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Pharmacovigilance is the process of monitoring the emergence of harm from a

medicine once it has been licensed and is in use. The aim is to identify new

adverse drug reactions (ADRs) or changes in frequency of known ADRs. The last

decade has seen increased interest for the use of electronic health records

(EHRs) in pharmacovigilance. The causal mechanism of an ADR will often result

in the occurrence being time dependent. We propose identifying signals for

ADRs based on detecting a variation in hazard of an event using a time-to-event

approach. Cornelius et al. proposed a method based on the Weibull Shape

Parameter (WSP) and demonstrated this to have optimal performance for ADRs

occurring shortly after taking treatment or delayed ADRs, and introduced

censoring at varying time points to increase performance for intermediate

ADRs. We now propose two new approaches which combined perform

equally well across all time periods. The performance of this new approach

is illustrated through an EHR Bisphosphonates dataset and a simulation study.

One new approach is based on the power generalised Weibull distribution

(pWSP) introduced by Bagdonavicius and Nikulin alongside an extended version

of the WSP test, which includes one censored dataset resulting in improved

detection across time period (dWSP). In the Bisphosphonates example, the

pWSP and dWSP tests correctly signalled two known ADRs, and signal one

adverse event for which no evidence of association with the drug exist. A

combined test involving both pWSP and dWSP is reliable independently of the

time of occurrence of ADRs.
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1 Signal detection methods and
longitudinal data

At the time a medicine is approved and receives market

authorisation there should be robust evidence from clinical trials

that the average benefit of therapy outweighs the average risk to

the patient or at least to typical clinical trial participant. After a

medicine has received licensed approval is released on the

market, a much larger and more heterogeneous population

will then receive the treatment. The aim of pharmacovigilance

is to prevent the known harms and monitor the changes in

frequencies to determine if the risk is higher than expected, and

also to identify any new adverse drug reactions (ADRs).

Pharmacovigilance is important for both newly released and

established drugs and it can result in changes to prescribed

labelling or, in extreme situations, to the medicine being

withdrawn from the market. A key component of

pharmacovigilance monitoring is the use of quantitative signal

detection methods as a means to identify signals of ADRs that

warrant further investigation. In this paper we aim to

demonstrate the usability of novel model based approaches

for quantitative signal detection.

Historically signal detection methods have been employed on

data from spontaneous reporting systems (Hauben et al., 2005;

Harpaz et al., 2012) with an aim to detect disproportionalities in

frequencies between what is expected and what is observed (Bate

et al., 1998; Evans et al., 2001; Szarfman et al., 2002; Van

Puijenbroek Eugéne et al., 2002; Rothman et al., 2004; Noren

et al., 2006). Over the last 15 years there has been increased

interest in the use of electronic health records (EHRs) and

longitudinal data to further enhance pharmacovigilance

(Trifirò et al., 2011; Suling and Pigeot, 2012; Patadia et al.,

2015). Longitudinal data available in EHR data differs from

spontaneous reporting databases as it includes information on

all patients who take the medicine (not just those that experience

a suspected ADR), and all events that happen to that patient (not

just those for which a potential causal association is suspected). It

can also include detailed prescription issue information that

allow treatment exposure and non-exposure to be estimated.

Signal detection tests developed for spontaneous reporting

systems, predominately rely on detecting a disproportionality

in reporting between specific drug-adverse event combinations

for the medicine of interest compared to all the other

spontaneous reports for the other medicines combined. They

do not utilise longitudinal information. These approaches rely on

having access to a large and varied number of drugs so that a

suitable “expected” value can be calculated from the combined

medication reports. Longitudinal EHRs data offers considerable

opportunities for improved pharmacovigilance over spontaneous

reporting systems (Schuemie, 2011).

Recent signal detection methods have been proposed, which

make optimal use of additional information available in

longitudinal data. Methods include the modification of

existing disproportionality approaches to incorporate person-

time exposure into the Gamma-Poisson Shrinker test (Schuemie,

2011), identify patterns in the temporal association using the

information component (Norén et al., 2010), use of time series

combined with outlier analysis (Whalen et al., 2018), and change-

point analysis (Trihn et al., 2018). Whilst these enhanced

approaches make use of longitudinal information, they do not

utilise the time of the adverse event occurrence at the individual

level. We previously proposed a new approach that can be

applied to single arm exposed drug cohorts (Cornelius et al.,

2012) by developing a test which takes advantage of time-to-

event information. The premise is based on recognising that the

causal mechanism will often result in the occurrence of the ADRs

being time dependent.

Principle of a time-to-event approach

To take temporal processes into account, we considered

using tests based on the hazard function of time-to-event.

From here on, in order to aid clarity, we will refer to events

not associated to the medication as adverse events (AEs). This

definition differs slightly from the all-encompassing standard

definition in which the event may or may not be associated.

Events that are associated to the medication will be referred to as

Adverse Drug Reactions (ADRs).

A hazard function represents the ‘instantaneous’ rate of

occurrence of an event over time. It is always positive valued

and when the hazard function is constant then this is considered

to be consistent with observing a ‘background’ rate of events that

are not associated with drug therapy (AEs). If the hazard function

is non-constant this indicates a possible association of the event

with initiation of drug therapymedication (ADRs). Previously we

have developed a test based on the shape parameter for the

Weibull distribution: the Weibull Shape Parameter test (WSP

test) whose principle is to detect a variation in the hazard of an

event over time (Cornelius et al., 2012). This methods has the

advantage that it does not require a control group and it can be

easily implemented using existing statistical software.

The WSP test has been shown to have good power under a

range of scenarios with cohorts as small as 5,000 treated patients

when the ADR occurred shortly after treatment start or at the end

of the defined study period. However the data needed to be

censored at various time point in order to reliably detect an ADR

that occur in the middle of the observation period which

increases the complexity of applying the test (Cornelius et al.,

2012; Sauzet et al., 2013).

In this article, we propose to evaluate the reliability of two

new tests, one based on a combination of the WSP test (dWSP)

and one based on the power generalised Weibull distribution

(pWSP). The power generalised Weibull distribution allow for

more flexible hazard functions (Bagdonavičius and Nikulin,

2002). We show how the dWSP test as well as a test based on
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the power generalised Weibull distribution (pWSP) perform and

complement each other through a simulation study. We apply

the two tests to data from a cohort of women treated with

biphosphonates obtained from the THIN database.

2 Models allowing for flexible hazard
shape including a constant hazard

2.1 The weibull distribution based test

The simple version of this test (WSP) has been defined and its

limitations discussed elsewhere (Cornelius et al., 2012; Sauzet

et al., 2013). AWeibull distribution with a shape parameter equal

to one is an exponential distribution with a constant hazard (the

risk of AE ist constant over time). The main drawback of this

model is that it can only model monotonous hazards and has

therefore limited ability to detect signals when the increase in risk

is in the middle of the observation period.

The hazard function

λ t( ) � αθαtα−1 (1)

Where θ is the scale parameter and α the shape parameter, is

not time dependent when the latter is equal to one. The WSP

(Weibull Shape Parameter) test consist of rising a signal if the

95% confidence interval for the estimated shape parameter α does

not contain 1 (α is statistically different from 1).

2.2 The double weibull test

The WSP has proved to be of limited power for detecting a

signal when an increase in risk occurs half way through the

observation period due to symmetry of the hazard function. An

improved test can therefore be achieved by breaking the

symmetry through censoring the data at the middle of the

observation period—thus reducing the observation period by

half its duration—and performing the test twice: for the whole

duration and for half of it. A signal is raised if one of the two

shape parameters thus estimated is significantly different from 1.

To control for multiple testing, we adjust the significance level to

0.025 for each individual test.

Detection across time period test
If the following null hypothesis for the shape parameters α1

(uncensored data) and α0.5 (censored data at mid-observation

time) is rejected, a signal is raised:

H0: α1 � 1 and α0.5 � 1

and alternative hypothesis:

H1: α1 ≠ 1 or α0.5 ≠ 1

2.3 Power generalised weibull distribution
based test

The power generalised Weibull distribution (PgW)

introduced by Bagdonavičius and Nikulin (2002), is a

generalisation of the Weibull distribution in which a second

shape parameter allows for a wider range of forms of hazard

functions. Some examples are provided in Figure 1. The

advantage of this distribution for signal detection is that a

unique set of shape parameters provide a constant hazard

(exponential distribution), namely when they both equal one.

We suggest the following pWSP test: if the two shapes parameters

are significantly different from one both at a significance level of

0.05, then a signal is raised. Also when the parameters cannot be

estimated (e.g., because of a non-convergence of the estimation

algorithm), no signal is raised.

The survival function for the PgWwith scale parameter θ and

shape parameters (], γ) in the following:

S t; θ, ], γ( ) � exp 1 − 1 + t

θ
( )][ ]

1
γ( )

with the following hazard function

λ t( ) � ]
γθ]

t]−1 1 + t

θ
( )][ ]

1
]−1

2.3.1 Power generalised weibull distribution test
If the following null hypothesis for the shapes parameters ]

and α is rejected with a significance level of 0.05, then a signal is

raised:

H0: ] � 1 or γ � 1

with the alternative hypothesis:

H1: ] ≠ 1 and γ ≠ 1

2.4 Estimation

The parameters of the power Weibull model can be estimated

using a numerical maximisation of the likelihood (MacDonald,

2014) which can be easily implemented in R. The confidence

intervals for the shape parameters are obtained from the Hessian

matrix and no bootstrapping method is necessary. However the

number of events to be expected in signal detection can be low and

the convergence of the numerical estimation is not guaranteed.

We adapted the numerical maximisation of the likelihood for

a mixture of Poisson distribution presented by MacDonald

(MacDonald, 2014) to the case of a power generalised Weibull

distribution for censored data. The likelihood function for

censored data with density function f and survival function
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S(t) = 1 − P (T > t) is given in closed form for the power Weibull

distribution by:

L θ( ) � ∏n
i�1

f ti, θ( )δi S ti, θ( )1−δi ,

Where θ is the vector of parameters to be estimated, and the

data consists of n observation (ti, δi)i∈1,...,n, ti being the time at

which either the adverse events occurs or the time at which the

observation has been censored and δi is a censoring indicator

which equal one if an event is observed and 0 if not.

Confidence intervals are obtained by inverting the Hessian

matrix (Millar, 2011) if it is non-singular. In case the nlm

algorithm fails to converge or of a singular Hessian matrix,

the test results are that no signal is raised.

The R code for the estimation of the PgW distribution is

provided in the Supplementary Material.

3 Simulation study

In order to evaluate the performance of dWSP and pWSP,

background adverse event data (AEs) were simulated using an

exponential distribution. The simulated background rates were 1

(uncommon event), 5, and 10% (common) over the period of

observation. The rate of drug related events (ADRs) were of 10,

20, 50 and 100% of background rates. While this approach differs

to the common denomination of rare (1/10 000), uncommon (1/

100), or common (1/10) events rates, this is the relevant approach

in term of signal detection of ADRs within background events.

The time at which ADRs occurred was simulated using a

normal distribution with varying standard deviations to reflect

different variability in the report of events. The mean date was

either the middle point of the observation period defined by the

censoring date, the first quarter, or the third quarter. Negative

dates were removed from the analysis. We chose not to use

parametric or semi-parametric time-to-event models for the

simulation of events so as not to obtain too similar

distributions to the models used for testing. A normal

distribution provides a reasonable representation of how events

would occur in practice if due to an ADR that was time dependent.

For each set of simulationparameters 1,000 datasets of background

events (AEs) and drug related event (ADRs) were simulated. The

models were fitted to the data with drug related events and without to

compare rates of false positive and rate of false negative.

Rates of true (TP) and false positives (FP) were obtained as a

measure of sensitivity and (1-)specificity and results were also

presented in terms of accuracy:

acc � TP + 1 − FP

2
� Sensitivitiy + Specificity

2

The simulations were performed with R (R Core Team, 2020)

using the package survival (Therneau, 2015).

4 Results

Results are presented for scenarios which produced an

average of at least 11 ADRs and no more than 300 to cover

FIGURE 1
Example of hazard functions obtained from a generalised powerWeibull distribution. (A) ] = 5, γ= 700 θ= 0.5; (B) ] = 3, γ= 700 θ = 0.5; (C) ] = 3,
γ = 800 θ = 0.5; (D) ] = 1, γ = 1.5 θ = 167.
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only realistic scenarios.

The average sample sizes obtained are given in Table 1 for an

observed population of 2,500. For populations of 5,000 and

10 000, the number can be multiplied accordingly.

4.1 Effect of the standard deviation of
reported adverse drug reactions

We have simulated three standard deviations for the

reporting of ADRs to check how the variability in the

reporting time of ADRs would affect the rate of false and true

positives.

According the average values given in Table 2, there is no

indication that the accuracy is affected by the standard deviation

to the exception of the dWSP test for ADRs occurring at the

middle of the observation period. In that case the accuracy seems

to be decreasing slightly with increasing standard deviation.

4.2 Relative performance of the power
generalised weibull distribution and the
detection across time period

4.2.1 False positives
There seem to be little differences in the rate of false positive

between dWSP and pWSP (Figure 2). On average these rates

remain below 6% for the smaller sample sizes which is close the

5% significance level. The rate of false positive decreases with

increasing sample size for the pWSP to reach 4%whereas it seems

to remain on average over all rates of ADRs or all background

rates at around 5%.

4.2.2 First quarter of the observation period
Figure 3 shows the rates of true positive for ADRs simulated

occurring in the first quarter of the observation period per rate of

ADRs on average taken over all other simulation parameters.

Table 3 shows the average rates of true positives per effectively

simulated numbers of ADRs. For ADRs occurring during the first

quarter of the observation period the pWSP test ist very effective

for a relatively small number of observed ARDs with an average

of true positive rate reaching 80% from about 50 observed ADRs.

About 100 observed ADRs are necessary for dWSP to reach a true

positive rate of 80%. For all number of ADRs the pWSP performs

better than dWSP. For example a rate of 79% is reached by pWSP

for about 50 observed ADRs whereas the rate is 32% for dWSP.

Figure 4 which represents the accuracy against the number of

ADRs in more details, shows that for ADRs occurring at the first

quarter of observation time the performance of the pWSP test is

an improvement over the one of the dWSP by showing good

performance also for small number of ADRs (see also below).

Figuretp shows that for the pWSP test, the rate of true positives

reaches above 80% for an increase of 50% of more of the

background rate for a number of observation of 2,500.

4.2.3 Middle of the observation period
For ADRs simulated at the middle of the observation period

the dWSP tests performs slightly better than the pWSP test

according to averages shown in Figure 4. For the highest average

a rate of accuracy or true positive of above 90% is reached. Table 3

shows that the rate of true positive for both pWSP dWSP is

slightly lower than the rates obtained by pWSP in the first quarter

of observation for about 50 observed ADRs. However by

68 observed ADRs an true positive rate of 95% is achieved by

dWSP which still makes it a reliable test for a relatively small

number of ADRs. Figuretp shows that for both the pWSP and the

dWSP tests, the rate of true positives reaches above 80% for an

increase of 50% or more of the background rate for a number of

observation of 2,500.

TABLE 1 Average sample sizes for an simulated population of 2,500. ADR: adverse drugs reaction.

Background rate

(AEs) (%) 5 10 5 10 1 5 10 1 5

Rate of ADRs

(% of backg. rate) 10 10 20 20 50 50 50 100 100

Observations

with no events 2,378 2,262 2,378 2,262 2,475 2,378 2,262 2,474 2,377

Background

events (AEs) 122 238 122 238 25 122 238 25 122

ADRs 13 27 27 54 13 68 136 24 122

TABLE 2 Average accuracy over all scenarios for pWSP and dWSP tests
for varying standard devastations (SD) of ADR reporting.

1st quarter Middle 3rd quarter

SD pWSP dWSP pWSP dWSP pWSP dWSP

0.05 0.81 0.67 0.74 0.75 0.51 0.75

0.1 0.81 0.67 0.75 0.75 0.51 0.75

0.5 0.80 0.67 0.74 0.73 0.51 0.75
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4.2.4 Third quarter of the observation period
Here the comparison shows that the pWSP is not

suitable to flag ADRs which occurs toward the end of the

simulation period (Figure 3 and Table 3). On the other end

the dWSP gives suitably good results with averages

accuracy and true positive rates reaching well above 90%

from 68 observed ADRs. The performance of dWSP is

slightly better that at the middle of the observation

period for a number of observed ADRs of 68 or more.

For smaller number of ADRs it performs less well.

Figuretp shows that for the dWSP test, the rate of true

positives reaches above 80% for an increase of 50% or more

of the background rate for a number of observation

of 2,500.

FIGURE 2
Average over all rates of ADRs of false positive rates by background rates (1, 5 and 10%, rates increasing with background rates). —dWSP
. . .pWSP.

Frontiers in Pharmacology frontiersin.org06

Sauzet and Cornelius 10.3389/fphar.2022.889088

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.889088


FIGURE 3
Average over all background rates of true positive rates by rates of ADRs as percentage of background rates (10, 20, 50 and 100%, rates
increasing with ADRs rates). —dWSP . . .pWSP.
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4.2.5 Small sample sizes of adverse drug
reactions

The performance of pWSP and dWSP for small sample sizes

of ADRs depends strongly on the background rates. If the events

are rare in the population then ADRs are easier to detect. In

particular in the first quarter of the observation period the pWSP

test detected an average of 78% of true positive for sample sizes of

ADRs of 50 or less for background rates of 1% whereas this

number reduces to 37% for background rates of 5%. For the

middle and the third quarters of the observation period the

maximal rate of true positive for background rates of 1% in

about 60%.

4.2.6 Complementarity of power generalised
Weibull distribution and detection across time
period

The simulations indicate that when there are 120 ADRs or

more, the pWSP or dWSP can provide a test accuracy of 100%

independently of the background rate. But as Figure 4 shows, for

smaller sample sizes the background rate plays a role on how well

the tests performs overall.

Moreover we see a complementarity of the two tests in which

the pWSP detect better ADRs occurring in the first half of the

observation period and the dWSP in the second half. Very small

numbers of observed ADRs are better detected when they occur

in the first half of the observation period than later.

5 Example

The Health Improvement Network (THIN) is a database

containing the electronic healthcare records of over

550 United Kingdom general practices covering almost 6% of

the UK population. The records started in 2002 and provide

longitudinal prescribing and reported event data for each patient

of the participating practices (Trifirò et al., 2011).

The dataset used in this study consists of female patients in

the THIN dataset, who have been prescribed bisphosphonates for

the treatment of osteoporosis to the exclusion of patient with a

history of malignant cancer or Paget’s disease (prescription

included one of the following drug: alendronate, etidronate,

ibandronic acid, palmidronate, zolidronic acid, risedronate,

tiludronate and clodronate). The index date for each patient is

the date of first prescription of a bisphosphonate. Unless the

patient died or left the practice, all observations ended in August

2008. There were 19,817 prescribed women in the data. Any

event recorded after the index date (date of first prescription) is

included in the analysis. The end date was defined by the earliest

of transfer out of the practice date, death date, or last data

collection date. A detailed analysis of the data using the WSP

tool can be found in Sauzet et al. (2013).

Here we applied the two tests dWSP and pWSP with the

same events with varying incidence rates and reporting pattern

by patients: headache, musculoskeletal pain, alopecia and carpal

tunnel syndrome (CTS). Headache and musculoskeletal pain

events are known to be associated to bisphosphonates whereas

evidence of association for alopecia and carpal tunnel syndrome

is lacking. Due to limited means the number of AE investigated

had to remain small and the number of cases available had to be

sufficient within the observation time, which excluded well

knows ADRs like osteonecrosis of the jaw. For headache the

observation time was 15 days after starting the medication, for

musculoskeltal pain the observation period was 90 days from

starting the medication whereas this period was of 1 year for

alopecia and CTS.

The two tests provided consistent results: both correctly

identified headache and pain as potential ADRs, and for the

AEs with unknown association, they did not raise a signal for

carpal tunnel, but did raised a signal for alopecia being possibly

associated with starting treatment. Despite the small number of

TABLE 3 Mean true positive rates per simulated number of ADRs and
time of occurence.

Nb of
ADRs

< 20 20–30 45–55 68 98–136 > 200

1st quarter of observation period

pWSP 0.42 0.59 0.79 0.99 0.97 1.00

dWSP 0.06 0.13 0.32 0.64 0.78 1.00

Middle of observation period

pWSP 0.29 0.40 0.58 0.91 0.87 0.99

dWSP 0.27 0.41 0.61 0.95 0.91 1.00

3rd quarter of observation period

pWSP 0.08 0.07 0.05 0.09 0.10 0.14

dWSP 0.24 0.40 0.63 0.98 0.92 1.00

TABLE 4 Signal raised from the pWST and dWSP to a cohort of 19,817 women prescribed with biphosphonates (THIN dataset). pMean simulation
values based on an occurrence around the first quarter of the observation period and based on the number of observations. TP, True positive rate
(sensitivtiy); FP, False positive rate (1- specificity).

Outcome Cases Estimated accuracyp Observation pWSP dWSP Published Evidence

Headache 12 5% FP + 42% TP 15 days signal signal Association

Muscoskeletal pain 104 5% FP + 97% TP 90 days signal signal Association

Carpal Tunnel 96 5% FP + 97% TP 365 days no signal no signal No evidence

Alopecia 76 5% FP + 99% TP 365 days signal signal No evidence
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FIGURE 4
Plot of accuracy against the number of simulated ADRs. dWSP: +; pWSP: ◦
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cases of headache the estimation algorithm for pWSP did

converge. Results are provided in Table 4.

6 Conclusion

We have compared the ability of two complementary

distributional approaches for time-to-event models to raise

signals for adverse drug reactions by testing if a hazard was

(almost) constant. The aim was to a detect potential relationship

between a drug and an adverse event without at this stage aiming

at establishing a causal relationship. Because the Weibull

distribution can only model increasing or decreasing hazard

functions, previous work has shown the limitation of a test

based on the Weibull distribution if the increased hazard

occurred at the middle of the observation period. In this work

we compared the usability of an approach based on the power

Weibull distribution. This distribution offers more flexibility for

the shape of the hazard function including a constant hazard

(pWSP). We also presented an improved Weibull based test

applied on the whole of the observation period and on data

censored at mid-observation (dWSP). The two test complement

each other by performing well for different periods of the

observation time.

Censoring data at the middle of the observation period

improve the performance of the WSP test used alone for

ADRs occurring at the middle of the observation period

without outperforming the pWSP for ADRs occurring in the

first half of the observation period. The pWSP did provide

satisfying results, performing also better than the dWSP, for

ADRs occurring in the first quarter of the observation period.

However the pWSP failed to detect increased hazard occurring

toward the end of the observation period. By using a range of

simulation scenario including varied sample sizes we have seen

that a combination of these models would provide a accuracy

above 80% event for samplean number of observation as small as

2,500 depending on background rates.

Our recommendation in view of the simulation results would

be to use a test based on a combination of dWSP and pWSP.

Future work should establish what are the minimal sample size

relative to background rates for a reliable signal detection for a

dual pWSP-dWSP test. Optimal significance level should also be

obtained. However it is now clear that these test should be

implemented in the routine investigations to flag potential

associations between adverse events and medicines using

electronic health records data.
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