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1. Introduction

The term central subspace was first used by Cook (1994a) but it is a concept
that has been built upon previous ideas of Li (1991) and Cook (1994b). In his
seminal paper, Li (1991) established a new line of research by developing the
Sliced Inverse Regression (SIR) technique, which aims to determine a specific
dimension reduction space, the effective dimension reduction space (EDR). In
subsequent years, Cook (1994a, 1998) reinterpreted and extended Li’s idea by
interpreting the EDR in terms of a dimension reduction subspace (DRS)1 and
introducing the concept of sufficient dimension reduction (SDR) (Cook, 1994a,
1998, 2007; Cook, Li and Chiaromonte, 2007). He further combined ideas of
conditional independence of Dawid (1979) and addressed issues of existence and
uniqueness to develop the current theory of DRS. Through this development,
the concepts of minimum dimension reduction subspace and central dimension
reduction subspace, also known as central subspace, emerged.

This paper is organised as follows: in Section 2 we review the theory of cen-
tral subspaces and dimension reduction subspaces; in Section 3 we provide a
literature review of some methods that aim to estimate the central subspace,
introduce a new classification scheme for central subspace methods and pro-
vide a list of R and MATLAB packages that can be used for estimation of the
central subspace; in Section 4 we provide a framework that shows how central
subspaces can be applied to bioinformatics and demonstrate these ideas using
two real datasets; finally, in Section 5 we provide a summary and discuss some
practical issues. Note that we do not discuss estimating the dimension of the
central subspace here as a detailed review is provided in Ma and Zhu (2013).

1In the literature these two terms - EDR and DRS - are often confused. It is important to
note that they are posed in different settings but their definitions are equivalent, as shown in
Zeng and Zhu (2010).
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2. Definitions and properties of the central subspace

Central subspaces are a particular case of dimension reduction subspaces. In
this section we first review some definitions and properties and then provide a
formal definition. Our exposition follows that of Cook (2018) and Chapter 6 of
Cook (1998), where proofs and further details can be found.

Definition 2.1 (Dimension Reduction Subspace). Let B = (b1, . . . , bd) denote
a p×d matrix with d ≤ p linearly independent p×1 columns b1, b2, . . . , bd, let Y
denote the response variable and let X = (X1, . . . , Xp)T be the p× 1 predictor
vector such that

FY |X(y|x) = FY |bT1 X,bT2 X,...,bT
d
X(y|bT1 x, bT2 x, . . . , bTd x) (1)

Then the span of the columns of B, denoted S(B), is called a dimension re-
duction subspace (DRS) for Y |X, or equivalently, for the regression of Y on
X.

Expression (1) is equivalent to saying that X and Y are independent given
BTX (Basu and Pereira, 1983), that is,

Y ⊥⊥ X|BTX (2)

In other words, Y only depends on X through BTX and there would be no
loss of information if X were replaced by BTX. Thus, if (2) holds, Y and BTX
are sufficient (Cook, 1994a, 1998, 2007; Cook, Li and Chiaromonte, 2007) to
determine the relationship between Y and X.

Notice that in Definition 2.1 if B = Ip, where Ip is the p× p identity matrix,
the DRS may not result in reduced dimensionality since, in this case, the di-
mension reduction subspace coincides with the original subspace. Furthermore,
if we replace BTX with ATX where A �= B but such that S(A) = S(B), the
equality in expressions (1) and (2) still hold. This leads us to two conclusions:

(I) DRSs need not be unique
(II) If S(A) and S(B) are two DRSs then we can have dim(S(A)) ≤ dim(S(B)).

Conditions (I) and (II) imply the existence of different subsets of predictors
spanning a DRS but which might not agree in number, that is, one set can be
“smaller” than the other. This leads us to the next definition.

Definition 2.2 (Minimum Dimension Reduction Subspace). A subspace S is
said to be a minimum DRS for Y |X if the following two conditions hold:

i) S is a DRS for Y |X; and
ii) dim(S) ≤ dim(S′) for all DRS S′

Therefore, the minimum dimension reduction subspace contains the minimum
number of predictors, or linear combinations of predictors, required for equations
(1) and (2) to hold. As noted by Cook (1998), Definition 2.2 does not guarantee
the uniqueness of the minimum DRS but guarantees the minimum dimension
of a DRS.
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We are interested in obtaining a unique minimum DRS, therefore we have to
further constrain Definition 2.2 to define such a DRS. This leads us to the key
definition:

Definition 2.3 (Central Dimension Reduction Subspace). A subspace S is a
central dimension reduction subspace for the regression of Y on X, if S is a DRS
and S ⊂ S′, for all DRS S′.

We refer to the central dimension reduction subspace for the regression of Y
on X as the central subspace and we denote it by SY |X or SY |X(B) when the
basis is not explicit.

From the definition of central subspace we have the following proposition:

Proposition 2.4. The central subspace, SY |X , exists if and only if the following
two conditions hold:

(i) the intersection, ∩S′, of all DRS S′ is itself a DRS; and,
(ii) SY |X = ∩S′

Proposition 2.4 tells us that the central subspace exists only when the inter-
section of all DRS is itself a DRS and in that case it is the intersection of all
DRS. However, note that the intersection of DRS always exists, but it might
not be a DRS. See Chapter 6 of Cook and Weisberg (1999) for examples.

Although we can not guarantee the existence of the central subspace we
can assure that when it exists it is unique and is the subspace with mininum
dimension for the regression of Y on X. This is guaranteed by the following
proposition:

Proposition 2.5. If SY |X is the central dimension reduction subspace for the
regression of Y on X, then SY |X is the unique minimum dimension reduction
subspace.

Note that a unique minimum DRS needs not be a central subspace. This
occurs when the central subspace does not exist, that is, when the intersection
of DRS is not a DRS. To see this clearly, consider the following example:

Example 2.1. Let p = 3 and let X = (X1, X2, X3) be uniformly distributed
on the unit sphere where ||X|| = 1 and set Y |X = X2

1 + ε, where ε is an
independent error. The subspace S({(1, 0, 0)T }) is the unique minimum DRS and
the subspace S′({(0, 1, 0)T , (0, 0, 1)T )}) is a DRS. However, S is not contained
in S′ and their intersection is the origin which is not a DRS. Hence the central
subspace in this case does not exist.

Despite the difficulty of determining and guaranteeing the existence of the
central subspace, there are conditions under which the central subspace exists.
For further details see Chapter 6 of Cook (1998). Throughout this paper we
assume their existence.
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3. Techniques to estimate the central subspace

The literature on techniques to estimate the central subspace is extensive and
growing. The publication of Li’s seminal paper (Li, 1991) on Sliced Inverse Re-
gression (SIR) brought not only a new concept to the field of dimension reduction
but it also initiated a new line of research, leading to an increasing variety of
techniques. In an attempt to overcome the limitations of SIR in determining the
central subspace, other researchers have developed improved versions of SIR or
developed techniques that consider the problem from another viewpoint. Cook
(1998) considers numerical and graphical techniques to estimate the central
subspace. Here, we consider only numerical techniques and focus in more detail
on those that have extended the methods of estimating the central subspace
to the high dimensional setting. For a thorough review on some of the lower-
dimensional techniques see for example, Li, Zha and Chiaromonte (2005), Xia
(2007) Fukumizu, Bach and Jordan (2009), Ma and Zhu (2012), Cook, Forzani
and Rothman (2012). For a good compendium of the graphical techniques see
Cook (1998); for a detailed review with many examples applied to real datasets
with R see Li (2018) and for more recent and advanced topics such as multivari-
ate response SIR and variable selection in SIR see Girard, Lorenzo and Saracco
(2022).

3.1. Sliced inverse regression

Slice Inverse Regression (SIR) (Li, 1991; Cook, 1998), as opposed to traditional
regression techniques such as Ordinary Least Squares, performs the regression of
X on Y , benefiting from Y being, usually, of lower dimension than X. Generally
speaking, SIR slices the response variable into h slices; calculates E(X|Y ) on
each slice; and then performs principal component analysis using the calculated
means of each slice to determine the largest eigenvectors that are associated
with the subspace of interest.

In the literature SIR is criticized for:

(I) Depending on the linearity condition. SIR assumes E(X|BTX) to be a
linear function of BTX, that is, for any b ∈ Rp

E(bTX|BTX) = E(bTX|bT1 X, bT2 X, . . . , bTdX)
= c0 + c1b

T
1 X + . . . + cdb

T
dX

for some scalars c0, c1, . . . , cd ∈ R. This condition can be shown to be
a characterization of elliptical symmetry of the distribution of X (Cook
and Weisberg, 1991). However, this assumption does not always hold in
practice but as mentioned in Chen and Li (1998) and Prendergast (2007),
Hall and Li (1993) have shown this condition to hold approximately in the
presence of high-dimensional data.

(II) Failing to estimate the central subspace under some conditions; or, per-
forming a non-exhaustive search of the central subspace directions, that is,
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SIR might not always determine vectors that are in the central subspace.
See Section 3.2 for further details on this point.

(III) Not making use of the characterization of conditional independence given
in Definition 2.1. Although it does estimate dimension reduction direc-
tions, as mentioned in Xia (2007), the fact that it does not use Defini-
tion 2.1 leads to its failing to efficiently estimate the central subspace.

(IV) Requiring the inverse of the sample covariance matrix. This prevents it
from being applied in high dimensional settings where p 	 n. Cook,
Forzani and Rothman (2012) further add that most post-SIR SDR re-
gression techniques also suffer from this problem.

(V) Estimating a linear subspace and thus being unable to find nonlinear fea-
tures (Wu, 2008). This is an issue as there is no guarantee that the central
subspace will be linear.2

SIR is a very ingenious idea and constitutes one of the great advancements
for the field of dimension reduction. In the next section we show how many
central subspace techniques, have emerged from trying to overcome some of
these limitations. Note that there are other lines of research considering SIR,
such as, its robustness analysis to influential outliers. We do not discuss these
here as it is not in the scope of this paper. For further details on this topic see
Prendergast (2005), Prendergast (2007) and Prendergast and Smith (2010).

3.2. A glimpse at the last 30 years

Early approaches addressed improving SIR by including additional assumptions
and by using different methods to calculate the directions of the subspace of
interest. Of particular concern was the issue of SIR not being able to recover
the central subspace under certain conditions, namely, if the regression function
is symmetric about 0. As stated in Li (2018), if the regression surface is sym-
metric about 0 along some directions, then those directions cannot be recovered
by central subspace methods that rely soley on first-order conditional moments
(see Section 3.2 of Li (2018) for an example). Cook and Weisberg (1991) and
Cook (1998) suggest that without a further restriction – Cov(X|BTX) be a
constant matrix – SIR might determine the directions that fall in a dimension
reduction subspace but these might not span the subspace and they need not
belong to the central subspace. This exploration of SIR’s shortcomings led then
to methods such as SAVE (Cook and Weisberg, 1991), LAD (Cook and Forzani,
2009) and others. The SAVE method uses averages of the variance to estimate
the dimension reduction directions as opposed to averages of the means; pHd
(Li, 1992), estimates the directions by using principal Hessian directions; CAN-
COR (Fung et al., 2002), similar to SIR and SAVE, uses a B-spline method to
estimate Cov(E(X|Y )); KIR (Zhu and Fang, 1996), uses a kernel based esti-
mate for Cov(E(X|Y )); and, other methods such as CORE (Cook and Forzani,
2008a), LAD (Cook and Forzani, 2009)) and PFC (Cook and Forzani, 2008b))

2The term subspace, by definition, is associated to a linear space. However, here we also
use it to refer to a subspace with nonlinear features.
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adopt a likelihood-based approach. Most of these techniques still rely on one or
both of the conditions on moments to estimate the directions efficiently, which
leads to assuming elliptical distributions of the covariate vector X. pHd esti-
mates directions of the central mean subspace which is contained in the central
subspace and is effective for the regression of E(Y |X) (Fukumizu, Bach and
Jordan, 2009). LAD, CORE and PFC assume the conditional distribution of X
given the response Y to be multivariate normal.

Another approach, developed by Cook and Nachtsheim (1994), circumvents
the restriction of SIR for elliptically distributed covariates – condition (I) – by
transforming or reweighting the predictors. More recently, Li and Dong (2009)
and Dong and Li (2010) proposed an inverse regression framework that removes
the linearity condition and generalizes several moment-based inverse regression
methods. However, they still require the constant variance condition.

Other methods evolved from noting that SIR does not use the characteriza-
tion of conditional independence stated in the initial problem (condition III) and
does not detect the directions exhaustively (condition II). This led to methods
such as KDR (Fukumizu, Bach and Jordan, 2004, 2009), a Fourier transform
method suggested by Zhu and Zeng (2006) and dMAVE (Xia, 2007). KDR uses
a characterization of conditional independence through covariance operators.
Using this characterization, they design an objective function which is mini-
mized when the conditional independence assertion in Definition 2.1 is realized.
KDR estimates a linear subspace and requires the optimization of a nonconvex
function (Kim and Pavlovic, 2011), which in general is more computationally
demanding than convex problems. The Fourier transform method suggested by
Zhu and Zeng (2006), is similar to KDR in its characterization of conditional
independence through the use of Hilbert spaces and an objective function but it
requires estimating the derivative of the density of X. As mentioned by Fuku-
mizu, Bach and Jordan (2009), in practice this places a normality restriction on
X, which again might not hold. The dMAVE method of Xia (2007) estimates
the conditional density function of Y |BTX and then proposes two distinct al-
gorithms to detect the directions of the central subspace. As noted by Ma and
Zhu (2012), it requires estimating the distribution function non-parametrically
and requires continuous covariates.

Another line of research focused on SIR, and alternative methods, being
limited to the estimation of a linear dimension reduction subspace (condition V).
Hence nonlinear methods such as mKDR (Nilsson, Sha and Jordan, 2007), KSIR
(Wu, 2008) and COIR (Kim and Pavlovic, 2011) emerged. KSIR and mKDR
are nonlinear extensions of SIR and KDR, respectively, and thus also suffer
from their drawbacks. COIR combines ideas from KDR and SIR. It estimates
the variance of the inverse regression method but avoids slicing the response
variable by using covariance operators in reproducing kernel Hilbert spaces.
According to Kim and Pavlovic (2011), COIR outperforms previous methods
on many real world problems. However, from a close analysis, COIR, mKDR
and KDR require selecting kernel parameters to obtain good estimates of the
directions of the central subspace. This involves methods such as cross-validation
that carry an extra computational burden. For a general theory on non-linear



Central subspaces review: methods and applications 217

sufficient dimension reduction see Lee, Li and Chiaromonte (2013).
Most of the methods mentioned above have been developed in the p ≤ n

setting. However, many datasets and current real world problems fall into the
p > n setting. As mentioned in Cook, Forzani and Rothman (2012), nearly all
SDR methods available require the inverse of a p× p sample covariance matrix,
which leads to problems when p > n. One method of overcoming this problem
is to avoid the computation of the inverse of the sample covariance matrix al-
together, as seen with the seeded dimension-reduction method (Cook, Li and
Chiaromonte, 2007). However, as stated by the authors, the methodology can
only be used when n is large relative to another parameter u, which lies in
between d and p. Moreover, the authors emphasize that in its current version,
their methodology cannot be used in the “large p small n” regressions. Another
approach has been to replace the p predictors with p∗ � n principal compo-
nents (linear combinations of the predictors) and then apply an SDR method to
the regression of the response on the selected p∗ predictors. Examples of these
include Chiaromonte and Martinelli (2002) and Li and Li (2004). However, as
noted in Cook, Forzani and Rothman (2012), recent results on the eigenvectors
of sample covariance matrices in high-dimensional settings raise questions on
this approach.

Other alternate directions of extending SIR to the high dimensional setting
when p 	 n are those of performing regularization, variable selection and using
kernel methods. Regularized Sliced Inverse Regression (RSIR) (Zhong et al.,
2005) and the Sliced Inverse Regression method based on the QZ algorithm
(SIR-QZ) (Coudret, Liquet and Saracco, 2014) are examples of regularization
based central subspace methods. RSIR determines a bootstrap estimator of the
mean squared error of regularized estimates of the EDR directions. The SIR-QZ
method estimates the indices rather than the EDR directions by making use of
several estimations from the various number of slices and by trying to find a
minimial regularization of the covariance matrix of the predictors. For further
details on these regularized approaches to SIR see Coudret, Liquet and Saracco
(2014) and Girard, Lorenzo and Saracco (2022) for a review, and Bernard-
Michel, Gardes and Girard (2008) which identify theoretical problems with the
ridge SIR estimator defined by Li and Yin (2008) and propose an alternative
ridge SIR estimator. Note that some of these regularized approaches although
successful create orthogonal basis vectors of the central subspace that are lin-
ear combinations of all the predictor variables and consequently can be time
consuming to run in the case where p is large.

Methods employing variable selection, on the other hand, assume that only
a few variables are relevant for explaining and predicting the response variable.
This sparsity assumption has led to what is known as Spare Sufficient Dimen-
sion Reduction and dates back to Cook (2004), Li and Nachtsheim (2006) and
Li (2007), as mentioned by Lin, Zhao and Liu (2018) and Li (2018). Some of the
methods proposed combine SIR based methods with variable selection methods
involving regularization algorithms such as those available in the Lasso (Tib-
shirani, 1996), the Elastic-net (Zou and Hastie, 2005) and the Dantzig selector
(Candes and Tao, 2007). These combined methods provide a sparse linear com-
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bination for the central subspace basis vectors, that is, the basis vectors are no
longer a linear combination of all of the predictors (as in RSIR or SIR-QZ, for
example) but are a linear combination of the variables that have been selected.
Examples of these include: Sparse Ridge Sliced Inverse Regression (SR-SIR) (Li
and Yin, 2008), Diagonal Threshold Screening SIR (DT-SIR) (Lin, Zhao and
Liu, 2018) and more recently the Lasso-SIR (Lin, Zhao and Liu, 2019). Li and
Yin (2008) applied their method to a dataset where n = 240 and p = 7399. How-
ever, they first pre-selected 329 of those predictors to speed up the computation,
suggesting that if p is much larger than n, computation speed is compromised.
Lin, Zhao and Liu (2019) has successfully applied Lasso-SIR to a dataset with
p = 47293 and n = 90 without performing any pre-selection. The computa-
tional efficiency of the Lasso-SIR is due in part to their method being reliant on
the computational efficient algorithms developed in the glmnet package (Simon
et al., 2011). For a review of sparse sufficient dimension reduction methods see
Li (2018, section 15.4), Lin, Zhao and Liu (2019), Girard, Lorenzo and Saracco
(2022), Nghiem et al. (2023) for more recent developments and Qian, Ding and
Cook (2019). The latter, in addition to reviewing the sparse based methods
also propose a unified solution involving a minimum discrepancy approach with
regularization which allows methods such as SIR (Li, 1991), PFC (Cook and
Forzani, 2008b) and SAVE (Cook and Weisberg, 1991) to be applied in the set-
ting where p 	 n. For theoretical concerns of the sparse based SIR estimators,
such as, consistency and optimal rates of convergence, see Lin, Zhao and Liu
(2018) and Tan, Shi and Yu (2020), respectively.

Regarding the use of kernel methods, Fukumizu and Leng (2014) use the
KDR method of Fukumizu, Bach and Jordan (2004, 2009) to propose a new
gradient-based KDR estimator, gKDR. gKDR estimates the gradient of the
regression function, allowing them to avoid the optimization problem encoun-
tered in Fukumizu, Bach and Jordan (2009) that prevents it from being applied
directly to a high-dimensional setting. The authors show that gKDR can be
applied to low and high dimensional settings and achieves competitive or im-
proved results when compared to other techniques. Nevertheless in our view
it has two strong limitations. First, and as mentioned in Fukumizu and Leng
(2014), when applied to classification problems with L classes, gKDR can only
find central subspaces with dimension d of at most L−1. Note that this problem
also affects SIR based methods. To overcome this difficulty Fukumizu and Leng
(2014) developed gKDR-v which involves partitioning the samples into subsets
and deriving the gKDR-v estimator from these subsets. The second difficulty
affects all variants of gKDR (gKDR, gKDR-i and gKDR-v). gKDR methods
use cross-validation, paired with k-nearest neighbours to estimate the dimen-
sion of the central subspace. This can be problematic as it imposes an extra
computational burden.

A somewhat different approach for applying central subspace methods to the
p > n setting is that of Yin and Hilafu (2015). The authors propose a general
sequential dimension reduction framework that allows methods developed in the
p < n setting to be applied to the p > n setting. The framework partitions the
predictor vector into smaller subvectors such that p < n and then performs
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reduction on those subvectors sequentially, thus avoiding the inversion of the
p × p sample covariance matrix. However, as noted by the authors, differences
between solutions from different partitions of the predictor vector may arise and
may be difficult to quantify. Furthermore, and as mentioned by Hilafu and Yin
(2017), this approach is computationally intensive as the tuning parameters
for both the �1 and �2 norm penalties need to be chosen at each step of the
sequential reduction framework and their algorithms cannot handle the case
where predictors exhibit high correlations. To deal with the latter, Hilafu and
Yin (2017) developed the sequential partial inverse regression (SeqPIR) method,
which takes advantage of ideas from partial least squares, dimension reduction
in regression without matrix inversion (Cook, Li and Chiaromonte, 2007) and
the work of Yin and Hilafu (2015).

With respect to central subsapce methods being applied to massive datasets3
such as those often encountered in the big data setting, Liquet and Saracco
(2016) have developed BIG-SIR. To our knowledge, the authors are the first
to apply SIR to a massive dataset. The method is based on the “divide and
conquer” or “divide and recombine” principle (Lin and Xi, 2011; Guha et al.,
2012; Chen and Xie, 2014). This principle consists of splitting the data over n
into K blocks, applying the method on each block and then aggregating the K
results to produce an analysis of the complete data. Although constituting an
excellent advancement for SIR based methods to massive datasets, BIG-SIR is
only applicable to studies where p < n, and in the case of an L-classification
problem, can only estimate L− 1 dimensions.

3.3. A new classification system and software packages for central
subspace methods

As mentioned previously, Cook (1998) and Cook and Weisberg (1999) initially
suggested that we could distinguish between two main types of techniques to
estimate the central subspace: graphical and numerical. Additionally, he sep-
arated numerical techniques into standard fitting methods and inverse regres-
sion methods. This excludes novel techniques such as KDR (Fukumizu, Bach
and Jordan, 2004, 2009) and mKDR (Nilsson, Sha and Jordan, 2007), since
these are not standard nor inverse regression techniques. There are many other
classifications in the literature such as semi-parametric versus non-parametric
(Fukumizu, Bach and Jordan, 2004) and direct regression versus inverse regres-
sion estimation methods (Xia, 2007). However, we find that the first leads to
ambiguity since, for example, the Fourier method suggested by Zhu and Zeng
(2006) is considered to be non-parametric but requires assuming parametric
models for X (Fukumizu, Bach and Jordan, 2009). The classification given by
Xia (2007) leaves his own method unclassified as it uses ideas both from inverse
regression and direct regression.

3Emerson and Kane (2012) define a dataset to be large if it exceeds 20% of the RAM on
a machine and massive if it exceeds 50%.
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More recently, Cook, Forzani and Rothman (2012) suggest that this body of
work reflects three different but related frontiers: extensions that require progres-
sively fewer assumptions, development of likelihood based methods and adap-
tations for specific areas of application. To incorporate high-dimensional data
applications, we propose to classify central subspace methods according to the
following criteria: type of regression, inverse or non-inverse regression; type of
subspace determined, linear or non-linear; dimensions of the data it can be
applied to, p ≤ n or p > n; and,size, regular or big data.

The criteria are self-explanatory but briefly, we consider inverse regression
(IR) methods, methods that aim to estimate the central subspace using inverse
regression. These would include, for example, all SIR based methods. Non-
inverse regression (NIR) methods are those that either use standard forward
regression, a combination of inverse-regression and forward regression or other
methods. We consider a central subspace method non-linear (NL) if it allows
the estimation of a non-linear central subspace and is linear (L) if it does not.
A central subspace method is categorised as p > n if it can be applied in the
setting where p > n; it is p ≤ n otherwise. Note that a method that can be
applied in the p > n setting can also be applied in the n < p setting. To in-
clude large/massive central subspace methods in our classification we define a
central subspace method as big-data (BD) central subspace method if it can be
applied to large or massive datasets in the Emerson and Kane (2012) sense;
and, regular data (RD) otherwise. Table 1 presents the classification of some
of the aforementioned methods regarding the type of regression, subspace de-
termined, dimension setting and size of data they can be applied to. Table 1
focuses mostly on SIR based methods but as seen in the table and mentioned
here within, non-SIR based methods exist. Table 1 demonstrates how we can
use our classification system to characterize central subspace methods according
to the four criteria presented.

In Table 2 we list available R and MATLAB packages that implement methods
which aim to estimate the central subspace. Note that some of the methods
presented in the table have thus far not been discussed. For further information
on these see the respective references contained within the table.

4. A central subspace framework for bioinformatics

In this section we provide a framework for the use of central subspaces in bioin-
formatics or omics applications. For demonstration purposes, we consider gene
expression studies and explore these in a semi-informal way through some ex-
amples and apply the framework to a real dataset in Section 4.4. We focus on
this application in bioinformatics but note that it can be applied to other appli-
cations such as those involving SNP data, protein expression data, metabolomic
data, RNA-seq data or ultimately a combination of several different types of
data and a multivariate response. We use the expression “determine the central
subspace of a disease” to mean “determine the vectors that form a basis for the
central subspace of Y |X, where Y is the response variable for a disease and X is
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Table 1

Classification of central subspace estimation methods.

Method Reference Regression Subspace Dimension Size
SIR Li (1991) IR L p ≤ n RD
SAVE Cook and Weisberg (1991) IR L p ≤ n RD
KIR Zhu and Fang (1996) IR L p ≤ n RD
CANCOR Fung et al. (2002) IR L p ≤ n RD
MAVE Xia et al. (2002) NIR L p ≤ n RD
KDR Fukumizu, Bach and Jordan (2004, 2009) NIR L p ≤ n RD
RSIR Zhong et al. (2005) IR L p > n RD
KSIR Wu (2008) IR NL p > n RD
SR-SIR Li and Yin (2008) IR L p > n RD

Bernard-Michel, Gardes and Girard (2008)
COIR Kim and Pavlovic (2011) IR NL p > n RD
SIR-QZ Coudret, Liquet and Saracco (2014) IR L p > n RD
gKDR Fukumizu and Leng (2014) NIR L p > n RD
SeqPIR Hilafu and Yin (2017) IR L p > n RD
DT-SIR Lin, Zhao and Liu (2018) IR L p > n RD
Lasso-SIR Lin, Zhao and Liu (2019) IR L p > n RD
BIG-SIR Liquet and Saracco (2016) IR L p < n BD

the vector of predictors”. Thus, our goal for this section is to show how central
subspaces can be used to determine the central subspace of a disease, that is, the
smallest set of predictors that is involved in determining the response variable,
which in theory can be also be multivariate.

4.1. Background

We wish to determine the smallest dimension reduction space for which we can
make inferences about the conditional distribution of Y |X. In theory, it is the
central subspace that we are interested in but in real world applications, for
now, we are interested in determining the vectors that form a basis for the
central subspace. We often start with p 	 n predictors and by determining the
vectors in the basis for the central subspace, we reduce the dimensionality of the
problem. By determining its dimension we will be able to make inferences on
some of the distinct combinations that may lead to the response variable Y . Once
these basis vectors are determined we can use them to establish a relationship
between the distribution of Y and some function of the basis vectors.

Let Y and X = (X1, . . . , Xp)T denote respectively, the random variables
that correspond to the response and the predictor vector. For example, Xj ,
j = 1, . . . , p may be the expression measure for gene j. Suppose we can find a
p× d matrix B = (b1, . . . , bd) that satisfies Definition 2.1 and subsequently (2),
that is,

Y ⊥⊥ X|BTX
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Table 2

List of some software packages for methods that aim to determine the central subspace.

Software Source Package Method
R CRAN dr Weisberg (2002) SIR Li (1991)

SAVE Cook and Weisberg (1991)
pHdy Li (1992); Cook (1998)
pHdres Cook (1998)
pHdq Li (1992)
IRE Cook and Ni (2005)

CRAN ldr1 Adragni and
Raim (2014)

CORE Cook and Forzani (2008a)

LAD Cook and Forzani (2009)
PFC Cook (2007); Cook and Forzani
(2008b)

CRAN edrGraphicalTools
Liquet and Saracco
(2011)

SIR Li (1991)

SAVE Cook and Weisberg (1991)
RSIR Zhong et al. (2005)
SR-SIR Li and Yin (2008);
Bernard-Michel, Gardes and Girard
(2008)
SIR-QZ Coudret, Liquet and
Saracco (2014)

CRAN MAVE Hang and Xia
(2017)

KSIR Wang and Xia (2008)

MAVE Xia et al. (2002)
OPG Xia (2007)

CRAN LassoSIR Zhao, Lin
and Liu (2017)

Lasso-SIR Lin, Zhao and Liu (2019)

MATLAB Journal website LDR2 Cook, Forzani
and Tomassi (2011)

CORE Cook and Forzani (2008a)

LAD Cook and Forzani (2009)
PFC Cook (2007); Cook and Forzani
(2008b)

Author’s webpage KSIR KSIR Wu (2008)
Author’s webpage KDR KDR Fukumizu, Bach and Jordan

(2004, 2009)
Author’s webpage gKDR gKDR Fukumizu and Leng (2014)

1 Analagous to the LDR MATLAB package
2 Analagous to the ldr R package

Now,

BTX =

⎡
⎢⎢⎢⎣

b11 b21 . . . bp1
b12 b22 . . . bp2
...

...
. . .

...
b1d b2d . . . bpd

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

X1
X2
...

Xp

⎤
⎥⎥⎥⎦

=
[
b11X1+b21X2 + . . .+bp1Xp . . . b1dX1 + b2dX2 + . . . + bpdXp

]T

=
( p∑

i=1
bi1Xi,

p∑
i=1

bi2Xi, . . . ,

p∑
i=1

bidXi

)T
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=
(
bT1 X, bT2 X, . . . , bTd X

)T

By observing the equations above and knowing that B satisfies (2) we can
see that, in essence, B expresses, through its columns, the different combina-
tions that are associated with Y . In other words, by determining B we are
determining the vectors b1, . . . , bd that, when applied to X, give us the linear
combinations of the explanatory vectors that are required to determine the con-
ditional distribution of the response Y , through some function f . In our gene
expression example, this means that the matrix B returns the distinct combina-
tions of genes that are involved in the expression of the response Y . To illustrate
consider two main types of diseases mentioned in Lvovs, Favorova and Favorov
(2012), monogenic and polygenic.

4.2. Central subspace of a mongenic disease

Monogenic diseases, also known as Mendelian diseases, are caused by a single
mutation in one gene (Lvovs, Favorova and Favorov, 2012). Well known exam-
ples include sickle cell anaemia, cystic fibrosis and Huntington’s disease.4

Let Y be the response variable for a certain monogenic disease D caused by a
gene, which we call gene 2, represented by X2. Here Y is either 1 or 0, according
to whether the individual has the disease or not. Then

Y ∼ bern(f(X2)),

where bern denotes the Bernoulli distribution and f is a real valued bounded
function in [0, 1]. In this case, the central subspace has dimension 1 and is
spanned by the vector b1, which is a p vector with p − 1 zeros and which at
position 2 has b21, that is, b1 = (0, b21, 0, . . . , 0)T . Using matrix notation we
have

BTX =
[
0 b21 . . . 0

]
⎡
⎢⎢⎢⎣

X1
X2
...

Xp

⎤
⎥⎥⎥⎦

= 0 ×X1 + 1 × b21X2 + . . . + 0 ×Xp

= b21X2

Thus, in the case of a monogenic disease caused by gene i, the central subspace
has dimension one and a basis for it will be {b1} with b1 = (0, . . . , bi1, . . . , 0)T
and bi1 �= 0, bi1 ∈ R. Note that Y could also be continuous, for example, blood
pressure, expression of a particular gene, etc.

4 http://www.who.int/genomics/public/geneticdiseases/en/index2.html

 http://www.who.int/genomics/public/geneticdiseases/en/index2.html
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4.3. Central subspace of a polygenic disease

Polygenic diseases or complex diseases are caused by mutations in more than
one gene (Lvovs, Favorova and Favorov, 2012). We can have several cases:

Case 1: The disease arises from a particular combination of genes. We
call this a simple polygenic disease.
Case 2: The disease may arise from different combinations of genes. We
call this a complex polygenic disease.

Let us assume, as before, that we have a response variable Y for a disease D
and p predictors, X1, . . . , Xp, that contain the gene expression for genes 1, . . . , p.

4.3.1. Case 1

Let us assume disease D results from the simultaneous additive effect of several
genes but there is only one unique way of obtaining D. In this case, the central
subspace will also have the same dimension as in the mongenic case, since there
is only one possible way of obtaining the disease. However, the difference arises
from the form of the vector which constitutes a basis for the central subspace,
b1. As opposed to having only one non-zero bi1, it will have several bi1’s distinct
from zero corresponding to the genes that have an effect. Let us consider an
example to see this more clearly.

To keep things simple, let us assume that disease D is obtained by an additive
effect of genes 1, 3 and 5. Then b1 = (b11, 0, b31, 0, b51, 0, . . . , 0)T and the basis
matrix B is B =

[
[b1]

]
. Thus,

BTX =
[
b11 0 b31 0 b51 . . . 0

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1
X2
X3
X4
X5
...

Xp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= b11 ×X1 + 0 ×X2 + b31 ×X3 + . . . + b51 ×X5 + . . . + 0 ×Xp

= b11X1 + b31X3 + b51X5

which gives us the information required. So, if we determined the matrix B only
containing a vector of the form of b1, we would conclude that the disease has a
central subspace of dimension 1 and arises from the simultaneous effect of the
genes identified by the non-zero elements of b1, where b1 is a p-vector with at
least two non-zero components.
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4.3.2. Case 2

Let us now assume that the disease D can be obtained in d independent ways.
For example, suppose that disease D can be obtained in four different ways:

(i) the over expression of gene 3 at some level
(ii) the over expression of gene 1 and under expression of gene 2
(iii) the simultaneous effect of gene 1, 2 and 4
(iv) the simultaneous effect of gene 1, 2 and 3
(v) mixture of all of the above

In this case we would have three basis vectors b1, b2 and b3 where b1 = (0, 0,
b13, 0, . . . , 0)T , b2 = (b12, b22, 0, 0, . . . , 0)T and b3 = (b13, b23, 0, b43 . . . , 0)T , for
cases (i), (ii) and (iii). Notice that for (iv) and (v) we do not require another
vector in the basis since these are included in span{b1, b2, b3}. So, for example,
case (iv) would be obtained from a linear combination of b1, b2 and b3, that is,

αb1 + βb2 + γb3, α, β, γ ∈ R.

In particular, if we look more carefully we can see that (iv) is obtained solely
from b1 and b2. So γ = 0 and thus we would have that case (iv) is obtained from

αb1 + βb2 α, β ∈ R.

The basis matrix B for the central subspace of disease D is given by

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 b12 b13
0 b22 b23
b31 0 0
0 0 b43
...

...
...

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

and for BTX we have

BTX =

⎡
⎣

0 0 b31 0 . . . 0
b12 b22 0 0 . . . 0
b13 b23 0 b43 . . . 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1
X2
X3
X4
...

Xp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣

b31X3
b12X1 + b22X2

b13X1 + b23X2 + b43X4

⎤
⎦

=
(
b31X3, b12X1 + b22X2, b13X1 + b23X2 + b43X4

)T

.

Then a basis for the central subspace of D would be

B = {(0, 0, b13, 0, . . . , 0), (b12, b22, 0, 0, . . . , 0), (b13, b23, 0, b43 . . . , 0)}.
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4.3.3. Central subspace for different forms of a disease

Let us now assume that we have a response variable Y for a disease but the
response refers to different forms of the disease, say D1 and D2. In this case,
central subspaces can also be used. However, now the different vectors b1, . . . , bd
will give us information on different linear combinations responsible for obtain-
ing different forms of disease or the different types of classifications of disease.
For example, let us assume that the central subspace exists for the Golub et al.
(1999) data – a well known Bioinformatics dataset and recently used in Han,
Huang and Zhou (2021) – where the response variable denotes whether an in-
dividual has type ALL or type AML of leukaemia. And let us assume that the
corresponding basis B for these two types of leukaemia is that given by (3).
Then, we would say that the vectors

B = {(0, 0, b13, 0, . . . , 0), (b12, b22, 0, 0, . . . , 0), (b13, b23, 0, b43 . . . , 0)}

span the central subspace for AML and ALL types of leukaemia.

4.4. Application to real datasets

In this section we apply three distinct methods to two different datasets, one
where n > p and another where n � p. For the case where n > p we consider a
classification problem and use the SIR method readily available in the R package
dr (Weisberg, 2002) and the Lasso-SIR of Lin, Zhao and Liu (2019) readily
available in the R package LassoSIR of Zhao, Lin and Liu (2017). We compare
these two methods to a standard logistic regression. Although it is known that,
in some instances, applying SIR based methods to classification problems can be
problematic, in this instance, SIR performs extremely well. For further details
on the problems that can arise when applying SIR to a classification setting
see Cook and Yin (2001) and for recent developments see Zhang, Mai and Zou
(2020). For the case where n � p, we consider a regression setting and use the
SIR method available in the R package edrGrpahicalTools (Coudret, Liquet and
Saracco, 2017), the LassoSIR (as in the n < p case) and compare them to the
standard Lasso (Tibshirani, 1996) available in the R package glmnet of Simon
et al. (2011). As this is for illustration purposes, we do not go into details of
estimating the dimension of the central subspace or estimating the number of
slices required for the SIR method.

4.4.1. Case when n > p

We illustrate the use of central subspaces methods when n > p with the
well-known Breast Cancer Wisconsin (Diagnostic) Data Set, available at the
Machine Learning repository https://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic). The data set – first used in Street,
Wolberg and Mangasarian (1993) and Wolberg, Street and Mangasarian (1994)

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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Fig 1. Breast Cancer Wisconsin Data projected onto the basis vector of the central subspace
estimated by SIR (left) and by Lasso-SIR (right).

and more recently analysed in Ramsay, Durocher and Leblanc (2021) and Zhang
and Lang (2022), for example – contains 569 samples of features on 30 variables.
These are from digitized images of a fine needle aspirate of breast mass. There
are 357 benign (B) samples and 212 malignant (M).

To estimate a basis for the central subspace of this problem – image repre-
sentation of benign and malignant breast cancer – we first split the data into a
training and a test set using a 70:30 split. We then apply SIR and the Lasso-
SIR, with h = 2 slices and d = 1, the dimension of the central subspace†, to
the training set to obtain an estimate of a basis vector for the central subspace.
Once we have obtained the estimate of the basis vector for the central subspace
we then transform the data by projecting it on to the central subspace basis
vector and apply a logistic regression to perform prediction on the test set. Fig-
ure 1 displays the training data projected on to the central subspace basis vector
estimated by SIR and by the Lasso-SIR, from which we can see that there is
close to a linear separation between the classes malignant (M) and benign (B).

For comparison purposes we fit a logistic regression on the non-transformed
training set and use this model to also make predictions on the test set. To
compare the three methods, we use the ROC plot functionalities and comparison
measures readily available in the R package hmeasure (Anagnostopoulos and
Hand, 2012). These measures include the AUC, the H-measure (Hand, 2009),
the Gini-index, sensitivity, specificity, recall and precision. We also include the
number of variables used, in the creation of each model, Num vars. Note that for
SIR and the Lasso-SIR this relates to the number of variables used to create the
estimated basis vector of the central subspace, which in this case has dimension
1. Figure 2 and Table 3 summarise the results for the three methods on the
test set showing an overall better performance for both the SIR+LR and the
LassoSIR+LR methods in comparison to the standard logistic regression, LR.

From the last column in Table 3 – Num vars – we can see that the SIR method
estimates a basis vector of the central subspace that is a linear combination of
all the 30 variables available in the dataset. On the other hand, the Lasso-SIR
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Fig 2. ROC curves for the LR, SIR+LR and Lasso-SIR methods

Table 3

Test set summary of comparative measures
Method H Gini AUC Sens Spec Precision Recall TPR FPR Num vars

LR 0.865 0.920 0.960 0.941 0.959 0.928 0.941 0.941 0.041 30
SIR+LR 0.956 0.994 0.997 0.926 0.992 0.984 0.926 0.926 0.008 30

Lasso-SIR+LR 0.920 0.990 0.995 0.941 0.992 0.985 0.941 0.941 0.008 19

method selects 19 variables out of the 30 and then creates a linear combination
of these to estimate a basis vector for the central subspace. Therefore, although
they both seem to estimate a basis vector for the central subspace, the Lasso-
SIR estimate is more sparse. Using the Lasso-SIR estimate and the framework
presented we would say that the central subspace of the image representation
of benign and malignant breast cancer problem has dimension 1 and a basis
vector for it is given by bT1 X where in this case b1 has non-zero elements at
positions i ∈ {2, 5, 6, 7, 8, 11, 14, 15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 30}. These
correspond to the variables: texture mean, smoothness mean, compactness mean,
concavity mean, concave points mean, radius se, area se, smoothness se, concav-
ity se, concave points se, symmetry se, radius worst, texture worst, area worst,
smoothness worst, concavity worst, concave points worst, symmetry worst and
fractal dimension worst. The R code used for the analysis is available from the
authors.

4.4.2. Case when n � p

To illustrate the application of these methods when p > n we apply the SIR-QZ
method of Coudret, Liquet and Saracco (2017) and the Lasso-SIR method (Lin,
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Zhao and Liu, 2019) to a subset of the Scheetz et al. (2006) dataset as done in
Breheny and Huang (2013). The dataset consists of normalized microarray gene
expression data harvested from the eye tissue of 120 twelve-week-old male rats.
The outcome of interest is the expression of TRIM32, a gene which has been
shown to cause Bardet-Biedl syndrome (Chiang et al., 2006) and the aim of the
study was to determine genes associated with Bardet-Biedl syndrome. Here we
use the data to estimate a basis for the central subspace that spans the space
of those genes associated with the disease. The dataset contains approximately
p = 5000 features (one-sixth of the original data) on n = 120 samples and was
obtained by following the processing steps as detailed in Breheny and Huang
(2013). Note that the original version of the SIR-QZ algorithm does not return
the EDR directions. We changed the original code so that it returns these in-
stead, so that we can project the data onto these directions, as was done in the
previous example. As before, we also split the data so that 2/3 is used in the
training set and 1/3 is used in the test set.

To apply SIR-QZ and the Lasso-SIR we first must specify the number of
slices, h, used to calculate the edr directions and the dimension of the subspace,
d. As h and d are often unknown, here, for exemplary purposes, we let d = 1 and
use the training set to tune the h parameter. For both methods, we let h vary
from 2 to 5 (as h > d – this is a requirement of SIR-QZ) and for each value of
h we: 1) determine the respective edr directions; 2) transform the data, by pro-
jecting it onto the respective edr directions; and, 3) fit a linear regression (LR)
using the newly transformed data and calculate the mean-squared error (MSE)
for the model. Note that the Lasso-SIR also requires tuning the regularization
parameter λ, this is done at step 1) using the built-in cross-validation function-
ality and choosing the Lasso-SIR model associated with λ = lambda.min, which
aims at minimizing the cross-validation MSE over all 10-folds. Table 4 contains
the results obtained on the training set for the SIR-QZ model and Lasso-SIR
methods. Once the best model is obtained from the training set for each of the
methods, it is then fit to the test set, on which both the SIR-QZ+LR and the
Lasso-SIR + LR obtained an MSE of approximately 0.012. Once the best model

Table 4

Training set MSE and AIC values for each value of h for the SIR-QZ and Lasso-SIR
methods.

Method h MSE AIC Num. vars
SIR-QZ 2 0.0141 −107.6733 5000

3 0.0137 −110.1318 5000
4 0.0119 −121.1168 5000
5 0.0124 −117.9847 5000

Lasso-SIR 2 0.0111 −127.3761 7
3 0.0106 −131.0188 12
4 0.0094 −140.6779 6
5 0.0106 −130.7025 3

is obtained from the training set for each of the methods, it is then fit to the
test set, on which both the SIR-QZ+LR and the Lasso-SIR + LR obtained an
MSE of approximately 0.012.
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For comparison purposes, we also fit a Lasso regression model to the data on
the same training and test set using the R package glmnet (Simon et al., 2011).
The lasso fitted model that is applied to the test set is obtained, as before,
by choosing the model with λ = lambda.min on the training set. The latter is
defined by the authors as the model whose MSE, on the training data, with the
minimum MSE. Note that these models are obtained on the training set using
the default 10-fold cross validation. For further details see Friedman, Hastie and
Tibshirani (2010). Results comparing the three models are given in Table 5.

Table 5

Results for the Lasso, SIR-QZ + linear regression and Lasso-SIR + linear regression
models.

Model Training MSE Test MSE Num. vars
Lasso 0.0169 0.0108 18

SIR-QZ, h = 4 + LR 0.0120 0.0125 5000
Lasso-SIR, h =4 + LR 0.0094 0.0120 6

From tables 4 and 5 we can see that in terms of MSE the SIR-QZ and the
Lasso-SIR methods have similar performances, with the Lasso-SIR perform-
ing better on the training set in comparison to SIR-QZ. Both methods seem
to agree on the number of slices h being 4. With respect to the number of
variables used, as stated previously, SIR-QZ does not perform variable selec-
tion and uses all 5000 predictors to create an estimate of a basis vector, which
is a linear combination of all the variables whereas the Lasso-SIR chooses 6
variables and estimates the basis vector using a linear combination of these
6 variables. Using the Lasso-SIR estimate and the framework presented we
would say that the central subspace of the genes associated with TRIM32, and
consequently the Bardet-Biedly syndrome, has dimension 1 and a basis vector
for it is given by bT1 X where in this case b1 has non-zero elements at posi-
tions i ∈ {2195, 3543, 3801, 4069, 4158, 4413}. These variables correspond to the
the gene probes 1381902_at, 1390574_at, 1391916_at, 1393369_at, 1393743_at
and 395332_at. The R code used for the analysis is available from the authors.

5. Summary and discussion

In this paper we have given a brief overview of the theory of central subspaces
and reviewed some of the main methods that exist for determining the central
subspace in practice. We have also developed a new classification system based
on four criteria, namely, type of regression (inverse or non-inverse), type of sub-
space (linear or non-linear), dimensions of the data the method can be applied
to (p ≤ n or p > n), and size of the data, regular or big. Using this classification
we believe researchers can easily identify which central subspace method can
be applied to their data and what type of central subspace they obtain once
the method has been applied. It would also be useful to indicate whether the
method can be applied to continuous and/or categorical data, however, we leave
this to future research.
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We also show how the the theory of central subspaces can be used in bioin-
formatics to classify different types of diseases according to the dimension of the
central subspace and the form of the basis vectors. Note that the elements of
BTX, bT1 X, . . . , bTdX, may or may not give a pathway to disease. The pathways
may be complex functions arising from the central subspace. By determining
BTX we are simply determining the predictors (or combinations of predictors)
that might be involved in the pathway. To see this more clearly, consider the
complex polygenic disease, where we assumed that a basis for the central sub-
space of the disease would be

B = {(0, 0, b13, 0, . . . , 0), (b12, b22, 0, 0, . . . , 0), (b13, b23, 0, b43 . . . , 0)}

and

BTX = (b31X3, b12X1 + b22X2, b13X1 + b23X2 + b43X4)T

The function that we wish to estimate will take as arguments the elements of
BTX and possibly transform them into a more complex function. Examples of
such functions are:

1. f(BTX) = b31X3 × (b12X1 + b22X2) + α (b13X1 + b23X2 + b43X4).
2. f(BTX) = α1(b31X3) +α2(b12X1 + b22X2) +α3(b13X1 + b23X2 + b43X4).
3. f(BTX) = (α1(b31X3)+α2(b12X1 + b22X2), α3(b13X1 + b23X2 + b43X4)),

note that here the response is multivariate.
4. f(BTX) = I(X3 > c1) + I(X1 +X2 > c2) + I(X1 +X2 +X4 < c3), where

c1, c2, c3 ∈ R and I denotes the indicator function.
5. f(BTX) = αI(X1 + X2 > c1)I(X3 > c2)I(X1 + X2 + X3 > c3) for

α, c1, c2, c3 ∈ R.

However, we can only attempt to determine f after determining the matrix B
and the elements of BTX.

Another important aspect to consider is: does the central subspace always
exist? As mentioned earlier, Cook (1998) gives conditions for its existence. In
theory these conditions are not very restrictive but even if they hold we might
not be able to determine a basis for the central subspace. To determine a basis
for the central subspace for, say a gene expression disease, we need to guarantee
that we have observed the expression on all elements that are relevant to the
disease. Thus, if a gene expression study does not contain the expression of
all relevant genes, when applying a central subspace technique to the data, it
will be difficult to guarantee that the elements determined form a basis for the
central subspace. This issue does give rise to a whole new set of questions: How
does the DRS obtained in such a case compare to the actual central subspace?
What happens if we have only observed elements that are correlated with the
elements that are in the central subspace? and so on. We forsee that with the
advancement of technology and the decreasing cost of sequencing technologies
these questions will not be an issue. However, until then it would be useful
to have answers to such questions. We leave these as open problems for futre
research.
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