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Abstract

This paper presents an analytic expression for the high-temperature limit of Breit-Wheeler pair production in a black-
body field to lowest order in perturbation theory, of interest in early-universe cosmology. The limit is found to be a
good approximation for temperatures above about three times the electron rest energy. It is also found that coupling
to low-energy processes remains important at arbitrarily high temperatures, due to the exchange of a low-energy virtual
fermion near the mass shell. This appears mathematically in the rate as a logarithmic factor of the photon temperature
divided by the electron rest mass.

Weaver [1] expressed the rate of pair production by the
Breit-Wheeler process in a Black-Body field as a sum of
single integrals over special functions in 1976, which re-
duced to a simple expression in the low-temperature limit
kBTγ ≪ mc2, where Tγ is the photon temperature and m
is the electron rest mass. Such a quantity, and Weaver’s
limit, was developed for examining high-energy astrophys-
ical phenomena, such as supernovas [2] and galactic nu-
clei [3], and has also more recently found application in
the study of potential burning plasmas in the laboratory
[4, 5, 6]. The physical situation assumed here is that the
photon field is in equilibrium, while the electron/positron
field is not. In the small temperature limit this is clearly a
common physical situation, but a sufficiently rapid heat-
ing of the photon field can produce it even in the high-
temperature limit, where kBTγ ≫ mc2, which has rele-
vance in early universe cosmology. The pair production
rate can then be used to study the process of equilibration
between the fields. It would also be useful in situations
where disequilibrium is maintained by some other mecha-
nism, such as by the imposition of an external field that
sweeps created pairs away.

In this paper we present the Breit-Wheeler pair pro-
duction rate in this high-temperature limit. Weaver [1]
gives the rate of two-photon interaction for a black-body
radiation field as

Rγγ′ =
4c

π4

(
kBTγ

cℏ

)6 ∞∑
n,l=1

1√
nl

∫ ∞

0

dξ σξ4K1(2
√
nlξ)

(1)
where Kn is the modified Bessel function of the second

kind and
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ξ = p∗γc/(kBTγ), (2)

where p∗γ is the centre-of-momentum energy of the col-
liding photons. The expression originates from an integra-
tion over two black-body photon distributions in momen-
tum space, with the sum over n, l corresponding to a sum
over the photon occupation numbers of each mode. Jauch
& Rohlich [7] give the Breit-Wheeler cross-section as

σ(ϕ) :=


πr20ϕ

2
[
(2 + 2ϕ2 − ϕ4) cosh−1(ϕ−1)

−(1 + ϕ2)(1− ϕ2)1/2
]
, ϕ < 1

0, ϕ ≥ 1.

, (3)

ϕ :=
mc

p∗γ
= βξ−1, β :=

mc2

kBTγ
. (4)

Define

σ0(ϕ) := πr20ϕ
2
[
2 log(2ϕ−1)− 1

]
(5)

σ1 := σ − σ0. (6)

σ ∼ σ0 in the high-energy limit, and we will show that
σ0 acts as the effective cross-section in the high-temperature
limit. σ1 obeys

σ1(ϕ) = O(ϕ4 log(ϕ)), ϕ → 0+. (7)

We can write the dimensionless integral we need to
approximate as

I := r−2
0

∫ ∞

β

dξ σξ4K1(2ρξ), (8)

where ρ :=
√
nl. Divide I into two parts,

I = I0 + I1 (9)

I0,1 := r−2
0

∫ ∞

β

dξ σ0,1(βξ
−1)ξ4K1(2ρξ) (10)
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We have, first,

I0 =πβ2

∫ ∞

β

dξ [2 log

(
2ξ

β

)
− 1]ξ2K1(2ρξ)

=
πβ2

(2ρ)3

[
(−2 log (ρβ)− 1)

∫ ∞

β

dy y2K1(y)

+ 2

∫ ∞

β

dy log(y)y2K1(y)

]
,

(11a)

where we have used the substitution y = 2ρξ. Using

∫ ∞

β

dy y2K1(y) = 2 +O(β2 log(β)) (12a)∫ ∞

β

dy y2 log(y)K1(y) = 1− 2γ + 2 log(2) +O(β2 log(β)),

(12b)

where γ is the Euler–Mascheroni constant, this be-
comes

I0 =
π

2ρ3
β2

(
− log (β) + log(

2

ρ
)− γ

)
+O(β4 log(β))

(13)

Next,

|I1| ≤ r−2
0

∫ ∞

β

dξ
∣∣σ1(βξ

−1)ξ4K1(2ρξ)
∣∣

≤ β3

r20(2ρ)
2
Maxϕ∈(0,1)
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|σ1(ϕ)ϕ

−3|
) ∫ ∞

0

dy yK1(y)
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β3

r20(2ρ)
2
Maxϕ∈(0,1)

(
|σ1(ϕ)ϕ

−3|
) π
2
= O(β3),

(14)

where we know Maxϕ∈(0,1)

(
|σ1(ϕ)ϕ

−3|
)
is finite from

equation 7. Therefore I = I0 +O(β3) and hence

Rγγ′ =

∞∑
n,l=1

1

(nl)2
2r20c

π3

(mc

ℏ

)2
(
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ℏc

)4 [
log
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)

+ log

(
2√
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)
− γ +O

(
mc2

kBTγ

)]
(15)

Using

∞∑
n,l=1

1

(nl)2
=

π4

36
, (16a)

∞∑
n,l=1

ln(nl)

(nl)2
= −π4

18
(−12 log(A) + γ + log(2π)) (16b)

and defining

Figure 1: Approximation of thermal Breit-Wheeler pair creation
rate plotting against numerical calculation, with n, l in equation 1
summed from 1 to 20, at which there is numerical convergence to
precision visible on the graph. The approximation is seen to rapidly
approach the exact result from below for kBT > 3mc2.

χ := log(4π)− 12 log(A) ≈ −0.45403, (17)

where A is the Glaisher-Kinkelin constant, this can be
written

Rγγ′ =
πα2c

18

(
kBTγ

ℏc

)4 [
log

(
kBTγ

mc2

)
+ χ+O

(
mc2

kBTγ

)]
.

(18)

This approximation is plotted against a numerical cal-
culation of the exact rate (1) in Figure 1, where it can
be seen to be good for kBT > 3mc2. Assuming a con-
stant rate of pair production, no backwards rate, and free-
field equilibrium density [8], this predicts equilibration of
the fermion field in ∼ 2 × 104 ℏ/(kBTγ [log

(
mc2/(kBTγ)

)
+χ]). Since kBT/ℏ is the frequency scale of most particle
reactants, this predicts equilibration over long timescales
compared to the quantum processes.

The logarithmic term might be surprising. The näıve
expectation, on dimensional grounds, is that the ther-
mally averaged cross-section for a two-particle collision
at kBT ≫ mc2 obeys ⟨σ⟩ ∝ T−2 [8], which would give
Rγγ′ ∝ T 4. This is based on the logic that, at tempera-
ture scales where the mass becomes irrelevant, tempera-
ture is the only appropriate energy-scale that can be cho-
sen. But instead, as m → 0+, the rate diverges logarith-
mically. The high-energy process remains irrevocably cou-
pled to the low-energy regime. To understand why, con-
sider that the logarithmic divergence is inherited directly
from the two-photon cross section, where it appears as a
divergence in the virtual fermion propagator [7]. Specif-
ically, the divergence is due to the possibility of Breit-
Wheeler being mediated by the exchange of a real fermion
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of vanishing energy and momentum. The physics behind
this is intuitive: in the zero-mass limit, a photon trans-
forming into an electron of the same energy and momen-
tum does not violate energy or momentum conservation.
Therefore Breit-Wheeler needs involve only the exchange
of a virtual fermion of vanishing energy and momentum.
But in the zero-mass limit, this virtual fermion will be on
the mass shell. Processes being mediated by real particles
correspond to physical processes that can occur between
widely-separated particles. We therefore have a clear phys-
ical picture for how the mass-scale remains relevant at high
temperatures: photons in the thermal gas can interact to
create electron-positron pairs which are separated by the
length-scale of the inverse of the electron mass. This is
in contrast to the “hard thermal loop” (HTL) paradigm
[9, 10], where the dominant contribution to thermal quan-
tities comes from the exchange of excitations with “hard”
momenta p ∼ kBTγ/c. This is because we are dealing with
hard external momenta, while HTL assumes external mo-
menta are soft, and because our virtual fermion propagator
is not a thermal propagator, since we are formally exam-
ining a situation in which there is not a thermal fermion
background

This absence of a fermion background is a major ap-
proximation made by equation 18 as a calculation of the
physical pair production rate. If we are concerned with
the equilibration of the fermion field with a rapidly heated
photon field, then it will only hold good for a finite period
of time. The other major approximation is that it is a
lowest-order perturbative process. This could be problem-
atic because we know that in a thermal context the per-
turbation expansion might not produce adequate results
[9]. In general, in the theory of linear excitations about
thermal equilibrium, we expect the perturbative expan-
sion to produce reasonable approximations in the regime
of hard external momenta. Since the dominant contribu-
tions to the total Breit-Wheeler rate are the production of
hard fermions by hard photons, we have some reason to
think of it as a meaningful quantity, though it might well
underestimate the production of soft fermions.

This is complicated, though, by the fact that we have
just shown that the Breit-Wheeler is peculiarly coupled to
the low-energy regime. To get a qualitative idea of the
impact of the effects neglected, consider that one of the
most important non-perturbative effects of a thermal back-
ground is to introduce a “thermal mass” to the constituent
particles, mth := µkBTγ/c

2, where µ ∼
√
α [9, 11, 12].

(Taking this to be the only thermal adjustment of the
dispersion relations becomes a good approximation in the
hard momentum regime.) Introducing this thermal mass
as a correction to the fermion mass would induce us to
replace equation 18 as µkBT ≫ mc2 with

Rγγ′ =
πα2c

18

(
kBTγ

ℏc

)4 [
− logµ+ χ

+O (µ) +O
(

mc2

µkBTγ

)]
.

(19)

As could be appreciated physically, it is the logarithm,
which couples the process to the low-energy regime, which
makes the thermal mass a leading-order effect. Correc-
tions to external fermion propagators are sub-leading, as
we would expect the corrections to the external photon
propagators to be also. It is possible that the effects of
a growing thermal fermion background in the process of
equilibration could be included naturally in this formal-
ism, by making the fermion thermal mass dependent on
the background fermion density. Of course a much more
substantial treatment would be needed both to rigorously
justify this expression, since it is unclear whether the intro-
duction of a thermal mass is really adequate to handle the
interaction between the virtual fermion and the thermal
background, and to use it, since the literature results for
dispersion relations in a thermal background are restricted
to the case of the fermion and photon field in equilibrium,
where the notion of a particle creation rate has little mean-
ing.

Quantities of a similar form have been found by other
authors for similar quantities in high-temperature limits:
the reverse process, i.e. the rate of pair annihilation in elec-
trons and positrons in Maxwell-Jüttner distributions [13,
14, 15]; the rate of positron production in a plasma from
electron and ion collisions [15]; the mean path of a high-
energy non-thermal photon in a thermal bath [16]; and
various quantities in an optically-thin relativistic plasma
of finite size [17].
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[16] R. J. Gould and G. Schréder. Opacity of the universe to high-
energy photons. Phys. Rev. Lett., 16:252–254, 1966.

[17] A. P. Lightman. Relativistic thermal plasmas - Pair processes
and equilibria. Astrophys. J., 253:842–858, 1982.

4


