
Mathematical model identification of self-excited systems using experimental 

bifurcation analysis data  

K.H. Lee1, D. Barton1, and L. Renson2 

1 Department of Engineering Mathematics 

University of Bristol 

2 Department of Mechanical Engineering 

Imperial College London 

ABSTRACT 

Self-excited vibrations can be found in many engineering applications such as flutter of aerofoils, stick-slip vibrations in drill 

strings, and wheel shimmy. These self-excited vibrations are generally unwanted since they can cause serious damage to the 

system. To avoid such phenomena, an accurate mathematical model of the system is crucial. Self-excited systems are typically 

modelled as dynamical systems with Hopf bifurcations. The identification of such nonlinear dynamical system from data is 

much more challenging compared to linear systems. 

In this research, we propose two different mathematical model identification methods for self-excited systems that use 

experimental bifurcation analysis data. The first method considers an empirical mathematical model whose coefficients are 

identified to fit the measured bifurcation diagram. The second approach considers a fundamental Hopf normal form model and 

learns a data-driven coordinate transformation mapping the normal form state space to physical coordinates. The approaches 

developed are applied to bifurcation data collected on a two-degree-of-freedom flutter rig and the two methods show promising 

results. The advantages and disadvantages of the methods are discussed. 
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INTRODUCTION 

Self-excited systems exhibit periodic responses without any oscillating input. Self-excited oscillations can have catastrophic 

consequences, such as a plane crash due to wing flutter. Therefore, it is often essential to accurately model and predict the 

response of self-excited systems. Self-excited systems are usually modelled using parameter-dependent differential equations 

that capture changes in the system’s states over a so-called bifurcation parameter. A typical scenario leading to oscillatory 

responses in a self-excited system is the Hopf bifurcation. A Hopf bifurcation is a critical point where the system's equilibrium 

changes stability, and limit cycle oscillations (LCOs) are generated from the critical point. This paper will discuss two different 

mathematical modelling approaches to capture the LCOs of self-excited systems based on experimental bifurcation analysis 

data. The latter were collected using control-based continuation (CBC) as CBC allows to measure both stable and unstable 

LCOs of the system [1]. The two modelling methods are demonstrated on the experimental data collected on a fluttering aerofoil 

(Figure 1). 

The first approach is based on a mechanistic model, i.e., a model constructed from physical principles. To determine the 

parameters of this model, we use centre manifold reduction and normal form theory to predict the bifurcation diagram of the 

model. Model parameters are then optimised to minimise the difference between model-predicted and experimentally-measured 

bifurcation diagrams. 

The second approach is based on a phenomenological model and uses machine learning (ML) to establish a transformation 

from this simple model to the coordinates of the real system. We define the ML model as a prediction of observables made 



from the centre manifold. The reduced dynamics on the centre manifold captures the bifurcation structure of the data, and the 

observables are trained using neural networks to predict the time series accurately. 

MODELING USING A MECHANISTIC MODEL 

The unsteady flutter model is the basis mechanistic model of our modelling approach. To estimate the parameters of this model, 

we use a two-stage identification approach where the parameters of the linearized model are identified first and then the 

parameters of the nonlinear part are identified. We identify the linearization using the small amplitude free-decay response by 

minimizing the prediction error of the state-space model [2]. In the second stage, the nonlinear part of the model is identified 

by parametrizing the amplitude of the LCOs using the centre manifold reduction and simplest normal form of the Hopf 

bifurcation [3] (see Figure 2). Results show a very good agreement between measured and predicted LCOs, especially in the 

unstable region where the assumption of the mechanistic model are valid. For larger oscillation amplitudes, model predictions 

deteriorate. It is thought to result from the simplistic aerodynamic model considered. 

MODELING USING A PHENOMENOLOGICAL MODEL: THE HOPF NORMAL FORM 

Topologically equivalent dynamical systems are transformable to each system using invertible coordinate transformation. We 

can use this mathematical framework while building the model. The idea is to use a modified Hopf normal form-- subcritical 

Hopf normal form added with the quintic nonlinear term-- to capture the bifurcation structure of the experiment. The LCOs in 

coordinates of normal form is a circle, and the 2-dimensional observation vector transforms this circle to a measured closed 

curve. The mapping between the centre manifold and the observable is trained using a neural network (see Figure 3). The 

oscillation speed is trained to minimize the prediction of time-series response using the differential equation solver equipped 

with a machine learning package [4]. The trained model can predict the bifurcation diagram and the time series of the LCOs. 

 

 

Figure 1:  Flutter rig. (a) Schematic, (b) physical system in Bristol’s wind tunnel facility. 



 

Figure 2:  Comparison between measured and computed (mechanistic model) amplitudes of the LCOs. Red circles 

correspond to unstable LCOs measured using CBC, blue circles are stable LCOs (also measured using CBC) and the blue line 

is the numerical continuation of the model. 

 

Figure 3:  Comparison of the bifurcation diagram of the ML model and the measured data. 

CONCLUSION 

In this research, we show two different modelling approaches of a dynamical system with Hopf bifurcations. The first approach 

is using a mechanistic model and identifying the unknown parameters to match the bifurcation diagram. The second approach 

uses a Hopf normal form and ML techniques to train a mapping between the centre manifold and the observations. The first 

approach provides more physical insight than the second approach, while the second approach provides more modelling 

flexibility and hence accuracy since a mechanistic model is not required. 

ACKNOWLEDGEMENT  

L.R. acknowledges the financial support of the Royal Academy of Engineering with the Research Fellowship #RF1516/15/11. 

REFERENCES 

[1] Barton, David AW, Brian P. Mann, and Stephen G. Burrow. "Control-based continuation for investigating nonlinear 

experiments." Journal of Vibration and Control 18.4 (2012): 509-520. 

[2] Ljung, Lennart. System identification toolbox: User's guide. Natick, MA: MathWorks Incorporated, 1995.  
[3] Yu, P., and A. Y. T. Leung. "The simplest normal form of Hopf bifurcation." Nonlinearity 16.1 (2002): 277. 
[4] Saeed, Muhammad Moiz. "Ordinary Differential Equation Neural Networks: Mathematics and Application using 

Diffeqflux. jl." (2019). 


