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Abstract 

Due to the essential role of zoonotic hosts, zoonotic spillover results from a complex system 

of environmentally-driven ecological and epidemiological processes. Despite being a global 

public health concern, zoonotic disease epidemiology is rarely viewed through the lens of 

disease ecology, meaning that the ecological factors driving zoonotic disease risk are 

typically not quantified. In this thesis I develop mathematical models to understand the 

zoonotic disease system from a process-based perspective informed by ecology, dependent 

on environmental variables, and tested using human health data. I focus these methods on a 

case study of Lassa fever which has historically been a neglected zoonosis but now may have 

improved opportunities for disease mitigation and surveillance. I present an overview of the 

topic in Chapter 1, outlining the challenges in zoonotic disease modelling and management. 

In Chapter 2, I find evidence of a severity bias in Lassa fever case data and estimate that 

infection incidence is likely on a much greater scale than previously thought. To elucidate 

environmental and ecological drivers of the Lassa virus system, in Chapter 3 I quantify the 

climatic dependence of reservoir host demographic processes. Along with strong seasonality, 

I estimate that year-on-year changes in precipitation can lead to substantial changes in the 

reservoir host population. In Chapter 4, I extend this population model to include pathogen 

transmission dynamics. Applying this model to states in Nigeria and linking reservoir host 

virus dynamics to observed human cases, I find that patterns of Lassa fever are significantly 

and positively correlated with predicted prevalence of infectious reservoir hosts. Finally, in 

Chapter 5 I summarise the findings and discuss future directions for the management and 

mitigation of zoonotic disease, concluding that ecological process-based modelling – 

facilitated by increased integration of knowledge, methods, and data – is essential for 

understanding zoonotic disease systems. 
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Terminology 

The word “zoonotic” was formed from the classical Greek ζῷον (zōon), meaning animal, and 

νόσος (nosos), meaning disease, in the late 20th century. “Zoonoses” or “zoonotic diseases” 

are defined by the World Health Organization (WHO) as “diseases and infections that are 

naturally transmitted from vertebrate animals to humans” (WHO 2020d). Vector-borne 

disease – disease caused by a pathogen which can be transmitted to humans via 

invertebrates or “vectors” – is sometimes considered a subset of zoonotic disease; depending 

on whether the vector is considered an independent host or simply a transmission 

mechanism. In this thesis, I focus on diseases for which the principal mode of transmission to 

humans is from a vertebrate host, with the pathogen sustained within a vertebrate reservoir 

community – meaning that invertebrates do not play a key role in the transmission among 

humans, hosts, reservoirs, or between these groups. For ease of reading, I will use “zoonotic 

disease”, “zoonosis” and similar terms to refer to such diseases, and I acknowledge here this 

excludes some disease systems which could by some interpretations be categorised under 

zoonotic disease. Vector-borne disease modelling is associated with a different set of 

challenges and opportunities due to, for instance, the common role of human-to-human 

transmission via vectors in sustaining disease (WHO 2020a), therefore many of the methods 

developed and topics discussed in this thesis are not applicable to disease for which vectors 

are an important part of the disease system.  

Definitions 

Basic reproduction number (𝑅0): The expected number of secondary infections or 

infections arising from a single infected individual or disease case during their entire 

infectious period in a fully susceptible population. If 𝑅0 > 1 then the pathogen has the 

potential for epidemic spread in the population. 

Disease: A condition which negatively impacts an organism, manifested by symptoms 

and/or signs. 

Emerging infectious disease: An infectious disease that has recently appeared within a 

(human) population or one whose infection or disease incidence or geographic range is 

rapidly increasing or threatens to increase in the near future (UNEP & ILRI 2020). 
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Endemic disease: The constant presence and/or usual prevalence of a disease in a 

population within a geographic area (UNEP & ILRI 2020). 

Epidemic: The rapid spread of an infection or disease through a population. A large 

outbreak could be considered an epidemic. 

Fatality ratio: The proportion of a given infected group for which the case/disease/infection 

is fatal. 

 Case fatality ratio: The proportion of recorded disease cases which are fatal. 

Disease fatality ratio: The proportion of all symptomatic infections (disease) which 

are fatal. 

Infection fatality ratio: The proportion of all infections (both symptomatic and 

asymptomatic) which are fatal. 

Host: An organism infected with a pathogen. 

Dead-end host: A host which cannot or does not transmit a given pathogen to any 

other organisms. 

Intermediate host: A host which provides a “bridge” between a reservoir and 

humans. The intermediate host can be infected by the reservoir and can transmit the 

pathogen to humans, even if the reservoir does not typically infect humans. 

Principal host: Here used to describe the host which is the main source of human 

infection. 

Reservoir host: An organism, population or community which serves as both a 

maintenance community/population and a host. 

Zoonotic host: A non-human vertebrate host of a zoonotic disease. 

Incidence of disease: The number of instances of a given disease, across a given population, 

unit of space, or time. This may be different to the number of observed cases of a disease, 

which is influenced also by surveillance processes. 

Incidence of spillover: The number of spillover events of a given pathogen, across a given 

population, unit of space, or time. 
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Infection: The state of being infected by a pathogen, which may or may not result in 

symptoms or clinical signs of disease. 

Maintenance community/population: A community or population within which a 

pathogen is sustained, without which the pathogen would not be able to persist. 

Outbreak: An increase in the incidence of an infection or disease in a given population or 

geographic area. 

Pathogen: An organism which can cause disease. Here this definition includes micro-

organisms (such as viruses, bacteria, and protozoa) as well as small animals commonly 

referred to as parasites. 

Zoonotic pathogen: A pathogen which can cause zoonotic disease in a target 

species or population. 

Phenology: The periodic recurrence of natural phenomena due to climate and season. 

Population model: A model describing changes in one or more populations. 

Mathematical population model: A mathematical formulation of a population 

model, often through differential equations. For example, the Lotka-Volterra 

equations (Hofbauer & Sigmund 1998) describe changes in interacting populations 

through coupled ordinary differential equations. The Fisher-KPP equation (Grindrod 

1996) describes how a single population grows in space and time using a 

spatiotemporal partial differential equation.  

Compartmental population model: A mathematical model containing 

“compartments”, with each compartment representing a sub-population, describing 

movement between these compartments. For example, the susceptible-infected-

recovered epidemic (Kermack & McKendrick 1927) model is a compartmental 

population model with population moving between compartments depending on 

parameter values and the size of each compartment. All of the implicit individuals 

within a compartment are homogeneous and considered as one entity. 
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Demographic population model: A mathematical model in which changes in the 

population are dependent on demographic trait(s). For example, an age-structured 

matrix population model is an example of a demographic population model, with the 

demographic trait being age. 

Matrix population model: A mathematical population model formed by describing 

the population as a vector, with each element of the vector representing a sub-

population, and a transition matrix describing how the population vector changes. To 

obtain the population vector at the next time step, the current population vector is 

multiplied by the transition matrix. The way the population is allocated to elements 

depends on a structure; a stage-structured matrix population model assigns each 

element of the population vector to a different life stage that individuals can be in. 

Reservoir: Here used synonymously with Maintenance population/community. 

Seasonality: The way an observed phenomenon changes periodically and generally regularly 

over a year. For example, temperature seasonality is a measure of how temperature typically 

varies over the course of a year. 

Severity bias: The phenomenon in which more severe cases of disease are more likely to be 

reported or recorded under imperfect surveillance. 

Spillover: [See Zoonotic spillover] 

Vector-borne disease: Human disease caused by a pathogen which is transmitted by 

invertebrates (vectors). 

Vulnerability: An individual’s susceptibility to infection, disease, or adverse health outcomes 

upon exposure to or infection with a pathogen.  

Wild meat: Meat of a wild-caught vertebrate animal other than fish. 

Zoonotic disease / Zoonosis: “Diseases and infections that are naturally transmitted from 

vertebrate animals to humans” (WHO 2020d). In this thesis, these terms refer to diseases for 

which the principal mode of transmission to humans is from a vertebrate zoonotic host, with 

the pathogen sustained within vertebrate reservoir(s). 

Zoonotic hazard: Defined here as the abundance of infectious zoonotic hosts which may 

vary in space and time. 
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Zoonotic spillover: The event of transmission of a zoonotic pathogen from a zoonotic host 

to a human. This is sometimes defined as transmission of a zoonotic pathogen from any one 

species to another, but here will not be used in this way. 

 

Acronyms 

AIC: Akaike information criterion 

AIDS: Acquired immunodeficiency syndrome 

CEPI: Coalition for Epidemic Preparedness Innovations [cepi.net] 

CFR: Case fatality ratio 

CI: Confidence interval 

CrI: Credible interval 

CMR: Capture-mark-recapture 

DALY: Disability-adjusted life-years 

 zDALY: Zoonotic DALY 

DFID: Department for International Development, UK Government. This Department has now 

been replaced by Foreign, Commonwealth and Development Office (FCDO) 

[gov.uk/government/organisations/foreign-commonwealth-development-office]. 

DFR: Disease fatality ratio 

EDCPT: European and Developing Countries Clinical Trials Partnership [edctp.org] 

ELISA: Enzyme-linked immunosorbent assay 

EU: European Union [european-union.europa.eu/index] 

FAO: Food and Agriculture Organization of the United Nations [fao.org] 

GLM: Generalised linear model 

HIV: Human immunodeficiency virus  

IAVI: International AIDS Vaccine Initiative [iavi.org] 

ICONZ: Integrated Control of Neglected Zoonosis 

             [ed.ac.uk/global-health/research/research-programmes/iconz] 

IDSR: Integrated Disease Surveillance and Response (WHO Regional Office for Africa 2019) 

ILRI: International Livestock Research Institute [ilri.org] 

IPBES: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 

            [ipbes.net] 

IPM: Integral projection model 
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IQR: Interquartile range 

MCMC: Markov chain Monte Carlo 

MFR: Model fatality ratio (defined for the severity bias model in Chapter 2) 

MNA: Minimum number alive 

NCDC: Nigeria Centre for Disease Control [ncdc.gov.ng] 

NPC: National Population Commission (Nigeria) [nationalpopulation.gov.ng] 

ODE: Ordinary differential equation 

PCR: Polymerase chain reaction 

RT-PCR: Reverse transcription PCR 

PRNT: Plaque reduction neutralisation test 

SDM: Species distribution model 

SI (model): Susceptible-Infected 

SIR (model): Susceptible-Infected-Recovered 

TDR: Special Programme for Research and Training in Tropical Diseases [tdr.who.int] 

UN: United Nations [un.org] 

UNDP: UN Development Programme [undp.org] 

UNDP HDR: UNDP Human Development Reports [hdr.undp.org] 

UNEP: UN Environment Programme [unep.org] 

USAID: United States Agency for International Development [usaid.gov] 

WHO: World Health Organization [who.int] 

WHO-AFRO: World Health Organization Regional Office for Africa [afro.who.int] 

zDALY: [See under DALY] 
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Chapter 1: Introduction 

Zoonotic disease – disease caused by transmission of a pathogen from a non-human 

vertebrate host to a human – presents a global research challenge due to the diversity and 

combination of factors which drive risk of zoonotic spillover and disease (Plowright et al. 

2017). These drivers can relate to wildlife ecology and behaviour, immunology and pathogen 

evolution, epidemiology, and socioeconomics, resulting in a complex system of interacting 

factors which would traditionally be studied in distinct fields. As a result it is difficult but 

critical to understand zoonotic disease under this interdisciplinary paradigm (Cunningham et 

al. 2017). To understand a given zoonotic disease requires the consideration of pathways for 

transmission, potential for emergence, opportunities for mitigation, healthcare outcomes, 

and possible impacts of environmental change, making every zoonotic disease system 

unique. Meanwhile, globally, zoonoses cause substantial disease burden (Grace et al. 2012; 

Welburn et al. 2015) and danger of epidemic emergence (Jones et al. 2008; Morse et al. 

2012), highlighting the importance and value of furthering the study of these complex 

disease systems. In the following sections I will outline the distinct challenges of managing 

zoonotic disease, identify research opportunities, and introduce Lassa fever as a valuable 

case study. 

1.1 Local and global implications of zoonotic disease 

At an individual level, the implications of contracting a zoonotic disease can be the same as 

for any other disease; the individual suffers from acute or chronic symptoms or clinical signs 

which alter quality of life (morbidity) and can lead to death (mortality), and the individual 

may require medical treatment, may be advised to isolate from others, and may have to 

modify their lifestyle in response to a new health condition. The impact of a disease on 

morbidity and mortality is known as disease burden, which is commonly measured through a 

metric called “disability-adjusted life years” (DALYs) (Mathers et al. 2013), the sum of years 

lived with a disability due to the disease and the years of life lost due to disease-induced 

mortality. While it is challenging to assess the burden of zoonotic diseases since they are 

often underreported – especially in low-income countries (Schelling et al. 2007) – it has been 

estimated that zoonoses, vector-borne diseases, and previously zoonotic diseases which are 

now maintained by human-to-human transmission account for 10% of the total burden of all 

diseases and health conditions in low-income countries, and only 0.02% in high-income 

countries (Grace et al. 2012). While in high-income countries endemic diseases originating in 
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animals are typically of relatively low concern to individual health, in low-income countries 

they can contribute substantially to local morbidity and mortality. Since individual endemic 

zoonoses do not present an immediate threat to global health and their disease burden is 

typically underestimated, endemic zoonoses have generally been overlooked for funding 

(Maudlin et al. 2009; Halliday et al. 2015).  

Endemic zoonoses can also create a financial disease burden not limited to direct impacts on 

human health, for instance due to the economic losses caused by zoonotic disease in 

livestock which can impact both the livelihoods of agricultural workers and food security 

(WHO et al. 2011). An adjusted disease burden indicator for zoonotic disease, zDALY, has 

been proposed, made up of the standard DALY approach plus an animal loss equivalent, 

which is the number of years it would take for the average individual to earn the equivalent 

monetary value as the livestock loss (Torgerson et al. 2018). Torgerson et al. found that 

calculated animal loss equivalents far outweigh DALYs for cystic echinococcosis, a zoonotic 

disease caused by infection with the parasite Echinococcosis granulosus, in several countries. 

Further research on the societal consequences of animal diseases may become available 

following the implementation of the Global Burden of Animal Diseases programme (Rushton 

et al. 2018). It is notable that the intervention costs associated with reducing zoonotic 

disease incidence can also be high. For example, farmers’ willingness to pay for livestock 

vaccination can be low even when a vaccine is considered to provide a net economic benefit 

(Jemberu et al. 2020). While mass livestock vaccination is often considered a cost-effective 

strategy, the costs associated with such a programme can be too high to be met solely by 

one sector (Roth et al. 2003). Interventions against zoonotic disease can also lead to societal 

costs in indirect ways. Although pressure is placed on governments to ban hunting of wildlife 

for meat and markets where wild meat is sold to reduce risk of zoonotic spillover and 

biodiversity loss (Pooley et al. 2015), this industry can provide income which may alleviate 

poverty (Kümpel et al. 2010) and a protein source which can improve food security (Friant et 

al. 2020). In summary, the local implications of endemic zoonotic disease extend beyond 

morbidity and mortality to financial and social costs, with large-scale interventions incurring 

additional costs which could outweigh the societal benefit of disease alleviation. 

Risks to global health from zoonotic diseases do not only lie in endemic disease burden. 

Every spillover event is an opportunity for onward transmission between humans, which in 

rare cases leads to onward transmission of a pathogen with epidemic potential (Karesh et al. 
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2012). A zoonotic disease with epidemic potential, which becomes sustainable by human-to-

human transmission due to a reproduction number greater than one, would become an 

emerging infectious disease if not contained. Emergence of a zoonosis in the human 

population is a highly stochastic event resulting from an already complex socioecological 

zoonotic transmission pathway, with proposed risk factors including population biology and 

range of the zoonotic host (Woolhouse 2002), pathogen type (Taylor et al. 2001; Woolhouse 

& Gowtage-Sequeria 2005), host plasticity (Kreuder Johnson et al. 2015), and pathogen 

evolutionary potential (Bonneaud & Longdon 2020). It is evident that zoonotic diseases 

present an immense risk to global health, beyond that of the local community; for example, 

the H1N1 influenza A virus emerged, probably from swine or birds, leading to the so-called 

“Spanish” flu pandemic in 1918 resulting in at least 20 million and perhaps as many as 100 

million deaths (Johnson & Mueller 2002). Human immunodeficiency viruses (HIV), first 

recognised in 1981, emerged from wild primates (Sharp & Hahn 2011) and are the cause of 

the ongoing HIV/AIDS pandemic, with an estimated 37.7 million people globally living with 

HIV in 2020 (WHO 2021b). The coronaviruses SARS-CoV-1, MERS-CoV, and SARS-CoV-2 all 

emerged in the 21st century (da Costa et al. 2020), with the latter’s emergence in 2019 

leading to the ongoing COVID-19 pandemic, currently estimated to have caused around 18 

million deaths by the end of 2021 (Wang et al. 2022). Diseases with animal origins are 

estimated to make up over 60% of all known emerging infectious diseases (Jones et al. 2008), 

and it is well-recognised that control of zoonoses is an important component in reducing 

risk of future pandemics (UNEP & ILRI 2020). 

1.2 The role of zoonotic host ecology 

Zoonotic spillover is fundamentally a process in a complex socioecological system involving 

zoonotic hosts, humans, and pathogens. Therefore, the unique traits, behaviour, and 

spatiotemporal distribution of zoonotic hosts play an essential role in the chain of 

transmission (Morse et al. 2012). The role of zoonotic host ecology in the pathway to 

zoonotic spillover can take diverse forms for different pathogens and even for the same 

pathogen in different locations, due to the variety of disease system structures (Figure 1.1) 

and different modes of transmission. As a result, any given zoonotic disease system has 

unique and nuanced socioecological processes underpinning spillover. The spatiotemporal 

distribution of zoonotic disease incidence can therefore appear to be cryptic and 

unpredictable (Plowright et al. 2017). 



Lauren A. Attfield, PhD thesis   

19 

 

Figure 1.1: Example zoonotic disease dynamics. Green circles contain wild communities, while yellow 

circles contain domestic and livestock animals. Green-yellow circles contain peridomestic species 

which commonly live in and around human settlements. Arrows indicate common transmission routes. 

Summarised from Deka et al. (2019) (Brucella abortus), Olayemi & Fichet-Calvet (2020) (Lassa virus), 

Clayton et al. (2012) (Nipah virus), Lushasi et al. (2021) (rabies virus) and Feldmann et al. (2020) 

(Marburg virus). Domestic horses are believed to be dead-end hosts of B. abortus (Moreno 2014), but 

are relevant to disease burden due to the cultural and financial significance of horse ownership. 

African wild dogs do not contribute to the rabies virus transmission cycle, probably because they are 

critically endangered, but are shown on the transmission diagram due to the negative impact of rabies 

infection on conservation efforts (Lushasi et al. 2021). Similarly, endangered Ethiopian wolves are 

threatened by rabies virus in Ethiopia (Randall et al. 2004). Primates and some other mammals are 

believed to be either dead-end, intermediate, or reservoir hosts of Marburg virus (Feldmann et al. 

2020), so transmission from this group to humans is uncertain. Bats are known to transmit rabies to 

humans but in the Tanzanian example given, this is very rare (Lushasi et al. 2021). 
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Since climate, landscape, and human pressures vary across space and time, so do animal 

populations, pathogen transmission dynamics, and resulting risk of zoonotic spillover and 

disease. Studying ecology, the way in which a species interacts with and depends on their 

environment, provides an opportunity to quantify how the spatiotemporally variable 

environment ultimately impacts incidence of zoonotic spillover and disease; a relationship 

termed “disease ecology” (Ostfeld 2015). Disease ecology also depends on qualities of the 

pathogen such as pathology, persistence in the environment, and host plasticity, and human 

density, behaviour, and vulnerability (Wilcox & Gubler 2005; Plowright et al. 2017). Zoonotic 

host and pathogen ecology provides a necessary foundation for zoonotic disease ecology 

since ecological processes such as population dynamics determine the spatial and temporal 

distribution of a pathogen and where it can be shed, here referred to as “zoonotic hazard” 

(Gibb et al. 2020a). It is now recognised that not only are insights into host-pathogen 

ecology valuable for modelling zoonotic disease, but that these insights are critical to 

accurately predicting and preventing zoonotic spillover (Hayman et al. 2013; Gibb et al. 

2020a). 

Exploring zoonotic host ecology through large-scale analyses has led to research into 

whether some species or communities are more likely to be hosts, with the aim of generating 

predictions which can be applied across systems. Broad principles have been identified 

through large studies or meta-analyses, such as that species with larger body sizes tend to 

host fewer pathogens (Stephens et al. 2016). Gibb et al. (2020b) found that animals in 

disturbed landscapes are significantly more likely to host human-shared pathogens than 

animals in nearby undisturbed habitats, particularly in rodents, bats, and passerine birds, 

suggesting that traits that make animals more resilient to human pressure may also increase 

their propensity for hosting zoonotic disease. This finding helped to explain inconsistent 

observations of the dilution effect, the idea that zoonotic spillover is less likely to occur in 

biodiverse areas due to the reduced frequency of effective hosts (Ostfeld & Keesing 2000; 

Schmidt & Ostfeld 2001; Keesing & Ostfeld 2021a). By understanding the relationship 

between human disturbance and zoonotic host diversity, it may be possible to target 

surveillance of disease systems to more susceptible landscapes, and to incorporate disease 

risk into land-use planning. Large-scale ecological modelscan therefore be a valuable tool 

through which to understand broad drivers of zoonotic disease. 
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One of the biggest research areas in the field of ecology is understanding the historic and 

future impacts of anthropogenic change on global species communities (Gimenez et al. 

2014). Climate and land-use change have both had devastating impacts on global 

ecosystems which are only predicted to increase in magnitude (IPBES 2019). Emergence of 

zoonotic disease has for some time been linked with anthropogenic changes (Jones et al. 

2008), perhaps due to the relative resilience of zoonotic hosts to human disturbance (Gibb et 

al. 2020b). Indeed, spillover prevention is seen as a potential opportunity to increase funding 

for conservation initiatives (Glidden et al. 2021). Due to the complex ecological dynamics 

underpinning zoonotic disease, it is impossible to make accurate predictions about future 

zoonotic spillover or disease incidence under novel environmental conditions. Instead, 

improving our understanding of zoonotic host ecology provides an opportunity to create 

more informed and nuanced predictive models which are more likely to accurately capture 

the nonlinear dynamics which ultimately lead to zoonotic spillover and disease. In this way, 

species ecology is essential to predicting how different scenarios of anthropogenic change 

will affect global health, which will feed into decision-making for sustainable development, 

biodiversity conservation, and climate change mitigation (Wilcox & Gubler 2005; Pongsiri et 

al. 2009). 

1.3 Challenges in monitoring and control 

Despite the importance of non-human hosts in the zoonotic disease system, monitoring 

zoonoses in non-humans is challenging due to the historically disparate policy areas of 

human health and animal health (Jerolmack 2013; Johnson et al. 2018). With animal health 

typically a lower priority, capacity to monitor livestock, domestic animals, and wildlife is 

particularly limited in low-income countries which are disproportionately impacted by 

zoonotic disease burden (Keusch et al. 2009). Monitoring of zoonotic hosts can provide 

insights into drivers of zoonotic spillover and disease incidence which can be used to create 

predictive models and inform intervention activities (Carroll et al. 2018), and screening of 

potential zoonotic hosts is also suggested for predicting disease emergence (Howard & 

Fletcher 2012). Such activities are made increasingly feasible by the identification of risky 

species or hotspots in space and time based on large-scale studies and historic discovery 

which can help target surveillance (Levinson et al. 2013; Allen et al. 2017; Olival et al. 2017; 

Gibb et al. 2020b). However, monitoring of animals – particularly wildlife – is costly and, if 
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considered to be for the benefit of human health, should be weighed against alternative 

activities which would benefit health (Holmes et al. 2018). 

Monitoring the human incidence of disease is perhaps a more tractable way to explore and 

predict incidence of zoonotic disease than monitoring of livestock and wildlife. Disease 

incidence estimates in humans can inform strategies to research and mitigate disease (Grace 

et al. 2012; Mathers et al. 2013), including allocation of healthcare provisions, setting funding 

and research priorities, and evaluation of emergence and epidemic risk. Depending on the 

purpose of a monitoring effort, different measures of the effects of zoonotic disease are 

relevant; to allocate healthcare provision, a measure such as DALYs helps inform how 

healthcare could improve quality of life (Torgerson et al. 2018), while to assess likelihood of 

outbreak or emergence, number of spillover or infection events may be more useful. It is 

important to distinguish between infection and disease, since infection does not always lead 

to disease, and these quantities are measured and monitored in different ways; for instance, 

serosurveys which measure pathogen-specific antibodies in human sera cannot typically 

distinguish between symptomatic disease and asymptomatic infection (Turgeon 2020). 

Monitoring human health comes with its own challenges, especially in low-income countries, 

where disease is often underreported through passive sentinel systems such as in-country 

public health records (Burniston et al. 2015). Meanwhile, active surveillance activities, such as 

seroprevalence studies, when not coordinated at a high level can have biases (Townsend 

Peterson et al. 2014) which can in turn preclude accurate infection incidence estimates. 

Due to challenges in monitoring and other factors, unique challenges are present in the 

development of strategies to manage and mitigate zoonotic disease. For non-zoonotic 

diseases whose most common source of infection is human-to-human transmission, 

interventions often involve reducing risky direct or indirect contact among humans (e.g., 

Mahase 2020; WHO 2021). When considering zoonotic transmission, the same strategy 

requires humans to avoid direct contact with the zoonotic host or contact with the shed 

pathogen, which is easier in some contexts than others. For instance, risk factors for exposure 

to ebolaviruses include consuming or hunting wild meat and visiting wild meat markets 

(Leroy et al. 2004; Dobschuetz et al. 2019; WHO 2021a). While it is physically possible to 

avoid wild meat and wild meat markets, it may be economically impractical for people to 

obtain food from elsewhere or to seek other income, and top-down interventions can result 

in unintended social and economic consequences (Bonwitt et al. 2018). Even identifying risk 
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factors to avoid is challenging since there are many potential hosts and transmission modes 

across zoonotic diseases. The context around avoiding zoonotic pathogens can be complex 

and involve socioeconomic factors including education (Saylors et al. 2021), culture, tradition, 

and religion (Burniston et al. 2015), and profession (Swai et al. 2010). It is therefore vital to 

engage local people and create effective and context-specific community-led interventions 

for the prevention and management of zoonotic disease (WHO et al. 2011).  

It can be challenging to scale up local mitigation strategies and coordinate them at a 

national or international level (Bardosh et al. 2017), which may preclude efficient large-scale 

mitigation of disease through local strategies. Meanwhile, vaccination has historically been a 

highly effective large-scale intervention for eradicating and reducing disease, such as the 

major success of the global eradication of smallpox, preventing an estimated 40 million 

deaths out of 350 million potential new cases in the 20th century (Ehreth 2003). A study by 

Toor et al. (2021) estimated that between 2000 and 2030 between 80 and 120 million deaths 

will have been averted due to vaccination against 10 key pathogens (excluding SARS-CoV-2). 

While vaccination of humans does reduce zoonotic disease incidence and risk of human-to-

human transmission, eradication cannot result from a human-only vaccination programme, 

since the pathogen persists in the maintenance community. Instead, to achieve disease 

elimination human populations would have to be periodically vaccinated. The limitations of 

human vaccination in controlling zoonotic disease may make the funding and development 

of such vaccines unappealing when comparing the resources required with the benefits. 

Additionally, coverage of human vaccination is limited by increasing levels of vaccine 

hesitancy (Gostin et al. 2020). Promisingly though, the development of vaccines against both 

Lassa virus and Nipah virus have now reached human clinical trials (CEPI 2020; CEPI et al. 

2021).  

In theory, eradication of zoonotic disease could be possible through vaccination targeted at 

the maintenance community, however this carries a variety of challenges, especially if this 

community is made up of wild species. When this community is composed of wildlife, this 

strategy can be hindered by imperfect immunity due to, for example, patchy vaccine 

coverage or variation in vaccine efficacy across the population (Barnett & Civitello 2020). Oral 

vaccination has been adopted in some cases to combat the logistical challenges of vaccine 

coverage (Cross et al. 2007) and self-disseminating vaccines (Nuismer & Bull 2020) and trait-

based vaccination (Barnett & Civitello 2020) have been proposed as a new direction for 
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wildlife vaccine deployment. Vaccination of zoonotic hosts is more practical for domestic and 

livestock species, which is highly cost-effective for several zoonoses, with wide vaccination 

coverage reducing disease incidence in both animals and humans, including rabies (Layan et 

al. 2021) and brucellosis (Moreno 2014). Vaccination of domestic animals and livestock 

carries a secondary financial and social benefit of protecting high-value animals from 

disease, therefore vaccination of livestock can be strategically better than vaccinating 

humans – since humans are in turn protected against livestock-human transmission – 

especially if livestock are the principal zoonotic hosts or form the maintenance community. 

It is now estimated that the costs of primary pandemic prevention activities such as 

surveillance are outweighed by the costs of not responding until a zoonosis emerges 

(Bernstein et al. 2022). Despite the challenges facing both human and animal monitoring of 

zoonotic disease and pathogens, recent capacity building – for instance, surveillance 

improvements through the Emerging Pandemic Threats programme (USAID 2021) and the 

Sentinel programme (Botti-Lodovico et al. 2021) – in combination with increased motivation 

following the realised risk of SARS-CoV-2 emergence presents opportunities for enhanced 

monitoring going forwards (FAO 2021). To make best use of this surveillance, models are 

needed which can predict incidence of spillover of endemic and novel zoonoses, and which 

can inform on the likely impacts of mitigation methods.  

1.4 Modelling approaches and opportunities 

1.4.1 Phenomenological and mechanistic modelling in ecology 

There are many different approaches which can be taken when developing a model. Occam’s 

razor posits that – all else being equal – of two competing explanations, the one with fewer 

entities is to be preferred (Duignan 2021). In a similar vein Albert Einstein is famously 

paraphrased as saying “Everything should be made as simple as possible, but no simpler” 

(Robinson 2018). On the face of it, these philosophical viewpoints suggest that simpler 

models are generally better models. Ironically, Einstein’s exact words in a lecture aimed at 

reducing the complexity of theoretical physics were “It can scarcely be denied that the 

supreme goal of all theory is to make the irreducible basic elements as simple and as few as 

possible without having to surrender the adequate representation of a single datum of 

experience” (Einstein 1933) . Perhaps the original, extended, quote demonstrates the 

subjectivity of the word “simple”. While his phrasing seems verbose, Einstein may have felt 

that every word of his sentence was necessary to adequately represent his assertion (or 
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perhaps the phrasing was, in itself, a joke). Modelling is a form of theory which describes the 

irreducible basic elements which Einstein describes, and how they interact. 

Phenomenological modelling has long been used to identify patterns in observations, an 

important part of the scientific process which has ultimately led to development of theory. 

When analysing patterns through phenomenological modelling, aside from accounting for 

control variables, the processes which give rise to these patterns are neglected. Process-

based modelling (also “mechanistic” – see Box 1.1) explicitly describes the processes 

underlying a system. In doing so, current theory informs the model structure, and control or 

confounding variables are explicitly incorporated into the framework. However, this model 

structure runs the risk of inaccurately describing a system by incorporating incorrect theory. 

Taking Einstein’s (extended) quote as fact, an advocate for process-based modelling would 

posit that explicit descriptions of processes are needed to adequately represent scientific 

experience, while an advocate for phenomenological modelling might counter that those 

complex processes muddy the identification of the essential, simple, basic elements. Which, 

then, is “as simple as possible, but no simpler”?  

 

 

 

 

 

 

Box 1.1: Phenomenological and process-based modelling in ecology. 

The debate around the relative appropriacy and value of phenomenological (also termed 

“correlative” or “purely statistical”) models versus process-based models has been present in 

statistical and mathematical ecology for decades (Aber 1997), as ecology has moved from 

hypothesis testing to parameter fitting and model comparisons (Connolly et al. 2017). 

Phenomenological and process-based modelling approaches both have value in modern 

ecology, with the former usually used for identifying broad patterns such as the impact of 

conservation strategies on biodiversity (Gray et al. 2016), and the latter for modelling 

systems such as ecological networks (Ings et al. 2009) and animal movement (Goossens et al. 

Phenomenological model: Describes a system by seeking patterns in 

empirical data. 

Process-based model: Describes a system through recognition of its 

component processes and first principles. For example, mass-action 

mathematical population models are process-based models. 

Mechanistic model: A subclass of process-based models. Describes a 

system through the ecology of its fundamental units. For instance, 

individual-based models could be classed as mechanistic models, 

while mass-action population models would not. Alternatively (not 

here), sometimes used synonymously with “process-based model”. 
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2020) which are considered to be dynamic. In reality, many ecological models incorporate 

some aspects of both modelling approaches. Take, for instance, species distribution models 

(SDMs). Correlative SDMs relate observed species occurrence with environmental data to 

predict a species’ distribution (Elith & Leathwick 2009). Meanwhile, mechanistic SDMs build 

this prediction from the bottom-up by explicitly considering the environmental constraints 

on a species’ distribution through established ecology of the species such as functional trait 

analysis and physiology (Kearney & Porter 2009). It is challenging to create accurate 

mechanistic SDMs because this requires exhaustive insight into the species, and conversely 

correlative SDMs are unlikely to be robust to novel conditions which represent variables 

outside of the sample space (Fitzpatrick & Hargrove 2009). A combination of correlative and 

mechanistic SDMs, representing a blend of phenomenological and process-based 

approaches, can result in models which make best use of the available data and knowledge 

(top-down observations of occurrence and bottom-up mechanisms) while maintaining 

accuracy and robustness (Rougier et al. 2015; Pertierra et al. 2020). 

A growing trend of process-based, bottom-up modelling in ecology has taken place 

alongside methodological improvements allowing such models to be informed by large 

datasets and take into account biases such as data collection methods and spatiotemporal 

autocorrelation (Gimenez et al. 2014). With an increased focus of the effects of 

anthropogenic change on ecology (McCallen et al. 2019), models incorporating causal 

mechanisms are considered more appropriate for understanding how ecological processes 

will be altered by the changing environment (Gimenez et al. 2014). The process-based 

approach therefore appears to be a useful tool for zoonotic disease ecology, since zoonotic 

disease systems are dynamic and are likely to continue to vary under anthropogenic changes 

(Estrada-Peña et al. 2014; Gibb et al. 2020a; Keesing & Ostfeld 2021b). 

1.4.2 Modelling challenges in zoonotic disease ecology 

The zoonotic disease system is a complex network of processes which interact with one 

another, producing nonlinear dynamics. However, it is helpful to simplify this network by 

conceptualising it as a series of layers which may result in successful infection events 

between individuals and populations (Plowright et al. 2017). I will demonstrate this 

conceptual layered system for a “simple” zoonosis with a single reservoir host and no 

human-to-human transmission – meaning that the pathogen is both solely maintained 

within and transmitted from one species or population (Figure 1.2). Each layer represents a 
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set of processes which drive and restrict all layers above it – although they can also influence 

layers below. I have viewed the zoonotic disease system from the perspective of the reservoir 

host ecology, however the same system from an alternative view would expand human 

processes (for example, human exposure is driven by human population density and 

behaviour) and could simplify others. 

 

Figure 1.2: Conceptual layered framework for a straightforward zoonotic spillover pathway. Each layer 

is driven by processes described in its box and is fundamentally restricted by the layer below. For 

example, human disease is only possible where human infection has occurred, but also depends on 

vulnerability to symptoms. Layers may also be affected by other layers above and below. For example, 

reservoir host population dynamics are fundamentally driven by the environment due to resource 

availability, habitat quality and other environmental limitations that drive processes (e.g., survival, 

recruitment, migration) which change the distribution and density of the reservoir host. Meanwhile, if 

the zoonotic pathogen can induce disease in the reservoir host, pathogen dynamics – the layer above 

– will also impact population dynamics. 

 

Any model relating to zoonotic disease includes or makes simplifying assumptions about 

these layers, either explicitly or implicitly, since fundamentally these processes feed into one 
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another to lead eventually to human infection and disease. However, it is rare for data or 

theory fully informing every layer in the zoonotic disease system to be available to modellers 

(Scoones et al. 2017); for instance, the factors determining quantity and timing of pathogen 

shedding in many animals are still poorly understood (Peel et al. 2018). Instead, simplifying 

assumptions must be made. The accuracy of a model in capturing the zoonotic disease 

system depends on which layers are informed by theory or data, and which are assumed 

constant. As a result, models informed only by human disease data neglect the underlying 

processes and implicitly assume that these dynamic processes are constant. Incorporating 

some types of observations and not others into a model can lead to different implicit 

assumptions about underlying processes and how they interact. The challenge in 

constructing a model of zoonotic disease is therefore determining which layers of the system 

can be simplified, and which are necessary to accurately answer the question which is being 

asked (Alexander et al. 2012).  

Current modelling approaches and opportunities for development 

A common integrated method for modelling zoonotic disease is identification of the 

“zoonotic niche”. A zoonotic niche is found by correlating occurrence of a zoonotic host, 

reservoir, pathogen, or disease cases with environmental factors, and is then projected onto 

a map (e.g., Blackburn et al. 2007; Pigott et al. 2014, 2015; Chalghaf et al. 2016). An analogue 

to the SDM, zoonotic niche models can include varying degrees of detail. Models of 

predicted zoonotic disease risk from zoonotic niche models can be used to inform 

surveillance across broad spatial scales and aid differential diagnosis (Alexander et al. 2012; 

Pigott et al. 2015). However, these models usually present an indirect measure of zoonotic 

disease risk; for instance, a model of zoonotic hazard only has limited application to 

understanding or predicting zoonotic disease incidence. Additionally, these models are not 

temporal and, depending on which processes are modelled, may not be appropriate for fine-

scale descriptions of disease risk (Plowright et al. 2017) or predicting nonlinear impacts of 

environmental changes (Ehrlén & Morris 2015). Zoonotic niche models suffer from the same 

limitations as correlative SDMs, such as reporting bias (Townsend Peterson et al. 2014) and 

the choice of presence-absence or presence-only formulation (Zeimes et al. 2012). 

Additionally, zoonotic niche models only predict the probability of presence of zoonotic 

hosts, pathogens, or cases of disease, not their relative abundance or density which will have 

important implications for total incidence of zoonotic spillover and disease (Alexander et al. 

2012). As such, the zoonotic niche framework – while useful – does not present a complete 
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view of the zoonotic disease system; although building transmission mechanisms and 

socioeconomic variables upon this framework has been achieved to assess impacts of 

different scenarios on disease risk (Redding et al. 2019).  

There is an increasing development of process-based models to understand the mechanics 

underlying specific zoonotic disease systems. In terms of the zoonotic pathway (Figure 1.2), 

these models describe one or more layers in isolation. For instance, the understanding of the 

epidemiology of zoonoses of bats is limited by knowledge of within-host and between-host 

pathogen dynamics since these processes impact the timing of “episodic” shedding and 

persistence of the virus through hibernation (George et al. 2011; Hayman et al. 2013). 

Process-based models of zoonotic disease dynamics in bat populations have therefore 

focussed on elucidating these dynamics, such as by modelling bat immune responses and 

host-to-host epidemiology (Gentles et al. 2020). The epidemiology of zoonoses of rodents 

has also been explored through process-based models; for example, exploring the effect of 

seasonality on spillover probability (Nandi & Allen 2021) and comparing the contribution of 

environmental pathogen persistence and zoonotic host abundance on human disease 

incidence (Carver et al. 2015). Models of individual processes, or layers, in zoonotic disease 

systems help to determine which processes are important and how they should be 

described, making them valuable for building accurate and robust bottom-up models of the 

full system. 

It is rare to find models of zoonotic disease systems which capture most of the constituent 

dynamics through process-based approaches. This gap could be due to the enigmatic nature 

of different zoonotic disease systems in different locations which makes it inappropriate to 

apply one method across multiple contexts, requiring independent research into each 

individual system to construct a complete model. The lack of process-based models of 

zoonotic disease systems could also represent perceived research priorities; for influenza 

viruses, process-based models have usually focussed on human-to-human infection, with 

few modelling swine and bird host dynamics (Dorjee et al. 2013). Whilst being able to 

accurately describe a zoonotic disease system through a bottom-up model opens important 

avenues of exploration (Hassell et al. 2021), reaching this point appears to be highly research 

intensive and currently only possible for well-resourced zoonoses (Alexander et al. 2012). 

While the ultimate goal of modelling zoonotic disease systems may be to accurately capture 

relevant dynamics in a single framework, at present few – if any – zoonoses are studied in 
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this complete manner. It is important to design data collection around the models which 

they will inform, and vice versa, to maximise resources and model usefulness (Restif et al. 

2012), and this integrated approach will give the best chance of an accurate understanding 

of zoonotic disease systems and management recommendations. However, given the urgent 

implications of zoonotic disease on global health, there is also merit in developing methods 

which use data currently available, since data collection is a time-consuming activity; 

longitudinal zoonotic host studies are called for (Guth et al. 2022) which could take place 

over the scale of years or decades. There is therefore an opportunity in zoonotic disease 

modelling for novel, interdisciplinary thinking around types of data which can inform on 

system processes and work towards the delivery of timely modelling frameworks. The 

neglected zoonotic disease Lassa fever, outlined in detail in the next part of this chapter, 

presents a valuable case study around which to design such a framework. 

1.5 Lassa fever as a global health priority 

Lassa fever is a disease caused by infection with Lassa virus, an arenavirus principally 

transmitted to humans by the rodent Mastomys natalensis (McCormick et al. 1987). Lassa 

fever is endemic and restricted to West Africa, with occasional exportation to other countries 

garnering international attention (Amorosa et al. 2010; Ehlkes et al. 2017; Overbosch et al. 

2020; UK Health Security Agency 2022). As a disease which disproportionately affects those 

living in poverty, surveillance of Lassa fever and healthcare for those affected is limited and 

heterogeneous despite substantial disease burden (Richmond & Baglole 2003; Gibb et al. 

2017). In the last decades Lassa fever has been recognised as a priority disease in terms of 

protecting biosecurity (Schuler 2005), and reducing endemic disease burden and epidemic 

risk (WHO 2015; Røttingen et al. 2017). While historically the annual incidence of human 

Lassa virus infection has been quoted as 100,000 to 300,000 in West Africa, these figures 

were based on outdated and spatially-restricted serological surveys (Gibb et al. 2017), and a 

more recent analysis estimates at least 890,000 annual human Lassa virus infections (Basinski 

et al. 2021). To date, no formal studies have estimated the financial or health burden of Lassa 

fever. 

The early symptoms of Lassa fever are nonspecific, making it difficult to distinguish from 

other febrile diseases such as malaria, which has high incidence across much of West Africa 

(WHO 2020c), without laboratory testing (Raabe & Koehler 2017). More advanced symptoms 

which often result in fatality can include bleeding, organ failure, shock, and haemorrhaging 
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(Yun & Walker 2012). The incubation period of Lassa fever is estimated as ranging from 6 to 

21 days (WHO 2017) but there are no published data or analyses verifying this. Sensorineural 

deafness is estimated to occur in one third of Lassa fever survivors and may occur even when 

acute symptoms of Lassa fever were not present (Cummins et al. 1990). Infection with Lassa 

virus is thought to lead to symptomatic disease in 20% of cases (WHO 2017), although this 

proportion may be lower as limited surveillance through serosurveys make it challenging to 

assess the extent of asymptomatic infection (Gibb et al. 2017). Meanwhile, it is estimated that 

fatality occurs in 15% of hospitalised cases (WHO 2017). Pregnant women are at particularly 

high risk of complications of Lassa fever, with mortality estimated to be around three times 

higher for a pregnant woman compared with a non-pregnant woman (Kayem et al. 2020); 

during the third trimester of pregnancy, maternal death or foetal loss occurs in over 80% of 

cases (WHO 2017). There is no cure, and currently no approved vaccine, for Lassa fever, but 

the nonspecific antiviral drug ribavirin is advised as a prophylaxis and may reduce mortality 

by a factor of more than 88% if administered in the first six days of clinical disease 

(McCormick et al. 1986). However, it is difficult to diagnose Lassa fever this rapidly, ribavirin 

is contraindicated in pregnancy, and there are no published data of the effectiveness of 

ribavirin in humans since the 1986 study (Hallam et al. 2018). 

The principal host of Lassa virus is a reservoir host, meaning that infected M. natalensis are 

the primary source of human infection and that populations of this species form 

maintenance communities for the virus. The most common mode of human infection is 

believed to be via the excreta of infected rodents which have entered homes seeking shelter 

or food (Bonwitt et al. 2017). It is unclear how long the pathogen persists in either the 

domestic or exterior environment (Smither et al. 2020), or where in particular the pathogen 

tends to be shed, with suggestions that infected rodents can contaminate food stores 

(Bonwitt et al. 2017). Another possible mode of infection is consumption of the meat of 

infected wild-caught rodents (Ter Meulen et al. 1996; Bonwitt et al. 2016) which is considered 

high in nutritional value and flavour (Bonwitt et al. 2016). Lassa virus can also be transmitted 

between humans, and there has been debate in recent years over the degree to which this 

occurs. It now appears that while human-to-human transmission is rare (Siddle et al. 2018), 

super-spreading events in hospitals have occurred (Lo Iacono et al. 2015), where the practice 

of good hygiene and use of personal protective equipment should minimise risk of human-

to-human transmission (Helmick et al. 1986). 
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The Lassa fever disease system is simpler than some other zoonotic diseases since the roles 

of principal host and reservoir of Lassa virus are occupied by the same species. While some 

systems are difficult to visualise and describe due to many interacting reservoirs and hosts 

(Alexander et al. 2012), Lassa virus can be visualised as a simple system consisting only of 

interactions between M. natalensis and humans. However, the dynamics of Lassa fever 

appear complex and cryptic due to the striking seasonality of outbreaks (Gibb et al. 2017), 

the increase in diagnosed cases in recent years (Roberts 2018), and uncertainty around the 

degree to which human-to-human transmission contributes to outbreaks (Lo Iacono et al. 

2015; Siddle et al. 2018). These complex dynamics probably arise due to variable 

environmental conditions impacting the reservoir host (Olayemi et al. 2018; Redding et al. 

2021), increasing but heterogeneous surveillance (Ilori et al. 2019; Redding et al. 2021), and a 

paucity of genomic data from the endemic community (Siddle et al. 2018). Deciphering the 

nature of Lassa fever epidemiology requires the continued addressing of some of the many 

open research questions. 

Mitigation and surveillance 

In terms of preventative measures, modelling suggests that annual rodent control measures 

would likely be ineffective due to their high fecundity (Mariën et al. 2019). However, 

continuous rodent control or rodent vaccination could reduce disease (Mariën et al. 2019), 

and there are now a number of human vaccines for Lassa virus progressing through clinical 

trials (Hallam et al. 2018). Until these measures are available, the only mitigation strategy for 

Lassa fever will continue to be the reduction of human-rodent contact (Bonwitt et al. 2017). 

In Nigeria, one of the strategies for reducing risky contact is education via health workers, 

although this appears to have been limited in its effect (Oladeinde et al. 2014; Akinwumi et 

al. 2016). Other suggestions have included measures to reduce the number of rodents in and 

around houses such as improved housing or housing repairs, and rodent-proof food storage, 

though no major campaigns for these measures exist (Mari Saez et al. 2018). 

Passive sentinel systems provide a foundation for Lassa fever reporting across the recognised 

endemic area, for instance, in Nigeria suspected cases are reported to local and public health 

authorities (NCDC 2018). WHO, the Ministries of Health of Guinea, Liberia, and Sierra Leone, 

and other partners established the Mano River Union Lassa Fever Network to improve 

research, surveillance, management and control of Lassa fever, especially diagnostic facilities 

(Khan et al. 2008). Lassa fever is notifiable to Integrated Disease Surveillance and Response 



Lauren A. Attfield, PhD thesis   

33 

(IDSR), a strategy implemented by the WHO African region to collate, report, and respond to 

disease outbreaks (WHO Regional Office for Africa 2019). Based on passive reporting 

processes, Lassa fever appears to be endemic to Nigeria and the Mano River Union (Guinea, 

Sierra Leone, and Liberia) with only occasional infection in other parts of West Africa (Figure 

1.3). However, active surveillance in the form of serological surveys suggest that infection 

with Lassa virus, or a cross-reactive arenavirus, also occurs in Mali, Côte d’Ivoire, Ghana, and 

Burkina Faso (Richmond & Baglole 2003). Genomic analysis of recent infections originating in 

Benin and Togo provide more substantive evidence that Lassa virus is endemic in these 

countries (Whitmer et al. 2018; Yadouleton et al. 2020), while a number of cases have been 

exported from outside of Nigeria and the Mano River Union (Sogoba et al. 2012). This 

evidence suggests under-surveillance of Lassa fever in the central portion of West Africa 

rather than an absence of disease. Additional active surveillance of Lassa fever takes place in 

the form of a contact tracing programme carried out by the Nigeria Centre for Disease 

Control (NCDC 2018). 

 

Figure 1.3: Map of reported distribution of Lassa fever in West Africa. © World Health Organization; 

2018. Licence: CC BY-NC-SA 3.0 IGO. 

 

1.6 Mastomys natalensis, the principal host and reservoir of Lassa virus 

Essential to the context of spatiotemporal distribution of Lassa virus infection and disease 

incidence is M. natalensis, the principal host and reservoir of Lassa virus. M. natalensis, or the 



Lauren A. Attfield, PhD thesis   

34 

natal multimammate mouse, is one of the most widespread rodents in sub-Saharan Africa 

(Coetzee 1975). Its ecological range includes natural savannahs as well as landscapes which 

have been altered by humans (agricultural fields and human habitations) (Fichet-Calvet et al. 

2007). They are omnivorous and in the wild tend to live for less than two years. The species 

has an extremely high propagation rate (Figure 1.4), with sexual maturation of females 

occurring after only 94 days, a gestation period of 23 days, and an oestrous occurring only 

25 days after giving birth (Coetzee 1975). M. natalensis is an agricultural pest, motivating 

studies of their populations across sub-Saharan Africa in terms of potential for mitigation 

(Sluydts et al. 2009). 

 

Figure 1.4: Photograph of wild M. natalensis, the principal host and reservoir of Lassa virus. A pregnant 

female in a group nest, with juveniles of different ages, from multiple litters. © Joe Blossom, Alamy 

Stock Photo; 2009. Reproduced under licence. 

 

Wild M. natalensis population dynamics are highly seasonal, with high recruitment rates in 

the rainy season and subsequent population booms in the dry season (Christensen 1993; 

Makundi et al. 2007; Mari Saez et al. 2018). It is not clear whether these population dynamics 

are purely phenological, with one theory being that vegetation growth signals ideal 

reproductive timing (Firquet et al. 1996), or opportunistic, with increased resources and 

habitat leading to improved chances of pregnancy. As a result, it is uncertain whether higher- 
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or lower-than average precipitation leads to differences in population dynamics; in other 

words, whether inter-annual variability in seasonality causes timing and size of population 

booms to differ between years. When considering transmission of Lassa virus to humans, an 

additional layer of complexity is added by rodent behaviour, movement, and migration. M. 

natalensis is a peridomestic animal, meaning it is often found in human-habited areas, not 

through human-seeking behaviour but due to resource-seeking behaviour which leads it to 

human settlements (Bonwitt et al. 2017). It is thought that, in agricultural landscapes in West 

Africa, M. natalensis migrate from crop fields to houses during the dry season when the 

crops are harvested, perhaps following the movement of food (Fichet-Calvet et al. 2007). 

Alternatively, this observation could be attributed to an increased population size (following 

the population boom) and reduction in natural resources (due to adverse climatic conditions 

or depletion of resources), therefore causing rodents to seek alternative food sources in rural 

settlements. The drivers of the timing of the movement and population dynamics of M. 

natalensis are the subject of ongoing research and are important for elucidating the 

dynamics of Lassa virus. 

Lassa virus sits within the genus mammarenavirus, of which six others are known to infect M. 

natalensis in different parts of its range (Figure 1.5). Of these seven mammarenaviruses, 

Lassa virus is the only known to be capable of infecting humans. In different parts of its 

range, M. natalensis is divided into different clades or lineages which can be distinguished by 

differences in mitochondrial DNA (De Bellocq et al. 2020). Excepting Luna virus and Mopeia 

virus which both infect the same mitochondrial lineage of M. natalensis (albeit in different 

parts of its range), each discovered mammarenavirus is unique to one rodent lineage. Even 

where different lineages are in contact, no evidence of arenavirus sharing has been found 

(Gryseels et al. 2017), suggesting that there are barriers to infection specific to each lineage 

which may have arisen from co-evolution of arenavirus and rodent (Mariën et al. 2017). 

These host-specific barriers are proposed as a reason for the geographic constriction of 

Lassa virus to West Africa (Gryseels et al. 2017). However, evidence suggests that another 

group of mammarenaviruses in rodents is capable of opportunistic host-switching (Irwin et 

al. 2012), meaning that the theory of lineage-restricted arenaviruses is still uncertain. As a 

result, it is unclear whether, if initially transported, Lassa virus has the potential to spread 

among M. natalensis in other parts of sub-Saharan Africa. This discussion is further 

complicated by the uncertain roles of other zoonotic host species in some parts of the Lassa 

virus endemic range (Olayemi et al. 2016b). 
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Figure 1.5: The geographic distribution of M. natalensis lineages and mammarenaviruses which infect 

them. Adapted from De Bellocq et al. (2020). Each mammarenavirus has been found in exactly one 

mitochondrial lineage of M. natalensis, and all but one lineage is associated with just one 

mammarenavirus, supporting hypotheses that mammarenaviruses are highly specialised to their 

rodent host. Lassa virus is the only mammarenavirus found to be capable of infecting humans, with 

Lassa fever cases shown with black plus signs. Captures of M. awashensis are also included on the 

map since evidence of transmission of the newly-discovered Dhati Welel virus between this species 

and M. natalensis was found in the study. © Journal of Vertebrate Ecology; 2020. Licence: CC-BY. 

 

Longitudinal individual-based studies of species communities are useful for understanding 

demographic processes and population changes, especially for temporally variable 

populations like M. natalensis (Clutton-Brock & Sheldon 2010). Such studies are often carried 

out through capture-mark-recapture (CMR) methods in which an animal is captured, marked, 

and later captured again (Seber & Schofield 2019). As well as enabling abundance estimates 

due to repeat observations of the same individuals (Bright Ross et al. 2022), CMR studies also 
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provide an opportunity to collect data on individuals at the capture stage(s) which can 

provide insights into population and demographic dynamics. However, CMR studies in Lassa 

virus endemic countries are considered unethical, since the capture of a potentially infected 

rodent is an opportunity to reduce a potential source of infection. Instead, longitudinal 

studies in West Africa focus on rodent serology through capture-kill studies (Fichet-Calvet et 

al. 2007). One major CMR study of M. natalensis has continued since 1994 in Tanzania 

(Borremans et al. 2014; Mariën et al. 2020), providing potential opportunities to study rodent 

demography, albeit outside the range of the West Africa M. natalensis lineages. In this CMR 

study, Morogoro virus provides an opportunity to observe rodent-to-rodent transmission 

dynamics (Mariën et al. 2020). Horizontal transmission results in acute infection with 

transient shedding, and appears to be the main mode of transmission in the wild, mostly 

among the same generation (Borremans et al. 2015). Meanwhile, vertical transmission from 

mother to offspring is believed to lead to chronic infection with no recovery and persistent 

pathogen shedding (Borremans et al. 2015). Chronic Morogoro virus infections are thought 

to sustain the virus within a population with horizontal transmission increasing with 

abundance following population growth (Mariën et al. 2020). Neither Lassa virus nor 

Morogoro virus appear to have pathogenicity in M. natalensis, consistent with theories of co-

evolution (Mariën et al. 2017). These dynamics have important implications for the structure 

of a host-to-host transmission model for Lassa virus. 

1.7 Recent developments and remaining gaps in Lassa fever modelling  

Spatial models of Lassa fever and Lassa virus have typically taken the zoonotic niche 

approach. Fichet-Calvet & Rogers (2009) produced the first “risk maps” of Lassa fever by 

predicting presence of Lassa fever from temperature, rainfall, and vegetation, using records 

of human disease collated from the literature. These models identified rainfall and 

temperature as the main spatial predictors of the presence of Lassa fever, with the Mano 

River Union and Nigeria having the most suitable conditions for Lassa virus endemicity 

(Figure 1.6A). This modelling framework incorporated areas of both presence and absence of 

human cases, however, it is possible that absence reflected lack of surveillance rather than 

true absence of disease. Mylne et al. (2015) (Figure 1.6B) took a similar approach but 

incorporated a separately-fitted SDM for M. natalensis using data from the Global 

Biodiversity Information Facility (GBIF). Interestingly, this model suggested that 

environmental suitability for Lassa virus is greater in Côte d’Ivoire than Nigeria. Data used in 



Lauren A. Attfield, PhD thesis   

38 

models of Fichet-Calvet & Rogers (2009) and Mylne et al. (2015) likely suffer from spatial 

reporting bias due to spatial heterogeneity in Lassa fever awareness which, when not taken 

into account, can lead to inaccurate distributions (Townsend Peterson et al. 2014) 

 

Figure 1.6: Spatial models of Lassa fever cases, Lassa virus presence, and Lassa virus infection. A: 

Predicted probability of Lassa fever presence based on a model correlating spatial environmental data 

with human disease records. Stars show human disease records. Adapted from Fichet-Calvet & Rogers 

(2009). © Fichet-Calvet, Rogers; 2009. Licence: CC BY. B: Predicted probability of Lassa virus presence 

based on a model correlating spatial environmental data with reported Lassa virus infections in 

humans and rodents. Adapted from Mylne et al. (2015). © Mylne et al.; 2015. Licence: CC BY. C: 

Predicted suitability for Lassa fever across space, based on a model correlating environmental and 

socioeconomic data with human disease records. Black points show human disease records. Adapted 

from Redding et al. (2016). © Redding et al.; 2016. Licence: CC BY. D: Predicted number of human 

Lassa virus infections per year, per km2, based on a model correlating the predicted zoonotic niche of 

Lassa virus with human serosurvey data to predict spatial human seroprevalence, then using a 

compartmental disease model to estimate force of zoonotic infection from modelled human 

seroprevalence. Adapted from Basinski et al. (2021). © Basinski et al.; 2021. Licence: CC BY. 

 

Redding et al. (2016) modelled the drivers of spillover risk, incorporating socioeconomic 

factors (such as ethnic groupings, poverty, and crop yields) in addition to environmental 

variables into a zoonotic niche model to control for more spatial determinants of Lassa fever 

risk (Figure 1.6C). Redding et al. also fit a SDM for M. natalensis by fitting occurrence records 

to environment and habitat variables (such as land-use). This SDM also used GBIF records 
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but, unlike Mylne et al. (2015), restricted the GBIF records used to the Western clade of M. 

natalensis to reduce phylogenetic differences in environmental and habitat requirements. By 

including a simple transmission model to predict relative number of spillover events from 

reservoir host occurrence and human population size, Redding et al. used their model to 

predict the impacts of future change (such as changes in land-use and human population 

size) on spillover risk. This model predicted that by 2070 there would be approximately twice 

as many (estimated range 2.0 to 2.1) Lassa virus spillover events as 2016, motivating further 

research into the effects of anthropogenic change on Lassa fever risk. 

Basinski et al. (2021) (Figure 1.6D) took the zoonotic niche framework a step further by using 

a zoonotic niche approach to estimate spatial human seroprevalence based on human 

serosurveys. By incorporating a compartmental model of infection to quantify the number of 

infections based on modelled spatial serology, they estimated an annual 898,000 million 

(symptomatic and asymptomatic) Lassa virus infections across West Africa. The analysis of 

Basinski et al. represents a major step forward in Lassa fever modelling since it estimates 

absolute number of infections rather than relative risk, which is important for understanding 

disease burden and appropriately allocating resources. However, any estimates based on 

serology are limited by our knowledge of duration of seropositivity before seroreversion and 

limitations in the serosurveys themselves. Regarding the first point, Basinski et al. estimated 

that introducing a period of 15.6 years before seroreversion (rather than their base 

assumption that Lassa virus infected individuals remain seropositive for life) would increase 

the estimated number of infections by a factor of five. However, Basinski et al. did not 

incorporate the changing population size of West African countries into their model, which 

may cause an underestimate of infection incidence. The model of Basinski et al. also did not 

produce uncertainty in incidence estimates, making it unclear to what extent uncertainty in 

their model of spatial human seroprevalence could impact their results. 

Several temporal mathematical transmission models have recently been fit to Lassa fever 

case data (Musa et al. 2020; Barua et al. 2021; Ibrahim & Dénes 2021; Abdulhamid et al. 2022; 

Abidemi et al. 2022), however these have limited predictive utility since they are non-spatial, 

and sometimes neglect the structure of the disease transmission system. None of these 

mathematical transmission models have explicitly incorporated variable rodent population 

dynamics informed by ecological studies. Theoretical rodent population dynamics based on 

climatic variables into a mathematical transmission model have shown how precipitation 
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could be linked with Lassa fever cases via rodent population dynamics or migration 

(Akhmetzhanov et al. 2019), however these modelled population dynamics were not fit to 

observed data. The absence of modelling approaches centred on reservoir host ecology and 

processes has led to a lack of understanding around the relationship between disease risk 

and the environment, hindering the development of process-based forecasting models 

especially with respect to environmental changes. 

1.8 Thesis overview 

Spatiotemporal modelling of the Lassa virus system has, as highlighted above, been 

historically limited. Therefore, in this thesis I seek to understand the ways in which 

environment – mediated by reservoir host ecology – underpins human disease risk, through 

methodological developments designed to make use of available data sources. Even though 

seasonality is central to the reservoir host’s population dynamics, the link between inter-

annual patterns in disease cases and the environment was previously unknown. Led by Dave 

Redding and Rory Gibb (Redding et al. 2021), I and colleagues showed that the timing of 

Lassa fever cases in Nigeria reported by the NCDC is linked with precipitation and vegetation 

(Supplementary Figure S1.1) using a spatiotemporal framework fitted to lagged 

environmental variables. Our findings were consistent with the assertion that the population 

ecology of M. natalensis drives Lassa virus spillover. 

At the conception stages of Redding et al. (2021) I created a theoretical model of seasonal 

reservoir host population dynamics and resulting pathogen and spillover dynamics. This 

motivated us to include lag times in the spatiotemporal framework, representing the time 

taken for the reservoir host population size to increase following ideal climatic conditions. 

Acknowledging potential spatial biases in surveillance, I explored whether severity bias was 

present in these data. This analysis informed the decision to control for year-on-year 

expansion of surveillance effort in the spatiotemporal model in Redding et al. (2021) and to 

allow for spatially heterogeneous surveillance.  

Leading on from this work, in Chapter 2, I investigate the severity bias present in Lassa fever 

case data in Nigeria for 2018 to 2021, an extended form of the analysis which informed 

consideration of surveillance regimes in Redding et al. (2021). Finding a severity bias is 

detectable throughout these years, I conclude that any disease incidence estimates of Lassa 

fever based on case data alone would represent a substantial underestimation. I therefore 

explore alternative sources of data to inform on disease and infection incidence, choosing to 
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use human seroprevalence and contact tracing data in Nigeria. I then design models to 

assess both the infection incidence (by updating the method of Basinski et al. (2021)) and 

disease incidence (using contact tracing data in Nigeria) and to understand how different 

assumptions of spatial zoonotic hazard and exposure impacted assessments of overall 

disease incidence across West Africa. My findings demonstrate how uncertainty in spatial 

disease risk structure and period before seroreversion substantially impacts incidence 

estimates, but nonetheless indicates that Lassa virus disease incidence and infection 

incidence are likely much greater than previously estimated. This result provides renewed 

motivation to better understand the processes underpinning zoonotic disease risk and to 

quantify these processes in such a way that forecasting and prediction of the effects of 

environmental change can be carried out. 

 In Chapter 3, motivated by my theoretical models of M. natalensis population dynamics and 

time lags, I quantify the climatic drivers of the reservoir host by analysing the way seasonal 

climate patterns and inter-annual variability in these patterns impact the observable 

demographic processes in a population of M. natalensis in Morogoro, Tanzania. Since this 

population is outside of the Lassa virus endemic area, a CMR study is feasible, enabling 

observations such as whether an individual becomes pregnant between two captures. 

Informed by the theoretical population models I developed in the early stages of Redding et 

al. (2021), I fit climate lags to allow for ecological delays between climate conditions and 

population responses. I find that the demographic processes of survival, recruitment, and 

body growth are highly seasonal, but that there is also a significant effect of inter-annual 

variability in precipitation on survival and recruitment. I then construct a demographic 

population model based on these processes, outputting a distribution of weights in the 

population at each given time based on lagged seasonal temperature and precipitation and 

inter-annual variability in precipitation. Finding that this model is a good fit for population 

size estimated directly from capture data, I conclude that the climatic-demographic model 

approach is a useful tool through which to predict population changes based on climate 

patterns. 

Seeking to extend the work of Chapter 3 to include more aspects of disease ecology, in 

Chapter 4 I incorporate a transmission model within the reservoir host population into the 

climatic-demographic model framework. This transmission model is theoretical, but its 

structure and parameters are informed by observations of arenaviruses in M. natalensis 
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populations. Since, in Chapter 3, I modelled the population in terms of demographic 

processes – thereby capturing nonlinearities in the population dynamics – rather than simply 

fitting population size to environmental variables, the climatic-demographic model provided 

an opportunity to explore population changes under differing climate patterns. I therefore 

apply the full model including transmission to the five states in Nigeria with the highest 

number of cases during the period 2018 to 2021 to assess the resulting model’s ability to 

predict zoonotic hazard. Taking into account the delay between infection and symptom 

onset by estimating an incubation period for Lassa fever using nosocomial outbreak data, I 

infer Lassa virus infection dynamics from the observed cases of Lassa fever. I find that 

predicted zoonotic hazard is significantly positively correlated with inferred disease 

incidence, indicating that climatically-driven reservoir host ecology is consistent with 

apparent variability in Lassa fever cases and that both seasonality and inter-annual variability 

in precipitation patterns could drive temporal Lassa fever risk. The resulting temporal 

reservoir host-virus model, which can be applied to differing climate patterns, presents an 

opportunity to forecast temporal changes in Lassa virus zoonotic hazard and to understand 

how future changes to climate patterns may affect disease risk. However, my observation 

that the model of zoonotic hazard is less well aligned with timing of Lassa virus infection in 

southern states of Nigeria may indicate a role of additional factors such as agricultural 

practices or behaviour leading rodents to come into increased contact with humans. 

In Chapter 5 I synthesise the findings across these three pieces of work and put them into 

the wider context of Lassa fever research. I explore the implications of the thesis, including 

how temporal patterns in Lassa fever risk may vary across space, which is of increasing 

relevance given the anticipated changes in weather patterns across West Africa under 

climate change. Finally, I discuss open research questions, my perspectives on the future 

directions of zoonotic disease research and how this complex and interdisciplinary topic can 

continue to evolve in the future. 
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Chapter 2: Mathematical modelling enables new estimates 

of Lassa virus infection and disease incidence 

2.1 Abstract 

Understanding incidence of zoonotic infection and disease is key to allocating resources to 

improve public health. However, for most zoonoses, infection and disease incidences are not 

well-quantified, with a major challenge being the underreporting of human cases in public 

health data. Here, I address this challenge by developing incidence models based around 

two different data types, thereby increasing the robustness of incidence estimation. I use a 

case study of the neglected zoonotic disease Lassa fever, where previous Lassa virus 

infection incidence estimates are uncertain and range from 100,000 to 900,000. First, I test 

whether publicly available records of Lassa fever cases in Nigeria suffer from a severity bias. 

If a bias is present, this implies that underreporting in some states is substantial and that 

alternative approaches are needed. Finding evidence of a severity bias throughout the years 

2018 to 2021, I then identify two alternative sources of data to inform incidence: serosurveys, 

and contact tracing. Building on an existing model informed by human seroprevalence but 

importantly accounting for the increasing population size of West Africa, I estimate an 

annual 3 million infections across West Africa if Lassa virus antibodies persist and protect for 

life. This number of infections increases to 7 million annually if a period before seroreversion 

of 15.6 years is assumed as has previously been indicated. I then develop a model for Lassa 

fever disease incidence based upon contact tracing data in Nigeria by accounting for the 

data collection procedure and different models of spatial zoonotic hazard and exposure, and 

estimate an upper bound for annual disease incidence across West Africa of between 4.5 and 

32 million. The wide range in estimates results from sensitivity to the modelled spatial 

distribution of zoonotic hazard and exposure, with uncertainty arising from differing 

plausible models, thereby highlighting the limited degree to which the spatial determinants 

of zoonotic hazard and exposure are understood. Overall, my analysis implies that incidence 

of Lassa virus infection is much greater than previously thought, and that exploration of 

knowledge gaps may provide additional clarity around both infection incidence and disease 

incidence. The modelling frameworks developed here can be applied to similar data types for 

other zoonotic diseases for which incidence is unknown or uncertain. 
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2.2 Introduction 

Zoonotic diseases represent the greatest global risk of epidemics (Morse et al., 2012), both 

through new diseases emerging from wildlife and through existing endemic zoonoses which 

may evolve to increase their potential for human-to-human transmission. This epidemic 

potential is driven by, among other factors, the number of times the pathogen is transmitted, 

either from the zoonotic host to humans – known as spillover – or between humans, with 

each transmission event providing evolutionary pressure for adaptation to humans. Zoonotic 

diseases also cause substantial disease burden (Grace et al. 2012; Torgerson et al. 2018) 

which is fundamentally driven by incidence. Understanding disease and infection incidence is 

therefore key to allocating resources to mitigate risks posed by a zoonotic disease, such as 

healthcare resources to reduce disease burden and interventions to reduce transmission 

opportunities, yet the quantity of transmission events is unknown or substantially 

underestimated for most zoonotic diseases (Maudlin et al. 2009). 

Neglected zoonotic diseases, such as rabies (Wunner & Briggs 2010), bovine tuberculosis 

(Mableson et al. 2014), and cystic echinococcosis (Larrieu et al. 2019) are allocated few 

resources to manage and mitigate human disease burden and epidemic risk (WHO & DFID-

AHP 2005; Welburn et al. 2015), making accurate estimates of spatiotemporal zoonotic 

hazard and exposure especially valuable. Such models can highlight hotspots or predict 

future changes for particular diseases (Redding et al. 2016, 2019) and potentially compare 

risks from different diseases. However, existing models for the incidence of infection and 

disease for neglected zoonoses typically relate to relative, not absolute, risk of these events 

occurring. Limited resources for diagnostic testing, public health surveillance, and research 

result in substantially underreported human case numbers (WHO & DFID-AHP 2005; Grace 

et al. 2012) and limited insight into disease incidence and transmission dynamics. With 

neglected zoonoses being most prevalent in areas in which the greatest anthropogenic 

change is predicted to occur (Popp et al. 2017) – change that will likely increase zoonotic 

spillover rates (Glidden et al. 2021) and thereby increase global risk of zoonotic emergence 

(Jones et al. 2008; Allen et al. 2017) – it is vital to address this challenge now. 

As a high-incidence and high-burden neglected zoonosis, Lassa fever is an example of a 

disease for which better incidence estimates are needed but insufficient data are available to 

construct an accurate and complete spillover pathway (Scoones et al. 2017). Little is known 

about how often people are in contact with the principal host Mastomys natalensis or shed 
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Lassa virus, what proportion of zoonotic hosts are infected at any given time, or the 

likelihood of zoonotic spillover following human exposure to the pathogen (Gibb et al. 2017). 

Additionally, public health case records are believed to suffer from under-ascertainment, 

precluding top-down incidence estimation (Arruda et al. 2021). While a recent approach 

enabled the incorporation of surveillance bias into a model of Lassa fever cases (Redding et 

al. 2021), this was nevertheless unable to assess the scale of overall case under-

ascertainment. However, advances in reservoir host abundance estimation (Gibb 2020), 

increased spatial representation in human serosurveys (e.g., Sogoba et al. 2016; Nimo-

Paintsil et al. 2019), and new initiatives for contact tracing (NCDC 2018) create an 

opportunity for an approach blending public health data with host-pathogen ecology. 

Until recently, Lassa virus infection incidence was estimated at between 100,000 and 300,000 

infections annually across West Africa (McCormick et al. 1987). However, these figures were 

based on spatially limited serosurveys. These serosurveys could also be considered outdated 

since the population size of West Africa has more than doubled since the study. An updated 

analysis (Basinski et al. 2021) combined M. natalensis occurrence data and Lassa virus 

occurrence in M. natalensis using a niche modelling approach to create a spatial model of 

zoonotic hazard. Spatial zoonotic hazard was then correlated with observations from human 

serosurveys to produce a spatiotemporal model of human seroprevalence which, in turn, was 

used to predict per-capita force of infection for humans across West Africa, estimating at 

least 897,000 human infections per year. This approach represents an important step in 

updating the discourse around Lassa fever which is centred on estimates which predate a 

dramatic expansion in the population of West Africa. However, the estimate of Basinski et al. 

has some limitations. Firstly, this estimate assumed that the population size of countries in 

West Africa was temporally constant, which could cause underestimates of incidence – since 

an increasing population size, with more births than deaths, will present lower 

seroprevalence than one with equal births and deaths. Secondly, the duration of 

seropositivity is unknown. Basinski et al. estimated that allowing for seroreversion could 

greatly increase the incidence estimate, but it would be valuable to perform analysis on 

sources of data relating to human infection other than seroprevalence. Finally, the zoonotic 

niche approach to estimating spatial zoonotic hazard is subject to uncertainty which is 

challenging to measure. Since there are a variety of approaches to take when estimating 
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zoonotic hazard and exposure (Chapter 1), use of different models could provide a sense for 

the uncertainty in estimated incidence. 

Here, I develop a variety of models to estimate Lassa virus infection and disease incidence, 

leveraging multiple approaches to assess critical biases and knowledge gaps. Firstly, I 

examine the observed fatality ratio in Lassa fever case records kept by the Nigeria Centre for 

Disease Control (NCDC), which has advanced Lassa fever detection through the 

implementation of improved testing capacity (NCDC 2018; Redding et al. 2021). By testing 

for a severity bias, I explore whether these case records are nevertheless spatially 

heterogeneous with different states achieving different levels of surveillance. Secondly, I 

build upon the work of Basinski et al. (2021) by introducing variable annual birth and death 

rates into a human seroprevalence model to estimate force of infection and infection 

incidence across West Africa. Thirdly and finally, I estimate annual probability of disease for 

individuals in contact tracing in Nigeria and project this estimated annual disease probability 

across West Africa, using spatial models of zoonotic hazard and exposure to account for the 

increased risk of disease experienced by the contact tracing population. To do so, I utilise a 

variety of plausible models of spatial zoonotic hazard and exposure, each based on different 

assumptions of spatial determinants of human exposure to Lassa virus, resulting in a 

representation of the uncertainty in disease incidence estimates. Through these approaches, 

I aim to assess how current knowledge gaps limit estimation of total incidence and spatial 

distribution of Lassa fever, and to provide an updated and nuanced assessment of the total 

incidence of Lassa fever. 

2.3 Severity bias in case records in Nigeria 

2.3.1 Methods 

Case reports 

I obtained case reports of Lassa fever in Nigeria from the NCDC situation reports (NCDC 

2022). From these I extracted annual confirmed cases and deaths in confirmed cases for 

2018–2021 inclusive by state. I restricted these data to states which recorded at least one 

confirmed case in the given year (Supplementary Data S2.1). These data were then 

restructured to record, for each individual confirmed case, (1) the total number of confirmed 

cases in that state in that year, and (2) whether the case was fatal or not as a binary outcome 

(1 for death and 0 otherwise). 
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Severity bias model 

I modelled fatality 𝐹𝑖 (whether or not confirmed case 𝑖 was recorded as a death) as a random 

variable dependent on the number of confirmed cases, 𝐶𝑖, in the same state in the same year 

(equation 2.1). Observed case fatality probability 𝑝𝐹(𝐶𝑖) minus a modelled fatality ratio 𝑀𝐹𝑅 

then depended on 𝐶𝑖 (equation 2.2). 

 𝐹𝑖 ∼ Bern(𝑝𝐹(𝐶𝑖)) 

𝑝𝐹(𝐶) = 𝑀𝐹𝑅 + 𝑏 (1 − (
𝐶 − 1

𝐶max − 1
)

𝑎

) 

(2.1) 
 

(2.2) 

The parameters 𝑏 (the bias parameter) and 𝑎 (the strength-of-bias parameter) determine 

how number of observed cases 𝐶 deviates 𝑝𝐹 from the model fatality ratio, 𝑀𝐹𝑅 ∈ (0,1) 

(Figure 2.1). If 𝑏 = 0 then 𝑝𝐹 ≡ 𝑀𝐹𝑅 (no bias) while if 𝑏 = (1 − 𝑀𝐹𝑅) then 𝑝𝐹(1) = 1 (if only 

one case is reported then the probability of fatality is guaranteed; extreme severity bias). Any 

values of 𝑏 > 0 indicate severity bias since the derivative of 𝑝𝐹 with respect to 𝐶 is negative 

(𝑝𝐹
′ (𝐶) < 0) (fewer cases mean higher fatality probability), while values 𝑏 < 0 indicate bias in 

the opposite direction with 𝑝𝐹
′ (𝐶) > 0 (fewer cases mean lower fatality probability) (Figure 

2.1A). The bias parameter was restricted to 𝑏 ∈ [−𝑀𝐹𝑅, (1 − 𝑀𝐹𝑅)] to ensure that 𝑝𝐹 was 

constrained in [0, 1]. Meanwhile, 𝑎 moderates the strength of the relationship, with small 

values of 𝑎 causing observed case fatality probability 𝑝𝐹(𝐶) to rapidly decrease as 𝐶 

increases, and large values of 𝑎 causing 𝑝𝐹(𝐶) to decrease more gradually with increasing 𝐶 

(Figure 2.1B). Very small or very large values of 𝑎 result in a model which, across much of the 

domain 𝐶, could fit well to unbiased or slightly biased data (dashed lines in Figure 2.1B) and 

would make it impossible to identify 𝑏. Therefore, the strength-of-bias parameter was 

restricted to 𝑎 ∈ [0.1, 10] to ensure identifiability of the bias parameter 𝑏. The robustness of 

this restriction was ensured by verifying that the values close to the bounds (𝑎 = 0.11, 9.9) 

did not appear within the 95% confidence region, and that changes to the restricted range of 

𝑎 did not alter estimated values or confidence intervals for 𝑎, 𝑏, or 𝑀𝐹𝑅. The MFR was 

designed to reflect the case fatality ratio for an observation in the state-year record with the 

highest number of confirmed cases (𝐶max), since 𝑝𝐹(𝐶max) = 𝑀𝐹𝑅. If a severity bias exists 

(𝑏 > 0), the MFR provides an upper bound on true disease fatality ratio, as true disease 

fatality ratio (DFR) may be even lower than the MFR; for instance, if the state-year record 

with the highest number of confirmed cases also suffers from underreporting and severity 

bias. 
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Figure 2.1: Structure of the severity bias model. A: Effect of varying the bias parameter 𝑏 on the 

modelled relationship between CFR and number of confirmed cases. For all lines 𝑎 = 0.3 and 𝑀𝐹𝑅 =

0.3 are held constant while 𝑏 takes the values 0 (red), 0.2, 0.4, and 0.6 (blue). B: Effect of varying the 

strength-of-bias parameter 𝑎 on the modelled relationship between CFR and number of confirmed 

cases. 𝑏 = 0.4 and 𝑀𝐹𝑅 = 0.3 are held constant while 𝑎 takes the values 0.1 (purple), 0.4, 1, 2, and 10 

(green). Dashed lines (𝑎 = 0.1 and 𝑎 = 10) show the permitted boundaries of 𝑎, since values outside of 

this interval would produce curves which – across much of the domain 𝐶 – fit well to unbiased data, 

thereby making the bias parameter 𝑏 non-identifiable. 

 

Model fitting 

This model was fit across all years of the data, and also separately by year to observe any 

increase or reduction in severity bias. Models were fit using maximum likelihood estimation, 

with likelihood ratio tests used to approximate distributions for the bias parameter 𝑏, 

strength-of-bias parameter 𝑎, and 𝑀𝐹𝑅. I tested for a severity bias (𝑏 > 0) by using likelihood 

ratio testing to perform a one-tailed hypothesis test (significance level of 𝛼 = 0.05 for all 

analyses). I then tested for differences in severity bias between years based on the estimated 

distributions of 𝑏 using a two-tailed test; if 𝑏 became smaller (∆𝑏 < 0) then severity bias 

decreases between years indicating improved surveillance, while ∆𝑏 > 0 would indicate 

worsening surveillance. 

I also compared observed CFR to MFR since, if a severity bias is present, this comparison 

gives an indication of how severity bias can deviate CFR from the true DFR; the presence of a 

severity bias alone does not necessarily imply that MFR is substantially different from CFR. I 

fit a simple binomial model wherein 𝑝𝐹(𝐶𝑖) = 𝐶𝐹𝑅, where 𝐶𝐹𝑅 is assumed constant across 

states and years. I used maximum likelihood and likelihood ratio testing to estimate 𝐶𝐹𝑅 and 
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its 95% confidence interval, and to test whether this was significantly greater than the model 

fatality ratio, 𝑀𝐹𝑅, using a one-tailed hypothesis test. If 𝐶𝐹𝑅 > 𝑀𝐹𝑅 then this implies that 

CFR is also greater than the true DFR, and that underreporting and severity bias are causing 

an inflation in apparent fatality of Lassa fever. 

2.3.2 Results 

I fit the model across all years (2018–21) and to each year individually (Figure 2.2). I identified 

a significant severity bias (𝑏 > 0) across the full data set containing fatality outcome for all 

Lassa fever cases in Nigeria between 2018 and 2021 (𝑛 = 3165, 𝑝 < 0.0001) and for each 

individual year, 2018 (𝑛 = 633), 2019 (𝑛 = 833), 2020 (𝑛 = 1189), and 2021 (𝑛 = 510, 𝑝 <

0.0001 for all) (Figure 2.3A, Supplementary Table S2.4). The estimate for the bias parameter 

across all years was 0.395 (95% CI [0.337, 0.455]). There was no significant increase (∆𝑏 > 0) 

or decrease (∆𝑏 < 0) in severity bias between any consecutive years (Figure 2.3B). The only 

pairs of years between which severity bias was observed to have changed was a significant 

decrease (∆𝑏 < 0) between years 2018 and 2020 (𝑝 = 0.0093) and 2018 and 2021 (𝑝 =

0.0050), indicating that surveillance may have improved in the last four years (Supplementary 

Table S2.5). Due to severity bias, the MFR was estimated to be lower than the CFR for all 

years both individually and combined (𝑝 < 0.0001 for all) (Figure 2.3C-D, Supplementary 

Table S2.6). While the CFR for the full case data was 21.8% [20.6%, 23.1%], the MFR was 

13.2% [11.6%, 14.8%]. The MFR for the year 2021 was estimated to be very close to 0 

because the maximum number of observed cases in a state in 2021 was only 212, and only 

two states reported more than 50 confirmed cases of Lassa fever, thereby skewing the 

analysis. This may reflect a decrease in Lassa fever surveillance in 2021 due to a COVID-19 

wave affecting Nigeria (Supplementary Figure S2.7) coinciding with the Lassa fever outbreak 

season. 
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Figure 2.2: Severity bias model fit for the full data set (2018–21) and for each year individually. For 

each subset of data, the graph shows predicted CFR from the severity bias model and observed CFR 

from the case records. For ease of visualisation, the logarithm of confirmed cases 𝐶 was used, since 

data are clustered around small values of 𝐶. Points show observed CFR against the number of 

confirmed cases for each state:year record. Lines and 95% confidence regions show the predicted 

relationship between CFR and the number of confirmed cases for the given data subset. The year(s) 

included are shown in the upper right corners of the graphs. Note that CFR is drawn from a binomial 

distribution with number of trials equal to the number of confirmed cases; therefore, observed CFR is 

expected to be more variable (and therefore deviated further from the predicted values) for smaller 

numbers of confirmed cases. For example, predicted CFR for a state:year record with only 1 confirmed 

case is between 0 and 1, while the observed CFR must be equal to either 0 or 1. 
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Figure 2.3: Bias in Lassa fever case fatality, changes in bias, and how bias affects observations of 

fatality ratio. A: Model distribution of bias parameter, 𝑏, for the model of all years and for the years 

2018–2021 individually. Values less than 0 indicate that a severity bias is present in which observed 

case fatality ratio is greater in state:year records with fewer total confirmed cases. B: Model 

distribution of the difference between bias in consecutive years. Values of ∆𝑏 less than 0 indicate that 

bias is less severe in the later comparison year. Changes between consecutive years were too small to 

detect with significance. C: Model distributions for model fatality ratio 𝑀𝐹𝑅 after accounting for bias. 

D: Model distributions for estimated constant observed case fatality ratio 𝐶𝐹𝑅.  

 

2.4 Severity bias in case records in Nigeria 

2.4.1 Methods 

Predicted spatial human seroprevalence 

I used the spatial model of human Lassa virus seroprevalence created by Basinski et al. 

(2021), which was generated by correlating human serosurvey data with reservoir host and 

virus occurrence using a linear model. I treated this as a model of human seroprevalence in 

2015, since this was the year of the latest serosurvey included in the model. In each 3 

arcminute (1 20⁄  degrees; ≈ 6km at the equator) grid cell, this model predicts the human 

seroprevalence of Lassa virus. To create this model, Basinski et al. used seroprevalence 

studies from 94 sites across different years spanning 1970–2015. However, the model is non-
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temporal and predicts spatial human Lassa virus seroprevalence at a fixed point in time. 

Although it is possible that seroprevalence could have been variable across this large period, 

these temporal variations are ignored here for simplicity. Instead, I assume that this is a 

model of spatial human Lassa virus seroprevalence in 2015, the year of the latest serosurvey 

included in the model. 

To estimate spatial patterns of zoonotic exposure in 2019–20, I obtained estimated global 

gridded population density in 2019 with a resolution of 30 arcseconds (1 120⁄  degrees; ≈ 

1km at the equator) from World Pop (WorldPop & CIESIN 2018). I aggregated the spatial 

global human population density model to the same scale as the spatial human 

seroprevalence model by summing the estimated population size in grid cells. 

I restricted analysis to the West African countries Benin, Burkina Faso, Côte d’Ivoire, Ghana, 

Guinea, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone, and Togo, based on 

believed spatial limitation of Lassa virus in the reservoir host, following Basinski et al. (2021). 

For each of these countries, to parameterise a per-country temporal model relating 

seroprevalence to infection, I obtained annual estimations of per capita birth rate, death rate, 

and population size for the years 1960 to 2019 inclusive from The World Bank world 

development indicators (The World Bank 2022a, b, c). 

Modelling seroprevalence based on force of infection 

I constructed a linear system of ordinary differential equations (ODEs) to describe movement 

of individuals between susceptible (seronegative) 𝑆, Lassa virus infected (seropositive) 𝐼, and 

recovered (seropositive) 𝑅 compartments (equations 2.3–2.8, definitions in Table 2.1). Unlike 

an epidemic model, movement from the susceptible compartment to infected compartment 

does not depend on the infected population size since the majority of infection is assumed 

to be caused by spillover from the reservoir host. For simplicity, it was assumed that 

seropositivity indicated protective immunity. If this is not the case, then infection incidence 

estimates produced here are lower bounds. I also assumed that force of infection 𝐹 was 

temporally (but not spatially) constant. Although force of infection likely varies within years 

due to seasonality of the zoonotic host, and may also vary between years, this assumption 

was made on the basis that the human seroprevalence model used is non-temporal, and that 

the parameter 𝐹 reflects average force of infection across a year (averaged across seasonal 

reservoir host dynamics). 
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 d𝑆

d𝑡
= 𝑏𝑖(𝑡)𝑃 − 𝐷(𝑡)𝑆 − 𝐹𝑆                       + 𝛼𝑅 

d𝐼

d𝑡
=               −𝐷(𝑡)𝐼 + 𝐹𝑆 − 𝛾𝐼 

d𝑅

d𝑡
=              −𝐷(𝑡)𝑅         + 𝛾(1 − 𝜇)𝐼 − 𝛼𝑅 

𝑃 = 𝑆 + 𝐼 + 𝑅 

𝐷 = 𝑑𝑖(𝑡) −
𝛾𝜇𝐼

𝑃
 

𝑄 =
𝐼 + 𝑅

𝑃
 

 

 

(2.3) 

 

(2.4) 

 

(2.5) 
 

(2.6) 

 

(2.7) 

 

(2.8) 

This ODE system takes the same form as the model of Basinski et al. (2021), but relaxing the 

assumption that birth and death rates are constant and equal (meaning a constant 

population size) and that the system was at steady state. As the population size of all 

countries in West Africa has been increasing throughout at least the last 60 years 

(Supplementary Figure S2.2), assumption of steady state would provide an underestimate of 

force of infection 𝐹. I set per-capita birth rate 𝑏𝑖(𝑡) and per-capita death rate 𝑑𝑖(𝑡) for each 

country 𝑖 as the annual values from 1960 onwards (Table 2.1). I used per-country instead of 

per-grid cell estimates of birth and death rates and population size because the ODE model 

(equations 2.3–2.8) would need to be simulated for each spatial unit, therefore computing 

this across a grid would be computationally intensive. 
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Table 2.1: Parameters and variables in the seroprevalence model.  

Parameter Description Value Source 

𝑏𝑖(𝑡) Per-capita birth rate for country 

𝑖 

Per-capita birth rate (annual) 

by country 

The World Bank 

(2022a) 

𝑑𝑖(𝑡) Per-capita (overall) death rate 

for country 𝑖 

Per-capita death rate 

(annual) by country 

The World Bank 

(2022b) 

𝑃 Total population size Modelled (equation 2.6) and 

equal to annual population 

size by country 

The World Bank 

(2022c) 

𝐷(𝑡) Per-capita non-infection-

induced death rate 

Modelled (equation 2.7)  

𝐹 Force of zoonotic infection Estimated (equation 2.10)  

𝛾 Rate of recovery (3 weeks)−1 WHO (2017) 

𝛼 Rate of seroreversion 0 (no seroreversion) and 

(15.7 years)−1 

Bond et al. (2013) 

and McCormick 

et al. (1987) 

𝜇 Probability of infection-induced 

mortality 

0.01 WHO (2017) 

𝑄 Seroprevalence (proportion of 

the population which is 

seropositive) 

Calculated (equation 2.8)  

𝑄∗ Seroprevalence in 2015 inferred 

from ODE system 

Calculated (equation 2.8)  

𝑞 Seroprevalence in 2015 inferred 

from spatial model 

Spatially modelled Basinski et al. 

(2021) 

𝐺𝑘(𝐹) Difference between ODE-

predicted seroprevalence in 

2015 and spatially-modelled 

seroprevalence in 2015 

Calculated (equation 2.9)  

 

Estimating infection incidence from predicted seroprevalence 

I created a numerical solver for equations 2.3–2.8 for each country for the period 1960 to 

2019, using the forward Euler method (Butcher 2016) to estimate compartment sizes with a 

time step of 1/13 years (4 weeks). This time step was chosen as a balance between 

computational speed and accuracy, and I found that reducing the time step did not 

substantially affect the resulting numerical solutions. Letting the initial seroprevalence be 

𝑄1960, the initial compartment sizes were 𝑆 = (1 − 𝑄1960)𝑃1960, 𝐼 = 0, 𝑅 = 𝑄1960𝑃1960, where 

𝑃1960 is the initial population size (in 1960) for the country in question. This resulted in a 

numerically-generated function 𝑄∗(𝐹 | 𝑖, 𝑄1960) for seroprevalence at the end of 2015, 𝑄∗, 

depending on force of infection 𝐹, for a given country 𝑖 (which determines 𝑏𝑖, 𝑑𝑖 , and 𝑃1960) 

and initial seroprevalence 𝑄1960. 
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Since I assumed that, in a given grid cell, the model of Basinski et al. (2021) predicted 

seroprevalence in 2015, this can be linked to seroprevalence 𝑄∗ obtained from the ODE 

model. This leads to the relationship 𝑄∗(𝐹 | 𝑖𝑘 , 𝑄1960(𝑘)) = 𝑞𝑘, where 𝑘 is the grid cell, 𝑖𝑘 is 

the country grid cell 𝑘 is inside (taken to be the country containing the centroid of the cell), 

and 𝑄1960(𝑘) is the initial seroprevalence in the grid cell. The final seroprevalence 𝑄∗ 

obtained from the ODE system was not sensitive to initial seroprevalence due to the long 

duration of simulation (Supplementary Figure S2.3) therefore I assumed that 𝑄1960(𝑘) = 𝑞𝑘 

so that initial seroprevalence would be in the same order of magnitude as anticipated final 

seroprevalence. This meant that the force of infection 𝐹𝑘  in grid cell 𝑘 satisfies 

 

𝐺𝑘(𝐹) = 𝑄∗(𝐹 | 𝑖𝑘 , 𝑞𝑘) − 𝑞𝑘 = 0. (2.9) 

Since 𝑄∗ was a numerical, not analytical, solution, it was not possible to obtain an exact value 

of 𝐹𝑘. Instead, I aimed to minimise |𝐺𝑘| (equations 2.9–2.10). 

 𝐹𝑘 = 𝐹: {𝐺𝑘(𝐹) = min
𝑥

𝐺𝑘(𝑥)} 

i. e.   𝐹𝑘 = argmin
𝑥

𝐺𝑘(𝑥) 

 

(2.10) 

For each grid cell 𝑘 for which current seroprevalence 𝑞𝑘 was spatially modelled, I minimised 

|𝐺𝑘| using the one-dimensional optimisation function optimize in base R (R Core Team 

2020). For each 𝑘, 𝐺𝑘(𝐹) only crossed 0 once across the domain 𝐹 ∈ (0,1) and the computed 

𝐹𝑘 resulted in a target function |𝐺𝑘(𝐹𝑘)| within a tolerance of 10−6 of 0, meaning that the 

problem was well-posed and the optimisation was successful. As a result, I obtained the 

estimated annual force of infection 𝐹𝑘 for every grid cell 𝑘. 

Finally, I multiplied the spatial model of per-capita force of infection 𝐹 by population size to 

estimate the total number of annual infections by country and across West Africa. For each 

grid cell 𝑘, I simulated the system of equations 2.3–2.8 using the forward Euler method, this 

time starting from the end of 2015 to the end of 2019. The initial conditions were 𝑆 =

(1 − 𝑞𝑘)𝑃𝑘,2015, 𝐼 = 0, and 𝑅 = 𝑞𝑘𝑃𝑘,2015, where 𝑃𝑘,2015 is the population size in 2015 in grid 

cell 𝑘. From the end of 2019 I then continued the simulation, but also predicting the number 

of infections over the subsequent year (the year 2020), with the addition of a quantity 𝑁, 

initially 0, counting the number of new infections (equation 2.11). 

 d𝑁

d𝑡
= 𝐹𝑆 

 

(2.11) 
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The value of 𝑁 after one year is then the annual incidence of Lassa virus infection in that grid 

cell in 2020, 𝐼𝐼(𝒙𝑘).  

For the purpose of comparison with existing approaches, I also computed the infection 

incidence under both scenarios of seroreversion with the assumption of constant population 

size (birth and death rates equal to birth rate in 2015 for estimating force of infection and 

2019 for estimating incidence in 2020). 

2.4.2 Results 

My compartmental population model applied to Basinski et al.’s prediction of spatial human 

seroprevalence produced an estimate of 3.03 million infections in the year 2019 assuming no 

seroreversion takes place, and 6.97 million annual infections assuming seroreversion occurs 

after an average of 15.6 years (McCormick et al. 1987) (Figure 2.4). In both cases, most 

predicted infections were in Nigeria (1.75 million infections with no seroreversion and 4.07 

million infections with seroreversion), and the highest per-capita incidence was predicted to 

be in Sierra Leone (0.0346 infections per-capita with no seroreversion and 0.0742 infections 

per-capita with seroreversion) (Table 2.2). These estimations do not include uncertainty since 

the spatial human seroprevalence model used did not include uncertainty. 

Under the assumption that population sizes are stationary, total annual infection incidence 

was estimated as 712,000 with no seroreversion, and 4.80 million with seroreversion. 

Therefore, assuming a steady state leads to a substantial underestimate in infection 

incidence; of around 75% if it is assumed that seroreversion does not occur, or around 30% if 

seroreversion is assumed to occur. 
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Figure 2.4: Spatial distribution of estimated Lassa virus infection incidence. Spatial density of infection 

incidence (number of infections per year per square kilometre) is shown on a scale from pale yellow 

(low incidence) to red (high incidence). The different spatial models represent different scenarios of 

seroreversion. A: Infection incidence under no seroreversion (Lassa virus antibodies remain detectable 

and protective for life). B: Infection incidence under seroreversion following an average period of 15.6 

years, after which Lassa virus antibodies are no longer detectable or protective. 
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Table 2.2: Annual estimated infection incidence by country. Countries are listed in order of infection 

incidence (total and per-1000 people) given no seroreversion. Note that the total incidence ranking of 

Liberia and Ghana, and Niger and Benin, swap when seroreversion is included. Similarly, the per-capita 

incidence ranking of Togo and Ghana swap when seroreversion is included. All values are given to 3 

significant figures. These estimates do not include uncertainty since the spatial human seroprevalence 

model used (Basinski et al. 2021) did not include uncertainty. 

Country 

Estimated annual total 

incidence of infection (1000s 

of infections)   

Country 

Estimated annual per-1000 

person incidence of infection 

No 

seroreversion 

Seroreversion 

(≈15.6 years)  

No 

seroreversion 

Seroreversion 

(≈15.6 years) 

Nigeria 1,750 4,070  Sierra Leone 34.6 74.2 

Guinea 335 742  Guinea 28.3 62.7 

Sierra Leone 222 475  Liberia 27.1 58.2 

Côte d’Ivoire 156 358  Nigeria 8.34 19.4 

Liberia 114 244  Côte d’Ivoire 6.04 13.9 

Ghana 111 280  Benin 4.53 10.8 

Mali 87.0 205  Mali 3.93 9.25 

Burkina Faso 70.2 165  Togo 3.52 8.54 

Niger 61.3 131  Ghana 3.46 8.73 

Benin 56.6 136  Burkina Faso 3.20 7.50 

Senegal 30.8 73.5  Senegal 2.66 6.34 

Togo 29.7 72.0  Niger 2.66 5.70 

Mauritania 7.93 19.8  Mauritania 2.03 5.07 

 

2.5 Using contact tracing data in Nigeria to inform disease incidence 

across West Africa 

2.5.1 Methods 

Spatial zoonotic hazard and exposure models 

Next, I explored how contact tracing data could be used to inform estimates of total Lassa 

fever disease incidence. However, an individual in contact tracing is likely to have a 

heightened risk of Lassa fever. Since such an individual has been identified as a contact of a 

Lassa fever case, they are at risk of Lassa virus infection from the same source as their 

contact, or from the contact themselves, and as a result are more likely to have Lassa fever 

than the average individual in West Africa. To account for the increased risk of zoonotic 

disease in contact tracing, I developed spatial models which would enable an estimate of the 

risk of disease in contact tracing relative to the rest of West Africa. Firstly, I modelled 
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zoonotic hazard. It is not clear whether zoonotic hazard in a particular place should relate to 

the probability of the reservoir host occurring there, or to the abundance of the reservoir 

host in that place. I therefore used two models of the reservoir host; one which modelled 

reservoir host occurrence, termed RH1 (Basinski et al. 2021), and one which modelled 

reservoir host abundance, termed RH2 (Gibb 2020). To model zoonotic hazard, I then 

combined each of these reservoir host models with a model of the spatial distribution of 

Lassa virus within the reservoir host. The first spatial model of Lassa virus, V1, was an 

occurrence model in which presence of the virus in the host was predicted from 

environmental correlates (Basinski et al. 2021), while the second spatial model of Lassa virus, 

V2, took a non-environmental approach, assuming instead that the distribution of the virus 

would depend on the spatial abundance of the reservoir host. 

To estimate the spatial seroprevalence of Lassa virus in the rodent host (V2), I treated each 

30 arc-second grid square as a node on a network and estimated the long-term connectivity 

of rodent populations in nearby and distant grid squares using network analysis. I obtained 

rodent serosurvey data from the dataset collated by Simons (2022). Grid squares which 

contained rodent serosurveys were “sampled nodes” and had a seroprevalence value from 

the serosurvey data. Nodes were connected to the grid squares adjacent to them by 

undirected weighted vertices. The weights of vertices were the assumed long-term contact 

rates between populations of rodents in the corresponding grid squares, with contact related 

to the abundance 𝐴 (from RH2) in both squares. Therefore, grid squares 𝑖 and 𝑗 which were 

horizontally or vertically adjacent were connected by a path with weight 𝑤𝑖,𝑗 = 𝐴(𝒙𝑖)𝐴(𝒙𝑗), 

while if 𝑖 and 𝑗 were diagonally adjacent, the weight was 𝑤𝑖,𝑗 = (𝐴(𝒙𝑖)𝐴(𝒙𝑗))
√2

, to account 

for the distance along the diagonal. I then took the natural logarithm of these values to 

create transformed weights 𝑦𝑖,𝑗 = −log (𝑤𝑖,𝑗) so that smaller values of 𝑦 indicated more 

contact, and summing weights 𝑦 along a path would be the equivalent of multiplying contact 

rates 𝑤. Using Dijkstra’s algorithm (Dijkstra 1959) implemented in the igraph package 

(Nepusz 2022) for the programming language R (R Core Team 2020), I obtained the shortest 

path (minimising the sum of weights 𝑦) between every unsampled node 𝑖 and sampled node 

𝑗. Denoting the shortest distance between nodes 𝑖 and 𝑗 as 𝑌𝑖,𝑗, I estimated the 

connectedness of the two nodes as the exponent of this shortest distance. Finally, I 
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computed the estimated viral prevalence 𝑉 in unsampled nodes by computing the average 

seroprevalence of sampled nodes weighted by connectedness: 

 
𝑉𝑖 =

∑ 𝑉𝑗exp (sampled sites 𝑗 𝑌𝑖,𝑗)

∑ exp (sampled sites 𝑗 𝑌𝑖,𝑗)
 

 

(2.12) 

From the two spatial models of the reservoir host (occurrence, RH1; and abundance, RH2) 

and the two spatial models of Lassa virus (occurrence, V1; and prevalence, V2), I created 

three models of relative spatial zoonotic hazard (RH1V1, RH2V1, RH2V2) by multiplying the 

component reservoir host and virus models together. While other spatial models of zoonotic 

hazard similar to RH1V1 exist (Redding et al. 2016), the models of Basinski et al. (2021) were 

chosen so as to increase the comparability of the disease incidence estimated here with the 

infection incidence estimate described earlier. These infection incidence estimates (Section 

2.3.2) were informed by the human seroprevalence model which was fit by Basinski et al. 

(2021) as a linear function of the zoonotic hazard model RH1V1. The relative zoonotic hazard 

in grid cell 𝒙𝑖 estimated by a given model was denoted 𝐻(𝒙𝑖). 

Next, I created three spatial models for the scaling of human-rodent contact  with human 

population size. The first contact scaling model (CS1) assumed that zoonotic exposure is 

directly proportional to human population size, therefore CS1 was equal to the population 

density 𝑃 from the gridded human population density estimates (WorldPop & CIESIN 2018; 

described in Section 2.3.2). The second contact scaling model, following Gibb (2020), 

assumed that zoonotic exposure in a given location is proportional to the natural logarithm 

of human population size. In other words, as the number of people in a given grid square is 

increased there is a saturation effect in zoonotic exposure, assuming that zoonotic hazard is 

held constant. This logarithmic model is based on observations that contact between 

humans and rodents does not appear to increase in densely populated areas (Suwannarong 

& Chapman 2015). Finally, I created a third contact scaling model (CS3) which assumed that 

zoonotic exposure is proportional to human population size, but only in rural areas, since M. 

natalensis may not be prevalent in urban areas (Demby et al. 2001) – although this 

observation may be location-specific. Rather than describing human behaviour, this contact 

scaling model instead uses human population density to infer urban areas which are 

unsuitable for M. natalensis. Due to the spatial sparsity of M. natalensis data, this is a fine-

scale factor which may affect zoonotic exposure but which has not been well-quantified; 

therefore, my inclusion of a rural exposure model enables an assessment of how this 
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assumption affects total disease incidence estimates. To distinguish between urban and rural 

areas, I obtained the total urban population size and total population size (urban and rural) 

for each country in West Africa in 2019 from The World Bank (The World Bank 2022c, d), 

estimating that 47.0% of the population lived in urban areas by dividing total urban 

population size by total population size in 2019 (≈180 million people in urban areas out of a 

total ≈390 million people). I then removed 47.0% of the population from the spatial 

population density 𝑃 in order of decreasing population density, to produce a new model of 

rural population density. Nine spatial models of zoonotic exposure were created by 

multiplying each of the three contact scaling models with each of the three zoonotic hazard 

models (Table 2.3). For example, RH1V1-CS2 was generated by multiplying reservoir host 

occurrence (RH1) by Lassa virus occurrence (V1) and natural logarithm of population density, 

log(𝑃 + 1) (CS2). For a given zoonotic exposure model, exposure was denoted 𝐸(𝒙𝑖), where 

𝒙𝑖 is the grid cell. 

Table 2.3: List of spatial models of zoonotic hazard and rodent-human contact used to estimate 

zoonotic exposure.  

Name Description Source or method 

RH1 Reservoir host occurrence Basinski et al. (2021) 

RH2 Reservoir host relative abundance Gibb (2020) 

V1 Virus occurrence Basinski et al. (2021) 

V2 Virus prevalence in reservoir host Computed (described above) from 

synthesised trapping studies 

(Simons 2022) and RH2 

RH1V1 Spatial model of zoonotic hazard, 𝐻 RH1×V1 

RH2V1 RH2×V1 

RH2V2 RH2×V2 

CS1 Linear scaling of contact with human 

population size 

Human population density 𝑃 

(WorldPop & CIESIN 2018) 

CS2 Logarithmic scaling of contact with human 

population size 

log(𝑃 + 1) 

CS3 Linear scaling of contact with human 

population size in rural areas; no contact 

in urban areas 

Computed (described above) by 

removing inferred urban 

population from 𝑃 

RH1V1-CS1 Spatial model of zoonotic exposure, 𝐸 RH1V1×CS1 

RH1V1-CS2 RH1V1×CS2 

RH1V1-CS3 

etc. 

RH1V1×CS2 

etc. 
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In this approach to estimating incidence of Lassa fever, I restricted analysis to the spatial 

extent from 21°W to 22°E and 2°N to 17°N to include the believed Lassa virus endemic 

region of West Africa. The resulting disease incidence estimates should be comparable to the 

Lassa virus infection incidence estimates since in non-overlapping areas between the two 

approaches, all models of zoonotic hazard and exposure were very low. 

Contact tracing data 

From the NCDC situation reports for Lassa fever in 2018 to 2021 (NCDC 2022), I obtained 

weekly contact tracing reports, detailing cumulative numbers of individuals since the start of 

the calendar year who had (1) entered contact tracing; (2) completed contact tracing; (3) 

been lost from contact tracing; (4) reported being symptomatic; and (5) reported being 

symptomatic and were then subsequently tested for and found to be positive with Lassa 

virus. Lassa virus infection in contact tracing is confirmed using polymerase chain reaction 

(PCR) testing. A contact is defined by the NCDC as “a person who has been exposed to an 

infected person, or to an infected person’s secretions, excretions, or tissues within three 

weeks of last contact with a confirmed or probable case of Lassa fever” (NCDC 2018). A 

confirmed case refers to a laboratory-confirmed case and a probable case refers to someone 

who died from suspected Lassa fever but for whom no sample was obtained. The purpose of 

contact tracing is to improve the diagnosis of disease by performing laboratory testing if a 

fever is noted within the 21-day period, thus creating an enhanced surveillance system for 

these individuals. The contact tracing procedure also enables the administering of 

prophylaxis to reduce severity of potential disease in high-risk contacts. 

Estimating probability of disease in the contact tracing population 

I treated each individual completing contact tracing as an independent trial, so that the 

number of individuals who completed contact tracing having had Lassa fever symptoms and 

testing positive for Lassa virus followed a binomial distribution with “success” probability 𝑝𝐶𝑇 

(equation 2.13). I denoted the number of individuals who completed contact tracing as 

𝑁completed, with 𝑁positive of these individuals having developed Lassa fever symptoms and 

subsequently testing positive. I estimated a posterior distribution for 𝑝𝐶𝑇, the per-capita 

probability of contracting Lassa fever during contact tracing, using the Metropolis-Hastings 

algorithm to implement the Markov chain Monte Carlo (MCMC) method with completely 

uninformative (uniform) prior distributions. 
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 𝑁positive ∼ Bin(𝑁completed, 𝑝𝐶𝑇) (2.13) 

To obtain the annual per-capita probability of disease, 𝑝𝐴, I scaled up the number of 

infections as 

 𝑝𝐴 = 1 − (1 − 𝑝𝐶𝑇)
365
21 , 

 

(2.14) 

since the contact tracing period was 21 days. 

Modelling increased disease incidence in the contact tracing population 

The probability of infection for an individual in contact tracing is expected to be different 

than for the average person in the population of West Africa since they are a contact of a 

Lassa fever case. The individual presumably lives in a Lassa virus endemic area and may be 

exposed to the same source of infection as their infected contact, so we would expect their 

zoonotic exposure to be higher than average. Also, they are at a greater risk of human-to-

human infection than the general population because they are a known contact of an 

infected person, and their other contacts also presumably live in a Lassa virus endemic area. 

It is challenging to capture the elevated infection risk from clustering of contacts (e.g., an 

individual in contact tracing may live in the same home as their infected contact, who may 

have been infected in the home) or from human-to-human transmission. Therefore, I aimed 

to estimate an upper bound of disease incidence by taking into account elevated zoonotic 

hazard and exposure for an individual known to be in a Lassa virus endemic area, but not 

case clustering or human-to-human transmission from the infected contact. Since Lassa virus 

rarely leads to long human-to-human transmission chains, I will not distinguish between 

human and zoonotic sources of infection, and will assume that the likelihood of infection by 

a human is proportional to zoonotic exposure. 

Let us assume a given model of zoonotic exposure 𝐸 and population density 𝑃, and assume 

that infection incidence and disease incidence are proportional to this model of exposure 𝐸. 

Supposing that a Lassa virus infection has occurred in Nigeria (i.e., an individual has already 

been infected and now their contact is under surveillance in contact tracing), even with no 

information about location of infection we can compute the expected per-capita zoonotic 

exposure (zoonotic exposure 𝐸 divided by population size 𝑃) in that location. The probability 

that an infection occurred in any given location 𝒙𝑖 in Nigeria is 𝐸(𝒙𝑖) divided by the total 

exposure across Nigeria. As a result, it is possible to calculate the expected per-capita 

zoonotic exposure experienced by an individual in the contact tracing population, by 
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assuming that the individual in contact tracing experiences the same per-capita zoonotic 

exposure as their infected contact. Using the assumption that disease incidence is 

proportional to zoonotic exposure, this expected per-capita zoonotic exposure in contact 

tracing (equations 2.15–2.16), denoted 𝐷∗, is related to per-capita zoonotic disease risk in the 

contact tracing population. By comparing per-capita zoonotic exposure across West Africa 

with this estimate of per-capita zoonotic exposure in the contact tracing population, it will 

therefore be possible to account for the elevated disease risk in contact tracing. 

 𝐷∗ = 𝔼(𝐸
𝑃⁄  | individual in contact tracing) 

= 𝔼(𝐸
𝑃⁄  | an infection already occurred) 

= ∑
𝐸(𝒙𝑖)

𝑃(𝒙𝑖)
𝑖 in Nigeria

ℙ(infection occurred in 𝒙𝑖) 

= ∑
𝐸(𝒙𝑖)

𝑃(𝒙𝑖)
𝑖 in Nigeria

𝐸(𝒙𝑖)

∑ 𝐸(𝒙𝑗)𝑗 in Nigeria
 

⇒ 𝐷∗ = ∑
𝐸(𝒙𝑖)2

𝑃(𝒙𝑖)
𝑖 in Nigeria

∙
1

∑ 𝐸(𝒙𝑗)𝑗 in Nigeria
 

 

 

 

 

 

 

(2.15) 

 

(2.16) 

Predicting Lassa fever incidence across West Africa 

Consider a given grid cell 𝒙𝑖 and let the per-capita zoonotic exposure be denoted 𝐷(𝒙𝑖) 

(computed by dividing 𝐸(𝒙𝑖) by 𝑃(𝒙𝑖)). We want to estimate the per-capita annual disease 

probability in this grid cell. Given that the estimated annual per-capita disease probability in 

contact tracing is 𝑝𝐴 with a corresponding per-capita zoonotic exposure 𝐷∗, assuming that 

disease incidence is proportional to zoonotic exposure, it follows that the per-capita annual 

disease probability in grid cell 𝒙𝑖 𝑝(𝒙𝑖) can be calculated as 

 
𝑝(𝒙𝑖) =

𝑝𝐴𝐷(𝒙𝑖)

𝐷∗
=

𝑝𝐴𝐸(𝒙𝑖)

𝐷∗𝑃(𝒙𝑖)
. 

(2.17) 

By multiplying this by the population size 𝑃(𝒙𝑖) we can thereby obtain an annual number of 

symptomatic infections in grid cell 𝒙𝑖 as 

 
𝐼𝐷(𝒙𝑖) =

𝑝𝐴𝐸(𝒙𝑖)

𝐷∗
. 

(2.18) 

Using equations 2.15–2.18 and the posterior distribution of 𝑝𝐴, I obtained a posterior 

distribution for the total disease incidence 𝐼𝐷 given a zoonotic exposure model 𝐸. For each of 

the nine spatial zoonotic exposure models (Table 2.2) I therefore produced a spatial estimate 

of annual disease incidence 𝐼𝐷(𝒙𝑖). 
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2.5.2 Results 

The per-capita disease incidence probability in contact tracing (per 21 days) was 𝑝𝐶𝑇 =

0.0059 (95% CrI [0.0052, 0.0067]), which translates into an annual symptomatic infection 

probability of 𝑝𝐴 = 0.098 [0.087, 0.11] per-capita. The smallest estimate of disease incidence, 

5.14 [4.55, 5.79] million, was under the assumption that human risk of disease was 

proportional to reservoir host occurrence and Lassa virus occurrence, with only rural 

populations exposed (Figure 2.5–2.6, RH1V1-CS3). Meanwhile, the largest estimate of 

28.5 [25.3, 32.2] million was obtained when disease incidence was assumed proportional to 

abundance of the reservoir host, prevalence of Lassa virus within the reservoir host – 

estimated using weighted interpolation, and population size (Figure 2.5–2.6, RH2V2-CS1). 

Spatial and total estimates varied substantially among models (Figure 2.5–2.6) 

(Supplementary Table 2.8). 
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Figure 2.5: Spatial disease incidence estimates under different zoonotic hazard and exposure models. Left column (RH1V1): Zoonotic hazard is proportional to 

reservoir host occurrence and Lassa virus occurrence. Middle column (RH2V1): Zoonotic hazard is proportional to reservoir host abundance and Lassa virus 

occurrence. Right column (RH2V2): Zoonotic hazard is proportional to reservoir host abundance and Lassa virus prevalence in the reservoir host. Top row (CS1): 

Human-rodent contact scales linearly with human population size. Middle row (CS2): Human-rodent contact scales logarithmically with human population size. 

Bottom row (CS3): Human-rodent contact scales linearly with human population size but only occurs in rural populations.
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Figure 2.6: Disease incidence estimates under different zoonotic hazard and reservoir host-human 

contact models. Estimates of disease incidence are highly sensitive to different models of the reservoir 

host-virus distribution and how contact scales with human population size. Line ranges show the 95% 

credible intervals based on the posterior distribution for 𝑝𝐶𝑇, with each line range showing estimated 

disease incidence under a different combination of models. Zoonotic hazard model RH1V1 (zoonotic 

hazard is proportional to occurrence of the reservoir host and occurrence of the virus) and contact 

scaling model CS3 (only rural human populations are affected) produce the smallest estimates, while 

models RH2V2 (zoonotic hazard is proportional to abundance of the reservoir host and prevalence of 

Lassa virus in the reservoir host) and CS1 (contact scales linearly with human population size) produce 

the largest estimates. RH2V1 (zoonotic hazard is proportional to abundance of the reservoir host and 

occurrence of Lassa virus) and CS2 (contact scales logarithmically with human population size) 

produce intermediate estimates. 

 

2.6 Discussion 

My analysis explored severity bias in passive surveillance data for Lassa fever and explored 

alternative routes by which to estimate absolute incidence of Lassa virus infection or disease, 

in doing so identifying sources of uncertainty and gaps in data and knowledge which 

prevent precise incidence estimates. I found that Lassa fever case records in Nigeria suffer 

from a severity bias which inflates the fatality ratio among observed cases in states which 

report fewer cases. While this severity bias is present throughout the period 2018 to 2021, 

there is evidence that the severity bias has decreased over this period, which may be 
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symptomatic of improved surveillance. I identified that the severity bias causes overall CFR in 

Nigeria to be almost twice the model fatality ratio which was designed to be more reflective 

of true disease fatality ratio. I then identified serosurveys and contact tracing as alternative 

sources of data which can inform estimates of infection incidence and disease incidence 

respectively. My estimate of annual infection incidence was 3.03 million given no 

seroconversion, or 6.97 million given a seropositive period of 15.6 years on average. This 

estimate is around twice that of the only other recent infection incidence estimate, due to 

accounting for the expanding population size across West Africa. Meanwhile, my estimates 

of annual disease incidence varied from 5.14 (95% CrI [4.55, 5.79]) million to 28.5 [25.3, 32.2] 

million, sensitive to both the scaling of rodent-human contact with human population 

density and the assumed spatial distribution of Lassa virus in the reservoir host. These 

disparate estimates highlight the limitations to scaling up Lassa fever risk across West Africa 

due to uncertainty in the spatial distribution of zoonotic hazard and exposure, and the lack 

of spatially representative data against which to validate estimates. 

Taking the most conservative view of these new results, I estimate that there are between 

600,000 and 4.5 million symptomatic infections per year, suggesting 30,000–225,000 Lassa 

fever fatalities per year assuming a total (asymptomatic and symptomatic) infection fatality 

ratio of 1% (WHO 2017). This compares with the 5,000 deaths per year in the only incidence 

estimate obtained prior to 2021 (McCormick et al. 1987). However, heterogeneity in 

surveillance – both within countries and more broadly across West Africa – make it 

impossible to be certain that incidence is not much greater than this range. Given these 

much greater estimates of disease incidence, implying a larger disease burden than 

previously thought, the development of forecasting models and the elucidation of ecological 

processes underpinning zoonotic disease risk can now be considered even more important. 

My identification of a severity bias lends additional support to the argument that surveillance 

of Lassa fever is heterogeneous in Nigeria, which may be due to socioeconomic factors such 

as access to healthcare. Compared with urban areas, access to healthcare is poorer in rural 

populations (Appendix A), which are also more likely to be exposed to Lassa virus (Bonwitt et 

al. 2017). Additionally, individual likelihood of pregnancy is also greater, and access to 

prenatal care poorer, in rural locations (Appendix A), with pregnancy a risk factor which 

increases risk of fatality in Lassa fever substantially (Kayem et al. 2020). Given the co-

occurrence in rural locations of these multiple risk factors for under-surveillance, expanded 
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surveillance or improved healthcare provisioning in these areas may greatly increase 

observation of current Lassa fever disease burden. Improvement to healthcare access in rural 

locations has been identified as a high importance activity for Nigeria (Riman & Akpan 2012). 

If implemented, a secondary benefit of these improvements to access will be an increase in 

passive observations of Lassa fever and associated disease burden. 

By modelling the changing population sizes of West African countries since 1960, I estimated 

a greater incidence of infection than Basinski et al. (2021) when using their estimated human 

seroprevalence model. For a model in which birth rate is greater than death rate – as has 

been the case for all countries in the focal area since 1960 – a larger force of infection is 

needed to attain the same seroprevalence when compared with a model where birth and 

death rate are equal. This is because the susceptible population is increased at a relatively 

greater rate than the infected and recovered compartments due to the influx of births into 

the susceptible compartment. Under the no-seroreversion model, I estimated 3.03 million 

infections annually, more than three times the 897,000 estimated by Basinski et al. using the 

constant population size model. Under the assumption of seroreversion after a mean period 

of 15.6 years, I estimated 6.97 million infections, almost twice Basinski et al.’s 4.38 million. 

Assuming 80% of infections are asymptomatic (WHO 2017), this implies approximately 

600,000 (assuming no seroreversion) and 1.4 million (assuming seroreversion after an 

average of 15.6 years) instances of disease annually. However, these values should be 

considered lower bounds since seropositivity does not necessarily imply protection against 

reinfection (Bond et al. 2013). 

The human seroprevalence model used to estimate infection incidence was based upon the 

spatial model created by Basinski et al. which assumed that zoonotic hazard was 

proportional to reservoir host occurrence and virus occurrence (RH1V1), while different 

zoonotic hazard models would have led to different human seroprevalence estimates used 

for infection incidence. Since different assumptions of zoonotic hazard and exposure led to 

very large differences in estimated disease incidence, it would be valuable to assess the 

effect of different spatial zoonotic hazard and exposure models on the estimated human 

seroprevalence model and resulting infection incidence estimates. Furthermore, the human 

seroprevalence model did not include uncertainty, meaning that estimates of infection 

incidence produced here could not incorporate uncertainty in the seroprevalence model. In 

the future, uncertainty in the model of Basinki et al. to correlate human serosurvey data with 
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modelled zoonotic hazard could be used to produce further spatial models of human 

seroprevalence by sampling from the model distribution of the estimated correlation 

between zoonotic hazard and observed human seroprevalence. By performing the analysis 

carried out here on a large number of these samples, uncertainty in the spatial human 

seroprevalence model could be propagated into disease incidence estimates. 

When estimating disease incidence, I found that the per-capita annual probability of disease 

in contact tracing was 𝑝𝐴 = 0.098 [0.087, 0.11], but this reflected a population which is at 

increased risk of disease since individuals in contact tracing are a contact of someone who 

has been infected. I used models of the spatial distribution of zoonotic hazard and exposure 

to relate this observed risk in contact tracing in Nigeria to the total risk across West Africa, 

with a wide range of estimated disease incidence across the nine zoonotic exposure models 

used. These disparities reflect the ways in which these models estimate that risk is clustered; 

for instance, the zoonotic exposure model with the greatest estimated disease incidence 

assumed that risk was proportional to virus prevalence in the reservoir host (V2), estimated 

by weighted interpolation of rodent serosurveys, rather than estimated occurrence of Lassa 

virus (V1), estimated by environmental niche modelling. Because V2 estimates that virus 

prevalence is relatively uniform across West Africa, while V1 predicts that Nigeria and the 

Mano River Union are hotpots, the latter resulted in a much lesser incidence because the 

resulting zoonotic hazard model predicted more spatial clustering of disease incidence. 

Reducing the susceptible population to only those in rural areas unsurprisingly greatly 

reduced total estimated disease incidence. 

While connecting health data with spatial models of zoonotic hazard has here enabled 

absolute infection and disease incidence estimation, this blended approach is particularly 

sensitive to the assumed spatial structure of risk because the spatial model is used both to 

estimate relative risk at health data points and to project absolute risk across the rest of the 

space. Disparities in estimates across models highlight the existing knowledge gaps around 

spatial distribution of disease risk and how assumptions influence our understanding of 

overall incidence. Moving forwards, if the goal is the improvement of incidence estimation 

precision, longitudinal seroprevalence studies in stratified samples might be helpful; 

however, this is challenging in endemic communities since observations of infection events 

and seroreversion can be muddied by reinfection (Bond et al. 2013). Combining health 

surveys with longitudinal studies in a similar model to the contact tracing procedure could 
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help identify instances of disease as opposed to asymptomatic infection. The models of 

infection and disease incidence used here should be updated as different spatial maps are 

developed to, hopefully, improve precision of estimates as knowledge of spatial Lassa fever 

risk accumulates. For many zoonoses, incidence of infection and disease are thought to be 

underestimated (Grace et al. 2012; Halliday et al. 2015) despite their value for resource 

prioritisation (Mathers et al. 2013), therefore methods to combine spatial ecological 

approaches with human health records such as presented here may be valuable in improving 

incidence estimates, and consequently health outcomes, for other neglected zoonotic 

diseases. 

 

  



Lauren A. Attfield, PhD thesis   

72 

Chapter 3: Population dynamics of Mastomys natalensis are 

driven nonlinearly by seasonality and inter-annual 

precipitation variability 

3.1 Abstract 

The processes driving human exposure to zoonotic pathogens are still not fully understood, 

hindering development of accurate zoonotic disease models and forecasting systems. While 

zoonotic hosts often exhibit climatically-sensitive population dynamics which underpin 

transmission of the pathogen between hosts, these dynamics are typically understudied. This 

gap is of particular concern when contemplating future changes to zoonotic host dynamics 

due to climate change, leaving the effect of climate change on zoonotic diseases unknown. 

Here I tailor a demographic population modelling method to Mastomys natalensis, a host of 

a number of pathogens across its range, one of which is known to be zoonotic, to explore 

the effects of seasonal and inter-annual climatic changes on its demographic processes, 

analysing data from a long-term capture-mark-recapture study in Tanzania. I show that M. 

natalensis exhibits nonlinear population dynamics and that inter-annual variability of 

precipitation seasonality is a significant driver of recruitment. This finding provides evidence 

that observed population increases in this species following rainfall are likely due to 

increased resources for individuals to invest in pregnancy due to vegetation growth. 

Additionally, analysis of demographic processes confirm that M. natalensis population 

dynamics can change year-on-year and that this may be due to changing weather patterns. I 

then simulate the population dynamics of M. natalensis and show that the model derived 

from demographic processes is a good predictor of population size by comparing with non-

demographic approaches. This process-based model with climatic inputs can be used to 

forecast both short- and long-term changes to M. natalensis population dynamics which 

ultimately underpin pathogen transmission dynamics. This development also facilitates the 

incorporation of ecological reservoir host processes into models of wildlife disease dynamics 

and zoonotic hazard. 
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3.2 Introduction 

While the understanding, forecasting, and control of zoonoses is critical, for many of these 

diseases the processes leading to human infection are not understood sufficiently well to 

tackle these challenges (Plowright et al. 2017). Although the transmission of zoonotic 

pathogens takes place within complex ecosystems (Cunningham 2005; Engering et al. 2013; 

Plowright et al. 2017; Gibb et al. 2020a), such complexities are rarely considered when 

exploring drivers of zoonotic spillover or disease. Host ecology is often missing from the 

picture, despite offering potentially valuable insights (Karesh et al. 2012; Gibb et al. 2020a). 

Drivers of zoonotic hazard are likely to respond idiosyncratically to global environmental 

change, making it increasingly important to incorporate ecological complexity into models of 

zoonotic disease systems. 

Climate change has had and continues to have a dramatic effect on biodiversity and 

ecosystem function (Portner et al. 2021). Zoonotic host-pathogen interactions, as with all 

other ecological relationships, will be impacted by environmental change in a variety of ways 

(Karesh et al. 2012; Glidden et al. 2021). Changes to climatic variation can impact animal 

population dynamics across several temporal scales, with intra-annual climatic variation 

giving rise to seasonal population patterns and inter-annual variation leading to differences 

in population patterns between years. Dependence on climate has been found to be 

important in driving pathogen dynamics in many vertebrate populations (Kausrud et al. 2007; 

Dobson 2009; Luis et al. 2010; Lal et al. 2012; Peel et al. 2014; Scherer et al. 2019). Therefore, 

better quantifying the climatic dependence of zoonotic host dynamics will enable a better 

understanding of short- and long-term patterns of zoonotic disease. 

Rodents are particularly likely to be influenced by climatic patterns. Typified by “fast” life 

histories, rodents invest in different traits under different environmental conditions to 

maximise the number of offspring produced over their relatively short lifespan (Dobson 

2007). Often rodents will reproduce during one portion of the year and not reproduce during 

the rest of the year, resulting in seasonal birth pulses which can have important 

consequences for disease dynamics (Kallio et al. 2009; Peel et al. 2014). Additionally, many 

rodent species have been shown to have shifting demographic structures, causing nonlinear 

dynamics which can lead to population surges (Andreassen et al. 2021) since demographic 

traits can have knock-on effects on vital rates (rates relating to birth and death). For instance, 

the sexual maturation of Mastomys natalensis varies inter-annually, with implications for 
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recruitment (Leirs et al. 1993). Similarly, population cycles in voles and lemmings have 

periods in which adults become heavier, resulting in faster sexual maturation and larger litter 

sizes (Oli 2019). With rodents making up a disproportionate number of zoonotic hosts and 

often found at high abundance close to humans (Gibb et al. 2020b), it is important to build 

these nonlinear demographic dynamics into models of rodent host and host-pathogen 

dynamics, and those of other hosts with similar population dynamics. 

A popular way of operationalising demographic models is through the matrix population 

model, in which a demographic trait is described by discrete stages within a population, and 

vital rates vary across stages (Caswell 2006). The integral projection model (IPM) generalises 

this approach by allowing the demographic trait to be continuous rather than discrete 

(Easterling et al. 2000; Ellner & Rees 2006). Not only does this continuity allow for more 

accuracy in inferring the trait-dependent vital rates and improve precision of the model itself, 

but it also means that inferred rates are more interpretable when the animal does not 

present distinct and discrete life stages. The IPM framework also has the flexibility to 

incorporate other processes such as pathogen transmission, by specifying additional traits 

and how their distributions change or by creating additional compartments and describing 

movement between compartments (Metcalf et al. 2016). This flexibility makes the IPM an 

excellent candidate for constructing a demographic model of zoonotic hosts upon which to 

base a process-driven model of the host-pathogen system. 

Given the importance of Lassa fever, caused by infection with Lassa virus, as a neglected 

zoonotic disease, understanding the population dynamics of the principal zoonotic reservoir 

host M. natalensis could yield insights helpful for disease forecasting and mitigation. M. 

natalensis is thought to be strongly influenced by climate, potentially underpinning the 

strong seasonal trends in Lassa fever incidence (Leirs et al. 1989). There is strong evidence 

that the rodent exhibits seasonal population dynamics (Leirs et al. 1990, 1994; Christensen 

1993; Sluydts et al. 2007; Olayemi et al. 2018), and further evidence suggests that abundance 

is greater following periods of increased rainfall (Mayamba et al. 2021) and that the 

demographic structure of the population changes depending on precipitation patterns (Leirs 

et al. 1993). This link between reservoir host population dynamics and precipitation has been 

proposed as an explanation for the outbreaks of Lassa fever in West Africa which are 

observed in November to February each year. While precipitation and other environmental 

factors have been found to be predictive of temporal patterns of Lassa fever incidence 
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(Redding et al. 2021), it is not yet clear whether this link is limited to seasonal rodent 

population dynamics (i.e., rodent population size varying within years on an annual pattern), 

or whether inter-annual variability in precipitation (i.e., deviations from the seasonal pattern) 

could also influence rodent population dynamics and Lassa fever incidence. With its 

importance as an agricultural pest and zoonotic reservoir host, M. natalensis is therefore an 

excellent candidate for which to examine and model climate-driven demography. 

Here, I develop an IPM-based approach to model observed demographic processes as 

functions of lagged climatic variables. I first ask how the climate influences M. natalensis 

demographic processes, testing for and parameterising the effect of lagged seasonal and 

inter-annually variable climate on the demographic processes of M. natalensis using data 

from a capture-mark-recapture (CMR) study in East Africa. Next, I seek to characterise the 

dependence of demographic processes on the climate by developing a predictive population 

dynamic model. I use the fitted demographic processes to derive a dynamic demographic 

population model based on the IPM framework which can be used to simulate M. natalensis 

population dynamics based on climate-driven demographic processes. Finally, I ask whether 

climate-driven demographic processes are important and valuable in understanding M. 

natalensis population dynamics, or whether existing standard approaches would be just as 

suitable. I therefore compare the climatic-demographic model with non-demographic 

approaches to assess whether the new approach is an appropriate model of M. natalensis 

population dynamics. 

3.3 Methods 

3.3.1 Data 

I used trapping data of M. natalensis captured in a CMR study on a mosaic field at Sokoine 

University of Agriculture, Morogoro, Tanzania (6.51°S, 37.38°E) (Figure 3.1A–B) from 1994 to 

2019, provided by the University of Antwerp and Sokoine University of Agriculture, to infer 

demographic processes. Capture sessions (𝑛 = 296) were approximately every 28 days, 

usually consisting of three consecutive nights, recording 41,349 captures of 17,877 tagged 

individuals. For each individual, data were collected on sex (male or female), body weight 𝑤 

(in grams), reproductive condition, and tag identification. For female individuals, 

reproductive condition was defined as sexually mature or immature (perforate or closed 

vagina, respectively), lactating or not lactating (nipples lactating or small, respectively), and 

pregnant or not pregnant (based on visible pregnancy, which is detectable in roughly the 
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latter half of the 21-day gestation period). I removed data in which weight was missing or 

erroneously recorded as 0, or in which tagging information was not provided, leaving 7,995 

tagged females recorded in 18,611 captures. 

 

Figure 3.1: CMR study location and patterns of weather and seasonal climate at the site. A: The spatial 

context of the study location Morogoro within the United Republic of Tanzania. B: Satellite image of 

the area south-west of the city of Morogoro, with the exact location of the study site shown. Map data 

© Google, CNES / Airbus, Maxar Technologies; 2021. Reproduced in line with Google Earth guidelines. 

C–D: Daily mean climate metrics at the study site across the study period (1994–2019) averaged with a 

28-day rolling average. C: Temperature seasonality (𝑇𝑠𝑒𝑎𝑠) shown with a black line, with the inter-

annual variability around this seasonal trend shown by the overlaid red lines (𝑇𝑠𝑒𝑎𝑠 + 𝑇𝑣𝑎𝑟). Seasonal 

temperature is highest in the period from January to March and lowest in the months of July and 

August. D: Precipitation seasonality (𝑃𝑠𝑒𝑎𝑠) shown with a black line, with the inter-annual variability 

around this seasonal trend shown by the overlaid blue lines (𝑃𝑠𝑒𝑎𝑠 + 𝑃𝑣𝑎𝑟). April to June is usually the 

period with the most rainfall, with little rain between July and October. There is substantial inter-

annual variability around the seasonal trend in the months November to April. 
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I extracted mean daily temperature (°C) and total daily precipitation (mm) at the study site 

from the National Oceanic and Atmospheric Administration Climate Prediction Centre 

(NOAA CPC) total daily precipitation and daily temperature global gridded datasets 

(NOAA/OAR/ESRL PSD 2021a, b). For both temperature and precipitation I computed a 28-

day rolling average to reflect the temporal resolution of the rodent capture sessions, and 

then decomposed these values into seasonal and variable components (see Table 3.1, Figure 

3.1C–D). 

Table 3.1: Methods for deriving seasonal and variable climate metrics for precipitation and 

temperature at the CMR study site in Morogoro, Tanzania. Before calculation of seasonal components, 

values were imputed for non-existent leap days based on the last day of February and the first day of 

March, e.g., 𝑇2(29/02/2001) = (𝑇2(28/02/2001) +  𝑇2(01/03/2001))/2. This was done to avoid a 

discontinuity in the climate metrics on leap days. 

 Temperature Precipitation 

Extracted 

value 

𝑇1(𝑑) = mean temperature at the 

study site on day 𝑑 (°C) 

𝑃1(𝑑) = total precipitation at the study 

site on day 𝑑 (mm) 

Averaged 

value 

𝑇2(𝑑) = mean temperature across 

the period [𝑑 − 27, 𝑑]. 

= mean𝑢(𝑇1(𝑢) | 𝑑 − 27 ≤ 𝑢 ≤ 𝑑)) 

𝑃2(𝑑) = mean daily precipitation across 

the period [𝑑 − 27, 𝑑] 

= mean𝑢(𝑃1(𝑢) | 𝑑 − 27 ≤ 𝑢 ≤ 𝑑) 

Component 

of 

seasonality 

𝑇seas(𝑑) = mean of 𝑇2 on day 𝑑 of 

the year across the study period 

= mean𝑢(𝑇2(𝑢) | 𝑢 is the 

same day of the year as 𝑑) 

𝑃seas(𝑑) = mean of 𝑃2 on day 𝑑 of the 

year across all years of the study period 

= mean𝑢(𝑃2(𝑢) | 𝑢 is the 

same day of the year as 𝑑)1 

Component 

of 

variability 

𝑇var = averaged temperature 

metric minus the seasonal 

component 

𝑇var(𝑑) = 𝑇2(𝑑) − 𝑇seas(𝑑) 

𝑃var = averaged precipitation metric 

minus the seasonal component 

𝑃var(𝑑) = 𝑃2(𝑑) − 𝑃seas(𝑑) 

 

3.3.2 Climate-driven demographic processes 

Models of survival, pregnancy, and body growth 

With the aim of characterising the survival, pregnancy, and body growth of M. natalensis, I 

designed models to test for and quantify the dependence of these processes on climatic 

variables and population size (both of which are functions of time 𝑡), and the individual’s 

body weight 𝑤. The vectors of covariates for each process were denoted 𝑿𝑆(𝑤, 𝑡) (survival), 

𝑿𝑃(𝑤, 𝑡) (pregnancy), and 𝑿𝐺(𝑤, 𝑡) (body growth), with corresponding vectors of coefficients 

(to be found) 𝜷𝑆, 𝜷𝑃, and 𝜷𝐺 . These processes were estimated based on recapture, 
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observable signs of recent pregnancy, and changes in body weight in the data (Figure 3.2) as 

described in further detail below. The timescale used was 28 days to match the timescale of 

the CMR study, so that 𝑡 + 1 is 28 days after 𝑡, and if 𝑡 is the date of one capture session 

then 𝑡 + 1 would be the expected date of the next capture session. 

 

Figure 3.2: Observed demographic changes in the female CMR study population by month. For each 

calendar month, the distribution of the observed value across different years is shown, highlighting 

the seasonal trends and inter-annual variation. Boxes show the median and the 25% to 75% 

interquartile range (IQR). Whiskers show the range of data within 1.5 times IQR outside the box, with 

outliers shown as individual points. Three-month intervals are shaded alternately in grey and white to 

aid readability. A: Observed proportion recaptured (at each capture session, proportion of females 

which are seen at a future session). B: Observed proportion pregnant or recently pregnant (proportion 

of females at a given capture session which are visibly pregnant or lactating). C: Observed mean body 

growth ratio (new weight divided by old weight for females caught at consecutive capture sessions). 

 

I modelled survival 𝑆(𝑤, 𝑡) (whether an individual of body weight 𝑤 at time 𝑡 survives to time 

𝑡 + 1) as a random variable drawn from a Bernoulli distribution with probability of success 

(survival) 𝑝𝑆(𝑤, 𝑡) (equation 3.1). 

 𝑆(𝑤, 𝑡) ∼ Bern(𝑝𝑆(𝑤, 𝑡)) 

𝑝𝑆(𝑤, 𝑡) = ℙ(alive at time 𝑡 + 1 | 𝑤, 𝑡) 

 

(3.1) 

However, survival was not directly observable in the data. Since dead individuals cannot be 

trapped (though on rare occasions individuals will move into the trap while alive and die 

overnight before the traps are checked), the only way death of an individual is indicated in 

the data is that they are not recaptured. However, lack of observation could be accounted for 

by migration or simple stochasticity. Therefore, I defined an additional random variable; 

recapture, 𝑅(𝑤, 𝑡) – whether an individual of body weight 𝑤 at time 𝑡 is recaptured (Figure 

3.2 A), with probability of success (recaptured any time after time 𝑡) 𝑝𝑅(𝑤, 𝑡). Survival 
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probability 𝑝𝑆 can be written in terms of recapture probability 𝑝𝑅 by conditioning the 

probability of survival on recapture. Suppose an individual was weight 𝑤 when they were 

captured at time 𝑡, then we can write their survival probability as 

𝑝𝑆(𝑤, 𝑡) = ℙ(alive at 𝑡 + 1) 

= ℙ(alive at t + 1 | recaptured after 𝑡)ℙ(recaptured after 𝑡) 

           + ℙ(alive at 𝑡 + 1 | never recaptured after 𝑡)ℙ(never recaptured after 𝑡) 

= 1 ∙ 𝑝𝑅(𝑤, 𝑡) + ℙ(alive at 𝑡 + 1 | never recaptured after 𝑡) ∙ (1 − 𝑝𝑅(𝑤, 𝑡)) 

 

⟹ 𝑝𝑆(𝑤, 𝑡) = 𝑝𝑅(𝑤, 𝑡) + 𝜅(𝑤, 𝑡)(1 − 𝑝𝑅(𝑤, 𝑡)) 

=  𝜅(𝑤, 𝑡) + (1 − 𝜅(𝑤, 𝑡))𝑝𝑅(𝑤, 𝑡) 

 

 

 

 

 

 

(3.2) 

where 𝜅(𝑤, 𝑡) is the probability that an individual captured at time 𝑡 with weight 𝑤 is still 

alive at time 𝑡 + 1 even though they were never recaptured, accounting for the factors of 

migration and stochasticity. For simplicity, I assumed this was constant (𝜅(𝑤, 𝑡) ≡ 𝜅), and 

termed this parameter the recapture modifier. Although this likely varies due to temporal 

patterns of migration, and may also depend on body weight, it would not be possible to 

distinguish between 𝜅 and 𝑝𝑅 if 𝜅 were allowed to vary. 

I restructured the data to observe the binary recapture outcomes of the random variable 𝑅. 

For each record, the time 𝑡 and measured body weight 𝑤 was noted. The observed outcome 

of 𝑅(𝑤, 𝑡) was then recorded as 1 if the individual was recaptured, and 0 otherwise. Since 

recapture was a binary outcome, I modelled recapture probability using a generalised linear 

model (GLM) with a binomial error structure, so that logit(𝑝𝑅(𝑤, 𝑡)) was a linear function of 

the covariates in 𝑿𝑆(𝑤, 𝑡) (equation 3.3). Equations 3.1–3.3 combined then provide the 

distribution of 𝑆(𝑤, 𝑡). 

 logit(𝑝𝑅(𝑤, 𝑡)) = 𝑿𝑆(𝑤, 𝑡)𝜷𝑆 (3.3) 

Pregnancy 𝑃(𝑤, 𝑡) (whether a female of body weight 𝑤 at time 𝑡 is pregnant at time 𝑡 + 1) 

was also modelled as a Bernoulli random variable, with probability of success (pregnancy) 

𝑝𝑃(𝑤, 𝑡) (equation 3.4). 

 𝑃(𝑤, 𝑡) ∼ Bern(𝑝𝑃(𝑤, 𝑡)) 

𝑝𝑃(𝑤, 𝑡) = ℙ(pregnant at time 𝑡 + 1 | 𝑤, 𝑡) 

 

(3.4) 

Recent pregnancy could be directly observed from the data, since individuals’ reproductive 

status are noted. Depending on whether an individual is pregnant, lactating, or both, the 
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windows in which pregnancy began can be inferred by constructing a timeline based on the 

reproductive timings of M. natalensis (Figure 3.3). 

 

Figure 3.3: The approximate reproductive timings of M. natalensis. The average gestation period is 21 

days, and pregnancy is visible in approximately the latter half of this period. Lactation then occurs for 

around a further 21 days after birth. Therefore, an individual which becomes pregnant on day 0 has 

the approximate reproductive timings shown by this timeline. 

In terms of the relationship between pregnancy and body weight, the objective was to 

quantify how intrinsic ecological traits impacted an individual’s likelihood of pregnancy. For 

instance, an individual with a larger body weight may be more likely to become pregnant 

since their body size could be an indicator of sexually maturity, or because individuals who 

are healthier or better fed are more likely to invest in pregnancy. If individuals which were 

currently pregnant were included in this analysis, then the increased weight due to 

pregnancy would unfairly bias the model. Therefore, to observe pregnancy in the data, I first 

made a dataset containing all records of females which are not currently pregnant or 

lactating, noting the time 𝑡 and body weight 𝑤. I then restricted these records to ones which 

had a corresponding consecutive capture record; defined as a record between three and five 

weeks after the current record (since capture sessions were often not exactly 28 days apart). 

Lactation 𝑈 was recorded as 1 if the individual was lactating in the consecutive record, and 0 

otherwise. Visible pregnancy 𝑉 was recorded as 1 if the individual was visibly pregnant in the 

consecutive record, and 0 otherwise. Based on the observed binary outcomes 𝑈 and 𝑉 and 

the reproductive timings of M. natalensis (Figure 3.3), the expected date that pregnancy 

began was inferred (Table 3.2). 

day 0 day 11 day 21 day 42 

pregnant 

visibly pregnant 

lactating 
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Table 3.2: Inferred date of pregnancy based on observed signs of pregnancy. 𝑈 is the binary outcome 

of lactation, with 𝑈 = 1 indicating that on date 𝑑 the individual captured was visibly lactating. 𝑉 is the 

binary outcome of visible pregnancy. 

Date of second 

record 
𝑈 𝑉 

Expected date 

pregnancy began 

𝑑 0 0 No pregnancy 

𝑑 0 or 1 1 𝑑 − 16 days 

𝑑 1 0 𝑑 − 32 days 

 

As with recapture, the probability of pregnancy 𝑝𝑃(𝑤, 𝑡) was modelled using a GLM with a 

binomial error structure so that logit(𝑝𝑃(𝑤, 𝑡)) was a linear function of the covariates 

associated with pregnancy (equation 3.5). 

 logit(𝑝𝑃(𝑤, 𝑡)) = 𝑿𝑃(𝑤, 𝑡)𝜷𝑃 (3.5) 

I modelled body weight 𝐺(𝑤, 𝑡), the body weight at time 𝑡 + 1 given weight 𝑤 at time 𝑡, as a 

normally distributed random variable (equation 3.6), denoting the probability density 

function of 𝐺(𝑤, 𝑡) by 𝑝𝐺(𝑢|𝑤, 𝑡) (equation 3.7). The mean of this distribution, 𝜇𝐺 , was 

modelled as a linear function of the covariates in 𝑿𝐺(𝑤, 𝑡), and the standard deviation, 𝜎𝐺 , 

was a linear function of body weight only (equations 3.8–3.9). 

 𝐺(𝑤, 𝑡) ∼ N(𝜇𝐺(𝑤, 𝑡), 𝜎𝐺(𝑤)) 

⇒ 𝑝𝐺(𝑢|𝑤, 𝑡) =
1

𝜎𝐺(𝑤)√2𝜋
exp (−

1

2
(

𝑣 − 𝜇𝐺(𝑤, 𝑡)

𝜎𝐺(𝑤)
)

2

) 

 

𝜇𝐺(𝑤, 𝑡) = 𝑿𝐺(𝑤, 𝑡)𝜷𝐺  

 

𝜎𝐺(𝑤) = 𝑎𝐺 + 𝑏𝐺𝑤 

(3.6) 

 

(3.7) 

 

(3.8) 

 

(3.9) 

 

 

 

Body weight was observed by identifying all pairs of consecutive capture records for each 

individual. Given a body weight 𝑤 at time 𝑡 and a body weight of 𝑣 in the consecutive record, 

the observed value of 𝐺(𝑤, 𝑡) was 𝑣. 

Population size 

To allow for density dependence, I included estimated relative population size as a covariate 

in the models of demographic processes, and used the minimum number alive (MNA) 

method as a measure of relative population size. For each capture session, the MNA was 

equal to the total number of individuals observed, plus the total number of individuals which 
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were not observed during that capture session but were observed both before and after. 

MNA can provide a robust indicator of relative population size (Graipel et al. 2014), while 

estimates of the absolute population size as obtainable from more involved probabilistic 

approaches (e.g., Laake et al. 2013) were not needed. Estimated relative population size 𝐴(𝑡) 

was standardised to have a mean value of 1. 

Climate lags and covariates 

To model the delayed effect of climatic variables on the demographic processes due to 

ecological processes such as vegetation growth, I introduced lags in the climatic variables. I 

allowed precipitation and temperature to each have a different climatic lag for each of the 

three demographic processes, meaning there were six lags in total; 𝐿𝑃,𝑆 and 𝐿𝑇,𝑆 

(precipitation and temperature lags, respectively, for survival), 𝐿𝑃,𝑃 and 𝐿𝑇,𝑃 (pregnancy), and 

𝐿𝑃,𝐺 and 𝐿𝑇,𝐺 (body growth). 

The vectors of covariates then took the following form: 

𝑿𝑆(𝑤, 𝑡) = (1, 𝑤, 𝐴(𝑡), 𝑃seas(𝑡 − 𝐿𝑃,𝑆), 𝑃var(𝑡 − 𝐿𝑃,𝑆), 𝑇seas(𝑡 − 𝐿𝑇,𝑆), 𝑇var(𝑡 − 𝐿𝑇,𝑆)) 

𝑿𝑃(𝑤, 𝑡) = (1, 𝑤, 𝐴(𝑡), 𝑃seas(𝑡 − 𝐿𝑃,𝑃), 𝑃var(𝑡 − 𝐿𝑃,𝑃), 𝑇seas(𝑡 − 𝐿𝑇,𝑃), 𝑇var(𝑡 − 𝐿𝑇,𝑃)) 

𝑿𝐺(𝑤, 𝑡) = (1, 𝑤, 𝐴(𝑡), 𝑃seas(𝑡 − 𝐿𝑃,𝐺), 𝑃var(𝑡 − 𝐿𝑃,𝐺), 𝑇seas(𝑡 − 𝐿𝑇,𝐺), 𝑇var(𝑡 − 𝐿𝑇,𝐺)) 

 

(3.11) 

 

(3.12) 

 

(3.13) 

Model fitting 

The grid of tested climate lags for temperature and precipitation had a resolution of seven 

days, with a range of zero to 168 days for both lags. For each demographic process, at each 

point on the climate lag grid a model was fitted for every combination of covariates. Only 

those models for which all tested covariates were significant (𝛼 = 0.05) were kept, and the 

remaining models were assessed using the Akaike information criterion AIC (Burnham & 

Anderson 1987). I used the principle that a difference in AIC of at least 2 (ΔAIC ≥ 2) between 

a candidate model and the model with the lowest AIC indicates that the candidate model 

should be rejected in favour of the model with the lowest AIC, while a difference of less than 

2 (ΔAIC < 2) indicates that the candidate model cannot be ruled out and should be 

considered alongside the model with the lowest AIC. 

Validation of the demographic models was carried out by fitting the models to a randomly 

sampled 80% of the rodent demographic data and validating on the remaining 20%. 

Validation using a chi-squared test or similar was not appropriate since every observation 
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was modelled to have been drawn from a unique distribution dependent on individual body 

weight and time of capture. Additionally, a measure of the size of residuals such as root 

mean squared error was not appropriate for recapture and pregnancy probabilities since the 

observed binary outcomes (0 or 1) would differ substantially from the predicted probabilities 

(between 0 and 1). I therefore assessed model performance by generating predicted 

probabilities and computing the likelihood that the observed data resulted from these 

models of recapture, pregnancy, and body growth. I then compared this with the likelihood 

that the observed data resulted from null models of the processes, in which the probability 

of each event is fixed at the observed proportion of times the event occurred across the 

validation dataset, ignoring body weight and time. Using the likelihood ratio test, I then 

calculated the significance level of my model being a better explanation for the data than the 

null model for each of the three processes (𝛼 = 0.05; df = 6 since the climatic-demographic 

model had 6 additional covariates for each process compared with the null model). 

Model robustness was tested by comparing the resulting candidate models on two further 

random 80% subsets of data, identifying whether climate lags and covariates were the same 

between the three models and, if so, comparing estimated coefficients. All figures were 

produced using the R package ggplot2. For visualisation only, distributions were smoothed 

with kernel density estimations using ggplot2::geom_density, using the default bandwidth 

calculation method. 

3.3.3 Climatic-demographic simulation 

Model specification 

The full IPM takes the form of a set of equations to project the distribution of body weights 

in the population forwards in discrete time steps based on modelled survival, recruitment, 

and body weight. The distribution of body weights 𝑤 at time 𝑡 is denoted by 𝐷(𝑤, 𝑡), so that 

the number of individuals at time 𝑡 whose weights are between 𝑣 and 𝑧 is given by 

∫ 𝐷(𝑤, 𝑡) d𝑤
𝑧

𝑣
. 

To model the demographic process of recruitment, I described how the previously modelled 

pregnancy probability 𝑝𝑃(𝑤, 𝑡) would lead to recruitment of offspring by creating a sub-

compartment of pregnant individuals 𝐽(𝑤, 𝑡) within the full distribution 𝐷(𝑤, 𝑡). Individuals 

determined to become pregnant in the time (𝑡, 𝑡 + 1] would be in compartment 𝐽 at time 𝑡 +

1. I then assumed that if the pregnant individual survives to time 𝑡 + 2 they recruit 𝑙 
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offspring, where 𝑙 is a constant, which follow a distribution of body weights given by 𝑣(𝑤). 

Importantly, individuals in compartment 𝐽 at time 𝑡 can return to compartment 𝐽 at time 𝑡 +

2, to reflect that female M. natalensis can become pregnant approximately 4 weeks after 

giving birth.  

Table 3.3: List of quantities in the full climatic-demographic model. 

Quantity Name 
Value / Method of 

calculation 
Meaning 

𝑆(𝑤, 𝑡) Survival  Modelled  

(equations 3.1–3.2) 

Whether an individual of body weight 𝑤 

captured at time 𝑡 survives to time 𝑡 + 1. 

𝑅(𝑤, 𝑡) Recapture Modelled  

(equation 3.3) 

Whether an individual of body weight 𝑤 

captured at time 𝑡 is ever captured again. 

𝑃(𝑤, 𝑡) Pregnancy Modelled  

(equations 3.4–3.5) 

Whether an individual female of body weight 

𝑤 captured at time 𝑡 is pregnant at time 𝑡 + 1 

(given that she is still alive at time 𝑡 + 1). 

𝐺(𝑤, 𝑡) Growth rate Modelled  

(equations 3.6–3.9) 

Body weight at time 𝑡 + 1 of an individual 

with body weight 𝑤 at time 𝑡. 

𝐴(𝑡) Population 

size 

Estimated  

(equation 3.10) 

Estimated abundance of rodents in the 

population at time 𝑡. 

𝑿𝑆(𝑤, 𝑡) 

𝑿𝑃(𝑤, 𝑡) 

 𝑿𝐺(𝑤, 𝑡) 

Vectors of 

covariates 

From the data, using 

the estimated 

climatic lags 

(equations 3.11–3.13) 

Covariates for survival (S), pregnancy (P) and 

new body weight (G) for an individual with 

body weight 𝑤 at time 𝑡. 

𝜷𝑆, 𝜷𝑃, 𝜷𝐺  Vectors of 

coefficients 

From the GLMs Coefficients corresponding to the covariates 

in 𝑿𝑆, 𝑿𝑃 , 𝑿𝐺 . 

𝐽(𝑤, 𝑡) Distribution 

of pregnant 

females 

Simulated  

(equation 3.14) 

Abundance of pregnant females of body 

weight 𝑤 at time 𝑡. Note that projected body 

weight due to growth is calculated ignoring 

pregnancy. 

𝐷(𝑤, 𝑡) Distribution 

of all 

rodents 

Simulated  

(equation 3.15) 

Abundance of rodents with body weight 𝑤 at 

time 𝑡. 

𝑣(𝑤) Juvenile 

weight 

distribution 

Assumed; probability 

density function for 

the distribution 

𝑁(𝜇 = 13, 𝜎 = 0.3) 

Probability density function for the body 

weight 𝑤 (in grams) of an individual joining 

the population 35 days after birth. This 

distribution was chosen based upon a study 

which recorded the weight of female M. 

natalensis 28 days after birth (Jackson & van 

Aarde 2003). 

𝑙 Litter size Free parameter Expected number of offspring in a litter. 

𝜅 Recapture 

modifier 

Fitted as a function 

of 𝑙 to produce 

stable population 

Probability of an individual who was recorded 

at some time 𝑡 as not having been seen again 

in the study still being alive at time 𝑡 + 1. 

(Assumed constant). 
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The full model (Table 3.3) is then given by the integral projection equations: 

 
𝐽(𝑤, 𝑡 + 1) = ∫ 𝑝𝐺(𝑤|𝑦, 𝑡)𝑝𝑆(𝑦, 𝑡)𝑝𝑃(𝑦, 𝑡)(𝐷(𝑦, 𝑡) − 𝐽(𝑦, 𝑡)) d𝑦

∞

0

 

𝐷(𝑤, 𝑡 + 1) =  ∫ 𝑝𝐺(𝑤|𝑦, 𝑡)𝑝𝑆(𝑦, 𝑡)𝐷(𝑦, 𝑡) + 𝑙𝑝𝑆(𝑦, 𝑡)𝐽(𝑦, 𝑡)𝑣(𝑤)
∞

0

d𝑦 

 

(3.14) 

 

(3.15) 

Simulation 

The full model was simulated on a grid with time step of 28 days and body weight step of 1 

gram, with the integrals discretised into sums and the probability density function for body 

growth (𝑝𝐺) converted into a probability mass function as follows.  

A body weight step of 1 gram was chosen to provide precision while maintaining 

computational speed. Smaller values of body weight step were tested and no discernible 

differences in resulting simulations were found. An upper limit of 100 grams was chosen 

because there were very few records of individuals above this body weight, and it was found 

that this body weight was never reached during simulations. 

Equations 3.14–3.15 were discretised by converting the continuous probability density 

functions 𝑝𝐺(𝑤|𝑦, 𝑡) and 𝑣(𝑤) into discrete probability mass functions using equations 3.16–

3.17, and then by converting integrals into sums over the set of possible weights 𝑊 =

{1, 2, 3, … , 100}. Equations 3.18–3.19 then give the discretised form of the model to produce 

the simulations. 

 
𝑝𝑔(𝑤|𝑦, 𝑡) =

𝑝𝐺(𝑤|𝑦, 𝑡)

∑ 𝑝𝐺(𝑧|𝑦, 𝑡)𝑧∈𝑊
 

𝑝𝑣(𝑤) =
𝑣(𝑤)

∑ 𝑣(𝑧)𝑧∈𝑊
 

𝐽(𝑤, 𝑡 + 1) = ∑ 𝑝𝑔(𝑤|𝑦, 𝑡)𝑝𝑆(𝑦, 𝑡)𝑝𝑝(𝑦, 𝑡)(𝐷(𝑦, 𝑡)

𝑦∈𝑊

− 𝐽(𝑦, 𝑡)) 

𝐷(𝑤, 𝑡 + 1) = ∑ 𝑝𝑔(𝑤|𝑦, 𝑡)𝑝𝑆(𝑦, 𝑡)𝐷(𝑦, 𝑡) + 𝑙𝑝𝑆(𝑦, 𝑡)𝐽(𝑦, 𝑡)𝑣(𝑤)

𝑦∈𝑊

 

 

(3.16) 

 

(3.17) 

 

(3.18) 

 

(3.19) 

The initial population size was set as 10,000 and the distribution of weights was chosen by 

randomly sampling across the capture data. Since the modelled population size is only 

relative, a mean population size can be set without affecting the dynamics. The litter size 𝑙 

was set as 5 females (Leirs et al. 1993), and recapture modifier 𝜅 was estimated by calibrating 

the model with different values of 𝜅 until the mean population size was the stipulated 

(arbitrary) value, 10,000. 



Lauren A. Attfield, PhD thesis – Chapter 3   

86 

The simulations were only of females, assuming that there would be enough males in the 

population for recruitment to occur. A burn-in period of 24 time steps (nearly 2 years) was 

used, and free parameters 𝛼 (capture success) and 𝑙 (litter size) were varied (Table 2). 

Comparison with non-demographic approaches 

To compare the climatic-demographic model with approaches which do not consider 

demographic processes, I defined four alternative models as follows. (1) Null – an 

unstructured model in which the relative population size at each time is as a normal 

distribution with mean 1 and variance equal to the variance across the relative population 

sizes 𝐴 at each capture session. (2) Linear – a linear model in which the population size could 

depend linearly on lagged climatic variables, with lags selected and the final model fit using 

linear regression and minimising mean squared error. I then defined two mass-action 

population models, in which population growth rates depended linearly on lagged climatic 

variables, fit in the same manner as the linear model, where (3) linear growth was a linear 

growth model, with population growth rate at an observation at time 𝑡 calculated as 𝐴(𝑡) −

𝐴(𝑡 − 1), and (4) exponential growth assumed an exponential growth rate, so that the 

population growth rate was log(𝐴(𝑡)/𝐴(𝑡 − 1)). I wanted to compare models 1–4 with my 

climatic-demographic model (5), so I computed residuals (predicted relative population size 

minus estimated relative population size), variance of residuals, and median squared error. 

3.4 Results 

3.4.1 Climate-driven demographic processes 

The temperature lags 𝐿𝑇 were estimated as 70 days for survival (∆AIC = 3.76 compared with 

the next best model) and 154 days for pregnancy (∆AIC = 2.20). The precipitation lags 𝐿𝑃 

were estimated as 98 days for survival (∆AIC = 6.67) and 63 days for pregnancy (∆AIC =

4.44). For body growth, the best model (∆AIC = 1.64) had 𝐿𝑇,𝐺=161 days and 𝐿𝑃,𝐺=133 days, 

and was accepted despite having ∆AIC < 2 since the next best model was similar 

(Supplementary Table S3.1). For the climate lags selected, the best model (Supplementary 

Table S3.2) for survival (∆AIC > 10) included body weight 𝑤, lagged temperature seasonality 

𝑇seas, lagged precipitation seasonality 𝑃seas, and lagged precipitation variability 𝑃var (𝑝 <

0.0001 for all covariates) (Figure 3.4). The best model for recruitment (∆AIC = 4.21) included 

𝑤 (𝑝 = 0.01), relative population size 𝐴 (𝑝 < 0.0001), 𝑇seas (𝑝 < 0.0001), and 𝑃var (𝑝 < 0.0001) 

(Figure 3.5). The best model for growth (∆AIC > 10) had 𝑤, 𝐴, 𝑇seas, and 𝑃seas as significant 
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covariates for mean body growth 𝜇𝐺 , and standard deviation 𝜎𝐺 depended on 𝑤 (𝑝 < 0.0001 

for all covariates) (Figure 3.6).  

 

 

Figure 3.4: Model fit for recapture. Each plot shows predicted recapture probability for varying values 

of a given covariate, with data (binary recapture response) shown with a density plot, box plot, and 

points along the top (recaptured again) and bottom (never recaptured again) of the graph. For each 

given covariate, the predicted probability of recapture is shown with a black line, while the coloured 

band around this line shows the 95% confidence interval around this prediction based on the 

uncertainty around the predicted coefficient around the given covariate. A: Body weight (g). B: 

Seasonal component of temperature (°C). C: Seasonal component of precipitation (mm). D: 

Interannual variability in precipitation (mm). 
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Figure 3.5: Model fit for pregnancy. Each plot shows predicted pregnancy probability for varying 

values of a given covariate, with data (binary pregnancy response) shown with a density plot, box plot, 

and points along the top (became pregnant) and bottom (did not become pregnant) of the graph. For 

each given covariate, the predicted probability of pregnancy is shown with a black line, while the 

coloured band around this line shows the 95% confidence interval around this prediction based on the 

uncertainty around the predicted coefficient around the given covariate. Note that in panels A, B, and 

D, probability of pregnancy is presented on a logarithmic scale to aid readability of small probabilities, 

while in panel C the axis for probability of pregnancy is cropped since the effect of the covariate on 

pregnancy probability is small. A: Body weight (g). B: Relative population size. C: Seasonal component 

of temperature (°C). D: Interannual variability in precipitation (mm). 

 

 



Lauren A. Attfield, PhD thesis – Chapter 3   

89 

 

 

 

 

 

Figure 3.6: Model fit for mean body growth. Each plot shows predicted change in body weight for 

varying values of a given covariate, with data shown with black points. For each given covariate, the 

predicted change in body weight is shown with a black line, while the coloured band around this line 

shows the 95% confidence interval around this prediction based on the uncertainty around the 

predicted coefficient around the given covariate. A: Body weight (g). B: Relative population size. C: 

Seasonal component of temperature (°C). D: Seasonal component of precipitation (mm). 
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Temperature seasonality 𝑇seas was the strongest driver of survival probability, with survival 

rate increasing following the hottest time of the year with a 70-day lag, and was also the 

strongest driver of recruitment, with pregnancy probability increasing following the hottest 

time of the year with a 154-day lag (Figure 3.7A–B). Contribution of precipitation seasonality, 

temperature seasonality, and body size towards mean growth ratio were comparable, and 

body weight increased standard deviation of growth ratio (Figure 3.7C–D). 

The contribution of precipitation variability in the models indicated that in years with more 

precipitation, recruitment rates are higher and survival rates lower on average. The year with 

the highest median precipitation variability was 2006, with median(𝑃var) =  0.774mm, while 

the year with the lowest median precipitation variability was 2005, with median(𝑃var) =

 −0.577mm. Based on these values and with other variables held constant, high precipitation 

would see an average monthly pregnancy probability of 0.0617 compared with 0.0392 in a 

low-precipitation year. Average survival probability would be 0.356 in a high-precipitation 

year, and 0.381 in a low-precipitation year. This means that in a high-precipitation year, M. 

natalensis are on average 57.6% more likely to become pregnant every month, and only 

6.51% less likely to survive every month compared with a low-precipitation year. 

I found that models for all three processes were significantly better than constant parameter 

null models (𝑝 < 0.0001 for survival, 𝑝 = 0.0002 for recruitment, 𝑝 = 0.0031 for growth), 

indicating a good fit to the observed demographic processes. 
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Figure 3.7: Distribution of covariate effects on demographic processes survival, pregnancy, and body 

growth in M. natalensis. Horizontal black lines show the baseline value of the variable when all 

covariates are equal to their mean. Violin plots show how the actual distribution of each covariate 

affects the variable while other covariates are held constant. Icons indicate direction of increasing and 

decreasing values of the covariate. For all processes, while the effect of population size was significant, 

the contribution was so small that the density plot was unreadable and therefore this contribution was 

omitted from the graphs. A: Probability of survival is mainly driven by temperature seasonality; 

increasing following hot times of the year and decreasing following cooler times of year. Survival is 

also increased greatly in particularly large individuals. B: The baseline pregnancy probability is low and 

is especially low following colder times of the year. Probability of pregnancy is greatly increased 

following periods with more than average precipitation and following hot times of year. C: The mean 

growth ratio (mean new body size divided by old body size) is similarly affected by all three shown 

covariates, with growth rate larger for smaller body size and following dry and hot times of the year. 

D: The standard deviation of body growth ratio increases with body size. 
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3.4.2 Climatic-demographic simulation 

The climatic-demographic model greatly outperformed (1) the null model and both mass-

action population models, (3) linear growth and (4) exponential growth (Figure 3.8, 

Supplementary Table S3.4). The best model was (2) the linear model, with a median squared 

error of 0.171, while (5) the climatic-demographic model had a median squared error of 

0.276, both of which were much lower than that of models 1, 3, and 4. 
 

 

Figure 3.8: Comparison of climatic-demographic simulation performance with non-demographic 

approaches to predicting population size. The models were (1) null, (2) linear, (3) linear growth, (4) 

exponential growth, and (5) climatic-demographic. A: Density of residuals (predicted relative 

population size minus interpolated observed relative population size). The linear model (2) and the 

climatic-demographic model (5) have the least spread of residuals around 0. B: Squared error 

(residuals squared) as points, with box-and-whisker plot showing 5%, 25%, 50%, 75% and 95% 

quantiles. The distribution of squared error is closer to 0 for the linear (2) and climatic-demographic 

(5) models compared with the other models, with the linear method (2) having the lower median 

squared error. 

3.5 Discussion 

By testing for and parameterising the effect of lagged seasonal and inter-annually variable 

climate on the demographic processes of M. natalensis, I found that climate seasonality, 

inter-annual precipitation variability, and individual body weight are all significant factors in 

the species’ demographic processes. These results imply the presence of nonlinear 

population dynamics with a seasonal component, but which change year-on-year depending 
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on climate patterns. Using these results, I adapted the IPM method to simulate the 

population dynamics of M. natalensis, and simulated population size using both this climatic-

demographic approach and non-demographic approaches which model population size as 

driven by the same climatic variables. I found that the climatic-demographic approach was 

comparable to non-demographic approaches, but with the important advantage of having 

been fit to more directly-observed processes (rather than variable population size which is 

challenging to measure in a CMR study) and predicting demographic changes such as births 

and deaths which are relevant to disease dynamics. The climatic-demographic model can be 

used as an experimental environment in which to test the impact of different climate 

scenarios on M. natalensis population dynamics and has the potential to be further adapted 

as a model of infectious disease transmission among the reservoir host population. 

Importantly, I found that inter-annual variation in rainfall greatly increases pregnancy rate, 

with high precipitation years predicted to have much larger peak population sizes than 

average precipitation years. 

The finding of a dependence of demographic processes on lagged precipitation seasonality 

and inter-annual variability is consistent with the suggestion that precipitation is a key driver 

of M. natalensis population size (Fichet-Calvet et al. 2007; Makundi et al. 2007; Olayemi et al. 

2018), with the lag implying an ecological delay such as vegetation growth, with precipitation 

as an indirect factor in recruitment rate. The precipitation lag in pregnancy I found of 63 days 

is similar to that found in previous analyses of the same study population (Leirs et al. 1994) 

and other analyses and observations of M. natalensis (Massawe et al. 2015; Mayamba et al. 

2021). The increase in inferred recruitment in a high-precipitation year greatly outweighed 

the associated decrease in survival probability, the latter of which could perhaps be 

explained by a decreased survival rate associated with pregnancy. I found that extremes of 

precipitation could substantially influence recruitment rate, with a predicted 57% increase in 

the average rodent population size in the highest-precipitation year compared to the lowest-

precipitation year. The dependence of demographic processes on precipitation variability but 

not temperature variability could suggest that precipitation is an environmental limiting 

factor in resource availability (Christensen 1993). 

The seasonal climate metrics which drove M. natalensis population demography were 

temperature and precipitation for survival, and temperature alone for pregnancy and body 

growth. The strong positive relationship between lagged seasonal temperature and these 
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three processes could be indicative of an increased resource availability following periods of 

warmth and increased sunshine (due to vegetation growth). However, rather than 

interpreting this relationship as temperature playing a measurable role in driving specific 

processes, it may be more appropriate to view the rodent’s dependence on seasonal 

temperature as the result of environment-driven phenology. Through this interpretation, the 

effect of seasonal climate patterns on population demography is simply an underlying 

annual structure determining timing of population changes. The strong link between 

temperature and rodent phenology found here echoes that found in a large-scale analysis of 

the North American deer mouse (Luis et al. 2010). 

Validation of the population size simulation was imperfect due to the challenges in 

accurately estimating time-varying population size from CMR data. I estimated the relative 

population size of the study population using MNA, which was used to fit the linear climate-

driven population model. Meanwhile, in the climatic-demographic model, individual 

processes were fit to observed changes in traits such as pregnancy, which in turn were used 

to describe population changes and model resulting population size. In other words, the 

linear model was fit to and tested on the same dataset, while the climatic-demographic 

model was blind to the relative population size it would be used to simulate. It is therefore 

unsurprising that the linear model was a better predictor of population size, however, it 

should not be discounted that under some conditions a linear approach may provide a more 

appropriate model of relative population size due to its reduced complexity. It would be of 

interest to apply new developments to MNA estimation (Bright Ross et al. 2022) to reassess 

the relative performance of the climatic-demographic and linear models in predicting time-

varying population size. 

The method developed here to model the host M. natalensis has several advantages over 

existing approaches. Fitting demographic processes to climate metrics creates an in silico 

experimental environment which is more suitable for forecasting population and infectious 

disease dynamics under novel climate scenarios than a population-level approach. With 

rodent control found experimentally to be ineffective at reducing number of M. natalensis 

rodent hosts on the long term (Mariën et al. 2019), this model provides an experimental 

environment within which to test other interventions. Additionally, by treating demographic 

processes and climate metrics as continuous variables, I have been able to characterise the 

processes underpinning M. natalensis population dynamics with more precision than earlier 
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studies of the species which used more categorical descriptions, such as “rainy season” or 

“dry season” (Leirs et al. 1993; Sluydts et al. 2007). A demographic, process-based, approach 

to modelling the population also circumnavigates the challenges in estimating longitudinal, 

temporally variable population size from CMR studies. 

With the changing climate likely to impact dynamics of M. natalensis, by quantifying the 

climatic dependence of its demography the climatic-demographic model creates an 

opportunity to explore how these impacts might manifest. However, my model does not take 

into account some important determinants of spatiotemporal M. natalensis distribution, such 

as land-use and land cover, movement and migration, and agricultural patterns. The 

estimated precipitation lag for recruitment estimated here is consistent with analyses linking 

climate to Lassa fever incidence (Redding et al. 2016; 2021, Supplementary Figure S1.1), after 

taking into account additional delays due to gestation and disease incubation, suggesting 

that this model for M. natalensis could shed light on the epidemiology of Lassa fever. 

However, when seeking to apply this model to understand Lassa virus dynamics, it should be 

emphasised that Lassa fever is endemic in West Africa, not Tanzania, with differing habitat 

types and genetic divergence (Colangelo et al. 2013) making applicability of this model to 

different population of the same species limited. However, by linking demographic processes 

to decomposed seasonal and inter-annually variable climate metrics, this model of M. 

natalensis captures separately the rodents’ phenology and response to inter-annual changes 

in precipitation. Given the ethical and health and safety implications of carrying out capture-

release studies on an animal which carries a zoonotic pathogen, a model such as this may be 

the only way to gain demographic insights into known hosts and is a promising direction to 

explore towards the development of a process-based climate-driven model of Lassa virus in 

the reservoir host. 

The novel approach of modelling continuous demographic traits with lagged climate metrics 

opens avenues of exploration into the demographic processes of other species and 

populations of interest, including other rodent hosts of zoonotic diseases. Taking the 

climatic-demographic model forwards, it would be valuable to incorporate transmission 

dynamics among the host population, made possible by the demographic structure of the 

model which, for example, would enable distinction between vertical and horizontal 

transmission. This in turn could be applied to develop forecasting and intervention models 

for zoonotic diseases which are driven by climate-sensitive host population dynamics. 
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Chapter 4: Process-based modelling links climate-driven 

reservoir host infectious disease dynamics with Lassa fever 

incidence 

4.1 Abstract 

Transmission of zoonotic pathogens is an essential and dynamic part of the zoonotic disease 

system and, alongside reservoir host ecology and other processes, underpins risk of human 

disease. In Chapter 3 I found that the demographic processes of Mastomys natalensis in 

Tanzania were highly seasonal, and additionally found an important effect of inter-annual 

variability in precipitation on recruitment rate. These findings and the resulting climatic-

demographic model present an opportunity to model this species in the context of pathogen 

hosting and transmission dynamics. Here, I develop a mathematical model of rodent-to-

rodent arenavirus transmission dynamics based upon field observations of arenavirus 

infection in M. natalensis, selecting a model framework in which horizontally-infected and 

vertically-infected rodents have different shedding and recovery dynamics. I then incorporate 

this transmission model into the climatic-demographic model to create a full climate-driven 

model of population and pathogen dynamics. I hypothesise that this model, when applied to 

Nigeria where M. natalensis hosts the zoonotic pathogen Lassa virus, could be used to 

predict temporal patterns of infection incidence. To test this hypothesis, I first estimate a 

probabilistic distribution of the incubation period of Lassa fever and transform observed 

human cases of Lassa fever in Nigeria into inferred infection incidence. I then model the 

relationship, finding that for the five states with the highest reported incidence of Lassa fever 

in 2020, temporal patterns of inferred infection incidence were consistent with the climate-

driven, process-based model of zoonotic hazard. These results indicate that reservoir host 

and pathogen dynamics, driven by seasonal and inter-annually variable climate patterns, may 

be useful in predicting Lassa virus spillover risk, and that these dynamics could explain 

observed temporal and spatiotemporal patterns of Lassa fever incidence. Given that 

incidence of Lassa fever is predicted to increase due to climate change, this model provides 

the opportunity to explore inter-annual and intra-annual changes to temporal dynamics of 

the zoonotic disease system. 
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4.2 Introduction 

Models of risks associated with zoonotic and vector-borne disease can lead to improved 

understanding of risk factors (Seidahmed et al. 2018), advance forecasting to enable resource 

allocation (Anyamba et al. 2009; Kshirsagar et al. 2013) and exploration of mitigation and 

intervention strategies (Reis et al. 2008; Smith et al. 2008). Given that zoonotic diseases result 

from complex multi-species, multi-scale systems, process-based modelling approaches are 

needed to accurately capture the dynamics underpinning zoonotic disease risk (Plowright et 

al. 2017), especially when considering how a zoonotic disease system might be impacted by 

novel circumstances such as following climate or land-use change (Gibb et al. 2020a). 

Host ecology plays a key role in the zoonotic disease system, fundamentally determining the 

availability of zoonotic hosts in the environment which are capable of transmitting the 

pathogen to other zoonotic hosts and humans. Nested within zoonotic host population 

dynamics is pathogen transmission, often resulting variable pathogen prevalence in the host 

population. Therefore, temporal abundance of infectious hosts is not necessarily 

proportional to the overall host abundance. Such nonlinear dynamics have been observed in 

hantavirus dynamics in bank voles (Voutilainen et al. 2016; Reil et al. 2017), rabies virus 

dynamics in bats (George et al. 2011), and arenavirus dynamics in Mastomys natalensis 

(Mariën et al. 2020). Pathogen dynamics vary between disease systems; for instance, density-

dependent transmission (e.g., Mariën et al. 2019) describes a rate of infection proportional to 

the spatial density of infected individuals, while in frequency-dependent transmission (e.g., 

Tompros et al. 2021) the rate of infection is proportional to the proportion (frequency) of 

infected individuals among the entire population. Therefore, estimates of temporal zoonotic 

hazard – which in this thesis has been defined as the relative abundance of the zoonotic 

pathogen in hosts which can transmit the pathogen to humans (Gibb et al. 2020a) – should 

ideally combine zoonotic host ecology with transmission dynamics, rather than assuming 

zoonotic hazard is simply proportional to zoonotic host abundance. 

The modelling of process-based population ecology and transmission dynamics is well 

established in the field of vector-borne disease ecology (Franklinos et al. 2019), often 

through stage-structured models (Ciota & Keyel 2019), a type of demographic population 

model. In these models of vectors, pathogens and their transmission are explicitly 

incorporated into the modelling framework to allow for nonlinear dynamics. Modelling the 

climate-driven dynamics of vectors and their pathogens using demographic models has 
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allowed forecasting of disease risk and incidence and the recommendation of targeted 

interventions based on climatic monitoring (Hancock et al. 2009; Wang et al. 2016; Tjaden et 

al. 2018). However, climate-driven host-pathogen dynamics are rarely modelled for zoonotic 

disease systems. 

For Lassa virus, the climate-driven integral projection model (IPM) of the reservoir host M. 

natalensis developed in Chapter 3 presents an opportunity to build a process-based model 

of zoonotic hazard. Although the climatic-demographic model was fit to a capture-mark-

recapture (CMR) study of a population in Tanzania – outside of the Lassa virus endemic area, 

the model describes dependence of demographic processes on seasonal and inter-annually 

variable climate, capturing an increased degree of ecological detail than was previously 

included. This ecological detail should increase the likelihood of the model being 

appropriate for describing M. natalensis under varying climate patterns. By applying the 

model to climate patterns in West Africa, it may therefore be possible to predict M. 

natalensis population dynamics within the endemic area of Lassa virus. However, the 

climatic-demographic model is of reservoir host population dynamics only, and does not 

include pathogen dynamics. In order to best describe the Lassa virus system given potential 

nonlinearities in transmission dynamics, it would be valuable to include a host-to-host 

transmission model within the climatic-demographic model. The resulting model could then 

potentially be used to forecast temporal Lassa virus zoonotic hazard and explore changes to 

the Lassa virus system, which in turn could inform mitigation and intervention strategies. 

Here, I explore the Lassa virus host-pathogen system and assess the potential for climate-

driven reservoir host demography and transmission dynamics to explain human disease 

incidence. First, I investigate how the climatic-demographic IPM of M. natalensis can be 

extended to include host-to-host arenavirus dynamics constructed from observations based 

on field data. Then I apply this model of host-pathogen dynamics to Nigeria to predict Lassa 

virus zoonotic hazard. To link observed cases of human disease with predicted zoonotic 

hazard, I estimate the human incubation period of Lassa fever using collated nosocomial 

outbreak data and use this to infer human infection incidence from observed patterns of 

disease in Nigeria. Finally, I construct a generalised linear model (GLM) to test whether 

predicted zoonotic hazard is a significant and positive correlate in patterns of inferred 

human infection incidence and assess to what extent the model created can inform temporal 

zoonotic hazard and infection risk. 
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4.3 Methods 

First (Section 4.3.1) I develop a process-based model of climate-driven zoonotic hazard by 

combining an arenavirus transmission model with the climatic-demographic model of M. 

natalensis in Chapter 3. Next (Section 4.3.2), I infer Lassa virus infection incidence in Nigeria 

by estimating the incubation period distribution of Lassa fever in humans and using this 

distribution to transform observed Lassa fever cases in Nigeria. Finally, I assess how my 

model of climate-driven zoonotic hazard can be used to understand and predict patterns of 

Lassa virus infection incidence in Nigeria by constructing a GLM. 

4.3.1 Developing a process-based model of climate-driven zoonotic hazard 

The IPM framework (seen in Chapter 3) takes the form 

 
𝐽(𝑤, 𝑡 + 1) = ∫ 𝑝𝐺(𝑤|𝑦, 𝑡)𝑝𝑆(𝑦, 𝑡)𝑝𝑃(𝑦, 𝑡)𝐷(𝑦, 𝑡) d𝑦

∞

0

 

𝐷(𝑤, 𝑡 + 1) =  ∫ 𝑝𝐺(𝑤|𝑦, 𝑡)𝑝𝑆(𝑦, 𝑡)𝐷(𝑦, 𝑡) + 𝑙𝑝𝑆(𝑦, 𝑡)𝐽(𝑦, 𝑡)𝑣(𝑤)
∞

0

d𝑦 

 

(3.14) 

 

(3.15) 

where 𝐷(𝑤, 𝑡) is the abundance of individuals of body weight 𝑤 at time 𝑡, and 𝐽(𝑤, 𝑡) is the 

subset of these individuals who are currently pregnant or recently gave birth. This framework 

was constructed to reflect the reproductive timings of M. natalensis; for instance, individuals 

who become pregnant at time 𝑡 are then in the pregnancy compartment at time 𝑡 + 1 (where 

𝑡 measures time in 28-day steps) but can still become pregnant again at time 𝑡 + 2, reflecting 

that the post-partum oestrous of M. natalensis occurs only around 4 weeks after the initial 

pregnancy (Johnston & Oliff 1954) and observations that in the wild some females are 

pregnant most months of a breeding season (Leirs et al. 1993). 

To expand this model to include pathogen transmission dynamics, I constructed a 

compartmental infectious disease model of the form Susceptible (S)-Infectioushorizontal (H)-

Infectiousvertical (V)-Recovered (R). This model structure and later parameter values were based 

on studies of Morogoro virus, Gairo virus, and Lassa virus in M. natalensis; it was not possible 

to produce a transmission model of Lassa virus alone since there are no CMR studies of M. 

natalensis in the Lassa virus endemic area. Instead, CMR studies of populations which host 

other (non-zoonotic) arenaviruses provide an approximate framework for the transmission of 

the related Lassa virus. The vertical and horizontal transmission routes are informed by 

observed arenavirus dynamics in M. natalensis wherein vertically-infected individuals remain 

infectious for life, while horizontally-infected individuals are only transiently infectious and 
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recover after a period of up to 30 days (Borremans et al. 2015). The mass-action SHVR model 

(Figure 4.1) takes the form 

 d𝑁𝑆

d𝑡
= 𝑏(𝑁𝑆 + 𝑁𝑅 + (1 − 𝛼)(𝑁𝐻 + 𝑁𝑉)) − 𝛽𝑁𝑆(𝑁𝐻 + 𝑁𝑉) − 𝜇𝑁𝑆 

d𝑁𝐻

d𝑡
= 𝛽𝑁𝑆(𝑁𝐻 + 𝑁𝑉) − 𝛾𝑁𝐻 − 𝜇𝑁𝐻 

d𝑁𝑉

d𝑡
= 𝛼𝑏(𝑁𝐻 + 𝑁𝑉) − 𝜇𝑁𝑉  

d𝑁𝑅

d𝑡
= 𝛾𝑁𝐻 − 𝜇𝑁𝑅 , 

 

(4.1) 

 

(4.2) 

 

(4.3) 

 

(4.4) 

where 𝛽 is the horizontal transmission rate, 𝛾 is the recovery rate following horizontal 

transmission, 𝜇 is the intrinsic mortality rate, 𝑏 is the intrinsic birth rate, and 𝛼 is the 

probability of vertical transmission between an infected individual and its offspring. 

 

Figure 4.1: Diagram of the SHVR transmission model. Black squares represent compartments, and 

coloured backgrounds represent super-compartments. The blue and orange circles represent births 

from non-infectious and infectious individuals respectively. Black arrows represent movement 

between compartments, while coloured arrows indicate the contribution of super-compartments on 

transmission and birth. The blue non-infectious super-compartment contains compartments S 

(susceptible) and R (recovered and no longer infectious). Non-infectious individuals contribute to 

births which enter the susceptible compartment. The orange infectious super-compartment contains 

the compartments V (vertically-infected) and H (horizontally-infected). Vertically-infected rodents 

remain infectious for life, while horizontally-infected rodents recover at rate 𝛾, after which they are no 

longer infectious. Infectious individuals infect susceptible individuals at rate 𝛽 per year, and contribute 

to births which enter the susceptible compartment 𝑆 with probability 1 − 𝛼 and the vertically-infected 

compartment 𝑉 with probability 𝛼. 
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Analysis performed using field studies of Lassa virus, Morogoro virus, and Gairo virus in M. 

natalensis found evidence of density-dependence (rather than frequency-dependence) 

(Mariën et al. 2020) which informed the infection term of the SHVR model. I did not 

incorporate a latent period between horizontal exposure and infectiousness because the 

latent period is believed to be only around 6 days (Borremans et al. 2015), making it short 

and therefore not very influential as well as being challenging to include in the IPM which 

has a 28-day time step. Although maternal antibodies from recovered mothers may protect 

some offspring for a period of up to around a month (Fichet-Calvet et al. 2014; Mariën et al. 

2020), I did not include this in the model because it is not clear what proportion of recovered 

pregnant females pass antibodies vertically, or how long these antibodies persist in the wild. 

M. natalensis arenavirus dynamics observed by Mariën et al. (2020) were best explained by a 

small number of chronically infected individuals and an increase in infected rodents due to 

horizontal infection following annual increases in population size. To verify that my SHVR 

model qualitatively matched these observations before incorporating transmission into the 

climatic-demographic model, I produced a theoretical simulation. I simulated equations 4.1–

4.4 for a seasonally varying birth rate 𝑏(𝑡∗) = 10 + 5sin (2𝜋𝑡∗) where 𝑡∗ is in years, with 

intrinsic death rate set as 𝜇 = �̅� = 10, using the forward Euler method with time step ∆𝑡∗ =

1
365⁄  (one day). Initial conditions were 𝑆 = 600, 𝐻 = 200, 𝑉 = 100, 𝑅 = 100. Period before 

recovery following horizontal infection was set as 28 days, since this timescale would aid 

incorporation of the SHVR model into the IPM and is reasonable based on observed 

dynamics (Borremans et al. 2015). The transmission parameters were then recovery rate 𝛾 =

(28 days)−1, probability of vertical transmission 𝛼 was varied from 0.1 to 1, and 

infectiousness 𝛽 was varied from 0 to 0.1. Simulated compartment sizes were then visualised 

for a choice of values representative of the range of simulations produced, informing 

selection of the transmission parameters in later IPM simulations. 

Since infection by Lassa virus and other arenaviruses is not believed to impact – or has little 

impact – on the vital rates of M. natalensis (Mariën et al. 2017), I nested this compartmental 

transmission model within the climatic-demographic IPM without implementing any changes 

to demographic processes for infected rodents. I treated 𝐻 as a transient compartment 

which individuals are only in for one time step (28 days). To implement the SHVR model into 

the IPM it only remained to estimate the number of horizontal infections between time 

steps. Local truncation error from a first-order numerical solution method for the nonlinear 
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SHVR model could be large if the time step of 28 days were used. A truncation error would 

mean that if the infected population were small, the force of infection would be greatly 

underestimated, delaying the resulting simulated disease dynamics. Therefore, I used the 

Runge-Kutta method to compute the estimated horizontal force of infection across each 28-

day time step (Supplementary Text S4.3). 

I denoted the distributions in each compartment using subscripts; for instance, 𝐷𝑆 is the 

distribution of weights in the susceptible compartment. The complete model then took the 

form of the system of equations 4.5–4.8.  

𝑍𝑆(𝑤|𝑦, 𝑡) = 𝑝𝐺(𝑤|𝑦, 𝑡)𝑝𝑆(𝑦, 𝑡)𝐷𝑆(𝑦, 𝑡) 

𝑍𝐻(𝑤|𝑦, 𝑡) = 𝑝𝐺(𝑤|𝑦, 𝑡)𝑝𝑆(𝑦, 𝑡)𝐷𝐻(𝑦, 𝑡) 

𝑍𝑉(𝑤|𝑦, 𝑡) = 𝑝𝐺(𝑤|𝑦, 𝑡)𝑝𝑆(𝑦, 𝑡)𝐷𝑉(𝑦, 𝑡) 

𝑍𝑅(𝑤|𝑦, 𝑡) = 𝑝𝐺(𝑤|𝑦, 𝑡)𝑝𝑆(𝑦, 𝑡)𝐷𝑅(𝑦, 𝑡) 

𝐵𝑁(𝑡 + 1) = ∫ 𝑙𝑝𝑆(𝑦, 𝑡)(𝐽𝑆(𝑦, 𝑡) + 𝐽𝑅(𝑦, 𝑡)) d𝑦
∞

0

 

𝐵𝐼(𝑡 + 1) = ∫ 𝑙𝑝𝑆(𝑦, 𝑡)(𝐽𝐻(𝑦, 𝑡) + 𝐽𝑉(𝑦, 𝑡)) d𝑦
∞

0

 

𝐷𝑆(𝑤, 𝑡 + 1) = ∫ (1 − 𝐹(𝑡))𝑍𝑆(𝑤|𝑦, 𝑡) d𝑦
∞

0

+ (𝑏𝑆(𝑡 + 1) + (1 − 𝛼)𝑏𝐼(𝑡 + 1))𝑣(𝑤) 

𝐷𝐻(𝑤, 𝑡 + 1) = ∫ 𝐹(𝑡)𝑍𝑆(𝑤|𝑦, 𝑡)
∞

0

d𝑦 

𝐷𝑉(𝑤, 𝑡 + 1) = ∫ 𝑍𝑉(𝑤|𝑦, 𝑡)
∞

0

d𝑦 + 𝛼𝑏𝐼(𝑡 + 1)𝑣(𝑤) 

𝐷𝑅(𝑤, 𝑡 + 1) = ∫ 𝑍𝑅(𝑤|𝑦, 𝑡) + 𝑍𝐻(𝑤|𝑦, 𝑡)
∞

0

 d𝑦 

𝐽𝑆(𝑤, 𝑡 + 1) = ∫ 𝑝𝑃(𝑦, 𝑡)(1 − 𝐹(𝑡))(𝑍𝑆(𝑤|𝑦, 𝑡)) d𝑦
∞

0

 

𝐽𝐻(𝑤, 𝑡 + 1) = ∫ 𝑝𝑃(𝑦, 𝑡)𝐹(𝑡)(𝑍𝑆(𝑤|𝑦, 𝑡)) d𝑦
∞

0

 

𝐽𝑉(𝑤, 𝑡 + 1) = ∫ 𝑝𝑃(𝑦, 𝑡)(𝑍𝑉(𝑤|𝑦, 𝑡)) d𝑦
∞

0

 

𝐽𝑅(𝑤, 𝑡 + 1) = ∫ 𝑝𝑃(𝑦, 𝑡)(𝑍𝑅(𝑤|𝑦, 𝑡) + 𝑍𝑉(𝑤|𝑦, 𝑡)) d𝑦.
∞

0

 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

 

(4.6a) 

 

(4.6b) 

 

(4.7a) 

 

(4.7b) 

 

(4.7c) 

 

(4.7d) 

 

(4.8a) 

 

(4.8b) 

 

(4.8c) 

 

(4.8d) 

  

Equations 4.5a–d define shorthand for the density of weights at time 𝑡 + 1 based on the 

application of body growth and survival processes to a particular compartment at time 𝑡. For 

example, 𝑍𝑆(𝑤|𝑦, 𝑡) is the distribution of weights 𝑤 at time 𝑡 + 1 resulting from susceptible 
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individuals with weight 𝑦 at time 𝑡. Equations 4.6a–d define 𝐵, the number of juveniles 

entering the population from mothers in the different compartments. Finally, equations 4.7a–

d project forwards the distribution of weights 𝐷 in the compartments S, H, V, and R, while 

equations 4.10a–d describe the distribution of weights 𝐽 in the pregnant/lactating sub-

compartments. I assumed a litter size of 𝑙 = 5 females, based on observed litter sizes of wild 

M. natalensis (Leirs et al. 1993), while juvenile weights were distributed as in Chapter 3 (Table 

3.1). 

4.3.2 Application to Lassa fever case data in Nigeria 

Data 

For the purpose of estimating the Lassa fever incubation period distribution, I collated 

papers on nosocomial outbreaks. From the papers identified, data relating to each individual 

case were included if the cases (1) were confirmed to have Lassa fever through a laboratory 

test, (2) were believed to have been infected in a healthcare setting, (3) reported a finite and 

informative period during which exposure occurred, and (4) reported a finite period during 

which symptom onset occurred. A “finite and informative” period during which exposure 

occurred was defined as one with a total time window of between 0 and 30 days, since the 

incubation period is currently believed to have a maximum period of 21 days. For each 

included case (𝑛 = 30), I extracted study location, earliest and latest possible date of 

exposure, earliest and latest possible date of symptom onset, and fatality including date of 

fatality (if recorded) (Figure 4.2, Supplementary Table S4.1).  

 

Figure 4.2: Inferred incubation period ranges for observed nosocomial infections. Lines show possible 

ranges of the incubation period for individual nosocomial cases of Lassa fever. Darker lines indicate a 

smaller possible range (Supplementary Table S4.1). 
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I obtained state-level Lassa fever weekly incidence data for the period 01/01/2018 to 

31/12/2021 from the Nigeria Centre for Disease Control (NCDC) situational reports (NCDC 

2022). I selected the states of Edo, Ondo, Ebonyi, Taraba, and Bauchi for analysis (Figure 4.2) 

since they had the highest reported confirmed Lassa fever case numbers in 2020, the year 

which appears to have the least severity bias (Chapter 2; Figure 2.2A and Supplementary 

Table S2.4). Therefore, these states should have temporal patterns of cases most 

representative of true Lassa fever incidence. 

I obtained mean daily temperature (°C) and total daily precipitation (mm) for the period 2010 

to 2021 from the National Oceanic and Atmospheric Administration Climate Prediction 

Centre (NOAA CPC) total daily precipitation and mean daily temperature global gridded 

datasets (NOAA/OAR/ESRL PSD 2021a, b). I then extracted these bilinearly at the centroid of 

each of the selected states (administrative boundary level 1) in Nigeria. For each of these 

quantities I computed a 28-day rolling average to reflect the temporal resolution of the 

climatic-demographic model, and then decomposed these quantities into seasonal and 

variable components as in Chapter 3 (Table 3.1) (Figure 4.3). The component of inter-annual 

variability in temperature was not needed since this was not present in the fitted climatic-

demographic model (Supplementary Table 3.2).
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Figure 4.3: Weekly confirmed cases and seasonal and variable components of climate metrics for the states Bauchi, Ebonyi, Edo, Ondo, and Taraba in Nigeria. Top 

row: Outline of Nigeria and states of Nigeria with the state in question shaded. Second row: Weekly confirmed cases per state for the period January 2018 to April 

2022 inclusive, obtained from NCDC Lassa fever situation reports. Vertical dashed lines indicate the first day of each year. Third row: Temperature seasonality (𝑇𝑠𝑒𝑎𝑠). 

Vertical shaded bars indicate three-month periods to aid readability. Bottom row: Precipitation seasonality (𝑃𝑠𝑒𝑎𝑠) shown with a black line, with the inter-annual 

variability around this seasonal pattern shown by the overlaid blue lines (𝑃𝑠𝑒𝑎𝑠 + 𝑃𝑣𝑎𝑟). 
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Estimation of human Lassa fever incubation period 

Zoonotic hazard and incidence of zoonotic disease are separated by several processes, with a 

potentially large time delay introduced by human incubation period before symptoms 

appear. Therefore, to link predicted zoonotic hazard from Lassa virus with observed Lassa 

fever cases, I estimated an incubation period distribution. No recent analysis has confirmed 

the commonly quoted incubation period of 3 to 21 days with a mean of 10 days (Guerrant et 

al. 2011), and this range does not provide a probabilistic distribution. I assumed that the 

incubation period 𝐼 followed a discretised lognormal distribution, assuming a maximum 

incubation period of 𝑁 = 30 days (equations 4.11–4.12), since the maximum possible 

incubation period from the collated data was 26 days. The distribution was discretised since 

the observed data recorded exposure period and symptom onset in discrete days, whereas 

the domain of a standard lognormal distribution is continuous. 

 
𝑝𝐼(𝑑) = 𝑃(𝐼 = 𝑑) =

𝐹𝐼(𝑑 + 1
2) − 𝐹𝐼(𝑑 − 1

2)

𝐹𝐼(𝑁 + 1
2) − 𝐹𝐼(1

2)
 

𝐹𝐼(𝑑) =
1

2
(1 + erf (

log (𝑑) − 𝜇𝐿

𝜎𝐿√2
)) 

 

(4.11) 

 

(4.12) 

I used a Bayesian approach so that uncertainty in model incubation period could be 

propagated forwards later in the full model linking predicted zoonotic hazard to observed 

disease. I estimated the log-mean 𝜇𝐿  and log-standard deviation 𝜎𝐿 of the distribution using 

the Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm based on the data 

collated from nosocomial outbreak reports, with fully uninformative prior distributions. 

Chains were inspected for convergence and initial values were varied to confirm that the 

resulting distributions were not dependent on initial conditions (initial 𝜇𝐿 was varied from 

log(2) to log(30) and initial 𝜎𝐿 was varied from 0.01 to 2). For the purpose of visualisation 

only, I used a kernel density estimate to produce a 95% credible region contour. To relate 

the result to existing knowledge of incubation period, I also estimated the predicted 95% 

central region, and the predicted probability of an incubation period being 21 days or fewer. 

I performed sensitivity analysis by additionally fitting incubation period as a discretised 

gamma distribution, estimating shape parameter 𝛼𝐼 and rate parameter 𝛽𝐼 (equation 4.13), 

where subscripts are used to differentiate these incubation period parameters from the 
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transmission parameters 𝛼 and 𝛽. (Here, 𝛾 denotes the incomplete gamma function such 

that 𝐹𝐼 in equation 4.13 is the cumulative distribution function for the gamma distribution). 

 
𝐹𝐼(𝑑) =

𝛾(𝛼𝐼 , 𝛽𝐼𝑑)

Γ(𝛼𝐼)
 

 

(4.13) 

 

Simulation of zoonotic hazard and comparison with Lassa fever incidence in Nigeria  

As in Chapter 3, the full model of M. natalensis dynamics was simulated on a grid with time 

step of 28 days and body weight step of 1 gram, with the integrals discretised into sums and 

probability density functions into probability mass functions (Chapter 3; equations 3.16–

3.19). The initial population size in each compartment was 6000 (S), 2000 (H), 2000 (V), and 0 

(R) with an initial distribution of weights chosen by randomly sampling across the Morogoro 

CMR data (Chapter 3). Again, the simulations were only of females, assuming that there 

would be enough males in the population for recruitment to occur. A burn-in period of 24 

time steps was used, and the recapture modifier parameter within the survival probability 

function (𝜅 seen in Chapter 3) was estimated for each state by calibrating the model to a 

stipulated (arbitrary) mean population size of 10,000. Transmission parameters 𝛼 and 𝛽 were 

chosen based on the theoretical SHVR model simulations, with 𝛽 scaled based on the ratio of 

mean population size in the theoretical SHVR simulation and the climatic-demographic 

simulation. The climatic inputs were the temperature and precipitation metrics for the 

different selected states in Nigeria. From the resulting simulations I computed the infectious 

reservoir host population size 𝑋(𝑡) = ∑ (𝐷𝐻(𝑤, 𝑡) + 𝐷𝑉(𝑤, 𝑡))𝑤  at each time step 𝑡 in the 

simulation. For each state, I then computed the relative infectious host population size at 

simulation points by dividing the predicted infectious host population size by the maximum 

observed infectious host population size in the simulation. From here on, this quantity will be 

referred to as zoonotic hazard. For the purposes of comparison with human disease data, I 

used linear interpolation to estimate the zoonotic hazard between simulation points. This 

temporally re-scaled zoonotic hazard is denoted 𝐻𝑘(𝑑), where 𝑑 is time measured in days 

and 𝑘 is the state. 

Let 𝐶𝑘(𝑇) denote the number of observed cases in state 𝑘 during epi-week 𝑇. For simplicity, I 

assumed that cases were uniformly distributed throughout the epi-week, and so divided this 

value by 7 and assigned the daily number of cases to each day of the epi-week. I defined the 

estimated number of cases on day 𝑑 in state 𝑘 by 𝑌𝑘(𝑑). Using the incubation period 

distribution to infer date of infection, I transformed the daily cases 𝑌𝑘 into infection incidence 
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𝐼𝑘 (equation 4.13). I then tested for a relationship between daily zoonotic hazard 𝐻𝑘 and daily 

human infection incidence 𝐼𝑘 by fitting a GLM with a Gaussian error structure (equation 4.14) 

for each day 𝑑 in the period 2018 to 2021 inclusive.  

 
𝐼𝑘(𝑑) = ∑ 𝑌𝑘(𝑑 + 𝑖)𝑝𝐼(𝑖)

30

𝑖=1

 

𝐼𝑘(𝑑) ∼ N(𝜇 = 𝑎𝑘 + 𝑏𝑘𝐻𝑘(𝑑), 𝜎2 = 𝜎𝑘
2) 

 

(4.13) 

 

(4.14) 

I fit the linear model using the Metropolis-Hastings MCMC algorithm with completely 

uninformative (uniform) prior distributions, estimating a chain of values for 𝑎𝑘, 𝑏𝑘, and 𝜎𝑘. 

For each state 𝑘 I performed this analysis for 1000 points in (𝜇𝐿 , 𝜎𝐿)-space drawn from the 

incubation period distribution Markov chain, thereby obtaining a posterior distribution for 

(𝑎𝑘 , 𝑏𝑘 , 𝜎𝑘) incorporating uncertainty from the incubation period model. Using the posterior 

distributions, I estimated 95% credible intervals for the parameters and computed the p-

value for 𝑏𝑘 > 0 to test whether human infection incidence 𝐼𝑘  was significantly positively 

correlated with predicted zoonotic hazard 𝐻𝑘 (significance level 𝛼 = 0.05). 

4.4 Results 

4.4.1 Developing a process-based model of climate-driven zoonotic hazard 

Numerical solutions of the theoretical SHVR model with a seasonally forced birth rate 

showed how transmission parameters could affect timing and size of peaks in the infectious 

population size, compartments 𝐻 and 𝑉 (horizontally-infected and vertically-infected, 

respectively) (Figure 4.4). When comparing these theoretical results with the inference of 

arenavirus transmission among M. natalensis (Mariën et al. 2020), a smaller horizontal 

transmissibility 𝛽 appears to reflect dynamics in which infection is sustained by a low-level 

vertically-infected, chronically infectious population 𝑉 between breeding seasons, and is 

amplified by horizontal transmission during population booms. Additionally, peaks in 

seroprevalence appear to be delayed following peaks in population size, similar to analysis of 

observed Morogoro virus dynamics in Tanzania (Mariën et al. 2020), as opposed to model 

simulations with larger values of 𝛽 in which seroprevalence peaks almost simultaneously with 

population size. Therefore, when incorporating the SHVR transmission dynamics into the 

climatic-demographic framework of M. natalensis, I assumed the values 𝛽 = 0.008 (year)−1 

(which would need to be scaled inversely to average population size in the climatic-

demographic simulation) and 𝛼 = 0.6. 
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Figure 4.4: Numerical solutions to the theoretical SHVR transmission model with seasonal population 

fluctuations. Increasing probability of vertical transmission, 𝛼, (lowest in top row, highest in bottom 

row) created a larger infectious pool, increasing the number of both horizontally- and vertically-

infected rodents throughout. Increasing horizontal transmission rate, 𝛽, (lowest in left column, highest 

in right column) made the non-susceptible population increase more quickly during population size 

increases. Compartment sizes are stacked vertically on top of each other. 

 

4.4.2 Application to Lassa fever case data in Nigeria 

Estimation of human Lassa fever incubation period 

From the generated chain of incubation period distribution parameter values, log-mean 𝜇𝐿 

was estimated as 2.02 (95% CrI [1.89, 2.15]) and the estimate of log-standard deviation 𝜎𝐿 

was 0.301 [0.199, 0.441] (Figure 4.4A). The estimated mean, median, and mode incubation 

period were 7.82 [6.85, 9.12] days, 7 [6, 8] days, and 7 [6, 8] days respectively. For the 

incubation period distribution predicted by 𝜇𝐿 and 𝜎𝐿, the central 95% incubation period 

range was from 3 [2, 4] days to 13 [11, 18] days, and the probability of an incubation period 
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being less than or equal to 21 days was 99.98% [99.14%, 100%], indicating that the 21-day 

duration of contact tracing employed by the NCDC (NCDC 2018) is appropriate. However, 

the average estimated incubation periods were significantly lower than the commonly 

quoted mean of 10 days (Guerrant et al. 2011). 

 

 

Figure 4.5: Credible region for the lognormally distributed incubation period, parameter estimates, 

and predicted distribution with credible intervals. A: Kernel density estimate for the density in the 

MCMC chain across parameter space, with lighter colours representing higher density and 95% 

credible region enclosed by a white line. B: Kernel density estimates for the values of the log-mean 

and log-standard deviation. C: Bar graph showing predicted probability of an incubation period being 

the given duration. Each black line range indicates the 95% credible interval for the probability mass 

function of that incubation period duration in isolation. 

 

In the sensitivity analysis (Supplementary Figure S4.3), the estimated mean, median, and 

mode incubation period following the gamma distribution were 7.79 [6.84, 8.82] days, 7 [6, 8] 

days, and 7 [6, 8] days respectively. Other derived metrics also indicated that the incubation 

period distribution following a gamma distribution was similar to that following the 

lognormal distribution, indicating a robust model (Supplementary Table S4.4). 
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Simulation of zoonotic hazard and comparison with Lassa fever incidence in Nigeria  

Since the mean rodent population size in the SHVR model theoretical simulation was 2400, 

and the mean rodent population size in the IPM simulations were set to 10,000, I multiplied 

the chosen horizontal infectiousness parameter 𝛽 by a factor of 2400/10000, giving 𝛽 =

0.00192 and 𝛼 = 0.6 as the selected transmission parameters in the full climatic-

demographic transmission model. The model predicted population and transmission 

dynamics across 2018 to 2021 for each of the four states of Nigeria (Figure 4.6). 

 

Figure 4.6: Predicted population and transmission dynamics of M. natalensis in Nigeria. Stacked bar 

plots show simulations of the climatic-demographic model with nested Lassa virus transmission 

dynamics in the five study states of Nigeria. Each bar is one time step of the model (every 28 days). 

Each distinct colour represents a compartment; S (susceptible) in dark blue, H (horizontally infected) in 

light orange, V (vertically infected) in dark orange, and R (recovered) in light blue. The orange colours 

combined represent infectious rodents and therefore the orange region of the graphs are predictions 

of temporal zoonotic hazard. 

 

Inferred infection incidence was significantly positively correlated (𝑏 > 0) with predicted 

zoonotic hazard for all states (Bauchi: 𝑝 = 0.0003; Ebonyi, Edo & Ondo: 𝑝 < 0.0001; Taraba: 

𝑝 = 0.0243) (Supplementary Table S4.5). However, visual assessment of model fit (Figure 4.7) 

indicates a delay between predicted peaks in zoonotic hazard and peaks in inferred human 

infection incidence, especially for the southern states of Ebonyi, Edo, and Ondo. 



Lauren A. Attfield, PhD thesis – Chapter 4   

112 

 

Figure 4.7: Predicted Lassa virus zoonotic hazard and inferred human infection incidence. Grey bar 

plots show simulations of zoonotic hazard (abundance of infectious hosts) from the climatic-

demographic model with nested Lassa virus transmission dynamics in the five study states of Nigeria. 

Each bar is one time step of the model (every 28 days). Black lines show inferred daily incidence of 

infection in humans in each state, computed by transforming observed weekly cases of Lassa fever 

using the incubation period distribution. 

 

4.5 Discussion 

Here, I described a method to link climatic-demographic host processes to observations of 

human zoonotic disease through host-pathogen dynamics and incubation period in humans. 

First, I incorporated pathogen transmission into the climatic-demographic model from 

Chapter 3, informed by observations of arenavirus dynamics in M. natalensis. Next, I 

estimated human Lassa fever incubation period distribution from data relating to nosocomial 

cases and used this distribution to infer patterns of human Lassa virus infection from weekly 

case data in five states in Nigeria. Finally, I simulated zoonotic hazard (relative abundance of 



Lauren A. Attfield, PhD thesis – Chapter 4   

113 

infectious hosts) using the climatic-demographic model with nested pathogen dynamics and, 

using a GLM, modelled the relationship between predicted zoonotic hazard and inferred 

human infection. I found that predicted zoonotic hazard was a significant and positive factor 

in patterns of inferred human infection for all five states, but for the southern states of Edo, 

Ondo, and Ebonyi, visual inspection showed that an additional time lag of one to two 

months separated peaks in predicted zoonotic hazard and peaks in inferred human infection.  

My analysis of the Lassa fever incubation period produced the first estimates of incubation 

period distribution from collated nosocomial case data. I fitted a lognormal and gamma 

distribution, finding that both similarly described incubation period distribution from the 

case data (𝑛 = 31). My finding that the probability of an incubation period being less than or 

equal to 21 days was 99.98% (95% CrI [99.14%, 100%]) indicates that the 21-day duration of 

contact tracing used by the NCDC (NCDC 2018) is appropriate. In my estimated incubation 

period distribution, the central 95% incubation period range was from 3 [2, 4] days to 13 [11, 

18] days indicated that the commonly quoted range of 3 to 21 days (Guerrant et al. 2011) 

may be too high at the upper end. The estimated mean incubation period was 7.82 [6.85, 

9.12] days, significantly lower than the commonly quoted mean of 10 days (Guerrant et al. 

2011). These findings imply that the incubation period of Lassa fever may be lower than is 

currently clinically advised. However, these findings are limited by the scope of the data 

which were restricted to apparently nosocomial cases of Lassa fever and not cases caused by 

zoonotic spillover. Due to the potential for within-human evolution of Lassa virus, it is 

possible that the nosocomial incubation period is longer or shorter than the incubation 

period following infection by a zoonotic host. It is also possible that patients included in the 

nosocomial data could have been infected by a zoonotic host prior to being admitted to 

hospital, thereby shortening the apparent incubation period. 

In this chapter I developed a model for rodent arenavirus transmission dynamics informed by 

observations of Morogoro virus, Gairo virus, and Lassa virus prevalence in wild rodents and 

by climate-driven demography of M. natalensis (Chapter 3). This model differs from existing 

models of M. natalensis arenavirus transmission dynamics (Mariën et al. 2019) because my 

climatic-demographic model explicitly models seasonal rodent body growth, survival, and 

pregnancy probabilities dependent on body weight, climate seasonality and inter-annual 

variability in precipitation. The model of Mariën et al. (2019) found through model simulation 

that annual rodent control in Guinea would be insufficient to substantially reduce abundance 
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of Lassa virus infected rodents. While Mariën et al. (2019) assumed a constant total rodent 

population size in the absence of control (informed by observations in Guinea), my climatic-

demographic model (informed by a CMR study in Morogoro, Tanzania) simulated rodent 

population size as seasonally and inter-annually variable. For areas in the Lassa virus endemic 

region in which M. natalensis dynamics are thought to undergo temporal fluctuation (Fichet-

Calvet et al. 2007), it would therefore be valuable to explore rodent control through the in 

silico experimental environment provided by my full climatic-demographic arenavirus 

transmission model. 

My approach made use of existing ecological studies of a species instead of requiring in-situ 

studies for the chosen locations of interest in Nigeria. However, it is important to note that 

this modelled zoonotic hazard is predicted from observed climate-driven demographic 

dynamics of a population of M. natalensis in an agricultural landscape in Tanzania, and not in 

Nigeria. Differing habitat types likely lead to differing population dynamics (Fichet-Calvet et 

al. 2007), and given that Tanzania and Nigeria have different lineages of M. natalensis 

(Olayemi et al. 2016b), it is possible that – though unknown whether – these populations also 

have phenotypic differences. Still, given the ethical and health and safety implications of 

carrying out capture-release studies on an animal which carries a zoonotic pathogen, in 

some cases this translocation of a species’ demographic processes as carried out here may 

be the best or only way to gain demographic insights into known hosts, and could reduce 

the number of such studies needed. It would be challenging to assess the performance of 

the climatic-demographic model in predicting population changes in Nigeria due to the 

ethical considerations of collecting suitable data. 

Modelled temporal patterns of zoonotic hazard in all five states of Nigeria were significant 

and positive correlates in explaining patterns of human cases, after accounting for a delay 

before observation of symptoms due to incubation period. Visual comparison of the model 

with inferred infection indicated that patterns of predicted zoonotic hazard aligned well with 

timing of peak human infection in the more northern states of Bauchi and Taraba, but that 

an additional time lag of one to two months exists between zoonotic hazard and human 

infection in the southern states of Edo, Ondo, and Ebonyi. If modelled zoonotic hazard is a 

good indication of abundance of infected reservoir hosts in Nigeria which – as previously 

discussed – is not necessarily true, then this time lag could indicate one or more of a number 

of additional processes. For instance, if probability of human infection by rodents was 
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frequency- instead of density-dependent, this would explain at least some of the observed 

lag since simulated peak predicted abundance of infectious rodents followed peak in total 

abundance with a delay. It is also likely that agricultural practices (Sluydts et al. 2009) or 

resource-seeking behaviour (Fichet-Calvet et al. 2007; Bonwitt et al. 2017) could drive the 

entering of M. natalensis into homes. From the viewpoint of the observed time delay 

representing a delay between peak zoonotic hazard and peak zoonotic exposure, this 

analysis suggests that further quantification of temporal patterns in rodent behaviour and 

incorporation of these patterns into a model such as this could help explain and predict 

patterns of Lassa fever incidence. 

The integrated disease model presented here represents a step forward in process-based 

modelling of temporal zoonotic disease dynamics, and also how these dynamics might vary 

across space due to differing climate patterns. Temporal models of Lassa fever and Lassa 

virus infection have previously been limited to incorporating reservoir host dynamics 

through theoretical simulation (Akhmetzhanov et al. 2019), or have not included these 

dynamics at all (Musa et al. 2020; Barua et al. 2021; Ibrahim & Dénes 2021; Abidemi et al. 

2022). With the changing climate likely to impact the dynamics of M. natalensis, Lassa virus 

prevalence in the reservoir host, and risk of spillover to humans, by quantifying the 

dependence of M. natalensis and arenavirus transmission dynamics on the climate I have 

created an opportunity to explore this complex system. My model is a promising step 

towards human disease forecasting and can predict rodent infectious disease dynamics two 

months in advance due to climate lags. While there is scope to develop an early warning 

system for the timing and magnitude of human Lassa virus infection through this model, the 

disparities in timing between predicted zoonotic hazard and inferred human infection 

incidence are consistent with a role of other factors, such as agricultural practices, in 

determining timing of risky human-rodent contact and human infection. Host-pathogen 

ecology – including transmission dynamics, movement, behaviour, and pathogen shedding – 

should be a clear focus when seeking to understand patterns and drivers of zoonotic disease, 

with the methods developed here enabling the modelling of several aspects of this system.
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Chapter 5: Discussion 

5.1 Summary of findings and implications 

In this thesis, I sought to extend understanding of ecological and environmental drivers of 

the Lassa fever by developing methods to describe the processes underpinning the chain of 

Lassa virus transmission. Importantly, these methods were context-specific – aiming to 

capture the necessary complexity to explore key processes in the Lassa virus system – but 

also adaptable to other zoonotic disease systems, thereby presenting methodological 

advancements which can be used to explore drivers of other zoonoses.  

I first asked (Chapter 2) whether mathematical modelling to leverage zoonotic niche models 

and different data sources could provide insights into the absolute incidence of Lassa virus 

infection and disease. Until recently, infection incidence has been underestimated due to the 

use of outdated and spatially limited serosurveys which predict incidence prior to substantial 

increases in the population of West Africa (McCormick et al. 1987). Additionally, Lassa fever 

case data are believed to suffer from under-ascertainment (Arruda et al. 2021), with the 

number of cases observed in each country in its endemic range far fewer than the likely 

disease incidence. Analysing publicly available case data from the Nigeria Centre for Disease 

Control (NCDC) (NCDC 2022), I identified for the first time a severity bias which supports the 

theory of under-ascertainment and spatial heterogeneity in surveillance. While this severity 

bias persists throughout the years 2018 to 2021, there is evidence that the bias has reduced, 

adding to the observation of Redding et al. (2021) that surveillance in Nigeria measurably 

improved between 2012 and 2019 (Supplementary Figure S5.1). The most conservative 

estimates from my model of total infection incidence suggest between 600,000 and 4.5 

million symptomatic infections of Lassa fever per year, implying 30,000 to 225,000 annual 

deaths due to Lassa fever. Model estimates varied substantially depending on the choice of 

spatial model of zoonotic hazard and exposure, with other models predicting many more 

infections. 

Until now, the only estimates of Lassa virus infection or disease incidence have been based 

on serosurvey data (McCormick et al. 1987; Basinski et al. 2021). However, current serosurvey 

data are limited in value due to a lack of knowledge around seroreversion and 

underrepresentation of much of West Africa. The results of Chapter 2 show a potential to use 

other health data in addition to serosurveys to contrast incidence produced through 



Lauren A. Attfield, PhD thesis – Chapter 5   

117 

different approaches and thus increase result robustness. To maximise the value of 

serosurveys, uncertainties in my findings indicate that longitudinal serosurveys to identify 

whether seroreversion of Lassa virus-specific antibodies occurs, and serosurveys targeted at 

new locations to reduce the clustering and bias of existing data, would be valuable in 

clarifying the overall incidence of Lassa virus infection and the extent of spatial heterogeneity 

across West Africa. Development of longitudinal health surveys in a similar format to the 

contact tracing protocol (NCDC 2018), for example testing anyone in a given study 

population who presents with a fever, may provide an opportunity to bridge the gap 

between indicators of disease and infection incidence. This would provide a valuable dataset 

against which to verify incidence estimates based on serosurvey data and, if stratified across 

West Africa, could provide additional insight into spatial heterogeneity in Lassa fever risk. 

Given my new estimate that Lassa virus infection incidence is on the scale of millions (at least 

3 million), rather than hundreds of thousands (between 100,000 and 300,000) as previously 

estimated, unreported disease incidence across much of West Africa potentially represents a 

very large unrecognised disease burden. Given that the goal of public health is to reduce 

disease burden, … 

Next (Chapter 3) I began to explore the dynamics of the Lassa virus system from the bottom-

up, starting with the reservoir host, Mastomys natalensis. Since rodents are highly seasonal 

and often opportunistic, their demography (here, recruitment rate, survival, and body 

growth), and how demographic processes are affected by environmental factors, are 

important in determining resulting population dynamics (Ostfeld & Mills 2007). Studying 

demographic processes requires longitudinal individual-based field studies, which are not 

appropriate in West Africa where the human disease risk posed by M. natalensis makes it 

unethical to capture and release rodents. Therefore, I studied the demographic processes of 

M. natalensis from a long-term capture-mark-recapture (CMR) study in Morogoro, Tanzania, 

outside of the Lassa virus endemic range. Modelling observed proxies for recruitment, 

survival, and body growth as functions of lagged precipitation and temperature, I found that 

population demography of M. natalensis is highly seasonal. Further, by decomposing climate 

variables into components of seasonality and inter-annual variability, I was able to identify 

that precipitation may drive survival and recruitment rates beyond seasonality. The most 

important effect of inter-annual variability in precipitation was on recruitment, with periods 

in which rainfall is greater than the seasonal average leading to periods with significantly and 
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substantially greater recruitment rates than the seasonal average. Finally, I constructed an 

integral projection model (IPM) to describe and simulate the population dynamics of M. 

natalensis, with precipitation and temperature as inputs. 

The results of Chapter 3 indicated that years with higher-than-average precipitation may 

have an increased population size of M. natalensis. While previous studies have linked 

climatic variables with M. natalensis demographic processes (Leirs et al. 1990; Christensen 

1993; Fichet-Calvet et al. 2007; Mulungu et al. 2016; Mayamba et al. 2021), this is the first 

time the effects of lagged seasonal and inter-annually variable temperature and precipitation 

on these processes have been separately quantified. The resulting climatic-demographic IPM 

model provides a tool through which to explore determinants of M. natalensis population 

dynamics, and on which to build a process-based model for Lassa virus transmission 

dynamics in the reservoir host. 

In Chapter 4 I investigated how to model viral transmission dynamics in a theoretical M. 

natalensis population. Based upon field studies of Lassa virus and other arenaviruses, I 

defined a susceptible-horizontally infected-vertically infected-recovered (SHVR) 

compartmental transmission model. By creating compartmental distributions of body 

weights in the IPM, I was able to incorporate the SHVR arenavirus transmission model into 

the climatic-demographic model. Using documented nosocomial cases of Lassa fever, I 

estimated a probability distribution for the incubation period of Lassa virus in humans and 

used this distribution to transform patterns of observed Lassa fever cases in Nigeria into 

inferred infection incidence. I then modelled the relationship between predicted zoonotic 

hazard and inferred Lassa virus infection using a generalised linear model (GLM). I found that 

predicted zoonotic hazard was a significant and positive correlate in the model of inferred 

infection incidence in all five of the studied states (chosen as the states with the largest 

number of observed cases in 2020). However, visual inspection of predicted zoonotic hazard 

compared with inferred infection incidence indicated an additional time delay of around one 

to two months. 

The work of Chapter 4 demonstrates that it is possible to integrate a context-specific disease 

transmission model into a climate-driven reservoir host population model to predict 

infectious population size based on demographic processes rather than mass-action 

assumptions. The results imply that even though the climatic-demographic model was fit to 

a population of M. natalensis in Tanzania, fitting of demographic processes to seasonal and 
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inter-annually variable climate produced a feasible estimate of zoonotic hazard in Nigeria 

where Lassa fever is endemic but where M. natalensis cannot be studied in this way. While 

the relationship between Lassa fever incidence and rainfall has already been modelled by 

Redding et al. (2021), this new process-based model of the reservoir host provides an 

opportunity to explore zoonotic hazard through host ecological processes. The resulting 

temporal climate-driven reservoir host transmission model can be used to forecast zoonotic 

hazard several months in advance and could be used to predict the effects of future changes 

to climate patterns on human risk of Lassa fever.  

5.2 Limitations and outstanding questions 

In Chapter 2, I utilised a variety of spatial models of Lassa virus zoonotic hazard and 

exposure to estimate the absolute incidence of infection and disease. Uncertainty is inherent 

but challenging to quantify for these models, therefore by varying the fundamental 

assumptions I introduced some of this uncertainty into my estimates of incidence. The 

substantial differences in results from these models indicate that the uncertainty in spatial 

zoonotic hazard – due to unknown spatial distribution of Lassa virus and the reservoir host – 

and exposure – due to the unknown scaling of contact with human and rodent population 

density and – leads to a large amount of uncertainty in estimated absolute disease incidence. 

While this uncertainty limits the work of Chapter 2 in terms of reducing the precision of 

disease incidence estimation, it is also an important conclusion providing a benchmark for 

the state of spatial zoonotic hazard and exposure modelling. The large uncertainty caused by 

differing assumptions implies that more work is needed to verify the spatial structure and 

components underpinning risk of zoonotic spillover, and that such uncertainties should be 

included in future spatial models of Lassa fever rather than assuming one “correct” spatial 

zoonotic hazard and exposure model. 

The infection incidence estimate in Chapter 2 was also limited by two further types of 

uncertainty, which are important to characterise and quantify when interpreting results. The 

assumed rate of seroreversion leads to differing relationships between force of infection and 

seroprevalence; therefore, uncertainty in the occurrence and rate of seroreversion is an 

important determinant of uncertainty in the Lassa virus infection incidence estimate. To an 

extent I quantified this uncertainty by producing estimates assuming that no seroreversion 

occurred, and assuming a rate of seroreversion informed by findings that seroreversion 

occurs at a rate of 6.4 per 100 seropositive individuals per year (McCormick et al. 1987). 
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However, this seroreversion estimate did not include reported uncertainty, potentially 

limiting interpretations of the finding. This lack of reported uncertainty and the fact that 

populations have likely substantially changed since the dates of the serosurveys analysed 

suggest that further investigation into seroreversion would be of value. Further uncertainty 

originated from the component model of Basinski et al. (2021) which predicts human 

seroprevalence from modelled zoonotic hazard, but as the spatial human seroprevalence 

model did not incorporate uncertainty, it was not possible to quantify the resulting 

uncertainty in my estimates of infection risk. In future, it would be valuable to generate 

spatial human seroprevalence models sampled from the underlying model distribution in 

order to better quantify uncertainty. 

The main limitation of the climatic-demographic model constructed in Chapter 3 and applied 

in Chapter 4 is the scope of the CMR study used. Long-term CMR is logistically challenging 

and resource-intensive, leading to trade-offs in study design. The scope of the Morogoro 

CMR study was primarily agricultural mosaic land, providing opportunities to assess effects 

of agricultural practices on M. natalensis as a pest (Massawe et al. 2005; Sluydts et al. 2009) 

in addition to observing demographic processes (Sluydts et al. 2007) and later exploring 

Morogoro virus transmission (Mariën et al. 2020). Therefore, the data used in this thesis were 

limited to agricultural land and did not include forest, villages, urban areas, or other land 

cover types and uses, even though demographic processes could vary across these 

environments, as has been found in other animal species (Davison et al. 2019). While studies 

looking at M. natalensis population changes in other habitats do exist, none have a long 

enough temporal extent and resolution to study how population size could link to climate, 

especially not through demographic modelling of individual-based data. This limitation 

highlights the deficit of small rodent studies in sub-Saharan Africa adequate for studying 

climate-driven population dynamics in different habitat types. When answering questions 

about zoonotic hosts, the resource requirements of setting up and maintaining longitudinal 

studies – especially of wildlife – may outweigh the research benefits. However, for hosts 

which are also agricultural pests, such as M. natalensis and other rodents (Morand et al. 

2015), studies designed to answer questions relating to both disease ecology and 

agricultural management could enable a more efficient use of resources. From a One Health 

perspective, such studies could inform measures to protect human health through both food 

security and disease mitigation. Indeed, the climatic-demographic model produced in 
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Chapter 3 is not only limited to zoonotic hosts but could be useful in describing climate-

linked population dynamics of any rodent species, including agricultural pests. 

In Chapter 4, when using predicted temporal zoonotic hazard in a model for Lassa fever risk, 

I held other processes between zoonotic hazard and infection incidence temporally constant. 

These intermediate processes include vulnerability (such as susceptibility to disease given 

infection), human and rodent behaviour which could lead to increased contact, and human-

to-human disease transmission. The factor which appears most likely to be temporally 

variable is human and rodent contact, as it is possible that M. natalensis enter homes during 

the dry season in search of food (Fichet-Calvet et al. 2007). Since human-to-human 

transmission is believed to be rare (Siddle et al. 2018) and probability of human-to-human 

transmission is indirectly related to zoonotic spillover risk since most human cases will 

originate from spillover, I assessed neglecting human-to-human transmission to be a 

reasonable simplifying assumption. To limit the effects of simplifying assumptions, my 

process-based model of temporal Lassa fever risk should be used to estimate or forecast 

spillover risk rather than total infection or disease risk. If human-to-human transmission 

increases or is found to be more substantial, or if super-spreading events occur, this will no 

longer be the case. A simple compartmental human-to-human infection transmission model 

could be appended to my model of Lassa fever risk and could be used to test the effect of 

different levels of human-to-human transmission on disease dynamics. 

A major new direction made methodologically possible through the work of Chapters 3 and 

4 is the prediction of patterns and trends in Lassa virus spillover risk under future changes to 

climate patterns. It is believed that precipitation will decrease in the eastern Sahel (north of 

the Mano River Union) and increase in the western Sahel (north of Nigeria) (Gaetani et al. 

2020), potentially implying that parts of the Lassa virus endemic area will also experience 

changes in precipitation. These changes could alter seasonal patterns and variability in M. 

natalensis outbreaks between years (Chapter 3), meaning that some future years could 

potentially experience larger population outbreaks and resulting Lassa fever outbreaks than 

previously seen. It would be of great value to apply the model of Chapter 4 to possible 

scenarios of intra- and inter-annual weather patterns; however, such models have large 

inherent uncertainty and stochasticity and no such models have been produced for West 

Africa. If, as some models suggest, climatic seasonality also alters in the future, it could be 

imagined that this could alter the length of the breeding season or the speed of maturation 
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and drastically alter population dynamics. If climate seasonality is found to significantly 

change in the future, I suggest that the climatic-demographic model be re-fit under the new 

climate regime to maintain the distinction between rodent phenology and responses to 

inter-annual climatic variability. 

While this thesis focussed on a case study of Lassa fever, the tools developed can be applied 

to other zoonotic disease systems. Since the climatic-demographic model is more 

appropriate for rodent-like small mammals than, for example, predator species, large 

animals, and species with complex movement ecology such as birds and bats, it would be 

valuable to apply the approach to other zoonotic disease systems with rodent or rodent-like 

hosts. Different rodent species have different demographic population dynamics (Sluydts et 

al. 2009), therefore fitting the climatic-demographic model to other zoonotic hosts would 

yield similarly informative but disease-specific insights into climate-driven processes within 

zoonotic disease systems. One such system is Puumala hantavirus and its reservoir host in 

central Europe, the bank vole (Myodes glareolus). This system is well-studied in terms of 

estimated abundance and viral seroprevalence of the bank vole population and how these 

quantities relate to human infection risk (Reil et al. 2017). This evidence makes it possible to 

predict human infection risk based on observed bank vole population patterns. However, 

observed population dynamics have not yet been linked to climatic patterns. Applying the 

climatic-demographic approach to the bank vole could therefore provide an opportunity to 

improve understanding of the timing of bank vole population processes through 

demography, and to predict human infection risk further in advance from observed climate 

patterns and under different climate scenarios. 

5.3 Spatial determinants of Lassa virus zoonotic hazard 

The central region of West Africa, here defined as Côte d’Ivoire, Ghana, Togo, southern 

Burkina Faso, and southern Mali, appears to have a lower incidence of Lassa fever and Lassa 

virus infection as compared with eastern West Africa (Nigeria and Benin) and western West 

Africa (countries of the Mano River Union) (Figure 5.1). This geographic heterogeneity in 

observed cases has not been well-explained, which is symptomatic of a lack of 

understanding around the geographic distribution of Lassa fever. Limited understanding of 

the spatial structure of Lassa fever risk across West Africa is multi-faceted since geographic 

heterogeneity in observed cases could be a manifestation of one or more disease ecological 

processes, an artefact of surveillance and reporting processes, or a combination of both.  
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Figure 5.1: Spatial heterogeneity in observations of Lassa fever and Lassa virus infection in humans 

and rodents. Reporting has been biased towards the Mano River Union and Nigeria, with one 

seroprevalence study (Kronmann et al. 2013) representing the majority of data points in the central 

region of West Africa. A: Human Lassa fever outbreak reports in West Africa from 1952 to 2016, with 

each point representing a separately reported cluster of cases. Each point is coloured by time period 

in which the outbreak began, with the bar graph showing number of reported outbreaks beginning in 

each year. The grey lines indicate borders of local administrative areas with grey shaded areas 

indicating any evidence of Lassa virus or similar arenavirus in humans or rodents. Adapted from Gibb 

et al. (2017). © Informa UK Limited, trading as Taylor & Francis Group; 2017. Reproduced with 

permission. B: Collated rodent and human serosurveys. Circles denote rodent trapping studies which 

performed Lassa virus testing and are coloured red if at least one tested rodent was Lassa positive. 

Triangles denote human serosurveys and are coloured red if at least one tested human was 

seropositive for arenavirus antibodies. The blue dashed line indicates the region of interest. Adapted 

from Basinski et al. (2021). © Basinski et al.; 2021. Licence: CC BY. 
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While spatial determinants of Lassa fever risk are outside of the scope of this thesis, 

uncertainty in the assumed structure of zoonotic hazard and exposure varied my estimates 

of disease and infection incidence substantially (Chapter 2) and has important implications 

for the extension of my climate-driven reservoir host and virus model (Chapter 4) into a 

spatiotemporal model for Lassa fever. Therefore, I will briefly explore this topic in terms of 

current knowledge, open questions and data gaps, and the potential for reservoir host 

ecology (as modelled in Chapter 3) to improve understanding of spatial determinants of 

Lassa fever risk. 

As previously discussed, differing assumptions of M. natalensis distribution, human-rodent 

contact scaling, and viral prevalence in the reservoir host lead to differing projected spatial 

incidence of Lassa virus infection. The distribution of M. natalensis has historically been 

studied only through environmental niche modelling approaches, with models predicting 

probability of occurrence through presence or presence-absence models. While this niche 

modelling approach may inform on a species’ likely distribution – commonly used to aid 

conservation planning (Costa et al. 2010), assess invasive potential (Thompson et al. 2011), 

and predict effects of climate change (Wiens et al. 2009) – it does not give the full picture of 

potential for disease transmission. The presence of a species does not imply that it occurs at 

a high abundance, and the probability of occurrence does not necessarily correlate well with 

abundance (Estrada & Arroyo 2012). Yet, the use of environmental niche models and similar 

zoonotic niche models as a proxy for the risk posed by a zoonotic host is common across 

zoonoses (Pigott et al. 2014, 2015; Chalghaf et al. 2016) and rarely disputed. Abundance of 

M. natalensis may be a more appropriate measure of Lassa virus risk, but – while possible – is 

more challenging and data-intensive to model (Gibb 2020). In a rodent capture study 

sampling several sites across Ghana, M. natalensis were found to only represent 27% of the 

764 captured rodents, often outnumbered by Praomys daltoni which is not known to host 

Lassa virus (Kronmann et al. 2013). Meanwhile, a study in Guinea found 54% of 1123 

captured rodents were M. natalensis (Fichet-Calvet et al. 2007), and in southern Mali, 80% of 

103 rodents (Safronetz et al. 2010). If M. natalensis is the most effective host of Lassa virus 

but is outcompeted by other rodents in some areas, then this implies the potential for spatial 

heterogeneity of Lassa virus risk driven by competitor rodent abundances and distributions. 

Thus far, these complex ecosystem dynamics have not been considered in spatial models of 

M. natalensis or Lassa virus. 
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Another key component of the spatial structure of disease risk is the distribution of Lassa 

virus within the reservoir host. Lassa virus is limited by presence of a reservoir but may not 

be present entirely or uniformly across the reservoir host distribution. One possible 

explanation for the apparent spatial heterogeneity in Lassa fever incidence could be 

heterogeneity in the prevalence of Lassa virus in the reservoir host. However, given the 

spatial biases in rodent serosurveys which have historically focussed on the Mano River 

Union area where Lassa fever is already known to be endemic (Figure 5.1B), this hypothesis is 

currently impossible to test. The rodent trapping study in Ghana found no M. natalensis 

positive for arenaviruses out of a total of 209 individuals captured and tested (Kronmann et 

al. 2013), providing evidence for the heterogeneous Lassa virus distribution hypothesis, but 

only represents ten sites in one country. Additionally, without sampling rodents for Lassa 

virus at an extremely high spatial resolution, it will be unclear to what degree rodent 

seroprevalence is locally variable, or “patchy”. Choice of spatial model leads to substantially 

different estimates of spatial virus distribution within the reservoir host; my model (Chapter 

2) based on weighted interpolation led to a relatively homogeneous map of viral prevalence 

(Figure 5.2A), whereas the model of Basinski et al. (2021) assuming environmental factors 

were correlates led to a much more heterogeneous viral prevalence map (Figure 5.2B). 

Understanding of Lassa virus distribution in M. natalensis is currently severely hampered by 

biases in data and a lack of knowledge around the most appropriate spatial model for these 

data, which in turn limit the precision and certainty of any broad-scale spatial analyses of 

Lassa fever. 
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Figure 5.2: Differing models of Lassa virus prevalence in M. natalensis. While both models are based 

on largely the same rodent serosurvey data, differing methods lead to substantially differing maps of 

viral prevalence in the reservoir host. A: Virus prevalence (proportion of rodents seropositive), 

interpolated with a contact-based weighting dependent on estimated relative abundance map (virus 

seroprevalence map “V2” in Chapter 2). B: Probability of Lassa virus occurrence in M. natalensis 

estimated using an environmental niche approach by Basinski et al. (2021) (virus occurrence map “V1” 

in Chapter 2). 

 

Phylogenetic evidence has been used to explore origins and dispersal of Lassa virus across 

West Africa and can help inform on the potential for spatial heterogeneity of Lassa virus 

prevalence in the reservoir host and resulting observed spatial patterns in human infection. 

Phylogeographic clustering analysis points to ancient origins of Lassa virus in Nigeria with 

historic exportation reaching Côte d’Ivoire, Guinea, Liberia, and Sierra Leone in the last 

centuries (Andersen et al. 2015). It is difficult to imagine how this westward exportation could 

have occurred without first establishing in the countries Benin, Togo, and Ghana, a distance 

on the scale of around 500km. Following the 2014–2016 Lassa fever outbreak in Benin, 

phylogenetic evidence was found for a distinct strain of Lassa virus in Benin and Togo 

(Whitmer et al. 2018; Yadouleton et al. 2020) which is distantly related to those already 

identified in Nigeria (at least three strains) (Ehichioya et al. 2019), Côte d’Ivoire and southern 

Mali (one strain) (Manning et al. 2015) and the Mano River Union (one strain) (Bowen et al. 

2000). This newly-identified lineage in Benin and Togo provides evidence for Lassa virus 

infections and outbreaks originating in these countries, rather than only being imported 
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from other countries. The phylogeny of Lassa virus suggests that the distribution of Lassa 

virus is fairly homogeneous across West Africa and does not support an absence of Lassa 

virus in the central region. 

Passive surveillance of Lassa fever is spatially heterogeneous because definitive diagnosis 

relies on central laboratory testing and high-containment safety (Raabe & Koehler 2017), 

usually using reverse transcription polymerase chain reaction (RT-PCR) (Asogun et al. 2012). 

Only two West African countries have these permanent clinical facilities, which include the 

Lassa Diagnostic Laboratory at Kenema Government Hospital, Sierra Leone (Khan et al. 2008), 

the Institute of Lassa Fever Control at Irrua Specialist Teaching Hospital, Nigeria (Asogun et 

al. 2012), and six other diagnostic facilities in Nigeria (NCDC 2021b). In the absence of 

laboratory testing, Lassa fever cases can be misdiagnosed as malaria or other febrile diseases 

(Bausch et al. 2004). It is therefore possible that Lassa fever occurs more frequently than 

observed in some parts of West Africa (Figure 5.1A), and that surveillance may be underlying 

observed spatial patterns of cases. Given that case reporting in Nigeria, with the greatest 

spatial density of Lassa virus testing and treatment facilities, likely suffers from under-

ascertainment and spatial bias (Chapter 2), it seems probable that cases are even more 

severely under-ascertained in areas of West Africa outside of Nigeria and the Mano River 

Union. 

Active surveillance of Lassa virus infection is carried out heterogeneously throughout West 

Africa through serological testing (Figure 5.1B). It is notable that there are no currently 

published studies of human Lassa virus seroprevalence in Nigeria (Figure 5.1B; Basinski et al. 

2021) despite belief that this country has the greatest Lassa fever burden. Spatial 

seroprevalence of Lassa virus is therefore relatively well-understood in the Mano River Union, 

but poorly elsewhere. The study in Ghana sampling humans and rodents at multiple sites 

found only two Lassa virus infected rodents out of 764 captured (Kronmann et al. 2013), and 

found that 5% of 657 tested human samples were positive for Lassa virus using an enzyme-

linked immunosorbent assay (ELISA) but subsequently tested negative for Lassa virus using a 

plaque reduction neutralisation test (PRNT) (Nimo-Paintsil et al. 2019). These findings could 

suggest ELISA cross-reactivity following infection with a different – potentially novel – 

arenavirus (Nimo-Paintsil et al. 2019). It is also possible that a novel strain of Lassa virus 

exists in Ghana to which the PRNT was not sensitive (Nimo-Paintsil et al. 2019). To better 

assess the spatial risk of Lassa virus spillover, it would be valuable to explore human and 
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rodent seroprevalence across under-sampled areas by increasing active surveillance in 

countries such as Côte d’Ivoire, Benin, and Togo. 

The final potential determinant of spatial Lassa virus risk which I will explore here is spatial 

variation of climatic patterns. In Chapter 3, I found that both climate seasonality and inter-

annual precipitation variability are linked with M. natalensis demographic processes, 

therefore if these climate patterns vary across West Africa, this implies that M. natalensis 

population dynamics may vary, too. I therefore explored spatial variation in climate patterns 

by computing precipitation and temperature seasonality and inter-annual precipitation 

variability (method in Table 3.1) from global gridded temperature and precipitation data 

(NOAA/OAR/ESRL PSD 2021a, b) across the spatial extent from 21°W to 22°E and 2°N to 

17°N to include the believed Lassa virus endemic region of West Africa, at a resolution of 1 

degree, from the years 2010 to 2021 inclusive. First, I computed the variance in seasonal 

temperature and precipitation to observe how intra-annual variability in climate varies across 

West Africa. Then, using the model fit in Chapter 3, I estimated the seasonal patterns of 

survival, recruitment, and body growth based on temperature and precipitation seasonality 

(holding all other covariates constant) and computed the variance of these values, to observe 

the degree to which these processes may be varied by seasonal climate patterns. I also 

computed the mean absolute precipitation variability to observe the extent to which 

population dynamics may vary year-on-year in different locations. 

The results (Figure 5.3) showed substantial heterogeneity in climate and weather patterns 

across West Africa and the ways these patterns may affect M. natalensis demographic 

processes. Variance in temperature seasonality increases with latitude (Figure 5.3A), while 

variance in precipitation seasonality is more spatially heterogeneous (Figure 5.3B), with 

increased variance appearing to occur closer to the coast. The resulting seasonal 

demographic processes displayed individualistic spatial patterns of variance. While predicted 

seasonal variance in survival probability (Figure 5.3C) and mean body growth (Figure 5.3E) 

present a similar spatial pattern to variance in temperature seasonality (increasing with 

latitude), variance in predicted recruitment probability (Figure 5.3D) is more spatially 

heterogeneous. This result implies that in some areas of West Africa, the breeding season of 

M. natalensis is highly seasonally restricted, with clearly delineated periods of high and low 

recruitment and others experiencing less differentiated breeding and non-breeding periods. 

Mean absolute inter-annual precipitation variability (Figure 5.3F) was highest in areas closer  
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Figure 5.3: Spatial patterns of variability in climate and rodent demographic processes across West 

Africa computed using global gridded temperature and precipitation data (NOAA/OAR/ESRL PSD 

2021a, b) and the climatic-demographic model developed in Chapter 3. A: Variance of the seasonal 

temperature metric (°C). B: Variance of the seasonal precipitation metric (mm). C–E: Variance of the 

predicted demographic processes (C: survival probability, D: recruitment probability, E: mean body 

growth in grams)). F: Mean absolute inter-annual precipitation variability (mm). 
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to the coast, and in part of northern Nigeria, with these areas predicted to have more 

variability in year-on-year recruitment rates and resulting population booms. Together these 

results may begin to explain a degree of spatial heterogeneity in Lassa fever cases, and could 

indicate that in areas closer to the coast Lassa fever outbreaks are likely to become even 

more variable year-on-year should inter-annual variability in precipitation increase under 

climate change. 

5.4 Future directions for Lassa fever mitigation 

Since the majority of Lassa virus spillover is believed to occur in and around the home 

(Bonwitt et al. 2017), there is a potential for Lassa fever risk to be mitigated by individuals 

adapting their behaviours and household infrastructure. However, the relative risks of 

transmission routes are unknown, making it difficult to identify what mitigation steps would 

be effective. Several factors are believed to lead to risky rodent-human contact, including 

consumption of rodents (Ter Meulen et al. 1996), poor housing quality (Bonner et al. 2007), 

unsecure food storage (Clark et al. 2021), and certain agricultural practices (Grant et al. 2016). 

However, without quantifying to what extent these factors – and others which may not have 

been identified – contribute to disease risk, it is difficult to have confidence in specific 

strategies. Creating better-informed mitigation strategies at the point of spillover requires 

further studies within communities to understand risk factors (Clark et al. 2021), such as 

testing of environmental samples for Lassa virus, and further interviews with residents of 

Lassa virus endemic areas about observations of M. natalensis in and around the house.  

Current top-down mitigation strategies are limited to education and awareness. The NCDC 

advises secure food storage, heightened hygiene during food preparation, and community-

level rodent culling and other steps as effective personal mitigation actions (NCDC 2021a), 

and in Nigeria, television and radio advertisements are important sources raising awareness 

of Lassa fever (Oladeinde et al. 2014; Awosanya 2018). Studies indicate variable awareness of 

Lassa fever in Nigeria, with generally low awareness in rural communities (Oladeinde et al. 

2014; Ilesanmi Olayinka et al. 2015; Akinwumi et al. 2016; Awosanya 2018; Usuwa et al. 2020), 

with few people fully aware of transmission risk factors and preventative measures. The two 

most recent studies listed here (Awosanya 2018; Usuwa et al. 2020) have the highest 

estimated awareness level, potentially indicating improved awareness following high-profile 

outbreak events in 2018 and 2019. 
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Community-based rodent control studies have improved Lassa fever awareness and have 

been welcomed by communities (Mari Saez et al. 2018; Clark et al. 2021). These studies 

focussed on rodent control using rodenticide but in both instances communities identified 

that the building of communal storage structures would also be beneficial but limited by 

resources, and in one study people were concerned that control is only effective if all 

members of the community take part. Rodenticide community-based interventions are likely 

too expensive for widespread uptake by rural communities and include substantial set-up 

costs (Mari Saez et al. 2018). Therefore, successful rodent control-based mitigation strategies 

would need to be funded by top-down programmes made available to communities by 

governments or external agents. It would be complementary for such programmes to also 

provide grants for community storage structures and to fund household rodent-proofing 

improvements (Clark et al. 2021). 

In clinical settings, the time delay in diagnosis caused by the need to send samples to central 

diagnostic laboratories may contribute to poor patient outcomes (Raabe & Koehler 2017). 

However, the commercial availability of ELISAs, which are cheaper than the “gold standard” 

RT-PCRs, may enable more cost-effective initial diagnostic testing in primary and secondary 

health facilities (Hallam et al. 2018). Increased development of rapid tests such as lateral flow 

immunoassays may soon enable even cheaper and quicker initial diagnosis of Lassa fever 

(Hartnett et al. 2015), available outside of laboratory settings at the point-of-case, potentially 

improving both surveillance coverage and clinical outcomes (Happi et al. 2019). 

Top-down policies and allocation of resources to reduce Lassa fever burden fundamentally 

require an understanding for spatiotemporal patterns of zoonotic disease. While at a broad 

scale, models such as the climatic-demographic model developed in this thesis may be 

suitable for forecasting timing of increased Lassa fever risk, spatiotemporal risk varies in 

different ways at the community and household level. For example, precipitation appears to 

be an important driver of Lassa fever risk (Chapter 3; Leirs et al. 1989; Redding et al. 2021), 

but at the community level timing of agricultural practices may be more significant (Grant et 

al. 2016). Therefore, research and response priorities must differ on differing spatial scales 

(Figure 5.4), with community level research enhanced by participatory modelling which has 

so far been limited for Lassa fever (Scoones et al. 2017). Carrying out monitoring 

programmes at these different scales will not only enable coordinated and appropriate 

responses to Lassa fever, but will also make it easier to engage stakeholders such as 
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communities and healthcare providers; an important component for successful mitigation 

(Grant et al. 2016; Bardosh et al. 2017).  

 

Figure 5.4: Proposed Lassa fever monitoring priorities at different scales and how this information can 

feed into response and mitigation. 

The new frontier of vaccination for Lassa virus presents a big opportunity for improving 

public health in West Africa (Hallam et al. 2018) with increased resourcing and funding 

accelerating vaccine research in recent years (IAVI 2018; CEPI et al. 2021). However, several 

gaps need to be addressed in order for vaccination to be efficient, effective, and measurable. 

Population-level coverage of vaccination should be determined based on risk of infection by 

and complications from Lassa fever, which as previously discussed is unknown. On a broad 

scale, delivery of vaccines to rural communities in known Lassa virus endemic regions would 
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be an efficient use of resources, but would be most valuable alongside renewed spatial 

surveillance efforts to identify missed regions of endemicity. Measuring the effect of vaccine 

deployment will also require improved estimates of disease incidence and burden, so that 

vaccinated and unvaccinated groups can be compared to assess the value of vaccination. For 

example, it would be valuable to assess the extent of Lassa-related chronic deafness 

(Cummins et al. 1990)and to monitor this following vaccination programmes. Many vaccines 

are contraindicated in pregnancy (Röbl-Mathieu et al. 2021), while pregnant women are 

among those at greatest risk of complications due to Lassa fever, with an estimated risk ratio 

of death of 2.86 (95% CI [1.77, 4.63]) compared to non-pregnant women with Lassa fever 

(Kayem et al. 2020). Given the importance of maternal health in alleviating poverty (Filippi et 

al. 2006), the association of Lassa fever with low-income and rural communities (Richmond & 

Baglole 2003), and that poverty and rural location are also associated with reduced access to 

healthcare (Appendix A), targeting vaccination programmes at women of childbearing age 

and potentially already-pregnant women in rural communities could be an enhanced 

opportunity to reduce disease burden and fatality. 

While the focus of this thesis and existing research has been on M. natalensis as the primary 

reservoir host of Lassa virus, the role of other hosts must be assessed now and in the future. 

It would be short-sighted to assume that Lassa fever is restricted by the distribution of M. 

natalensis given that other rodent species have been found to host Lassa virus. Lassa virus 

has been detected in Hylomyscus pamfi in Nigeria and M. erythroleucus in Nigeria and 

Guinea (Olayemi et al. 2016a), and in Mus baoulei in Benin (Yadouleton et al. 2019). It will 

therefore be important to continue to screen potential hosts, especially if large-scale 

mitigation strategies centred around M. natalensis are put into place, such as rodent control. 

It should also not be assumed that the Lassa virus disease system will remain static, since the 

virus is already believed to have spread across West Africa on the timescale of centuries 

(Andersen et al. 2015). 

5.5 Opportunities and challenges for zoonotic disease forecasting 

The ideal of a fully mechanistic model informed by the processes in the zoonotic 

transmission pathway requires models of every process in this pathway, in turn requiring 

suitable data (Hassell et al. 2021). These pathways, and relevant types of data, vary across 

diseases, making a universal mechanistic model of zoonotic disease unfeasible. Instead, 

process-based models to forecast zoonotic disease incidence and risk factors may have to be 
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tailored to each zoonotic disease system. A universal method to generate a model for 

disease based on different and diverse types of data could be possible using pattern-based 

algorithmic approaches such as machine learning, however, such an approach may hinder 

the inclusion of biological realism and identification of processes driving disease risk. I 

therefore believe that a unified model of all zoonotic disease is unrealistic and should not be 

a research focus. However, there are time-saving opportunities when developing bespoke 

process-based disease models. By promoting open science behaviour, in which methods are 

clearly explained and code for new computational methods shared, models can borrow from 

one another. Such modular models could prevent unnecessary development of methods, or 

“reinventing the wheel”, and allow researchers to update models when applicable 

innovations are developed. Importantly, combining different models together in this way 

could improve the integration of methods which are typically used in different disciplines, 

enabling models to move beyond still-present disciplinary silos (Manlove et al. 2016) and 

integrate cross-disciplinary expertise and experience into modelling frameworks (Scoones et 

al. 2017). 

Within any given data type, the sources of data can be numerous; for example, trapping 

studies of M. natalensis have been conducted by multiple groups of researchers but 

encompass different regions and habitat types (Massawe et al. 2005; Makundi et al. 2007; 

Kronmann et al. 2013; Fichet-Calvet et al. 2014; Mulungu et al. 2016; Olayemi et al. 2018; 

Mariën et al. 2020), therefore it is necessary to use these data together. This presents the 

practical challenge of identifying and collating data from different sources. In the absence of 

a central, universal database, compiling data relies on dedicated systematic reviews which 

are time consuming, subject to human error, and are outdated as soon as another data 

collection exercise is performed. Online, freely available databases such as the Global 

Biodiversity Information Facility (GBIF) are helpful and an important step forwards, however 

without confidence that a database contains enough data of a given type, collating such data 

for a model will still require a full literature search. Additionally, current databases are siloed 

in terms of the data types which they collect; for instance, GBIF data include species presence 

data and not other measures such as absence or abundance (GBIF 2022). 

Integrating data from different sources typically leads to a variety of, and sometimes absence 

of, metadata. For example, different types of serological assays have different levels of 

sensitivity and specificity when testing for antibodies related to a given pathogen (Turgeon 
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2020). Therefore, without information on which assay was used, a serosurvey has limited use 

when in combination with other serosurveys, since observed patterns cannot be controlled 

for the effect of assay type. Even when metadata are available, it is sometimes unknown how 

these variables may impact the variable of interest. For instance, date of rodent trapping 

study is likely to affect estimated abundance of a rodent species since rodents are highly 

seasonal, but these population dynamics may not be well-understood. While studies of 

metadata may appear to be a less constructive use of resources than studies of the variables 

of interest, without controlling for metadata, models are likely to be biased. To address this 

challenge, at the study design stage researchers should consider whether their study can be 

used to measure the impact of metadata on variables of interest, rather than prioritising 

collecting as much data as possible. Studying the effects of metadata variables, and 

publishing metadata alongside studies whenever collected, will enable consolidation of 

existing and future data since the impacts of extraneous factors will be better known. 

Addressing knowledge gaps around metadata should be considered a valuable research 

exercise, because it enables forecasting models to make the best use of the diverse data 

available and reduce biases in these models (Lievesley 2001). 

5.6 Future of zoonotic disease management 

When vaccines are developed, it will be important for those developing and distributing 

vaccines to be mindful of the context of zoonotic disease and how the purpose of 

vaccination differs as compared with disease sustained by human-to-human transmission. 

While diseases affecting economically valuable animals such as livestock may attract 

commercial funding, vaccination of zoonotic diseases transmitted to humans mainly from 

wildlife is rarely commercially attractive and therefore relies on government and charitable 

funding (Monath 2013). Vaccine development is more costly in terms of time and resources 

for humans than animals, but – as previously discussed – the vaccination of wild animals is 

challenging and, additionally, is sometimes limited by the lifespan of the animal in question, 

potentially requiring frequent vaccination programmes until the disease is potentially 

eradicated. Additionally, human vaccination alone cannot eradicate zoonotic disease, so a 

human vaccination strategy requires regular vaccination deployment on the long term. 

Cross-disciplinary collaborations, such as CEPI and IAVI, and advances in vaccine 

development (CEPI 2020; Piszczatoski & Gums 2020; CEPI et al. 2021) present promising 

opportunities for effective vaccination strategies for zoonotic disease in the future. 



Lauren A. Attfield, PhD thesis – Chapter 5   

136 

The lack of understanding surrounding relative risks from different routes of transmission for 

Lassa virus exemplifies a problem common to zoonotic diseases, especially those which 

originate in wildlife. While for some diseases the individual-level risk is well-qualified, such as 

rabies which is well-known to be transmitted through bites from an infected, rabid host 

(Wunner & Briggs 2010), for others, like Lassa fever, the risk factors of spillover are less clear. 

In Nipah virus outbreaks in Malaysia, it is not known through what mode the pathogen was 

shed from the intermediate host – domestic pigs, with aerosol spread and infected urine 

both being possible but neither quantified, making it challenging to identify how humans 

can modify their behaviour to reduce risk of exposure (Kulkarni et al. 2013). An additional 

challenge is that different zoonoses, and sometimes even the same zoonotic disease in 

different locations, have idiosyncratic routes of transmission. In Bangladesh and India, Nipah 

virus is thought to primarily be transmitted from wild fruit bats to humans through the 

consumption of date palm sap from collection containers which have been contaminated 

with infected bat fruit bat saliva or urine, as contrasted with the human risk from infected 

swine in Malaysia, where no instances of bat-to-human infection have been recorded 

(Kulkarni et al. 2013; Sharma et al. 2019). To a greater extent than for diseases propagated 

primarily by human-to-human infection, zoonotic diseases have a diversity of reservoirs, 

hosts, transmission routes, and human behaviours leading to exposure. Zoonotic disease 

management is, and will continue to be, hampered by this heterogeneity, with large-scale 

monitoring needed to choose appropriate mitigation strategies for each disease and each 

location. 

Current evidence suggests that habitat disturbance broadly causes an increased risk of 

zoonotic spillover due to the predominance of species suited to hosting zoonotic pathogens 

in disturbed environments (Gibb et al. 2020b; Johnson et al. 2020), presenting a strong case 

for biodiversity protection and restoration as a mitigation strategy for zoonotic disease 

(Keesing & Ostfeld 2021b). For specific diseases, exploring land management strategies to 

limit the increased prevalence of zoonotic reservoirs and hosts may provide important 

directions for long term disease management. More broadly, it is possible that funding 

organisations, including governments, will increase resourcing for maintenance of 

biodiversity in order to safeguard human health, motivated also by findings across other One 

Health research areas (Marselle et al. 2019; Rojas-Rueda et al. 2019). While this mitigation 
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route may be less attractive since it is indirect and, perhaps, harder to measure, this could be 

a valuable win-win for human and wildlife wellbeing. 

The emergence of a zoonosis as a human-to-human transmissible disease with a basic 

reproduction number greater than one (meaning that a given infection or disease case is 

expected to result in more than one secondary infection or disease case in a fully susceptible 

population) presents an evident epidemic risk with potentially global health implications 

(e.g., COVID-19; Cucinotta & Vanelli 2020). While risk factors and spatial patterns of zoonotic 

emergence have been identified (Taylor et al. 2001; Jones et al. 2008; Smith et al. 2014), the 

stochastic and rare nature of emergence has so far precluded the quantification of disease-

specific risk of emergence or identification of measures which will reduce this risk for most 

zoonoses. The global spread and substantial public health impacts of SARS-CoV-2 (Cucinotta 

& Vanelli 2020; Wang et al. 2022) has stimulated renewed debate into the best way to 

predict, prevent, or prepare for the next emerging zoonosis. 

To predict and prevent a known zoonotic disease from emerging requires an understanding 

of every step of the zoonotic spillover pathway; a data-intensive activity demanding cross-

disciplinary collaboration (Plowright & Hudson 2021). Given that many zoonoses and 

potential zoonoses are likely unknown however, it is unfeasible to study and monitor every 

pathogen with emergent potential (Carlson et al. 2021). Therefore, many instead suggest 

strengthening healthcare and governance systems and set up emergency protocols which 

enable rapid access to research and resources (Carlson et al. 2021; Frieden et al. 2021; 

Haldane et al. 2021). The common themes in solutions for zoonotic disease management are 

open science, cross-disciplinary collaboration, and equitable access to resources; by taking 

positive action in these areas, our global research and healthcare system may be better 

equipped to mitigate the negative effects of both endemic and emerging zoonotic diseases. 
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Figure 5.1: Spatial heterogeneity in observations of Lassa fever and Lassa virus 

infection. 

Figure 5.1A: © Informa UK Limited, trading as Taylor & Francis Group; 2017. 

Permission: “Taylor & Francis is pleased to offer reuses of its content for a thesis or 

dissertation free of charge contingent on resubmission of permission request if work 

is published.” (Copyright Clearance Center, Inc.; 2022). 

s100.copyright.com/AppDispatchServlet?startPage=276&pageCount=13&author=Rory+Gibb%2C+%2C

+%2C+et+al&orderBeanReset=true&imprint=Taylor+%26+Francis&volumeNum=111&issueNum=6&c
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%2F2017 

Figure 5.1B: © Basinski et al.; 2021. Copyright: CC BY. 
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Appendix 1: Supplementary materials for Chapter 1 

Supplementary Figure S1.1. Modelled temporal dynamics and drivers of confirmed Lassa 

fever cases in the south and north of Nigeria. Reproduced from Redding et al. (2021). A-B: 

Observed weekly case counts (grey bars) and predicted weekly case counts (red/blue line 

with 95% credible intervals in grey shading). The blue line shows prospective predicted cases 

for the year which was not included in model fitting. A: States in the south of Nigeria (Edo 

and Ondo). B: States in the north of Nigeria (Bauchi, Plateau, and Taraba). C-E: Nonlinear 

fitted effects of environmental variables on relative disease risk with posterior mean (line) 

and 95% credible interval (shaded area). C: Enhanced Vegetation Index (EVI). D: Mean daily 

precipitation. E: 3-month Standardised Precipitation Index (SPI3). © Redding et al.; 2021. 

Licence: CC BY. 
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Appendix 2: Supplementary materials for Chapter 2 

Supplementary Data S2.1. Extracted data on confirmed cases from NCDC situation reports 

on Lassa fever from 2018 to 2021 inclusive, by state and year.

Year State Confirmed Deaths 

2018 Taraba 23 7 

2018 Rivers 2 1 

2018 Nasarawa 4 3 

2018 Edo 279 43 

2018 Ondo 159 42 

2018 Bauchi 24 14 

2018 Ebonyi 72 18 

2018 Plateau 14 12 

2018 Kaduna 3 3 

2018 Gombe 4 4 

2018 Kano 1 0 

2018 Kogi 12 4 

2018 Enugu 1 1 

2018 Anambra 4 2 

2018 Lagos 1 1 

2018 Delta 11 6 

2018 Imo 5 1 

2018 FCT 5 3 

2018 Ekiti 2 1 

2018 Osun 2 1 

2018 Adamawa 3 2 

2018 Abia 1 1 

2018 Benue 1 1 

2019 Taraba 40 16 

2019 Rivers 2 1 

2019 Nasarawa 7 5 

2019 Edo 306 46 

2019 Ondo 285 46 

2019 Bauchi 56 10 

2019 Ebonyi 57 21 

2019 Plateau 36 11 

2019 Kaduna 5 0 

2019 Gombe 4 1 

2019 Cross-River 1 1 

2019 Kogi 4 3 

2019 Enugu 2 1 

2019 Lagos 1 0 

2019 Kwara 1 0 

2019 Delta 3 0 

2019 Imo 2 1 

2019 Adamawa 1 1 

2019 Abia 2 2 

2019 Benue 8 5 

2019 Kebbi 7 1 

2019 Oyo 2 1 

2019 Zamfara 1 1 

 

Year State Confirmed Deaths 

2020 Ogun 1 0 

2020 Taraba 58 22 

2020 Rivers 9 3 

2020 Nasarawa 10 4 

2020 Edo 385 40 

2020 Ondo 423 83 

2020 Bauchi 53 22 

2020 Ebonyi 81 23 

2020 Plateau 33 8 

2020 Kaduna 7 5 

2020 Gombe 9 2 

2020 Borno 4 1 

2020 Kano 5 1 

2020 Kogi 40 8 

2020 Enugu 10 2 

2020 Anambra 2 1 

2020 Lagos 1 0 

2020 Delta 18 3 

2020 FCT 3 2 

2020 Osun 2 0 

2020 Adamawa 4 1 

2020 Abia 5 2 

2020 Benue 10 4 

2020 Kebbi 4 2 

2020 Oyo 1 0 

2020 Katsina 6 2 

2020 Sokoto 5 3 

2021 Edo 190 14 

2021 Ondo 148 44 

2021 Taraba 21 12 

2021 Ebonyi 17 2 

2021 Bauchi 13 3 

2021 Benue 8 0 

2021 Plateau 8 0 

2021 Kaduna 6 4 

2021 Enugu 5 1 

2021 Nasarawa 3 0 

2021 Kogi 3 0 

2021 Cross-River 1 0 

2021 Imo 1 0 

2021 Anambra 1 0 

2021 Delta 1 0 

2021 Abia 1 0 
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Supplementary Figure S2.2. Population demography of countries in West Africa has been 

changing since 1960. Graphs created from crude birth rate, crude death rate, and population 

size by country from The World Bank development indicators (The World Bank 2022a, b, c). 
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Supplementary Figure S2.3. Final seroprevalence is not sensitive to initial seroprevalence in 

mathematical models of seroconversion. Graphs show modelled seroprevalence across time 

for the example of Nigeria with initial seroprevalence 𝑄2019 varied from 0.01 to 0.99 

(difference coloured lines). A-C (top row): No seroreversion. D-F (bottom row): Seroreversion 

implemented with an average seropositive period of 15.6 years. A+D (left column): Force of 

infection F=0.005 /year. B+E (middle column): 𝐹 = 0.05 /year. C+F (right column): 𝐹 = 0.3 

/year. 
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Supplementary Table S2.4. Bias model parameter estimates, 95% confidence intervals, and 

𝑝-values for the bias parameter being positive. All reported to 3 significant figures. 

Year 𝑎 𝑏 𝑏 > 0 

All years 0.269 [0.214, 0.333] 0.395 [0.337, 0.455] 𝑝 < 0.0001 

2018 0.235 [0.178, 0.302] 0.744 [0.612, 0.866] 𝑝 < 0.0001 

2019 0.228 [0.148, 0.333] 0.485 [0.352, 0.622] 𝑝 < 0.0001 

2020 0.151 [0.127, 0.178] 0.218 [0.148, 0.292] 𝑝 < 0.0001 

2021 0.824 [0.590, 1.17] 0.345, [0.282, 0.416] 𝑝 < 0.0001 

 

Supplementary Table S2.5. 𝑝-values for a decrease in bias between years, reported to 3 

significant figures. Comparison years with a significant decrease in bias are in bold face. 

Year 1 Year 2 ∆𝑏 < 0 

2018 2019 𝑝 = 0.138 

2018 2020 𝒑 = 𝟎. 𝟎𝟎𝟖𝟐 

2018 2021 𝒑 = 𝟎. 𝟎𝟎𝟒𝟏 

2019 2020 𝑝 = 0.108 

2019 2021 𝑝 = 0.169 

2020 2021 𝑝 = 0.727 

 

Supplementary Table S2.6. MFR and CFR estimates with 95% confidence intervals and 

probability of CFR being greater than MFR. All reported to 3 significant figures, except for 

MFR in 2021 which had an estimate and lower confidence bound of less than 10-6. 

Year 𝐶𝐹𝑅 𝑀𝐹𝑅 𝐶𝐹𝑅 > 𝑀𝐹𝑅 

All years 0.218 [0.206, 0.231] 0.132 [0.113, 0.151] 𝑝 < 0.0001 

2018 0.271 [0.242, 0.300] 0.0862 [0.0177, 0.145] 𝑝 < 0.0001 

2019 0.209 [0.187, 0.233] 0.117 [0.0127, 0.179] 𝑝 < 0.0001 

2020 0.206 [0.187, 0.225] 0.151 [0.127, 0.178] 𝑝 < 0.0001 

2021 0.201 [0.173, 0.231] <0.0001 (0, 0.106] 𝑝 < 0.0001 
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Supplementary Figure S2.6. Weekly confirmed COVID-19 cases in Nigeria. From 

01/01/2020 to 02/01/2021, adapted from the WHO COVID-19 dashboard (WHO 2020b). The 

increase in confirmed cases in January to February 2021 coincides with the usual timing of 

Lassa fever cases. Available at covid19.who.int/region/afro/country/ng. © World Health 

Organization; 2020, All Rights Reserved. Licence: CC BY-NC-SA 3.0 IGO. 
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Supplementary Table S2.7. Disease incidence estimates from different models of zoonotic 

exposure and 95% credible intervals, all reported to 3 significant figures. 

Total disease incidence (millions) 

 

CS1 

(contact scales with 

population density) 

CS2 

(contact scales 

logarithmically with 

population density) 

CS3 

(contact only occurs in 

rural populations) 

RH1V1 

(occurrence-

occurrence model) 

13.1 [11.6, 14.8] 8.18 [7.25, 9.23] 5.14 [4.55, 5.79] 

RH2V1 

(abundance-

occurrence model) 

15.9 [14.1, 17.9] 14.0 [12.4, 15.8] 7.74 [6.86, 8.73] 

RH2V2 

(abundance-

prevalence model) 

28.5 [25.3, 32.2] 19.3 [17.1, 21.8] 13.7 [12.1, 15.5] 
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Appendix 3: Supplementary materials for Chapter 3 

Supplementary Table S3.1. Comparison of lowest AIC growth model with that of next 

lowest AIC. Coefficients and 95% confidence intervals are presented to 3 significant figures. 

Coefficients of 0 indicate that the covariate is not included in this model process. Since the 

difference in AIC was less than 2, the models were compared. Because the processes 

included were the same and the direction of contribution was similar, the model with the 

lowest AIC was chosen. 

Covariates 

Coefficients 

Lowest AIC 

(AIC=16305.64) 

Next-lowest AIC 

(AIC=16307.49) 

Name Value Mean growth (𝜷𝐺) 

Intercept 1 −49.5 

[−55.3, −43.7] 

−46.9 

[−52.1, −40.2] 

Body weight 𝑤 0.757 

[0.736, 0.777] 

0.751 

[0.732, 0.776] 

Relative 

population size 

𝑞(𝑡) −0.0156 

[−0.0206, −0.0107] 

−0.0204 

[−0.0311, −0.0124] 

Temperature 

seasonality 

𝑇seas(𝑡 − 𝐿𝑇) 2.54 

[2.29, 2.80] 

2.45 

[2.17, 2.77] 

Temperature 

variability 

𝑇var(𝑡 − 𝐿𝑇) 0 0 

Precipitation 

seasonality 

𝑃seas(𝑡 − 𝐿𝑃) −1.38 

[−1.68, −1.08] 

−1.28 

[−1.75, −1.13] 

Precipitation 

variability 

𝑃var(𝑡 − 𝐿𝑃) 0 0 

Name Value Standard deviation of growth 

Intercept 1 𝑎𝐺 =  1.07 

[0.984, 1.16] 

𝑎𝐺 =  1.08 

[0.985, 1.18] 

Body weight 𝑤 𝑏𝐺 =  0.0156 

[0.0130, 0.0182] 

𝑏𝐺 =  0.0153 

[0.0128, 0.0183] 
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Supplementary Table S3.2. Estimated coefficients for the chosen demographic models, 

reported to 3 significant figures, with 95% confidence intervals beneath. Coefficients of 0 

indicate that the covariate is not included in this model process.  

Covariates Coefficients 

Name Value Survival (𝜷𝑆) Recruitment (𝜷𝑅) Mean growth (𝜷𝐺) 

Intercept 1 −14.3 

[−15.1, −13.5] 

−42.4 

[−53.3, −32.9] 

−49.5 

[−55.3, −43.7] 

Body weight 𝑤 0.0435 

[0.0395, 0.0476] 

0.0260 

[0.00551, 0.0469] 

0.757 

[0.736, 0.777] 

Relative 

population size 

𝑞(𝑡) 0 −0.0387 

[−0.0561, −0.0226] 

−0.0156 

[−0.0206, −0.0107] 

Temperature 

seasonality 

𝑇seas(𝑡 − 𝐿𝑇) 0.508 

[0.477, 0.539] 

1.53 

[1.18, 1.94] 

2.54 

[2.29, 2.80] 

Temperature 

variability 

𝑇var(𝑡 − 𝐿𝑇) 0 0 0 

Precipitation 

seasonality 

𝑃seas(𝑡 − 𝐿𝑃) −0.107 

[−0.146, −0.0687] 

0 −1.38 

[−1.68, −1.08] 

Precipitation 

variability 

𝑃var(𝑡 − 𝐿𝑃) −0.0788 

[−0.113, −0.0445] 

0.354 

[0.181, 0.532] 

0 

Name Value   

Standard deviation 

of growth 

Intercept 1   𝑎𝐺 =  1.07 

[0.984, 1.16] 

Body weight 𝑤   𝑏𝐺 =  0.0156 

[0.0130, 0.0182] 
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Supplementary Table S3.3. Model validation by fitting to two additional random samples of 

80% of the data. Lags and coefficients are given for the three different samples (S1, S2, S3). 

Where a validation model fitted to sample S2 or S3 includes the same covariate as the base 

model for S1, the proportion of that coefficient value relative to S1 is given in brackets to give 

a clearer metric of similarity. Bold indicates that the validation model produced a value more 

than 10% different from the base model. Asterisks (*) indicate that the validation model 

differs from the base model in terms of which covariates are included. 

Parameters Values 

Name Value Survival (𝜷𝑆) Recruitment (𝜷𝑅) Mean growth (𝜷𝐺) 

Temperature 

lag (days) 

𝐿𝑇 S1: 63 

S2: 77 

S3: 70 

S1: 154 

S2: 154 

S3: 154 

S1: 161 

S2: 168 

S3: 168 

Precipitation 

lag (days) 

𝐿𝑃 S1: 98 

S2: 98 

S3: 98 

S1: 63 

S2: 63 

S3: 63 

S1: 133 

S2: 140 

S3: 140 

Covariates Coefficients 

Intercept 1 S1: -14.3 

S2: -14.5 (1.01) 

S3: -14.3 (1.00) 

S1: -42.4 

S2: -38.7 (0.91) 

S3: -41.8 (0.99) 

S1: -49.5 

S2: -45.5 (0.92) 

S3: -50.3 (1.02) 

Body weight 

(g) 

𝑤 S1: 0.0435 

S2: 0.0420 (0.97) 

S3: 0.0432 (0.99) 

S1: 0.0260 

S2: 0.0292 (1.12) 

S3: 0.0207 (0.80) 

S1: 0.756 

S2: 0.748 (0.99) 

S3: 0.747 (0.99) 

Relative 

population 

size 

𝑞(𝑡) S1: 0 

S2: 0.00158 * 

S3: 0 

S1: -0.0387 

S2: -0.0331 (0.85) 

S3: -0.0310 (0.80) 

S1: -0.0156 

S2: -0.0185 (1.18) 

S3: -0.0176 (1.12) 

Temperature 

seasonality 

(°C) 

𝑇seas(𝑡 − 𝐿𝑇) S1: 0.508 

S2: 0.525 (1.03) 

S3: 0.517 (1.01) 

S1: 1.53 

S2: 1.39 (0.91) 

S3: 1.51 (0.99) 

S1: 2.54 

S2: 2.38 (0.94) 

S3: 2.60 (1.02) 

Temperature 

variability 

(°C) 

𝑇var(𝑡 − 𝐿𝑇) S1: 0 

S2: 0 

S3: 0 

S1: 0 

S2: 0 

S3: 0 

S1: 0 

S2: 0 

S3: 0 

Precipitation 

seasonality 

(mm) 

𝑃seas(𝑡 − 𝐿𝑃) S1: -0.107 

S2: -0.205 (1.88) 

S3: -0.173 (1.62) 

S1: 0 

S2: 0 

S3: 0 

S1: -1.38 

S2: -1.20 (0.87) 

S3: -1.47 (1.06) 
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Precipitation 

variability 

(mm) 

𝑃var(𝑡 − 𝐿𝑃) S1: -0.0788 

S2: -0.0980 (1.24) 

S3: -0.0814 (1.03) 

S1: 0.354 

S2: 0.301 (0.85) 

S3: 0.333 (0.94) 

S1: 0 

S2: 0 

S3: 0 

Name Value   Standard deviation 

of growth (𝑎𝐺 , 𝑏𝐺) 

Intercept 1   S1: 1.07 

S2: 1.07 (1.00) 

S3: 1.08 (1.01) 

Body weight 

(g) 

𝑤   S1: 0.0156 

S2: 0.0154 (0.99) 

S3: 0.0156 (1.00) 

 

Supplementary Table S3.3. Significant covariates in the non-demographic models and 

comparison of error metrics across the non-demographic and climatic-demographic model, 

all reported to 3 significant figures. 

Model Significant covariates Variance of 

residuals 

Median squared 

error 

Root mean 

squared error 

(1) Null 

𝜇 = 61.1 

𝜎 = 63.7 

N/A 2.20 0.949 1.48 

(2) Linear 
𝑇seas (𝑝 < 0.0001) 

𝑇var (𝑝 < 0.0001) 
0.649 0.171 0.804 

(3) Linear 

growth 
𝑃seas (𝑝 = 0.0002) 2.69 0.989 1.64 

(4) Exponential 

growth 
𝑇seas (𝑝 = 0.0134) 15.6 0.867 3.94 

(5) Climatic-

demographic 

See Supplementary 

Table S3.2 
0.949 0.276 0.973 
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Appendix 4: Supplementary materials for Chapter 4 

Supplementary Table S4.1. Collated data on cases from nosocomial transmission, used to 

estimate incubation period distribution.  

Location Exposure 

period 

Symptom 

onset period 

Incubation 

period 

window 

(days) 

Fatal Reference 

Jos, Plateau 

State, Nigeria 

25/01/1970 03/02/1970 9 Yes, 

13/02/1970 

(Frame et al. 

1970) 

Jos, Plateau 

State, Nigeria 

25/01/1970 – 

13/02/1970 

20/02/1970 7 – 26 No (Frame et al. 

1970) 

Zorzor, Lofa 

County, Liberia 

02/03/1972 – 

18/03/1972 

22/03/1972 4 – 20  No (Mertens et 

al. 1973) 

Zorzor, Lofa 

County, Liberia 

03/03/1972 – 

19/03/1972 

22/03/1972 3 – 19 No (Mertens et 

al. 1973) 

Zorzor, Lofa 

County, Liberia 

15/03/1972 – 

19/03/1972 

20/03/1972 1 – 5  Yes, 

04/04/1972 

(Mertens et 

al. 1973) 

Zorzor, Lofa 

County, Liberia 

02/03/1972 – 

19/03/1972 

20/03/1972 1 – 18  No (Mertens et 

al. 1973) 

Zorzor, Lofa 

County, Liberia 

01/03/1972 – 

10/03/1972 

13/03/1972 3 – 12 Unknown (Mertens et 

al. 1973) 

Zorzor, Lofa 

County, Liberia 

01/03/1972 – 

08/03/1972 

17/03/1972 9 – 16 Unknown (Mertens et 

al. 1973) 

Imo State, 

Nigeria 

23/01/1989 29/01/1989 6 Yes, 

15/02/1989 

(Fisher-Hoch 

et al. 1995) 

Imo State, 

Nigeria 

25/02/1989 03/03/1989 6 Yes, 

15/03/1989 

(Fisher-Hoch 

et al. 1995) 

Imo State, 

Nigeria 

25/02/1989 03/03/1989 6 Yes, 

15/03/1989 

(Fisher-Hoch 

et al. 1995) 

Imo State, 

Nigeria 

25/02/1989 07/03/1989 10 No (Fisher-Hoch 

et al. 1995) 

Imo State, 

Nigeria 

25/02/1989 07/03/1989 10 Unknown (Fisher-Hoch 

et al. 1995) 

Abakaliki, Ebonyi 

State, Nigeria 

03/01/2012 08/01/2012 5 Unknown (Ajayi et al. 

2013) 

Abakaliki, Ebonyi 

State, Nigeria 

03/01/2012 08/01/2012 – 

15/01/2012 

5 – 12  Unknown (Ajayi et al. 

2013) 

Abakaliki, Ebonyi 

State, Nigeria 

03/01/2021 08/01/2012 – 

15/01/2012 

5 – 12  Unknown (Ajayi et al. 

2013) 

Abakaliki, Ebonyi 

State, Nigeria 

03/01/2021 08/01/2012 – 

15/01/2012 

5 – 12  Unknown (Ajayi et al. 

2013) 

Abakaliki, Ebonyi 

State, Nigeria 

03/01/2021 08/01/2012 – 

15/01/2012 

5 – 12  Unknown (Ajayi et al. 

2013) 
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Tanguiéta, 

Atakora 

Department, 

Benin 

07/10/2014 – 

14/10/2014 

21/10/2014 7 – 14 Yes, date 

unknown 

(Yadouleton 

et al. 2020) 

Tanguiéta, 

Atakora 

Department, 

Benin 

07/10/2014 – 

14/10/2014 

23/10/2014 9 – 16  Yes, date 

unknown 

(Yadouleton 

et al. 2020) 

Tchaourou, 

Borgou 

Department, 

Benin 

03/01/2016 08/01/2016 5 No (Yadouleton 

et al. 2020) 

Tchaourou, 

Borgou 

Department, 

Benin 

03/01/2016 12/01/2016 9 No (Yadouleton 

et al. 2020) 

Tchaourou, 

Borgou 

Department, 

Benin 

03/01/2016 13/01/2016 10 Yes, date 

unknown 

(Yadouleton 

et al. 2020) 

Tchaourou, 

Borgou 

Department, 

Benin 

03/01/2016 13/01/2016 10 No (Yadouleton 

et al. 2020) 

Nigeria 28/12/2017 03/01/2018 6 Yes, 

14/01/2018 

(Dan-Nwafor 

et al. 2019) 

Nigeria 28/12/2017 09/01/2018 12 Yes, 

14/01/2018 

(Dan-Nwafor 

et al. 2019) 

Nigeria 28/12/2017 03/01/2018 6 Yes, 

04/01/2018 

(Dan-Nwafor 

et al. 2019) 

Nigeria 28/12/2017 05/01/2018 8 No (Dan-Nwafor 

et al. 2019) 

Sierra Leone 04/11/2019 11/11/2019 7 Yes, date 

unknown 

(ECDC 2019) 

Sierra Leone 04/11/2019 11/11/2019 7 No (ECDC 2019) 
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Supplementary Text S4.2. Use of a fourth-order numerical solution to estimate the 

horizontal rodent-to-rodent transmission rate. 

This supplementary text details the use of the Runge-Kutta method (RK4) to improve the 

estimate of horizontal force of infection 𝐹(𝑡) on the susceptible population. Fourth order, 

rather than a lower or higher order, was chosen as a balance between accuracy and 

simplicity. 

Consider a time step 𝑡 of the IPM simulation. At this time, let the number of susceptible, 

horizontally-infected, and vertically-infected individuals be 𝑆𝑡, 𝐻𝑡, and 𝑉𝑡 respectively. These 

can be obtained by integrating over the weight distributions at time step 𝑡, for example, 

𝐻𝑡 = ∫ 𝐷𝐻(𝑤, 𝑡) d𝑤
∞

0
. Let 𝐾𝑡(𝜏) be the number of horizontal infections which occur between 

time step 𝑡 and time 𝑡 + 𝜏, where 𝜏 is no more than 1 (i.e., 𝑡 + 𝜏 is between time step 𝑡 and 

𝑡 + 1). We want to find out 𝐾𝑡(1). Since the model assumes that demographic changes take 

place every 28 days, we will assume that there are no births or deaths which will impact 𝐾𝑡. 

We also assume that no individuals leave the horizontally-infected compartment or join the 

vertically-infected compartment, since these changes are also modelled every 28 days. 

Therefore, we can simplify the SHVR system to a susceptible-infected (SI) model (equations 

S4.1–S4.3) to describe how 𝐾𝑡(𝜏) changes between 𝜏 = 0 and 𝜏 = 1. 

 d𝑆

d𝜏
= −𝛽𝑆𝐼 

d𝐼

d𝜏
= 𝛽𝑆𝐼 

d𝐾𝑛

d𝜏
= 𝛽𝑆𝐼 

𝑆(𝜏 = 0) = 𝑆𝑛 

𝐼(𝜏 = 0) = 𝐻𝑛 + 𝑉𝑛 

𝐾𝑡(𝜏 = 0) = 0 

 

(𝑆4.1) 

 

(𝑆4.2) 

 

(𝑆4.3) 
 

(𝑆4.4) 

(𝑆4.5) 

(𝑆4.6) 

It remains to estimate 𝐾𝑡 at time 𝜏 = 1 given the initial conditions. Let ℎ be the size of the 

time step (in this case, 28 days). Using RK4, we can estimate 𝐾𝑡(𝜏 = 1) based on initial values 

and estimates of the slope of 𝐾𝑡 between time steps 𝑡 and 𝑡 + 1. These slopes are denoted 

𝑘1, 𝑘2, 𝑘3, and 𝑘4. 

At time step 𝑡, the slope of 𝐾 is equal to the initial value of its derivative, so: 

 𝑘1 = 𝛽𝑆𝑡𝐼𝑡 (S4.7) 
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At the halfway point between time step 𝑡 and 𝑡 + 1 (i.e., 𝜏 = 1

2
), we estimate the new slope 

based on the change in the force of infection since time step 𝑡. Neglecting changes in 𝑆 and 

𝐼 during this time for any other reason than movement between the two compartments due 

to disease transmission, at the halfway point we estimate that 𝐼 = 𝐼𝑡 +
𝑘1

2
 and 𝑆 = 𝑆𝑡 −

𝑘1

2
, 

since 𝑘1 is the rate at which infections take place at time 𝑡. Therefore, the slope of 𝐾𝑡 halfway 

between time steps 𝑡 and 𝑡 + 1 is estimated as: 

 
𝑘2 = 𝛽 (𝑆𝑡 −

𝑘1

2
) (𝐼𝑡 +

𝑘1

2
) 

(S4.8) 

The next slope estimate in RK4 is a second estimate for the slope at the halfway point, this 

time using 𝑘2 instead of 𝑘1. This is then, similarly: 

 
𝑘3 = 𝛽 (𝑆𝑡 −

𝑘2

2
) (𝐼𝑡 +

𝑘2

2
) 

(S4.9) 

Finally, the slope at time step 𝑛 + 1 is estimated using 𝑘3. The initial estimates at this point 

are 𝐼 = 𝐼𝑡 + 𝑘3 and 𝑆 = 𝑆𝑡 + 𝑘3, so: 

 𝑘4 = 𝛽(𝑆𝑡 − 𝑘3)(𝐼𝑡 + 𝑘3) (S4.10) 

The resulting fourth-order estimate for 𝐾𝑛(𝜏 = 1), and the estimated number of transmission 

events between time step 𝑡 and 𝑡 + 1, is 

 𝐸𝑡 = 𝐾𝑡(1) =
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

(S4.11) 

In the IPM, not only are the number individuals in different compartments important but also 

the distribution of weights in these compartments. I therefore implemented horizontal 

transmission by multiplying the distribution of weights in the susceptible compartment 

(𝐷𝑆(𝑤, 𝑡)) by a force of infection, 𝐹(𝑡), assumed to be independent of rodent body weight 

(equations 4.7a–b). Given that we estimate 𝐸𝑡 transmission events to have taken place since 

the previous time step (equation S4.11), this means that the force of infection on each 

susceptible individual should be 

 𝐹(𝑡) =
𝐸𝑡

𝑆𝑡
, 

(S4.12) 

since when multiplied by the distribution of weights in the susceptible compartment, 

𝐷𝑆(𝑤, 𝑡), and integrated over 𝑤, this would result in the correct number of horizontal 

transmission events. 

The procedure for computing the force of infection effective at a given time step 𝑡, 𝐹(𝑡), is 

therefore to (1) compute the total infectious and susceptible population size at time 𝑡 by 
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integrating (or summing) the relevant distributions over body weight; (2) compute the four 

slopes in turn (equations S4.7–S4.10); (3) compute the number of transmission events 𝐸𝑡 

between time step 𝑡 and 𝑡 + 1 using the RK4 method (equation S4.11); and (4) divide this by 

the size of the susceptible population at time 𝑡, 𝑆𝑡 (equation S4.12). 

 

Supplementary Figure S4.3. Credible region for the gamma-distributed incubation period, 

comparison with the lognormal distribution, and predicted gamma distribution with credible 

intervals. A: Kernel density estimate for the density in the MCMC chain across parameter 

space, with lighter colours denoting higher density and 95% credible region enclosed by a 

white line. B: Kernel density estimate for the mean incubation period obtained by the 

lognormal and gamma distributions. C: Bar graph showing predicted probability of an 

incubation period being the given duration. Each line range indicates the 95% credible 

interval for the probability mass function of that particular duration in isolation. 
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Supplementary Table S4.4. Estimates for parameter values and derived metrics relating to 

the lognormal and gamma distributions for incubation period.  

Estimates Lognormal distribution Gamma distribution 

Parameter values 𝜇𝐿 = 2.02 [1.89, 2.15] 

𝜎𝐿 = 0.299 [0.222, 0.420] 

𝛼𝐼 = 16.4 [9.00, 26.0] 

𝛽𝐼 = 2.10 [1.12, 3.39] 

Mean incubation period (days) 7.82 [6.95, 9.12] 7.79 [6.84, 8.82] 

Median incubation period (days) 7 [6, 8] 7 [6, 8] 

Modal incubation period (days) 7 [6, 8] 7 [6, 8] 

Central 95% probability range (days) 3 [2, 4] to 13 [11, 18] 3 [3, 4] to 12 [11, 14] 

ℙ(𝐼 > 21 days) 0.0248% [0%, 0.856%] 0.00111% [0%, 0.0188%] 

 

 

Supplementary Table S4.5. Estimates for parameter values and 95% credible intervals in the 

GLM linking zoonotic hazard with inferred human infections, and the computed p-values for 

a positive slope. Parameter values are reported to 3 significant figures and credible intervals 

are reported to 2 significant figures. 

State 𝑘 𝑎𝑘 𝑏𝑘 𝜎𝑘 𝑏𝑘 > 0 

Bauchi 
0.679 

[0.43, 0.92] 

0.622 

[0.27, 0.98] 

2.04 

[1.8, 2.3] 
𝑝 = 0.0003 

Ebonyi 
−0.145 

[−0.34, 0.051] 

1.16 

[0.87, 1.5] 

1.56 

[1.4, 1.8] 
𝑝 < 0.0001 

Edo 
−0.490 

[−1.2, 0.26] 

6.17 

[5.1, 7.3] 

6.10 

[5.2, 6.8] 
𝑝 < 0.0001 

Ondo 
−0.0571 

[−0.79, 0.71] 

5.43 

[4.3, 6.5] 

5.96 

[5.1, 6.7] 
𝑝 < 0.0001 

Taraba 
0.594 

[0.43, 0.74] 

0.186 

[0.0011, 0.39] 

0.976 

[0.75, 1.1] 
𝑝 = 0.0243 
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Appendix 5: Supplementary materials for Chapter 5 

Supplementary Figure S5.1. Spatiotemporal trends in Lassa fever surveillance. Reproduced 

from Redding et al. (2021). Maps show total reported Lassa fever cases in each local 

government authority of Nigeria during the specified year(s) on a logarithmic scale. Top row: 

Suspected and confirmed cases. Triangles show the locations of laboratories with Lassa fever 

diagnostic capacity; in addition to two existing diagnostic laboratories in 2012, three 

additional laboratories became operational in 2017, 2018, and 2019. Bottom row: 

Laboratory-confirmed cases only. © Redding et al.; 2021. Licence: CC BY. 
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Appendix A: Socioeconomic and geographic factors affecting risk of 

Lassa fever disease burden in Nigeria 

Introduction 

Lassa fever is thought to affect some of the poorest communities in Africa due to the 

presence of the reservoir host in unimproved rural housing (Gibb et al. 2017). However, 

surveillance of Lassa fever is highly spatially heterogeneous, as has been shown for Nigeria 

(Redding et al. 2021; Chapter 2). Meanwhile, there are socioeconomic disparities in access to 

and engagement with healthcare facilities in Nigeria (Riman & Akpan 2012) which may cause 

these surveillance heterogeneities, and also decrease likelihood of treatment for Lassa fever. 

Additionally, pregnancy is a major risk factor for Lassa fever fatality (Kayem et al. 2020), and 

this may also be linked with socioeconomic region or geographic factors. With this analysis I 

sought to identify whether these factors (pregnancy and access to healthcare) overlap in 

rural regions which are already predisposed to higher contact rates with the reservoir host. 

Methods 

I obtained healthcare surveys from 2018 for Nigeria from the Demographic and Health 

Surveys (DHS) Program (NPC & ICF 2019). Using individual surveys of women aged 15 to 49 

years, I sought to answer three questions. Do geopolitical region (north west, north east, 

north central, south west, south south, and south east) or residence type (urban or rural) 

impact: 

(1) Likelihood of barriers or perceived barriers to healthcare access? 

(2) Probability of being pregnant? 

(3) Probability of receiving prenatal care? 

The interview questions used to inform these risk factors were: 

(1) Whether or not the individual interviewed said that each of the following were a “big 

problem” (as opposed to “not a problem” or “not a big problem”) to accessing 

healthcare; (a) getting permission to go, (b) getting the money needed, (c) distance 

to a healthcare facility. It was not appropriate to use answers to the question which 

determined whether or not an individual had accessed healthcare recently, since this 

would be confounded by individual health. 

(2) Whether or not the individual interviewed said that they were currently pregnant. 
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(3) Out of those who had been pregnant in the last three years, whether or not they 

received any form of prenatal care during their last pregnancy. Options included 

traditional care providers outside of formal healthcare facilities. 

I removed data relating to women who stated that they were visitors to the area or whom 

did not complete the full survey, since this might indicate lack of engagement. I modelled all 

events with generalised linear models (GLMs) with a binomial error structure. I included age 

bracket (five-year intervals; 15-19, 20-24 etc.) as a covariate to control for demographic 

effects in addition to region and residence type (Table A1). For question (2) I also fitted 

additional models with pregnancy status as another covariate, in case pregnant women are 

more or less likely to feel there are barriers to accessing healthcare.  

Table A1. GLMs for healthcare and pregnancy in Nigeria informed by health surveys. 

Model 

number 
Outcome variable Covariates Sample size 

1 Probability of being 

pregnant 

Age group 

Region 

Residence type 

𝑛 = 41,615 

2a 

 

 

 

2a* 

Probability of getting 

permission to attend a 

healthcare facility being a 

“big problem” 

Age group 

Region 

Residence type 

 

Age group 

Region 

Residence type 

Current pregnancy status 

𝑛 = 41,615 

2b 

 

 

 

2b* 

Probability of getting the 

money needed to attend a 

healthcare facility being a 

“big problem” 

Age group 

Region 

Residence type 

 

Age group 

Region 

Residence type 

Current pregnancy status 

𝑛 = 41,615 

2c 

 

 

 

2c* 

Probability of the distance 

required to travel to a 

healthcare facility being a 

“big problem” 

Age group 

Region 

Residence type 

 

Age group 

Region 

Residence type 

Current pregnancy status 

𝑛 = 41,615 
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3 Probability of having 

received no prenatal care 

during most recent 

pregnancy (within the last 

three years) 

Age group 

Region 

Residence type 

𝑛 = 21,682 

 

Results 

Probability of being pregnant, probability of having received no prenatal care, and 

probability of reporting a “big problem” to healthcare access due to all three of the tested 

barriers (Figure A1) were significantly increased in rural settings (𝑝 < 0.0001 for all), and 

significantly varied between geopolitical regions (𝑝 < 0.0001 for all). The effect of being in a 

rural versus urban location was more influential than geopolitical region for likelihood of 

receiving prenatal care, while these effects were comparable for probability of pregnancy. 

Being currently pregnant had no significant effect on reporting permission or money being 

big problems for access to healthcare, however it did have a significant positive on distance 

to travel being a big problem (𝑝 = 0.047). 

 

Figure A1. Venn diagrams showing the proportion of women aged 15 to 49 years in urban and rural 

regions who felt that different factors presented a “big problem” to accessing healthcare. 

 

Conclusions 

Exploring reasons behind spatial patterns in access to healthcare across Nigeria is outside 

the scope of this thesis. However, this analysis indicates that there is geographic variation in 

healthcare access and pregnancy. Importantly, women in rural areas are both more likely to 

be pregnant, less likely to feel able to access healthcare, and less likely to receive neonatal 

care. While this association is important for maternal health generally (Okoli et al. 2020), this 
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is also relevant to the assessment of disease burden of Lassa fever. Given that women in the 

interviewed age bracket in rural areas are more likely to be pregnant and that pregnancy 

increases risk of fatality during Lassa fever by a factor of 2.8 (Kayem et al. 2020), Lassa fever 

in rural area versus an urban area may be much more likely to result in fatality. This increased 

risk of fatality is compounded by the reduced access to healthcare in rural regions and likely 

increased incidence of Lassa virus infection in rural communities, meaning that the disparity 

in disease burden of Lassa fever is likely much greater than implied by relative infection 

incidence alone. 

It would be valuable to explore how Lassa fever mitigation measures can be deployed to 

rural areas; community engagement in continuous rodent control has shown success but 

only for a limited number of communities (Mari Saez et al. 2018). It will be important to 

ensure Lassa virus vaccines, when developed, are deployed to areas on the basis of high 

expected disease burden, rather than on the basis of high reported incidence, due to the 

spatial heterogeneity of surveillance (Chapter 2). However, it is likely a more pressing need to 

address heterogeneities in access to healthcare in Nigeria, which may be challenging given 

the political landscape (Innocent et al. 2014). It is important to consider that while Lassa fever 

likely has a large disease burden across West Africa, delivery of improved healthcare, 

including maternal healthcare, to all rural locations may provide a more effective reduction in 

overall disease burden than the specific targeting of Lassa fever, since timely provision of 

healthcare can substantially reduce mortality of Lassa fever (Hallam et al. 2018). 
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