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Abstract 

Neuronal responses to similar stimuli change dynamically over time, raising the question of how 

internal representations can provide a stable substrate for neural coding. Recent work has suggested 

a large degree of drift in neural representations even in sensory cortices, which are believed to store 

stable representations of the external world. While the drift of these representations is mostly 

characterized in relation to external stimuli, the behavioural state of the animal (for instance, the 

level of arousal) is also known to strongly modulate the neural activity. We therefore asked how 

the variability of such modulatory mechanisms can contribute to representational changes. We 

analysed large-scale recording of neural activity from the Allen Brain Observatory, which was used 

before to document representational drift in the mouse visual cortex. We found that, within these 

datasets, behavioural variability significantly contributes to representational changes. This effect 

was broadcasted across various cortical areas in the mouse, including the primary visual cortex, 

higher order visual areas, and even regions not primarily linked to vision like hippocampus. Our 

computational modelling suggests that these results are consistent with independent modulation of 

neural activity by behaviour over slower time scales. Importantly, our analysis suggests that reliable 

but variable modulation of neural representations by behaviour can be misinterpreted as 

representational drift, if neuronal representations are only characterized in the stimulus space and 

marginalised over behavioural parameters.  
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Introduction 

Neuronal responses to stimuli, contexts or tasks change over time, creating a drift of representations 

from their original patterns (Deitch et al., 2021; Driscoll et al., 2017; Lütcke et al., 2013; Marks and 

Goard, 2021; Schoonover et al., 2021; Ziv et al., 2013). This representational drift can reflect the 

presence of intrinsic noise or plasticity in the circuitry and, depending on its origin, can be 

detrimental to or beneficial for the neural code (Clopath et al., 2017; Rule et al., 2019). 

Understanding the mechanisms contributing to the emergence of representational drift can 

therefore shed light on its relevance for neural computation (Lütcke et al., 2013; Rule et al., 2019).  

Representational drift can arise from a variety of sources including bottom-up mechanisms, like 

changes in the feedforward input to neurons or from a dynamic reorganization of recurrent 

interactions in the network. Another important source of variability that can contribute to 

representational drift is changes in the behavioural state of the animal. Spontaneous behaviour has 

in fact been shown to heavily modulate responses in awake behaving animals (Musall et al., 2019; 

Niell and Stryker, 2010; Stringer et al., 2019). Drift of behavioural state – e.g. gradual changes in 

attention, arousal or running – can therefore change the way neural activity is modulated by top-

down mechanisms (Niell and Stryker, 2010; Vinck et al., 2015) over different timescales.  

The exact manner in which such top-down mechanisms modulate the neural activity (Cohen-Kashi 

Malina et al., 2021; Dipoppa et al., 2018; Fu et al., 2014; Garcia del Molino et al., 2017; Pakan et al., 

2016) would in turn determine how behavioural variability affects the representational drift. One 

possibility is that stimulus-evoked responses are just scaled by arousal or running, as suggested by 

gain models (Ferguson and Cardin, 2020). Under this scenario, the behavioural state of the animal 

can modulate the similarity of sensory representations across multiple repeats of the same stimulus 

(representational similarity), by increasing or decreasing the signal-to-noise ratio. Another 

possibility is that the behaviour contributes independently to neuronal activity, and hence 

representational similarity is better described in a parameter space where internal and external 

parameters conjointly define the neural code. Under the latter scenario, variability in behavioural 

“signal” could be perceived as noise from the viewpoint of sensory representations, and could 

therefore be potentially mistaken as representational drift.   

To delineate the contribution of behavioural variability to representational drift and to shed light 

on the involved mechanisms, we analysed publicly available datasets from the Allen Brain 

Observatory (de Vries et al., 2020; Siegle et al., 2021). These datasets provide a good opportunity to 

systematically address this question as standardized visual stimulation and large-scale recordings of 
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population activity in response to multiple repeats of the same stimuli are combined with systematic 

measurements of behavioural parameters (like running speed and pupil size) across a large number 

of animals. Our analysis suggested that changes in the behavioural state of the animal can strongly 

modulate the similarity of neuronal representations in response to multiple repeats of the same 

stimulus. In fact, within the datasets analysed, a significant fraction of what may be described as 

representational drift in a sensory cortex can be attributed to behavioural variability. Our results 

suggest that the contribution of behavioural variability to changes in neuronal activity should be 

carefully quantified and considered in the analysis of representational similarity and 

representational drift. 

Results 

Representational similarity depends on the behavioural state of the animal 

We analysed publicly available, large-scale, standardized in vivo physiology datasets recently 

published by the Allen Brain Observatory (Siegle et al., 2021). The electrophysiology datasets 

obtained via Neuropixels probes (Jun et al., 2017) provide the possibility of studying the spiking 

activity of a large number of units to visual stimuli (see Methods). We studied similarity of neural 

activity in response to multiple repeats of the same natural movie (Figure 1a).  

Previous studies have reported significant changes in stimulus-evoked representations even in 

sensory cortices, over the time scales of multiple hours to multiple days and weeks (Deitch et al., 

2021; Marks and Goard, 2021; Schoonover et al., 2021). The Neuropixels electrophysiology datasets 

provide the opportunity of studying these representational changes while accounting for 

behavioural changes, although over a faster time scale (hours). Similar representational drift has in 

fact been reported for another dataset (obtained via two-photon calcium imaging) over the course 

of multiple days (Deitch et al., 2021). The insights obtained from this analysis may therefore help 

in understanding the mechanisms underlying representational drift over longer time scales. 

To shed light on the involved mechanisms, we contrasted two potential scenarios (Figure 1b). 

Changes in population activity in response to the same stimulus can arise from a completely random 

and independently added noise. Alternatively, modulation of activity by other (stimulus-

independent) factors like behavioural modulation can also contribute to these changes (Figure 1b). 

To delineate between these two scenarios, we characterized how neuronal representations change 

across repetitions of the same stimulus (Figure 1a,b). This was quantified by a measure of 

representational similarity (RS), which was characterized as the similarity of responses, at the 
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population level, to multiple repeats of the stimulus (Methods and Figure 1—figure supplement 1). 

Representational drift was calculated as the difference of RS within and between multiple repeats 

of the natural movies (see Methods). 

Metrics of representational drift (e.g., representational drift index, RDI (Marks and Goard, 2021); 

see Methods) are often calculated from RS. We therefore based our analysis primarily on comparing 

RS and its relationship with sensory and behavioural parameters, as this contained more 

information. RDI was calculated as a single metric to quantify representational drift between blocks 

of presentation in each session. The drop in representational similarity between individual pairs of 

movie repeats was used to analyse representational drift on a finer scale (this drop is mathematically 

related to representational drift; see Methods). The main behavioural parameters we analysed were 

the size of pupil and the running speed of animals. We refer to more slowly changing dynamics of 

these parameters (compared to sensory-evoked responses) as the behavioural state of the animal, 

and changes in these states are described as behavioural variability.  

Our analysis was performed in two datasets with different structure of stimulus presentations 

(Figure 1c,f; see Supplementary Table 1). In each dataset, the natural movie (30 second long) is 

presented multiple times in each block of presentation (10 and 30 repeats for dataset1 and dataset2, 

respectively). We analysed the data for two blocks of presentation separated by more than an hour 

(Figure 1c,f). For each presentation of the natural movie, we calculated a population vector of 

responses from the average activity of all the units recorded in the primary visual cortex (V1), in 

bin widths of 1 second starting from the onset of movie presentation (Methods). Representational 

similarity between two repeats of the natural movie was quantified by the correlation coefficient 

of the population vectors (Figure 1—figure supplement 1c and Methods).  

Previous analysis has shown that representational similarity (as defined above) is higher within a 

block of presentation, and decreases significantly between different blocks, both in Neuropixels and 

calcium imaging datasets (Deitch et al., 2021). Our results confirmed this observation, but we also 

found that representational similarity is strongly modulated by the behavioural state of the animal. 

This was most visible in sessions where the behavioural state (as assayed by pupil diameter and the 

average running speed) changed clearly between the two repeats of the movie (Figure 1c,f). We 

observed that, firstly, change in the behavioural state strongly reduced the representational 

similarity between the two blocks (Figure 1d,g), reminiscent of the representational drift which has 

been reported over the scale of hours to days (Deitch et al., 2021; Marks and Goard, 2021; 

Schoonover et al., 2021). Secondly, increased pupil diameter and running during the second block 
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of presentation in fact increased the similarity of responses to the same movie within that block 

(Figure 1d,g, left). Overall, there was a significant drop of representational similarity between the 

movie repeats in which the animal experienced the most changes in the average pupil size (Figure 

1d,g, right). These results indicate that the behavioural state of the animal can bidirectionally 

modulate the representational similarity across repeats of the same stimulus. 

We found similar dependence of representational similarity on the pupil change for other sessions 

(Figure 1--figure supplement 2a) and across all animals (Figure 1e,h). The effect was more 

prominent when focusing on movie repeats with significant changes in the average running (Figure 

1e,h, left, black lines). Similar trend was also observed when considering units from all recorded 

regions, instead of only focusing on V1 units (Figure 1—figure supplement 2b). We also observed 

the same trend when repeating the analysis within blocks (Figure 1d-h, right, grey lines, and Figure 

1—figure supplement 2b), although the drop of representational similarity across blocks was more 

prominent due to more drastic behavioural changes between the blocks, which is expected from 

the slow timescale of changes in behavioural states. 
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Figure 1: Representational similarity depends on the behavioural state of the animal.  

a, Illustration of the response of a population of neurons to a stimulus (e.g., a natural movie) which is shown 

twice (left versus right). b, Neuronal response to different repetitions of the same stimulus can remain the 

same (left) or change from the original pattern (right), leading to a change in neural representations. This 

change can arise from an added stimulus-independent noise, which is randomly and independently changing 

over each repetition. Alternatively, it can be a result of another signal, which is modulated according to a 

stimulus-independent parameter (e.g., behaviour), that is changing over each repetition. c, Population 

activity composed of activity of 483 units in an example recording session in response to different stimuli 

(timing of different stimulus types denoted on the top). Spiking activity of units is averaged in bins of 1 second 

and z-scored across the entire session for each unit. Units in primary visual cortex (V1; 58 units) and the two 

blocks of presentation of natural movie 1 (NM1) are highlighted by the black lines. Bottom: Pupil size and 

running speed of the animal (z-scored). d, Representational similarity between different presentations of 

natural movie 1. It is calculated as the correlation coefficient of vectors of population response of V1 units to 



 7 

movie repeats (see Methods). Left: The matrix of representational similarity for all pairs of movie repeats 

within and across the two blocks of presentation. Right: Representational similarity as a function of the pupil 

change, which is quantified as the normalized absolute difference of the average pupil size during 

presentations (see Methods). The best fitted regression line (using least squares method) and the R squared 

value (R2) are shown. Filled circles show the average values within and between blocks. e, Same as (d, right) 

for all recording sessions. Left: Data similar to (d, grey dots) are concatenated across all mice and the best 

fitted regression line to the whole data is plotted. Black line shows the fit when movie repeats with significant 

change in the average running speed of the animal is considered (80th percentile). Right: The average values 

within and between blocks (filled circles in (d)) are plotted for all mice and the fitted regression line to these 

average values is plotted. Grey lines and R2 values indicate the fit to within-block data only. N: number of 

mice. f-h, Same as (c-e) for a different dataset. Source data (for normalized changes in pupil width and 

representational similarity between pairs of movie repeats) are provided for individual sessions across the two 

datasets (Figure 1—source data 1). 

 

In the above analysis, we considered the actual spiking activity of the units to build the population 

vectors. Calculating the representational similarity from these vectors can potentially bias the 

estimate by increasing the impact of highly active neurons. For instance, if the units which are 

firing higher remain consistently active, they may lead to some similarity of population vectors 

even independent of stimulus-evoked responses. To control for variance in the average activity of 

units, we repeated our analysis for population vectors composed of z-scored responses (as shown in 

Figure 1c,f; see Methods). Overall, representational similarity diminished when calculated from the 

z-scored activity (Figure 1—figure supplement 3a). However, we observed the same trend in terms 

of dependence on the behavioural state, whereby larger changes in pupil size were correlated with 

larger changes in representational similarity (Figure 1—figure supplement 3a).  

We performed our original analysis with vectors of activity rendered in time bins of 1 second, 

corresponding to the interval of presentation of each frame of the natural movie (Methods). We 

tested whether our results hold for responses rendered in different time bins, by testing longer time 

bins (2 seconds; Figure 1—figure supplement 3b). Overall, representational similarity was higher, 

as expected from averaging the activity. However, we observed similar drop of representational 

similarity with increases in pupil size (Figure 1—figure supplement 3b). 

Our previous analyses were performed on wild-type mice as well as mice from three different 

transgenic lines (Pvalb-IRES-Cre × Ai32, n=8; Sst-IRES-Cre × Ai32, n=12; and Vip-IRES-Cre × Ai32, 

n=8; see Supplementary Table 1) (Siegle et al., 2021). To control for possible differences between 
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different strains, we repeated our analysis for recording sessions in wild type mice only and 

observed similar results (Figure 1—figure supplement 4a). Our results also held when analysing 

female and male animals separately (female mice comprised a smaller fraction of the datasets; ~20%) 

(Figure 1—figure supplement 4b).  

In our results above, we observed large changes in representational similarity between blocks of 

stimulus presentation with strong behavioural changes. But this effect can be confounded by the 

passage of time between the blocks, which may lead to other sources of variability such as changes 

in the excitability of neurons for instance. To account for this, we analysed the average block-wise 

representational similarity in individual animals (Figure1—figure supplement 5). For each animal, 

we quantified the representational drift index (RDI) between the two blocks as the normalized 

change of average correlations within and across blocks (Marks and Goard, 2021) (see Methods). 

If the passage of time contributes strongly to the drop in representational similarity between the 

two blocks, we should see comparable levels of representational drift across animals with different 

levels of behavioural variability. Conversely, if the change in behaviour is the main factor 

contributing to the drop in representational similarity between the two blocks, we should see 

stronger levels of representational drifts for animals with larger behavioural variability. We indeed 

found evidence in favour of the latter: representational similarity remained rather stable for those 

animals which did not show large behavioural changes between the two blocks (Figure 1—figure 

supplement 5a). That is, passage of time per se did not contribute strongly to representational drift. 

Largest representational drifts were observed for animals with the largest changes in the average 

pupil width between the two blocks (Figure 1—figure supplement 5a). In fact, there was a good 

correlation between the two across animals (Figure 1—figure supplement 5b).  

The relationship was weaker in Neuropixels dataset2, whereby more repeats of the natural movie 

are shown in each block (60 repeats for the total of 30 minutes, versus 20 repeats for 10 minutes in 

Neurpixels dataset1). Longer blocks of stimulus presentation increases the chance of behavioural 

changes within the blocks, which can in turn make the average block-wise representational 

similarity a less reliable metric. In line with this reasoning, further scrutiny into an outlier (with 

small average pupil changes but rather large representational drift between the two blocks; Figure 

1—figure supplement 5b, right) revealed that changes in the running speed of the animal within 

each block can be the factor contributing to changes in representational similarity (Figure 1—figure 

supplement 5c). 
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Taken together, these results suggest that, in awake behaving animals, variability of the behavioural 

state of the animal can be an important factor contributing to the modulation of representational 

similarity. 

Evidence for independent modulation of responses by stimulus and behaviour 

What is the mechanism by which behavioural state modulates representational similarity? Changes 

in pupil area are correlated with the level of arousal (Bradley et al., 2008), which can modulate the 

neuronal gain (Cohen-Kashi Malina et al., 2021). We therefore studied a possible gain model in 

which changes in pupil size modulate the neuronal responses to sensory inputs (Figure 2a; 

Methods). Alternatively, rather than scaling the stimulus-induced signal, behaviour can contribute 

independently to neuronal activity (Dipoppa et al., 2018; Saleem et al., 2013). We therefore 

compared the gain model to a model in which the neural tuning was obtained by an independent 

mixing of stimulus and behavioural signals (Figure 2b; Methods).  

In each model, we calculated representational similarity from the neuronal responses to 

presentations of the same stimulus, and plotted that against the relative behavioural parameter (B) 

across the repeats (𝐵𝑖/𝐵𝑗, for the 𝑖-th and 𝑗-th repeats) (Figure 2c,d). Both models showed, on 

average, a similar dependence of representational similarity on relative behaviour (Figure 2c,d; the 

gain model only showed the same pattern if the signal was scaled by the behaviour; we observed 

different patterns, if behaviour scaled the noise, or both the signal and the noise; Figure 2—figure 

supplement 1a,b).  

To compare different models with the experimental results, we took the relative pupil size as a 

proxy for relative behaviour and plotted the representational similarity of all units against it (Figure 

2e). This revealed a similar average dependence as the signal-gain model and the independent-

mixing model (Figure 2c-e). We observed a similar dependence for both datasets, and for most 

individual recording sessions within each dataset (Figure 2—figure supplement 1c-f). Similar results 

were observed when representational similarity was calculated from V1 units or all recorded units 

(Figure 2—figure supplement 1c-f).  

We then asked how, at the level of individual units, the modulations of responses by stimulus and 

behaviour are related to each other (Figure 2f,g). To this end, instead of calculating representational 

similarity at the population level, we quantified the similarity of individual units’ responses to 

multiple repeats of the stimulus (stimulus reliability; see Methods and Figure 1--figure supplement 

1d). In the signal-gain model, stimulus reliability was highly correlated with behavioural 

modulation of units (Figure 2f). This is a consequence of the scaling of the signal by the behaviour, 



 10 

which implies that neurons with higher signal component also show higher modulation with the 

behavioural parameter (see Methods). The signal-gain model therefore predicts that neurons which 

are strongly modulated by the stimulus also show strong modulation by the behaviour (Figure 2f). 

In contrast, the independent-mixing model predicted an independent relationship between 

stimulus and behavioural modulation of individual units (Figure 2g).  

We tested these predictions in experimental data, by calculating behavioural modulation and 

stimulus reliability of individual units in all mice across both datasets. Behavioural modulation was 

calculated as the correlation of each unit’s activity with pupil size, and stimulus reliability was 

obtained as the average correlation of each unit’s activity vectors across multiple repeats of the 

natural movie (Methods and Figure 1—figure supplement 1d). As opposed to the signal-gain model, 

we did not observe a correlation between stimulus and behavioural modulation (Figure 2h). In fact, 

a regression analysis suggested that the two modulations are independent of each other in both 

datasets (Figure 2h), consistent with the independent-mixing model. The marginal distributions 

matched better with experimental distributions when we increased noise (x1.5 N) or decreased the 

behavioural signal (x0.5 B) (Figure 2—figure supplement 1g) 

Overall, there was a wide distribution of stimulus reliability (Figure 2—figure supplement 2a) and 

behavioural modulation (Figure 2—figure supplement 2c) across recorded units, with patterns 

highly consistent across the two datasets. Most V1 units showed variable responses to repeats of the 

natural movie, as indicated by the peak of the distribution at low stimulus reliability (Figure 2—

figure supplement 2a). However, the distribution had a long tail composed of units with high 

stimulus reliability, which showed highly reliable responses across repeats of the movie (Figure 2—

figure supplement 2a,b). There was a wide spectrum of behavioural modulation too, with most units 

showing positive correlations with pupil size (Figure 2—figure supplement 2c,d), and a smaller 

population of negatively modulated units (Figure 2—figure supplement 2c).  

The units that showed significant modulation with the stimulus were not necessarily modulated 

strongly by the behaviour, and vice versa; in fact, it was possible to find example units from all four 

combinations of weak/strong x stimulus/behavioural modulations (Figure 2—figure supplement 

2e,f). A clear example of the segregation of stimulus and behavioural modulation was observed in 

CA1, where the units showed, on average, very weak stimulus reliability across movie repeats, 

consistently across different mice and datasets (Figure 2—figure supplement 3a). However, they 

were largely modulated by behaviour, to an extent comparable to V1 units (Figure 2—figure 

supplement 3a-c). Taken together, these results suggest that, rather than scaling the stimulus-
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evoked responses, behaviour modulates the activity in a more independent and heterogeneous 

manner. 

 

 

Figure 2: Independent modulation of activity by stimulus and behaviour. 

a, Schematic of a signal-gain model in which behaviour controls the gain with which the stimulus-driven 

signal is scaled. Individual units are driven differently with the stimulus, leading to different tuning curves 

which determines their stimulus signal, 𝑆. Behavioural parameter, B, sets the gain, 𝑔, with which the stimulus 

signal is scaled, before being combined with the noise term, N, to give rise to the final response. S is the same 

across repetitions of the stimulus, while N is changing on every repeat (see Figure 2—figure supplement 1a 

and Methods). b, An alternative model (independent-mixing) in which the response of a unit is determined 

by the summation of its independent tuning to stimulus, S (red) and behaviour, B (black: high B, grey: low 

B), combined with noise, N (see Methods for details). c, Representational similarity of population responses 

to different repeats of the stimulus as a function of the relative behavioural parameter (𝐵𝑖/𝐵𝑗) in the signal-

gain model. Black line shows the average (in 20 bins). d, Same as c, for the independent-mixing model. e, 

Same as (c,d) for the experimental data from Neuropixels dataset1 (red) or dataset2 (blue). For each pair of 
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movie repeats, the average representational similarity of population responses (left: V1 units; right: all units) 

are plotted against the relative pupil size (𝑃𝑖/𝑃𝑗). (f,g) Relation between behavioural modulation and stimulus 

reliability of units in different models. The stimulus signal-gain model predicts a strong dependence between 

behavioural modulation and stimulus reliability of units (f), whereas the independent-mixing model predicts 

no correlation between the two (g). Best fitted regression lines and R2 values are shown for each case. 

Marginal distributions are shown on each axis. h, Data from V1 units in the two datasets show no relationship 

between the stimulus reliability of units and their absolute behavioural modulation, as quantified by the best 

fitted regression lines and R2 values. Stimulus reliability is computed as the average correlation coefficient of 

each unit’s activity vector across repetitions of the natural movie, and behavioural modulation is calculated 

as the correlation coefficient of each unit’s activity with the pupil size (see Methods). Marginal distributions 

are shown. Source data (for stimulus reliability of V1 units and their modulation by pupil size) are provided 

for individual sessions across the two datasets (Figure 2—source data 1). 

 

Behavioural variability modulates the low-dimensional components of population 

activity independent of stimulus reliability 

If the behavioural state of the animal modulates the neuronal responses independently of the 

stimulus, it should be possible to see its signature in the low-dimensional space of neural activity. 

To test this, we analysed the principal components (PCs) of population responses in individual 

sessions (Figure 3; see Methods). For the two example sessions we analysed previously (shown in 

Figure 1c,f), the first two PCs explained a significant fraction of variance (Figure 3a,g). Low-

dimensional population activity showed a distinct transition between two behavioural states, which 

were corresponding to low versus high arousal, as quantified by different pupil sizes (Figure 3b,h). 

The first PC, which explained most of the variance was strongly correlated with both pupil size and 

running speed (Figure 3—figure supplement 1a). These results suggest that behavioural modulation 

contributes significantly to the low-dimensional variability of neural activity.  

To link the low-dimensional modulation of activity by behaviour to single neurons, we next 

analysed the projection of units’ activity over the PCs by looking at PC loadings. Individual units 

were projected in the PC space according to their respective PC loadings (PC projections). 

Visualizing the average activity of units in the space of PC projections suggested a spectrum of 

weakly- to highly-active units (Figure 3—figure supplement 1b). In fact, neural projections over 

the first two PCs were correlated with the average activity of neurons (Figure 3—figure supplement 

1c). In contrast to the average activity, the PC projections did not reveal any relationship with the 
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stimulus reliability of units (Figure 3c,i), suggesting that the low-dimensional neural activity is 

modulated independently of stimulus-evoked modulation of responses.  

These results were remarkably consistent across different datasets and across difference mice. The 

first two PCs explained similar levels of variance across more than 20 mice in each dataset (Figure 

3d,j). The distance over PC1 was highly correlated with the difference of pupil size on the trajectory 

(Figure 3e,k). Importantly, this relationship also held when controlled for the passage of time 

(Figure 3e,k and Figure 3—figure supplement 2). In both datasets, the regression analysis revealed 

no relationship between the two PC projections and the stimulus reliability of units (Figure 3f,l; see 

Figure 3—figure supplement 1d for individual sessions). We therefore conclude that behaviour 

significantly modulates the low-dimensional components of neural activity, but this modulation 

does not specifically enhance the activity of neurons which are more reliably representing the 

stimulus.  

 

 

Figure 3. Behavioural variability modulates the low-dimensional components of population activity 

independent of stimulus reliability.  

a, Relative contribution of the first 10 principal components (PCs) of population responses to the variability 

of activity (quantified by the fraction of explained variance by each PC) for an example session (same as 

shown in Figure 1). b, Population activity in the low-dimensional space of the first three PCs (see Methods 

for details). Pseudo colour code shows the pupil size at different times, indicating that the sudden transition 

in the low-dimensional space of activity is correlated with changes in the behavioural state. c, Projection of 

units’ activity over PC1 (black) or PC2 (grey) (respective PC loadings) versus stimulus reliability of the units. 

It reveals no correlation between the two, as quantified by best fitted regression lines in each case (the best 

fitted regression lines and R2 values shown by respective colours). PC loadings are normalized to the 

maximum value in each case. d, Fraction of variance explained by PCs 1-3 for all sessions. e, Distance on PC1 

versus the difference of the average pupil size between different time points on the trajectory, for all sessions. 
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For each pair of non-identical time points on the PC trajectory, the absolute difference of PC1 components 

is calculated as the distance on PC, and plotted against the absolute difference of the average pupil width 

(normalized by z-scoring across the entire session). Best fitted regression line and the corresponding R2 value 

are shown in red for all data points, and in blue for data points with small time difference between the pairs 

(see Figure 3—figure supplement 2). f, Same as (c) for all units from all sessions in dataset1. g-l, Same as (a-f) 

for Neuropixels dataset2. 

 

Behaviour modulates the setpoint of responses 

To gain further insight into how the behaviour modulates the low-dimensional pattern of 

population activity, we analysed the relation between behavioural parameters and the average 

activity of units. In the two example sessions analysed previously (shown in Figure 1), there was a 

transition in the average pupil size and running speed in the second block, which was correlated 

with an overall increase in the average population activity (Figure 4a,e and Figure 4—figure 

supplement 1a). In general, change in the pupil size explained a significant fraction of changes in 

population activity of V1 units in all sessions (Figure 4—figure supplement 1b).  

We also looked at the average activity of individual units across all movie frames and repetitions 

(their setpoints). Units had a wide range of setpoints, which were relatively stable within each 

block (small variance across repetitions relative to the mean) (Figure 4—figure supplement 1c). 

However, the setpoints changed upon transition to the next block, with most units increasing their 

setpoints, without an apparent link to their previous setpoint levels (Figure 4—figure supplement 

1d). The population vectors composed of setpoints in each repeat can be further used to quantify 

setpoint similarity (Figure 4b,f). Within-block correlations were high, indicating the stability of 

setpoints when behavioural changes were minimum – although occasional, minor changes of pupil 

size still modulated these correlations (Figure 4b,f). Most changes in setpoint similarity, however, 

appeared between the blocks, when the animal experienced the largest change in its behavioural 

state.  

Quantifying the dependence of setpoint similarity on changes in pupil size revealed a strong 

relationship, both for V1 units and for all recorded units (Figure 4c,g). The relationship was rather 

stable when calculated from responses to single frames of movie presentation, instead of the average 

activity across the entire movie (Figure 4—figure supplement 1e). We obtained similar results when 

the dependence was calculated from the average block activity across all mice, from both datasets 

(Figure 4d,h).  
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The relationship of setpoint similarity with changes in pupil size was not always monotonic. For 

the example session in Figure 4g, despite an overall drop of setpoint similarity with increased 

changes in pupil width, another trend was observed for large pupil changes. To understand what 

underlies this nonmonotonic trend we plotted setpoint similarity as a function of changes in both 

pupil size and running speed (Figure 4—figure supplement 2). The multi-dimensional space of 

changes in behaviour suggests that different trends exist at different regimes of behavioural changes 

(Figure 4—figure supplement 2b). Notably, limiting our analysis to the pairs of movie repeats with 

small changes in running speed revealed a monotonic relationship between setpoint similarity and 

changes in pupil size, with similar levels of regression between the two parameters (Figure 4—

figure supplement 2a-c).  

The opposite trend emerged at higher levels of changes in pupil size and running speed, and seemed 

to be related to changes in pupil size in the first block of presentation (Figure 4—figure supplement 

2d,e). Indeed, movie presentations with higher (/lower) average pupil size in the first block showed 

smaller (/larger) setpoint similarity with the movie repeats in the second block, on average (Figure 

4—figure supplement 2d,e). This trend was accompanied, and might be explained, by an average 

movement in the centre of the pupil between the two blocks (Figure 4—figure supplement 2f). 

Such a movement can shift the receptive fields, and therefore change the setpoint activity of units, 

leading to changes in setpoint similarity between the two blocks. This effect is expected to be higher 

for higher pupil sizes, and therefore the setpoint similarity is specifically reduced for movie 

presentations with larger pupil sizes in the first block.  

The resulting change in the average visual input may also explain why the nonmonotonic trend is 

specifically present in V1 units and tend to disappear when all units are considered (Figure 4g). 

Consistent with this reasoning, shifts in the average centre of pupil also showed correlation with 

changes in setpoint similarity across many sessions (Figure 4—figure supplement 3,4). This was 

reminiscent of the dependence of setpoint similarity on pupil width and tended to be higher for 

sessions with strong correlation between changes in pupil size and position (Figure 4—figure 

supplement 3,4).  

Our results therefore suggest that the changes in setpoint similarity can arise from complex 

interaction between multiple behavioural parameters and their modulation of neural activity. On 

a case-by-case basis, it remains to be seen how behavioural parameters and their interactions 

specifically modulate neural activity on finer scales. On average, however, there was a gradual 

increase of the average pupil width during the recording session, which was paralleled by a gradual 
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increase of the average activity of units (~50% increase for the average activity of all units across 

all mice in both datasets; Figure 4—figure supplement 5). The results of our analysis therefore 

suggest that the behavioural signal can modulate the setpoint of neural activity independent of and 

in addition to stimulus, and, in doing so, induce a similarity (/dissimilarity) of population responses 

when behaviour is stable (/changing).  

Note that an unintuitive connotation of this finding is that quantifying response similarity from 

population vectors may reveal representational drift upon behavioural changes, even independent 

of stimulus-evoked modulation of activity. This is because the constancy of setpoint activity of units 

would lead to some degree of similarity between population vectors, even if the stimulus-evoked 

component is different (Figure 2—figure supplement 3d). The behaviourally induced component 

of similarity changes more slowly, leading to a drop in representational similarity on a longer 

timescale (e.g., between blocks of stimulus presentation, rather than within them). In line with this 

reasoning, we observed a similar drop of representational similarity in CA1 (Figure 2—figure 

supplement 3e), although individual units in this region had, on average, no reliable visual 

representations (Figure 2—figure supplement 3a). Modulation of the average setpoint activity – and 

hence setpoint similarity – by the behaviour can, therefore, contribute to representational 

similarity, in addition to specific stimulus-induced tuning of responses. 
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Figure 4: Behaviour modulates the setpoint of responses. 

a, Average population activity and behavioural parameters (pupil size and running speed) during the first and 

second blocks of presentation of natural movie 1 (same examples sessions as Figure 1). Grey, first block; black, 

second block; each point corresponding to the average in one repeat of the movie. b, Setpoint similarity is 

calculated as the correlation coefficient of population vectors composed of average activity of units during 

each repeat of movie presentation. Change in the behavioural state (as quantified by the pupil size) between 

the two blocks is correlated with a drastic decrease in the average between-block setpoint similarity. Note 

that transient changes of pupil within each block also modulate the setpoint similarity. c, Setpoint similarity 

(as in b) as a function of change in pupil size (z-scored pupil width) between the movie repeats, when the 

population vectors of setpoints are composed of V1 units (left) or all recorded units (right). d, Dependence of 
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setpoint similarity on pupil change for all sessions, calculated from within-block and across-block averages 

in each session. e-h, Same as (a-d) for dataset2. Source data (for the change in pupil width and setpoint 

similarity between pairs of movie repeats) are provided for individual sessions across the two datasets (Figure 

4—source data 1). 

 

Behaviour reliably modulates responses during active states  

What distinguishes an independent behavioural signal from a modulatory component or from noise 

is that it brings about reliable responses for different states of behaviour. That is, there should exist 

a reliable and independent tuning of units with behavioural parameters (like pupil size or running 

speed). We therefore investigated more precisely how the neural activity is modulated by 

behaviour (Figure 5). We used the correlation of units’ activity with running as a metric for 

behavioural tuning. To obtain a measure of significance of correlations, we calculated bootstrapped 

correlations (see Methods). More than half of the units showed significant modulation by running, 

and the fraction and distribution of significant correlations were similar between the two blocks 

and across the two datasets (Figure 5—figure supplement 1).  

Another way to assay the reliability of behavioural tuning is to test whether the correlation of units 

with behaviour remains stable between the two blocks of presentation (Figure 5a,d). Random 

correlations with running should be uncorrelated across the two repeats. In contrast, regression 

analysis revealed a good correlation between the two blocks (Figure 5a,d, left). The distributions of 

correlations with behaviour were also similar between the two blocks (Figure 5—figure supplement 

1). Notably, focusing on sessions with similar levels of running between the two blocks (Figure 

5b,e), and on units with significant behavioural modulation, improved the similarity of tuning 

between the two repeats (Figure 5a,d, right). Specifically, most units which were positively 

(/negatively) modulated during the first block remained positively (/negatively) modulated in the 

second block (Figure 5a,d, right). These results therefore suggest that a significant fraction of the 

population shows reliable modulation by running – similar result is expected for pupil, as we 

observed a high correlation between modulation of units with running and pupil in both datasets 

(Figure 5b,e, lower). 

Our results held when repeating the analysis for all units instead of V1 units only (Figure 5c,f and 

Figure 5—figure supplement 1). We also observed similar results when quantifying the reliability 

of tuning between two blocks of presentation of another stimuli (drifting grating; Figure 5—figure 

supplement 2). Notably, the tuning of units remained stable from one stimulus type to another: 
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modulation of units during presentation of drifting gratings had a good correlation with their 

modulation during natural movie presentations for both blocks (Figure 5—figure supplement 2d,h). 

The tuning with running was even reliable between the first (30-90 mins) and second (90-150 mins) 

parts of the entire session, with each part containing different stimuli (Figure 5—figure supplement 

3). We did a region-specific analysis of this reliability and found that reliable tuning exists in various 

regions (Figure 5—figure supplement 3). Overall, these analyses suggest that behaviour reliably and 

independently modulates neuronal responses.  
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Figure 5: Behaviour reliably modulates responses during active states. 

a, Correlation of activity with running during second block against the first block for all V1 units (left), and 

for selected sessions and units (right). In the latter case, only sessions with similar average running between 

the two blocks, and units with significant correlation with running, are selected (see Figure 5—figure 

supplement 1 and Methods for details). In addition to the regression analysis (quantified by the value of R2), 

a second metric (sign constancy index, SCI) is also used to quantify the reliability of modulations by 

behaviour. For each unit, the sign of correlation with running in different blocks are compared and the 

fraction of units with the same sign is reported as SCI. b, Upper: Average z-scored value of running in the 

first (1st) and the second (2nd) block across all units/sessions (all; red) and for selected ones (sel; magenta). 

Lower: Correlation of all V1 units with pupil size against their correlation with running in first (grey) and 

second (black) blocks. Magenta: regression fits for selected units/sessions only. c, Same as (a) for recorded 

units from all regions. d-f, Same as (a-c) for dataset2. 

  

Stimulus-dependence of behavioural variability and setpoint similarity 

External stimulus directly modulates the responses by activating selective receptive fields of 

neurons, which can be measured under anaesthesia (Niell and Stryker, 2008; Yoshida and Ohki, 

2020). In awake behaving animals, however, it is possible that different stimulus types indirectly 

modulate the responses by inducing different patterns of behavioural variability. We indeed found 

that this was the case when comparing natural movies with an unnatural stimulus (drifting gratings) 

(Figure 6). Natural movies induced more variability of pupil size and running in the animals across 

the two blocks of stimulus presentations: both measures significantly increased during the second 

block for natural movies, whereas changes were not significant for drifting gratings (Figure 6a,d). 

The result was consistent across the two datasets with different length and sequence of stimulus 

presentations (cf. Figure 5—figure supplement 3a,b).  

To see if and how this difference affects response similarity of units, we calculated average setpoint 

similarity (cf. Figure 4) between the two blocks of presentations from the shuffled activity of units 

in response to different stimuli (see Methods). Average setpoint similarity was high for both stimuli, 

but it was significantly larger for drifting gratings for most sessions (Figure  6b,e). Plotting setpoint 

similarity as a function of behavioural changes for the entire distribution revealed its composition 

across the two stimulus types. Responses to drifting gratings showed, on average, a higher setpoint 

similarity for similar behavioural states (small behavioural changes) (Figure 6c,f), arguing for more 

stability of average responses even independent of behavioural variability. Larger behavioural 

changes were more prevalent for the natural movie presentations, and units’ responses showed a 



 22 

large drop of setpoint similarity at these deviations (Figure 6c,f), leading to a significant drop of 

average setpoint similarity compared to drifting gratings. Taken together, these results suggest that 

stability of population responses to different stimulus types might be determined by the combined 

effect of stimulus-evoked reliability of responses and its indirect modulation by behavioural 

variability.  

 

 

Figure 6: Stimulus-dependence of behavioural variability and setpoint similarity. 

a, Average pupil size and running speed during the 1st (grey) and 2nd (black) blocks of presentation of natural 

movies (left) and drifting gratings (right) for different sessions (empty circles). Filled circles: the mean across 

sessions. Pupil size and running speed are z-scored across each session, respectively. P-values on top show 

the result of two-sample t-tests between the two blocks. NS: P > 0.05. *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001; 

****: P ≤ 0.0001. b, Average setpoint similarity between the two blocks of presentation of natural movie 1 

(NM) and drifting gratings (DG) for different sessions. Sessions are sorted according to their average setpoint 

similarity for NM. Population vectors are built out of the average responses of all units to 30 randomly chosen 

frames (1 second long). The correlation coefficient between a pair of population vectors from different blocks 

(within the same stimulus type) is taken as setpoint similarity. The procedure is repeated for 100 pairs in each 

session and the average value is plotted. Error bars show the std across the repeats. c, Left: Setpoint similarity 

as a function of the difference in average running, Δ𝑍 = 𝑍2 − 𝑍1, where 𝑍1 and 𝑍2 are the average running 

during randomly chosen frames in the 1st and 2nd block, respectively. The lines show the average of the 

points in 40 bins from the minimum Δ𝑍 to the maximum. Right: Distribution of changes in running for 

different stimuli. The probability density function (pdf) is normalized to the interval chosen (0.25). d-f, Same 

Neuropixels dataset1 Neuropixels dataset2

a d
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as (a-c) for dataset2. Source data (for the average z-scored pupil width and running speed in each block) are 

provided for individual sessions across the two datasets (Figure 6—source data 1).  

 

Decoding generalizability improves by focusing on reliable units  

How does behavioural variability affect the decoding of stimulus-related information, and how can 

decoding strategies be optimized to circumvent the drift of representations? Our analyses so far 

suggested that behaviour modulates the responses in addition to and independently of stimulus-

evoked modulations (independent model in Figure 2). This independent behavioural modulation 

would be perceived as noise, if a downstream decoder is decoding stimulus-related signals, and can 

compromise the generalizability of decoding. For instance, the activity of a subpopulation of units 

(A) might be assigned to stimulus A by the decoder, in the absence of significant behavioural 

modulation. If the decoder is now tested in a new condition where behaviour modulates the 

responses independently of the presented stimulus, the activity of subpopulation A can be 

interpreted as presence of stimulus A, independent of the presented stimulus. This is in contrast to 

the gain model (signal-gain model in Figure 2b) in which behavioural state scales the stimulus-

evoked signal, and can therefore not compromise the generalizability of decoding (subpopulation 

A only responds to stimulus A, but with different gains). In the signal-gain model, focusing on units 

which are strongly modulated by behaviour should in fact enhance the decoding generalizability 

under behavioural variability, whereas in the independent model the focus should be on units with 

more stimulus reliability.  

We tested these two alternatives directly by training a linear decoder to discriminate between 

different frames of the natural movie (Figure 7a and Methods). The decoder was trained on the 

activity of units in the first block to detect a target frame; it was then tested on the second block of 

presentation to discriminate between the target frame and other frames, in order to evaluate the 

generalizability of decoding (i.e., out-of-distribution transfer) (Figure 7a). When the decoder was 

trained on the activity of all units in the first block, discriminability (𝑑′) was very low in the second 

block (Figure 7b,c,e,f). However, focusing on the reliable units (units with high stimulus reliability) 

shifted the distribution of 𝑑′ to larger values and increased the average discriminability (Figure 

7c,f). Focusing on units with strong behavioural modulation, on the other hand, did not yield higher 

discriminability in the second block (Figure 7—figure supplement 1). These results suggest that 

behavioural modulation is detrimental to generalizability of stimulus decoding, and that this 

problem can be circumvented by focusing on units with more stimulus information.  
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This effect was consistent across mice in both datasets (Figure 7d,g). In dataset2, we observed higher 

average 𝑑′ in the second block, when the decoder was trained and tested on all units. This could be 

due to more presentations of the natural movie in dataset2 (30 repetitions in each block compared 

to 10 in dataset1). Larger training samples can help the decoder in learning the signal from the 

noise, suggesting that the effect of behavioural “noise” on corrupting the stimulus signal is more 

significant for small sample sizes. On the other hand, longer presentations can lead to sampling 

from responses under more behavioural variability, which can in turn inform the decoder on how 

to ignore the stimulus-irrelevant modulation by behaviour. Altogether, these results corroborate 

our previous analysis that the contribution of behavioural variability to neural activity is orthogonal 

to stimulus modulations, and suggest that such behavioural noise limits the decoding capacity 

especially with limited data. 

We also analysed how the behaviour can be decoded from the population activity (Figure 7—figure 

supplement 2). A decoder was trained on half of movie presentations (randomly chosen from the 

two blocks of presentation) to predict the pupil width and running speed, and was then tested on 

the other half of movie presentations (see Methods). For the example sessions (shown in Figure 1), 

both behavioural parameters were predicted with high accuracy (Figure 7—figure supplement 2a). 

The accuracy was higher for dataset2 (correlation of more than 90% for both parameters; compared 

to 60% and 80% for pupil width and running speed predictions, respectively, in dataset1; Figure 

7—figure supplement 2a,b). Similar results were obtained when the decoding of behavioural 

parameters was performed for other mice in both datasets (Figure 7—figure supplement 2b).  

Higher prediction accuracy in dataset2 is consistent with our reasoning above that longer episodes 

of stimulus presentation provide a higher chance for behavioural variability, which can in turn 

enable a decoder to learn the modulations arising from the behaviour better. An extreme case for 

this was when the decoder was trained on the first block in the example sessions and tested on the 

second block. For both datasets, the accuracy was very low (results not shown). This was a 

consequence of drastic changes of behaviour between the two blocks and specifically very little 

running in the first block (cf. Figure 1 and Figure 5); in such cases, the decoder cannot learn how 

behaviour modulates the neural activity from the training data due to paucity of relevant samples.  

We also asked whether the decoding of behaviour may create any systematic bias in processing of 

sensory stimulus. If the behavioural modulation has a systematic relation with the modulation of 

neuronal activity by stimulus, a decoder which is predicting the animals’ behaviour might be biased 

to infer illusionary stimuli due to the correlations between behaviour and stimulus. To test this, we 
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weighted the responses of neurons to each movie presentation with the weights optimized for the 

behavioural decoder. We then calculated the correlation of the overall response of the decoder 

across multiple repeats of the natural movie. Systematic sensory bias in the read-out of the 

behavioural decoder should lead to significant correlations between the repeats of the same 

stimulus. Contrary to this, we observed correlations close to zero between different repeats, for the 

example sessions in both datasets, and across all mice (Figure 7—figure supplement 2c). These 

results suggest that behavioural decoding can be performed independent of sensory inference. 

Taken together, the results of our behavioural decoding reveal two main insights: first, the 

behavioural state of the animal can reliably be predicted from the neural activity. This is consistent 

with our results on reliable modulation of neuronal activity by behaviour (Figure 5). 

Second, behavioural decoding did not create a significant bias in sensory inference, which supports 

our previous results on independent modulation of neuronal responses by behaviour and sensory 

stimulus (Figure 2 and Figure 3). 
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Figure 7: Decoding generalizability of natural images improves by focusing on reliable units. 

a, Schematic of a decoder which is trained on the population activity during the first block of presentation of 

the natural movie (upper) and tested on the second block of presentation to discriminate different frames of 

natural images from each other (out-of-distribution transfer, see Methods for details). b, Matrix of 

discriminability index (Methods), d’, between all combination of movie frames as target and test, when all 

units (left) or only units with high stimulus reliability (right) are included in training and testing of the 

decoder. c, Distribution of d’ from the example discriminability matrices shown in (b) for decoders based on 

all units (black) and reliable units (green). Reliable units are chosen as units with stimulus reliability 

(Methods) of more than 0.5. d, Average d’ for all mice, when all units or only reliable units are included. Size 

of each circle is proportionate to the number of units available in each session (sessions with >10 reliable 

units are included). Filled markers: average across mice. e-g, Same as (b-d) for dataset2. Data in (b,c) and (e,f) 

are from the same example sessions shown in Figure 1c and Figure 1f, respectively. 
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Discussion 

The results of our analysis here suggest that variability of the behavioural state of animal can 

contribute significantly to changes in representational similarity. We found that population 

responses to different repeats of the same natural movie was the most similar when behavioural 

parameters like pupil size and running speed changed the least. This was a result of an independent 

modulation of neural activity by behaviour, which was mixed with stimulus-evoked responses to 

represent a multidimensional code. Our results are consistent with a view in which behaviour 

modulates the low-dimensional, slowly changing setpoints of neurons, upon which faster 

operations like sensory processing are performed.  

Small modulation of ongoing neural dynamics by sensory stimuli was reported before in awake, 

freely viewing animals (Fiser et al., 2004), in line with other reports on the significance of internal 

signals even in sensory cortices (Arieli et al., 1996; Kenet et al., 2003; Tsodyks et al., 1999). Our 

results here are consistent with these reports, and our analysis provides a mechanism by which 

variability of the internal state can contribute to ongoing signal correlations. It suggests that two 

distinct sources of response similarity exist in neuronal networks, with one set by baseline responses 

modulated on a slower timescale via internal parameters (setpoint similarity), and the other arising 

from finer and faster modulations invoked by sensory stimuli. Importantly, changes in 

representational similarity (which can lead to representational drift) can arise from changes in both 

sources, and hence attributing it purely to the drift of the sensory component might be inaccurate. 

Internal, behavioural states of the animal can contribute independently to neural processing, or can 

act as a modulator for external stimuli, for instance by increasing the input gain and enhancing the 

saliency of the sensory signal. Notably, our results could not be explained by a model in which 

behaviour acted as a gain controller for sensory inputs. Such a model would predict a direct 

relationship between the stimulus modulation and behavioural modulation of neurons. One would 

therefore expect that the most reliable neurons in representing sensory information to be 

modulated the most by arousal or running states. However, we found that the reliability of 

stimulus-evoked responses to different repeats of the same natural movie was independent of 

behavioural modulation, in line with a previous report (Dipoppa et al., 2018).     

A gain-model account of behavioural modulation would only change the signal-to-noise ratio of 

sensory representations by behaviour. Therefore, if the level of arousal or attention of the animal 
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drifts away over time, the signal component of the representations becomes weaker compared to 

the noise, leading to some drop in representational similarity. In contrast, independent modulation 

of neuronal responses by behaviour affects representational similarity in more complex ways. First, 

similarity of population vectors across repeats of the same stimuli can be due, at least partly, to the 

behavioural signal rather than stimulus-evoked responses. Second, changes in behavioural signal 

might be perceived as sensory-irrelevant noise, if the parameter space of representations (composed 

of internal and external parameters) is only analysed over the external stimulus dimension (Montijn 

et al., 2016; Stringer et al., 2019). Reliable changes in behavioural signals might, therefore, be 

misinterpreted as the drift of stimulus-induced representations in the latter scenario. 

Note that our results here do not rule out the contribution of other parameters, like slow latent 

learning and plasticity within the circuitry, leading to the drift of sensory representations, 

especially over longer time scales (days to weeks). Our analysis here revealed changes in neural 

representations in two blocks of multiple presentations of natural movies within the same day. To 

determine whether neuronal representations are gradually changing, there must be multiple (more 

than two) different compared time points (Clopath et al., 2017). Gradual change of neural 

representations over multiple time points can distinguish between representational drift and 

random neuronal variability which can arise independently in each repetition. In fact, we observed 

a gradual increase of both pupil width and average activity of units during the entire session (Figure 

4—figure supplement 5). Changes in the setpoint similarity arising from such gradual changes can 

therefore lead to representational drift over multiple time points. It would be interesting to repeat 

our analysis in future studies on other datasets which contain multiple blocks of stimulus 

presentations within and across days.   

A recent analysis of similar datasets from the Allen Brain Observatory reported similar levels of 

representational drift within a day and over several days (Deitch et al., 2021). The study showed 

that tuning curve correlations between different repeats of the natural movies were much lower 

than population vector and ensemble rate correlations (Deitch et al., 2021); it would be interesting 

to see if, and to which extent, similarity of population vectors due to behavioural signal that we 

observed here (cf. Figure 4) may contribute to this difference. In fact, previous studies showed 

gradual changes in the cells' activity rates during periods of spontaneous activity, suggesting that 

these changes can occur independently of the presented stimulus (Deitch et al., 2021; Schoonover 

et al., 2021). 
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The fact that there are changes that are not purely related to the tuning of cells is demonstrated in 

several previous studies. For instance, place cells in the mouse hippocampal CA1 can drop in and 

out of the ensemble during different visits to the same familiar environment over weeks, leading to 

a gradual change in the population of place cells that encode the location of the animal during the 

task (Gonzalez et al., 2019; Ziv et al., 2013). These changes, which reflect changes in activity rates, 

were independent of the position the neurons encode and were found in place cells and non-place 

cells alike. A similar turnover of the active cells in the cortex was also shown by (Aschauer et al., 

2022; Driscoll et al., 2017). Notably, (Rubin et al., 2015) showed that hippocampal representations 

of two distinct environments (which had different place-cell representations) co-evolve over 

timescales of days/weeks, with the shared component of the drift stemming from gradual context-

independent changes in activity rates. 

The stimulus-independent component of representational drift due to behavioural variability is a 

global phenomenon that can affect all regions, even independent of their involvement in the 

processing of natural images. In fact, we found similar representational drift in many areas, 

including regions like CA1 (see also (Deitch et al., 2021)), although units in this region had no 

reliable representation of natural images (Figure 2—figure supplement 3a). Global, low-

dimensional modulation of activity by behavioural state, like arousal and running, or other aspects 

of behaviour that we did not have access to their quantification here (e.g., whisking, posture, or 

body movements other than running), might underlie such changes in representational similarity 

-- although we cannot rule out the contribution of other factors like contextual modulations (as 

discussed above) or the passage of time (but see (Nilchian et al., 2022)), which might be more 

relevant to modulation of activity in regions like CA1. Drawing further conclusions about stimulus-

dependences of representational drift in visual cortex – and other sensory cortices – thus needs a 

critical evaluation by teasing apart the contribution of different components (stimulus-induced and 

stimulus-independent). 

Another recent study reported stimulus-dependent representational drift in the visual cortex, 

whereby responses to natural images experienced large representational drift over weeks compared 

to responses to drifting gratings (Marks and Goard, 2021). In line with the finding of this study, we 

found here that responses to drifting gratings were more robust to behavioural variability in 

general. However, we also observed that different stimulus types can induce variable patterns of 

behaviour, thus highlighting the combined contribution of behaviour and stimulus to 

representational drift. Notably, the mentioned study (Marks and Goard, 2021) found a dependence 
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of representational drift on the pupil size (see Supplementary Fig. 8c in (Marks and Goard, 2020)), 

with larger decreases in pupil size over time correlating with more representational drift for both 

stimulus types (see Supplementary Fig. 11d in (Marks and Goard, 2021)). Such consistent changes 

of behaviour may contribute to representational drift over longer timescales (days to weeks), by 

recruiting similar mechanisms as we described here for shorter intervals (e.g., changes in setpoint 

similarity). Mapping behavioural changes over longer times and per individual animal can shed 

light on the specific contribution of behaviour to representational drift. It would for instance be 

interesting to see if the large variability of representational drift across different animals (see 

Supplementary Fig. 5 in the same study (Marks and Goard, 2021)) might be linked to their 

behavioural variability.  

Behavioural variability might be more pertinent to other modalities for which active sensing is less 

constrained during experiments. While eye movements are minimized in head-fixed mice, in other 

modalities (like olfaction) it might be more difficult to control for the behavioural variability arising 

from active sensing (e.g., sniffing) over time and across animals. A recent study demonstrated 

significant representational drift over weeks in the primary olfactory cortex of mouse (Schoonover 

et al., 2021). The surprising finding that sensory representations are not stable in a sensory cortex 

was hypothesized to be linked to the different structure of piriform cortex compared to other 

sensory cortices with more structured connectivity. It would be interesting to see if, and to which 

extent, other factors like changes in the gating of olfactory bulb by variable top-down modulations 

(Boyd et al., 2012; Markopoulos et al., 2012), or changes in the sniffing patterns of animals, may 

contribute to this. Similar to the general decline over time of the pupil size reported in the visual 

cortex (Marks and Goard, 2021), animals may change their sniffing patterns during experiments, 

which can in turn lead to a general or specific suppression or amplification of odours, depending 

on the level of interest and engagement of individual animals in different sessions. 

Behavioural modulation might be more systematically present depending on the design of specific 

tasks, for instance if a sensory task is novel or otherwise engages behavioural states. Interpretation 

of the results of neural response to novel or surprising stimuli might, therefore, be compromised, if 

one ascribes the changes in neural activity to local computations only, without the analysis of 

behaviour and without controlling for more global signals (e.g., arising from arousal, running, 

whisking, or licking). Low-dimensional signals associated with behavioural and internal state of the 

animal have in fact been suggested to create a potential confound for multi-sensory processing, 
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with sound eliciting eye and body movements that modulate visual cortex, independent of 

projections from auditory cortex (Bimbard et al., 2021). 

How can the animals perform reliable sensory processing in the face of extensive modulation of 

neural activity by behavioural changes? Our results suggest that the reliable units, which are stably 

encoding sensory information across behavioural states, could serve as a stable core for the brain to 

rely on for coping with changing neuronal responses (Figure 7). However, the distribution of 

stimulus reliability was surprisingly skewed towards lower reliability values (Figure 2H). In fact, at 

the population level, units were more reliably modulated by behaviour (Figure 2H). It is therefore 

likely that the brain would rely on both stimulus- and behaviour-related information, rather than 

focusing on a small subset of reliable units, to cope with changing representations. 

Beyond sensory processing, variability of internal state can also contribute to other cognitive 

processes in various cortices (Joshi and Gold, 2020). A recent study in monkey found that changes 

in the perceptual behaviour was modulated by a slow drift in its internal state, as measured by pupil 

size (Cowley et al., 2020). This was correlated with a slow drift of activity in V4 and PFC, along 

with changes in the impulsivity of the animal (as reflected in the hit rates), which overrode the 

sensory evidence. These results, in another species, are in agreement with our findings here on the 

contribution of behavioural drift to changes in neural representations. Interestingly, the sensory 

bias model in the study could not capture the effect of the slow drift on decoding accuracy; instead, 

an alternative impulsivity model, which introduced the effect of slow drift as an independent 

behavioural parameter, matched with the data (Fig. 6 in (Cowley et al., 2020)). 

Another study in monkey M1 found that learning a new BCI task was modulated along the 

dimension of neural engagement of the population activity, which in turn was correlated with pupil 

size (Hennig et al., 2021). Neural engagement increased abruptly at the beginning, and decreased 

gradually over the course of learning, where output-null and output-potent components of neural 

engagement differentially attuned for different targets. Notably, exploiting behavioural 

perturbations in this study enabled an interactive interrogation of the neural code during learning. 

Behavioural perturbations, combined with large-scale recording and perturbation of neural activity 

(Emiliani et al., 2015; Yizhar et al., 2011; Zhang et al., 2018), which are more feasible in mice, can 

pave the way for a more precise (and potentially causal) interrogation of the neural mechanisms 

underlying representational drift. It would specifically be interesting to see how the bidirectional 

modulation of activity by behaviour we observed here emerges and which circuit mechanisms 



 32 

(Cohen-Kashi Malina et al., 2021; Ferguson and Cardin, 2020; Fu et al., 2014; Pakan et al., 2016) 

contribute to it.  

In summary, our analysis reveals new insights on representational drift from the viewpoint of 

behaviour. Conceptually, it argues for the primacy of internal parameters (Buzsáki, 2019), and 

suggests that representational similarity could be better understood and characterized in a 

multidimensional parameter space where the contributions of both external and internal 

parameters are considered. Computationally, it argues for an independent mixing of stimulus-

evoked and behavioural signals, rather than a simple gain modulation of sensory inputs by 

behaviour. Technically, it asks for further controls and analysis of behavioural variability in the 

characterisation of representational drift. Future studies will hopefully probe the multidimensional 

code underlying representations in the brain by combining large-scale recordings of neural activity 

with simultaneous measurement and quantification of behaviour. 
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Methods 

Curation and preprocessing of the data 

Data curation. Publicly available data provided by the Allen Brain Observatory (de Vries et al., 

2020; Siegle et al., 2021) was accessed via AllenSDK (https://allensdk.readthedocs.io). We analysed 

recording sessions in which neuronal responses to visual stimuli were measured via 

electrophysiology techniques by Neuropixels probes (https://portal.brain-

map.org/explore/circuits/visual-coding-neuropixels). The data composed of 58 sessions/mice in two 

separate datasets: brain observatory dataset (Dataset1; n=32) and functional connectivity (Dataset2; 

n=26) (Supplementary Table 1). Similar stimuli (including natural moves and drifting gratings) were 

shown to the animals, with different length and sequence of presentations in each dataset 

(https://allensdk.readthedocs.io/en/latest/_static/neuropixels_stimulus_sets.png; see Figure 5—

figure supplement 3a,b for illustration of different stimulus sets). We used the spiking activity of 

units which was already extracted by Kilosort2 (Stringer et al., 2019), and we included units in our 

analysis which passed the default quality criteria. Invalid intervals were treated as Not a Number 

(NaN) values. For further details on the preparation of animals, visual stimulation, data acquisition 

and default pre-processing of data, see the Technical White Paper from the Allen Brain Observatory 

on Neuropixels Visual Coding.  

Pre-processing of data. For our analysis here, we rendered the spiking activity of units in bins of 1 

second. When analysis was focused on specific stimulus types (e.g. presentation of natural movie 1 

as in Figure 1d,g), the activity was rendered from the onset of presentation of each block of the 

stimulus. When the analysis was across all stimuli and involved the activity during the whole 

session (e.g. data shown in Figure 1c,f), the activity was rendered from the beginning of the session 

or an arbitrary time (e.g. time frames specified in Figure 5—figure supplement 3). Behavioural 

information was obtained in similar time frames. Locomotion was quantified for all animals as the 

average running speed. Level of arousal was quantified by pupil size, as measured by pupil width 

(whenever pupillometry was available; Supplementary Table 1).  

To normalize the parameters (e.g., to normalize for different size of pupil across animals), we 

calculated their z-score values. For parameter 𝑥 (units’ activity, pupil size or running speed), it was 

obtained as 𝑧 = (𝑥 − μ𝑥)/σ𝑥, where μ𝑥 and σ𝑥 are the mean and standard deviation of 𝑥 during the 

entire session or a specified time window. 
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Data analysis  

Representational similarity. Representational similarity of population activity was quantified by 

calculating the correlation of responses to different repeats of the same stimulus (Figure 1--figure 

supplement 1c). Let 𝑣 be a vector of responses of 𝑁 recorded units to 𝑀 1-second long chunks of a 

natural movie (the natural movie is broken down to 𝑀 chunks, or frames, each lasting for 1 second, 

corresponding to the bin width the neural activity is rendered in). 𝑣 is a 1 × N𝑀 population vector 

composed of the concatenated activity of units (either the actual activity, i.e. average spiking 

activity, or the z-scored activity of each unit). Denote 𝑣𝑖 and 𝑣𝑗 as vectors of responses to two 

repeats of the same natural movie. Representational similarity is quantified as the Pearson 

correlation coefficient of these two population vectors: 

ρ𝑖𝑗 =
cov(𝑣𝑖 , 𝑣𝑗)

σ𝑣𝑖
σ𝑣𝑗

 

Representational drift index (RDI) is calculated from representational similarity. Similar to previous 

metrics(Marks and Goard, 2021), we defined RDI between two blocks of stimulus presentation as: 

𝑅𝐷𝐼 = (𝐶𝐶𝑤𝑠 − 𝐶𝐶𝑏𝑠)/(𝐶𝐶𝑤𝑠 + 𝐶𝐶𝑏𝑠) 

where 𝐶𝐶𝑤𝑠  and 𝐶𝐶𝑏𝑠  are, respectively, the average correlation coefficient of population vectors 

within and between sessions of presentation (see Figure 1—figure supplement 5). 𝐶𝐶𝑏𝑠  was 

obtained from the average of 𝜌𝑖𝑗, for all pairs of repeats with 𝑖-th repeat in the first block and the 

𝑗-th repeat in the second block of presentation. 𝐶𝐶𝑤𝑠  is obtained from the average of 𝜌𝑖𝑗, for all 

non-identical pairs of repeats where the 𝑖-th and 𝑗-th repeats are both within the same block, 

respectively. 

Note that RDI can also be defined, in principle, for a single pair of movie presentations 

(corresponding to blocks of presentation with 1 movie in each block). In this case, 𝐶𝐶𝑤𝑠 is 1, by 

definition, and we therefore have: 

𝑟𝑑𝑖 =
1 − 𝜌𝑖𝑗

1 + 𝜌𝑖𝑗
 

showing the relation between representational drift and representational similarity in its most 

simplified case. 

Stimulus reliability. We also quantified the reliability of how single units respond individually to 

repetitions of the stimuli (Figure 1--figure supplement 1d). To quantify that, we calculated a 

stimulus reliability metric, which is obtained as the average correlation coefficient of each unit’s 

activity vector (𝑟) across repetitions of the stimulus (e.g., the natural movie). Let 𝑟𝑘
𝑖 and 𝑟𝑘

𝑗 be the 
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vectors of response of the 𝑘-th unit to the i-th and j-th repetitions of the natural movie. Similarity 

of the unit’s response between these two repeats can be quantified by the Pearson correlation 

coefficient of the responses as before: 

ρ𝑖𝑗
𝑘 =

cov (𝑟𝑖
𝑘, 𝑟𝑗

𝑘)

σ𝑟𝑖
𝑘σ𝑟𝑗

𝑘
 

Stimulus reliability of the unit 𝑘 is obtained as the average correlation across all pairs of (non-

identical) repetitions of the stimulus: 

ρ𝑘 =
1

𝑁𝑟(𝑁𝑟 − 1)
∑ ∑

cov(𝑟𝑖
𝑘, 𝑟𝑖

𝑘)

σ𝑟𝑖
𝑘 σ𝑟𝑖

𝑘
𝑗≠𝑖

𝑁𝑟

𝑖=1

 

where 𝑁𝑟 is the number of repetitions of the stimulus. Note that to each single unit we can ascribe 

a stimulus reliability index, since this is calculated from the individual vectors of single units’ 

responses (rk); on the other hand, representational similarity is calculated from the population 

vector of responses (𝑣) and indicates a single population metric ascribed to the activity of a group 

of neurons (e.g., V1 units or all recorded units). 

Behavioural tuning. To obtain a measure of how single units are modulated by behaviour, we 

calculated the correlation of units’ responses with behavioural parameter, β: 

ρ𝑖(β) =
cov(𝑟𝑖 , β)

σ𝑟𝑖
σβ

 

Here, 𝑟𝑖 is the vector of response of the 𝑖-th unit, and β is the vector of respective behavioural 

parameter (either pupil size or running speed) rendered during the same time window and with 

the same bin width as unit’s activity.  

To obtain a measure of reliability of this modulation by behaviour, we calculated bootstrap 

correlations. The activity of each unit was shuffled for 100 times and the correlation with behaviour 

was calculated. The mean (μsh) and std (σsh) of the distribution of shuffled correlations were then 

used to obtain the z-scored, bootstrapped correlation:  

Z =
ρ(β) − μsh

σsh
 

where ρ(β) is the unshuffled correlation of the unit with behaviour. 

Principal component analysis. To analyse the low-dimensional patterns of activity, we performed 

principal component (PC) analysis on the vectors of population activity. The vectors of neuronal 

activity from which response similarity was calculated were of size 𝑁 × 𝑁𝑟  × 𝑀, where 𝑁 is the 

number of recorded units, 𝑁𝑟 is the number of repeats of the stimulus, and 𝑀 is the length of 

rendered activity in chunks of 1-second (corresponding to image frames of the natural movie). We 



 36 

concatenated these vectors to obtain a 𝑁 × 𝑁𝑟  𝑀, with each row denoting the total activity of each 

unit to all the repeats. PCs resulting from the PC analysis, therefore, represented a vector of length 

𝑁𝑟  𝑀, denoting the low-dimensional activity of the population in the same time frame (each data 

point in Figure 3b,h corresponding to 1 s of activity). PC loadings (of size 𝑁 for each PC) are used 

to represent the individual units in the space of PCs (Figure 3c,f,i,l).    

Modelling 

Gain models. To gain mechanistic insight on the contribution of behavioural changes to modulation 

of representational similarity, we explored two different models. First, we developed a gain model, 

in which the integration of the signal and the noise by neurons was differently modulated by 

behaviour (Figure 2—figure supplement 1a). For a population of 𝑁𝑝 neurons, let 𝑢 be the 1 × 𝑁𝑝 

vector of responses of neurons upon presentation of a stimulus. This is assumed to be composed of 

signal (𝑆) and noise (𝑁) components. Change in the behavioural parameters (for instance, pupil 

size) is supposed to change a gain parameter, 𝑔, which in turn differently modulate the signal (𝑆) 

and noise (𝑁). The vector of population activity, 𝑢, is obtained, as a linear combination of weighted 

components by the behavioural/gain parameter. If the signal and the noise are both scaled by the 

behavioural parameter, it is given as 𝑢 = gS + gN. If either the noise or the signal is scaled, it is 

given as 𝑢 = S + gN or 𝑢 = gS + N, respectively (Figure 2—figure supplement 1b).  

𝑆 and 𝑁 are both vectors of size 1 × 𝑁𝑝, where each element is drawn from a random uniform 

distribution between [0,1]. The population activity is simulated for 𝑁𝑟 repeats of the stimulus. The 

stimulus signal, 𝑆, remains the same for all the repeats (frozen noise drawn from the same range as 

before, [0,1]), while the noise component, 𝑁, is instantiated randomly on each repeat (from the 

same range, [0,1], as the signal). The behavioural parameter (e.g., pupil size) is assumed to change 

on every repeat too, which changes the gain parameter, 𝑔, as a result. 𝑔 was therefore assumed to 

be a random number uniformly drawn from the range [0.5, 2] for each repeat. We chose 𝑁𝑝 = 1000 

and 𝑁𝑟 = 100.  

Representational similarity for different models was calculated, similar to the procedure in 

analysing the experimental data, as: 

ρ𝑖𝑗 =
cov(𝑢𝑖 , 𝑢𝑗)

σ𝑢𝑖
σ𝑢𝑗

 

where 𝑢𝑖 and 𝑢𝑗 are population responses to the 𝑖-th and 𝑗-th repeat of the stimulus, obtained from 

different gain models. This value is plotted against the relative gain (obtained as the ratio of the 

gains in the two repeats, 𝑔𝑖/𝑔𝑗 or 𝑔𝑗/𝑔𝑖) in Figure 2—figure supplement 1b. 
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Extended gain model. To match better with the experimental data on a single unit level, we 

extended the previous signal gain model to have stimulus tuning for individual units (Figure 2a). 

Whereas before the stimulus was assumed to be a single, fixed value between [0,1] for each neuron, 

now the stimulus itself is extended (corresponding to different frames of the natural movie or 

different orientations of drifting gratings). The stimulus, 𝑠, is assumed to be a vector of fixed random 

values between [0,1] with size 1 × 𝑁𝑠 . Each neuron, 𝑘, has a different stimulus drive/tuning, 𝑇𝑘 , 

with which the stimulus vector is multiplied. 𝑇 is a vector of size 1 × 𝑁𝑝 (number of neurons in the 

population), randomly drawn from [0,1]. Response of the 𝑘-th neuron to each repeat of the stimulus 

is composed of its stimulus signal (𝑆 = 𝑇𝑘𝑠), which is multiplied by the behavioural gain (𝑔), and 

an added noise term (𝑁), which is independently drawn for each stimulus and repeat from the range 

[0,1]. 𝑁𝑠 = 10, 𝑁𝑝 = 1000, 𝑁𝑟 = 200. 

Independent model. We also developed an alternative model, whereby the effect of behaviour on 

population responses was modelled as an independent signal (Figure 2b). Here, instead of scaling 

signal or noise components of the input, behaviour enters as an independent parameter: 

𝑢 = 𝑆𝑆 + 𝑁 + 𝑆𝐵  

where 𝑆𝑆 and 𝑆𝐵  are stimulus-evoked and behavioural signals and 𝑁 is the noise. 𝑆𝑆 and 𝑁 were 

instantiated as before, while 𝑆𝐵  was determined based on two factors. First, the behavioural 

parameter, β, which was changing on every repeat, and was simulated, similarly as the behavioural 

gains before, by a random number between [0.5, 2] for each repeat. Second, the vector of tuning 

(𝑇𝐵) of different neurons in the population with the behavioural parameter, which was modelled 

as a random number between [0,1] for each neuron. The behavioural signal was obtained as: 𝑆𝐵 =

β𝑇𝐵 . Representational similarity was computed as before for the population vectors and plotted 

against the relative behavioural parameters. 

Decoding model. To directly compare the stimulus-induced information available in different 

blocks of stimulus presentation, we developed a decoding model (Figure 7a). A linear decoder is 

trained on the neural activity (composed of the average activity of units in response to different 

repeats of the natural movie) during the first block of presentation to discriminate different frames 

(1 second long) of the natural movie (Figure 7a, upper). The weights of the readout (W) for each 

target frame were optimized to maximize its classification (C=1) against other, non-target frames 

(C=0). The decoder is then tested on the data in the second block (Figure 7a, lower). The population 

activity in response to each frame (the vector of average responses of neurons to a single frame 
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across different repeats) is passed through the decoder to determine whether it is the target (D=1) 

or not (D=0). Performance of the decoder is quantified by calculating the discriminability (d’) as  

𝑑′ =
μ𝑠 − μ𝑛

√σ𝑠
2 + σ𝑛

2
 

where μ𝑠 and σ𝑠 are the average and std of D for target frame across repetitions (within the second 

block), and μ𝑛 and σ𝑛 are similar values for non-target frames. The discrimination matrix (Figure 

7b,e) then shows the discriminability (d’) of each movie frame as a target when presented against 

all other frames.  

Theoretical analysis 

Gain models. Representational similarity for the responses in the gain models can be calculated as 

follows. 

In the absence of any scaling of the signal or the noise, 𝑢 = 𝑆 + 𝑁, the representational similarity 

is obtained as the correlation coefficient of responses to a pair of stimulus repeats: 

ρ𝑖𝑗 =
cov(𝑢𝑖 , 𝑢𝑗)

σ𝑢𝑖
σ𝑢𝑗

 

where 𝑢𝑖 = S + 𝑁𝑖  and 𝑢𝑗 = S + 𝑁𝑗 . Assuming that 𝑆 and 𝑁 have zero means, we can write: 

ρ𝑖𝑗 =
σS

2

σ𝑆
2 + σ𝑁

2  

where σ𝑆 and σ𝑁 are the std of 𝑆 and 𝑁, respectively. This indicates that representational similarity 

can be expressed as a function of the relative variability of the signal and the noise. If modulation 

of the responses due to signal is dominant over the noise, σ𝑆 ≫ σ𝑁, ρ𝑖𝑗 → 1. 

If both the signal and the noise are scaled by the behavioural parameter, by the gain factor 𝑔, as 

u = gS + gN, we obtain: 

𝜌𝑖𝑗 =
𝑔𝑖𝑔𝑗𝜎𝑆

2

𝑔𝑖𝑔𝑗(𝜎𝑆
2 + 𝜎𝑁

2)
=

𝜎𝑆
2

𝜎𝑆
2 + 𝜎𝑁

2
  

where 𝑔𝑖  and 𝑔𝑗 are the gains in the 𝑖-th and 𝑗-th repeat of the stimulus, respectively. 

Representational similarity, therefore, remains the same under similar scaling of 𝑆 and 𝑁. 

If only the noise is scaled by behaviour, we obtain: 

ρ𝑖𝑗 =
σ𝑆

2

√(σ𝑆
2 + 𝑔𝑖

2σ𝑁
2 )(σ𝑆

2 + 𝑔𝑗
2σ𝑁

2 )

 

showing that the larger the gain, the smaller the representational similarity. 

Similarly, if only the signal is scaled, representational similarity can be obtained as follows: 
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ρ𝑖𝑗 =
𝑔𝑖𝑔𝑗σ𝑆

2

√(𝑔𝑖
2σ𝑆

2 + σ𝑁
2 )(𝑔𝑗

2σ𝑆
2 + σ𝑁

2 )

 

which, if rewritten as: 

ρ𝑖𝑗 =
σ𝑆

2

√(σ𝑆
2 + σ𝑁

2 /𝑔𝑖
2)(σ𝑆

2 + σ𝑁
2 /𝑔𝑗

2)

 

shows that larger gains effectively decrease the significance of noise, and hence enhance 

representational similarity. Specifically, in the limit of very large gains for both repetitions (𝑔𝑖 ≫

1,  𝑔𝑗 ≫ 1), we have: 𝜌𝑖𝑗 → 1.  

For the specific case where gains are the same between the two repeats (𝑔𝑖 = 𝑔𝑗 = 𝑔), the equation 

simplifies to: 

ρ𝑖𝑗 =
σ𝑆

2

σ𝑆
2 + σ𝑁

2 /𝑔2
 

Thus, for similar behavioural states (and hence gains) between the two repeats of the stimulus, 

representational similarity increases if 𝑔 > 1 and decreases if 𝑔 < 1. 

Independent model. For the model in which the stimulus and the behaviour contributes 

independently to neural responses, representational similarity in response to the same stimulus can 

be expressed as: 

ρ𝑖𝑗 =
σ𝑆

2

σ𝑆
2 + σ𝐵

2 + σ𝑁
2

 

where σ𝑆, σ𝐵 , and σ𝑁 denote the variability of the population response induced by stimulus, 

behaviour and noise components, respectively. In deriving the above equation, we have assumed 

that the stimulus and behavioural components of the signal are independent, i.e. < 𝑆𝑆 . 𝑆𝐵 >= 0 (in 

addition to the noise term being independent of 𝑆𝑆 and 𝑆𝐵 , respectively). We also assumed that the 

behavioural signal, 𝑆𝐵 = β𝑇, remained the same between the two repeats (that is, the behavioural 

parameter was the same: β𝑖 = β𝑗 = β). If the behavioural parameter changes between the repeats, 

the equation can, in turn, be written as: 

ρij =
σS

2

√(σ𝑆
2 + β𝑖

2σ𝑇
2 + σ𝑁

2 )(σ𝑆
2 + β𝑗

2σ𝑇
2 + σ𝑁

2 )

 

Note that, when representational similarity is only characterized in terms of the stimulus part of 

the signal, the contribution of behavioural variability is similar to a noise term – decreasing 𝜌𝑖𝑗 for 

larger values of β. Changes in the behavioural state can, thus, not be distinguished from random 

variability of the “signal”. 
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Relation between representational similarity and stimulus reliability. As explained above, 

representational similarity and stimulus reliability are calculated to quantify the similarity of 

population and single units’ responses, respectively, to the repeats of the same stimulus. In fact, 

representational similarity of a population vector composed of one single unit is the same as the 

stimulus reliability of that unit. Similarly, if all the units in a population of neurons had the same 

response profile in response to the stimulus, the stimulus reliability of units would be the same as 

the representational similarity of the population responses. Although these two measures are 

related (similar to lifetime sparseness and population sparseness (Froudarakis et al., 2014)), they are, 

however, not always directly equivalent to each other.  

Consider a single unit, 𝑘, which has a constant baseline firing rate of 𝑟𝑏 and a component which is 

modulated by the stimulus, 𝑟𝑚: 𝑟 = 𝑟𝑏 + 𝑟𝑚. If the stimulus-modulated component of the response 

is randomly changing between different repeats of the stimulus, the neuron would have a stimulus 

reliability of zero: ρ𝑘 = 0. A population of units with this behaviour would have an average 

stimulus reliability of zero. However, the representational similarity of the responses of this 

population is not necessarily zero. In fact, we may obtain high values of population-level 

representational similarity, if the baseline component of the responses is significantly larger than 

their modulation ( 𝑟𝑏 ≫ 𝑟𝑚). Under this scenario, representational similarity is calculated from the 

baseline component of the population responses (𝑣𝑏), which indeed remains constant across repeats, 

hence ρ𝑖𝑗 → 1.  
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Supplementary Figure Legends 

 

Figure 1—figure supplement 1: Characterization and quantification of representational similarity 

and representational drift.  

a, Left: Illustration of response of a population of neurons (#1 to #n; upper) to a stimulus (lower), 

composed of binary values (ON: red; OFF: white). b, The population response to two other 

repetitions of the same stimulus can remain the same (upper), demonstrating a stable and reliable 

code, or it can change from the original pattern (lower), leading to a drift of representations. 

Representational drift can be quantified by a representational drift index (RDI), which compares 

the correlation of population responses within the same session/block of presentation (𝐶𝐶𝑤𝑠) with 

the correlation of population responses across sessions/blocks (𝐶𝐶𝑏𝑠; see Methods). c, The degree of 

change or constancy of representations can be assayed by comparing the population responses to 

repeats of the same stimulus. The degree of similarity is quantified by representational similarity 

(RS), which is quantified by the corelation coefficient (CC) of the concatenated (across neurons) 

vector of population responses to two repeats (PV(i) and PV(j)). d, Stimulus reliability (SR) is 

calculated for each unit individually, from the CC of the vector of responses of that unit to two 

stimulus presentations.   

 

Figure 1—figure supplement 2: Relation between behavioural changes and representational 

similarity in other sessions and for all units.  

a, Same as Figure 1d,g for four other example recording sessions. Left: Examples from Neuropixels 

dataset1; Session numbers and the number of V1 units (#), respectively: 762602078 (#75), 

750332458 (#63), 760345702 (#72), 751348571 (#49). Left: Examples from Neuropixels dataset2; 

Session numbers and the number of V1 units (#), respectively: 766640955(#52), 787025148(#68), 

771990200(#54), 829720705(#52). Only sessions with #>40 units are included in the analysis. b, 

Same as Figure 1e,h when all recorded units are included (instead of only V1 units).  

 

Figure 1—figure supplement 3: Dependence of representational similarity on behavioural change 

when calculated from z-scored activity and from activity rendered in longer time bins.  

a, Same as Figure 1e,h when population vectors are composed of z-scored activity of units in V1 

(upper) or all regions (lower). Z-scored activity of unit 𝑖 is calculated as 𝑧𝑖 = (𝑟𝑖 − μ𝑖)/σ𝑖, where μi 

and σi are the average and std of the activity of unit (𝑟𝑖) during the two blocks of presentation of 
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natural movie 1. Left: Neuropixels dataset1; Right: Neuropixels dataset2. b, Same as Figure 1e,h 

when representational similarity is calculated from the activity of units rendered in time bins of 2 

seconds (instead of original 1 second; see Methods). 

 

Figure 1—figure supplement 4: Dependence of representational similarity on behavioural change 

in wild type mice and for male/female animals separately. 

Same as Figure 1—figure supplement 2 when (a) only wild typed (WT) mice are included in the 

analysis, or (b) when the analysis is performed for V1 units in female and male mice separately (see 

Supplementary Table 1 for details). Left: Neuropixels dataset1; Right: Neuropixels dataset2. 

 

Figure 1—figure supplement 5: Representational drift between the two blocks of stimulus 

presentation in animals with different levels of behavioural variability. 

a, Matrices of representational similarity (calculated from population vectors of V1 units) between 

repeats of Natural Movie 1 (similar to Figure 1d,g, left) for sessions across the two datasets (Upper: 

Neuropixels dataset1; lower: Neuropixels dataset2; The colour code is the same as the example 

shown in (c).). The numbers on the bottom denote the average change in the pupil width between 

the two blocks (average of the absolute normalized change between all pairs of repeats in the first 

and the second block), and the sessions are sorted according to that (from the least change to the 

highest change). The numbers on the top denote the representational drift index (RDI; see 

Methods) between the two blocks, which is calculated as: 𝑅𝐷𝐼 =  (𝐶𝐶𝑤𝑠  –  𝐶𝐶𝑏𝑠) / (𝐶𝐶𝑤𝑠  +

 𝐶𝐶𝑏𝑠), where 𝐶𝐶𝑤𝑠  and 𝐶𝐶𝑏𝑠  represent the average representational similarity within sessions and 

between sessions of the two blocks, respectively. 𝐶𝐶𝑤𝑠 is obtained as the average of average CC 

within the first block and the second block. b, Relationship between the average change in pupil 

size (numbers denoted on the bottom of plots in (a)) and representational drift for different sessions 

in the two datasets. Red lines show the best fitted regression lines, with values of R2 denoted in red. 

c, The example session, highlighted with the red box in (a), is singled out (top), as being an outlier 

in terms of the relation between pupil change and RD between the two blocks (red circle in (b)). 

The average pupil width and running speed for each movie repeat is shown for this session on the 

bottom. d,e, Same as (b,a), respectively, for all units (instead of V1 units). 

 

Figure 2—figure supplement 1: Dependence of representational similarity on behaviour in different 

gain models and in different experimental datasets. 
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a, A model neuron which integrates the signal and the noise components in its inputs. The signal 

has the same pattern over multiple repetition (rep#) of the stimulus, while the noise changes in 

each repeat. b, Representational similarity as a function of relative gain of the repeats (𝑔𝑖/𝑔𝑗, where 

𝑔𝑖  and 𝑔𝑗 are the gains in the 𝑖-th and 𝑗-th repeats) for three models, where both signal and noise 

(left), only noise (middle), or only signal (right) components of the input are scaled by behaviour 

(see Methods for details). Change in the gain did not change representational similarity when both 

signal and noise were scaled (left), consistent with our theoretical analysis (see Methods). When 

arousal scaled noise only, there was a small decrease in the average representational similarity 

(middle). The most prominent effect was observed when arousal scaled signal only. For this 

scenario, a general increase in the average representational similarity was obtained, with the 

maximum increase happening at equal gains (𝑔𝑖 = 𝑔𝑗) (right). c, Representational similarity as a 

function of relative pupil size (obtained by the division of the average pupil sizes in a pair of movie 

repeats) for all recorded units. d, The average representational similarity of all mice shown in (c) 

for datasets 1 (red) and 2 (blue) separately. Bottom: Same when V1 units are only included, from 

the sessions with more than 40 units (the inclusion criterion). e, Same as (c) when V1 units are only 

included in the analysis. There are fewer individual sessions here because not all sessions contained 

more than 40 V1 units. f, Same as (d) for V1 units. g, Same as Figure 1g, for a stronger value of noise 

(x2 N; left) or a weaker value of behavioural signal (x0.5 B; right). 

 

Figure 2—figure supplement 2: Wide and mixed distribution of stimulus and behavioural 

modulations.   

a, Distribution of stimulus reliability for all V1 units from all sessions in Neuropixels dataset1 (red) 

and dataset2 (blue). The average stimulus selectivity for the two datasets are (0.32, 0.36), 

respectively. Gray lines show the distribution of stimulus reliability when it is calculated for each 

block separately and then average across the two blocks. The average values obtained in this manner 

are (0.36, 0.40) for the two datasets, respectively. b, Sample activity of V1 units with high stimulus 

reliability (indicated by the numbers on the top) from each dataset. Top: The activity in response 

to each movie repeat; bottom: average activity in each block of presentation. c, Distribution of 

behavioural modulation of all V1 units for the two datasets. Behavioural modulation is obtained as 

the correlation coefficient (CC) of each unit’s activity with pupil size. d, Sample activity of V1 units 

with strong modulation by pupil size (numbers indicated on the top). Top: tuning of unit’s activity 

with pupil size. Bottom: the activity of units in response to repeats of the natural movie, showing 
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different levels of modulation by stimulus within and across blocks of presentation (denoted by the 

value of stimulus reliability on top). e,f, Activity of units can be weakly or strongly modulated by 

stimulus or behaviour, giving rise to four possible quadrants. Sample V1 units from each quadrant 

are shown for Neuropixels dataset1 (e) and dataset2 (f). For each sample, z-score activity of the unit 

across different repetitions of the movie is plotted (left), with the number on top denoting stimulus 

reliability of the unit. The average activity of each unit as a function of average pupil size (during 

each movie repeat) is plotted on the right, with the number on the top denoting behavioural 

modulation of the unit (CC with pupil size).  

 

Figure 2—figure supplement 3: Stimulus-independent behavioural modulation of CA1. 

a, Top: Average stimulus reliability across units in V1 and CA1 for different mice in each dataset. 

Bottom: Same for the average (across units) of the absolute value of behavioural modulation. Filled 

circles: average across mice. Red: Neuropixels dataset1; Blue: Neuropixels dataset2. b, Top: Sample 

activity of CA1 units (from Neuroixels dataset1) with considerable modulation by pupil size 

(numbers indicated on the top). Bottom: The activity of units in response to repeats of the natural 

movie. c, Same as (b) for Neuroixels dataset2. d, Schematic representation of population responses 

with stimulus-evoked (red) and behaviourally induced (green) components to the repeats of the 

same stimulus. Even if the stimulus-evoked component is different between repeats (red), the 

population vector of responses (see Figure 1--figure supplement 1c) can have some similarity due 

to the constancy of the component set by the behaviour (green). e, Average representational 

similarity as a function of change in pupil width (similar to Figure 1e,h, right) for V1 (left) and CA1 

units (right). Red: Neuropixels dataset1; Blue: Neuropixels dataset2. 

 

Figure 3—figure supplement 1: Relation of the principal components of neural activity to the 

average activity of units and their stimulus reliability. 

a, Strong correlation between PC1 and the behavioural state of animal, as assayed by either pupil size (left) 

or running speed (right). Both pupil size and running speed are normalized by z-scoring across the entire 

session. b, Projections of the activity of units in example sessions over the first three PCs (cf. Figure 

3a,b,g,h), with the average activity of each unit indicated by the pseudo colour code. c, Projection 

of units’ activity over PC1/PC2 versus the average activity of the unit. The best fitted regression 

lines and R2 values in each case are shown. d, Similar to Figure 3c,i for individual sessions. R2 values 

of regression lines fitted to the projection of units’ activity over PC1/PC2 versus stimulus reliability 
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of the respective units is plotted for individual sessions. Upper: Neuropixels dataset1; Lower: 

Neuropixels dataset2. 

 

Figure 3—figure supplement 2: PC1 and its relation to difference in pupil size and time. 

a, Relationship between distance on PC1 (cf. Figure 3e,k), change in pupil width and passage of 

time. Datapoints highlighted in blue show the cluster with smaller passage of time (corresponding 

to movie repeats within the same blocks of presentation). Note that the two clusters arise from two 

blocks of stimulus presentation, which are separated from each other for >80 minutes in both 

datasets. b, Distance on PC1 versus change in pupil width for data points with small passage of time 

(blue data points in (a)). The best fitted regression line and its R2 value denoted in blue. c, Distance 

on PC1 versus passage of time. The best fitted regression line and its R2 value denoted in red.  

 

Figure 4—figure supplement 1: Average activity of units is modulated by behavioural state. 

a, Average population activity (left y-axis) and running speed (right y-axis) as a function of pupil 

size, for the example shown in Figure 4a from Neuropixels dataset1. b, Average population activity 

of V1 units during each movie presentation as a function of pupil size, from all recorded sessions. 

Pupil size for each repeat is normalized (within each session) by subtracting the mean value (across 

repeats) and dividing by it. c, For the example session in Figure 4, the average (across movie frames) 

activity of V1 units is calculated and their mean and std across movie repetitions in each block is 

shown. Units are sorted in both blocks according to the mean in the 1st block. d, Average activity 

(across movie frames and repeats) of units during the 2nd block versus the 1st. Note the logarithmic 

scales. e, R2 values of the regression fits to the data like Figure 4c, when the population vectors are 

composed of the average activity of units during presentation of each individual frame (1 second 

long) of the natural movie. f-j, Same as (a-e) for Neuropixels dataset2. 

 

Figure 4—figure supplement 2: Nonmonotonic relationship between setpoint similarity and 

behaviour. 

a, Relationship between setpoint similarity and change in pupil size for the same example session 

as Figure 4g. b, Same data as (a), when setpoint similarity is plotted as a function of both changes 

in pupil size and change in running speed between movie repeats. Red datapoints indicated movie 

repeats with small difference of average running speed between them (Δ run. speed < 10 cm/s), and 

blue datapoints indicate movie repeats with large changes of average pupil width (|Δ pupil width| 
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> 1.25). Black: other data points. c, Same as (a) for red datapoints in (b) (for movie repeats with 

small changes of average running speed between them). d, Average pupil width (normalized by z-

scoring) during each movie presentation in the first (repeat #1-30) and the second (repeat #31-60) 

blocks of presentations. Red and blue bars show, respectively, the movie presentations above (> -

0.8; red dashed line) and below (< -1.2; blue dashed line) the average of the pupil size in the first 

block. e, Same as (a) when setpoint similarity between specific pairs of movie repeats are colour 

coded. For pairs of movie repeats with one in the first block and the other in the second block, 

setpoint similarity is colour coded according to the average pupil width during the movie repeat in 

the first block, with red and blue circles corresponding to blue and red bars in (d), respectively. f, 

Shift in the eye position across movie presentations. Δ𝑋 and ΔY denote deviation of the average 

centre of the pupil (X and Y) from their grand average value during the whole session. 

 

Figure 4—figure supplement 3: Changes in the pupil centre, and their relation to setpoint similarity 

and changes in pupil width (for sessions in Neuropixels dataset1).  

First column: Same as Figure 4—figure supplement 2f, showing shift in the eye position across 

movie presentations for each session (session # indicated on the top). 

Second and third columns: Same as Figure 4—figure supplement 2a, when setpoint similarity is 

plotted against changes in the average eye position between movie repeats. 

Fourth column: Relation between changes in eye position and changes in pupil width. 

 

Figure 4—figure supplement 4: Changes in the pupil centre, and their relation to setpoint similarity 

and changes in pupil width (for sessions in Neuropixels dataset2). 

Same as Figure 4—figure supplement 3 for Neuropixels dataset2. 

 

Figure 4—figure supplement 5: Overall average activity of units and average pupil width gradually 

increase during the recording session. 

Average activity of units (across all recorded units and all sessions/animals) across time during the 

recording session. Each recording session (~2.5 hours) is broken to 10 time bins and the mean value 

within that time bin is calculated. The average z-scored value of pupil width (averaged across 

animals and within the same time bins) is shown on the right (red bars). (a) Neuropixels dataset1, 

(b) Neuropixels dataset2. Note that for both datasets the average activity increases gradually from 
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~6 spikes/s to ~9 spikes/s at the end (~50% increase). Also, note the similar, gradual increase of pupil 

width. 

 

Figure 5—figure supplement 1: Significant modulation of units by behaviour. 

a, Left: Distribution of correlation of V1 units’ activity with running during first and second blocks 

of presentation of natural movie 1. Right: Distribution of bootstrapped correlations with running. 

Correlation coefficient (CC) of each unit’s activity with 100 randomly shuffled versions of the 

running speed is calculated. The z-score of bootstrapped correlation (Z) is calculated by subtracting 

the mean of this distribution from the unshuffled CC and dividing it by the std of the distribution 

(see Methods for details). Bootstrapped correlations are calculated during the first (grey) and second 

(black) blocks separately. Significant correlations are taken as units for which |Z| > 2 (indicated by 

dashed red lines). Fractions of significant correlations during the first and second blocks are 

indicated on the top, respectively. b, same as (a) for all recorded units. c,d, Same as (a,b) for dataset2. 

 

Figure 5—figure supplement 2: Consistent modulation of neuronal responses by behaviour across 

blocks of presentation of drifting gratings, and across stimuli. 

a, Left: Distribution of correlations with running during the 1st and 2nd blocks of presentation of 

drifting gratings across all sessions. Right: Distribution of the z-score of bootstrapped correlations 

(Z) with running (see Methods and Figure 5—figure supplement 1). Significant correlations with 

running are defined as |Z| > 0.2. b, Correlation with running of units during the 2nd block against 

the 1st block, for all units and sessions (left; red), and for selected units (right; magenta), where 

sessions with similar levels of running between the two blocks and units with significant 

correlations are selected. c, Upper: Average running during the 1st and 2nd blocks for all sessions 

(all; red) and for selected units (sel; magenta). Lower: Correlation of all units with pupil versus their 

correlation with running, during the 1st (grey) and 2nd (black) blocks. Magenta: regression fits for 

selected units only. d, Correlation of all units with running speed during the presentation of drifting 

gratings versus correlations with running obtained during the presentation of natural movie 1, in 

the 1st and 2nd blocks of presentations, respectively. e-h, Same as (a-d) for dataset2.  

 

Figure 5—figure supplement 3: Consistent modulation of neuronal responses by behaviour across 

stimuli, regions, and datasets. 
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a,b, Analysis of the reliability of behavioural tuning in two parts of each session in the two datasets. 

The composition of stimulus sets in each session type is shown, with the type, sequences, and the 

length of each stimulus presentation indicated. In both datasets, correlation of units with running 

speed is calculated in two parts: 1st part from 30 to 90 minutes, and the 2nd part from 90 to 150 

minutes. c,d, Similar to Figure 5—figure supplement 2a-c for the 1st and 2nd part of the sessions in 

dataset1 (c) and dataset2 (d). e, Upper: Distribution of correlations with running for units recorded 

from different regions. Results for the two parts of the sessions (lighter lines denoting the first part) 

and both datasets (red: dataset1; blue: dataset2) are overlayed. Sessions where the average running 

between the two parts are too different are excluded (exclusion criteria: |Z2-Z1|>0.3, where Z1 and 

Z2 are the average of the z-scored value of running speed in the 1st and 2nd parts, respectively). 

Lower: Correlation with running in the 2nd part against the 1st part in each region, for dataset1 

(red) and dataset2 (blue), respectively. Lines show the best fitted least-square regression lines, with 

numbers denoting the R2 values of the fit in each case. f, Tuning reliability (average R2 values in 

(e)), for different regions across the two datasets. Regions key: [visual cortex, VIS] VISp: primary 

visual cortex; VISl: lateromedial area; VISrl: rostrolateral area; VISal: anterolateral area; VISam: 

posteromedial area; VISam: anteromedial area. [Hippocampal formation] CA1: cornu ammonis 1; 

CA3: cornu ammonis 3; DG: dentate gyrus; SUB: subiculum; ProS: prosubiculum. [Thalamus] LGd: 

lateral geniculate nucleus; LP: lateral posterior nucleus. [Midbrain] APN: anterior pretectal nucleus. 

 

Figure 7—figure supplement 1: Decoding natural images does not improve by focusing on 

behaviourally modulated units. 

Same as Figure 7c,d when reliable (Rel.) units are chosen as units with strong behavioural 

modulation (correlation with running speed of more than 0.5), instead of units with strong stimulus 

reliability (cf. Figure 7). Relation between average d’ and the number of units available for decoding 

in each session (all units or behaviourally reliable units) is plotted on the bottom. 

 

Figure 7—figure supplement 2: Decoding behavioural states from the population activity.  

a, A linear decoder is trained to predict the pupil width (upper) and the running speed (lower) of 

the animal from the activity of all recorded units in each session. It is trained on the data from half 

of randomly chosen movie presentations from both blocks (not shown), and tested on the other 

half of movie presentations (orange traces). The target values (test) for a specific randomization are 

shown in blue (note that the order of movie repeats is randomized, while the order of movie frames 
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within each movie presentation is preserved). The quality of prediction is quantified by the 

correlation coefficient (CC) of test and predicted traces in each case (indicated for the example 

sessions on top of each behaviour, respectively). Example sessions are the same as in Figure 1 and 

Figure 7. b, Average correlation of the predictions with behaviour for multiple repeats of the 

decoding with different random choices of train and test sets, for the example sessions shown in (a) 

(100 repeats) and for all sessions (10 repeats per each session). The mean and std of the correlations 

across repeats are plotted. c, The optimal weights obtained from the decoders in (b) are used to 

weight the neural activity and obtain a readout (similar to predictions in (a)). The readout activity 

is then used to assay the stimulus-related content of the behavioural decoder. A matrix of 

correlation coefficient of the readout activity between different repeats of the movie is calculated. 

The average of the off-diagonal entries of the matrix is taken as the correlation of reconstructed 

activity across multiple stimulus presentations. The mean and std of this across multiple 

randomisations (as in (b)) are plotted in (c). Left: Neuropixels dataset1; Right: Neuropixels dataset2. 

 

Supplementary Table 1: Information of recording sessions in different datasets. 

 

Figure 1—source data 1 

Related to Figure 1. 

Source data (for normalized changes in pupil width and representational similarity between pairs of movie 

repeats) for individual sessions across the two Neuropixels datasets. 

 

Figure 2—source data 1 

Related to Figure 2. 

Source data (for stimulus reliability of V1 units and their modulation by pupil size) for individual sessions 

across the two Neuropixels datasets. 

 

Figure 4—source data 1 

Related to Figure 4. 

Source data (for the change in average z-scored pupil width and setpoint similarity between pairs of movie 

repeats) for individual sessions across the two Neuropixels datasets. 
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Figure 6—source data 1 

Related to Figure 6. 

Source data (for the average z-scored values of pupil width and running speed in each block) for individual 

sessions across the two Neuropixels datasets.  

 

Source Codes for Figures 1-4 are provided.  
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