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Abstract
SARS-CoV-2 infection results in different outcomes ranging from asymptomatic in-
fection to mild or severe disease and death. Reasons for this diversity of outcome 
include differences in challenge dose, age, gender, comorbidity and host genomic 
variation. Human leukocyte antigen (HLA) polymorphisms may influence immune 
response and disease outcome. We investigated the association of HLAII alleles with 
case definition symptomatic COVID-19, virus-specific antibody and T-cell immunity. 
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INTRODUCTION

Infection by SARS-CoV-2  leads to diverse outcomes in 
different individuals, the determinants of such variabil-
ity encompassing factors such as age, gender, obesity and 

host genetics. A number of loci have already been im-
plicated in genetic susceptibility, many proposed to im-
pact on innate immune mechanisms [1–4]. In terms of 
adaptive immunity, for many infectious diseases, there 
is a strong impact of human leukocyte antigen (HLA) 
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A total of 1364 UK healthcare workers (HCWs) were recruited during the first UK 
SARS-CoV-2 wave and analysed longitudinally, encompassing regular PCR screen-
ing for infection, symptom reporting, imputation of HLAII genotype and analysis for 
antibody and T-cell responses to nucleoprotein (N) and spike (S). Of 272 (20%) HCW 
who seroconverted, the presence of HLA-DRB1*13:02 was associated with a 6·7-fold 
increased risk of case definition symptomatic COVID-19. In terms of immune re-
sponsiveness, HLA-DRB1*15:02 was associated with lower nucleocapsid T-cell re-
sponses. There was no association between DRB1 alleles and anti-spike antibody 
titres after two COVID vaccine doses. However, HLA DRB1*15:01 was associated 
with increased spike T-cell responses following both first and second dose vaccina-
tion. Trial registration: NCT04318314 and ISRCTN15677965.
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polymorphisms, since this complex contains the key im-
mune response genes determining peptide presentation 
to T cells [5–7]. Effects may be apparent in outcomes, 
from susceptibility to infection, disease severity, disease 
progression, antibody titre or magnitude of T-cell re-
sponse. Effects of this type are seen in HLA-associated 
differential outcomes following infection by HIV, HBV, 
HCV, HPV and Mycobacterium tuberculosis, among 
many others [5–10]. While relatively few cases have been 
mapped to the level of specific HLA-peptide interactions, 
the presumed mechanism for such HLA association is 
that the peptide-binding grooves of particular alleles 
may better present key, immunogenic epitopes to protec-
tive T cells [11]. Such effects can be even more appar-
ent in differential responsiveness to vaccines: profound 
differences associated with HLA type are seen in anti-
body titre following vaccination for influenza, measles, 
anthrax and HBV [12, 13]. In the case of HBV, for exam-
ple, HLA-DRB1 polymorphisms are involved in vaccine 
non-responsiveness. The HLA complex encompasses 
more than 250 expressed genes, and infectious disease 
associations have been noted to different loci, in line 
with implicated immune mechanisms [14]. For example, 
different aspects of HIV susceptibility highlight the role 
of HLAII interactions with CD4 T cells, of HLAI interac-
tions with CD8, and of HLA-B and C products with KIR 
on NK cells [7]

We here consider the question of HLAII association 
with outcome following natural infection by SARS-CoV-2 
and COVID-19 vaccination in a well-documented cohort 
of frontline healthcare workers (HCWs) at UK hospitals 
in London and Nottingham [15–21], studied longitudi-
nally by repeat PCR-testing and serology since UK lock-
down in March 2020. HCW are at higher SARS-CoV-2 
infection risk [22–24] with reported estimates from 3·4 
to 18 times higher than the general population [23–25]. 
As in the general population, the majority of SARS-
CoV-2 infections tracked in our HCW cohorts are mild 
or asymptomatic, allowing investigation of the range 
of immune responses in COVID-19 from case defini-
tion symptoms to atypical symptoms and asymptomatic 
infection [15–21]. Data previously reported from this 
HCW cohort indicate that antibody and T-cell responses 
in natural infection can be variable and discordant and 
with antibody responses starting to wane over the first 
6-months from initial infection [17–19]. T-cell responses 
tended to be higher in male infected HCW and those re-
porting case-definition symptoms. Neutralizing antibody 
responses tended to be higher in older women [19]. We 
here investigate the hypothesis that HLAII polymor-
phisms influence outcome in SARS-CoV-2 infection in 
terms of likelihood of infection, symptomatic disease, an-
tibody response and T-cell response. While noting that it 

would be of value also to consider potential contributions 
of protective CD8 responses and HLAI polymorphisms, 
the present study was based on the premise of a central 
axis of adaptive immunity operating through CD4 T cells 
and generation of antibody, using analysis of CD4 and 
antibody responses as we have previously described [19–
21]. Another recent study has focused on the potential 
role of HLAI-associated, protective CD8 responses: nu-
cleoprotein 105-113/B*07:02-specific T-cell responses 
were associated with mild disease and antiviral protec-
tion through a sustained repertoire of high avidity CD8 T 
cells [26]. We have here considered CD4 and antibody 
immune responses following natural infection and after 
first and second doses of the Pfizer BNT162b2 vaccine in 
SARS-CoV-2 naïve and previously infected vaccinees.

MATERIALS AND METHODS

HCW cohorts

A 5-hospital HCW longitudinal study (n  =  1364) of UK 
first wave SARS-CoV-2 infection consisting of two ini-
tially independent studies (PANTHER, Nottingham: 
Nottingham City Hospital and Queen's Medical Centre, 
part of Nottingham University Hospitals NHS trust; 
COVIDsortium, London: St Bartholomew's, Nightingale 
and Royal Free Hospitals) that methodologically aligned 
in April 2020 (NCT04318314). London ethical approval 
was South Central, Oxford A Research Ethics Committee, 
reference 20/SC/0149. Nottingham was initially under a 
Human Tissue Authority licence in Nottingham (Licence 
number: 11035) and subsequently North-West – Greater 
Manchester South Research Ethics Committee, reference 
20/NW/0395. A detailed description of both cohorts can 
be found elsewhere [15–21].

The subset of participants included for the post vacci-
nation part of the study and recruitment criteria are de-
tailed in Figure S1.

SARS-CoV-2 serology

Both studies performed serial SARS-CoV-2 serology test-
ing assessing antibodies to both spike (S1) and nucleo-
protein (N). The London samples were analysed using 
commercial assays; the Euroimmun anti-SARS-CoV-2 
enzyme-linked immunosorbent assay (ELISA) targeting 
IgG specific for S1 [27] and the Roche Elecsys Anti-SARS-
CoV-2 electrochemiluminescence immunoassay (ECLIA) 
that detects antibodies (including IgG) for N protein. 
Anti-RBD antibodies were detected using the quantita-
tive Roche Elecsys® anti-SARS-CoV-2 ECLIA spike assay 
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(Roche ACOV2S, Product code: 09289275190). These 
were undertaken at the Rare and Imported Pathogens 
Laboratory at Public Health England using standard pro-
tocols. Positive was defined as (Euroimmun) a ratio >1·1, 
and (Roche) a electrochemiluminescence sample to lot-
specific cut-off index >1, as per manufacturers’ instruc-
tions. Reported assay sensitivity (92·3% and 96·2%–100% 
for Roche and Euroimmune, respectively) and specifici-
ties (100%) are high [28].

For all sera collected in 2020 and the first dose of the 
vaccine, the Nottingham study used in-house robotically 
delivered ELISAs cross-validated by the same Public 
Health England laboratory (PHE, Porton-Down, UK). 
In brief, they were ELISAs to S1 and N protein detecting 
IgG. Individuals were classified as seropositive if they had 
a positive titre to either at any time point. Seropositivity 
was defined as samples where the average measurement 
of the duplicates exceeded 2× the median value for the 
pooled negative controls. Samples higher than the high-
est negative, but lower than or equal to 2× the median 
of the pooled negatives were deemed indeterminate for 
COVID-19. For the second dose of the vaccine, the same 
methods and laboratory were used as those for the London 
cohort described above.

Symptom definition

Healthcare workers were classified as having case-
definition symptoms if at any time point they self-reported 
the following symptoms (fever, dry cough, loss of sense 
of smell or taste) using the symptoms-based model devel-
oped previously [29], or if they had to self-isolate due to 
symptoms of COVID-19.

Sample genotyping

Samples were genotyped using the Illumina Infinium 
Global Screening Array-24v1+MD, quality control and 
filtering (relatedness, heterozygosity, sample and SNP 
call rate) was carried out in PLINK v1.90b6.12 [30] 
HLA alleles A, B, C, DQA1, DQB1, DPB1, DRB1 were 
imputed using the HLA Genotype Imputation with 
Attribute Bagging (HIBAG) v1.24.0 package running in 
R v4.0.1 [31]. HLA and SNP genotypes from the publicly 
available HLARES and HapMap Phase 2 datasets, geno-
typed using the same array as the input data, were used 
as references for imputation. Initially a multi-ethnic 
panel was used, and where appropriate, ethnicity spe-
cific reference panels based on individuals of African, 
Asian and European descent were used to increase im-
putation accuracy.

T-cell response analysis

Peripheral blood mononuclear cells (PBMC) and serum 
was isolated and stored as previously described [19–21]. 
T-cell ELISpot analysis was carried out using pre-coated 
ELISpot plates (Mabtech 3420-2APT), read on an AID 
classic ELISpot plate reader (Autoimmun Diagnostika 
GMBH) and analysed as previously reported [19–21].

Statistical analysis

Associations between DRB1 alleles and binary outcomes 
(Covid-19 case definition symptoms, seropositivity) were 
assessed by standard logistic regression. Association with 
quantitative outcomes were assessed by unpaired t-tests 
if assumptions of normality held, otherwise by Mann–
Whitney tests. Data for antibody titres were normalized 
to a mean of 0 and variance of 1 for each cohort and data 
were meta-analysed using a Mantel Hanzel model. All 
analyses were carried out using Prism GraphPad 8.0 and 
StatsDirect 3.0.

Adjustment for multiple comparisons

We considered statistically significant P-values p < 0·0025 
adjusting for 15 DRB1 allele tests (alleles with car-
rier frequencies >1·5%, which comprise DRB1*04:05, 
DRB1*16:01, DRB1*15:02, DRB1*01:02, DRB1*04:07, 
DRB1*12:01, DRB1*08:01, DRB1*11:04, DRB1*04:02, 
DRB1*13:02, DRB1*04:04, DRB1*04:04, DRB1*14:01, 
DRB1*13:01, DRB1*01:01, DRB1*11:01, DRB1*04:01, 
DRB1*15:01, DRB1*03:01 and DRB1*07:01).

Statistical power

The analyses carried out had 80% power to detect associa-
tions between DRB1 alleles with P < 0·0025 (adjusting for 
15 DRB1 allele comparisons) between seropositivity (total 
n = 1365) and DRB1 alleles freq 1% of higher with odds ra-
tios of 3·75, for DRB1 alleles with allele freq 5% with odds 
ratios of 2·1 or higher and for DRB1 freq 10% odds ratios 
(ORs) of 1·75 for associations with symptoms among se-
ropositive individuals allele freq 2·5% with OR ≥ 4·75, for 
freq 5% OR 3·4, for freq 10% OR 2·6 (total n = 265) for post 
vaccination titres (n = 432) for differences of 1 or more 
standard deviations between mean log titre levels alleles 
with allele frequencies of 1% or higher, and for differences 
of 0·44 SDs between alleles where the SD for log10 titre 
levels is 0·42 and average post vaccination log10 titre lev-
els are 4·1.
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RESULTS

We initially explored the extent to which HLA-DRB1 
alleles are associated with symptomatic COVID-19 in 
seropositive HCW following SARS-CoV-2 infection. 
The London COVIDsortium (n  =  731) and Nottingham 
PANTHER (n  =  633) cohorts were recruited during the 
first wave in the UK and 20% of HCW seroconverted 
(Figure S1, Table S1). There was no difference in HLA-
DRB1 frequency between seropositive (n = 272) and se-
ronegative (n  =  1092) individuals where seropositivity 
refers to IgG positive titres for either nucleoprotein or 
spike S1 (Figure S2a). The London and Nottingham co-
horts were analysed separately since the serology had 
been measured using different assays.

Although the HCW cohort study did not detect 
population-level effects of HLA polymorphism on SARS-
CoV-2 infection per se, within seropositive individuals there 
was an association between carrying HLA-DRB1*13:02 
and the presence of self-reported case-definition symp-
toms (Figure S2b). Expression of HLA-DRB1*13:02 is 
associated with an increased chance of suffering symp-
tomatic disease in infected individuals. Results from both 
cohorts (London and Nottingham) split broadly by eth-
nicity (self-reported European descent vs. Minority eth-
nic group [UK]) showed DRB1*13:02 to be significantly 
associated with higher odds of a seropositive individual 
presenting case-definition symptoms (OR  =  6·74, 95% 
confidence interval 2·03–22·31; P  =  0·002) (Figure 1a). 

The data suggest greater susceptibility to symptomatic 
disease in HLA-DRB1*13:02 individuals.

We next considered whether HLAII impacted on the 
magnitude of the T-cell response to S or N in infected 
HCW. We have previously reported T-cell ELISpot re-
sponses against SARS-CoV-2 in the London HCW cohort 
[19–21]. Since T-cell analysis was conducted in a smaller 
sample, we interpret these findings with caution. We did 
not observe strong associations with T-cell responses that 
could pass a multiple test correction (P  <  0·0025) but 
found a nominal association between lower responses 
to the N among carriers of DRB1*15:02 (Figure 1b). In 
general, infected HLA-DRB1*15:02 HCW in this cohort 
tended to cluster at the lower end of T-cell responsiveness 
to both spike and nucleoprotein, often making little or no 
T-cell response after infection (Figure S3).

There was no significant association between HLA-
DRB1 alleles and antibody titre after the first vaccine dose 
in HCW with no prior SARS-CoV-2 infection (Figure S4a). 
However, we and others have previously shown that there 
is a strong and significant immune boosting effect of prior 
COVID-19 infection conferred on first vaccine dose [20, 
21, 32, 33]. In the present study, significant negative as-
sociations between S antibody titres after one dose of the 
BNT162b2 vaccine and HLA DRB1 alleles DRB1*04:04 
and DRB1*07:01 were observed among single dose vac-
cinated individuals with prior SARS-CoV-2 infection, 
whilst DRB1*03:01 was associated with significantly 
higher anti-S titres (Figure S4b); this was not apparent in 

F I G U R E  1   Association between 
HLA DRB1 alleles, the presence of 
case definition symptoms and T cell 
immune responses to SARS-CoV-2 
following natural infection: (a) consistent 
association of DRB1*13:02 with the 
presence of case definition symptoms; 
(b) Association between the absence of 
HLA-DRB1*15:02 and T-cell responses 
against nucleoprotein peptide pool (HLA-
DRB1*15:02 −, n = 68, HLA-DRB1*15:02 
+, n = 5). Bars show mean with SD. P 
value calculated using a Mann–Whitney 
U test. PBMC for T cell assays were 
taken on average 121 (range 71–174) 
days following first presentation of case 
definition symptoms. HLA, human 
leukocyte antigen; PBMC, peripheral 
blood mononuclear cells
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SARS-CoV-2 naïve vaccinees. After two doses of vaccine, 
none of these DRB1 allele associations remain significant, 
arguing that HLAII polymorphisms do not substantially 
impact antibody responses to COVID-19 vaccination.

We then explored whether a similar pattern of HLAII 
associated enhancement was seen in T-cell responses to S 
in SARS-CoV-2 naïve and prior infected HCW after one or 
two doses of vaccine (Figure 2b–d). DRB1*15:01 carriers 
showed a 4–6-fold enhancement of T-cell responses against 
S compared to non-DRB1*15:01 carriers (Figure 2b). This 

observation was only apparent in the context of vaccinees 
with prior SARS-CoV-2 infection, and no difference was ob-
served among SARS-CoV-2 naïve HCW (Figure 2b–d).

DISCUSSION

In this study our high-granularity, longitudinal analysis 
of large HCW cohorts has allowed an initial appraisal of 
HLAII allelic effects in diverse aspects of susceptibility to 

F I G U R E  2   HLA DRB1 alleles not associated with enhanced antibody responses but DR15:01 associated with higher T cell responses 
to spike in prior SARS-CoV-2 infected HCW: (a) Anti-spike titres after two doses of COVID vaccine were evaluated in the context of the top 
12 most frequent DR alleles in HCW from the COVIDsortium (n = 251) and PANTHER (n = 169) cohorts. (b–d) Association between the 
presence of the DRB1*1501 allele and T-cell responses against (b) spike protein in single dose vaccinated HCW, (c) spike peptide pool in 
single dose vaccinated HCW and (d) spike peptide pool in two dose vaccinated HCW with prior SARS-Co-V-2 infection (upper panel, n = 23) 
and SARS-CoV-2 naïve vaccinees (lower panel, n = 23). P values were calculated using a Mann-Whitney U test. Data are shown as box and 
whisker plots. HCW, healthcare worker; HLA, human leukocyte antigen
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infection and symptoms as well as specific immune re-
sponses. Our comments carry the caveat that this sample 
size is relatively small from which to draw firm conclu-
sions when one considers the number of distinct HLAII 
heterozygous combinations present. Nevertheless, there 
may be some interesting leads for further analysis. A 
further limitation of the study is that, although the de-
mographic characteristics of our study sample (socio-
economic status, ethnicity, body mass index, age) cover 
a broad spectrum of the UK population, the exposure to 
SARS-CoV-2 in this group is likely to be higher, and hence 
findings may not be readily extrapolated.

For a new human pathogen that has spread across the 
globe so effectively and rapidly, one might perhaps not ex-
pect to find explicit examples of differences in resistance to 
infection, and this was indeed the case. While our cohort 
study did not detect population-level effects of HLAII poly-
morphism on SARS-CoV-2 infection, within seropositive 
individuals there was an association between presence of 
HLA-DRB1*13:02 and symptomatic disease. Among the 
many research challenges posed by the COVID-19 pan-
demic has been decoding the differential pathophysiology of 
diverse outcomes following exposure, from asymptomatic 
presentation to mild disease, severe disease or death. Our 
findings place differential immune response gene effects 
of HLAII sequence peptide presentation within that mech-
anistic landscape. Notwithstanding our immunological 
analysis of the HCW cohort, it remains to be seen whether 
increased symptomatic disease in HLA-DRB1*13:02 indi-
viduals relates either to inadequacy of a protective antiviral 
response, or to a differential immunopathogenic contribu-
tion to symptomology in these individuals. Interestingly, 
this allele is implicated in other examples of differential 
outcome after viral infection, notably, protection against 
persistent HBV infection [34]. The allele is found in popu-
lations across the globe, though common (approaching one 
in five) in some populations including Saudi Arabia, South 
Korea and Rwanda (www.allel​efreq​uenci​es.net).

While specific differences in SARS-CoV-2 epitope spe-
cific responses did not reach significance with respect 
to HLADRB1*13:02, we observed an effect on T-cell re-
sponsiveness of the allelic variants of HLA-DR15, that is, 
HLA-DRB1*15:01 and HLA-DRB1*15:02. HLA-DR15  se-
quences encompass multiple alleles preferentially repre-
sented in populations inhabiting different regions of the 
world: HLA-DRB1*15:01 is more frequent in individuals 
of European Caucasian origin, while HLA-DRB1*15:02 
is the predominant HLA-DR15 allele in Eastern and 
Southeastern Asia (www.allel​efreq​uenci​es.net). The al-
leles differ by a single amino acid at position 86β, this 
impacting both peptide binding specificity, heterodimeric 
stability and presentation to CD4 cells [35–39]. From our 
analysis, HLA-DRB1*15:01 individuals tend to cluster at 

the higher end of T-cell responses, HLA-DRB1*15:02 in-
dividuals at the lower end. This enhanced responsiveness 
in HLA-DRB1*15:01 individuals extended to the boosted 
responses that we have previously described in people vac-
cinated following a prior natural infection [20, 21]. Thus, 
assuming a classic ‘high-responder’ immune response 
gene effect through ability of the HLA-DRB1*15:01 binding 
groove to present specific spike epitopes, it is assumed that 
the epitope(s) in question must be immunodominant and 
processed for presentation both during infection and vac-
cination, and thus visualized as part of hybrid-immunity 
boosting. The number of DRB1*15:02+ individuals in our 
study is fairly modest, and our results regarding this allele 
should be seen as hypothesis-generating, requiring fur-
ther confirmation.

In conclusion, HLAII polymorphisms exert an effect 
on presence of symptoms in natural SARS-CoV-2 infec-
tion. However, we found no evidence for a role in sero-
prevalence following infection. The magnitude of spike 
antibody response is also unaffected by DRB1 genotype. 
However, some HLA-DRB1 alleles are associated with 
enhanced or muted post natural infection and vaccina-
tion T-cell responses. Our findings suggest that, as man-
agement of the COVID-19 pandemic moves into a phase 
where there is demand for a more nuanced understanding 
of differences in protective immunity, especially the issue 
of understanding vulnerable groups and the targeting of 
booster vaccines, there will be a role for determination of 
immunogenetic risk factors.
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