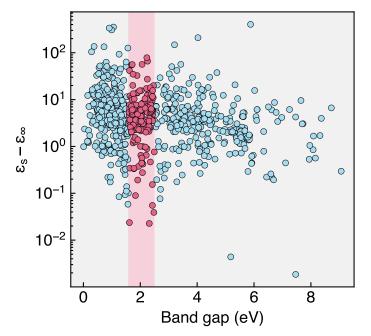
Supplementary Information for

The Defect Challenge of Wide-Bandgap Semiconductors for Photovoltaics and Beyond

Alex Ganose,¹ David O. Scanlon,^{2,3} Aron Walsh,^{1,4} Robert L. Z. Hoye^{1,*}


¹ Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom

² Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom

³ Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom

⁴ Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea

* Email: <u>r.hoye@imperial.ac.uk</u>

Supplementary Fig. 1. Difference between the static (ε_s) and electronic (ε_{∞}) dielectric constants of binary compounds against their bandgap. The red region indicates the bandgap range of interest (1.6–2.5 eV). Data obtained from Materials Project.¹

Reference

1. Jain, A. *et al.* Commentary: The materials project: A materials genome approach to accelerating materials innovation. *APL Mater.* **1**, 011002 (2013).