
1. Introduction
Terrestrial ecosystem and ecohydrological models are of paramount importance for understanding and quanti-
fying the coupled water and carbon cycles. Despite their physics-based modeling approach, several sources of 
uncertainties affect the robustness of their predictions (e.g., Fisher et al., 2014; Zhou et al., 2018). Uncertainties 
include epistemic sources due to specific model formulations (e.g., Schwalm et al., 2019) and poorly known 
model parameters (e.g., Pappas et al., 2013) due to the lack of high fidelity in situ data at commensurate scales. 
One of the major processes that affects both the water and carbon cycles is the movement of water in the soil. 
Uncertainties involved in modeling soil water transport may impact key hydrological fluxes, such as runoff gener-
ation, groundwater recharge, and evapotranspiration, and, in turn, changes in water content in the root zone may 
influence vegetation dynamics, especially in areas with limited water availability.

Most current generation ecohydrological and terrestrial ecosystem models simulate water movement in soils 
by solving either the 1-D or the 3-D Richards equation, adopting different numerical schemes (e.g., Farthing & 
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Ogden, 2017; Fatichi, Vivoni, et al., 2016). A major source of uncertainty when solving the Richards equation for 
the variably saturated critical zone (the region where vegetation typically accesses water) is the highly nonlinear 
relationship between soil water content and water potential (i.e., the soil water retention curve) and the depend-
ence of hydraulic conductivity on the degree of saturation (i.e., the hydraulic conductivity function) (Assouline 
& Or, 2013). Models typically adopt the Brooks and Corey (BC) or the Mualem-Van Genuchten (MvG) formu-
lations (Brooks & Corey,  1964; Mualem,  1976; Van Genuchten,  1980) to describe these nonlinear relation-
ships. The estimation of model parameters for the BC and MvG models requires extensive data collection and is 
commonly performed, in terrestrial biosphere models, by means of pedotransfer functions (PTFs) (e.g., Assouline 
& Or, 2013; Patil & Singh, 2016; Van Looy et al., 2017; Vereecken et al., 2010). PTFs are essentially empirical 
models that use easy-to-measure soil properties (mostly soil texture, bulk density, and organic content) to predict 
the saturated hydraulic conductivity and the parameters of either the BC or the MvG formulations. PTFs use 
different statistical techniques, from multiple linear regression to advanced machine learning, to obtain those 
parameters based on a generally limited set of observations (e.g., Patil & Singh, 2016; Van Looy et al., 2017; 
Wösten et al., 2001; Y. Zhang & Schaap, 2019). Some soil textures (e.g., clays) are typically under-sampled and 
observations are usually obtained within a limited geographic region, leading to highly variable predictions across 
PTFs trained with different data sets (e.g., Wagner et al., 2001) and limited transferability across geographic loca-
tions (Gupta et al., 2020; Vereecken et al., 2016). The use of PTFs in both land surface and terrestrial biosphere 
modeling is ubiquitous (e.g., Cooper et al., 2020; Van Looy et al., 2017; Vereecken et al., 2016), and thus under-
standing the implications of their use is crucial. Global scale application of such models, in particular, rely heav-
ily on PTFs (e.g., Dai et al., 2019), as specific soil hydraulic properties are available only locally.

The disagreement across PTF predictions is expected to impact hydrological dynamics, and this has been 
confirmed by a number of studies, where soil moisture (e.g., Deng et al., 2009; Loosvelt et al., 2011; Pinnington 
et al., 2021), evapotranspiration (e.g., Weihermüller et al., 2021), runoff production, and flood generation have 
been found to be strongly affected by soil hydraulic parameters (e.g., Mohajerani et al., 2021; W. Sun et al., 2016). 
The uncertainty introduced by PTFs in the hydrological dynamics has also been found to be modulated by small 
scale topography (e.g., Mohajerani et al., 2021).

While previous research has highlighted the importance of the variability introduced by PTFs in hydrological and 
land surface responses (e.g., Chirico et al., 2010; Mohajerani et al., 2021), there has been no comprehensive anal-
ysis on how those uncertainties could propagate from the water cycle to the carbon cycle via uncertainties in the 
predicted plant water stress, which limits plant water uptake and photosynthesis. Specifically, little attention has 
been given on how different shapes of the water retention curve, as well as differences in hydraulic conductivity, 
affect soil water flow and, subsequently, plant water availability and vegetation dynamics. Additionally, most land 
surface and ecosystem model applications, which are essential for climate change projections, neglect the role 
of topographic features as they consider one-dimensional vertical domains, thus potentially misrepresenting the 
importance of soil hydraulic properties (see also Fatichi et al. (2020)).

In this study, by using a state-of-the-art ecohydrological/terrestrial biosphere model with a dynamic vegetation 
component, we quantify how disagreements between PTF predictions lead to uncertainties in the dynamics of the 
water and carbon cycles at 79 locations worldwide, covering most terrestrial biomes and soil types. The analysis 
is first carried out for one-dimensional domains to mimic the common use of these models at global or large 
scales. Subsequently, we take small scale topography explicitly into account by simulating a distributed domain 
of 4 km 2 with a 40 × 40 m 2 resolution. The specific hypotheses of the study are:

1.  Uncertainties related to the choice of PTFs are comparable to uncertainties in soil texture itself.
2.  Uncertainties are overall larger for the water cycle than the carbon cycle.
3.  Uncertainties in hydrological dynamics are larger in wet climates, and uncertainties in ecosystem vegetation 

dynamics are larger in areas where vegetation is limited by water availability (i.e., arid/semiarid regions).
4.  Uncertainties for all ecosystem dynamics are larger for clay rich soils, where the training set of PTFs is 

commonly under-sampled.
5.  Small scale topography magnifies the uncertainties generated by the PTF choice as it allows cumulative 

effects through subsurface lateral water flow.
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2. Materials and Methods
2.1. Numerical Experiment

2.1.1. Model Description

Numerical simulations are carried out with the ecohydrological and terrestrial biosphere model T&C (e.g., Fatichi 
et al., 2012, 2021; Fatichi, Manzoni, et al., 2019; Mastrotheodoros et al., 2020; Paschalis et al., 2015, 2018; Z. 
Zhang et al., 2021). T&C computes the water, carbon and energy balances at the land surface, and can be run as 
a distributed model on a regular grid geometry, taking into account small scale topography.

Specifically, in T&C, soil water transport is simulated using a quasi-3-D formulation of the Richards equation. 
Vertical soil water fluxes are simulated by solving the 1-D Richards equation using a finite volume approach. 
Horizontal soil water fluxes are approximated using a kinematic wave approximation (Fatichi et al., 2012; Hopp 
et al., 2016). Surface water flow, including both hillslope and channel routing, is simulated using the kinematic 
wave approximation with a time adaptive finite volume discretization and a D8 downhill flow direction.

Evapotranspiration is simulated using the common resistor analogue scheme (Bonan, 2019). Resistances that are 
considered in T&C include atmospheric, leaf boundary, undercanopy, and soil resistances. Soil resistance affects 
soil evaporation and it is simulated using the formulation of Shahraeeni et al. (2012). Leaf stomatal resistance 
that affects plant transpiration is simulated using the Leuning-based formulation (Paschalis et al., 2017; Tuzet 
et al., 2003).

Soil water dynamics affect the carbon cycle through their impact on limiting photosynthesis during periods of low 
plant water availability. Photosynthetic rates, modeled according to Collatz et al. (1991, 1992), are limited when 
the root zone integrated soil water potential drops below a plant-specific threshold. This threshold is a flexible 
parameter in T&C and can be tuned to represent any vegetation species. Photosynthesis suppression with decreas-
ing water potentials follows a sigmoidal function (Fatichi et al., 2012). Prolonged duration of high vegetation 
stress can trigger leaf shedding in T&C, based on a plant specific stress duration threshold. When photosynthesis 
is limited, plant stomata close and stomatal conductance (i.e., the reciprocal of resistance) is reduced linearly with 
the reduction of leaf-scale photosynthesis. Vegetation structure affects hydrological fluxes via the dependence of 
interception, throughfall, and transpiration on leaf area.

The carbon assimilated through photosynthesis is either used for autotrophic respiration, which is temperature 
dependent, or used for plant growth by being allocated in the model's plant biomass pools (leaves, living sapwood, 
fine roots, carbohydrate reserves, fruits and flowers, and heartwood). Plant phenology is simulated using empir-
ical formulae, where soil water stress, root zone temperature, solar radiation, and photoperiod are the factors 
leading to changes in the plant's phenological state.

In T&C both the BC and MvG soil hydraulic functions can be used. The modification of Webb (2000) is imple-
mented for the MvG model to improve its predictions at low values of soil water content. In T&C the saturated 
hydraulic conductivity and the parameters describing the shape of the water retention curve can be derived by 
PTFs. In this study, seven different PTFs were used (Figure 1, Figure S2 in Supporting Information S1): three to 
estimate the parameters for the BC model (Cosby et al., 1984; K. Saxton et al., 1986; K. E. Saxton & Rawls, 2006) 
and four for the MvG model (Weynants et al., 2009; Wösten et al., 1999; Y. Zhang & Schaap, 2017; Zacharias 
& Wessolek, 2007). All PTFs, apart from that of Zacharias and Wessolek (2007), provide values for both the 
saturated hydraulic conductivity and the parameters for the shape of the water retention curve. For the case of 
Zacharias and Wessolek (2007) PTF, estimates for the saturated hydraulic conductivity were obtained by the PTF 
of K. E. Saxton and Rawls (2006). All PFTs depend on a subset of the following soil properties: percentage of 
clay, sand, silt, organic material, and bulk density.

Processes related to soil biogeochemistry and belowground carbon, nitrogen, phosphorus and potassium cycles 
are not simulated in this study, even though the model we used has this capability (Fatichi, Manzoni, et al., 2019).

2.1.2. Plot Scale Simulations

The first set of simulations performed here neglects topography and uses T&C at the plot scale, for example, a 
one-dimensional vertical model over a flat domain, similarly to global scale applications of Earth system models. 
The model was set up for 79 sites globally, covering a wide range of climates and biomes (Table S1 in Support-
ing Information S1). For these sites, the model has been previously calibrated and validated (Fatichi, Leuzinger, 
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et al., 2016; Fatichi & Pappas, 2017; Moustakis et al., 2022; Paschalis et al., 2018). To run the model, we used 
hourly local weather data including air temperature, short and longwave radiation, humidity, cloudiness, and 
wind speed. The time span of data availability was between 2 and 32 years, with an average simulation length of 
9.3 years.

For all 79 sites, two sets of simulations were carried out. For the first simulation set, which was used for the 
quantification of uncertainties due to PTF differences in ecosystem functioning, local soil properties (soil texture, 
organic content, and bulk density) were used, and the model was run using all seven PTFs. The second simu-

lation set was used to compare the within soil-type uncertainties that are 
introduced by the choice of PTFs with the across soil-type uncertainties that 
are introduced by lack of knowledge of the exact soil physical properties. 
To this purpose, for each site 12 × 7 simulations were performed where 12 
different soil types, representative of each USDA class, were used (Table 1), 
together with all 7 PTFs, resulting in a total of 6,636 simulations. In all soil 
textures, we added a 2% fraction of soil organic matter, a texture not included 
in the USDA classification. In this sense, our definition for each class is not 
identical to USDA but very similar (classification details are presented in 
Table 1). For the PTFs that did not include an organic matter fraction in the 
soil texture, this 2% fraction was considered as silt.

2.1.3. Distributed Simulations

For two of the 79 sites, Konza and Oak Ridge (ORNL), representative of a 
water-limited grassland and a temperate deciduous forest, respectively, the 
distributed version of T&C was used to quantify how spatially distributed 
water flow dynamics in a complex topography alters PTF-related uncertain-
ties. Specifically, the model was run for both sites using an idealized 4 km 
2 steep catchment topography (Figure 2) with a 290 m elevation difference 
draining to a single outlet. Land use was considered identical for the entire 
domain (i.e., no spatial heterogeneity). All other properties (e.g., plant 

Figure 1. (a) Boxplot of saturated hydraulic conductivity values estimated by six pedotransfer functions (PTFs) (all except the PTF) of Zacharias and Wessolek (2007), 
which does not provide estimates for hydraulic conductivity) across the 12 USDA soil texture classes (colored dots show values obtained from the different PTFs). For 
each PFT class one soil texture was used based on Table 1 and the range represents the effect of the PTFs only. Same as (a) but for the soil water matric potential at 50% 
effective saturation.

% Sand % Clay % Silt % Organic
Bulk density 

[gcm −3]

Silt 10 5 83 2 1.44

Silty clay loam 10 30 58 2 1.34

Silty clay 10 45 43 2 1.27

Silt loam 20 15 63 2 1.42

Clay 20 60 18 2 1.26

Clay loam 30 35 33 2 1.40

Loam 40 20 38 2 1.46

Sandy clay 50 40 8 2 1.48

Sandy clay loam 60 30 8 2 1.52

Sandy loam 65 10 23 2 1.49

Loamy sand 80 5 13 2 1.46

Sand 90 5 3 2 1.45

Table 1 
Soil Texture, Organic Content, and Bulk Density for the 12 USDA Soil 
Classes
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species composition and their plant-related parameters) were identical to the plot scale simulations for both sites. 
Previous research has used the same synthetic catchment (Ivanov et al., 2008; Remondi et al., 2019). The spatial 
discretization of the model was 40 m, leading to 2,500 computational cells.

For both sites, two soil types were used. One representative of a fast draining sandy soil (sandy soil: 40% sand, 5% 
clay, 2% organic, and a bulk density of 1.47 gcm −3) and one of a slow draining clay soil (10% sand, 30% clay, 2% 
organic, and a bulk density of 1.34 gcm −3). The soil depth was identical to the soil depth used for the point scale 
simulations for those two sites (Konza: 2,500 mm, ORNL: 1,500 mm). For the two sites and the two soil types, 
a 4-year long simulation was performed using all 7 PTFs. The soil type and soil depth were considered homo-
geneous across the entire catchment and an anisotropy ratio of 50 between the horizontal and vertical hydraulic 
conductivities was considered for all simulations (e.g., Assouline & Or, 2006). An additional simulation with an 
anisotropy ratio of 10 (not shown here) was also performed to assess the sensitivity of our simulations to this 
parameter, which turned out to be of low importance and thus not further discussed. A zero water flux boundary 
condition at the soil bottom was used in the spatially distributed simulations to avoid additional uncertainties 
related to resolving bedrock groundwater dynamics, by neglecting flow at the soil-bedrock interface. Accompa-
nying the spatially distributed simulations, point scale simulations with identical meteorological forcing and soil 
properties (including the zero flux boundary condition) were performed for those two sites to facilitate compari-
son and allow a proper quantification of the sensitivity of accounting for topography and distributed water fluxes.

2.2. Statistical Analysis

2.2.1. Uncertainty Analysis in Point Scale Simulations

For the first set of point scale simulations (i.e., those that used the observed local soil texture) and for the distrib-
uted simulations, we computed the uncertainties that PTF differences introduce in other variables as the average, 
across all time steps, of the standard deviation of modeled variables using different PTFs— that is, for a variable 

𝐴𝐴 𝐴𝐴
ℎ

𝑖𝑖
(𝑡𝑡) , where i is the PTF, h the time scale of aggregation, and t the time step, the uncertainties are computed as:

𝜎𝜎
ℎ

𝑌𝑌
=

1

𝑛𝑛𝑇𝑇
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where nT is the total number of time steps, nP the number of PTFs and 𝐴𝐴 𝑌𝑌 ℎ(𝑡𝑡) =
1

𝑛𝑛𝑃𝑃

∑𝑛𝑛𝑃𝑃

𝑖𝑖=1
𝑌𝑌

ℎ

𝑖𝑖
(𝑡𝑡) .

To obtain nondimensional coefficients of variation (CV) at the annual scale, the average value of annual standard 
deviations was normalized with the mean annual value of the corresponding flux for all PTFs. The variables 
chosen to describe water fluxes were the evapotranspiration (ET), plant transpiration (T), abiotic evaporation (E), 
comprising both ground evaporation and evaporation from interception, total runoff (R), and leakage to deeper 
soil layers (Lk), defined as the water flux at the bottom boundary of the simulation domain. To facilitate compar-
ison of water fluxes across sites, 𝐴𝐴 𝐴𝐴

ℎ

𝑌𝑌
 was normalized by the site's average precipitation at the same time scale. The 

variables chosen to describe carbon fluxes were the gross and net primary productivity (GPP and NPP), that is, 
the gross photosynthetic rate, and the net carbon used to produce plant tissues, that is, GPP minus autotrophic 

Figure 2. (a) Elevation (m), (b) slope (m/m), and (c) topographic index for the idealized catchment used in the distributed simulations.
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respiration. The structure of vegetation was described by the leaf area index (LAI). The plant water stress was 
quantified by the vegetation stress factor β, which is the water stress reduction factor applied to photosynthesis 
when soil water potential is below a threshold. β ranges between 0 and 1, with 1 indicating unstressed vegetation 
and 0 complete suppression of photosynthesis. β is a sigmoidal function of soil water potential for values of water 
potential below a plant specific threshold (Wu et al., 2018). For the distributed simulations, the variation of LAI 
and ET for every grid point were also normalized by their average value across all time steps and PTFs for any 
given grid point, to obtain nondimensional coefficients of variation.

For the second set of simulations at the point scale (i.e., those that used 12 different soil classes), an approach 
similar to Paschalis et al. (2017) was used to partition variability into its natural component (i.e., stochastic vari-
ability) and its uncertainty due to different soil textures and different PTFs. For example, for a variable Yi,j,k(t), 
where i corresponds to the PTF, j to the soil texture, k to the site, and t is the time step, the natural variability is 
quantified by:

���� = 1
IJK
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where I, J, K, N are the number of PTFs, soil textures, sites and years accordingly. Similarly, the PTF uncertainty 
is quantified by
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And the texture uncertainty is:
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The variance partitioning was performed at the annual scale.

Uncertainty dependence on background climate was investigated using the wetness index of each site, defined as 
the average ratio of annual precipitation to annual potential evapotranspiration for all years in the meteorological 

record 
(

�� = ��
����

)

 .

2.2.2. The Role of Topography

To understand how consideration of topography alters uncertainties, we computed the uncertainties introduced by 
PTFs for all grid points within the distributed domain, for ET, LAI, root zone soil moisture, and β. The depend-
ence of the uncertainties on the topography was computed as a function of each grid point's topographic index, 
defined as TI = log(A/tan(b)), where A [m 2] is the area draining to any given grid point and b[rad] the slope at 
the same grid point defined as the steepest downhill slope based on the D8 flow direction method (e.g., Wilson 
et al., 2007). The catchment response was quantified using the probability distribution of discharge, expressed in 
terms of its survival function (i.e., probability of exceedance) at its outlet at the daily time scale.

3. Results
3.1. Plot Scale Simulations

The uncertainties introduced by the PTF disagreement in predicting soil hydraulic parameters are significant 
for all ecosystem variables. Considering annual scale statistics (Figure 3), uncertainty in vegetation structure 
is on average �(���) = 0.16 m 2 m −2 (Figure 3a) which is 8% of the LAI mean (Figure S3 in Supporting Infor-
mation S1). The uncertainties in GPP and NPP are �(��� ) = 51.4 gC m −2 y −1 and �(��� ) = 30.2 gC m −2 y −1 
(Figure 3b), which are 7.6% and 9.8% of their mean values, respectively (Figure S3 in Supporting Information S1). 
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The very similar magnitudes of LAI, GPP, and NPP uncertainties are expected as GPP directly depends on LAI, 
with photosynthetic rates scaling with LAI, and LAI in turn depends on GPP as it is controlled by the available 
carbon. As autotrophic respiration is less affected by plant water availability, the uncertainties of GPP and NPP 
are expected to be similar. GPP is affected by soil water availability (and thus PTF choice) in two ways: first, by 
short-term plant physiological responses that lead to stomatal closure and photosynthesis reduction, and second, 
by longer-term changes of LAI due to water availability.

Uncertainties introduced by PTFs in water fluxes at the annual scale were on average 4%, 3.4%, and 7.2% of 
the received precipitation, for evapotranspiration, runoff, and leakage, respectively (Figure  3c). Even though 
uncertainties are a small fraction of the total water received as precipitation at each site, when water fluxes are 
compared with their annual averages, uncertainties were on average 5.8%, 49.8%, and 169.8% of their mean 
values for evapotranspiration, leakage, and runoff, respectively (Figure S3 in Supporting Information S1). Runoff 
production is the most impacted variable in the experiments. Our results suggest that choosing among different 
PTFs can lead to large uncertainties with regard to runoff generation, without changing substantially the overall 
water budget. The reason for this behavior is that, in point scale experiments, simulated runoff is commonly a 
relatively small flux, as, by neglecting topography, we neglect flow convergence zones and thus the main loca-
tions for runoff generation. In addition, assuming a flat surface leads to infiltration reaching its maximum value, 
compared to steep hill slopes where infiltration rates may be lower.

The uncertainties of both hydrological and vegetation dynamics are dependent on the site's climate, albeit with 
a noticeable scatter (Figure  4). On average, uncertainties in evapotranspiration and plant productivity (NPP) 
increase in drier climates, the main reason being that, in arid/semiarid climates, vegetation is water stressed 
during part of the year, affecting both plant transpiration, which is the largest fraction of ET (Fatichi, Leuzinger, 
et al., 2016; Paschalis et al., 2018), and photosynthesis. In those climates, differences across PTFs lead to differ-
ences in the dynamics of soil water potential, thus affecting the strength and duration of plant water stress. 
In wetter climates, where water limitations occur rarely, uncertainties regarding productivity are small, despite 
considerable effects on soil water dynamics of the PTF choice. For climates where rainfall exceeds potential 
evapotranspiration (i.e., wetness index WI = P/PET > 1) uncertainties are mostly negligible, as plants do not 
experience significant water stress.

The uncertainties related to leakage (i.e., a proxy of groundwater recharge) are largest in intermediate climates 
(Figure 4). In arid/semiarid climates, irrespective of the PTF that describes the soil hydraulic conductivity and 
the shape of the characteristic curve, leakage is low due to persistent low soil moisture conditions. In mesic 
sites, where precipitation far exceeds potential evapotranspiration, uncertainties related to leakage are also small. 
In such sites, soil is commonly close to field capacity, and precipitation is mostly driving the amount of water 

Figure 3. Boxplots of the uncertainties for all 79 sites introduced by pedotransfer functions at the annual scale for (a) leaf 
area index, (b) gross and net primary productivity, and (c) water fluxes: evapotranspiration, plant transpiration, abiotic 
evaporation, runoff, and leakage.
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recharge regardless of the soil type, with differences arising primarily due to PTF disagreement in the values of 
the saturated hydraulic conductivity. At intermediate sites, where soil moisture is fluctuating between dry and 
wet conditions, all uncertainties due to the saturated and unsaturated hydraulic conductivity as well as the shape 
of the characteristic curve can affect the simulated leakage. Runoff uncertainties are independent of climate, as 
they occur equally at all sites.

As many of the sites analyzed in this study experience a highly seasonal climate, uncertainty analysis was also 
performed at sub-seasonal scales, splitting seasons into dry and wet months, with dry months being defined as 
those when monthly potential evapotranspiration exceeds monthly rainfall and wet months the opposite. The 
uncertainty magnitudes and their dependence on climate are similar between dry and wet seasons (Figure S12 in 
Supporting Information S1), with the only exception being plant productivity. Uncertainty in plant productivity 
during dry seasons is on average lower than in the wet seasons, primarily in semiarid sites, because plant activity 
is at minimal rates no matter the choice of PTF.

3.2. Soil Texture and PTF Choice

In Figure 5, we compare the total variability of both annual water and carbon fluxes due to the natural variability 
of climate (i.e., variability from 1 year to another due to random weather fluctuations) with uncertainties induced 
by soil texture and uncertainties due to the PTF choice. The interannual variability for NPP (and similarly GPP 
and LAI), ET (and similarly E and T) and Lk far exceeds the uncertainties due to either soil texture or the variabil-
ity amongst PTFs (Figures 5a, 5b and 5d). This clearly illustrates the dominance of the model's forcing in a phys-
ically based model rather than its parameters in simulating these fluxes. What is of major importance, however, is 
that the uncertainties due to soil texture are comparable to, and in most cases lower than, the uncertainties across 
PTFs. This means that a complete lack of knowledge of the soil texture at a site introduces less uncertainty in 
the simulated water and carbon fluxes than the uncertainties introduced by the choice of a given PTF once the 
soil texture is perfectly known. The within-soil type PTF variability for both water and carbon fluxes is mostly 
soil-type independent, with the exception of silt and silt-clay-loam experiencing the larger uncertainties for evap-
otranspiration and leakage (Figure S5 in Supporting Information S1) compared to the rest of the soil types used 
in this study.

Noticeably, the runoff uncertainties introduced by the stochastic variability of weather are similar in magnitude 
to the uncertainties introduced by soil texture and lower than PTF choice (Figure 5c). It should be highlighted, 

Figure 4. Dependence of the uncertainties of evapotranspiration, runoff, leakage, and net primary productivity on the 
wetness index. Uncertainties for water fluxes are expressed as the standard deviation of annual fluxes as computed for all 
pedotransfer functions, for every site (each dot), normalized by the average annual precipitation for each site. Solid lines 
correspond to a low-pass moving average filter.
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however, that a large part of this uncertainty relates to very low saturated hydraulic conductivity values predicted 
by the PTF of Weynants et al. (2009), leading to much higher values of runoff for this specific PTF. This disagree-
ment is likely due to methodological differences in the quantification of saturated hydraulic conductivity. In the 
PTF of Weynants et al. (2009), the saturated hydraulic conductivity values used for PTF parameterization were 
computed using a parametric fit for conductivity values measured below saturation. This estimate eliminates the 
potential influence of macropore flow that would be present in all other PTFs, and for this reason, the estimates 
of conductivity of Weynants et al. (2009) are significantly lower (see also Figure 1a).

3.3. Distributed Simulations

Uncertainties introduced by PTFs in both hydrological and vegetation dynamics can be either amplified or 
dampened when the effects of topography through radiation and lateral water fluxes are taken into account. As 
the patterns between GPP and NPP are very similar to LAI, only results pertaining to LAI are presented here. 
However, these are also representative of both gross and net primary productivity.

In the temperate ORNL site, where vegetation is not significantly water stressed, uncertainties in vegetation 
structure and ET at the annual scale are always <10% compared to their mean values (Figures 6a and 6b). LAI 
uncertainties always decline with increasing TI for both high and low permeability soils and are dampened when 
compared to the point scale simulations. However, large uncertainties occur in the small fraction of the catch-
ment that experiences frequent inundation. The reason for this is that, in T&C, photosynthesis is suppressed for 
partially submerged or submerged vegetation, and small changes in the time a grid cell remains inundated can 
lead to large uncertainties in vegetation productivity and, ultimately, LAI. Also, radiation fluxes in (partially) 

Figure 5. Comparison of the interannual variability with the variability in ecosystem responses due to differences in soil 
texture and due to the choice of pedotransfer functions within the same soil types for (a) net primary productivity, (b) 
evapotranspiration, (c) runoff, and (d) leakage, at the annual scale.
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submerged vegetation and vegetation dynamics are treated in a simplified manner in T&C. For this reason, we 
refrain from further interpreting this result, as it is dependent on the spatial resolution used for solving surface 
water fluxes and on the implementation of water-logging stress, which has not been fully tested in T&C. Addi-
tionally, as T&C adopts the simplified kinematic wave approximation for surface water dynamics and not the 
full dynamic wave approximation of the shallow water equations, inundation extent, which is the largest source 
of uncertainty for very high TI values, is unlikely to be well captured. Uncertainties regarding ET in ORNL 
are  amplified, compared to the point scale simulations, for the low conductivity clayey soil, with the largest 
amplifications occurring in the flow convergence zones (high TI) (Figure 6b). In contrast, uncertainties are damp-
ened when a sandy soil was used, with the dampening effect being strongest at intermediate TI values, which 
correspond to hillslopes near, but not on, the river network where water flow converges. Within the river network, 
a large scatter was obtained, primarily due to transpiration suppression due to inundation. For the same reasons 
as for LAI, we refrain from further interpretation of the uncertainties in channel areas.

In the water-limited Konza site, the uncertainties introduced by PTFs in simulated LAI values are large (up 
to 30% of the mean LAI values). Compared to the point scale simulation, uncertainties are amplified when a 
clay-rich soil was used and dampened in the case of a sandy soil (Figure 6c). ET patterns follow a similar trend 
(Figure 6d). Clay soils always exhibit higher uncertainties in the distributed simulations than sandy soils, even 
though for the equivalent plot scale simulations the differences were minimal (Figure 6). Uncertainties in the 
clay-soil simulation were always higher (for the entire simulation domain) than the equivalent point scale results 
for the water-limited Konza case, while for the sandy soils, uncertainties were dampened upland and amplified 
close to the flow convergence zones. Within the Konza catchment, uncertainties for both LAI and ET increase at 
high TIs close to the river network, with an exception being LAI uncertainties for TI < 9 in sandy soils.

In the water-limited site, most of the topographic variability of LAI can be explained by the uncertainties of 
simulated plant water stress (Figures 7c and 7d). The pattern for ET follows an almost identical pattern as for LAI 
(Figure S6 in Supporting Information S1), the reason being the dependence of transpiration, that constitutes the 
largest fraction of ET, on the amount of leaf area and thus NPP. Uncertainty in the stress factor β is not highly 
correlated with the uncertainties in soil moisture (Figures S7 and S8 in Supporting Information S1). The reason 
is that β depends on soil water potential in T&C and thus the uncertainties of soil water content are modified by 
the heavily nonlinear relationship between water content and soil water potential. Uncertainties in water potential 
are typically larger (Figure S2 in Supporting Information S1) at the drier end of the water retention curve, where 
plant water stress occurs. Overall, the soil hydraulic properties, the temporal structure of rainfall, and topography 

Figure 6. Scatter plots between the topographic index and the uncertainty introduced by different pedotransfer functions 
on simulated leaf area index (a–c) and evapotranspiration (b–d) at the annual scale for all grid points in the distributed 
domain. Upper row (a and b) corresponds to the ORNL site. Bottom row (c and d) corresponds to the Konza site. Blue colors 
correspond to simulations using a clayey soil, orange to simulations using a sandy soil.
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determine the water flow dynamics throughout the distributed domain and ultimately determine the duration and 
intensity of plant water stress in different regions of the catchment.

Conversely, in ORNL the impact of water stress on ET variability is mostly negligible, leading to lower total 
uncertainty values compared to the water-limited Konza site. In ORNL, both LAI and β uncertainties decline 
with the increase of TI for the sandy soil simulation, and are almost independent of TI for the clay soil simulation 
(Figure S9 in Supporting Information S1). The pattern of ET cannot be explained by β (Figures S8 in Support-
ing Information S1), suggesting that most of the variability comes from differences in net radiation and surface 
soil evaporation which is influenced by surface soil moisture. Surface soil moisture is simultaneously impacted 
by soil hydraulic properties and by radiation availability, modulated by topography due to hill slope aspect and 
shading. The overall complex interactions between these processes shape the dependence of ET uncertainties on 
local topography.

One variable that is highly impacted by the differences across PTFs is river discharge (Figure 8), and particularly 
its extremes. Uncertainties for extreme events can be within an order of magnitude and occur in both sites and for 
both soil types. In the highly permeable sandy soils, discharge, both in terms of base flow and extremes, is lower 
than in clay soils. Using the PTF of Weynants et al. (2009) leads to the highest simulated values of discharge. The 
PTF of Wösten et al. (1999) also leads to high discharge extremes. For the simulations using the low permeability 
clay soil the PTFs of Wösten et al. (1999); Zacharias and Wessolek (2007); Weynants et al. (2009) lead to the 
highest discharge extremes. As expected, in all cases, high runoff production was associated with PTFs having 
the lowest hydraulic conductivity values (Figure S10 in Supporting Information S1; first boxplot), which remarks 
that when the conductivity values are low, there is a higher than average discharge simulated.

All the results presented in this section are generalizable across time scales, from hourly to yearly, as the same 
patterns occur at all scales. However, its worth noticing that uncertainties overall decrease with an increasing 
temporal scale of aggregation (Figure S11 in Supporting Information S1).

Figure 7. Scatter plot between the uncertainties in the simulated leaf area index for all the grid points in the distributed 
simulation domain as a function of the simulated uncertainties in the soil water stress factor (β) at the annual scale. Colors 
indicate the topographic index. The upper row (a and b) corresponds to the ORNL site, the bottom row (c and d) to the Konza 
site. Left (a–c) and right (b–d) columns correspond to the clay and sandy soil simulations, respectively.
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4. Discussion
4.1. Impact of Differences Among PTFs

While many studies have focused on differences across PTFs and their ability of accurately predicting soil 
hydraulic properties (e.g., Minasny et al., 1999), how uncertainties in soil hydraulic properties impact ecosystem 
dynamics at various spatial scales has received far less attention. Our results show that both hydrological and 
vegetation dynamics can be substantially affected by this source of uncertainty and that PTF choice might be as 
important, or generally more, than the choice of the soil type, as already found by Gutmann and Small (2007). 
Previous studies focused primarily on hydrological dynamics and our results are in agreement with their find-
ings. Weihermüller et al. (2021) showed that differences across PTFs can lead to a coefficient of variation for 
ET of ∼5%, in line with our 5.8% estimate, despite the very different modeling approaches used. Interestingly, 
Weihermüller et al. (2021) report a large number of cases where some PTFs led to numerical instabilities in the 
HYDRUS model. This problem did not occur in the T&C simulations, partly because of the different numerical 
scheme (finite volumes vs. finite elements) and partly because of the correction of Webb (2000) we introduced 
in the MvG model to improve representation of the water retention curves in the driest regime. Our results were 
also in line with Edouard et al. (2018); Yang et al. (2018); Rieger et al. (2010); Mohajerani et al. (2021) showing 
large uncertainties regarding runoff production, even though we cannot directly compare the uncertainties due to 
differences in climates and topography with the case studies presented in previous research. However, a crucial 
result is that uncertainties in runoff generation are of the same order of magnitude in all climates and soil types 
analyzed (Figure 4). As knowledge of precise hydraulic properties is not common in most parts of the world, this 
finding highlights the long-standing challenge in hydrology of making flood risk simulations based solely on a 
process-based approach, which entails irreducible uncertainties.

Beyond runoff generation, the hydrological flux mostly affected by uncertainty was water percolation to deeper 
soil layers (i.e., leakage), which is a proxy of groundwater recharge. Uncertainties regarding leakage were larg-
est, as a fraction of precipitation, at locations of intermediate wetness. In such areas, pumped groundwater is 
commonly a large fraction of the total water use (Gleeson et al., 2012), highlighting the importance of the uncer-
tainty propagation from PTF estimates to recharge dynamics. The total uncertainties could also be larger as PTFs 
are mostly trained on surface soil data (e.g., Rawls et al., 1991). To better tackle this problem, more data are 
needed regarding soil hydraulic properties of deeper layers to further parameterize PTFs.

Figure 8. Survival functions (exceedance probability) for the river discharge (R) at the catchment outlet for the distributed 
simulations using all seven pedotransfer functions. The upper row (a and b) corresponds to the Konza site. The bottom row (c 
and d) to the ORNL site. Left column (a–c) corresponds to the sandy soil simulation and right column (b–d) to the clay soil 
simulations.
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4.2. Implications for Carbon Cycle and Terrestrial Biosphere Models

This study is the first to estimate how uncertainties introduced by PTF choice impact carbon cycle dynamics. 
Our results suggest that, on average, variability of soil hydraulic parameters can lead to ∼10% uncertainty in both 
carbon fluxes and vegetation structure (i.e., LAI). This uncertainty, even though large, is much smaller than the 
uncertainties reported between different terrestrial biosphere models (typically in the order of 10%–40% for GPP 
and NPP for different parts of the world; e.g., Keenan & Williams, 2018; Zheng et al., 2020; Cramer et al., 1999). 
Combined uncertainties related to differences in how they simulate processes from photosynthesis (e.g., Pappas 
et al., 2013; Rogers, 2014), to phenology (e.g., De Kauwe et al., 2017; Richardson et al., 2013), carbon alloca-
tion (e.g., Fatichi, Pappas, et al., 2019; Franklin et al., 2012), and vegetation water stress (e.g., Wu et al., 2018; 
Paschalis et al., 2020) largely exceed the estimated uncertainties introduced by PTFs. However, an uncertainty for 
LAI and carbon fluxes in the order of ∼10% is still significant and comparable to changes expected with climate 
change (e.g., Shao et al., 2013). Overall, reducing epistemic uncertainties between current generation terrestrial 
biosphere models and the uncertainty introduced by their most sensitive parameters is still of high priority for 
better carbon cycle predictions (e.g., Lovenduski & Bonan, 2017; Pappas et al., 2013, 2016).

Even though PTF uncertainties introduced in LAI and carbon fluxes are less than other sources, their importance 
is still high, particularly in water-limited ecosystems. Such ecosystems are amongst the most vulnerable under a 
changing climate (e.g., Huang et al., 2017), and projected increases in atmospheric, meteorological and hydro-
logic drought can intensify plant water stress. Changes in plant water stress can alter both the local water and 
carbon cycles, with pronounced impacts on global scale carbon dynamics (e.g., Humphrey et al., 2018) and also 
on the livelihood of people, as in many semiarid areas globally, subsistence is to a large degree dependent on 
rainfed agriculture, particularly in the developing world. It is fundamental to remark that a proper quantification 
of plant water stress cannot ignore a robust definition of soil hydraulic properties. While a large number of recent 
studies have focused on the importance of representing plant hydraulic and physiological properties in simulat-
ing water stress in terrestrial biosphere models (e.g., Feng, 2020; Kennedy et al., 2019; Medlyn et al., 2016; Xu 
et al., 2016), much less attention has been dedicated to soil hydraulic properties, which might be equally impor-
tant in defining plant-water stress.

PTFs-induced uncertainties in plant water stress were able to explain, to a large extent, the uncertainties in both 
water and carbon dynamics. However, uncertainties in plant water stress were not highly correlated with uncer-
tainties in soil moisture (Figure S8 in Supporting Information S1). The reason is that, in the model we used, plant 
water stress depends on root integrated soil water potential (which is the quantity felt by plants) and not soil mois-
ture. Many alternative models use soil moisture for parameterizing plant water stress (e.g., Harper et al., 2021; 
Paschalis et al., 2020; Wu et al., 2018), and thus the uncertainties of both the water and carbon dynamics, particu-
larly in drier areas, are expected to be less PTF-dependent and more dependent on how soil moisture is used to 
parameterize water stress. This highlights the importance of simultaneously monitoring both soil water content 
and vegetation stress dynamics, in order to reduce uncertainties and, at the same time, improve and best tune 
terrestrial biosphere models. New generation remote sensing technologies can now provide to some degree such 
information at the global scale (e.g., Chan et al., 2016; Konings et al., 2021; Y. Sun et al., 2015).

4.3. The Importance of Accounting for Topographic Effects

Small scale topography was found to both amplify and dampen (based on soil type and climate) uncertainties 
introduced by the choice of the PTF. Particularly, in dry conditions, uncertainties within the spatially distributed 
simulations were up to threefold larger than plot scale simulations, for both water and carbon dynamics. This 
effect is largely related to lateral water redistribution in the surface (runoff and runon processes) and subsurface, 
which is considerably affected by soil hydraulic properties. In a distributed domain, such effects are accumulated 
from upland areas toward down slope converging areas, considerably increasing the importance of soil hydraulic 
properties in the simulation of plant water stress and thus carbon and water fluxes. To a second order, topographic 
variability also implies a different amount of received net radiation at the surface, which interacts with ground 
evaporation. Such a process is also mediated by soil hydraulic properties. Currently, all global scale applications 
of ecosystem models, either offline or coupled with atmospheric models, neglect subgrid topography and lateral 
water fluxes. This potentially leads to an underestimation of the importance of properly representing soil hydrau-
lic properties (Fatichi et al., 2020; Tafasca et al., 2020). This might have implications for a number of dynamics, 
such as land surface coupling (Gevaert et  al.,  2018), runoff predictions (e.g., Ukkola et  al.,  2018; X. Zhang 
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et al., 2014) and predictions of plant water stress and its impacts on the carbon cycle (e.g., Anderegg et al., 2013; 
De Kauwe et al., 2020). Introduction of new generation hyper-resolution models can potentially resolve these 
problems, albeit with large computational costs involved (e.g., Fan et  al.,  2019; Forrester & Maxwell,  2020; 
Mastrotheodoros et al., 2020; O’Neill et al., 2020).

One additional source of uncertainty related to soil hydraulic properties, not investigated here, is the role of soil 
structure (Bonetti et al., 2021; Fatichi et al., 2020). All PTFs used in this study neglect the effect of soil struc-
ture that can significantly alter the soil hydraulic parameters at water potentials close to saturation. In fact, the 
uncertainties expected from soil structure alone have been found to have a similar order of magnitude as the one 
reported in this study, particularly for hydrological dynamics (Fatichi et al., 2020). Ultimately, uncertainties intro-
duced by soil structure are further increased by complex soil-vegetation combinations (Bonetti et al., 2021), and 
can significantly impact hydrological and land surface dynamics. Based on results obtained here, it is likely that 
the role of soil structure in modifying ecohydrological variables will be magnified by considering a distributed 
topography, as already hinted by Fatichi et al. (2020).

4.4. Study Limitations

The results of the present study were derived using a single ecohydrological model. One source of uncertainty 
that was not considered here is the role of the model structure itself. The different estimates of soil hydraulic 
properties across PTFs should affect soil water transport similarly amongst most ecohydrological and terrestrial 
biosphere models, all other things being equal. That is because most models solve the Richards' equation (albeit 
exceptions that use simplified hydrological dynamics exist; see Wu et al. (2018) for a review of how different 
models solve soil water dynamics), commonly using similar numerical procedures. However, the representation 
of how soil moisture impacts plant water stress and thus plant transpiration and productivity is highly vari-
able across models (e.g., Egea et al., 2011; Paschalis et al., 2020; Wu et al., 2018; Zhou et al., 2013). These 
model-specific differences will impact all ecohydrological dynamics. Similar large differences across models can 
be expected for the parametrization of the dependence of soil evaporation on surface soil moisture (e.g., Lehmann 
et al., 2018, 2008) and also how plants access water in the root zone (e.g., Harper et al., 2021). To compute the 
magnitude of uncertainties related to the choice of the ecosystem model, a multimodel intercomparison project 
would be necessary, or even better, an analysis where single model components are replaced with alternative 
solutions within the same modeling framework.

In this study, we analyzed how uncertainties of soil hydraulic properties propagate to hydrological and ecosystem 
dynamics. However, disentangling the exact mechanism of how those uncertainties propagate across spatial and 
temporal scales is a major challenge. Many of the variables we analyzed are highly correlated (Figure S13 in 
Supporting Information S1) and causally dependent. For example, uncertainties regarding plant water stress will, 
at short time scales, impact plant transpiration and GPP/NPP through stomata closure. At longer time scales, 
LAI is reduced if GPP decreases, and it can subsequently impact both water and carbon fluxes. To disentangle 
the exact mechanisms, multiscale causal inference techniques would be needed (e.g., Detto et al., 2012; Runge 
et al., 2019).

Finally, we used for all sites and soil texture combinations all PTFs, without filtering out potentially unrealis-
tic results, as the scope of the study was to compute the uncertainties originated by the indiscriminate use of 
PTFs, beyond specific areas and limits of derivation as often done in large-scale models. Developing a filtering 
scheme that could identify the applicability range of each PTF would likely reduce their uncertainties. In this 
sense, our estimates are likely conservative and quantify the maximum values of the PTF related uncertain-
ties. Approaches that can successfully reduce uncertainties related to PTFs have been previously applied (e.g., 
McNeall et al., 2016; Verhoef & Egea, 2014), and could be incorporated in global scale modeling applications 
where currently PTFs are used without any filtering.

5. Conclusions
In this work, we quantified how disagreement between predicted hydraulic properties by 7 common pedotransfer 
functions leads to uncertainties in the simulated carbon and water fluxes at 79 sites across the world. We found 
that PTF disagreement can significantly impact both the water and carbon cycles, irrespective of soil type. Runoff 
and leakage to deep soil layers were the two hydrological fluxes most impacted by this uncertainty, with the 
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uncertainty of annual fluxes being on average 168% and 50% compared to their mean values. Runoff uncertain-
ties were independent of climate, while leakage uncertainties were strongest at climates of intermediate wetness 
(i.e., a wetness index of around 1). Despite those large uncertainties, because of the relatively small magnitude of 
those fluxes compared to annual rainfall, the uncertainties they introduce on the partitioning of precipitation to 
evapotranspiration and the other hydrological budget components is within 10%. Uncertainties in leaf area index 
and carbon fluxes (GPP and NPP), computed as the annual coefficient of variation, were smaller (8%, 7.6%, 
and 9.8%) than water fluxes and to a large extent explained by the intensity and duration of plant water stress. 
For both hydrological and vegetation dynamics, the uncertainties due to PTF disagreements were larger than the 
uncertainties due to differences in soil types, highlighting the importance of the choice of a PTF and the need 
for new, more robust and generally applicable PTFs. Finally, the results showed that small scale topography can 
amplify the importance of the uncertainties of soil hydraulic parameterization by threefold, especially for low 
permeability, clay-rich soils in water-limited ecosystems, highlighting that new generation hyper-resolution and 
distributed climate and terrestrial biosphere models might be more affected by soil hydraulic parameters than the 
current ones.

Data Availability Statement
The model used for the simulations can be found in the following citable repository, https://doi.org/10.24433/
CO.0905087.v2.
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