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Magneto-inertial fusion (MIF) approaches, such as the MagLIF experiment, use magnetic fields in dense plasma to

suppress cross-field thermal conduction, attempting to reduce heat losses and trap alpha particles to achieve ignition.

However, the magnetic field can introduce other transport effects, some of which are deleterious. An understanding of

these processes is thus crucial for accurate modelling of MIF. We generalise past work exploiting self-similar solutions

to describe transport processes in planar geometry and compare the model to the radiation-magnetohydrodynamics

code Chimera. We solve the 1D extended magnetohydrodynamic (MHD) equations under pressure balance, making

no assumptions about the ratio of magnetic and thermal pressures in the plasma. The resulting ordinary differential

equation (ODE) boundary value problem is solved using a shooting method, combining an implicit ODE solver and

a Newton-Raphson root finder. We show that the Nernst effect dominates over resistive diffusion in high β plasma,

but its significance is reduced as the β decreases. On the other hand, we find that Ettingshausen and Ohmic heating

effects are dominant in low β plasma, and can be observable in even order unity β plasma, though in the presence

of a strong temperature gradient heat conduction remains dominant. We then present a test problem for the Ohmic

heating and Ettingshausen effects which will be useful to validate codes modelling these effects. We also observe that

the Ettingshausen effect plays a role in preventing temperature separation when Ohmic heating is strong. Neglecting

this term may lead to overestimates for the electron temperature at a vacuum-plasma interface, such as at the edge of a

z-pinch. The model developed can be used to provide test problems with arbitrary boundary conditions for magnetohy-

drodynamics codes, with the ability to freely switch on terms to compare their individual implementations.

I. INTRODUCTION

Magneto-inertial fusion is an approach to controlled ther-

monuclear fusion that attempts to reduce the ignition crite-

ria of conventional inertial confinement fusion experiments

through the use of magnetic fields1–3. Even a small magnetic

field can be amplified by a compressing plasma by a factor of

103 or more4. These large magnetic fields suppress cross-field

thermal conduction to reduce heat losses. They also act to

trap alpha particles, improving energy deposition. However,

they can also give rise to other transport effects beyond ther-

mal conduction, some of which are deleterious, such as the

Nernst effect which reduces ideal MHD flux compression5.

In addition, the magnetic field can significantly complicate

the fusion alpha particle transport6,7, affect hydrodynamic and

laser-plasma instabilities8–13 and complicate the interpretation

of diagnostics14–17. Thus, accurate modelling of the magnetic

field and magnetised plasma dynamics is crucial to both pre-

dictions and understanding of experiments. A detailed un-

derstanding of plasma transport processes in a wide range of

parameter regimes is a key component of this.

There are many MIF schemes currently operating, such as

the MagLIF experiment at Sandia National Laboratories18,

where pulsed power is used to implode a beryllium liner onto

a laser pre-heated and axially pre-magnetised column of deu-

terium. MagLIF has observed neutron yields of more than

1013, but flux compression has been hampered by the Nernst

effect19,20. Recent “mini-MagLIF” experiments on OMEGA

have attempted to use laser-driven cylindrical implosions to

assist with this effort21. Currently, research has begun on

whether magnetic fields can lead to ignition on indirect-drive

ICF implosions on the National Ignition Facility22.

An important parameter for understanding magnetised

transport is the plasma β , the ratio of the thermal to mag-

netic pressures. This is because it has been shown that the

ratio of the Nernst to resistive diffusion terms in the 1D in-

duction equation is proportional to βLB/LT in the magnetised

limit, where LB and LT are the magnetic field and temperature

scale lengths respectively23. The ratio of the heat conduc-

tion to the Ettingshausen effect in the energy balance equation

has the same scaling. Thus the plasma β can be used to esti-

mate which transport terms are negligible, allowing the MHD

equations to be simplified. Past work has also studied how

these effects depend on the magnetic Lewis number, the ratio

of thermal to magnetic diffusivities23. However, it should be

noted that the transport is gradient-driven, and thus depends

on the imposed boundary conditions. We explore this further

in this work.

Past theoretical work has focused on the high β limit, as

this is of interest for the large temperatures and densities

in ignition-scale MIF experiments. This reduces the pres-

sure balance to purely thermal pressure and allows the mag-

netic diffusion, Ettingshausen and Ohmic heating effects to

be dropped, simplifying the problem. Velikovich et al. used

self-similar solutions to estimate flux and energy losses from

hot D2 plasma to a fixed, cold liner23 and found that the pro-

files are significantly affected by the inclusion of the Nernst

effect. A similar study by Garcia-Rubio et al., also in the high

β limit, included mass-ablation effects to estimate concentra-
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tion gradient losses24. Both approaches were later generalised

to the low β regime25,26. However, the maintenance of a rigid

wall constraint in these works prevents the interpenetration

of plasma and magnetic field and significantly restricts the

boundary conditions. For example, the wall must be treated as

a cold temperature sink, meaning the effect of a finite differ-

ence in temperature at the two boundaries cannot be assessed.

A recent generalisation by Velikovich et al. removed this rigid

wall constraint in the high β limit, which allows for a finite

density and temperature difference between the liner and the

plasma27. The lower β regime is however accessed in pulsed

power experiments, which are of importance to laboratory as-

trophysics as well as magnetised target fusion schemes28–30.

Furthermore, all magnetic confinement devices, including z-

pinches, are in a low β regime at the edge. Similarly, the

extreme magnetic fields generated in magnetic flux compres-

sion schemes31 mean that the magnetic pressure is quite sub-

stantial. In the earliest work on this, Garanin explored the

zero β regime by considering the diffusion of magnetic field

into a dense plasma32, finding that the temperature diverged

on the vacuum-plasma interface. This work differs from oth-

ers by using a Lagrangian form of the governing equations

and thus a different self-similar variable, as we highlight in

section II and in the appendix C. We have found that the so-

lutions produced using the two different self-similar variables

are identical. Garanin’s work is difficult to generalise due to

the use of asymptotic expansions on the vacuum-plasma inter-

face however, so we mostly proceed with the Eulerian form of

the equations. We have also found that this yields improved

numerical stability.

We further generalise past work to arbitrary β and consider

the transport of heat, density and magnetic field across the

full domain. This means that our problem is more general

in boundary conditions and parameter regimes. We solve for

the subsonic evolution of a plasma with a discontinuity in the

initial conditions. The purpose of this work is to understand

how the dominance of the Nernst and thermal conduction ef-

fects in high β plasmas changes as we move to a low β pa-

rameter regime. We particularly focus on the Ettingshausen

effect, providing a demonstration of its behaviour in electron-

ion temperature separation. The solutions produced in this

work can also be used to provide validation for MHD codes

attempting to model magnetised transport effects. We believe

that our solutions will be particularly useful in studies of low

density plasma, as well as regimes where resistive MHD is

a commonly used modelling tool. Examples of validation

against the radiation-MHD code Chimera33,34 are shown later.

We emphasise that our work is not intended to act as a replace-

ment to multiphysics codes, as we are limited in the physics

that we can include (for example ignoring radiative losses).

Instead, the utility of our work is in its ability to isolate and

test the implementation of a subset of the physics (here the ex-

tended MHD) that is included within a code such as Chimera.

This paper is structured as follows. In section II, we dis-

cuss the governing equations of the problem to be solved and

the self-similar technique used in this paper. Then in sec-

tion III, we discuss the shooting method used to solve these

equations and the MHD code used for comparison. Finally, in

FIG. 1. A schematic showing the geometry of our problem. The red

spot represents the position of the original interface (at x = 0).

section IV, we present a scan over plasma β to elucidate the

role of these additional transport effects. We present a robust

test problem for the Ohmic heating and Ettingshausen effects,

which may be of use to the pulsed-power community in partic-

ular. In section IV B, we demonstrate how the Ettingshausen

can play a vital role in controlling electron-ion temperature

separation in the low β regime.

II. THEORY

A. Problem geometry and setup

We model the problem in 1D planar geometry, as in past

work23,25,27. This is an approximation to the cylindrical ex-

periments that motivate the work, valid if the transport effects

occur in a narrow region near the initial interface, which we

have found to be true. We assume that all quantities only vary

in the x̂ direction and that we have a magnetic field in the ẑ

direction. This means that we are only interested in the trans-

verse electric field and current components Ey and jy. This is

shown in figure 1. We also assume quasineutrality and solely

consider hydrogen plasma with Z = 1 and A = 1, though this

work can easily be generalised to any species. We ignore radi-

ation losses and take a single-temperature approximation, so

that we can replace the separate ion and electron energy equa-

tions with a single expression for plasma temperature. This

assumption is further explored in section IV B. We use Bra-

ginskii fitting functions for the transport coefficients5, though

changing to a different fitting function is a trivial change in

the method. Later work35,36 has cast doubt on the accuracy

of the fits to these transport coefficients, but the changes to

the coefficients relevant in our geometry are minor and do not

qualitatively change our conclusions. We use Gaussian units

throughout, with temperature in energy units.
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B. Governing equations

The governing equations for our system are conservation

equations for number density, momentum and energy. We

solve these together with Faraday’s and Ampère’s laws for the

electromagnetic fields. We show the form of these equations

in our geometry below.

The continuity equation is given by:

∂N

∂ t
+

∂

∂x
(Nux) = 0, (1)

where N is the ion number density and ux the centre of

mass velocity. We note that due to quasineutrality we have

N = Ni = Ne for Z = 1. As we are studying subsonic phe-

nomena, pressure waves will equilibrate any imbalances in the

system on shorter timescales than are of interest. Therefore,

we can replace our momentum equation with an equation for

pressure balance. We make no assumption about the ratio of

the magnetic and thermal pressures and so retain the magnetic

pressure contribution:

2NT +
B2

8π
= const. (2)

It is worth noting that there is no magnetic tension in this pla-

nar geometry. We have a single equation for energy balance,

which we get by summing the electron and ion equations from

Braginskii5. The Righi-Leduc heat flow is along a direction of

symmetry and therefore makes no contribution to the energy

equation. Thus, the energy equation is given by:

∂

∂ t
(3NT )+

∂

∂x
(3NTux)+2NT

∂ux

∂x
=

∂Q

∂x
+

1

4π

∂Bz

∂x
Ey,

(3)

where

Q =
NT τe

me

(

γe
⊥+

√

2me

mi

γ i
⊥

)

∂T

∂x
+

cβ∧T

4πe

∂Bz

∂x
(4)

is the magnetised heat flux. Q is comprised of thermal con-

duction where we include both the electron and ion conduc-

tivities, and the Ettingshausen effect. The Ettingshausen ef-

fect is heat flux driven by the current in the j×B direction and

forms a large part of our work in this study. The second term

on the right hand side of the energy equation is the Ohmic

heating contribution, representing the conversion of magnetic

energy into the thermal energy of the plasma. γ i,e
⊥ and β∧ are

dimensionless Braginskii fitting functions5 to the transport co-

efficients. Their form as a function of ωeτe, the electron Hall

parameter, can be found in appendix B. τe is the electron col-

lision time, given by:

τe =
3
√

meT 3/2

4
√

2πe4ZNlnΛ
, (5)

where lnΛ is the Coulomb logarithm, which we take in this

work to be:

lnΛ = ln

(

T

eh̄

√

3me

πN

)

. (6)

ωe is the electron cyclotron frequency, given by:

ωe =
eB

mec
. (7)

We have noticed that results can be sensitive to the choice of

function for the Coulomb logarithm; this should be borne in

mind when using the self-similar solutions in this paper. We

use the generalised Ohm’s law to obtain the electric field. This

is given by:

E∗+u×B =
me

ne2

∂ j

∂ t
−

1

ne
∇ ·Pe +

j×B

ene

+
1

ene

Re (8)

+
me

ene

∇ ·
[

ne(uiui −ueue)

]

,

where ue and ui are the electron and ion velocities respec-

tively, j is the current density, Pe is the electron pressure tensor

and Re is the rate of change of electron momentum due to col-

lisions with ions. An exact form for Re can be found in5. Here

we follow Braginskii’s notation of writing the comoving elec-

tric field without asterisk as E and the electric field in the lab

frame as E∗. We neglect electron inertia and viscosity effects,

replacing the pressure tensor with a scalar electron pressure

pe. In our geometry, u only has an x̂ component and B only

has a ẑ component. The electric field is only used to evolve the

magnetic field through Faraday’s law ∂tB=−c∇×E∗. There-

fore, only the transverse ŷ components of the electric field are

relevant for our case. This means that we have no Hall or Bier-

mann effects. We can therefore write our generalised Ohm’s

law as:

E∗
y −

1

c
uxBz = Ey, (9)

where Ey is the frictional component of the electric field (the

ŷ component of Re), given by:

Ey =−
cmeα⊥

4πe2Nτe

∂Bz

∂x
−

β∧
e

∂T

∂x
. (10)

The first term is the electric field set up due to diffusion of

charge carriers down magnetic field gradients, whilst the sec-

ond is the electrothermal Nernst effect. α⊥ is again a dimen-

sionless fitting function given in appendix B. By taking the

curl of the electric field and substituting into Faraday’s law

∂tBz =−∂xE∗
y , we obtain the induction equation:

∂Bz

∂ t
+

∂

∂x
(uxBz) =−c

∂Ey

∂x
. (11)

This system of equations (1), (2), (3), (10) and (11) is com-

pleted with boundary conditions on all the non-auxiliary vari-

ables N,T,B and u. In this work, we consider a system divided

into two uniform half-spaces for t ≤ 0. We make no assump-

tions about the values of the variables in those half spaces,

leaving them completely general. This leads to the initial con-

ditions:

T (x =−∞, t = 0) = T0 T (∞,0) = T1

N(−∞,0) = N0 N(∞,0) = N1

Bz(−∞,0) = B0 Bz(∞,0) = B1

ux(−∞,0) = 0 ux(∞,0) = 0, (12)
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At t = 0, the rigid thin interface at x = 0 is removed and

the plasma in the half-spaces is allowed to evolve. The self-

similar solutions, which this paper focuses on, represent the

late-time asymptotic behavior of the system which should not

depend on its exact initial state37. However, the asymptotic

behavior does depend crucially on the system states at plus

and minus infinity. One should expect that far enough from

the original interface, the plasma parameters are still given by

eq. (12), so in our self-similar analysis this equation serves as

boundary conditions. In our full hydrodynamic simulations,

eq. (12) are taken as the actual initial conditions, but as such

only affect the transition to the self-similar regime.

It should be noted that in this section and the following

ones, we use the Eulerian form of the governing equations.

A comparison with the Lagrangian form, used in Garanin’s

previous work32, can be found in the appendix.

C. Self-similar equations

The 1D planar transport equations under the assumption of

pressure balance are amenable to self-similar solutions. We

define our self-similar variable:

η = η0
x√
t
, (13)

where η0 is an arbitrary normalisation coefficient and intro-

duce normalised self-similar variables:

T (x, t) = T0θ(η) N(x, t) = N0n(η)

Bz(x, t) = H0h(η) Q(x, t) =
Q0√

t
q(η)

Ey(x, t) =
E0√

t
ε(η) ux(x, t) =

u0√
t
v(η). (14)

where H0 =
√

16πN0T0 is the normalisation using for the

magnetic field, and E0, Q0 and u0 are functions of the other

normalisation variables with the correct physical dimension.

These normalisation variables are all defined in appendix A.

As all of the spatial derivatives in equations (1) to (11) are

second order and the temporal derivatives are first order, this

partial differential equation system scales in the same way as

the diffusion equation. The “diffusive scaling” is what allows

us to reduce the PDE system to ordinary differential equations

in η37.

We rearrange the continuity equation (1) to obtain:

dv

dη
=

1

n

(

η

2
− v

)

dn

dη
. (15)

Rearranging the equation for electric field, we obtain an ex-

pression for the gradient of the self-similar magnetic field h:

dh

dη
=

[

Bα⊥
nτ̂

−
A C β 2

∧
nτ̂γ⊥

]−1(

ε −
C β∧q

nθ τ̂γ⊥

)

, (16)

where A = cT0Hoη0/4πeQ0,B = cmeH0ηe/4πe2N0τe0E0

and C = T0η0/eE0 are constant and dimensionless functions

of the normalisation variables. γ⊥ is the combined electron

and ion conductivity:

γ⊥ = γe
⊥+

√

2me

mi

γ i
⊥, (17)

and τ̂ represents the variation of the electron collision time τe

with the self-similar variable η :

τ̂ =
θ 1.5

λ̃n
, (18)

where λ̃ is the function denoting the evolution of the Coulomb

logarithm with η :

λ̃ = 1+
1

lnΛ0
ln

(

θ√
n

)

. (19)

τe0 and lnΛ0 are both given in appendix A. The heat flux

equation (4) can be rearranged for the self-similar temperature

gradient:

dθ

dη
=

1

nθ τ̂γ⊥

(

q−A β∧θ
dh

dη

)

, (20)

whilst the temperature balance equation is used to give an

equation for the divergence of the heat flux:

dq

dη
= 3n

(

v−
η

2

)

dθ

dη
+2nθ

dv

dη

−A β∧
dh

dη

dθ

dη
−

B√
2π

α⊥
nτ̂

(

dh

dη

)2

(21)

Finally, the induction equation is used to obtain an expression

for the derivative of the electric field:

dε

dη
= D

[

−
η

2

dh

dη
+ v

dh

dη
+h

dv

dη

]

, (22)

where D = H0/eE0η0. The density is not explicitly evolved,

only being calculated from the normalised pressure balance:

nθ +h2 = 1+
1

β0
, (23)

where

β0 =
2n0T0

B2
0/8π

=
H2

0

B2
0

(24)

is the ratio of the original thermal and magnetic pressures.

D. Boundary conditions

The equations are evolved as a 5D vector y⃗(η) =
(θ ,h,ε,q,v), and the boundary conditions in equation (12) are
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5

instead converted to boundary conditions on the self-similar

variables:

θ(−∞) = 1 θ(∞) =
T1

T0

n(−∞) = 1 n(∞) =
N1

N0

h(−∞) =
B0

H0
=
√

1/β0 h(∞) =
B1

H0

v(−∞) = 0 v(∞) = 0. (25)

As we have 5 first order equations, we can only enforce 5

of these 8 boundary conditions. The density n, temperature

θ and magnetic field h are not independent variables due to

the pressure balance, so it does not matter which one is cho-

sen for the boundary conditions. In this work the density and

magnetic field are both constrained at η = −∞ and η = ∞

and the velocity at η = −∞. This does mean that some of

our solutions do not satisfy v = 0 at η = ∞. Velikovich et al.

found that the velocity was equal to zero on both sides of the

domain27. This is a consequence of the high β assumption

simplifying the energy equation considerably. In the low β
limit, the advection of magnetic pressure in the energy equa-

tion prevents the velocity being equal to zero on both sides in

general26. We observe the same qualitative behaviour in our

results, with an increasing v(η = ∞) as the β is decreased.

III. METHOD

Equations (15) to (23) constitute a system of nonlinear or-

dinary differential equations that need to be solved subject to

the boundary conditions given by (25). In this work, we solve

these equations using a shooting method. We make a guess for

the values of the variables (θ ,h,ε,q,v) at η = 0 and propagate

the solution to η = ±∞ using an implicit ODE solver. We

have experimented with several solvers, but have found that

explicit ODE solvers are too costly for this stiff problem. The

difference between the values of the variables at ±∞ and the

desired boundary conditions is then calculated. Minimising

this quantity to a specific tolerance completes the solution of

this problem. Several approaches to this were tried, including

Bayesian optimisation using the GPyOpt library and function

minimisation using the scipy.optimize library, but have

found root-finding using a simple Newton-Raphson method

to be the most efficient and easiest to implement.

The number of degrees of freedom and the nonlinearity of

the equations mean that a shooting algorithm can be unstable.

We have found that a poor guess for the value of the variables

at the initial interface will generally lead to the final solution

failing to converge. Unfortunately, this is a known problem of

shooting methods and it is not easy to prevent. An effective

mitigating strategy is to slowly move in parameter space al-

lowing the method to converge at each step. For example, if

changing the density boundary condition from n(∞) = N1 to

n(∞) = N2, it should be changed from N1 to N1 +α(N2 −N1)
where α is small. The size of this required step depends on

the problem, but we have found that it needs to be smaller for

highly magnetised problems.

To demonstrate the utility of self-similar solutions for ver-

ification of MHD codes, we compare our results with a code

that solves the full MHD equations without the assumption

of pressure balance. For this, we use the Chimera radiation-

MHD code, extensively used for laboratory astrophysics33,34

and recently upgraded to include extended MHD effects11,38.

We use the same initial and boundary conditions in Chimera

as those used in the self-similar code. It is not possible to

exactly satisfy pressure balance in the initial conditions in

Chimera, due to the staggered grid used in implementation

of the MHD algorithm. The initial discontinuity leads to com-

pressive sound waves that propagate outwards from the initial

interface. The region of the profile satisfying the self-similar

solution is left in the wake of these pressure waves, so the

comparison needs to be made after enough time has passed

for the waves to move away from the region of interest. In

testing, we have found that violations from pressure balance

in the wake of the waves are less than 1% and thus can be

neglected.

IV. RESULTS

A. Low beta parameter scan

As discussed in the introduction, past work has focused on

the high β regime where the Ettingshausen and Ohmic heat-

ing terms can be dropped from the energy equation and the

resistive diffusion term has a negligible impact in the induc-

tion equation. In this section, we perform a parameter scan

over plasma β to show how these neglected terms take effect

and their qualitative roles as the β is reduced. However, it is

not possible to fully characterise the parameter space in terms

of just the β since as we will show the relative impact of dif-

ferent terms depends on the boundary conditions. Several sets

of boundary conditions can have the same plasma β .

Instead, in this section, we refer to different sets of bound-

ary conditions which we summarise in table I. These condi-

tions are intended as an illustrative set, which vary in plasma

β and plasma profile and indicate the expected behaviour in

different situations. They are motivated by examples of MIF

experiments.

1. High beta plasma

First, we consider the high β case. We use the “Nernst

wave” boundary conditions of Velikovich et al.27, marked as

case A in table I. These are motivated by measured exper-

imental conditions in MagLIF during stagnation. We calcu-

late self-similar profiles using these boundary conditions and

then compare to profiles calculated using the same boundary

conditions with the Chimera code. We make the comparison

at 4ns to allow the Chimera profiles to settle to pressure bal-

ance. This comparison is shown in panels A-D of figure 2.

The initially discontinuous plasma is set into motion by ther-

mal conduction; the hot plasma on the right hand side cools

as energy is carried down the temperature gradient and thus
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6

Case N(x =−∞)/cm-3 N(x = ∞) B(x =−∞)/T B(x = ∞) T(x =−∞)/eV T(x = ∞) β (x = ∞) ωeτe(x = ∞)
A 7.5×1023 1.5×1023 1000 1000 1000 5000 600 5

B 5×1020 1020 0 140 100 250 1.0 45

C 1.4×1022 4.7×1020 0 2500 533 160 0.01 100

D 2×1020 1020 0 140 250 250 1.0 45

E 4.8×1022 4.7×1020 0 2500 160 160 0.01 100

TABLE I. Table of boundary conditions that will be discussed in the section. The values of the plasma β and Hall parameter ωeτe at x = ∞ are

given here for reference. All values are presented rounded to 2 significant figures.

contracts to increase density and maintain pressure balance.

Similarly, the cold plasma on the left hand side heats and ex-

pands. This compression of the hot plasma can be seen by the

peak of the velocity profile, which is to the right of the posi-

tion of the initial discontinuity (at x = 0). The magnetic field

does not significantly contribute to the pressure in this situa-

tion. Instead, its evolution is solely dictated by the balance be-

tween the Nernst, resistive diffusion and frozen-in-flow terms.

The left hand peak in the magnetic field is formed due to the

Nernst effect advecting magnetic field down the temperature

gradient - this is the Nernst wave described by Velikovich27.

The right hand peak is due to the frozen-in-flow advection of

the field by the plasma. In this situation, the resistive diffu-

sion has a negligible effect. This can be seen from panels E

and F of figure 2, which shows the contribution of the differ-

ent transport terms to the energy and induction equations at

4ns (with the temperature and magnetic field profiles for com-

parison). Looking at the balance between the Ettingshausen,

Ohmic heating and thermal conduction in the energy equation,

it is clear that the heat conduction is hugely dominant over the

other two terms and it is valid to neglect them in this case. In

the induction equation balance, the Nernst and frozen-in-flow

terms are significantly larger than the resistive diffusion. It

should be noted that they carry magnetic flux in opposite di-

rections in this situation. It can be seen from the orange line

that the left hand peak in the magnetic field is due to the Nernst

and the right due to the frozen-in-flow. Whilst these terms are

calculated at just a time snapshot, the self-similarity of our

solution means that the plasma profiles broaden over time and

thus the relative role of these gradient-driven transport terms

remains qualitatively the same at later times. These conclu-

sions are consistent with previous theoretical work23,27, but

we have confirmed them self-consistently using our model.

We have checked and solving these equations in an Eulerian

(as here) or Lagrangian fashion (as in Garanin32) yields iden-

tical results, as expected.

The agreement between the self-similar model and Chimera

is good. There is some slight disagreement in the magnetic

field profile. This is to be expected and is a consequence of

the outward pressure waves as discussed in section III. This is

also seen in other studies27. Though we use Chimera here as

validation of our self-similar solution, this serves as a demon-

stration of how the self-similar code can be used as a test

problem for MHD. Obtaining the same solution as the self-

similar code requires correct implementations of frozen-in-

flow, Nernst advection and thermal conduction - as well as

normal hydrodynamic behaviour. Thus, obtaining agreement

rigorously tests that the MHD code is solving the underlying

equations correctly.

The initially uniform magnetic field in this case means that

no steep magnetic field gradients are set-up and thus no large

currents are induced. This reduces the impact of the Etting-

shausen, Ohmic and resistive diffusion effects. However, we

have found that even if there is a large gradient in the magnetic

field (with 0T on the left and 1000T on the right), the Nernst,

frozen-in-flow and heat conduction terms still dominate the

transport in the high β regime. The only way to increase the

magnetic field gradient in our model is by increasing the field

strength, we set the boundary conditions and the gradient is

self-consistently calculated. Thus, increasing the field gradi-

ent is equivalent to decreasing the plasma β on one side of the

domain. We explore the effect of this in the next section.

2. Moderate to low beta with a temperature gradient

We now present results for a β of order unity with a mod-

erate temperature gradient, marked as case B in table I. These

parameters are indicative of what might be attained during the

laser-preheat phase of MagLIF, although the field is signif-

icantly higher than in experiments. As before, we use our

self-similar code to calculate profiles of density, temperature,

magnetic field and velocity. The profiles of temperature and

magnetic field are shown in panels A and B of 3. The com-

peting magnetic transport processes are the Nernst effect and

resistive diffusion carrying magnetic field down the tempera-

ture and magnetic field gradients respectively, from the right

to the left. Both the Ettingshausen effect and the thermal con-

duction are carrying temperature in the same direction. The

denser plasma on the left hand side is ablated as the magnetic

field moves into it, expanding to reduce density and maintain

pressure balance. This expansion of the plasma compresses

the magnetic field by the frozen-in-flow effect, leading to the

peak at about 0.08mm. At the same time, the damping of

currents in the low density plasma leads to Ohmic heating, in-

creasing the temperature. However, it is difficult to decouple

which term is dominating here. The impact of ignoring certain

terms in the calculation is shown in the temperature profile in

figure 3. It can be seen that neglecting the Ettingshausen or the

Ohmic heating changes the profile only slightly. In panel B,

we show the effect on the magnetic field profile of neglecting

particular terms. Our solution method does not allow setting

the resistive diffusion to zero, so we show its qualitative effect

by reducing the resistive diffusion coefficient by a factor of 2
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FIG. 2. A-D: Plots comparing the profiles calculated for the high β boundary conditions (case A in table I) for the self-similar code (in blue)

to Chimera (in green). The profiles are compared at 4ns. E: The contribution to ∂T/∂ t of the different terms in the energy equation (the

Ettingshausen in red, the Ohmic heating in green, the thermal conduction in blue) at the same time, calculated from the self-similar code. F:

The contribution to ∂B/∂ t of the different terms in the induction equation (the frozen-in-flow in red, the Nernst in green, the resistive diffusion

in blue).

and calculating the profiles. It is clear that both the Nernst and

resistive diffusion effects have some impact on the structure of

the field profile. It is certainly not the case that the Nernst ef-

fect is dominant, as seen in past work25. We also calculate

the contributions to the induction and energy balance equa-

tions in panels C and D in figure 3. Looking at the balance of

terms in the energy equation, it can be seen that the transport

terms have a similar peak magnitude. However, the Etting-

shausen and Ohmic heating terms act near the initial interface

whilst the heat conduction acts over a larger region of space.

This explains why the small impact of the Ettingshausen and

Ohmic heating effects is confined to a small region in the tem-

perature profile in figure 3. It also seems that in this case, the

Ettingshausen and Ohmic effects have opposing effects on the

temperature (see panel C at x ≈ 0.7mm). It should be noted

that this is not generally the case and does depend on the mag-

netic field and temperature gradients, however it is discussed

at length in section IV B. On the other hand, in the magnetic

field balance the Nernst effect is significantly reduced com-

pared to the resistive diffusion term, whilst the frozen-in-flow

remains large. It can be seen from panel B that the Nernst

effect essentially acts to increase the effective magnetic dif-

fusivity of the plasma. This is observed in other work23,26.

We have tested the effect of having the temperature and

magnetic field gradients in opposite directions, whilst main-

taining the same unity plasma β and have found the same

qualitative behaviour of the transport terms. In this case, the

Nernst opposes the resistive diffusion (effectively reducing the

diffusivity) but it is still smaller in magnitude. The heat con-

duction acts over a longer scale and again the Ettingshausen

and Ohmic heating somewhat counteract each other.

We then calculate the self-similar profiles for a low β
plasma, described by case C in table I. In figure 4, we show

the temperature and magnetic field profiles when particular

terms are excluded from the calculation and the contribution

of terms to the induction and energy equations. Looking at

the terms in the induction equation, it is clear that the resistive
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FIG. 3. A: Profile of the temperature profile calculated at a time of 4ns from the self-similar code for the initial conditions of case B in table

I. The profile is shown when all terms are included in the calculation (in red), when the Ettingshausen is excluded from the calculation (in

blue) and when the Ohmic heating is not included (in green). B: The magnetic field profile with all terms included (in red), with the resistive

diffusion coefficient reduced (in blue) and with the Nernst excluded (in green). C: The contribution of different terms to the energy equation,

calculated from the self-similar code at 4ns. D: The contribution of different terms to the induction equation.

diffusion is the dominant effect in magnetic field evolution

across the entire domain and the Nernst effect has little im-

pact. This is clear from the magnetic field profile that shows

the Nernst having no effect. As the magnetic field diffuses

into the dense plasma, magnetic energy is converted to ther-

mal by Ohmic heating and the Ettingshausen effect advects

energy down the magnetic field gradient. Neglecting the Et-

tingshausen effect in the calculation causes a noticeable peak

in the temperature profile due to the absence of this additional

advection. The increased temperature and magnetic pressure

causes the dense plasma to expand to maintain pressure bal-

ance. Neglecting the Ohmic heating leads to less ablation of

the dense plasma by the magnetic field, due to the reduced

temperature and thus thermal energy. The leftward shift of the

temperature profiles when Ohmic heating is excluded demon-

strates this. Panel C shows the contribution of terms to the

energy equation. It is clear that all terms have a compara-

ble magnitude, with Ettingshausen and Ohmic heating again

counteracting each other. The thermal conduction is balanced

by the Ettingshausen on the left hand side of the interface. It

is interesting that the Nernst effect cannot be observed whilst

the Ettingshausen can, given that they both depend on the β∧
transport coefficient. However, this is consistent with the the-

ory that the ratio of the magnitudes of the Ettingshausen to the

heat conduction approximately varies inversely with plasma

β , where the ratio of the Nernst to resistive diffusion varies

directly23. Through comparison of figures 2 through 4, it is

clear that the length scales of temperature and magnetic field

also reduce as the plasma β is reduced. In particular, the tem-

perature gradient scale length, LT becomes comparable to LB.

It is not possible to decouple whether the increased effect of

e.g. the Ettingshausen term is due to this change to the length

scales or directly due to the plasma β . This does however val-

idate our earlier assumption that the transport processes occur

in a narrow region near the interface.

We have found that, despite the plasma β , if the magnetic

field is initially uniform (as in case A), the currents induced

by the frozen-in-flow and Nernst advection of magnetic field

are not sufficient to cause significant Ohmic heating or Etting-

shausen advection of the temperature. We believe this is the

reason why past studies that did not impose a magnetic field

gradient (e.g.25) are unable to observe a large effect due to
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FIG. 4. A: Profile of the temperature profile calculated at a time of 4ns from the self-similar code for the initial conditions of case C in table I.

The profile is shown when all terms are included in the calculation (in red), when the Ettingshausen is excluded from the calculation (in blue)

and when the Ohmic heating is not included (in green). B: The magnetic field profile with all terms included (in red) and with Nernst excluded

(in green). C: The contribution of different terms to the energy equation, calculated from the self-similar code at 4ns. D: The contribution of

different terms to the induction equation.

these terms. This further emphasises our argument that it is

not possible to classify the dominance of these terms in di-

mensionless parameters: it is profile dependent. This can be

seen most clearly from the unity β case shown in figure 3.

Despite the Ettingshausen and heat conduction being of simi-

lar magnitudes, the Ettingshausen has almost no effect on the

temperature profile as it acts over a much shorter length scale.

We can show qualitatively that reducing the plasma β reduces

the temperature length scale to become comparable to that of

magnetic field, but it clearly depends on the boundary condi-

tions in a way that is difficult to determine a priori.

The benefit of our model is that it can recreate this low β
regime that is inaccessible to other models23,24,27, but also

obtain consistent results in the high β limit. We have not

thoroughly explored even smaller plasma β values, but we

would expect the qualitative trend to continue - with the Et-

tingshausen and particularly the Ohmic heating terms increas-

ing in importance.

3. A test problem for Ohmic heating and the Ettingshausen
effects

In the preceding sections, we showed how the balance of

the transport terms is related to the plasma β . Ohmic heating

is important in pulsed power experiments due to the lower β
in the surface plasma. Our analysis here implies that the Et-

tingshausen term may be important under these conditions as

well. Given the wide variety of reduced MHD codes used to

model these experiments33,39, we argue that a test problem for

these terms would be a useful tool. That is the purpose of this

section.

If we start with an initially constant temperature, this re-

duces the amount of thermal conduction and makes the role

of the other transport terms more obvious. We use the bound-

ary conditions of case D, given in table I. These parameters

are intended to be somewhat similar to the edge region of a

z-pinch40,41. The comparison between our self-similar code

and Chimera is shown in panels A-D in figure 5. In panels E

and F, we show the impact on the temperature and magnetic

field profiles of ignoring particular terms in the calculation.
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FIG. 5. A-D: The profiles of density, temperature, velocity and magnetic field for the order unity β case, marked as case D in table I. The

results of the self-similar code are shown in blue, and the results using the MHD code Chimera are shown in green. The comparison is done

at a time of 3ns. E: Temperature profiles when terms are excluded from the calculation. F: Magnetic field profile when the Nernst effect is

excluded from the calculation.

The magnetic field profile is primarily determined by resistive

diffusion into the dense plasma. This leads to Ohmic heating

of the plasma due to the induced current and finite resistivity.

As seen from panel E of figure 5, Ohmic heating is responsi-

ble for the peak in the temperature profile. The same current

drives advection of the temperature from right to left by the Et-

tingshausen effect. This leads to the formation of the trough

in the temperature. Excluding both of these terms leads to

a peak in the temperature due to pdV work, which can now

dominate (see the red line in panel E of figure 5). The agree-

ment between the self-similar code and Chimera is good, with

the exception of a pressure wave on the left hand side of the

plot, as discussed in previous sections. This is therefore an

effective test problem to test the implementation separately of

the Ohmic heating and Ettingshausen terms.

B. Temperature separation

We have assumed a single-temperature model in formulat-

ing our self-similar model. As the electron-ion energy equi-

libration term does not scale diffusively, it is not possible to

develop a self-similar model that solves the two-temperature

system of equations. Their lower mass means that the energy

from Ohmic heating goes predominantly into the electrons, so

where we have strong Ohmic heating and low density plasma,

we may expect the electron and ion temperatures to separate.

To model this effect, we solve the low β boundary condition

problem (defined by case E in table I) using Chimera. This sit-

uation is chosen to be a proxy for a vacuum-plasma interface

problem, and again is very similar to the edge region of a z

pinch. The results of the Chimera simulation are shown in fig-

ure 6. We compare these results to the self-similar code. The

assymmetry in the temperature profile is a consequence of the

variation of the magnetisation. On the left, the plasma is un-

magnetised, electron thermal conductivity dominates and the

temperature profile is broad. On the right, the plasma is highly
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FIG. 6. Plot showing the temperature profiles produced by Chimera at 2.5ns for the magnetised interface problem, case E in table I. The

solid lines show the temperature calculated from Chimera with all terms included, the dashed lines show the profiles from Chimera with the

Ettinghausen effect switched off. The orange lines show the solution calculated from our single-temperature self-similar code.

magnetised and conductivity is reduced. While the agreement

between Chimera and the self-similar solution is reasonable, it

is challenging to get better agreement in this case as the small

scale length of the temperature profile makes it difficult to get

enough resolution in the region of interest whilst also leaving

the simulation domain large enough for pressure waves to not

affect the solution.

As predicted, the Ohmic heating causes the temperature to

strongly peak. When the Ettingshausen effect is turned off

(dashed lines), the electron and ion temperatures separate.

The energy equilibration term is not sufficient to counteract

the Ohmic heating. The magnitude of the Ohmic heating re-

duces later in time as the magnetic field gradient relaxes, but

we have found that the temperature separation remains for

10s of nanoseconds. However, if the Ettingshausen effect is

included in the calculation (solid lines), the temperatures do

not significantly separate and both are substantially reduced.

This is because the current responsible for Ohmic heating also

drives strong advection of the temperature through the Etting-

shausen effect. Figure 7 shows the electron and ion tempera-

tures when the equilibration term has been set to zero, i.e. with

the temperatures decoupled from each other. It is clear that the

ion profile is not directly affected by the Ettingshausen, but

that the advection of the electron temperature by this effect is

large. The Ettingshausen effect reduces the electron temper-

ature sufficiently for the equilibration to bring it into balance

with the ion temperature. It is likely that lower densities and

higher magnetic fields would lead to stronger Ohmic heating

and potentially temperature separation, but that even in this

β = 0.01 situation, the Ettingshausen term is strongly mitiga-

tory. This behaviour of the Ettingshausen effect has been ob-

served before in z-pinch studies40. This suggests that in a situ-

ation where strong Ohmic heating is observed, neglecting the

Ettingshausen effect could lead to overestimates of the elec-

tron and ion temperatures. In addition, this behaviour demon-

strates that our self-similar solutions still produce quantita-

tively similar results to the two-temperature MHD code even

despite the single-temperature assumption.

V. CONCLUSIONS

We have presented results from a new self-similar code that

solves the 1D planar transport equations in a subsonic regime.

This code is a generalisation of past work to arbitrary plasma

β and boundary conditions23,24,26,27. The speed of this code

makes it an ideal tool to assess the qualitative impact of var-

ious extended MHD terms, to decide whether they may be

having an impact on a particular situation. In addition, as we

have demonstrated in this work by comparison to the Chimera
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FIG. 7. Plots of the magnetised interface problem from Chimera at 2.5ns showing the electron temperature (in blue) and the ion temperature

(in green) when the electron-ion equilibration term is set to zero. Solid lines include the Ettingshausen effect, dashed lines set it to zero.

code, these self-similar solutions are effective test problems

for MHD codes. Where Velikovich et al. have developed the

“Nernst wave” test problem for high-β conditions, we believe

that our test problem for the Ettingshausen and Ohmic heat-

ing terms could be useful to the wider MIF community, where

further extended MHD terms may need to be included. Fur-

thermore, these self-similar solutions are useful illustrations

of extended MHD effects, aiding with qualitative understand-

ing of these coupled and nonlinear phenomena.

We have shown that in high β plasmas, using this isobaric

model, the energy transport is dominated by thermal con-

duction and magnetic field transport by the Nernst term and

frozen-in-flow. The picture is more complex in order unity β
plasmas. The relevant role of different MHD terms depends

on the plasma profiles, certainly in the energy balance equa-

tion, and this cannot be parametised in terms of dimensionless

numbers. We have found that for β ≈ O(1) plasma with a

temperature gradient, the heat conduction and Ettingshausen

effects are of a similar magnitude, but the former acts over a

larger spatial scale and thus the Ettingshausen effect has lit-

tle impact on the temperature profile. In the low β case, the

Ohmic and Ettingshausen effects begin to dominate the tem-

perature evolution but the thermal conduction cannot be ne-

glected. For the magnetic field evolution, we have found that

the resistive diffusion begins to dominate over the Nernst as

the β decreases to even order unity.

By suppressing thermal conduction by beginning with an

initially uniform temperature, the qualitative impact of the Et-

tingshausen effect in advecting temperature down the mag-

netic field gradient becomes more apparent. This reduces the

temperature peak and broadens the profile. This uniform tem-

perature case can only be sensibly studied away from the high

β limit, where the magnetic field gradient can support the den-

sity gradient to maintain pressure balance.

We have also shown that the Ettingshausen effect inhibits

temperature separation where there is strong Ohmic heat-

ing. This may mitigate high electron temperatures at vacuum-

plasma interfaces (e.g. in Seyler et al.42) and suggests that the

Ettingshausen should not be neglected if the Ohmic heating is

found to be strong, such as in studies of z-pinches.
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Appendix A: Normalisation Variables and Code

In section II, we presented our ODE system of self-similar

equations that we later solve. These self-similar equations are

left in terms of dimensionless variables. This appendix defines

the normalisation of these variables in terms of the physical

parameters N0 and T0, the number density in m−3 and tem-

perature in energy units of our plasma. These variables are

defined in equation (14).

The self-similar variable is defined by η = η0
x√
t
:

η0 =
N0T0

Q0
. (A1)

Q0 is the normalisation of the heat flux Q(x, t) = Q0q(η), de-

fined by:

Q0 =
N0T 2

0 τe0(N0,T0)η0

me

. (A2)

The velocity is given by u(x, t) = u0√
t
v(η), where

u0 =
1

η0
. (A3)

The electric field is E(x, t) = E0√
t
ε(η), where:

E0 =

√
8πQ0

cH0
(A4)

The collision time in terms of normalisation variables, given

as τe0 in section II is given by:

τe0 =
3
√

meT
3/2

0

4
√

2πe4ZN0lnΛ0

, (A5)

and the Coulomb logarithm is given by

lnΛ0 = ln

(

T0

eh̄

√

3me

πN0

)

. (A6)

The code used to solve the equations given in this pa-

per can be found in a repository at https://github.com/
gmmfarrow/self_similar_public.

Appendix B: Transport Coefficients

In section II, we showed that transport coefficients are a

key component of the equations that we solve in this work.

Braginskii calculated dimensionless fitting functions to these

transport coefficients5 that we use in our calculations. These

functions are functions of ωeτe, the electron Hall parameter or

magnetisation. They represent the anisotropic effect of mag-

netic fields on collisions. We repeat the functions here for

completeness:

α⊥ = 1−
α1χ2

e +α0

χ4
e +δ1χ2

e +δ0
, (B1)

where χe = ωeτe is the electron Hall parameter, α1 = 6.416,

α0 = 1.837, δ1 = 14.79 and δ0 = 3.7703. We also have

β∧ =
χe(β1χ2

e +β0)

χ4
e +δ1χ2

e +δ0
, (B2)

where β1 = 1.5 and β0 = 3.053. γe
⊥ and γ i

⊥ are defined by

γe
⊥ =

γ1χ2
e + γ0

χ4
e +δ1χ2

e +δ0

γ i
⊥ =

2χ2
i +2.645

χ4
i +2.6χ2

i +0.677
, (B3)

where χi = ωiτi is the ion Hall parameter, γ1 = 4.664 and γ0 =
11.92.

Appendix C: Comparison of Eulerian and Lagrangian equations

In section I, we discuss the work of Garanin who solves the

problem in the vacuum limit using a Lagrangian approach.

Here we show how the approaches are related. The governing

equations (1) to (11) (see section II) are recast into Lagrangian

form, where

d

dt
=

∂

∂ t
+ux

∂

∂x
(C1)

in our geometry. Pressure balance remains the same, but the

continuity equation becomes:

dN

dt
+N

∂ux

∂x
= 0. (C2)

The energy equation is recast to:

d

dt
(3NT )−5T

dN

dt
=

∂Q

∂x
+

1

4π

∂Bz

∂x
Ey, (C3)

where Q and Ey are defined in equations (4) and (10) respec-

tively. Similarly, the induction equation becomes:

dBz

dt
−

Bz

N

dN

dt
=−c

∂Ey

∂x
. (C4)

It should be noted that dN/dt can be calculated from the pres-

sure balance and so the continuity equation can be solved sep-

arately to the remainder of the equations. We introduce a new

self-similar variable ξ , defined as:

ξ = ξ0

∫ x
0 N(X ′, t)dX ′

√
t

, (C5)
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where ξ0 is a normalisation constant. This obeys the transfor-

mations:

∂

∂x
=

∂ξ

∂x

d

dξ
=

ξ0N(x, t)√
t

(C6)

and

∂ξ

∂ t
=ξ0

∫ x
0

∂N(X ′,t)
∂ t

dX ′
√

t
−

ξ

2t

=ξ0

∫ x
0

∂
∂X ′ (NU)dX ′

√
t

−
ξ

2t

=ξ0
N(x, t)U(x, t)√

t
−

ξ

2t
. (C7)

Therefore:

d

dt
=

(

∂ξ

∂ t
+ux

∂ξ

∂x

)

d

dξ
=−

ξ

2t

d

dξ
, (C8)

which is obtained by using the continuity equation. We can

apply these transformations to equations (C2) to (C4) to obtain

self-similar equations in terms of ξ . These are not shown here

for brevity, but can be written as:

d⃗y

dξ
= F⃗ (⃗y), (C9)

where F⃗ is a nonlinear operator and y⃗(ξ ) = (θ ,h,ε,q). It is

helpful to note that

∂ξ

∂x
=

ξ0N(x, t)√
t

∂ξ

∂ ( x√
t
)
= ξ0N0n(η), (C10)

so

∂ξ

∂ ( 1
ξ0N0

x√
t
)
= n(η)

dξ

dη
= n. (C11)

Therefore, instead of solving self-similar equations in ξ and

then having to find a non-trivial transformation back to (x, t),
we can transform our self-similar equations in ξ to equations

in η and solve those. v(η) can then be obtained by solving

the continuity equation separately. We remark in section IV

that the same result is obtained either way, but that the Eule-

rian method offers improved numerical stability in the shoot-

ing method.

Now, we show that it is possible to transform between the self-

similar variables η and ξ and thus that they are equivalent. If

we assume

ξ =−n(v−η), (C12)

then

dξ

dη
=−

dn

dη
(v−η)−n(

dv

dη
−1)

=−
d

dη
(nv)+η

dn

dη
+n

=n, (C13)

as expected from equation (C11). Therefore, we can easily

convert between either set of self-similar equations.
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