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In their seminal 1983 paper, M. Maxey and J. Riley introduced an equation for the 
motion of a sphere through a fluid. Since this equation features the Basset history 
integral, the popularity of this equation has broadened the use of a certain form of 
fractional differential equation to study inertial particle motion. In this paper, we 
give a comprehensive theoretical analysis of the Maxey-Riley equation. In particular, 
we build on previous local in time existence and uniqueness results to prove that 
solutions of the Maxey-Riley equation are global in time. In doing so, we also prove 
that the notion of a maximal solution extends to this equation. We furthermore 
prove conditions under which solutions are differentiable at the initial time. By 
considering the derivative of the solution with respect to the initial conditions, we 
perform a sensitivity analysis and demonstrate that two inertial trajectories can 
not meet, as well as provide a control on the growth of the distance between a pair 
of inertial particles. The properties we prove here for the Maxey-Riley equations 
are also possessed, mutatis mutandis, by a broader class of fractional differential 
equations of a similar form.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Often, when modelling the movement of inertial particles in the ocean, the assumption is made that 
the object’s mass does not influence its trajectory with no thorough justification of whether this is a good 
assumption or not. A detailed summary of current methods in this field can be found in [27]. Purely data 
driven approaches without physical modelling can provide new insight into environmental issues connected to 
this topic, including ocean plastics [22]. Given the enormous environmental impact of small plastic pollutants 
(see e.g. [26]), a better mathematical understanding of models related to this phenomenon are crucial.

In the development of an equation which accounts for the effects of mass, the Maxey-Riley equation 
[15] has dominated literature since its introduction in 1983 [16]. Following on from a number of historical 
results dating back as far as the 19th century [1,5,10,18,23,25], M. Maxey and J. Riley conglomerated 
these results into a useable equation which has proven very appealing to researchers as an ‘off-the-shelf’ 
solution. Unfortunately, the Maxey-Riley equation is difficult to implement in practice. Specifically, the 
equation features temporal memory and thus presents data storage issues when numerically implemented. 
Furthermore, the equation is nonlinear and features a nonlocal integral term. These difficulties have been 
avoided in some studies by ignoring the Basset history term [16], or the so-called Faxén corrections [13]. 
These simplifications look to be questionable in light of a growing body of evidence in support of the 
role of the Basset history term [7,8,12]. It’s worth noting that making crude simplifications to the Maxey-
Riley equation may appear reasonable on the surface, however throwing away any term in the Maxey-Riley 
equation is equivalent to ignoring the corresponding result from the historic literature. Nonetheless, authors 
have attempted to use a simplified version of Maxey-Riley for ocean transport applications [3]. Attempts 
have been made to circumvent the need for the Basset history term by using a simplified Maxey-Riley 
equation and including a stochastic noise to match the equation to experimental data [21]. A recent paper 
[20] has given hope to the idea of numerically solving the ‘full’ Maxey-Riley equation with memory, and 
attempts have been made to use the Maxey-Riley equation as inspiration to create a framework more tailored 
to oceanography applications [2,4,17]. As a separate issue, the suitability of the Maxey-Riley equation for 
particles in the ocean remains contentious due to the assumption on the size of the Reynolds number in the 
seminal paper [15].

From an analytical perspective, little is known about the Maxey-Riley equation or other fractional differ-
ential equations of this type. In [9] the local existence and uniqueness of weak solutions of the Maxey-Riley 
equation is shown. Also, if the solution is differentiable at its initial time, the equations of motion can 
be re-written into a form which does permit strong solutions. In this paper, we present a comprehensive 
analysis on the Maxey-Riley equation.

We do so by considering the Maxey-Riley model as a fractional differential equation, and use methodology 
from fractional calculus to address complications caused by the Basset history term. This follows from the ob-
servation that the Basset history term takes the form of a fractional derivative of Riemann-Liouville type [24].

In this work we show that many of the classical properties of ordinary differential equations (ODEs) also 
apply to the Maxey-Riley equation, and in doing so we provide detailed analytical properties for the Maxey-
Riley equation. Since the complications in achieving this stem almost entirely from the Basset history term, 
these properties will extend to a class of equations featuring this term. We will address the issue of global 
existence and uniqueness of a weak solution, as well as introduce precise conditions under which a unique 
global strong solution exists. Furthermore, we will perform a sensitivity analysis with respect to the initial 
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condition, thus establishing a restriction on how far ‘nearby particles’ can move apart, as well as prove 
that two inertial particles with different initial conditions can not collide within the Maxey-Riley model. 
A better understanding of models featuring memory with this structure will assist in numerical studies by 
highlighting certain solution properties and thus enable researchers to understand what properties of ODEs 
are preserved in spite of the effect of memory on the solution.

Contribution of the paper.

• In section 3, we introduce assumptions (weaker than those assumed in [9]) under which the Maxey-
Riley equation has local weak solutions. Next, we prove the main result of the section; that solutions 
of Maxey-Riley are global in time, building on previous local existence and uniqueness results [9]. In 
doing this, we also prove that the classical notion of a ‘maximal solution’ extends to the Maxey-Riley 
equation and, in general, to fractional order equations. A Grönwall inequality for fractional differential 
equations [14] (see Appendix A) is used to provide the necessary control on the solutions.

• In section 4, we cover the regularity of the solutions of the Maxey-Riley equation. Much of the difficulty 
here lies in the behaviour of the fractional order Basset history term at its lower limit t0. Conditions 
under which solutions are differentiable are introduced.

• In section 5, we examine the equation which governs the evolution of the derivative of the solution to 
the Maxey-Riley equation with respect to the initial conditions. This enables us to perform a sensitivity 
analysis. A bound on this derivative gives a control on the distance between a pair of inertial particles.
We derive the equation governing the matrix inverse of the derivative with respect to the initial con-
ditions, and we show that this derivative is also bounded. This boundedness proves that two inertial 
trajectories, with distinct initial conditions, governed by the Maxey-Riley equation can not meet.

2. Preliminaries and existing analytical results

2.1. Framework

The equations of motion. The results we prove here extend those in Farazmand and Haller [9]. To ensure 
clarity we will use much of the same notation as in [9].

For a fluid moving in a domain D ⊆ Rn with velocity field u : D × [0, ∞) → Rn, we denote the trajectory 
of a inertial particle with mass released at time t0 by y : [t0, ∞) → Rn, and its velocity by v : [t0, ∞) → Rn. 
We nondimensionalise our problem by length scale L, time scale T , and velocity U which are characteristic 
to the ambient flow u. For this flow, we have a Reynolds number (Re) and, for a particle of radius a, the 
problem corresponds to a Stokes number (St) where these quantities are defined via the kinematic viscosity 
ν by

Re = UL
ν

, St = 2
9

a2

νT . (1)

In a frame of reference moving with the particle, the Maxey-Riley equation may be written in the following 
form

ẏ = v

v̇ = R
Du

Dt
+
(

1 − 3R
2

)
g + R

2
D

Dt

(
u + γ

10μ
−1Δu

)

− μ
(
v − u− γ

6μ
−1Δu

)
− κμ1/2 d

dt

t∫
w(s)√
t− s

ds,

(2)
t0
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where

w(t) = ẏ(t) − u(y(t), t) − γ

6μ
−1Δu(y(t), t), (3)

and the additional parameters are defined by

R = 2ρf
ρf + 2ρp

, μ = R

St , κ =
√

9R
2π , γ = 9R

2Re . (4)

As in [9], we write equation (2) in the following form

ẏ = w + Au(y, t),

ẇ = −μw −Mu(y, t)w − κμ1/2 d

dt

t∫
t0

w(s)√
t− s

ds + Bu(y, t),
(5)

where Au, Bu : D × [t0, ∞) → Rn and Mu : D × [t0, ∞) → Rn×n are defined by

Au = u + γ

6μ
−1Δu,

Bu =
(

3R
2 − 1

)(
Du

Dt
− g

)
+

(
R

20 − 1
6

)
γμ−1 D

Dt
Δu

− γ

6μ
−1

(
∇u + γ

6μ
−1∇Δu

)
Δu,

Mu = ∇u + γ

6μ
−1∇Δu.

(6)

Well-posedness properties. We consider the integrated version of (5)

y(t) = y0 +
t∫

t0

w(s) + Au(y(s), s) ds,

w(t) = w0 +
t∫

t0

(
−μw(s) −Mu(y(s), s)w(s) − κμ1/2 w(s)√

t− s
+ Bu(y(s), s)

)
ds.

(7)

Remark 2.1. Equation (7) is not a standard ODE, since the integrand of the equation in w has t as an 
argument. Standard ODE theory can not be applied and we need to develop all notions and results in the 
new context.

Definition 2.1. A solution of (5) is called weak if it satisfies the integrated formulation (7). A solution of (5)
is called strong if it satisfies (7) and also it is differentiable in time.

Remark 2.2. Farazmand and Haller [9] prove that (5) has a weak solution under the following constraints: 
that u(x, t) is three times continuously differentiable in both x and t and that all of its partial derivatives 
are uniformly bounded and Lipschitz continuous up to order three. Under these assumptions, for any initial 
condition (y0, w0) ∈ D × Rn, there exists some T > t0 such that over the time interval [t0, T ) the integral 
equation (7) has a unique solution (y(t), w(t)) with (y(t0), w(t0)) = (y0, w0). Within the proof of this result, 
it is also shown that y, w have continuous paths on the interval [t0, t0 + T ], and are hence bounded.
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Moreover, in [9] this result is proven for a closed time interval. We state here the results with the half open 
interval [t0, T ). If we were to include the endpoint T we would have complications defining the derivative at 
T due to the inability to define the limit from above. Furthermore, the inclusion of the half open interval 
will allow us to introduce the notion of a maximal solution.

Here we will relax these conditions (see (∗) below), before extending this result to be global in time.

Remark 2.3. One can not determine whether a solution exists for the system of equations (5) from any 
general theorems known to the authors from the literature of both ordinary and fractional order differential 
equations (see e.g. [19]). This is due to the specific nature of the nonlinearity of the system.

2.2. Maxey-Riley equation as a fractional differential equation

In the context of the Basset-Boussinesq-Oseen equation, in the 1980s it was observed that the Basset 
history integral is in fact a Riemann-Liouville type fractional derivative [24]. The same remark has been 
made in the context of the Maxey-Riley equation by a number of authors since [7–9]. To illustrate this, we 
recall a definition of fractional derivatives [19].

Definition 2.2. For a real number p ∈ R, define the integer n ∈ Z to be such that n − 1 ≤ p < n. We may 
then define the left Riemann-Liouville fractional derivative of order p by

aD
pf(t) = 1

Γ(n− p)
dn

dtn

t∫
a

(t− s)n−p−1f(s) ds. (8)

By comparing (8) with (2), we can immediately see that the history integral is a Riemann-Liouville 
fractional derivative of order 1/2

t0D
1/2w(t) = 1√

π

d

dt

t∫
t0

w(s)√
t− s

ds. (9)

Following [9], we write the Maxey-Riley equation as a system of nonlinear fractional differential equations

t0D
1y(t) = w + Au(y, t),

t0D
1w(t) = −μw −Mu(y, t)w − κμ1/2√πt0D

1/2w(t) + Bu(y, t).
(10)

Whilst this observation has been made as a remark in previous works, its consequences have not been fully 
exploited until now.

In the 1960s, Caputo [6] developed an approach to fractional differential equations which allows for initial 
value problems to be formulated to involve only the values of integer derivatives of the variables at t0 (see 
e.g. [19]). This means that, in general, initial value problems for Caputo-type fractional differential equa-
tions feature physically interpretable initial conditions. We give below the definition of a Caputo fractional 
derivative.

Definition 2.3. For a non-integer real number p ∈ R \Z, define the integer n ∈ Z to be such that n −1 < p < n. 
We may then define the Caputo fractional derivative of order p by

C
a D

p
t f(t) = 1

Γ(n− p)

t∫
f (n)(s)

(t− s)p+1−n
ds. (11)
a
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It can be shown (see e.g. [19]) that this derivative is a true interpolation between standard integer order 
derivatives, i.e. that

lim
p→n

C
a D

p
t f(t) = f (n)(t). (12)

The system of equations (10) has a weak solution under conditions (∗) (stated below). However, should 
the Maxey-Riley equation featuring the Riemann-Liouville fractional derivative have a strong solution, 
then it will coincide with the version of the Maxey-Riley equation where the Riemann-Liouville fractional 
derivative is replaced by a Caputo fractional derivative. Farazmand and Haller [9], show that the latter 
has a strong solution, nevertheless they do not show the existence of a strong solution of the Maxey-Riley 
equations featuring the Riemann-Liouville fractional derivative. In this paper, we close this gap and give 
a clean criterion for the existence of a strong solution. In particular, in Theorem 4.1 we show that the 
Maxey-Riley equation has a strong solution if and only if w(t0) = 0.

3. Global existence and uniqueness of a weak solution

In this section, we extend the local in time existence and uniqueness result in [9] to a global in time 
result. We do so by using variations of the standard arguments from the theory of ordinary differential 
equations [11], as well as a tailored Grönwall lemma for fractional differential equations (see Appendix A). 
In the following we work with the assumptions:

The velocity field, u, and its derivatives are sufficiently smooth to ensure that the first derivatives 
in time and space of Au and Bu are continuous and uniformly bounded in time and space.

(∗)

By uniformly bounded, we mean that its supremum norm is bounded by some constant Lb. Thus there 
exists some constant Lb such that

‖∂tAu‖∞, ‖∇Au‖∞, ‖∂tBu‖∞, ‖∇Bu‖∞ < Lb .

Notice that the assumption (∗) is sufficient to deduce that Au and Bu are Lipschitz in space uniformly in 
time, meaning that there exists some Lc > 0 such that for any t ∈ [t0, t0 + T ) and y1, y2 ∈ D , we have

|Au(t, y1) −Au(t, y2)| ≤ Lc|y1 − y2| ,

|Bu(t, y1) −Bu(t, y2)| ≤ Lc|y1 − y2| .

Similarly, Au and Bu are Lipschitz in space. The assumption (∗) is sufficient since the proofs of the lemmata 
in [9] may be modified to prevent the use of the boundedness of Au and Bu in the same way that those in 
Appendix B have been modified to prevent this.

Definition 3.1. A solution (ỹ, w̃) of (7) with domain [t0, T̃ ) is called an extension of the solution (y, w) with 
domain [t0, T ) if t0 < T < T̃ and the solutions are identical on [t0, T ). The solution (y, w) is called maximal
if there exists no such extension.

Proposition 3.1. Suppose (y1, w1) and (y2, w2) are two solutions to (7) with domains [t0, T1) and [t0, T2)
respectively, corresponding to the same initial condition (y0, w0), then the two solutions coincide on 
[t0, min{T1, T2}).

Proof. See Appendix C. �
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Lemma 3.1. Let {(yα(t), wα(t))}α∈A be a family of solutions to (7) with initial condition (y0, w0), where A is 
an arbitrary index set. Let the domain of (yα, wα) be [t0, Tα). We define T such that [t0, T ) =

⋃
α∈A[t0, Tα), 

and then define a function on [t0, T ) by

(y(t), w(t)) = (yα(t), wα(t)), if t ∈ [t0, Tα). (13)

Then (y(t), w(t)) is also a solution to (7) with the same initial condition.

Proof. See Appendix C. �
Proposition 3.2. Assume that u satisfies the conditions in (∗), then we have a unique maximal solution to 
(7) with initial condition (y0, w0).

Proof. We need only prove that the solution identified in Lemma 3.1 corresponding to the family of all 
possible solutions to (7) with initial condition (y0, w0) is the unique maximal solution. We know that (y, w)
is indeed a solution of (7) and it is maximal since its domain contains the domains of all other possible 
solutions. It only remains to prove uniqueness.

Let (ỹ, w̃) be another such maximal solution. Similar to Lemma 3.1, the union of our two maximal 
solutions is a solution of (7) with initial condition (y0, w0) and extends (y, w) and (ỹ, w̃). By the definition 
of maximality, this union must be identical to both (y, w) and (ỹ, w̃) and hence we have uniqueness. �
Theorem 3.1. Assume that u satisfies the conditions (∗), then if (y(t), w(t)) is a maximal solution with 
domain [t0, T ) and T is finite, then (y, w) leaves any compact set S ⊂ D ×Rn as t approaches T .

Proof. Let (y, w) be a maximal solution of (y, w) to (7) with domain [t0, T ) corresponding to an initial 
condition (y0, w0). Assume further that there exists a compact set S ⊂ D × Rn such that the solution 
remains inside S, i.e. ∀τ ∈ (t0, T ), ∃t1 ∈ (τ, T ) s.t. (y(t1), w(t1)) ∈ S. We will find a contradiction and hence 
conclude that no such S exists.

Take a sequence {(yn, wn)}n∈N defined by (yn, wn) := (y(tn), w(tn)) for a sequence tn → T . Further-
more, we assume that (yn, wn) ∈ S for all n. Since S is compact, there exists a converging subsequence 
{(ynk

, wnk
)}k∈N where tnk

→ T . We call the limit of this sequence (yT , wT ):

(ynk
, wnk

) −−−−→
k→∞

(yT , wT ) ∈ S

We may take an element of the sequence which is ‘arbitrarily close’ to (yT , wT ) in the following way: ∀ε > 0
∃(yt1 , wt1) ∈ S s.t. |T − t1| < ε. We will pick t1 close to T , and use this as an initial condition (yt1 , wt1) for 
a Maxey-Riley equation with memory starting at a time before t1, at t0. In the setup, we have that (y, w)
is given on [t0, t1) (and indeed beyond this to T) and by construction our Maxey-Riley equation starting at 
t1 will be shown to extend our solution beyond T , hence contradicting maximality.

We have that w at t1 is given by

w(t1) = w0 +
t1∫

t0

−μw(s) −Mu(y(s), s)w(s) + Bu(y(s), s) ds− κμ1/2
t1∫

t0

w(s)√
t1 − s

ds. (14)

If w is extendable beyond T , then for t > T we would have

w(t) = w0 +
t∫
−μw(s) −Mu(y(s), s)w(s) + Bu(y(s), s) ds− κμ1/2

t∫
w(s)√
t− s

ds, (15)

t0 t0
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and thus

w(t) − w(t1) =
t∫

t1

−μw(s) −Mu(y(s), s)w(s) + Bu(y(s), s) ds

− κμ1/2
t∫

t0

w(s)√
t− s

ds + κμ1/2
t1∫

t0

w(s)√
t1 − s

ds

=
t∫

t1

−μw(s) −Mu(y(s), s)w(s) + Bu(y(s), s) − κμ1/2 w(s)√
t− s

ds

+ κμ1/2
t1∫

t0

w(s)√
t1 − s

− w(s)√
t− s

ds.

(16)

We will consider equation (16) together with

y(t) = y(t1) +
t∫

t1

w(s) + Au(y(s), s) ds. (17)

We want to prove that this system has solutions on an interval of length δ depending only the compact set 
S and not on t1. We define the map

(PΦ)(t) =
(

(PΦ)1(t)
(PΦ)2(t)

)
(18)

where

(PΦ)1(t) = yt1 +
t∫

t1

η(s) + Au(ξ(s), s) ds, (19)

(PΦ)2(t) = wt1 +
t∫

t1

−
(
μ + κμ1/2

√
t− s

+ Mu(ξ(s), s)
)
η(s) + Bu(ξ(s), s) ds

+ κμ1/2
t1∫

t0

w(s)√
t1 − s

− w(s)√
t− s

ds.

(20)

Note that a solution to equations (16) and (17) corresponds to a fixed point of the map P . We define R to be 
such that S ⊆ B̄0(R), then Lemmata B.1 and B.2 from Appendix B give that, for K = 4 max{R, 2R

√
T − t0}

and any δ chosen such that

δ + μδ + 2κμ1/2
√
δ + Lbδ < δ + μδ + 2κμ1/2

√
δ + 3Lbδ < 1/5 ,

(2 + K)Lcδ < 1/4 ,

(2Lbδ + Au(0, t0) + Bu(0, t0))δ < K/4 ,

the map P has a unique fixed point.
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To complete our proof, notice that δ here depends only on the Euclidean norm of the initial conditions, 
i.e. on the compact set S. Hence we may choose t1 to be within a distance δ from T and thus we have 
extended our solution beyond the supposedly maximal domain. We have found the required contradiction 
and proven our theorem. �
Theorem 3.2. Assume that u satisfies the conditions (∗), then for any initial condition (y0, w0) ∈ D × Rn, 
there exists a unique global solution (y(t), w(t)) (i.e. a solution on [t0, ∞)) to the integral equation (7) with 
(y(t0), w(t0)) = (y0, w0).

To prove Theorem 3.2, we must first introduce a Lemma which finds an appropriate bound on the solution 
to (7).

Lemma 3.2. If u satisfies the conditions (∗) and (y, w) satisfies (7), on the interval [t0, T ), there exists some 
(CY , CW ) depending on T, y0, w0, κ, μ and Lb such that

sup
t∈[t0,T )

|y(t)| ≤ CY , (21)

sup
t∈[t0,T )

|w(t)| ≤ CW . (22)

Proof of Lemma 3.2. See Appendix C. �
Proof of Theorem 3.2. Let (y, w) be the unique maximal solution from Proposition 3.2 and [t0, T ) its do-
main. We aim to show that [t0, T ) = [t0, ∞). Assume the contrary is true, then T is finite. By Theorem 3.1, 
(y, w) leaves any compact set S ∈ D ×Rn as t → T . Take a specific compact set

S = B̄0(r1) × B̄0(r2).

For t sufficiently close to T , we know ‖y‖ > r1 and ‖w‖ > r2. Since r1, r2 were chosen arbitrarily, we may 
deduce that

‖y‖, ‖w‖ → ∞, as t → T.

On the contrary, we have boundedness of y and w from Lemma 3.2. Thus we have reached a contradiction 
and proven our theorem. �
4. From weak to strong solutions

In the previous section we showed the global existence of a weak solution of equation (7), extending the 
known local in time result. We will now explore the observation in [9] that strong solutions exist under 
more restrictive conditions and ‘mild’ solutions (which we will refer to here as weak) exist in general. 
The interesting relationship between this result and the Maxey-Riley equation in the context of fractional 
derivatives is discussed in section 2.2.

In [9] it is stated without proof that solutions to (7) are not necessarily (continuously) differentiable and 
hence are not, in general, also solutions to (10). Farazmand and Haller go on to explain that, if continuously 
differentiable solutions to the differential form of the equation (10) exist, then under the special initial 
condition w(t0) = 0 the Basset history term takes the form

d

dt

t∫
w(s)√
t− s

ds =
t∫

ẇ(s)√
t− s

ds. (23)

t0 t0
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Reviewing Definitions 2.2 and 2.3, we see that this is equivalent to saying that, in this special case, the 
Riemann-Liouville fractional derivative takes the form of a Caputo fractional derivative of the same order. 
Thus, if continuously differentiable solutions to (10) exist and w(t0) = 0, then (10) can be written as

t0D
1
t y(t) = w + Au(y, t),

t0D
1
tw(t) = −μw −Mu(y, t)w − κμ1/2√π C

t0D
1/2
t w(t) + Bu(y, t).

(24)

In [9], it is proven that this equation (24) indeed admits continuously differentiable solutions with y(t0) = y0
and w(t0) = 0. It still remains to prove under which conditions the solution to (7) is differentiable at t0. 
This will involve proving the necessary conditions for the fractional integral

t∫
t0

w(s)√
t− s

ds, (25)

to be differentiable at t0. Without proving this, the expression (23) does not make sense at t = t0 and thus 
we cannot say that continuously differentiable solutions to (24) are also continuously differentiable solutions 
to (10). In the following, we resolve this issue.

When considering the differentiability of solutions to (7), we can see that any issues will arise from the 
history term (25). In particular, with the following results we clarify under what assumptions this term is 
differentiable at t0.

We start with some lemmata. In particular, we study the smoothness properties of the integral (25) which 
may assist in proving differentiability. Recall that since w is a solution to (7), it satisfies the continuity and 
boundedness properties in Remark 2.2. We can certainly prove that the integral (25) is continuous at t0. 
Indeed, for every ε > 0 there exists δ > 0 such that 2K

√
δ < ε. For this ε, δ we have that for |t − t0| < δ:∣∣∣∣∣∣

t∫
t0

w(s)√
t− s

ds−
t0∫

t0

w(s)√
t0 − s

ds

∣∣∣∣∣∣ =

∣∣∣∣∣∣
t∫

t0

w(s)√
t− s

ds

∣∣∣∣∣∣
≤ K

t∫
t0

1√
t− s

ds ≤ 2K
√
t− t0 < ε.

(26)

From this, one can deduce that the integral is 1/2-Hölder continuous.

Lemma 4.1. Assuming (y, w) is a solution of (7), we have that

(i) the integral (25) is 1/2-Hölder, i.e. there exists some constant C > 0 such that for any t1, t2 with 
t0 < t1 < t2 we have ∣∣∣∣∣∣

t2∫
t0

w(s)√
t2 − s

ds−
t1∫

t0

w(s)√
t1 − s

ds

∣∣∣∣∣∣ ≤ C|t2 − t1|1/2 , (27)

and
(ii) if w(t0) = 0 then the following limit exists and is equal to zero

lim w(t)√ = 0 . (28)

t→t0 t− t0
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Proof. See Appendix C. �
Lemma 4.2. A solution w(t) of (7) is 1/2-Hölder on the interval [t0, t0+ε) and locally Lipschitz on [t0+ε, ∞), 
for any ε > 0.

Proof. By Lemma 4.1 (i), there exists some constant C > 0 such that for any t1, t2 with t0 < t1 < t2 we 
have that the memory term in (7) is 1/2-Hölder on the interval [t0, t0 + ε) (see (27)). As all other terms in 
(7) are Lipschitz continuous, we deduce the 1/2-Hölder continuity of w.

It remains to prove that w(t) is Lipschitz on any interval [t0 +ε, T ], for any ε > 0 and T > t0 +ε. Without 
loss of generality we will assume that t0 = 0. The definition of w(t) is then

w(t) = w(0) +
t∫

0

(
−μw(s) −Mu(y(s), s)w(s) − κμ1/2 w(s)√

t− s
+ Bu(y(s), s)

)
ds ,

and for r0 ∈ [0, 1] and t, s ∈ [ε, ∞) we have

w(r0t) − w(r0s) =
r0t∫

r0s

(−μw(q) −Mu(y(q), q)w(q) + Bu(y(q), q))

− κμ1/2

⎛⎝ r0t∫
0

w(q)√
r0t− q

dq −
r0s∫
0

w(q)√
r0s− q

dq

⎞⎠ .

(29)

Making substitutions q = r1r0t and q = r1r0s in the penultimate and final integrals in the above equation 
respectively, we have

w(r0t) − w(r0s) =
r0t∫

r0s

(−μw(q) −Mu(y(q), q)w(q) + Bu(y(q), q))

− κμ1/2

⎛⎝√
r0t

1∫
0

w(r1r0t)√
1 − r1

dr1 −
√
r0s

1∫
0

w(r1r0s)√
1 − r1

dr1

⎞⎠
=

r0t∫
r0s

(−μw(q) −Mu(y(q), q)w(q) + Bu(y(q), q))

− κμ1/2

⎛⎝(
√
r0t−

√
r0s)

1∫
0

w(r1r0t)√
1 − r1

dr1 +
√
r0s

1∫
0

w(r1r0t) − w(r1r0s)√
1 − r1

dr1

⎞⎠ ,

(30)

and from local boundedness of w and the assumptions (∗), this implies

|w(r0t) − w(r0s)| ≤ K0|t− s| + κμ1/2√r0s

1∫
0

|w(r1r0t) − w(r1r0s|)√
1 − r1

dr1 . (31)

To obtain the above estimate, we used the fact that (recall that r0 ∈ [0, 1])

|
√
r0t−

√
r0s| ≤

√
r0

t− s√ √ ≤ 1√ |t− s| .

t + s 2 ε



12 D. Crisan, O.D. Street / J. Math. Anal. Appl. 516 (2022) 126467
Within the integrand of the above inequality, we may iterate the argument by substituting in the definition 
of w to evaluate w(r1r0t) − w(r1r0s). We claim that after iterating k times we have

|w(r0t) − w(r0s)| ≤ Kk|t− s| + (κμ1/2√r0s)k+1
1∫

0

√
rk1

1 − r1

1∫
0

√
rk−1
2

1 − r2

1∫
0

· · ·

· · ·
1∫

0

1√
1 − rk+1

|w(rk+1rk . . . r0t) − w(rk+1rk . . . r0s)| drk+1 . . . dr1 ,

(32)

where {Ki, i ∈ N}, κ is an appropriately chosen collection of constants. We will prove this by induction, 
where the above calculation acts as a base case. Suppose our inductive hypothesis (32) is true, then we 
iterate once more by substituting in the difference∣∣w(rk+1rk . . . r0t) − w(rk+1rk . . . r0s)

∣∣ ≤ Kk|t− s|

+ κμ1/2
∣∣∣∣(√rk+1 . . . r0t−

√
rk+1 . . . r0s

) 1∫
0

w(rk+2 . . . r0t)√
1 − rk+2

drk+2

∣∣∣∣
+ κμ1/2

∣∣∣∣√rk+1 . . . r0s

1∫
0

w(rk+2 . . . r0t) − w(rk+2 . . . r0s)√
1 − rk+2

drk+2

∣∣∣∣
≤ Kk+1|t− s| + κμ1/2√rk+1 . . . r0s

1∫
0

|w(rk+2 . . . r0t) − w(rk+2 . . . r0s)|√
1 − rk+2

drk+2 .

Using our inductive hypothesis (32), we get

|w(r0t) − w(r0s)| ≤ Kk+1|t− s| + (κμ1/2√r0s)k+2
1∫

0

√
rk+1
1

1 − r1

1∫
0

√
rk2

1 − r2

1∫
0

· · ·

· · ·
1∫

0

1√
1 − rk+2

|w(rk+2 . . . r0t) − w(rk+2 . . . r0s)| drk+2 . . . dr1 ,

(33)

and hence we have proven our claim by induction.
Noting that ri ∈ [0, 1] for each i ∈ N, we take supremum over {ri, i ∈ N} to deduce that

sup
α∈[0,1]

|w(αt) − w(αs)| ≤ Kk|t− s| + Ik sup
α∈[0,1]

|w(αt) − w(αs)| , (34)

where

Ik = (κμ1/2√r0s)k+1
1∫

0

√
rk1

1 − r1

1∫
0

√
rk−1
2

1 − r2

1∫
0

· · ·
1∫

0

1√
1 − rk+1

drk+1 . . . dr1 . (35)

We now observe the integral

ak =
1∫ √

xk

1 − x
dx = 2

π/2∫
sink+1 θ dθ . (36)
0 0
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Note that the sequence (ak)k converges to zero as k tends to infinity, and does so at the same rate as 1/
√
k. 

Indeed, note that

ak = 2
π/2∫
0

sink−1 θ(1 − cos2 θ) dθ = ak−2 −
ak
k

,

where we have used that

0 = 2 sink θ

k
cos θ

∣∣∣∣π/2
0

=
π/2∫
0

2 sink−1 θ cos2 θ − 2 sink+1 θ

k
dθ =

π/2∫
0

2 sink−1 θ cos2 θ dθ − ak
k

.

Therefore we have that

ak = k

k + 1ak−2 =
(

1 − 1
k + 1

)
ak−2 .

Since 1 − y ≤ exp(−y) for positive y, we have, for k odd

ak ≤ π

2 exp

⎛⎝−
k+1
2∑

n=2

1
2n

⎞⎠ ,

and the case where k is even is similar. Note that we have used the fact that a1 = π/2, in the case where k
is even we would instead use a0 = 2. Therefore

√
kak ≤ π

2 exp

⎛⎝1
2 log k − 1

2

k+1
2∑

n=2

1
n

⎞⎠ .

In the following we will use the fact that the sequence (bk)k defined as

bk = log k −
k∑

n=1

1
n

converges to the Euler-Mascheroni constant γ. We have that

√
kak ≤ π

2 exp
(

1
2 log k − 1

2

(
log(k + 1

2 ) − 1 − b k+1
2

))
.

Observe that the limit on the right hand side converges to π2 exp
( log(2)

2 + 1
2 + γ

2
)
. In particular, the sequence 

on the right hand side is bounded, since it converges, and hence the sequence 
√
kak is bounded above. The 

analysis for the even terms is similar. We have found that there exists M such that

√
kak ≤ M =⇒ ak ≤ M√

k
,

thus Ik → 0 as

Ik ≤ (Mκμ1/2√r0s)k+1 1√ → 0 as k → ∞ .

k!
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Hence we choose k ∈ N sufficiently large to ensure that

Ik < 1 , (37)

and thus (32) implies

(1 − Ik) sup
α∈[0,1]

|w(αt) − w(αs)| ≤ Kk|t− s| . (38)

Rearranging gives

|w(t) − w(s)| ≤ sup
α∈[0,1]

|w(αt) − w(αs)| ≤ Kk

1 − Ik
|t− s| , (39)

and we have thus proven our claim. �
We are now in a position to prove the main result of the section.

Theorem 4.1. Under the assumptions (∗), there exists a strong solution of the Maxey-Riley equation (5) if 
and only if w(t0) = 0.

Proof. To prove this theorem, note that the existence of classical solutions is equivalent to the differentia-
bility of the integral (25) at t0, since the differentiability of the remaining terms in (7) is trivial.

Firstly, assume that w(t0) �= 0. Then by adding and subtracting w(t0) to the numerator of the integrand 
of (25), we have

t∫
t0

w(s)√
t− s

ds =
t∫

t0

w(s) − w(t0)√
t− s

ds +
t∫

t0

w(t0)√
t− s

ds

=
t∫

t0

w(s) − w(t0)√
t− s

ds + 2w(t0)
√
t− t0 .

One may observe that the second term is not differentiable at t0, indeed

lim
t→t0

2w(t0)
√
t− t0

t− t0
= lim

t→t0

2w(t0)√
t− t0

= ∞ .

Since, by Lemma 4.2, w is 1/2-Hölder as t approaches t0, we know that for suitably small t − t0 there exists 
some c2 such that ∣∣∣∣∣∣

t∫
t0

w(s) − w(t0)√
t− s

∣∣∣∣∣∣ ds ≤
t∫

t0

|w(s) − w(t0)|√
t− s

≤ c2

t∫
t0

√
s− t0√
t− s

ds . (40)

We have calculated the integral on the right hand side in the proof of Lemma 4.1 (ii), and thus

1
t− t0

∣∣∣∣∣∣
t∫
w(s) − w(t0)√

t− s
ds

∣∣∣∣∣∣ ≤ c2π

2 . (41)

t0
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We may conclude that if w(t0) �= 0, then the integral (25) is not differentiable at t0 and thus solutions of 
(7) are not differentiable at t0 and can not be classical solutions. Hence the contrapositive is true, and if 
solutions of (7) are classical solutions, then w(t0) = 0.

We next prove the reverse implication, by assuming that w(t0) = 0. By Lemma 4.1 (i), for w(t0) = 0 the 
following function is bounded

q(s) = w(s)√
s− t0

,

since

|w(s)|√
s− t0

= |w(s) − w(t0)|√
s− t0

≤ C

by the definition of Hölder continuity. In this case we have∣∣∣∣∣∣ 1
t− t0

t∫
t0

√
s− t0 q(s)√

t− s
ds

∣∣∣∣∣∣ ≤ C

t− t0

∣∣∣∣∣∣
t∫

t0

√
s− t0√
t− s

ds

∣∣∣∣∣∣ = C

t− t0

∣∣∣π2 (t− t0)
∣∣∣ = Cπ

2 . (42)

By Lemma 4.1 (ii) the following limit exists

lim
s→t0

q(s) = 0, (43)

and therefore for t suitably close to t0 we have

1
t− t0

t∫
t0

√
s− t0(0 − ε)√

t− s
ds ≤ 1

t− t0

t∫
t0

√
s− t0 q(s)√

t− s
ds ≤ 1

t− t0

t∫
t0

√
s− t0(0 + ε)√

t− s
ds

and thus

−Cπ

2 ε ≤ 1
t− t0

t∫
t0

√
s− t0 q(s)√

t− s
ds ≤ Cπ

2 ε .

Hence the integral (25) is differentiable at t = t0, with value zero.
It remains to prove differentiability away from the initial time. By Lemma 4.2, w(t) is Lipschitz and thus 

absolutely continuous, hence there exists a locally bounded measurable function a : [t0, ∞) �→ R such that

w(s) = w(s) − w(t0) =
s∫

t0

a(r) dr .

By integrating by parts, we have the identity

0 =
(√

t− s

s∫
t0

a(r) dr
)∣∣∣∣t

t0

=
t∫

t0

d

ds

(√
t− s

(
w(t) − w(t0)

))
ds

=
t∫
w(s) − w(t0)

2
√
t− s

ds +
t∫
a(s)

√
t− s ds ,

(44)
t0 t0
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and we thus it suffices to prove the differentiability of

f(t) =
t∫

t0

a(s)
√
t− s ds = −

t∫
t0

w(s) − w(t0)
2
√
t− s

ds = −
t∫

t0

w(s)
2
√
t− s

ds . (45)

Notice that if we prove that f is differentiable for any t > t0, then the Basset history term is differentiable 
and hence so is w(t). The proof is from first principles: We have that

f ′(t) = lim
ε→0

f(t + ε) − f(t)
ε

= lim
ε→0

⎡⎣1
ε

t+ε∫
t0

a(s)
√
t + ε− s ds− 1

ε

t∫
t0

a(s)
√
t− s ds

⎤⎦
= lim

ε→0

⎡⎣1
ε

t+ε∫
t

a(s)
√
t + ε− s ds

⎤⎦ + lim
ε→0

t∫
t0

a(s)
[√

t + ε− s−
√
t− s

ε

]
ds .

(46)

It remains to prove that the limit can be exchanged with the integral. For ε > 0, note that

∣∣∣∣1ε
t+ε∫
t

a(s)
√
t + ε− s ds

∣∣∣∣ ≤ ∣∣∣∣1ε
t+ε∫
t

a(s)
√
ε ds

∣∣∣∣ ≤ ( sup
s∈[t,t+ε]

|a(s)|)
√
ε ,

the boundedness of a(s) gives

lim
ε→0

⎡⎣1
ε

t+ε∫
t

a(s)
√
t + ε− s ds

⎤⎦ = 0 .

In the last term in (46) we can switch between the integration and the limit with respect to ε by observing 
that, for any ε > 0, we have∣∣∣∣a(s)√t + ε− s−

√
t− s

ε

∣∣∣∣ =
∣∣∣∣a(s) t + ε− s− (t− s)

ε(
√
t + ε− s +

√
t− s)

∣∣∣∣ ≤ sups∈[t0,t] |a(s)|
2
√
t− s

and the above upper bound is integrable on the interval [t0, t].
For ε < 0 sufficiently small so that t + ε > t0 one shows in a similar manner that

lim
ε→0

⎡⎣1
ε

t∫
t+ε

a(s)
√
t− s ds

⎤⎦ = 0 .

Also

t+ε∫
t0

a(s)
[√

t + ε− s−
√
t− s

ε

]
ds =

t∫
t0

a(s)q(s, ε)ds

where q(s, ε) = 0 for s ∈ [t + ε, t] and

0 ≤ q(s, ε) =
√
t + ε− s−

√
t− s = t + ε− s− (t− s)√ √ ≤ 1√
ε ε( t + ε− s + t− s) t− s
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and we have, for any s ∈ [t0, t],∣∣∣∣a(s)√t + ε− s−
√
t− s

ε

∣∣∣∣ ≤ sups∈[t0,t] |a(s)|√
t− s

and the above upper bound is integrable on the interval [t0, t].
Hence we have the required differentiability by the dominated convergence theorem, that is, we have 

explicitly that

f ′(t) =
t∫

t0

a(s)
2
√
t− s

ds . �

5. Properties of the solution as a function of the initial conditions

In this section we will work under the following assumptions.

The velocity field, u, is four times continuously differentiable and its partial derivatives are Lipschitz 
continuous up to order four.

(∗∗)

5.1. Behaviour of neighbouring inertial particles

Proposition 5.1. Under the conditions (∗∗), the distance between two trajectories at any time t is controlled 
by the difference between their initial conditions. Indeed, for two initial conditions x1, x2 ∈ R2n, there exists 
some constant M such that

‖y(t, x2) − y(t, x1)‖ ≤ M‖x2 − x1‖ ,
‖w(t, x2) − w(t, x1)‖ ≤ M‖x2 − x1‖ ,

where the notation y(t, xi) and w(t, xi) is used to reflect the dependence of the solution on its initial condi-
tions.

Remark 5.1. This result implies that one can ensure that two trajectories are arbitrarily close at time t by 
selecting suitably close initial conditions for them.

Proof. Suppose (y(t), w(t)) denotes a solution of (5) corresponding to an initial condition (y0, w0) ∈ R2n. 
We denote the derivatives of y and w with respect to (y0, w0) by Dy and Dw respectively. Note that these 
derivatives are matrix valued and may be considered as a map [t0, ∞) → Rn×2n. As in [9], these derivatives 
satisfy the equation

Dy(t) = (In|On) +
t∫

t0

(
Dw(s) + ∇Au(y(s), s)Dy(s)

)
ds,

Dw(t) = (On|In) +
t∫

t0

(
− μDw(s) − L(y(s), w(s), s)Dy(s) −Mu(y(s), s)Dw(s)

− κμ1/2Dw(s)√
t− s

+ ∇Bu(y(s), s)Dy(s)
)
ds,

(47)

where L is an n-dimensional square matrix with components defined by
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Lij(y(s), w(s), s) =
∑
k

∂Mik

∂yj
(y(s), s)wk(s) ,

and In and On denote the n-dimensional identity and null matrices respectively.
The equation (47) has solutions under assumptions (∗∗). With a similar methodology to that developed 

in section 3, this result may be shown to hold globally in time. Under assumptions (∗∗), we have that 
∇Au, L, Mu, and Bu are all bounded and we thus have sufficient conditions to apply a fractional Grönwall 
argument as in Appendix A. Let

f(t) = sup
s∈[t0,t]

n∑
i=1

|Dyi(s)| + |Dwi(s)| , (48)

then there exist constants C1, C2 such that

f(t) ≤ 2n +
t∫

t0

C1f(s) ds +
t∫

t0

C2(t− s)−1/2f(s) ds . (49)

We may once again apply the Grönwall inequality from Appendix A. Hence Dy and Dw are bounded above 
on intervals [t0, T ) for all T > t0. Suppose M is such that Dy and Dw are bounded above by M . Then, for 
two initial conditions x1, x2 ∈ R2n we have

‖y(t, x2) − y(t, x1)‖ =
x2∫

x1

Dy(t, z) dz ≤ M‖x2 − x1‖ ,

‖w(t, x2) − w(t, x1)‖ =
x2∫

x1

Dy(t, z) dz ≤ M‖x2 − x1‖ . �

5.2. Non-collision of inertial particles

Proposition 5.2. Under conditions (∗∗), the distance between two trajectories is always strictly positive if 
their initial conditions are distinct.

Proof. Define the matrix Dϕ by

Dϕ(t) :=
(
Dy(t)
Dw(t)

)
then this matrix evolves according to the equation

Dϕ(t) = I2n −
t∫

t0

(
On On

On −κμ1/2In

)
Dϕ(s) ds√

t− s

+
t∫

t0

(
∇Au(y(s), s)In In(

∇Bu(y(s), s) − L(y(s), w(s), s)
)
In −

(
μ + Mu(y(s), s)

)
In

)
Dϕ(s) ds .

(50)

Immediately following Appendix D, the inverse of Dϕ(t) evolves according to
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Dϕ−1(s) =I2n −
t∫

s

Dϕ−1(r)
(
On On

On −κμ1/2In

)
dr√
r − s

−
s∫

t0

Dϕ−1(r)
(

∇Au(y(r), r)In In(
∇Bu(y(r), r) − L(y(r), w(r), r)

)
In −

(
μ + Mu(y(r), r)

)
In

)
dr .

(51)

Since left and right Riemann-Liouville derivatives are equivalent up to time reversal, the same Gronwall 
argument from Appendix A may be applied. This is valid since u is sufficiently smooth and bounded under 
the assumptions (∗∗) for the coefficients to satisfy the required conditions for the Gronwall theorem to hold. 
Hence there exists some M̃ which is an upper bound for Dy−1 and Dw−1, and hence

0 <
1
M̃

≤ Dy,Dw . � (52)

5.3. Time reversibility property

We have so-far shown that the solution of the Maxey-Riley equation was shown to be injective as a map 
from the initial conditions to the solution at time t. In order to prove that this map is surjective we need 
to show that, for any point (ỹ, w̃) ∈ R2n, there exists some solution (y(t), w(t)) corresponding to an initial
condition (y0, w0) and some time T such that (y(T ), w(T )) = (ỹ, w̃). This is related to the idea of time 
reversal.

Our existence and uniqueness results for the Maxey-Riley equation apply forwards in time. Thus, if we 
know the value of our solution at a particular time t0, our existence and uniqueness results only provide 
us information about the problem beyond this time, and not before it. To extend on this, we introduce the 
concept of a right fractional derivative defined as follows.

Definition 5.1. For a real number p ∈ R, define the integer n ∈ Z to be such that n − 1 ≤ p < n. We may 
then define the right Riemann-Liouville fractional derivative of order p by

Dp
bf(t) = 1

Γ(n− p)

(
− d

dt

)n
b∫

t

(s− t)n−p−1f(s) ds. (53)

Notice now that this derivative is equivalent to the left derivative under time reversal. Indeed, where 
s = −σ and t = −τ , we have

aD
pf(t) = 1

Γ(n− p)

(
d

dt

)n
t∫

a

(t− s)n−p−1f(s) ds ,

= 1
Γ(n− p)

(
− d

dτ

)n
τ∫

−a

(−τ + σ)n−p−1f(−σ) (−1)dσ ,

= 1
Γ(n− p)

(
− d

dτ

)n
−a∫
τ

(σ − τ)n−p−1f(−σ) dσ = Dp
−af(−τ) = Dp

−af(t) .

Thus, by relabelling the time variable to ensure that memory is accumulated starting at time t = 0 (i.e. 
t0 = 0), the ‘backwards’ equation for the Maxey-Riley equation has a similar form as the forwards equation, 
with the Basset history term being a right Riemann-Liouville fractional derivative rather than a left one. 
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By existence and uniqueness arguments similar to those for the forward equation, the backwards equation 
has a unique solution and hence time reversal is possible within this model.
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Appendix A. Grönwall result for fractional differential equations

The following version of Grönwall’s lemma may be applied to a broad class of fractional differential 
equations, it may be found as Theorem 1.4 in [14].

Theorem A.1. If, for any t ∈ [0, T ), we have

u(t) ≤ a(t) +
n∑

i=1
bi(t)

t∫
0

(t− s)βi−1u(s) ds, (54)

where all the functions are nonnegative and continuous, the constants βi are positive, and bi (i =
1, 2, . . . , n) are the bounded and monotonic increasing functions on [0, T ]. Then, for any t ∈ [0, T ), we 
have

u(t) ≤ sup
t∈[0,T ]

⎛⎝a(t) +
∞∑
k=1

⎛⎝ n∑
1′,2′,...,k′=1

∏k
i=1[bi′(t)Γ(βi′)]
Γ(

∑k
i=1 βi′)

t∫
0

(t− s)
∑k

i=1 βi′−1a(s) ds

⎞⎠⎞⎠ < ∞. (55)

Remark A.1. For bounded bi and a, the infinite sum in (55) converges. To show this, we assume that 
a(t) ≤ A and bi(t) ≤ B for all i = 1, . . . , n, furthermore we may assume without loss of generality that βi

are ordered β1 ≤ β2 ≤ · · · ≤ βn. We label the terms of this series ak, and for k > 2/β1 we have

ak ≤ A

n∑
1′,2′,...,k′=1

Bk(maxi Γ(βi))k

Γ(
∑k

i βi′)
1

kβ1
max{t, 1}kβn

≤ Ank
xk

Γ(kβ1)kβ1
where x := B max{T, 1}βn max

i
Γ(βi)

≤ A′ xk

Γ(kβ1)
,

for a constant A′. Note that the inequality in the second line above is only true for k > 2/β1 since the 
gamma function is increasing on the interval [2, ∞) however is decreasing nearer to 0. We split k into the 
following subsets Sm := {k : m ≤ kβ1 ≤ m + 1}, and notice that on Sm we have Γ(kβ1) > (m − 1)!. Thus 
we may bound ak by the terms of the following series

∞∑ ∑
A′ xk

(m− 1)! .

m=2 k∈Sm
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We have ∑
k∈Sm

xk ≤ m + 1
β1

y
m+1
β1 , where y := max{x, 1},

and the sum defined by

∞∑
m=2

A′m + 1
β1

y
m+1
β1

(m− 1)!

obviously converges. Hence the infinite sum in (55) converges as claimed.

Appendix B. Lemmata for the map P

Proofs of the following lemmata, which are analogous to lemmata 1 and 2 from [9], are required to 
complete the proof of Theorem 3.1. We define the following space of functions

Xδ,K := {f ∈ C([t1, t1 + δ);Rm) : ‖f‖ ≤ K}

where m can be either n or 2n as required. Note that in the following we will be dealing with the map P
defined by (18), in the context of which Φ is 2n-dimensional and η, ξ are n-dimensional.

Lemma B.1. For P as defined by equation (18), there exists a K > 0 large enough and δ = δ(K) > 0 small 
enough and independent of the initial condition such that P maps functions from Xδ,K to Xδ,K .

Proof. We must first prove that PΦ is continuous for continuous Φ, given assumption (∗). This continuity 
is obvious with the exception of the continuity of the integral

t∫
t1

η(s)√
t− s

ds, (56)

for η ∈ Xδ,K , as well as the integral

t1∫
t0

w(s)√
t− s

ds, (57)

for w ∈ Xδ,K . Following same argument as in the proof of Lemma 4.1 (i), we may see that (56) is continuous. 
It remains only to prove that (57) has the required continuity. Recalling that R is such that w ∈ S ⊆ B̄0(R), 
we have that (57) is continuous at τ since for all ε > 0, if we have |t − τ | < ε2

16R2 , then∣∣∣∣∣∣
t1∫

t0

w(s)√
t− s

ds−
t1∫

t0

w(s)√
τ − s

ds

∣∣∣∣∣∣ =

∣∣∣∣∣∣
t1∫

t0

w(s)√
t− s

− w(s)√
τ − s

ds

∣∣∣∣∣∣ ≤ R

∣∣∣∣∣∣
t1∫

t0

1√
t− s

− 1√
τ − s

ds

∣∣∣∣∣∣
= 2R| −

√
t− t1 +

√
t− t0 +

√
τ − t1 −

√
τ − t0|

≤ 2R|
√
τ − t1 −

√
t− t1| + 2R|

√
t− t0 −

√
τ − t0|

= 2R |τ − t|√ √ + 2R |t− τ |√ √

τ − t1 + t− t1 t− t0 + τ − t0
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≤ 2R |τ − t|√
|τ − t|

+ 2R |t− τ |√
|t− τ |

≤ 4R
√
|τ − t|

< ε.

We find a bound on P as follows

|(PΦ)(t)| ≤ ‖y0 +
t∫

t1

η(s) + Au(ξ(s), s) ds‖∞

+ ‖w0 +
t∫

t1

(
μ + κμ1/2

√
t− s

+ Mu(ξ(s), s)
)
η(s) + Bu(ξ(s), s) ds‖∞

+ ‖κμ1/2
t1∫

t0

w(s)√
t1 − s

− w(s)√
t− s

ds‖∞.

Let us examine the integral in the final term as follows

t1∫
t0

w(s)√
t1 − s

− w(s)√
t− s

ds =
t1∫

t0

w(s)√
t− s

√
t1 − s

(
√
t− s−

√
t1 − s) ds

=
t1∫

t0

w(s)(t− t1)√
t− s

√
t1 − s(

√
t− s +

√
t1 − s)

,

and we can bound this using |t − t1| < δ, 
√
t− s ≥

√
t− t1 and 

√
t− s +

√
t1 − s ≥

√
t− t1 >

√
δ:∥∥∥∥∥∥

t1∫
t0

w(s)√
t1 − s

− w(s)√
t− s

ds

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
t1∫

t0

w(s)δ√
t− s

√
t1 − s

√
δ
ds

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
t1∫

t0

w(s)√
t1 − s

ds

∥∥∥∥∥∥
∞

≤ R

∥∥∥∥∥∥
t1∫

t0

1√
t1 − s

ds

∥∥∥∥∥∥
∞

≤ 2R
√

T − t0.

Recall that, from assumption (∗), we have for any x1, x2 ∈ Rn and τ1, τ2 ∈ R

|Au(x1, τ1) −Au(x2, τ2)| ≤ |Au(x1, τ1) −Au(x2, τ1)| + |Au(x2, τ1) −Au(x2, τ2)|
≤ ‖∇Au‖∞|x1 − x2| + ‖∂tAu‖∞|τ1 − τ2|
≤ Lb (|x1 − x2| + |τ1 − τ2|) ,

|Bu(x1, τ1) −Bu(x2, τ2)| ≤ Lb (|x1 − x2| + |τ1 − τ2|) ,

by the mean value theorem. By integrating from t1 to t,∥∥∥∥∥∥
t∫

t1

Au(ξ(s), s)

∥∥∥∥∥∥
∞

≤
t∫

t1

Lb (|ξ(s)| + |s− t0|) + |Au(0, t0)| ds

≤ Lb‖ξ‖∞(t− t1) + Lbδ(t− t1) + |Au(0, t0)|(t− t1)
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∥∥∥∥∥∥
t∫

t1

Bu(ξ(s), s)

∥∥∥∥∥∥
∞

≤ Lb‖ξ‖∞(t− t1) + Lbδ(t− t1) + |Bu(0, t0)|(t− t1)

Hence we may improve our bound

|(PΦ)(t)| ≤ |yt1 | + |wt1 | + ‖Φ‖∞
(
(t− t1) + μ(t− t1) + 2κμ1/2√t− t1 + Lb(t− t1) + 2Lb(t− t1)

)
+ 2R

√
T − t0 + (t− t1)

[
2Lbδ + Au(0, t0) + Bu(0, t0)

]
.

Setting K = 4 max{R, 2R
√
T − t0} and δ such that

δ + μδ + 2κμ1/2
√
δ + 3Lbδ < 1/4, (2Lbδ + Au(0, t0) + Bu(0, t0))δ < K/4,

we have that our lemma holds. �
Lemma B.2. For P as defined by equation (18), there exists δ such that for any Φ1, Φ2 ∈ Xδ,K we have

‖PΦ1 − PΦ2‖∞ ≤ 1
2‖Φ1 − Φ2‖∞. (58)

Proof. The proof of this is as in Lemma 2 in [9], since in PΦ1 and PΦ2 the integral from t0 to t1 is the 
same and thus cancels. Thus the proof exactly follows that of the standard Maxey-Riley system without 
additional memory, with no modifications necessary since the boundedness of Au and Bu is not used. Thus 
this lemma holds for δ sufficiently small to ensure that

δ + μδ + 2κμ1/2
√
δ + Lbδ < 1/4, (2 + K)Lcδ < 1/4 . � (59)

Appendix C. Proving the results from sections 3 and 4

Proposition 3.1. Suppose (y1, w1) and (y2, w2) are two solutions to (7) with domains [t0, T1) and [t0, T2)
respectively, corresponding to the same initial condition (y0, w0), then the two solutions coincide on 
[t0, min{T1, T2}).

Proof. For t in [t0, min{T1, T2}) we have

yi(t) = y0 +
t∫

t0

wi(s) + Au(yi(s), s) ds, i = 1, 2

wi(t) = w0 +
t∫

t0

(
−μwi(s) −Mu(yi(s), s)wi(s) − κμ1/2 wi(s)√

t− s
+ Bu(yi(s), s)

)
ds, i = 1, 2 .

(60)

We now consider the Euclidean norm of the differences ‖y1 − y2‖ and ‖w1 −w2‖, and find a bound on these 
as follows:

‖y1(t) − y2(t)‖ =

∥∥∥∥∥∥
t∫

t0

w1(s) − w2(s) + Au(y1(s), s) −Au(y2(s), s) ds

∥∥∥∥∥∥ ,
≤

t∫
‖w1(s) − w2(s)‖ + Lc‖y1(s) − y2(s)‖ ds

(61)
t0
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and

‖w1(t) − w2(t)‖ =
∥∥∥∥

t∫
t0

−μ(w1(s) − w2(s)) −Mu(y1(s), s)w1(s) + Mu(y2(s), s)w2(s)

− κμ1/2
(

w1(s)√
t− s

− w2(s)√
t− s

)
+ Bu(y1(s), s) −Bu(y2(s), s) ds

∥∥∥∥
≤

t∫
t0

μ‖w1(s) − w2(s)‖ + Lb‖w1(s) − w2(s)‖

− κμ1/2
√
t− s

‖w1(s) − w2(s)‖ + Lc‖y1(s) − y2(s)‖ ds.

(62)

We have uniqueness from an application of the Grönwall result from Appendix A with ‘u(t)’ equal to 
‖y1(t) − y2(t)‖ + ‖w1(t) + w2(t)‖, noting that a(t) = 0 in the case of the above bounds. �
Lemma 3.1. Let {(yα(t), wα(t))}α∈A be a family of solutions to (7) with initial condition (y0, w0), where A is 
an arbitrary index set. Let the domain of (yα, wα) be [t0, Tα). We define T such that [t0, T ) =

⋃
α∈A[t0, Tα), 

and then define a function on [t0, T ) by

(y(t), w(t)) = (yα(t), wα(t)), if t ∈ [t0, Tα). (13 revisited)

Then (y(t), w(t)) is also a solution to (7) with the same initial condition.

Proof. We must justify first that (13) gives a consistent definition of (y, w), i.e. that (y(t), w(t)) does not 
depend on the choice of α. For t ∈ [t0, Tα1), (13) gives that (y(t), w(t)) = (yα1(t), wα1(t)). If t also belongs 
to [t0, Tα2), then t ∈ [t0, min{Tα1 , Tα2}) and therefore our uniqueness result Proposition 3.1 implies that 
(yα1(t), wα1(t)) = (yα2(t), wα2(t)) for this value of t.

Now we prove that (y, w) defined by (13) defines a solution to (7) on [t0, T ). We know that t0 ∈ [t0, Tα)
for any α and therefore

(y(t0), w(t0)) = (yα(t0), wα(t0)) = (y0, w0), (63)

since (yα, wα) is a solution to (7) with initial condition (y0, w0). Furthermore, for any t ∈ [t0, T ) there exists 
α such that t ∈ [t0, Tα). We know that (yα, wα) solves (7) on [t0, Tα), (y, w) = (yα, wα) on [t0, Tα), and 
therefore (y, w) solves (7) at any t ∈ [t0, T ). �
Lemma 3.2. If u satisfies the conditions (∗) and (y, w) satisfies (7), on the interval [t0, T ), there exists some 
(CY , CW ) depending on T, y0, w0, κ, μ and Lb such that

sup
t∈[t0,T )

|y(t)| ≤ CY , (64)

sup
t∈[t0,T )

|w(t)| ≤ CW . (65)

Proof. We seek to apply a bound on the solution using the integrated form of the equation. We first notice 
that, as in Appendix B, we may bound the integral of Bu(y(s), s) using the Lipschitz property. That is, for 
any x1, x2 ∈ Rn and τ1, τ2 ∈ R, we have
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|Bu(x1, τ1) −Bu(x2, τ2)| ≤ |Bu(x1, τ1) −Bu(x2, τ1)| + |Bu(x2, τ1) −Bu(x2, τ2)|

≤ ‖∇Bu‖∞|x1 − x2| + ‖∂tBu‖∞|τ1 − τ2|

≤ Lb(|x1 − x2| + |τ1 − τ2|) .

Therefore, choosing x1 = y(s), τ1 = s, and x2 = τ2 = 0, we have that

∣∣∣∣
t∫

t0

Bu(y(s), s) ds
∣∣∣∣ ≤

t∫
t0

Lb(|y(s)| + |s|) + |Bu(0, 0)| ds

≤ Lb

t∫
t0

|y(s)| ds + Lb

t∫
t0

|s| ds + |Bu(0, 0)|(t− t0)

≤ Lb

t∫
t0

|y(s)| ds + Lb(t2 − t20)
2 + |Bu(0, 0)|(t− t0) .

Beginning with the equation for w, we seek a bound on the solution as follows

|w(t)| ≤ |w0| +
t∫

t0

∣∣∣− μw(s) −Mu(y(s), s)w(s) − κμ1/2 w(s)√
t− s

+ Bu(y(s), s)
∣∣∣ ds

≤ |w0| +
t∫

t0

|μ + Lb||w(s)| +
∣∣∣κμ1/2 w(s)√

t− s

∣∣∣ + |Bu(y(s), s)| ds

≤ |w0| + |μ + Lb|
t∫

t0

|w(s)| ds + |κμ1/2|
t∫

t0

(t− s)−1/2|w(s)| ds

+ Lb

t∫
t0

|y(s)| ds + Lb(t2 − t20)
2 + |Bu(0, 0)|(t− t0) .

We now proceed with the equation for y

|y(t)| ≤ |y0| +
t∫

t0

|w(s)| + |Au(y(s), s)| ds

≤
t∫

t0

|w(s)| ds + Lb

t∫
t0

|y(s)| ds + Lb(t2 − t20)
2 + |Au(0, 0)|(t− t0) .

We then must consider the above inequalities for |y(s)| and |w(s)| as a pair. In particular, we define a(s) by

a(s) = |y(s)| + |w(s)| ,

and then we have the following inequality
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a(s) ≤ a(t0) + Lb(t2 − t20) + (|Au(0, 0)| + |Bu(0, 0)|)(t− t0)

+ max{1, μ + Lb}
t∫

t0

a(s) ds + |κμ1/2|
t∫

t0

(t− s)−1/2a(s) ds .
(66)

A Grönwall-style result of S. Y. Lin [14], gives a bound on the solution as required (see Appendix A). �
Lemma 4.1. Assuming (y, w) is a solution of (7), we have that

(i) the integral (25) is 1/2-Hölder, i.e. there exists some constant C > 0 such that for any t1, t2 with 
t0 < t1 < t2 we have ∣∣∣∣∣∣

t2∫
t0

w(s)√
t2 − s

ds−
t1∫

t0

w(s)√
t1 − s

ds

∣∣∣∣∣∣ ≤ C|t2 − t1|1/2 , (27 revisited)

and
(ii) if w(t0) = 0 then the following limit exists and is equal to zero

lim
t→t0

w(t)√
t− t0

= 0 . (67)

Proof. We prove the two parts separately, beginning with part (i).
Part (i): We bound the left hand side of (27) as follows∣∣∣∣∣∣

t2∫
t0

w(s)√
t2 − s

ds−
t1∫

t0

w(s)√
t1 − s

ds

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

t2∫
t1

w(s)√
t2 − s

ds

∣∣∣∣∣∣ +

∣∣∣∣∣∣
t1∫

t0

w(s)√
t2 − s

− w(s)√
t1 − s

ds

∣∣∣∣∣∣ ,
and it remains to prove that both terms on the right hand side are indeed 1/2-Hölder continuous. By the 
same argument as (26), the first term is 1/2-Hölder and so is the second term since∣∣∣∣∣∣

t1∫
t0

w(s)√
t2 − s

− w(s)√
t1 − s

ds

∣∣∣∣∣∣ ≤ K

∣∣∣∣∣∣
t1∫

t0

1√
t2 − s

− 1√
t1 − s

ds

∣∣∣∣∣∣
≤

∣∣−2K
√
t2 − t1 + 2K

√
t2 − t0 − 2K

√
t1 − t0

∣∣
≤ 2K

√
t2 − t1 + 2K

∣∣√t2 − t0 −
√
t1 − t0

∣∣
≤ 2K

√
t2 − t1 + 2K |t2 − t1|√

t2 − t0 +
√
t1 − t0

≤ 2K
√
t2 − t1 + 2K |t2 − t1|√

t2 − t1 +
√
t1 − t1

≤ 4K
√
t2 − t1,

where in the first line we have made use of the boundedness property of solutions to the Maxey-Riley 
equation, see Remark 2.2.

Part (ii): Recall that w satisfies

w(t) = w(t0) +
t∫ (

−μw(s) −Mu(y(s), s)w(s) − κμ1/2 w(s)√
t− s

+ Bu(y(s), s)
)

ds . (68)

t0
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Dividing through by 
√
t− t0 and considering w(t0) = 0, we have

w(t)√
t− t0

= 1√
t− t0

t∫
t0

(−μw(s) −Mu(y(s), s)w(s) + Bu(y(s), s)) ds− κμ1/2
√
t− t0

t∫
t0

w(s)√
t− s

ds . (69)

We know that w is locally bounded and, under assumptions (∗), Mu is uniformly bounded and Bu is 
sufficiently smooth to ensure that it is locally bounded on each interval [t0, t]. Hence, there exists some c1
which (locally) bounds the integrand of the first integral on the right hand side and hence

1√
t− t0

t∫
t0

(−μw(s) −Mu(y(s), s)w(s) + Bu(y(s), s)) ds ≤ c1
√
t− t0 . (70)

We may therefore deduce that

lim
t→t0

1√
t− t0

t∫
t0

(−μw(s) −Mu(y(s), s)w(s) + Bu(y(s), s)) ds = 0 . (71)

It remains to show the existence of the limit

lim
t→t0

1√
t− t0

t∫
t0

w(s)√
t− s

ds =

lim
t→t0

[
1√

t− t0

t∫
t0

1√
t− s

s∫
t0

(−μw(r) −Mu(y(r), r)w(r) + Bu(y(r), r)) dr ds

]

− lim
t→t0

[
1√

t− t0

t∫
t0

κμ1/2
√
t− s

s∫
t0

w(r)√
s− r

dr ds

]
,

(72)

where to show the equality we have used the equation (7) for w(s). We may bound the middle line of (72)
by

1√
t− t0

t∫
t0

1√
t− s

s∫
t0

(−μw(r) −Mu(y(r), r)w(r) + Bu(y(r), r)) dr ds ≤ c1√
t− t0

t∫
t0

s− t0√
t− s

ds .

The integral on the right hand side may be calculated by making a suitable substitution

t∫
t0

s− t0√
t− s

ds = −
0∫

√
t−t0

t− t0 − u2

u
2u du =

√
t−t0∫
0

(t− t0) − u2 du

= 2
(

(t− t0)3/2 −
1
3(t− t0)3/2

)
= 4

3(t− t0)3/2 .

Therefore, the limit in the second line of (72) is equal to 0. We now observe the limit in the final line of 
(72), i.e.
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lim
t→t0

[
1√

t− t0

t∫
t0

1√
t− s

s∫
t0

w(r)√
s− r

dr ds

]
. (73)

First recall that w is bounded by K, then we may bound and again calculate by making a series of suitable 
substitutions

1√
t− t0

t∫
t0

1√
t− s

s∫
t0

w(r)√
s− r

dr ds ≤ K√
t− t0

t∫
t0

1√
t− s

s∫
t0

1√
s− r

dr ds

≤ 2K√
t− t0

t∫
t0

√
s− t0√
t− s

ds

≤ 2K√
t− t0

√
t−t0∫
0

2u2
√
t− u2 − t0

du

≤ 4K
√
t− t0

π/2∫
0

sin2 θ dθ = Kπ
√
t− t0 ,

(74)

and thus

lim
t→t0

⎡⎣ 1√
t− t0

t∫
t0

1√
t− s

s∫
t0

w(r)√
s− r

dr ds

⎤⎦ = 0 . (75)

Putting these calculations together, we have proven our claim. �
Appendix D. Fractional evolution of a matrix inverse

If an n × n matrix, Mt, evolves according to

Mt = In +
t∫

t0

AsMs ds ,

and another matrix, Nt, according to

Nt = In −
t∫

t0

NsAs ds .

Then we have

NtMt = In +
t∫

t0

Ns
dMs

ds
ds +

t∫
t0

dNs

ds
Ms ds

= In +
t∫

t0

NsAsMs ds−
t∫

t0

NsAsMs ds

= In .
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Thus, det(NtMt) = det(Nt) det(Mt) = 1 and therefore det(Mt) �= 0 and Mt is invertible. Moreover, Nt is 
the inverse of Mt for all t.

In the fractional case, this is less simple. Suppose instead that Mt evolves according to

Mt = In + 1√
π

t∫
t0

AsMs√
t− s

ds , (76)

so, in differential form,

dMt

dt
=t0 D1/2(AtMt) . (77)

Recall that the right Riemann-Liouville fractional derivative may be defined similarly to the standard, or 
left Riemann-Liouville derivative in Definition 2.2, by instead changing the equation (8) to

Dp
bf(t) = 1

Γ(n− p)

(
− d

dt

)n
b∫

t

(s− t)n−p−1f(s) ds. (78)

We then note that, for continuous functions f and g, we have the following result

b∫
a

f(t)aDαg(t) ds =
b∫

a

g(s)Dα
b f(s) ds . (79)

Suppose now that the matrix Ns evolves by

Ns = In + 1√
π

t∫
s

NrAr√
r − s

dr , (80)

where this evolution depends on time. In differential form this is

dNs

ds
= −D

1/2
t (NsAs) . (81)

Now suppose that At = A is constant, then we have

NtMt = In +
t∫

t0

Ns
dMs

ds
ds +

t∫
t0

dNs

ds
Ms ds ,

= In +
t∫

t0

Nst0D
1/2(AMs) ds−

t∫
t0

D
1/2
t (NsA)Ms ds .

(82)

Now by the equation (79), we have

NtMt = In , (83)

and thus we have determined the equation for the inverse when Mt is a matrix evolving according to a 
fractional differential equation.
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