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Abstract 

Peat wildfires are the largest fires on Earth involving both flaming and smouldering combustion, with 

one leading to the other. A common ignition source of smouldering fires in tropical peatlands are inten- 
tional flaming fires used to clear surface vegetation. To capture the behaviour of these fires, it is necessary to 

consider the interaction between flaming vegetation and smouldering peat. However, doing so is infeasible 
with the state-of-the-art wildfire models, as they do not consider the transition from flaming to smouldering 
and are computationally too expensive at the field-scale hundreds of hectares. In this work, we overcome 
these limitations and model both flaming and smouldering at the field-scale using cellular automata: that is 
a discrete mathematical model that uses simple rules to capture complex behaviour while remaining compu- 
tationally light. The model was calibrated against existing experiments in the literature and used to predict 
the effect of peat moisture content on the behaviour of peatland wildfires. The model shows how flaming 
creates smouldering hotspots and how these hotspots merge – flaming spreads rapidly, consuming surface 
vegetation, leaving behind hotspots of smouldering peat which consumes most of the peat. The model was 
then applied to study a real prescribed fire of 573 ha peatland in Borneo in 2015, observed by drone footage. 
The model captured the spread patterns of the fire and predicted that 2.9 ha of peatland burnt after 3 months 
with 70% peat moisture content (dry-based). This ioutcome could have been reduced to 0.02 ha if the peat 
moisture content had been above 100%. This work improves the fundamental understanding of how peat 
wildfires spread at the field scale which has received little attention until now. 
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. Introduction 

Smouldering peat wildfires are the largest and
ne of the most persistent fires in nature [1] . Ev-
ry year, peat wildfires burn for weeks, produc-
ng large amounts of harmful emissions. Smoulder-
ng is a flameless form of combustion that spreads
lower and have lower temperature than flaming
ombustion [2 , 3] . Natural causes (e.g. lightning)
ould start peat wildfires, however, a common ig-
ition source for peat wildfires is the intentional
urning of surface vegetation on peatland, either to
lear land for farming or to prevent the build-up of 
uel [4 –6] . Despite these common practices, studies
f prescribed fires on peatland are limited [7 , 8] , and
one of them have addressed the smouldering fire
hat often persist in the soil after the initial flaming
re ceases. 

Part of the reason for the lack of attention
n this fire is the complexity involved in consid-
ring both flaming and smouldering fires simulta-
eously. Smouldering could transition to flaming
nd vice versa, however, previous studies tended to
nly focus on the former [9] . Therefore, there is little
nowledge of the most common cause of smoul-
ering peat wildfires: ignition from a flaming fire
long surface vegetation. 

Considering these complex phenomena at the
eld-scale, using state-of-the-art wildfire models
o simulate peat wildfires would be infeasible,
s they cannot couple flaming and smouldering.
eanwhile, physics-based computational models

e.g. computational fluid dynamics (CFD)) are
omputationally too expensive to simulate peat
ildfires at the field-scale (hundreds of hectares
f area). In this paper, we consider an alternative
ethod: Cellular Automata [10 , 11] . This simpler
odel considers a grid of cells that can be in differ-

nt states (e.g. fuel, burning, residue). The state of 
ach cell can then update itself over discrete time-
teps using either deterministic or stochastic rules.
y considering simple rules rather than complex
hysical interactions, cellular automata are much
ore computationally efficient than physics-based
odels (e.g. CFD). This computational efficiency

efers to the number of instructions a computer
ould need to execute, with efficient models requir-

ng fewer instructions (and thus fewer resources)
o achieve a similar result. 

Cellular automata have been used to simulate
oth flaming wildfires [12 –14] and smouldering
ombustion in peat [15 , 16] , however, this paper is
he first time cellular automata have been applied
o field-scale peat wildfires and includes both flam-
ng vegetation and smouldering peat, as well as the
ransition between them. The model is used to in-
estigate the effect of the moisture content (MC) of 
eat on fire spread, first in a uniform fuel grid, and
hen in a real prescribed fire in tropical peatland in

orneo. 
2. Methods 

2.1. Cellular automata 

Cellular Automata (CA) are discrete computa-
tional models that use simple rules to simulate com-
plex emergent behaviour [10 , 11] . These models use
a finite m × n grid of cells, each of which can be
in one of k discrete states – essentially a form of 
matrix. This grid updates itself over discrete time-
steps. At each time-step, every cell in the grid will
update its state based on a set of rules according
to other nearby cells ( neighbourhood ). By choosing
representative states and rules, these abstract mod-
els can simulate complex physical phenomena. 

One set of phenomena that have been modelled
using CA are wildfires. Different states and update
rules have been chosen for these CA, depending on
what aspects of the fires (e.g fire spread behaviour)
should be captured, for example, in [13 –16] . In this
work, we aim to create the simplest model that
could still adequately capture the behaviour seen
in peatland fires involving flaming and smoulder-
ing combustion. Inspired by previous CA studies,
we chose the method called bond percolation. Bond
percolation has been used to implement different as-
pects of wildfires in CA models [17] . This method
deals with the existence of connections (bonds) be-
tween an entity and its surrounding. In practice this
method can be applied to wildfires, where the con-
nections in bond percolation represent the flamma-
bility of the surrounding fuels when they are con-
sumed by the fire. Percolation principle stems from
non-exact phase transition [14] , therefore, the exis-
tence of these connections are stochastic (they oc-
cur with some probability less than 1). This stochas-
tic approach is also relevant to the real wildfires due
to the uncertainty of nature, for example, caused
by landscape heterogeneity. In the model, an un-
burned cell will update itself to a burning cell with
a probability P if there are other burning cells in its
neighbourhood. The most used neighbourhood in
the literature was chosen, known as a Moore neigh-
bourhood – the eight cells directly surrounding the
considered cell in a 3 × 3 square grid. From here on,
we will refer to the model in this work as KAPAS. 

2.2. States and rules of the model 

KAPAS considers 5 possible states for each cell:
surface vegetation (SV), flaming vegetation (FV),
exposed peat (EP), smouldering peat (SP), and
burned peat (BP) (see Fig. 1 ). EP represents a cell
which has lost its surface vegetation, due to flam-
ing, but the peat underneath it remains intact since
the smouldering has not started. These states rep-
resent the smallest number of states that can still
capture the interaction between flaming and smoul-
dering of two fuel types in peatlands. For simplicity,
we did not consider the possibility of flaming peat
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Fig. 1. The states and rules of the model. SV is sur- 
face vegetation , FV is flaming vegetation , EP is exposed 
peat , SP is smouldering peat , BP is burned peat , and P x 
are probabilities of state change. Solid arrows represent 
state change, whereas dotted arrows represent the influ- 
ence from neighbouring cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in this work because it happens rarely [2] . KAPAS
is initiated at t = 0 by igniting particular cells (i.e.
changing from SV to FV ). These FV cells will up-
date their states after one time-step (following the
work in [17] ) to either EP or SP , based on the prob-
ability of transition between flaming and smoulder-
ing P t . Surface vegetation mass is limited compared
to peat deposits and burns much faster with flaming
[2] , therefore, FV has a 100% chance to transition to
EP or SP. SV cells nearby any FV cell may become
FV cells with probability P f . EP cells nearby any
SP cell may become SP cells with probability P s .
Finally, SP cells have a probability of extinguish-
ing to become BP cells, with probability P e . KA-
PAS also considers the surface vegetation and peat
as 2 separate layers of cellular automata, meaning
that smouldering can spread to nearby peat even if 
there is still surface vegetation above. This multi- 
layer approach was inspired by [16] . 

The ability of KAPAS to represent coupling 
between flaming and smouldering combustion in 

peatlands depend on the choice of the four param- 
eters P f , P t , P s , and P e . Such parameters are often 

found by fitting to a particular fire, however, in 

this work they were chosen based on many differ- 
ent sources and experimental studies, allowing the 
model to be more general in principle. 

2.3. Selecting parameter values 

The flame spread probability P f was chosen by 
finding a base probability P R of flaming spread 

rate based on the Rothermel model for surface fire 
spread [18] , augmented by a parameter represent- 
ing the effect of wind, αw . We use Rothermel spread 

rate ( R ) from [18] with a 0 m/s wind speed and its es- 
timation can be found in appendix (see Eq. (A1)). 
P R depends on both the cell size and time-step du- 
ration, as it is found by optimizing a probability 
that enable KAPAS to produce R as its spread rate 
when applied to a cell of �x m in size and time- 
step �t seconds over a large number of time-steps. 
In this work, with a cell size of 4.5 m and a time- 
step of 300 s, P R = 0 . 03 . We chose these cell size 
and time-step based on the highest resolution can 

be run with the available computing power. 
P R is then augmented by a wind parameter 

( αw ), following on from [17], which depends on the 
wind speed u , at around 6 m height above ground 

(weather station), and the angle between the fire 
propagation and the wind direction θ as shown in 

Eq. (1) , where c 1 = 0 . 045 and c 2 = 0 . 131 , follow- 
ing the work of [17] . The final probability of flame 
spread is then shown in Eq. (2) , which means that 
each cell in the neighbourhood will have a differ- 
ent P f depending on their relationship to the wind 

direction. 

αw = e u ( c 1 −c 2 (1 −cos θ ) ) (1) 

P f = P R · αw (2) 

Standard Rothermel model account for the 
wind effect, however, implementing this directly 
into KAPAS would significantly increase its com- 
putational cost, since P R would need to be re- 
optimised every time the wind condition changed. 
For this reason, this method has never been used 

for bond percolation CA. By decoupling the wind 

effect as a separate parameter ( P f depends on P R 

and αw ), KAPAS can simulate fires with different 
wind conditions in a computationally efficient way. 

The probability of transition from flaming to 

smouldering P t was found by adapting the work 

in [19] , which investigated the smouldering ignition 

probability of peat based on its MC, inorganic con- 
tent (IC), and bulk density ( ρ). For simplicity, we 
only varied MC in this work, as this is the most im- 
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Fig. 2. Dependency on moisture content for (a) P t and (b) P s . The shape of these relationships are extracted from literature 
[19 , 21 , 22] . Prediction 1 uses c 3 = 9.58 and c 4 = 0.057, whereas prediction 2 uses c 3 = 11.2 and c 4 = 0.006. 
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ortant property of peat for fire [3] . IC and ρ were
et to 3.7% and 222 kg/m 

3 respectively [19 , 20] . This
eft P t with a sigmoid relationship with respect to

C, shown in Fig. 2 a. 
The smouldering spread probability P s was

ound by comparing smouldering spread rates
aken from experiments on peat at different MC
21 , 22] . These spread rates are also given in cm/min,
herefore, P s depends on cell size and time-step du-
ation, similar to P R . These experiments used bo-
eal peat, as studies on tropical peat are limited
23] . When MC, IC, and ρ have been considered,
he resulting probabilities are expected to vary rel-
tively little between tropical and boreal peats. As-
uming P s also has a sigmoid relationship ( Eq. (3) )
ith respect to MC (similar to P t ) a variety of dif-

erent curves could be fitted to the experiments
onsidered, by changing c 3 and c 4 , as shown in
ig. 2 b. The grey lines in Fig. 2 b represent pre-
ictions which have good agreement with experi-
ents. These plausible predictions are bounded by

wo polar opposite predictions, prediction 1 and 2.
rediction 1 has high accuracy for lower MC and

ow accuracy for higher MC, whereas prediction 2
s the opposite. Among the plausible predictions,
e selected prediction 1 ( c 3 = 9 . 58 and c 4 = 0 . 057 )

o determine P s on a specific MC for KAPAS, be-
ause this prediction has the highest accuracy for
eat with lower MC, which poses a greater hazard

n fire. 

 s = 

1 
1 + e c 3 + c 4 MC 

(3)

The smouldering extinction probability P e was
hosen based on the persistency of smouldering
re, i.e. once ignited, smouldering fires are very dif-
cult to extinguish and will continue to burn for a

ong time [3] . These fires extinguish when they en-
ounter a water table or mineral layer. In Indone-
sian peatlands, the peat layer is deep and the water
table is low in dry season [24] . We chose these typi-
cal conditions (deep peat layer and low water table)
in this work. Therefore, to make the smouldering
fire remain active for a long time in KAPAS, P e is
set to be much lower than P s . Setting P e to be much
lower than P s means the smouldering fire remain
active after the smouldering fire front has propa-
gated relatively distant, which shows that the fire
also has in-depth spread. Unfortunately, we found
no previous work that could be used to derive P e

directly. Therefore, in this work, the value was cho-
sen to be 5 × 10 −7 to represent this persistency, an
order of magnitude lower than P s . 

3. Results and discussion 

3.1. Effect of moisture content in uniform fuel grid 

We use KAPAS to explore the effect of MC on
both smouldering spread and the transition from
flaming to smouldering. We began by considering a
uniform fuel grid (simplest case), completely filled
with surface vegetation, and ignited in the centre
(see Fig. A1). In the model, MC was varied from
0 to 150% in increments of 10%. KAPAS was run
for a total duration of 10,000 time-steps (35 days
in real time) in this first case. This total duration is
selected since smouldering wildfires spread slowly
and sustain for weeks [3] . The wind effect was ig-
nored ( αw = 1 ) in this first case, to isolate the effect
of MC. 

We use a grid of 400 × 400 cells grid (represent-
ing 324 ha) in this uniform fuel grid. We use this
large grid size to avoid the finite size effect and min-
imize the uncertainty. Based on a sensitivity anal-
ysis, shown in Fig. A2, the burnt ratios ( ϕb ) and
their standard deviations (from 10 simulation repe-
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Fig. 3. Predicted ϕb for different moisture contents. The 
colour gradation represents ϕb every 3.5 days (1000 time 
steps). Each simulation is repeated 50 times to report un- 
certainty (error bars) and the averages are shown (symbols 
and colour bar). (For interpretation of the references to 
colour in this figure, the reader is referred to the web ver- 
sion of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

titions) do not differ significantly once the grid size
is larger than 400 x 400 cells. ϕb is calculated as the
sum of smouldering peat ( SP) and burned peat ( BP)
cells in the peat layer, divided by the total number
of cells in the grid (i.e. area of the grid burned/total
area of the grid). We also did sensitivity analysis on
P f as shown in Fig. A3. This analysis shows that P f 

does not significantly affect ϕb and their uncertain-
ties. 

Figure 3 shows ϕb at every 3.5 day (1000 time-
steps) after flaming ignition with increasing peat
MC for IC of 3.7%. The line fitted through the blue
circles represents ϕb immediately after all surface
vegetation has been consumed, which only consid-
ers cells ignited from the transition from flaming to
smouldering ( P t ). We refer to this as the transition
ratio . The line fitted through the red diamonds rep-
resents the final ϕb after 35 days. This is the final
burnt ratio . The error bar in both transition and fi-
nal burnt ratio represent the uncertainties of the
simulation which are repeated 50 times for each
MC. 

The transition ratio follows a sigmoid relation-
ship with MC, as would be expected from its depen-
dence on P t . This curve deviates from the ignition
probability in [19] on average by 5.3%. KAPAS,
therefore, demonstrates a novel way to augment the
findings for ignition of smouldering of [19] (ignit-
ing peat with a metal coil) in the context of real
wildfires. The final burnt ratio also follows a sig-
moid relationship with respect to MC, which might
be expected from the relationship of P s . However,
the shape of this sigmoid is significantly different
from the sigmoid of the relationship between P s

and MC (see Fig. 2 b). Therefore, there are im-
portant interactions between the smouldering and
flaming layers of the model, demonstrating the 
value of considering both layers. 

Figure 4 shows the evolution of burnt ratio 

with time for 3 different MC values. The burnt 
ratio change ( �ϕb ) is equal to the current value of 
ϕb minus the value of ϕb 3.5 day earlier. If the peat 
was ignited at the centre and allowed to spread 

with no interaction with the flaming vegetation, 
then �ϕb would increase linearly with time as 
the smouldering fire grew simply from one single 
hotspot. However, Fig. 4 demonstrates that in the 
multi-layer model this linear growth only happens 
at high MC. At lower MC, �ϕb decreases with time 
after an initial increase. This decrease is caused 

by separate areas of smouldering peat (hotspots) 
merging. If the simulation at 10% and 30% MC 

was allowed to run indefinitely in an infinite grid, 
then eventually �ϕb would again start to increase 
linearly once all the hotspots had merged. In a 
real wildfire, this merging behaviour represents 
the point at which the fire is much harder to fight, 
as this phenomenon disables the safe routes for 
firefighting, whereas water bombing effectiveness 
against smouldering peat is questionable. Fig. A4 
shows an example of a merging phenomenon in 

real peat wildfires in Sumatra, Indonesia in 2019. 
KAPAS shows that a wildfire on peatlands with 

MC above 120% has transition and final burnt ratio 

converge to zero. Therefore, this peatland condition 

would be relatively safe for performing prescribed 

fires. KAPAS also demonstrates hotspots initiation 

by flaming vegetation and how complex behaviour 
(hotspots merging) can emerge from a simple rule- 
based model. 

The MC threshold for a safe prescribed fire ac- 
cording to the model conforms to the experiments 
in [2 , 19] . In these experiments, the critical MC to 

sustain smouldering was 110% for IC of 3.7%, 
which is only 10% lower than the threshold in the 
model. Therefore, the model also successfully cap- 
tures observed trends. 

3.2. Simulating field-scale wildfire in Borneo 

KAPAS was also used to study a real prescribed 

wildfire that took place on peatlands in Borneo, In- 
donesia in 2015. This fire was chosen because we 
obtained a fuel map and airborne footage of the 
fire from [25] (see Fig. A5). The field where the fire 
took place was 573 ha in size, equivalent to 416 x 
620 cell grid in KAPAS, using the same cell size and 

time-step as mentioned in Section 2.3 . 
To simulate the Borneo wildfire, it was necessary 

to add 2 additional states to the model, represent- 
ing 2 additional surface fuel types. These states were 
dead surface vegetation (DV) and firebreak (FB) . 
These were both similar to the regular SV state, but 
modified the base flame spread probability P R . For 
the case of DV cells , P R was multiplied by 1.12 fol- 
lowing [18] for dead fuel (see appendix) which in- 
creases the spread rate, and for the case of FB cells, 
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Fig. 4. Predicted �ϕb with time and snapshots of the domain (400 x 400 cells) at different times and MC. �ϕb is relative 
to the previous 3.5 day. 
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 R was multiplied by 0 because firebreak are cre-
ted to stop the spread of flaming wildfire by re-
oving all surface vegetation on its area. These fire-

reak were only on the surface, therefore, smoul-
ering fires could still spread. 

The wind was taken from local measurements
uring the wildfire. The data was only available for
he first day, therefore, the wind speed and direc-
ion was assumed to repeat the first day data over
he following days. MC was varied from 0 to 150%
n increments of 10%, which is representative of the
hange in MC between dry and rainy seasons in In-
onesia and demonstrates a range of possible con-
itions during the fire. However, it is assumed that
 typical value of MC in Indonesian peatlands is
round 70% [20] . KAPAS was run for a total of 
0,000 time-steps in this second case, which corre-
ponds to a duration of 105 days in real time. This
otal duration is selected based on typical smoul-
dering peat wildfire duration in Indonesia which
is around 2–3 months [24] . Only qualitative com-
parisons of the airborne footage with our simula-
tions is possible because no other data is available
publicly. 

Figure 5 shows snapshots from the model with
70% MC at 4 different times for IC of 3.7%. The
wind strength and direction are labelled in each
snapshot, and δt is equal to the real time since
ignition. In Fig. 5 a, the surface vegetation has
just been ignited. In 5b, at 13 h since ignition, the
flaming front is halfway sweeping the surface layer
and hotspots have formed. However, hotspots are
not visible because they are too small for the figure
resolution. In 5c, at 73 days since ignition, all of 
the peat has been exposed and hotspots are visible.
In 5d, at 105 days since ignition, the hotspots are
merging. By the end of the simulation, 2.9 ha of 
peat has burnt. The model captures the qualitative
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Fig. 5. Snapshots of a simulation of the prescribed fire in 573 ha (416 x 620 cells) of peatland in Borneo taken at different 
times ( δt ). (a) The start of the surface flaming, (b) the spread of surface flaming and the formation of smouldering hotspots, 
(c) the growth of smouldering, and (d) the merging of the smouldering hotspots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Predicted A b of the Borneo prescribed fire for dif- 
ferent moisture content. The colour gradation represents 
change of A b every 10 days. Each simulation is repeated 
10 times to report uncertainty. (For interpretation of the 
references to colour in this figure, the reader is referred to 
the web version of this article.) 
behaviour seen during the wildfire of multiple
hotspots igniting and then merging over time. The
merging behaviour from KAPAS simulation is sim-
ilar to the merging in the real peat wildfire shown
in Fig A4. This result demonstrates the potential
of cellular automata for modelling field-scale peat
wildfires. 

In the simulation at 70% MC, the flaming spread
rapidly and reached the firebreak within less than
24 h. The peat that was ignited from this flaming
took much longer to spread, and hotspots only be-
came visible after 20 days. The hotspots continued
to grow, spreading across firebreak, until 3 months
when they began to merge. At this point, the burnt
area became so large that suppressing the fire would
be very difficult. Peat wildfires which remain active
for months is a disastrous consequence of an un-
safe prescribed fire on peatlands. 

Figure 6 shows predicted burnt area ( A b ) at dif-
ferent time after flaming ignition with increasing
peat MC for IC of 3.7%. The line fitted through the
blue circles represents A b immediately after all sur-
face vegetation has been consumed, which we refer
to this as the transition area . The line fitted through
the red diamonds represents the final A b after 105
days. This is the final burnt area . 
Figure 6 shows that the prescribed fire would 

have resulted in a smaller wildfire at higher MC, 
with less than 200 m 

2 of peatland being burnt af- 
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er 3 months if peat were above 100% MC. These
esults agree that prescribed fires should only take
lace when the MC of the peat is sufficiently high,

n order to minimize the risk of smouldering. 
Cellular automata predictions stem from the se-

ection of the transition probability of each state,
herefore, calibration against further experiments
ould improve the model significantly. The stochas-
ic nature of the model makes the experiments of 
19] suitable to calibrate the probabilities. There-
ore, KAPAS could be improved when experiments
imilar to [19] are available for other phenomena in
eat wildfires (e.g. extinction probability instead of 

gnition probability of those in [19] ). 

. Conclusions 

We used cellular automata for the first time
o model field-scale peatland fires where both
mouldering and flaming combustion are present.
onsidering simpler domains, our model KAPAS

howed complex emergent behaviour that influ-
nced the fire behaviour. We showed that in fires
ith multiple ignition points, smouldering hotspots
erged over time, meaning the evolution of burnt

rea was non-linear. We found that both the transi-
ion ratio and final burnt ratio of smouldering peat
ollowed a sigmoid relationship with moisture con-
ent, demonstrating key behaviour from the simple
ules of the cellular automata and combining flam-
ng and smouldering. 

The model was also applied to a real peat wild-
re that took place in Borneo in 2015 and man-
ged to capture qualitative behaviour. At a realis-
ic MC of 70%, 2.9 ha of peatland was burnt after
 months. This burnt area could be reduced to a
50 times smaller area (0.02 ha) by increasing the
C above 100%, suggesting that prescribed fires

hould take place in conditions with high MC, such
s during the wet season. These findings and model
an improve the procedure of prescribed fires on
eatlands, which is one way to help prevent the
idespread occurrence of peat wildfires. 
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