doi: 10.1177/1094342015594678 .

43] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol,

Z. Yang, W. Paul, M.I. Jordan, I. Stoica, Ray: a distributed framework for emerg-
ing AI applications, in: Proceedings of the 13th USENIX Symposium on Oper-

ating Systems Design and Implementation, OSDI 2018, 2017, pp. 561–577 .
44] R. Ali, S. Hsieh, J. Dahl, Open-source Gauss-Newton-based methods for

refraction-corrected ultrasound computed tomography, in: SPIE Medical Imag-
ing, vol. 10955, SPIE, 2019, pp. 39–52, doi: 10.1117/12.2511319 .

https://doi.org/10.1109/TUFFC.2016.2591946
https://doi.org/10.1371/journal.pone.0124126
http://refhub.elsevier.com/S0169-2607(22)00237-1/sbref0038
http://refhub.elsevier.com/S0169-2607(22)00237-1/sbref0039
https://doi.org/10.21105/joss.02879
https://dask.org
https://doi.org/10.1177/1094342015594678
http://refhub.elsevier.com/S0169-2607(22)00237-1/sbref0043
https://doi.org/10.1117/12.2511319

	Stride: A flexible software platform for high-performance ultrasound computed tomography
	1 Introduction
	2 Methods
	2.1 Software structure
	2.2 Abstractions for solving optimisation problems
	2.3 Problem definition
	2.4 Physical modelling
	2.5 Parallelism
	2.6 File input and output

	3 Results
	3.1 Modelling accuracy
	3.2 Imaging in 2D
	3.3 Imaging in 3D

	4 Discussion
	5 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References

