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Abstract

Suppose that a random variable X of interest is observed perturbed by independent
additive noise Y . This paper concerns the “the least favorable perturbation” Ŷε, which
maximizes the prediction error E(X−E(X|X+Y ))2 in the class of Y with var(Y ) ≤ ε.
We find a characterization of the answer to this question, and show by example that it
can be surprisingly complicated. However, in the special case where X is infinitely
divisible, the solution is complete and simple. We also explore the conjecture that
noisier Y makes prediction worse.
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1 Introduction

Suppose that on a probability space we observe X + Y , where X and Y are indepen-
dent random variables, X being a square-integrable random variable of interest, and Y
being an additive noise perturbation. The prediction error

E{X − E(X|X + Y )}2 = varX − varE(X|X + Y ) (1.1)

depends on Y of course, and thus a natural question is ‘What would be the worst noise
Y we could add to X?’ In other words, given the law of X, how would we choose the law
of Y to maximize the prediction error in equation (1.1), or equivalently, how would we
find

inf
Y

varE(X|X + Y ) ? (1.2)

Since the mean of E[X|X + Y ] is fixed and equal to EX, an equivalent question is to
choose the law of Y so as to achieve

inf
Y
E
{
E[X|X + Y ]2

}
. (1.3)
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The least favorable noise

If we think of what happens when Y = σZ, where Z ∼ N(0, 1), we quickly realize that as
σ →∞ we have1 for any ξ

E[X|X + σZ = ξ] =

∫
xf(x) exp{ −(ξ − x)2/2σ2 } dx∫
f(x) exp{ −(ξ − x)2/2σ2 } dx

→ EX, (1.4)

so that the minimization in (1.3) has a trivial solution unless we bound the variance of Y .
So we will focus on the problem

inf
{
E
(
E[X|X + Y ]2

)
: var(Y ) ≤ ε

}
, (1.5)

where ε > 0 is given. We then have a number of questions:

Question 1: Can we find an explicit solution to (1.5)?

Question 2: Can we characterize the solution to (1.5)?

Question 3: Are there situations with explicit solutions?

Question 4: Does more noise mean worse prediction?

The fact that we asked Question 2 means that the answer to Question 1 has to be
‘No’; however, the answer to Question 2 is ‘Yes’, and we deal with this in Section 2. The
answer to Question 3 is also ‘Yes’, as we show in Section 3; if the law of X is infinitely
divisible, then we can find the minimizing Y . Question 4 is not very precisely posed, but
in Section 4 we give a simple example which shows that the answer is ‘No’. However,
if Y is self-decomposable we have a partial result in this direction. In Section 5, we
present an analysis of the case where X is binomial and Y is integer-valued, and we
give a number of numerical examples which point to the diversity and complexity of the
solutions in general.

We conclude this section with some brief remarks about the broader literature. The
spirit of the present work is most closely aligned with the lines of inquiry in [2, 3, 4]. We
also note that the focus of this paper largely moves in the opposite direction of stochastic
filtering, in which one (usually) seeks to get as close as possible to X (see, e.g., [1], and
references therein). This being said, we believe that answers to Question 4 should be of
particular interest to the stochastic filtering community.

2 Characterizing the solution

Firstly, we observe that the objective to be minimized,

var
(
E[X|X + Y ]

)
= E

(
E[X − µ|X + Y ]2

)
= E

(
E[X|X + Y ]2

)
− µ2 (2.1)

is unaltered if we shift X or Y by a constant, so we may assume that the means of X
and Y are set to zero. We shall insist throughout that the mean of Y is 0, though we
make no such restriction on the mean of X, largely for aesthetic reasons. We denote by
σ2 the variance of X, and by M2 the second moment E[X2] of X.

Let F denote the (known) distribution of X, and G denote the distribution of Y , which
is to be found, subject to the constraints∫

G(dy) = 1,

∫
yG(dy) = 0,

∫
y2G(dy) ≤ ε. (2.2)

We denote by P the set of G satisfying (2.2). Once G ∈ P has been chosen, we know
that there is some measurable function ϕG such that

E[X|X + Y ] = ϕG(X + Y ), (2.3)

1Here, f denotes the density of X.
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where ϕG has the defining property that

E[ {X − ϕG(X + Y )}λ(X + Y ) ] = 0 (2.4)

for any measurable λ which is bounded, or indeed for which the expectation is defined.
Thus with G ∈ P fixed, for any λ for which the integrals in (2.4) are defined,

Φ(G) ≡ E
[
E[X|X + Y ]2

]
(2.5)

= E[ ϕG(X + Y )2 ]

=

∫∫
ϕG(x+ y)2 F (dx)G(dy)

=

∫∫ {
ϕG(x+ y)2 + 2(x− ϕG(x+ y))λ(x+ y)

}
F (dx)G(dy)

≥ inf
ϕ

∫∫ {
ϕ(x+ y)2 + 2(x− ϕ(x+ y))λ(x+ y)

}
F (dx)G(dy)

=

∫∫ {
x2 − (x− λ(x+ y))2

}
F (dx)G(dy)

≡ Φlo(G;λ). (2.6)

Thus for any G ∈ P, any λ and any constants γ ≥ 0, α, β, there is some z ≥ 0 such
that

Φ(G) ≥ Φlo(G;λ) + α

(∫
G(dy)− 1

)
+ β

∫
y G(dy) + γ

(∫
y2 G(dy) + z − ε

)
= M2 +

∫∫ {
α+ βy + γy2 − (x− λ(x+ y))2

}
F (dx)G(dy)− α+ γ(z − ε)

≥ M2 − α− γε+

∫ {
α+ βy + γy2 −

∫
(x− λ(x+ y))2F (dx)

}
G(dy). (2.7)

If we define D to be the space of dual-feasible variables (α, β, γ, λ) satisfying γ ≥ 0

and the condition

0 ≤ α+ βy + γy2 −
∫

(x− λ(x+ y))2F (dx) ∀y, (2.8)

then it is clear from (2.7) that for (α, β, γ, λ) ∈ D we have for any G ∈ P the lower bound

Φ(G) ≥M2 − α− γε. (2.9)

It follows therefore that

inf
G∈P

Φ(G) ≥ sup
(α,β,γ,λ)∈D

{
M2 − α− γε

}
. (2.10)

The inequality (2.10) is a primal-dual inequality familiar from constrained optimization
problems. We expect that under technical conditions it is possible to prove that equality
in (2.10) is necessary for optimality, but we avoid attempting to prove this. We do so
because establishing this (if true) does not help us to identify an optimal solution; and
because sufficiency is all we need to prove optimality in examples.

Theorem 2.1. Suppose that G∗ ∈ P, z∗ ≥ 0 and (α∗, β∗, γ∗, λ∗) ∈ D satisfy the comple-
mentary slackness conditions

0 ≡
[
α∗ + β∗y + γ∗y

2 −
∫

(x− λ∗(x+ y))2F (dx)

]
G∗(dy) (2.11)

0 = γ∗z∗, (2.12)
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and

z∗ = ε−
∫
y2G∗(dy), λ∗ = ϕG∗ . (2.13)

Then G∗ is optimal.

Proof. Consider q ≡ M2 − α∗ − γ∗ε, which is a lower bound for the right-hand side
of (2.10), since (α∗, β∗, γ∗, λ∗) ∈ D. Now we return to (2.7) and work back through the
steps, putting G∗ for G and λ∗ for λ, noticing that the sup and inf are attained everywhere.
Because of the conditions in (2.11) and (2.12), the value we start from at (2.5) is q. At
every step, we have equality, so we end up with Φ(G∗) = q. Since G∗ ∈ P, G∗ is optimal.
This concludes the proof.

It might appear that the conditions of Theorem 2.1 are too complicated to verify in
practice, but upon inspection of (2.11) we realize that if for some a, b ∈ R

λ∗(s) = a+ bs, (2.14)

there may be a chance. Indeed, if we assume that EX = EY = 0, then the condition

α∗ + β∗y + γ∗y
2 =

∫
(x− λ∗(x+ y))2F (dx) ∀y, (2.15)

combined with (2.14) implies that a = 0, β∗ = 0, b2 = γ∗, and α∗ = (1− b)2σ2.

3 Explicitly soluble situations

If we took X, Y to be independent zero-mean with the same distribution, then it is
obvious that

E[X|X + Y ] = (X + Y )/2. (3.1)

Let us now apply Theorem 2.1 to this situation, taking λ∗(s) = s/2, α∗ = σ2/4,
β∗ = 0, γ∗ = 1/4, and G = F . If the bound on the variance of Y is ε = σ2 ≡ var(X),
then G = F is primal-feasible, (α∗, β∗, γ∗, λ∗) is dual-feasible, and the complementary
slackness conditions (2.15) and (2.12) hold. Hence by Theorem 2.1 the law which
minimizes varE[X|X + Y ] subject to the bound var(Y ) ≤ var(X) is G = F . The lower
bound from (2.9) is seen to be σ2/2, which is indeed the variance of (X + Y )/2.

By similar reasoning, it is straightforward to see that if X = ξ1 + . . .+ ξn, where the
ξj are IID with zero mean and common variance σ2, and where we bound var(Y ) ≤ mσ2,
then the optimal law of Y is given by Y = ξ1 + . . .+ξm. But this result now points towards
a wider result for infinitely divisible distributions, which we state as Proposition 3.1
below.

Proposition 3.1. Suppose that (Zt)t≥0 is a zero-mean square-integrable Lévy process,
with EZ2

t = t. Suppose that X ∼ Zt for some fixed t > 0. Then the minimum in (1.5) is
achieved when Y ∼ Zε.

Proof. If we let Y = Zε, then E[X|X+Y ] = t(X+Y )/(t+ε), so by setting λ∗(s) = bs with
b = t/(t + ε) we ensure that λ∗ = ϕG∗ . The complementary slackness condition (2.11)
holds for all y if we take γ∗ = b2, β∗ = 0, and α∗ = (1− b)2t, as before. With z∗ = 0, the
complementary slackness condition (2.12) holds. The law of Y is primal feasible, and so
by Theorem 2.1 the result follows.
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4 Does more noise mean worse prediction?

We begin by recording some simple facts:

1. For any random variables U, V, W with E|U | <∞ and (U, V ) independent of W ,

E(U |V, W ) = E(U |V ). (4.1)

2. For any U, V, W with E(U2) <∞,

varE(U |V, W ) ≥ varE(U |V +W ). (4.2)

3. If Z is independent of (X,Y ) then

varE(X|X + Y ) ≥ varE(X|X + Y + Z). (4.3)

The third fact is a consequence of the first two.
As we saw at (1.4), if Y ∼ N(0, σ2) is independent of X, then as σ →∞, for any ξ

E[X|X + Y = ξ]→ EX, (4.4)

so in this situation, adding a larger-variance noise to X decreases2 the variance of
E[X|X + Y ]. One might conjecture that this holds more generally, but a little thought
shows that this is not so. Indeed, if X,Y ∼ B(1, 1

2 ), then we have3 E[X|X + 2Y ] = X,
which has larger variance than E[X|X + Y ].

This being said, a result in the direction of (4.4) is valid if Y is self-decomposable, as
defined in Definition 1 below.

Definition 1. A random variable Y is self-decomposable (belongs to class L), if for any
c, 0 < c < 1 there exists a random variable Uc independent of Y such that Y is equal in
law to cY + Uc.

All Y ∈ L are infinitely divisible. Not all infinitely divisible random variables are in L,
but the random variables having stable distributions are in L. See Chapter 5 of [5] for
properties of the class L.

Theorem 4.1. Let X be a random variable with varX < ∞ and Y ∈ L. Let V (λ) :=

varE(X|X +λY ). Then V (λ) is monotone decreasing on (0, ∞) and monotone increasing
on (−∞, 0).

Proof. Let 0 < λ1 < λ2 and set λ1 = cλ2 with 0 < c < 1. Suppose that X, Y , Uc are
independent random variables with the self-decomposable property

Y ∼ cY + Uc.

Then

varE[X|X + λ2Y ] = varE[X|X + λ2cY + λ2Uc]

= varE[X|X + λ1Y + λ2Uc]

≤ varE[X|X + λ1Y ],

where the last step follows by (4.3). Monotonicity in (−∞, 0) follows because −Y ∈ L.

2To see that var(E[X|X+Y ]) is decreasing with σ in (4.4), we use Fact 3, (4.3), noticing that a N(0, v1+v2)
random variable is the independent sum of a N(0, v1) random variable and a N(0, v2) random variable.

3Notice that X = X + 2Y mod 2.
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An interesting question raised by an anonymous referee of this paper is the following.
Consider the original problem (1.5) with the constraint ε on the variance of Y ; will an
optimal Y always satisfy the variance bound with equality? We do not have a definitive
answer to this question, but the following result shows that we may restrict our search
to random variables Y which do satisfy the bound with equality.

Lemma 4.2. If Y0 achieves the minimum in (1.5) and var(Y0) < ε, then there exists Y
with variance ε which achieves the same value in (1.5).

Proof. Choose some random variable Z independent of Y0 with mean zero and variance
ε−var(Y0). Then Y = Y0+Z satisfies the variance constraint with equality, and using (4.3)
we have

varE(X|X + Y0) ≥ varE(X|X + Y0 + Z) = varE(X|X + Y ). (4.5)

But Y is feasible for the problem, so the right-hand side of (4.5) must be at least the
value of the problem, which by assumption is the left-hand side of (4.5). Hence Y is also
optimal, and satisfies the variance constraint with equality.

The conjecture that the optimal Y must always satisfy the variance bound with equal-
ity would follow from the argument just given if it were true that adding a independent
random variable Z of strictly positive variance to Y0 necessarily strictly reduces the
variance of E(X|X + Y0). However, this is not true, as we see if we take X ∼ B(1, 1

2 ) and
Y0, Z ∼ U(−a, a) for any a < 1

4 . In that example,

E(X|X + Y0) = X = E(X|X + Y0 + Z).

5 Examples

Our first example is X ∼ B(1, p), which is simple enough to allow fairly complete
analysis for small ε. Thereafter we take a few examples where X has a symmetric
discrete distribution and present numerical solutions.

To begin with, suppose that X is an integer-valued random variable, and Y is an
independent random variable with integer part [Y ], fractional part {Y }. Then it is clear
that

F1 ≡ σ(X + Y ) = σ(X + [Y ], {Y }) ⊇ F2 ≡ σ(X + [Y ]). (5.1)

Accordingly, the variance of E[X|F1] will be larger than the variance of E[X|F2], so
if we are seeking to minimize the variance of E[X|X + Y ] we may restrict attention to
random variables Y which take integer values. But a word of caution is in order: the
variance of [Y ] may be greater or smaller than the variance of Y , so there is no guarantee
that [Y ] will satisfy the variance bound even if Y does.

For the remainder of this section, we shall explore numerically some examples where
both X and Y are integer-valued. As just explained, we should not expect that the
best Y that we find here (which are limited by the constraint that Y be integer-valued)
will be overall optimal, and indeed in the case of X ∼ B(1, p) which we discuss first, it
can be shown that the optimal Y will not in general be integer-valued. Nevertheless,
the numerical examples presented serve to illustrate the surprising complexity of the
solutions obtained.

5.1 Binomial distribution

Suppose that P (X = 1) = p = 1 − q = 1 − P (X = 0), and that the variance of Y is
bounded by ε > 0 as before. We shall assume without loss of generality that p ≥ q.

To begin with, assuming that Y ∼ B(1, t), and setting s = 1− t, notice that

E[X|X + Y = 1] =
ps

ps+ qt
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so that

h(t) ≡ E
[
E[X |X + Y ]2

]
,

=
p2s2

ps+ qt
+ pt

=
p(ps+ qt2)

ps+ qt
. (5.2)

As a function of t ∈ [0, 1], this is convex and has a unique minimum at

t∗ =

√
p

√
p+
√
q
≥ 1

2 . (5.3)

Since
t∗

1− t∗
=

√
p
√
q
≤ p

q
=

p

1− p
(5.4)

it follows that p ≥ t∗, which will be needed later.
If Y is variance-constrained, then in order to minimize this objective we will take t

as close as possible to t∗, subject to the variance constraint. But the variance of Y is
t(1− t), so for a given variance, do we take t > 1

2 or t < 1
2? If we set

w = 2p− 1 ∈ [0, 1], u = 2t− 1 ∈ [−1, 1],

then

h(t)− h(1− t) = −wu(1− u2)(1− w2)

4(1− u2w2)
, (5.5)

from which it is clear that for t > 1
2 we have h(t) ≤ h(1− t), so to minimize the objective

we will be looking at t ∈ [t∗, 1]. We also expect that the value

ε∗ ≡ t∗(1− t∗) =

√
pq

(
√
p+
√
q)2

(5.6)

will be a critical value for the variance bound on Y .
To illustrate the kind of solutions we arrive at, we show in Figures 1, 2 and 3 below

the probability mass functions for X and the optimal Y in the case where X ∼ B(1, 0.6)

and Y has to satisfy a low variance bound ε = 0.5ε∗, the critical variance bound ε∗, and
a higher variance bound 2ε∗ respectively. The probability mass function (PMF) of Y is
shown shifted to the left for clarity – as we have already remarked, such a shift makes
no difference to the objective. Notice how the objective decreases as the bound on the
variance of Y becomes more relaxed, as it should do. Notice also that the PMF of Y in
the final plot gives non-zero weight to more than two values, again as we should expect
from the preceding analysis.

5.2 X is uniform

Here we compute the optimal distribution for Y when X is uniform. We consider two
cases: the first low-variance case has var(Y ) = 2var(X)/π and the second high-variance
case has var(Y ) = πvar(X)/2. The two corresponding figures, Figures 4 and 5 below,
display the PMFs of X and Y , along with a diagnostic plot4 in red and green markers of
the computed function

y 7→
∫
λ∗(y + x){λ∗(y + x)− 2x } F (dx) (5.7)

4... scaled to fit the plot of the PMFs...
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6 4 2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

X ~ Binomial(1,0.6), var(Y) = 0.1237; Objective = 0.1708
PMF of Y
PMF of X

Figure 1: X ∼ B(1, 0.6) with low bound on var(Y ).

6 4 2 0 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

X ~ Binomial(1,0.6), var(Y) = 0.2474; Objective = 0.1184
PMF of Y
PMF of X

Figure 2: X ∼ B(1, 0.6) with critical bound on var(Y ).

which according to (2.8) must be dominated by a quadratic5, and equal to that quadratic
wherever the PMF of Y is positive. From our discussion in Section 3, if we set ε = 2var(X)

then the optimal choice would be to take Y to be the sum of two independent copies of
X, which in this case would be the sum of two independent uniforms; the resulting PMF
would be a symmetric piecewise-linear ‘tent’, and looking at Figure 5 we see something
that looks approximately like that.

5.3 X is the sum of two uniforms

Again we compute the optimal Y for two values of ε. Notice how strange the solution
is in both cases, particularly for the high variance case, where we see that the distribution
of the optimal Y has a hole at the center!

5.4 The density of X is the square of that in section 5.3

This time we take the density of X from Section 5.3 and square it (of course, renor-
malizing to sum to 1). Once again, the distribution of the optimal Y has a form which
would be difficult to guess – the PMF is not monotone in Z+, for example.

5Recall that f is symmetric.
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6 4 2 0 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

X ~ Binomial(1,0.6), var(Y) = 0.4949; Objective = 0.0814
PMF of Y
PMF of X

Figure 3: X ∼ B(1, 0.6) with high bound on var(Y ).
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0.04

0.06

Example 2, var(Y) = 19.0986; Objective = 18.5271
Density of Y
Density of X
Check
Check

Figure 4: X uniform, with var(Y ) = 2var(X)/π .
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0.02
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0.02

0.04

Example 2, var(Y) = 47.1239; Objective = 11.6764
Density of Y
Density of X
Check
Check

Figure 5: X uniform, with var(Y ) = πvar(X)/2.
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20 15 10 5 0 5 10 15 20

0.02

0.00

0.02

0.04

Example 3, var(Y) = 38.1972; Objective = 36.6625
Density of Y
Density of X
Check
Check

Figure 6: X is the sum of two uniforms, with var(Y ) = 2var(X)/π .
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Example 3, var(Y) = 94.2478; Objective = 23.3672
Density of Y
Density of X
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Figure 7: X is the sum of two uniforms, with var(Y ) = πvar(X)/2.
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Example 4, var(Y) = 22.9500; Objective = 22.0305
Density of Y
Density of X
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Figure 8: The density of X is the square of the example in Figure 6, with var(Y ) =

2var(X)/π .
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20 15 10 5 0 5 10 15 20
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Example 4, var(Y) = 56.6269; Objective = 14.0263
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Figure 9: The density of X is the square of the example in Figure 7, with var(Y ) =

πvar(X)/2.
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