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Structures that appear to move at or near the velocity of light contain singular points. Energy generated by motion accu-
mulates at these points into ever-narrowing peaks. In this paper, we show that energy is generated by a curious process
that conserves the number of photons, adding energy by forcing photons already present to climb a ladder of increasing
frequency. We present both a classical proof based on conservation of lines of force, and a more formal quantum electro-
dynamics proof demonstrating the absence of unpaired creation and annihilation operators. Exceptions to this rule
are found when negative frequencies make an appearance. Finally, we make a connection to laboratory-based models
of black holes and Hawking radiation. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing
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1. INTRODUCTION

In previous work, we identified a novel gain mechanism for light
that is present in structures synthetically moving close to the veloc-
ity of light, trans-luminal structures as we shall call them. This
mechanism is distinct from other gain processes such as parametric
amplification, or gain media where excited atoms transfer energy
to a coherent wave. These well-known processes amplify light by
adding more photons to the system. Here we show that, in contrast,
the trans-luminal mechanism conserves the number of photons,
and energy is added by raising the frequency of the photons. This
result is addressed in both a semi-classical context exploiting our
previous result stating that lines of force are conserved, and in
the context of quantum electrodynamics (QED) where photon
number conservation arises in a natural fashion for impedance-
matched systems. Connections with singular gravitational metrics
are made, along with some remarks relevant to possible models for
laboratory-based black hole analogs.

2. SETTING THE SCENE

There is growing interest in electromagnetic properties of time-
dependent structures [1], particularly where time dependence
involves no physical motion of material, but rather phased modula-
tion. While pioneering works on such spatiotemporally modulated
media date as early as the 1960s [2,3], the discovery of novel
effects and opportunities for applications such as nonreciprocity
[4–7], amplification [8–11], optical drag [12–14], and topology
[15–19] has recently revived interest in the field [20]. A simple
realization might be some fixed modulation of one or both consti-
tutive parameters of the form ε(x − c g t). There being no physical
motion, the velocity, c g , is unrestricted in its magnitude, and by
varying from zero to infinity can encompass both purely spatial

and purely temporal modulations. We are interested in the trans-
luminal region where the grating velocity, c g , is comparable to the
speed of light, c 0, and lies between two critical velocities as shown
in Fig. 1. In this case, there are always two positions within the
grating where the local velocity of light is equal to c g . This region of
instability has been investigated in Ref. [2] and referred to in that
paper as the “sonic regime.” In general, these systems, though they
break time reversal symmetry, are parity–time (PT) symmetric, and
in the case of a periodic structure, the usual features of Bloch bands
punctuated by gaps appear. For super-luminal velocities, there is a
twist to the story: rather than the familiar gaps in frequency, gaps
appear in wave vectors. In these super-luminal gaps, waves gain
energy as time progresses, and photons are added to the system by
parametric amplification. However, Bloch symmetry fails in the
transluminal regime [21].

Consider a wave propagating along the x direction in a periodic
structure described by

ε
(
x − c g t

)
= ε1 + 2αε cos(g x −�t),

µ
(
x − c g t

)
=µ1 + 2αµ cos(g x −�t). (1)

This model has been widely adopted in other studies and shows
all the rich structure described above. We use the model for illustra-
tive purposes, but our conclusions will have wider validity.

If we choose to impedance match the structure,

µ
(
x − c g t

)
ε
(
x − c g t

) = Z2, (2)

where Z is a constant, then all backscattering is eliminated, as
Maxwell’s equations factorize into independent forward and back-
ward traveling waves. This results in the closure of all bandgaps
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Fig. 1. Variation of refractive index, n, taken from Eq. (1) plotted as a
function of X = x − c g t . The local velocity of light, c `, varies with n(X ),
and in this example, the grating is trans-luminal so that in one part of the
grating (white-background area under the horizontal dashed line), light
travels faster than the grating, and in the other part (gray-shaded area), it
travels slower than the grating. Gain and loss are present, gain indicated in
red, loss in cyan, due to the gradient of the refractive index.

and elimination of parametric amplification. Taravati [6] has also
investigated this regime. Waves move forward continuously, their
velocity, c `, varying according to the local value of the refractive
index, n =

√
εµ. However, a curious anomaly remains in the

trans-luminal region defined by a grating speed that lies between
the maximum and minimum local wave velocities. We illustrate
this case in Fig. 1. Here we show a trans-luminal grating partitioned
into two parts, one where the local velocity of light is less than that
of the grating, c ` < c g , and the other where c ` > c g .

Consider for a moment a different case where c `� c g or
c `� c g . There being no partitions, a pulse of light would move
smoothly through the grating, accelerating and decelerating as it
went. There is also gain and loss at work due to the time depend-
ence. Gain regions are shown in red in the figure, loss regions in
cyan. Spending equal time in each region, the pulse grows and dies
with no net gain, so the system remains in a stable PT-symmetric
phase. In contrast, for the example we show, pulses are trapped
in their respective partitions from which they cannot escape. A
pulse trapped between X 1 and X 2 travels faster than the grating
and moves towards X 2 and into the red region. It cannot pass X 2,
which it approaches ever more slowly, compacting as it does so,
and growing in amplitude because this is a gain region. On the
other hand, a pulse trapped between X 2 and X 3 is overtaken by the
grating, moving towards X 2 where it compresses and gains energy.

This is the novel mechanism for gain of which we spoke in
earlier papers [8,10,21,22], quite distinct from parametric gain,
which is eliminated from our model through impedance match-
ing. We showed in these papers that a curious conservation law
holds: the number of lines of force associated with the trapped
pulses is conserved even though their energy content increases
exponentially with time [10,22]. The result applies generally to
impedance-matched systems. For example, trapping can occur in
an isolated oscillation of the refractive index, just as in a periodic
system. The result is valid to a good degree of accuracy whenever
backscattering can be neglected.

In the next section, we go on to show that conservation of lines
of force inevitably implies conservation of the number of pho-
tons. Energy can be injected only by raising the frequency of the
photons.

f(x)

f (x)

x
Fig. 2. Periodic compression of lines of force defined by f ′(x ) (blue),
the derivative of f (x ) (red) shown here over three periods. f ′(x ) also
defines compression of the phase.

3. PHOTON CONSERVATION

In previous papers, we showed that in the absence of backscat-
tering, time-dependent structures can amplify light but without
adding lines of force to existing electromagnetic fields. The concept
of lines of force was introduced by Faraday as a way of thinking
about interactions between magnets, and of explaining electro-
magnetic induction. It is a familiar concept, for example, when
their compression is used to explain the repulsion between a mag-
net and a superconductor. It is less familiar but equally valid in
discussing optical fields. Here we show that conservation of lines of
force necessarily implies photon conservation. First we postulate a
distortion of the distribution of lines of force, which is then Fourier
analyzed into frequencies and finally the photon number counted
by summing over frequencies.

We consider a plane wave incident on a time-dependent system
such as described above, and assume no backscattering so that our
conservation theorem holds exactly. The incident electric field has
the form

D= D0e ikx−iωt , ω= c 0k, (3)

where D is the displacement field. The number of photons in one
period, a , is given by the energy content of the period divided by
the photon energy:

Nph =
a D2

0

ε0~ |ω|
=

a D2
0

ε0c 0~ |k|
. (4)

Suppose that waves emerge into vacuum from the far side
of the system with their fields subject to an arbitrary periodic
compression defined by f (x ) such that

f (x = na)= na , (5)

where n is an integer, and a is the periodicity. Typically, f (x )might
look like the red curve shown in Fig. 2.

After noting that the field lines and phase are compressed in the
same fashion as the field [21], it follows that

D= f ′(x )D0e ik f (x ). (6)

The model can easily be generalized to non-periodic
distributions but is simplest to present in this format.

We decompose the compressed field into a set of plane waves,

f ′(x )e ik f (x )D0 =

+∞∑
n=−∞

dne ikx+i2πnx/a , (7)
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where

dn =
1

a

∫ a

0
f ′(x )D0e ik f (x )−ikx−in2π x/a dx

=
k + n2π/a

ka

∫ a

0
D0e ik f (x )−ikx−in2π x/a dx . (8)

Next we calculate the number of photons in period a
remembering that negative frequencies have positive energies:

Nph =

+∞∑
n=−∞

a |dn|
2

~ε0c 0|k + n2π/a |

=
D2

0

~ε0c 0

∑
n

|k + n2π/a |
k2a

∫∫
e ik( f (x )− f (x ′))−i(k+n2π/a)(x−x ′)dxdx ′,

(9)

where ~|k + n2π/a |/
√
ε0µ0 is the energy of a photon in the nth

state.
Note that

+∞∑
n=−∞

|k + n2π/a |e−i(k+n2π/a)x

=

+
∞∑

n=n0

(k + n2π/a)e−i(k+n2π/a)x

−

n0−1∑
n=−∞

(k + n2π/a)e−i(k+n2π/a)x



= i
d

d x

[
+

∞∑
n=n0

e−i(k+n2π/a)x
−

n0−1∑
n=−∞

e−i(k+n2π/a)x

]

= i
d

d x
e−i(k+n02π/a)x

[
+

∞∑
n=0

e−in2π/ax
−

∞∑
n=1

e+in2π/ax

]
,

(10)

where n0 is chosen so that the modulus requirement is always ful-
filled. Since we are concerned with forward traveling waves, k > 0,
it follows that n0 ≤ 0.

The summation can be performed:

+

∞∑
n=0

e−in2π/ax
−

∞∑
n=1

e+in2π/ax
=

[
cos(π/ax )
i sin(π/ax )

+ 1

]

=
e+iπ/ax

i sin(π/ax )
, (11)

and on substituting into Eq. (9) and integrating by parts,

Nph =
D2

0

~ε0c 0

1

k2a

∫∫
ik f ′(y + x )e ik( f (x )− f (y+x ))

×

[
e i y (k+n02π/a−π/a)

sin(π y/a)

]
dxdy ,

y = x ′ − x . (12)

We divide the integrand into two parts. First consider the
asymptotic behavior of

lim
y→−i∞

e i y (k+n02π/a−π/a)

sin(π y/a)
=−

i
2

lim
y→−i∞

e i y (k+n02π/a−2π/a).

(13)
According to our definition of n0,

(k + n02π/a − 2π/a) < 0, (14)

and Eq. (13) clearly vanishes in the limit. The other component of
the integrand is more troublesome:

f ′(y + x )e−ik f (y+x ), (15)

but we note that this is just the complex conjugate of the com-
pressed wave. Despite being compressed, it consists of only forward
traveling waves. This does not guarantee that all the component
wave vectors are positive: if negative frequencies are excited, a for-
ward traveling wave will have a negative wave vector. In the absence
of negative frequencies, all the component wave vectors, k + ng ,
are positive, and their contributions to the contour vanishes as
y→−i∞. In this case, we can close the y contour in the lower
half-plane:

Nph =
D2

0

~ε0c 0

1

k2a

∫ a

0
ik f ′(x ) (−i) adx =

a D2
0

ε0c 0~k
, (16)

which we recognize as the number of photons captured in length a
of the incident wave, calculated in Eq. (4).

We stress that the theorem is violated if we excite negative
frequencies, which will have significance in the quantum context
discussed below.

There is a second theorem that is always obeyed. If we count
photons with negative frequency as having negative energy, we
obtain a different series:

Ñph =

+∞∑
n=−∞

a |dn|
2

~ε0c 0(k + n2π/a)

=
D2

0

~ε0c 0

∑
n

(k + n2π/a)
k2a

∫∫
e ik( f (x )− f (x ′))−i(k+n2π/a)(x−x ′)dxdx ′,

(17)

which can also be summed to give

+∞∑
n=−∞

(k + n2π/a)e−i(k+n2π/a)x =
lim N→∞

i
d

d x

+N∑
n=−N

e−ikx−in2π x/a

=
lim N→∞

i
d

d x
e−ikx sin((2N + 1)π x/a)

sin(π x/a)
, 0< k < 2π/a .

(18)

Now we can always close the contour, and in the limit, we have

Ñph =
lim N→∞

D2
0

~kaε0c 0

∫∫
e ik( f (x )− f (x ′))i

d
d x

e−ik(x−x ′)

×
sin((2N + 1)π(x − x ′)/a)

sin(π(x − x ′)/a)
dxdx ′

=
D2

0

~kε0c 0

∫ a

0
f ′(x )dx =

a D2
0

ε0c 0~k
, (19)

and Ñph is conserved unconditionally. In the next section, we
demonstrate the validity of the theorems by direct computation.
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We argue that when a negative frequency is excited, the dis-
crepancy between the two theorems shows that two photons must
be added to the system: we take away the negative energy one
and add it back with positive energy so the discrepancy between
the unphysical zero sum theorem and the violated physical sum
over positive energy is two photons. Of course, this must be the
case if we are to conserve momentum. This result from classical
electrodynamics gives links to the quantum world where negative
frequencies play a crucial role in creation of photon pairs as we shall
discuss later in the context of Hawking radiation.

4. ILLUSTRATIVE CALCULATIONS OF PHOTON
NUMBER DISTRIBUTION OVER FREQUENCIES

We return to a specific model of a time-dependent system as exten-
sively investigated in previous papers by ourselves and others. It
consists of a simple generalization of a Bragg grating of the form
shown in Eq. (1), moving with velocity c g =�/g . We stress that
material comprising the grating does not move; rather, the local
properties are modulated in the synchronized form given above.
This allows the structure to move synthetically with any velocity,
unrestricted by the speed of light. This model has been widely
adopted in time-dependent studies of “space–time crystals” [9]
and of non-reciprocal systems [10,11]. Closely related models have
been used to study topological aspects of so-called time-crystals
[12]. Our transfer matrix simulations use the following parameters:

αε = αµ = 0.05, g =�= 0.07,

ε0 =µ0 = c 0 = 1.0, (20)

so that the grating velocity, c g =�/g = c 0 = 1.0, lies in the cen-
ter of the trans-luminal region. We choose ω= 10.1×�. The
transfer matrix calculations presented in Fig. 3 are for transmission

through two different thicknesses of gratings corresponding to
32 (A), (C) and 64 (B), (D) spatial periods, and show the photon
content of each Fourier component of the transmitted wave along-
side the energy content. As thickness increases, photons are spread
over more frequencies, and when the spread reaches into negative
frequencies, the first theorem is violated, but in the two instances
shown here by a very small amount: 0.07% in the case of the greater
thickness. The second theorem is obeyed to machine precision as it
must be.

The oscillations in Fourier component amplitude seen in Fig. 3
can be explained by reference to Fig. 1. Compression of the phase
is determined by f ′, which squeezes the original uniform phase
oscillations, creating many Fourier components. Loosely speak-
ing, we can associate each point in the compressed space with a
particular Fourier component according to how much the original
wave is compressed at that point. Certainly, it is a vicinity of this
point that makes the most contribution. It will also be seen from
Fig. 1 that in each period, there are two points of equal compres-
sion, each contributing to the same Fourier component but with a
difference relative phase according to which part of the period they
were harvested from. The points of equal compression start at the
boundaries of the period and converge to the center where f ′(x ) is
a maximum and the relative phase zero. The number of oscillations
is therefore determined by the phase change over one period, which
is ka/2π = k/g = 10.1. Hence, we see 10 oscillations.

Finally, we check the impact of breaking strict impedance
matching. In Fig. 4, we show calculations for the same system as
for Fig. 3 except that only the permittivity is modulated. Figure
4(A) is to be compared to Fig. 3(B) and shows less diffusion of the
photons to higher order modes, but still obeys the conservation
law to within a fraction of a percent. This is evidenced by Fig. 4(B),
which shows the number of photons in each backscattered mode.
Violation of photon conservation is associated with backscattering,

Fig. 3. Mode occupation numbers after a plane wave passes through a grating comprising (A) 32 periods of the grating and (B) 64 periods. (C), (D)
Relative energy content for 32 and 64 periods, respectively.
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Fig. 4. Occupation numbers plotted against mode number after a
plane wave passes through a grating comprising 64 periods. (A) is to be
compared to (B) calculated for the same parameters except that for (A), the
permeability is kept constant; (B) shows occupation of the backscattered
modes, which is very small, indicating negligible violation of photon con-
servation. For the impedance-matched case (red online), backscattering is
zero to machine accuracy.

which is zero for the impedance-matched case but still very small at
0.014% in this more general scenario.

To summarize: Ñph, which counts negative frequencies as hav-
ing negative energies, is obeyed to machine precision provided that
the impedance-matched, no reflection, condition is met. The true
photon number, Nph, is conserved only if no negative frequencies
are present, but in the examples provided here is violated by very
small amounts.

5. PHOTON CONSERVATION FROM A QED
PERSPECTIVE

Casting the problem in terms of QED addresses photon conserva-
tion in its own language, so to speak, and shows very directly when
and how it is achieved.

We consider a 1D version of Maxwell’s equations with waves
propagating along the x axis. Polarization is preserved by the per-
mittivity and permeability, which are functions only of x , t and
periodic in x with period a . Therefore, we need consider only one
polarization obeying

∂E
∂x
=
∂B
∂t
=
∂

∂t
(Z−1µ)(H ′),

∂H ′

∂x
= Z

∂D
∂t
=
∂

∂t
(Zε) E ,

H ′ = Z H, µ′ = Z−1µ, ε′ = Zε,
(21)

where H is oriented along the y axis, E along the z axis, and Z is a
constant that we shall define later. We work with the vector poten-
tial in the Coulomb gauge:

E (x , t)=− Ȧ(x , t), H ′(x , t)=−∂z A(x , t), (22)

and A obeys

∂

∂x
∂x A

µ′(x , t)
=
∂

∂t
ε′(x , t) Ȧ. (23)

Lagrangian is

L =
∫

1

2

[
ε′(x , t) Ȧ2

−
(∂x A)2

µ′(x , t)

]
dx . (24)

π(x , t) is the conjugate momentum obtained from the
Lagrangian density:

π(x , t)=
∂L
∂ Ȧ
=+ε′(x , t) Ȧ(x , t), (25)

and on substituting into the Lagrangian,

L =
∫

1

2

[
π2(x , t)
ε′(x , t)

−
(∂x A)2

µ′(x , t)

]
dx . (26)

We expand

∂z A(z, t)=

∑
n

 sgn(ω+ n�)(k + ng )

×

{
Ac n cos[sgn(ω+ n�)(k + ng )z− |ω+ n�|t]
+ As n sin[sgn(ω+ n�)(k + ng )z− |ω+ n�|t]

},
π(z, t)=

∑
n

{
+ πc n cos[sgn(ω+ n�)(k + ng )z− |ω+ n�|t]
+ πs n sin[sgn(ω+ n�)(k + ng )z− |ω+ n�|t]

}
,

(27)

where we use cos and sin to ensure that all quantities remain real.
The expression sgn(ω+ n�) addresses the difficulty in QED
that negative frequencies must be interpreted as positive energies.
This we address by inverting the sign of both the frequency and
the wave vector, thus retaining the reality of a wave headed in the
same direction as before the inversion and the benefit that we can
continue to interpret ~sgn(ω+ n�)(k + ng ) as the momentum
and~|ω+ n�| as the energy of a photon. The Lagrangian follows

L =
1

2

∑
bnb′n′

[
(ε′−1)bnb′n′πbnπb′n′

− sgn(ωnωn′)knkn′ Abn Ab′n′(µ
′−1)bnb′n′

]
, (28)

which we use to construct the Hamiltonian

H =
∑

n

[
πn Ȧn

]
− L

=
1

2

∑
bnb′n′

[
(ε′−1)bnb′n′πbnπb′n′

+ sgn(ωnωn′)knkn′ Abn Ab′n′(µ
′−1)bnb′n′

]
. (29)

The subscript “b” refers to “sin” or “cos.” Next the conjugate
variables are associated with operators as follows:

1

(2~ωbn)
1/2 [πbn + kbn Abn]→ âbn,

1

(2~ωbn)
1/2 [πbn − kbn Abn]→ â †

bn,

πn→

(
~ωbn

2

)1/2 [
âbn + â †

bn

]
,

kbn Abn→

(
~ωbn

2

)1/2 [
âbn − â †

bn

]
. (30)

Substituting into the Hamiltonian,
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Ĥ =
~
4

∑
bb′

∑
nn′>0

(ωbnωb′n′)
1/2

+ [(ε′−1)bnb′n′ + (µ
′−1)bnb′n′

] [
âbn â †

bn′ + â †
bn âbn′

]
+
[
(ε′−1)bnb′n′ − (µ

′−1)bnb′n′
] [

âbn âbn′ + â †
bn â †

bn′

]


+
~
4

∑
bb′

∑
nn′<0

(ωbnωb′n′)
1/2

+ [(ε′−1)bnb′n′ − (µ
′−1)bnb′n′

] [
âbn â †

bn′ + â †
bn âbn′

]
+
[
(ε′−1)bnb′n′ + (µ

′−1)bnb′n′
] [

âbn âbn′ + â †
bn â †

bn′

]
. (31)

This Hamiltonian is consistent with our conclusion from the
classical equations concerning systems for which

Zε= ε′ =µ′ = Z−1µ. (32)

Since Z is an arbitrary constant, any system in which ε is every-
where proportional to µ satisfies this requirement, and when the
condition nn′ > 0 is met as in the first summation in Eq. (31),
creation and annihilation are always paired and photon conser-
vation holds. Photon creation can still occur through transitions
from positive to negative frequencies. In the quantum case, this
implies that a synthetically moving structure would spontaneously
emit radiation even when impedance matched. The significance
of impedance matching relates to black hole radiation where in
the vicinity of the Schwarzschild singularity, the effective values of
permittivity and permeability are impedance matched, and there-
fore according to our theorems, radiation can occur only if negative
frequencies are included. Of course, if a system is not impedance
matched, then there is no strict theorem. However, the theorem
will hold approximately provided that backscattering is minimal.

We note the resemblance of this positive to negative transi-
tion to the case of quantum friction where photons are generated
when a Doppler shift moves frequencies across a positive/negative
boundary [23,24]. That system concerns relative physical motion
between two parallel surfaces, and therefore a Lorentz transfor-
mation between the two frames generates the Doppler shift. In
contrast, the present system involves no physical motion, and
therefore our frequencies are all well defined in the laboratory
frame and positive to negative frequency transitions are clearly
identified as they arise only through the action of the grating.
However, it is instructive to make a Galilean transformation that
eliminates all apparent motion. This we investigate in the next
section.

6. SPONTANEOUS EMISSION OF RADIATION

The system can add photons to a field already present, but does this
include the presence of vacuum fluctuations? This is a question
closely related to emission of Hawking radiation [25] and to the
several model systems proposed for mimicking the effect that may
possibly be realized on a laboratory scale [26–34]. It is generally
believed that Hawking radiation from black holes will never be
observed, so the only hope for experimental confirmation lies in
model systems.

The event horizon, although present in Eq. (31), is effectively
hidden from view. However, a connection with the Schwarzschild
metric for a black hole can be established by following the path out-
lined in our earlier papers and making a Galilean transformation
to a co-moving frame in which the grating is stationary. We refer
the reader to these earlier papers for derivation of the constitutive
relations in the new frame [12,14]:

εmov =
ε(X )

1− ε(X )µ(X )c 2
g
,

µmov =
µ(X )

1− ε(X )µ(X )c 2
g
,

ξmov =−
ε(X )µ(X )c g

1− ε(X )µ(X )c 2
g
, (33)

where X = x − c g t , and ξmov describes the coupling between elec-
tric and magnetic fields. ξmov couples electric and magentic fields
and is responsible for the bianisotropy of the system as documented
in standard textbooks [35]. Closer examination of the co-moving
parameters reveals pathological behavior for grating velocities in
the vicinity of the speed of light. The constitutive parameters in the
co-moving frame show a singularity if there exists a point X s such
that

1− ε(X s )µ(X s )c 2
g = 0. (34)

Here the local velocity of light relative to the grating is zero and
a pulse of light would continuously slow down on approach and
never pass that point.

The condition for this trans-luminal region to occur in the
impedance-matched case is that

1/
√

1+ 2α <
√
ε1c g /c 0 < 1/

√
1− 2α. (35)

Within this range of grating velocities, PT symmetry breaks
down and energy can be extracted from the synthetic motion of the
grating.

This is highly reminiscent of the effective values of permittivity
and permeability calculated near the Schwarzschild radius. It has
been pointed out that light propagating under the Schwarzschild
metric [31] behaves as if in a medium with

ε=µ=
(

1+
r s

r

)3(
1−

r s

r

)−1
, r s =

2G M

c 2
0

, (36)

where G is the gravitational constant, and M is the mass of the
black hole. The singularity in the spatial component of the metric
is of the same order as that in our transformed system.

The Galilean frame has a double singularity dividing space into
two parts: in one part, c ` > c g , and in the other, c ` < c g . Light
traveling in the forward direction cannot pass between the two
but piles up intensity at the singularity where c ` and c g converge.
However, the bianisotropic nature of the Galilean frame ensures
that backwards traveling light sees no singularity and passes freely.

Experimental efforts are proceeding apace, but are likely to
modulate only the permittivity. This helps the cause of generat-
ing Hawking radiation because net creation of photons from the
ground state is allowed.
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Further discussion of Hawking radiation is deferred to a
subsequent paper.
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