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Abstract—Tissue segmentation is the mainstay of pathological 1 

examination, whereas the manual delineation is unduly 2 

burdensome. To assist this time-consuming and subjective 3 

manual step, researchers have devised methods to automatically 4 

segment structures in pathological images. Recently, automated 5 

machine and deep learning based methods dominate tissue 6 

segmentation research studies. However, most machine and 7 

deep learning based approaches are supervised and developed 8 

using a large number of training samples, in which the pixel-9 

wise annotations are expensive and sometimes can be impossible 10 

to obtain. This paper introduces a novel unsupervised learning 11 

paradigm by integrating an end-to-end deep mixture model 12 

with a constrained indicator to acquire accurate semantic tissue 13 

segmentation. This constraint aims to centralise the components 14 

of deep mixture models during the calculation of the 15 

optimisation function. In so doing, the redundant or empty class 16 

issues, which are common in current unsupervised learning 17 

methods, can be greatly reduced. By validation on both public 18 

and in-house datasets, the proposed deep constrained Gaussian 19 

network achieves significantly (Wilcoxon signed-rank test) 20 

better performance (with the average Dice scores of 0.737 and 21 

0.735, respectively) on tissue segmentation with improved 22 

stability and robustness, compared to other existing 23 

unsupervised segmentation approaches. Furthermore, the 24 

proposed method presents a similar performance (p-value > 25 

0.05) compared to the fully supervised U-Net. 26 
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I. INTRODUCTION 31 

iven an image, a segmentation algorithm aims to assign 32 

labels for pixels based on their feature representations. 33 

Tissue segmentation is essential for automated pathological 34 

examination, diagnosis and prognosis; however, manual 35 

delineation is time-consuming, onerous and unreproducible. 36 

To alleviate the burden of this manual procedure, researchers 37 

have explored conventional approaches to automatically 38 

segment organs or structures, including watershed [1], 39 

contour detection [2], clustering [3, 4], and random field [5], 40 

etc. However, these methods are unreliable and heavily rely 41 

on thresholds or preset parameters. Recently, machine and 42 

deep learning based methods have garnered great success in 43 

computational pathology [6-9].  For example, Mahbod et al. 44 

[9] proposed a progressive sequential causal GAN to 45 

synthesize the late gadolinium enhancement imaging for 46 

better segmentation of diagnosis-related structures. Liu et al. 47 

[10] incorporated CycleGAN with an adaptive Mask RCNN 48 

for unsupervised nuclei segmentation in histopathology 49 

images, by learning knowledge from fluorescence 50 

microscopy images. However, most learning-based methods 51 

are fully supervised which require manual labelling, or 52 

unsupervised that demand complex training procedures. In 53 

particular, complex pathological structures dramatically 54 

increase the difficulty of pixel-level annotation, resulting in 55 

an urgent need for developing segmentation methods with 56 

limited or no manual annotation.  57 

One way to overcome this hurdle is known as (deep) semi-58 

supervised learning, which builds the model with limited 59 
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Fig. 1. Current challenges and limitations of unsupervised 
segmentation for tissue segmentation (a) and our solutions (b). (a) 
examples of empty class (first row), redundant class (second row), 
collapse (third row), and instability (fourth row) issues. The red 
boxes highlight three subregions of the raw image, ground truth 
and prediction (from left to right) using existing unsupervised 
segmentation methods. P1 and P2 represent the first and second 
predictions obtained from repeated experimental studies (last 
row); (b) our proposed unsupervised segmentation based on a 
centralised constraint deep mixture network. The representative 
results of our proposed model are highlighted in green boxes (last 
row), and from left to right, these show clearly that our 
unsupervised segmentation can tackle empty class, redundant 
class, collapse, and instability issues. All box plot scales range 
from [0, 1] for the Dice scores. 
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annotations or prior knowledge of the targets. Self-training is 1 

a commonly used method that trains the model with limited 2 

annotated labels and fine-tunes it via pseudo labels generated 3 

by itself. For instance, Liang et al. [11] proposed an iterative 4 

learning scheme to segment gastric tumours based on a 5 

partially labelled dataset. In addition to self-training, one can 6 

use the prior knowledge given by conventional methods or 7 

empirical constraints such as target labels to train a network. 8 

This includes the utilization of coarse masks given by image 9 

processing algorithms, pre-trained weights from correlated 10 

datasets, or image-level annotations provided by domain 11 

experts. Hu et al. [12] applied activation maps to detect 12 

COVID-19 infections without pixel-level annotation. 13 

Atlason et al. [13] took coarse masks from an automated 14 

labelling system as attention maps to force the network to 15 

concentrate on the constrained region.   16 

Another solution is (deep) unsupervised learning, which 17 

produces general semantic predictions such as ‘background’ 18 

and ‘foreground’ without using any manual annotations.  For 19 

instance, Kanezaki et al. [14] employed Simple Linear 20 

Iterative Clustering [15] to obtain super-pixel level 21 

segmentation results, combining with convolutional neural 22 

networks to segment natural images. Shen et al. [16] 23 

introduced a coupled “deep-image-prior” module to segment 24 

background and foreground regions. However, most of these 25 

studies focused on natural images, whose effectiveness for 26 

pathological images remains unclear. Moreover, image 27 

quality variations (e.g., different brightness, contrast, noise, 28 

and shade levels in pathological images) may lead to poor 29 

generalisability for models originally developed for natural 30 

images. The randomized initializations of some unsupervised 31 

learning methods may further result in unreliable 32 

performance and weak reproducibility. In particular, there 33 

are several degenerative issues (Fig. 1) for unsupervised 34 

segmentation, including (1) empty class (2) redundant class 35 

(3) collapse, and (4) instability issues. The empty class 36 

problem indicates that the model confounds a certain class 37 

with another one, e.g., the prediction only has two classes 38 

even if the pre-defined number of classes is three (Fig. 1 (a) 39 

first row). The redundant class indicates the demand for an 40 

additional class to achieve better performance during 41 

unsupervised segmentation. This redundant class is used to 42 

represent the hard samples, which are defined as pixels 43 

whose intensities are diffusely/narrowly vary from the 44 

average intensity of their true/false class. For example, the 45 

white regions in the second row of Fig. 1 (a) are considered 46 

a unique class, since the model cannot treat them as the same 47 

class (background) as stroma. Collapse issue refers to the 48 

phenomenon when a certain class dominates the major 49 

predictions of an image while other classes only appear 50 

sporadically (as shown in Fig. 1(a), the third row). The 51 

instability means the fluctuant performance when conducting 52 

repeated training (Fig. 1 (a) fourth row). 53 

 To address these limitations, our study proposes a novel 54 

unsupervised approach that integrates a deep neural network 55 

with log-likelihood maximisation and centralised constraint 56 

(Fig. 1 (b)), namely Deep Constrained Gaussian Network 57 

(dubbed DCGN). Unlike previous methods that utilise prior 58 

knowledge, the proposed DCGN takes raw images as inputs 59 

and produces pixel-wise predictions for tissue structures. 60 

Besides, a centralised constraint, which can greatly enhance 61 

the model’s robustness and performance, is devised, aiming 62 

to shrink the estimated mean value of the components closer 63 

to the real data centroids. Comprehensive experimental 64 

studies were conducted on a multicentre open access dataset 65 

(i.e., MoNuSeg, acquired from the TCGA archive) and our 66 

in-house dataset. In addition, repeated experiments are 67 

performed to evaluate the stability of different approaches. 68 

The proposed method achieves a new state-of-the-art 69 

performance in unsupervised segmentation in pathological 70 

images, with Dice scores of 0.743 and 0.737 on MoNuSeg 71 

and our in-house dataset, respectively, outperforming all 72 

comparison models significantly (Wilcoxon signed-rank test 73 

p-value<0.001). The main contributions of this paper are: 74 

1) Major challenges and limitations of current unsupervised 75 

tissue segmentation approaches in the pathological image 76 

domain have been investigated comprehensively and 77 

summarised concisely. These include the missing class 78 

problem, the redundant class problem, collapse, and the 79 

instability issues. We observed that these degenerative issues 80 

are caused by large intra-class variations or small inter-class 81 

variations.  82 

2) A DCGN with a centralised constraint is proposed to 83 

address all the degenerative problems. This centralised 84 

constraint forces the estimated mean to approximate the 85 

observed mean value by considering the heterogeneity of the 86 

training data to solve a) the missing class or collapse issue 87 

when previous unsupervised methods may consider outliers 88 

as a single class, b) the instability issue when previous 89 

unsupervised methods may be trapped at the local optimum, 90 

and c) the redundant class issue when the existing 91 

unsupervised methods could encounter small inter-class 92 

variations and result in weak predictions. The proposed 93 

centralised constraint is a succinct yet effective module that 94 

can be easily adapted to other unsupervised approaches for 95 

tissue segmentation. 96 

3) Comprehensive experimental studies have been conducted 97 

to demonstrate the significantly improved performance of 98 

our proposed DCGN with greatly enhanced reproducibility. 99 

Our study also suggests that the assessment of future 100 

unsupervised tissue segmentation methods must consider 101 

degenerative problems and repeated experiments should be 102 

carried out to prove stability and robustness. 103 

 The rest of this paper is organised as follows. The related 104 

studies on unsupervised segmentation are summarised in 105 

Section II. Details of the proposed method are illustrated in 106 

Section III. The experimental settings, including dataset 107 

details and training parameters, are described in Section IV.  108 

Sections V and VI present the discussion and conclusion of 109 

this study. 110 

II. RELATED WORKS 111 

This section describes the most related previously published 112 

studies, including both conventional and deep learning-based 113 

unsupervised segmentation approaches.  114 

A. Conventional Unsupervised Segmentation 115 

In general, unsupervised segmentation can be treated as a 116 

clustering task. Given a three-channel RGB image, the 117 
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clustering algorithm first flattens the 3D array to a 2D vector, 1 

then each pixel group (pixels along with R, G, and B channels) 2 

is considered as a multidimensional sample for clustering. 3 

These methods include graph/normalised cuts [17, 18], 4 

Markov random field [18], minibatch K-means [19], 5 

Gaussian mixture model (GMM) [20], mean shift [21], and 6 

have been widely used in medical image analysis tasks, such 7 

as registration [22], lesion detection [23] and segmentation 8 

[20]. In addition to clustering, learning and distinguishing 9 

different feature representations can also segment regions of 10 

interest from images.  For instance, Fan et al. [24] applied 11 

hierarchical image matting to segment vessels from fundus 12 

images. Tosun et al. [25] proposed an object-oriented method 13 

with a homogeneity measurement to segment biopsy images. 14 

B. Deep Clustering and Mutual Information 15 

Recent studies of unsupervised learning aim to combine 16 

conventional clustering methods with deep neural networks 17 

[26-28]. Specifically, these methods use clustering-based 18 

objective functions to train a neural network. For instance, 19 

DeepCluster [26] jointly updated parameters of the neural 20 

networks and clustering during the training, and used pseudo 21 

labels to calculate objective functions. Kim et al. [29] 22 

proposed a spatial constraint to the softmax cross-entropy 23 

loss (given by pseudo labels and predictions) to keep the 24 

spatial continuity of semantic predictions. Wellmann et al. 25 

[28] integrated domain knowledge as probabilistic relations 26 

and proposed a deep conditional GMM. However, using 27 

pseudo labels for training is prone to weak solutions, such as 28 

empty clusters, and trivial parametrisation [26].  29 

Maximizing the mutual information of paired predictions 30 

is effective [30]. To further alleviate degenerative issues, 31 

Invariant Information Clustering (IIC) [31] modified co-32 

clustering approaches and proposed mutual information 33 

based objective functions between paired samples to train a 34 

segmentation model. Given a pair of variables X, Y and their 35 

marginal distribution 𝑝(𝑥) and 𝑝(𝑦), the mutual information 36 

between X and Y, jointly distributed according to 𝑝(𝑥, 𝑦), is 37 

defined 38 

as39 

𝐼(𝑋; 𝑌) = ∑ 𝑝(𝑥, 𝑦)log
( , )

( ) ( ), . (1) 40 

IIC generated paired images by randomised rotation to assist 41 

the network to learn the invariant information and textual 42 

representations. More generally, IIC aimed to find common 43 

parts of paired samples while ignoring the redundant ones. 44 

However, it still suffers from degenerative issues and 45 

unstable performance (as shown in Section IV). 46 

C. Deep Generative Models and Log Likelihood  47 

Deep generative models aim to learn image representations 48 

by reconstructing the input images through generative 49 

models, such as generative adversarial networks (GAN), 50 

variational auto-encoder (VAE), and encoder-decoders. 51 

These representations can then be used to produce semantic 52 

predictions or calculate objective functions [32]. For instance, 53 

Chen et al. [33] employed redrawing ideas to segment 54 

foreground and background samples. Gandelsman et al. [34] 55 

proposed double Deep Image Prior (DIP) to composite 56 

images as background and foreground samples. However, 57 

these methods can only segment limited classes, which 58 

would be computationally redundant when producing multi-59 

class predictions.  60 

Another attempt is to combine deep neural networks with 61 

the GMM. Zong et al. [35] proposed a deep auto-encoder 62 

Gaussian mixture model (DAGMM), adding GMM to the 63 

low-dimensional feature representations within an auto-64 

encoder for unsupervised anomaly detection. Oord et al. [36] 65 

incorporated GMM on the top layers in hierarchical 66 

structures for unsupervised classification. Based on these 67 

studies, Zanjani et al. [37] extended DGMM for 68 

segmentation via classifying each pixel for stain 69 

normalisation. They proposed three novel schemes, 70 

including GAN-based, VAE-based, and deep convolutional 71 

Gaussian mixture model (DCGMM) based approaches. 72 

Among these attempts, the VAE-based approach and 73 

DCGMM can be well transferred to segmentation. The VAE-74 

based method performed log-likelihood loss and Kullback-75 

Leibler (KL) divergence loss to assess the reconstruction 76 

performance of raw data and the correlation between latent 77 

variables and prior distribution, respectively. The DCGMM 78 

trained the network by maximising the log-likelihood 79 

objective function. However, most of these methods only 80 

simply combine expectation maximisation with deep neural 81 

networks, without addressing the common issues in 82 

unsupervised tissue segmentation. 83 

III. METHODOLOGY 84 

A. Overview 85 

To address the limitations of existing unsupervised 86 

segmentation approaches, we summarise the properties that 87 

a well-performed model should possess: 88 

1. The model should have strong reproducibility during 89 

the training and validation stages. 90 

2. The model should be as light as possible and does not 91 

require complex pre-processing or post-processing 92 

steps. 93 

3. The model should have the ability to alleviate 94 

degenerative issues (e.g., the empty clusters problem).  95 

By considering the above properties, DCGN is proposed to 96 

segment pathological tissue images. 97 

B. Deep Constrained Gaussian Network  98 

In biomedical image segmentation, especially in pathological 99 

images, the semantic labels are more related to colour 100 

representations compared to natural images. This suggests 101 

that a mixture model can be well integrated with a deep 102 

neural network for unsupervised segmentation. 103 

Let 𝜔  denote learnable parameters of a deep neural 104 

network and 𝒥  refer to the objective function. In fully 105 

supervised learning, 𝜔  is updated by minimizing the 106 

objective function 𝒥 , which is commonly defined by 107 

calculating the errors between ground truth labels and 108 

predictions. Therefore, the key to unsupervised segmentation 109 

can be treated as finding the best objective function for 110 

training deep neural networks without annotation (ground 111 

truth label). In addition to maximizing the mutual 112 
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information between paired samples in Eq. (1), maximizing 1 

the log-likelihood can also be integrated into the gradient 2 

descent training framework, by minimizing the negative log-3 

likelihood.  4 

The proposed DCGN includes a feature extractor, a 5 

decoder, and a log-likelihood estimation module. Different 6 

from the accurate objective functions that calculate the error 7 

between the ground truths and predictions in supervised 8 

learning, log-likelihood maximization is a biased estimation 9 

that only produces a rough ‘direction’ to the global optimum 10 

[38, 39]. Therefore, we believe that complex and deep 11 

network structures are more likely to be over-fitted and 12 

trapped at local optima when there is no strong supervised 13 

optimisation function. In order to formulate a light 14 

architecture, MobileNet-V2 [40] is employed as the feature 15 

extractor, followed by a decoder that is comprised of 16 

Upsampling layers, Convolution layers, Batch normalisation 17 

layers, and ReLU activations. To adapt the prediction of the 18 

network to the pseudo posterior of the latent variable Z in the 19 

mixture model, a differentiable softmax layer is applied to 20 

the output, forming a [𝑊, 𝐻, 𝐾] shaped prediction (W, H and 21 

K are the width, height, and the number of classes, 22 

respectively). Given input images 𝐼  with 𝛫 classes, the 23 

network ∅  aims to produce semantic probability maps 𝜑 , 24 

which are considered as the pseudo posterior 𝛾  in the 25 

conventional GMM, that is 26 

𝛾 ≈ 𝜑 = ∅(𝐼, 𝜔) ∈ ℝ × × . (2) 27 

    Based on the above assumption, the E-step can be 28 

conducted by forward propagation through a neural network, 29 

while M-step is applied by optimising the likelihood function 30 

via gradient descent.  31 

Given the pseudo posterior 𝛾 , the log-likelihood 32 

ℒ Θ|Θ( )  of the multivariate GMM can be estimated using 33 

ℒ Θ|Θ( ) =  
𝛾 [log𝛼 −

D

2
log(2𝜋) − log𝛾 −

1

2
log|Σ | −

1

2
(𝑋 − 𝜇 ) Σ (𝑋 − 𝜇 )]]

, (3) 34 

where log(2𝜋) is a constant that can be ignored, D is the 35 

dimension of each sample (D=3 for a flattened RGB image 36 

array), N is the number of samples (pixel groups) of the 37 

image, 𝛼  is the weight of the k-th Gaussian mixture model 38 

that ∑ 𝛼 = 1. Therefore, by integrating Eqs. (2) and (3), 39 

the network ∅  can be trained by minimising the log-40 

likelihood ℒ 41 

𝜔 = arg min[−ℒ(𝜔)].  (4) 42 

It is of note that one major concern for existing deep 43 

Gaussian models is the redundant class issue, which is mainly 44 

caused by small inter-class and large intra-class variations. It 45 

makes the model assign the same (different) label(s) to 46 

samples of different (same) classes. The hard samples 47 

(outliers) may also lead to an incorrect estimate of the 48 

optimisation function, resulting in local optima trapping or 49 

an unstable training process. Another problem is the 50 

instability issue, which is a common drawback of existing 51 

unsupervised learning algorithms. Due to randomised 52 

initialisation, most existing methods require multiple training 53 

procedures to obtain the best performance.  54 

Here, we propose a centralised constraint for the log-55 

likelihood objective function to alleviate the degenerative 56 

issues of deep Gaussian networks. The objective function of 57 

the deep Gaussian network is calculated using the estimated 58 

parameters Θ and pseudo posterior 𝛾. However, the variance 59 

in batch data makes it difficult to derive the real parameters 60 

𝜇 . To better demonstrate the idea of our proposed 61 

centralised constraint, two simplified examples are shown in 62 

Fig. 2. We first introduce a simplified scenario in Fig. 2 (a), 63 

which is a group of single-class samples following the 64 

Gaussian distribution. Given a batch of data X, let 𝜇  be the 65 

estimated mean value of the mixture model, 𝜇  be the 66 

observed mean value of minibatch data X, and 𝜇  be the 67 

real (ideal) mean value of the mixture model. The centralised 68 

constraint will slightly drive 𝜇  close to the 𝜇 . Note that 69 

𝜇  does not equal to 𝜇  since it is the mean value of 70 

minibatch samples.  71 

For multi-class samples, this centralised constraint can 72 

alleviate the negative effect of small inter-class variations 73 

(Fig. 2 (b)). Assume there are two classes a and b, which 74 

denote 𝑎  and 𝑏  as the estimated classes. The model treats 75 

the majority samples of class a and b as the class 𝑎 , while 76 

some outliers of class b are considered as 𝑏 . This could lead 77 

to poor segmentation results when performing existing 78 

methods on samples with small inter-class variations.  79 

Therefore, a centralised constraint ∆ is devised to let the 80 

estimated mean  𝜇  approximate 𝜇  by considering the 81 

diversity of X 82 

∆=
|𝜇 − 𝑋|

𝜎
. (5) 83 

When dealing with hard samples with small inter-class 84 

variations, the observed variance is relatively small, resulting 85 

in a relatively large constraint value. This constraint will 86 

force the model to reallocate the estimated mean to 87 

approximate the observed mean; therefore, can reduce the 88 

degenerative issues. When dealing with “easy” samples (i.e., 89 

samples with large inter-class variations), the observed 90 

variance is high, leading to small constraints to the objective 91 

functions that can barely affect the parameter estimation.  92 

With this centralised constraint ∆, the objective function 93 

ℒ  for our DCGN can be expressed as 94 

Fig. 2. Deviation of the estimated parameters: (a) normal 
distribution on single class samples (b) mixture model on multi 
class (number of class k=2) samples. Note that 𝜇  is the 
estimated mean value of the mixture model, 𝜇  is the observed 
mean value of minibatch data X, and 𝜇  is the real (ideal) mean 
value of the mixture model. 
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ℒ = ℒ Θ|Θ( ) −  𝜆
𝜇 ( ) − 𝑋

𝜎
, (6) 1 

where 𝐶 is the dimension of the input samples (e.g., 𝐶 = 3 2 

for RGB images), 𝜎  is the variance of minibatch samples 3 

on channel c, and 𝑋  denotes the mean value of minibatch 4 

samples on channel c. With the proposed constraint, the 5 

objective function ℒ  would be penalised if the estimated 𝜇  6 

is far away from the observed mean 𝜇 . As a result, outliers 7 

or hard samples would produce less interference to the 8 

objective function, hence, stabilising the training procedure, 9 

and in turn, improving the segmentation performance. 10 

 Assume the constraint weight as 𝜆, by calculating partial 11 

derivatives over 𝜇 , Σ  and 𝛼  of Eq. (6), the centralised 12 

mixture parameters can be obtained via 13 

𝛾 ,
( )

= ∅ 𝑋, 𝜔( ) (7) 14 

𝜇
( )

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ∑ 𝛾

( )
𝑋 − 𝜆 ∑

Σ ( )

𝜎

∑ 𝛾
( )

,     𝜇 ≥ 𝑋

∑ 𝛾
( )

𝑋 + 𝜆 ∑
Σ ( )

𝜎

∑ 𝛾
( )

,     𝜇 < 𝑋

(8) 15 

 16 

𝛼
( )

=
∑ 𝛾

( )

𝑁
(9) 17 

Σ
( )

=
∑ 𝛾

( )
(𝑋 − 𝜇

( )
) (𝑋 − 𝜇

( )
)

∑ 𝛾
( )

(10) 18 

    Note that in Eq. (10), the calculation of 𝜇( ) demands 19 

Σ ( ); therefore, an initialisation of Σ  is required before the 20 

training process. A random initialisation from uniform 21 

distribution was used in this study. 22 

The pseudo-code of the entire training procedure for DCGN 23 

is shown in Algorithm 1. 24 

C. Preprocessing 25 

Each input image X is pre-processed by the min-max 26 

normalisation through RGB channels, that is  27 

𝑋 =
 ( )

 ( )  ( )
, (11)  28 

where 𝑋  is the channel c of the input image X. 29 

IV. Experiments  30 

This section demonstrates all the experimental settings 31 

including datasets, evaluation metrics, implementation 32 

details and results. The efficiency of the proposed DCGN is 33 

assessed on a public dataset from the TCGA* repository 34 

(MoNuSeg†) and our in-house renal biopsy image (RBI) 35 

dataset. 36 

A. Datasets and Training Strategies 37 

MoNuSeg. MoNuSeg consists of 44 pathological tissue 38 

images with 28,846 manually annotated nuclear boundaries. 39 

These 1,000×1,000 images were extracted from the separate 40 

whole slide images (scanned at 40×) from the TCGA 41 

repository, representing 9 different organs from 44 42 

individuals. The stromal and epithelial nuclei were manually 43 

labelled using Aperio ImageScope. Details of MoNuSeg are 44 

described in Table I. The various tissue sections greatly 45 

increase the richness and appearance variation of the dataset, 46 

which can provide a convincing assessment.  47 

TABLE. I  48 

COMPOSITION OF THE MONUSEG DATASET. 49 

Subset Nuclei Images Anatomical Details 

Training 21623 30 
6 breast, 6 liver, 6 kidney, 6 
prostate, 2 bladder, 2 colon, 2 
stomach 

Testing 7223 14 
2 breast, 3 kidney, 2 prostate, 2 
bladder, 1 colon, 2 lung, 2 brain 

RBI. RBI includes more than 10,000 image patches extracted 50 

from 400 whole slide images with biopsy-proven results 51 

collected from the National Clinical Research Centre of 52 

Kidney Diseases, Jinling Hospital. All data were deidentified 53 

in accordance with the tenets of the Declaration of Helsinki 54 

[41]. Each image was resized to a unified size of 512×512. 55 

We randomly selected 577 images for training and 20 images 56 

for validation (the glomerular structures were annotated by 57 

experienced pathologists with 20 years of experience). Note 58 

that the training set and validation set were selected from 59 

different whole slide images. 60 

Training Strategies. Parameters of the encoder are initialised 61 

with ImageNet pre-trained weights to provide strong feature 62 

extraction capabilities, while that of the decoder are 63 

initialised using He-normal initialisation. Randomised hue 64 

transformation (delta=0.12), randomised saturation 65 

(saturation factor ranges from 0.5 to 1.5), randomised flip-66 

up/down, and randomised flip-left/right were implemented to 67 

augment the dataset before training. All of the models were 68 

trained on an NVIDIA RTX 3090 GPU for 200 epochs, with 69 

an initial learning rate of 5𝑒  and a decay of 0.98 per epoch. 70 

B. Experimental Details 71 

Comparisons. To evaluate the effectiveness of DCGN, we 72 

compared it with several deep learning based and 73 

conventional unsupervised segmentation methods, including 74 

minibatch K-Means (denote as mKMeans), GMM, IIC [31], 75 

Double DIP [34], DCAGMM (deep clustering via adaptive 76 

GMM modelling) [42], DIC (deep image clustering) [43], 77 

Kim’s work [29], Kanezaki’s work [14] and DCGMM [37]. 78 

It is of note that we reproduce and modify the DCAGMM by 79 

Algorithm 1. Pseudo-code for training DCGN 
Input: images  𝑋 ∈ ℝ × ×  
Output: trained network parameters 𝜔,  
               semantic prediction  𝛾 

1. randomly initialize Σ( ), network parameters 𝜔( ) 
2. for t in iterations do 
         𝛾( ) = ∅ 𝑋, 𝜔( ) ∈ ℝ × ×   

         update 𝜇( )
, 𝛼

( ) with 𝛾( ), Σ( ) 

         update Σ( ) with 𝛾( )
, 𝜇

( ) 

         Compute  ℒ  through 𝜇
( )

, Σ
( )

, 𝛼
( ) 

         update 𝜔  by  arg min[− ℒ 𝜔( ) ] 

* The Cancer Genome Atlas (TCGA), [Online]. Available at: http://cancergenome.nih.gov/ (Accessed in August. 2021) 
†  The MoNuSeg public dataset [Online]. Available at https://monuseg.grand-challenge.org/Data/ (Accessed in July 2021) 
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adopting its distance-based constraints in the original 1 

DCGMM (it was initially designed for image classification). 2 

Open-source implementations of the comparison methods 3 

used in this study can be obtained on Github. The network 4 

structure of the DCGMM was modified to match our DCGN 5 

for a fair comparison. In addition to unsupervised methods, 6 

we also implemented a fully supervised U-Net on cell 7 

segmentation task for better comparison. The implemented 8 

U-Net was modified by adding batch normalization layers 9 

and dropout layers compared to the original vanilla U-Net 10 

[44].  11 

Cell Segmentation on MoNuSeg. For many existing 12 

unsupervised learning approaches, the performance of 13 

segmentation suffers from random initialisation. In this study, 14 

repeated experiments were conducted to explore the stability 15 

and reproducibility of the performance of all comparison 16 

algorithms. All these approaches were trained for 150 epochs 17 

each time and repeated 10 times without changing any 18 

parameters or training samples. The upper bound 19 

performance is defined as the best results among 10 repeated 20 

experiments. Although cell segmentation is a binary task, all 21 

the compared studies were assessed using different numbers 22 

of classes (k=2 or 3) to show their upper-bound performance. 23 

In addition, a fully supervised U-Net is trained as the baseline 24 

of supervised learning. 25 

Glomeruli Decomposition on RBI. In addition to assessing 26 

the effectiveness of the binary segmentation, a glomeruli 27 

decomposition task is carried out. The glomerular structures 28 

 
Fig. 3. Box plot of the Dice score during repeated experimental studies, where * denotes the model with redundant class (the number of 
pre-defined classes k=3 for cell segmentation), ‡ indicates highly significant differences results (Wilcoxon signed-rank test with P<0.001) 
compared with DCGN, the black dots refer to outliers and white triangles indicate mean values, the small orange dots refer to samples. 

TABLE. II  
PERFORMANCE OF THE CELL SEGMENTATION (MONUSEG DATASET). 

Methods Precision Recall Dice AJI 
mKMeans*  0.657±0.175(0.679) ٭    0.792±0.174(0.773) ‡ 0.678±0.094(0.682) ‡ 0.305±0.140(0.338) ‡ 
GMM* 0.631±0.150(0.664) ‡ 0.822±0.109(0.819) 0.695±0.085(0.717) ‡ 0.290±0.151(0.319) ‡ 
IIC* 0.467±0.092(0.516) ‡ 0.725±0.121(0.796) ‡ 0.560±0.087(0.618) ‡ 0.056±0.030(0.072) ‡ 
Kim et al.* 0.575±0.249(0.698) ‡ 0.824±0.189(0.772) 0.606±0.171(0.694) ‡ 0.220±0.176(0.323) ‡ 
Double DIP 0.221±0.051(0.221) ‡ 0.820±0.109(0.851) 0.344±0.067(0.350) ‡ 0.013±0.006(0.013) ‡ 
Kanezaki et al.* 0.629±0.195(0.725) ‡ 0.822±0.162(0.783) 0.669±0.119(0.727) ‡ 0.260±0.166(0.351) ‡ 
DCGMM* 0.693±0.135(0.698) ٭    0.786±0.171(0.801) ‡ 0.707±0.064(0.719) ‡ 0.314±0.124(0.345) ‡ 
DIC* 0.511±0.249(0.595) ‡ 0.848±0.170(0.832) ٭    0.571±0.165(0.644) ‡ 0.147±0.169(0.193) ‡ 

DCAGMM 0.619±0.137(0.691) ‡ 0.767±0.131(0.763) ‡ 0.664±0.079(0.706) ‡ 0.300±0.126(0.365) ‡ 

DCGN  0.685±0.113(0.716) 0.834±0.115(0.808) 0.737±0.043(0.743) 0.352±0.113(0.379) 

U-Net† 0.695±0.095(0.740) 0.849±0.083(0.848) 0.755±0.045(0.782) 0.370±0.093(0.436) ٭    
* denotes redundant class (k=3) and † refers to a fully supervised learning baseline using modified U-Net. The bold values refer to the best average 
performance among unsupervised methods (without considering supervised U-Net).  ٭(‡) indicates significant differences (highly significant 
differences) results compared with DCGN, with Wilcoxon signed-rank test P<0.05 (P<0.001). The results are shown as “mean± standard deviation 
(upper-bound results)”. 
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were divided into three parts (k=3), including (1) mesangial 1 

matrix and basement membrane, (2) intra-glomerular cells 2 

(mesangial, endothelial and podocytes) and macula densa, 3 

and (3) other regions such as glomerular capillaries, 4 

bowman’s space, exudate, etc. It is of note that Double DIP 5 

was not assessed since it was designed for binary 6 

segmentation only. 7 

 Degeneration Assessment. To explore the degenerative 8 

issues, we analysed 140 predictions on the MoNuSeg 9 

datasets and 100 predictions on the RBI datasets, based on 10 

the following criteria: 11 

(1) All these predictions are acquired from repeated 12 

experiments (10 times for MoNuSeg and 5 times for RBI). 13 

(2) Collapse is assessed on both MoNuSeg and RBI datasets, 14 

which is defined as a certain class dominating the major 15 

region (here we set 97% as the threshold) of an image. 16 

(4) Redundant class is assessed on the MoNuSeg dataset, 17 

which is identified when the segmentation performance can 18 

be improved by adding an extra class without semantic 19 

meanings. 20 

(5) Empty class is assessed on the RBI dataset and refers to 21 

missing a certain class or with an extremely low ratio (here 22 

we set <1%) in the prediction.  23 

(6) Instability is assessed on both MoNuSeg and RBI 24 

datasets and is considered when the standard deviation of the 25 

average performance among repeated experiments is larger 26 

than 8%. 27 

Evaluation Metrics. In addition to the commonly used Dice 28 

coefficient score, pixel-wise precision and recall were also 29 

reported. To statistically evaluate the performance, Wilcoxon 30 

signed-rank test was adopted between the evaluation results 31 

derived using DCGN and other comparison methods, with 32 

P<0.05 (or P<0.001) indicating significant (or highly 33 

significant) differences between the two paired methods. The 34 

Aggregated Jaccard Index (AJI) was applied to the MoNuSeg 35 

dataset to verify the instance-level segmentation 36 

performance, that is 37 

AJI =
𝐺 ⋂ 𝑃

𝐺 ⋃ 𝑃 + 𝜀
, (12) 38 

where i indicates the number of cells, 𝜀  is the smooth 39 

parameter, 𝐺  and 𝑃  refer to the ground truth and prediction 40 

of the i-th cell. In glomeruli segmentation, we applied 41 

normalised mutual information (NMI) to assess the mutual 42 

dependence between two samples, which is given by 43 

NMI(𝑌, 𝐶) =
2𝐼(𝑌; 𝐶)

[𝐻(𝑌) + 𝐻(𝐶)]
, (13) 44 

where Y refers to the ground truth labels and C denotes the 45 

prediction, and I is the mutual information of Y and C, H(.) is 46 

the entropy. It is of note that all the ground truth labels were 47 

only used during the evaluation that had not been revealed in 48 

the training process.  49 

C. Experimental Results 50 

Unsupervised Cell Segmentation on MoNuSeg. The 51 

performance of repeated experiments is presented in Table II, 52 

shown as mean ± standard deviation (with the upper-bound 53 

results of each method shown in brackets). It shows that some 54 

unsupervised approaches initially developed for natural 55 

images could not perform well on pathological images, 56 

indicating a significantly lower average Dice (relatively 3-57 

39% lower) compared to the proposed DCGN (Fig. 3 and 58 

Table II). For instance, double DIP [34] failed to perform cell 59 

segmentation with only a 0.344 average Dice score. 60 

Interestingly, conventional GMM (k=3) achieved good 61 

performance with a 0.695 average Dice score, which is 62 

similar compared to that of the DCGMM (0.707).  63 

 
Fig. 4. Comparison of unsupervised cell segmentation results, 
where * denotes models with redundant class (k=3). Green, 
yellow, and red colours refer to the true positive, the false 
positive and the false negative predictions, respectively. The red 
and cyan boxes highlight the region of interests before and after 
zoom-in. 
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 To provide statistical assessments, Wilcoxon signed-rank 1 

test was performed between the evaluation results of 10 2 

repeated experiments. Considering the upper bound of the 3 

segmentation performance (shown in Table II), the proposed 4 

DCGN achieved the best Dice score (0.743) among 5 

unsupervised learning approaches, followed by Kanezaki’s 6 

(0.727) and DCGMM (0.719). Moreover, DCGN achieved 7 

the best AJI score (0.379) among all the unsupervised 8 

learning approaches. 9 

 In addition, DCGN achieved a significantly better Dice 10 

coefficient score and AJI score compared to other 11 

unsupervised segmentation approaches (P<0.001). 12 

Interestingly, there were no significant differences (P>0.05) 13 

found for Precision, Recall and Dice scores using our DCGN 14 

compared to the fully supervised U-Net based method (Table 15 

II). Although the DCGMM achieved better Precision 16 

compared to our DCGN (P=0.036), its Recall, Dice and AJI 17 

score are significantly lower than the proposed DCGN 18 

(P<0.001). DIC has the highest Recall, but relatively low 19 

Precision indicating lots of false-positive predictions. Double 20 

DIP achieved a high recall as well but the lowest precision 21 

score and therefore a very low Dice score. To better 22 

demonstrate the performance of the competitive approaches 23 

(Dice>0.65), three images were randomly selected from the 24 

test set to visualise the upper-bound segmentation 25 

performance (Fig. 4). It is of note that in Fig. 4, predictions 26 

of the redundant class have been removed (some methods 27 

achieved upper-bound performance by adding a redundant 28 

class (i.e., k=3)).  29 

Unsupervised Glomeruli Decomposition on RBI. The 30 

average performance of our comparison study on RBI is 31 

summarised in Table III, Fig. 5, assessed by NMI and Dice 32 

coefficient score. All comparison studies were performed 33 

with k=3 to segment three semantic labels (the definition of 34 

semantic labels is described in Section IV B).  35 

 As Table III shows, the proposed DCGN achieved 36 

significantly better results (P<0.001) compared to state-of-37 

TABLE. III  
PERFORMANCE OF THE GLOMERULUS SEGMENTATION 

(RBI DATASET). 
Methods  NMI Dice  

mKMeans 0.200±0.040(0.200) ‡ 0.555±0.037(0.559) ‡ 

GMM 0.328±0.051(0.328) ‡ 0.640±0.061(0.640) ‡ 

DCGMM 0.207±0.042(0.229) ‡ 0.567±0.047(0.579) ‡ 

Kanezaki 0.186±0.095(0.207) ‡ 0.502±0.109(0.537) ‡ 

IIC 0.090±0.068(0.124) ‡ 0.501±0.054(0.534) ‡ 

Kim 0.187±0.089(0.195) ‡ 0.500±0.106(0.511) ‡ 

DIC 0.192±0.117(0.234) ‡ 0.516±0.127(0.558) ‡ 

DCAGMM 0.207±0.041(0.212) ‡ 0.578±0.048(0.582) ‡ 

DCGN  0.377±0.053(0.384) 0.735±0.050(0.746) 

‡ indicates highly significant differences results (Wilcoxon 
signed-rank test P<0.001) compared with our DCGN. The bold 
values refer to the best performance among comparison 
methods. The results are shown as “mean± standard deviation 
(upper-bound results)”. 

  

Fig. 5. Comparison of unsupervised glomeruli segmentation 
results. Empty class issues are highlighted by red bounding 
boxes. The red, blue, and almond colours in the ground truth 
refer to (1) mesangial matrix and basement membrane, (2) intra-
glomerular and macula densa cells, (3) other regions such as 
glomerular capillaries, respectively. 
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the-art methods on glomeruli composition, with an average 1 

of 0.735 Dice score and 0.377 NMI, followed by GMM (an 2 

average of 0.640 Dice and 0.328 NMI) and DCAGMM (an 3 

average of 0.578 Dice and 0.207 NMI).  4 

Degeneration Assessment. The results of the degeneration 5 

assessment are shown in Table. IV. It is of note that Double 6 

DIP was not assessed due to its relatively weak performance. 7 

As Table. IV shows, the methods proposed by Kanezaki and 8 

Kim heavily suffered from all degenerative issues. Similarly, 9 

the empty class is prone to occur in DIC. DCGMM and 10 

DCAGMM occasionally encountered the empty class issue 11 

and GMM presented instability during repeated experiments. 12 

Both mKMeans and IIC witnessed instability in the 13 

MoNuSeg dataset.  14 

V. Discussion  15 

In this study, we have developed a novel unsupervised 16 

segmentation method combining deep neural networks with 17 

a constrained GMM. This approach has been 18 

comprehensively evaluated on pathological images using 19 

both a public MoNuSeg dataset and an in-house RBI dataset. 20 

We have achieved significantly better results compared to 21 

previously published unsupervised segmentation methods 22 

with clear evidence of mitigating degenerative issues that are 23 

currently challenging for pathological tissue image 24 

delineation. Besides, our proposed method has also achieved 25 

comparable results with some widely used semi-supervised 26 

and fully supervised learning methods. 27 

Performance Analysis. Comprehensive comparison results 28 

in Tables II and III and Figs. 4 and 5 have demonstrated the 29 

superior segmentation capability of the proposed DCGN. 30 

Compared to existing unsupervised segmentation methods, 31 

our DCGN is robust to small inter-class variations. For 32 

instance, as Fig. 5 (second column) shows, all the 33 

unsupervised methods except DCGN have regarded white 34 

regions as a single class while ignoring the exudation/stroma 35 

regions (light pink regions in the raw images).  36 

 Interestingly, conventional methods such as mKMeans 37 

and GMM have shown their effectiveness in tissue 38 

segmentation. In particular, GMM has obtained better 39 

performance than mKMeans for tissue segmentation with 40 

slightly worse stability. It achieved better performance than 41 

mKMeans in kidney tissue segmentation, with a 0.08 higher 42 

average Dice score and 0.12 higher NMI score, respectively. 43 

Methods proposed by Kanezaki et al. and Kim et al. have 44 

produced reasonable results on cell segmentation but have 45 

suffered heavily from collapse and empty class issues (large 46 

variances in Fig. 3 and many failed cases summarised in 47 

Table IV). We observed poor segmentation for these two 48 

methods when dealing with kidney tissue segmentation (see 49 

Table. III and Fig. 5). DIC have presented a high recall score 50 

with a low precision score in cell segmentation and poor 51 

results in glomeruli segmentation. Double DIP has derived 52 

similar coarse predictions (high recall but low precision 53 

scores) as DIC for cell segmentation, indicating its 54 

incompatibility for tissue segmentation, although the method 55 

could be more adaptive for natural image segmentation. The 56 

coarse predictions given by IIC have indicated its 57 

inapplicability to pathological images. Although DCGMM 58 

has presented comparable performance to our DCGN on cell 59 

segmentation, it has achieved significantly lower 60 

segmentation accuracy on kidney tissue segmentation and 61 

has issues with generating empty classes. Moreover, 62 

DCGMM has presented poor performance when dealing with 63 

samples with small inter-class variations (poor cell 64 

segmentation results from dark background areas as shown 65 

in Fig. 4 middle column). Similar to DCGMM, DCAGMM 66 

presented comparable results. However, its normalized 67 

distance constraint (which aims to increase the distance 68 

between Gaussian centres) makes it hard to segment classes 69 

with high intra-class variations. 70 

Comparing with Fully Supervised Segmentation Methods. 71 

One of the major concerns of unsupervised segmentation is 72 

how it performs compared with fully supervised 73 

segmentation algorithms. In addition to the U-Net baseline 74 

given in Table III, we compared the proposed DCGN with 75 

previously published supervised studies (Table V). It is of 76 

note that all comparisons were performed on the same test 77 

data of the MoNuSeg dataset. As Table V shows, the 78 

proposed DCGN has achieved a comparable average Dice 79 

coefficient score compared with the fully supervised U-Net 80 

based method (no significant differences were found in the 81 

Precision, Recall and Dice score). DCGN has obtained 82 

significantly better performance compared to other 83 

unsupervised segmentation methods (Tables II and III), it, 84 

however, has presented a lower AJI score compared to fully 85 

supervised and semi-supervised segmentation methods 86 

(Table V). This is mainly because of the adhesion of adjacent 87 

cells, which could be better addressed using supervised or 88 

semi-supervised methods. 89 

TABLE. V 90 

PERFORMANCE OF SUPERVISED METHODS (MONUSEG DATASET). 91 

Methods Avg F1 (Dice) Avg AJI 

DCGN 0.7432 0.3790 
U-Net 0.7582 0.4357 
Mask RCNN [45] * 0.7991 0.5128 
Dual U-Net [46] * 0.7913 0.5899 
Tian et al. [47] †, * 0.7638 0.4927 
Qu et al. [48] †, * 0.7566 0.5160 
CNN [49] * 0.7623 0.5083 

TABLE. IV 
DEGENERATION ASSESSMENT (MONUSEG AND RBI DATASET) 

 Collapse Empty Class Stability 

GMM 0/240 0/100 × 
Kanezaki 7/240 23/100 × 
Kim 17/240 28/100 × 
mKMeans 0/240 0/100 × 
IIC 0/240 0/100 × 
DIC 0/240 25/100 × 
DCAGMM 0/240 1/100 √ 
DCGMM 0/240 2/100 √ 
DCGN 0/240 0/100 √ 

The red blocks indicate the occurrence of degenerative issues. 
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* indicates patch based training progress, † refers to semi-supervised 1 

learning approaches. 2 

 Both semi-supervised approaches proposed by Tian et al. 3 

[47] and Qu et al. [48] have taken prior knowledge of cell 4 

central points into account, leading to competitive AJIs of 5 

0.4927 and 0.5160. In addition, significant improvement in 6 

average AJI has been observed using patch-based methods 7 

(denote with * in Table V) compared to the raw image-based 8 

learning strategy. This has indicated the importance of the 9 

patch learning strategy in the tissue segmentation task (here 10 

patch-based methods refer to extracting small patches from 11 

original raw images in both the training and testing process). 12 

Overall, it can be difficult for unsupervised segmentation 13 

approaches to produce precise pixel-level predictions, 14 

especially for dense and small objects.  15 

Distinguishing Samples with Small Inter-Class Variations. 16 

The capability of distinguishing small inter-class variation 17 

samples determines the accuracy of the subtle tissue 18 

segmentation. We have explored this capability by plotting 19 

the class intensity map of the top 4 methods in cell and kidney 20 

tissue segmentation, respectively. As Fig. 6 (a) shows, most 21 

unsupervised methods have not been able to clearly segment 22 

the background samples and require a redundant class for 23 

those hard samples, while DCGN can effectively distinguish 24 

background samples and foreground samples without adding 25 

a redundant class. As shown in Fig. 6 (b), mKMeans method 26 

presented hard boundaries due to the Euclidean distance 27 

measurement, while other methods have produced smoother 28 

boundaries. DCGN has presented the most similar class 29 

intensity maps compared to the ones generated from the 30 

ground truth, indicating the effectiveness of the proposed 31 

centralised function. 32 

Redundant Class. Experimental results have indicated that 33 

most unsupervised segmentation methods have suffered from 34 

the redundant class issue. As Fig. 3 shows, most of the 35 

compared methods have obtained a significant performance 36 

improvement for the binary segmentation task when 37 

changing the number of classes from 2 to 3. The reason 38 

behind this is that these models can be struggling to 39 

distinguish samples with small inter-class variations. While 40 

the pre-defined number of classes cannot well accommodate 41 

all samples, unstable performance can be observed since the 42 

hard samples can be assigned with different labels at different 43 

repeated experiments. For example, white background pixels 44 

may be assigned as background samples in the first round of 45 

training while assigned as the foreground samples in another 46 

round. Therefore, these unsupervised methods require a 47 

redundant class to accommodate these hard samples. 48 

However, our DCGN has the capability for accurate tissue 49 

segmentation without using an additional redundant class 50 

that is more efficient and effective.  51 

Stability. As shown in Fig. 3 and Table V, IIC, mKMeans, 52 

DCGMM and DCGN have presented good stability in 53 

repeated experiments. Similar to the conventional GMM that 54 

has suffered from instability, the performance of Kim’s and 55 

Kanezaki’s methods has also presented dramatic fluctuation 56 

with large variances. In addition, the stability of previous 57 

methods has been enhanced by introducing a redundant class 58 

to accommodate hard samples. However, even though IIC, 59 

mKMeans and DCGMM have presented good stability, their 60 

segmentation performance has been significantly lower than 61 

our DCGN. 62 

Reproducibility and Empty Class Issues. Methods that 63 

cannot be trained on large-scale studies are more likely to 64 

result in poor reproducibility. For instance, conventional 65 

GMM without minibatch learning can only be performed on 66 

a small number of images. This leads to limited information 67 

when developing generalised segmentation models. 68 

Moreover, some methods (e.g., Kim’s and Kanezaki’s 69 

methods) can only produce a single image during the training 70 

process, leading to low reproducibility of repeated 71 

experiments (i.e., obtaining the same semantic labels for the 72 

same samples).  73 

 The empty class problem is another issue that has hindered 74 

the deployment of unsupervised segmentation. For instance, 75 

Kim’s, Kanezaki’s and DCGMM methods have encountered 76 

empty class issues during the evaluation. This is caused by 77 

the incapability of separating hard samples (i.e., delineation 78 

of pixels with similar intensities but different categories). In 79 

contrast, the proposed DCGN can effectively avoid the 80 

empty class issue and achieve higher reproducibility in large-81 

scale training. 82 

Ablation Studies of Penalty Weights. The influence of the 83 

proposed centralised constraint is explored by setting 84 

different weights 𝜆  in Eq. (6). The results of 10 repeated 85 

experiments (for each 𝜆) are shown in Table V. 86 

TABLE. VI 87 

 
Fig. 6. Class intensity maps of the top 4 methods for (a) cell 
segmentation and (b) renal tissue segmentation. The three axes 
refer to the R, G, and B intensities, and different colours denote 
different classes. The vignette in red boxes in (a) indicate class 
intensity maps without redundant class. 
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ABLATION STUDIES OF CONSTRAINED WEIGHTS 1 

𝜆 Dice Avg Epochs 
0.05 0.637±0.076 (0.740)  37 
0.005 0.737±0.043 (0.743) 62 
0.0005 0.734±0.005 (0.745) 89 

“Avg Epochs” indicates the average number of epochs for convergence. 2 

It can be observed that the upper bound performance of 3 

models with different 𝜆 remains similar, with 0.740, 0.743, 4 

0.745 of 𝜆 =0.05, 𝜆 =0.005 and 𝜆 =0.0005, respectively. 5 

However, the standard deviation of the Dice score exerts 6 

significant differences. As Table VI shows, a large weight for 7 

the centralised constraint leads to faster convergence while 8 

also leading to an unstable training procedure (which may be 9 

attributed to the local optimum trapping of the module). A 10 

smaller weight requires more training epochs for 11 

convergence but has more stable training processes. 12 

Capacity on whole slide images. It remains unclear how 13 

DCGN performs on whole slide images when predictions are 14 

made across patches (tiles). Here we tested the cell 15 

segmentation module (two classes) on a renal whole slide 16 

image. It demonstrated that our method could achieve 17 

promising performance when handling renal images with 18 

homogenous features. However, false-positive samples could 19 

be observed in some vessel regions, indicating potential 20 

research directions (e.g., enhancing the utilization of textural 21 

features) to improve the module capacity.  22 

Limitations. The essence of unsupervised learning is to 23 

allocate the same label to samples of the same class. 24 

However, it is almost impossible to acquire precise 25 

segmentation predictions without any prior knowledge or 26 

annotation. Compared with the existing studies [50, 51] of 27 

pathological image segmentation, the proposed method may 28 

not able to produce satisfactory instance segmentation 29 

results (cells are prone to adhesion), which may limit its 30 

clinical application when a single-cell analysis is 31 

necessary. Most of the unsupervised learning methods are 32 

performed based on pixel intensities without considering 33 

textual features. Although combining deep neural networks 34 

with clustering or mixture models can enhance the utilization 35 

of textual features, it still relies on pixel intensity-based 36 

objective functions to some extent. The weak predictions can 37 

be observed in the segmentation of cells (first row in Fig. 7.) 38 

and glomerular structures (second row in Fig. 7.). This is 39 

mainly because of the conflict between the hypothesized 40 

Gaussian and real data distributions. Although the proposed 41 

DCGN may not be able to produce satisfactory predictions 42 

when handling complex images with too many categories or 43 

images with many “outliers”, the DCGN has shown merits in 44 

upstream (general tasks such as foreground/background 45 

segmentation) tasks. More importantly, the proposed 46 

constraint can help the module to build better classification 47 

boundaries for classes with small inter-class variations which 48 

is a major technical contribution of our method; however, our 49 

method can alleviate the false predictions but not completely 50 

remove them.     51 

How does DCGN alleviate degenerative issues? In order to 52 

give readers more intuition about how our method 53 

addresses the degenerative issues, we designed some 54 

schematic illustrations using simplified examples in 2D 55 

space (because real 3D cluster are intricate to demonstrate 56 

and comprehend).  57 

 First, the missing class issue usually occurs when the 58 

module fails to address the outliers, e.g., the module takes 59 

the outliers as a unique class while combing certain 60 

categories (blue and red dots) into a single class (as shown 61 

in Fig.8(a)). This kind of issue is more likely to occur in 62 

iterative methods that rely on pseudo labels, while it is also 63 

occasionally witnessed in existing deep Gaussian 64 

networks. The proposed centralised constraint will force 65 

the mixture module to be closer to the centroid of the data 66 

samples, thus preventing the occurrence of the missing 67 

class issue.  68 

 
Fig. 8. Simplified examples to illustrate how the proposed 
centralised constraint addresses the (a) missing class and 
single class domination (collapse); (b) redundant class and 
(c) instability problems. Predictions given by methods 
without centralised constraint are noted with dotted circles 
(left column). Class centroids are shown as yellow diamonds 
(class centroid given by methods without centralised 
constraint) and yellow stars (class centroid given by the 
proposed method).  

 
Fig. 7. Weak predictions of cells and glomerular structures.  
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 Second, the redundant class issue is usually artificial, as 1 

to improve the performance of most unsupervised 2 

methods. Due to the discrete distribution of a certain class 3 

(e.g., background regions that contain stroma and white 4 

non-tissue areas), some methods may need an additional 5 

class to ‘collect’ certain samples (shown as the blue 6 

samples within the green dotted circles in Fig.8 (b)). The 7 

redundant class can be simply avoided by setting an 8 

appropriate number of classes, however, modules without 9 

centralised constraints cannot achieve good performance 10 

(as shown in Fig. 3).  11 

 Moreover, the instability (low reproducibility) occurs 12 

because of the random initialisation. The proposed 13 

centralised constraint can alleviate the randomness caused 14 

by initialisation since it forces the module to learn 15 

parameters that approximate the data centroid (the 16 

proposed method achieves the lowest variance of 17 

evaluation metrics as shown in Table II.). 18 

Suggested criteria and Future Directions.  Based on 19 

the findings of our study, we emphasize these in-depth 20 

evaluation criteria for unsupervised segmentation 21 

approaches: 1) Repeated experiments should be conducted 22 

to present the stability and reproducibility of the method 23 

and 2) The degenerative issues should be discussed in 24 

detail to check the robustness of the method.  25 

 Here we also provide some potential research directions 26 

for unsupervised segmentation. The proposed DCGN can 27 

address essential segmentation tasks in pathological images. 28 

However, there remains further exploration on how it 29 

performs on other image modalities, e.g., segmenting the 30 

tumour from brain magnetic resonance scans [52, 53] or 31 

segmenting organs from computerised tomography images 32 

[54]. In addition, the uncertainty estimation of the 33 

semantic predictions for unsupervised segmentation 34 

should be explored. By using those ‘confident’ 35 

predictions, a self-supervised paradigm may be integrated 36 

with unsupervised learning to achieve superior 37 

performance. Moreover, methods that can cope with 38 

images with many classes still need to be developed, since 39 

most unsupervised segmentation approaches can only deal 40 

with relatively simple semantic predictions (e.g., learning 41 

by imitation to address the unseen classes [55]). Last but not 42 

least, a robust model that can better address the "outliers" 43 

should be developed. 44 

VI. Conclusion  45 

Tissue segmentation is an essential step of computational 46 

pathology; however, most existing methods demand a large 47 

number of manual annotations. This study demonstrates an 48 

effective unsupervised tissue segmentation using the 49 

developed, innovative DCGN method. The proposed DCGN 50 

method can accurately segment tissue structures without 51 

using any manual annotations or prior knowledge. This could 52 

potentially reduce the annotation costs in computational 53 

pathology dramatically.  54 
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