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Abstract 

 

Infectious diseases remain the main cause of death in low-income countries. Because of this, efforts 

to control the circulation of infectious agents are a priority for public policy makers. This control is 

challenged by a combination of complex disease dynamics, funding constraints or lack of political and 

societal commitment. These challenges are generally heterogeneous between geographical settings 

making the impact of control strategies hard to assess.   

 

In view of this, the purpose of this research is to integrate economic and epidemiological tools in order 

to improve support for disease control planning and implementation. To do this, I develop a 

metapopulation model framework to analyse the impact of control strategies when there are 

neighbouring populations with different epidemiological conditions. The results from this framework 

can be incorporated into further economic analysis and optimisations. 

 

The first section of this project aims to understand interventions’ effects when transmission intensity 

varies between populations. As a first approach, I implement the framework to analyse indirect effects 

of interventions for a transmission-stratified population, using generic models. Then, to contextualise 

the findings from the generic model, I analyse optimal intervention allocation for malaria control.  

Results from this section evidenced the importance of aligning local and global control strategies.  

 

The second section of this project focuses on understanding the consequences of disease control 

when intervention uptake varies between populations. For this, the metapopulation framework is 

applied to estimate the burden populations undergo due to the presence of an anti-vaccination 

movement.  First, I analyse the burden of an outbreak of a vaccine preventable disease in a population 

where there are opposing vaccine acceptance views, implementing a measles transmission.   Finally, I 

use the same approach to estimate the likely impact of vaccine hesitancy on the control of the COVID-

19 pandemic. Results of this section highlight the importance of addressing vaccine hesitancy as a 

public health priority. 
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Chapter 1  Introduction  

 

Despite developed global health care, improved sanitation, and major scientific advances in 

investigating infectious pathogens, infectious diseases remain a major global health threat. Infectious 

disease burden is highest in low and middle-income countries (LMIC), being the main cause of death 

in the former (WHO, 2018, Baker et al., 2022). Furthermore, outbreaks due to emerging diseases are 

causing significant health burden in both high income countries (HIC) and LMIC (Bloom and Cadarette, 

2019).   

 

Infectious diseases do not only affect global health but also pose economic and social risks worldwide. 

Besides the health care costs of treating an infected individual, there are productivity costs due to 

missed workdays by those who are ill and their caretakers (Bloom and Cadarette, 2019). In low-income 

countries where the mortality rate from diseases like tuberculosis and malaria is still high, deaths due 

to these diseases deplete the country’s economic workforce, stalling economic growth. Moreover, 

emerging disease outbreaks saturate health care facilities, increase morbidity and mortality, and 

disrupt economic and social activities worldwide (Fonkwo, 2008). 

 

Most infectious diseases can be prevented or treated with available interventions. However, political 

and societal commitment is needed to finance and uphold intervention control plans (Fonkwo, 2008). 

Policy makers design interventions aiming to control disease transmission. Yet, disease control is a 

multidisciplinary challenge which requires the integration of biological, epidemiological, and 

economical approaches amongst other fields to successfully plan intervention strategies. In view of 

this, in this thesis, I integrate epidemiological tools and economic analyses to improve support for 

disease control planning and implementation. 

 

1.1 Epidemiological tools for disease control  

Epidemiology studies disease dynamics in order to deepen the understanding of transmission, infer 

patterns of morbidity and mortality, and find ways of reducing the burden caused by diseases (Rock 

et al., 2014). Mathematical models have been used as a tool to aid epidemiologists in understanding  

these dynamics.  With these models, the complexity of disease dynamics can be translated into 
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mathematical language and disease trajectories under different scenarios can be analysed. Moreover, 

outcomes from mathematical models can be employed to inform economic analyses in order to assess 

the feasibility and cost-effectiveness of control strategies.  

 

1.1.1 Basic models  

Compartmental models are one of the most frequently used mathematical models employed to 

represent disease dynamics. These models are pathogen centric and divide the population (host) into 

discrete non-overlapping compartments incorporating a range of epidemiological characteristics, 

which usually are different infection states (Rock et al., 2014).  Susceptible- Infectious – Recovered 

(SIR) and Susceptible -Infectious- Susceptible (SIS) models are the simplest and most widely used 

mathematical models. The former are usually implemented to analyse epidemic diseases, whereas 

the latter are usually implemented to analyse endemic diseases without long-term immunity (Hanski 

and Gaggiotti, 2004).  Simulations with generalised SIS and SIR models provide helpful insights into 

the effects that alterations in the transmission cycle have on the burden of the disease. These 

theoretical analyses allow epidemiologists to evaluate intervention and elimination strategies that 

otherwise would require expensive and sometimes non-ethical trials. An example of this is the study 

carried out by Fitzpatrick and Bauch (2011), in which they modelled different resource allocations for 

the eradication of three hypothetical vaccine preventable, paediatric diseases. They found that it is 

better to allocate the budget for supplementary immunisation activities to one disease at a time rather 

than evenly distributing resources among 3 diseases  (Fitzpatrick and Bauch, 2011).  

 

Basic SIR and SIS models often omit many important aspects of the infection cycle and disease biology. 

Variations of these models can be used to introduce realism and represent the complex natural history 

of infection (Rock et al., 2014).  These variations may include adding more compartments to represent 

different stages of the disease or to account for transmission heterogeneity throughout the infection 

cycle population. For example, analyses of the Global Polio Eradication Initiative are based on a 

complex compartmental model, which considers the different polio serotypes and includes faecal-oral 

transmission. Additionally, the model contains different immunity and waning stages representing 

disease dynamics with different vaccines (Duintjer Tebbens et al., 2015, Duintjer Tebbens et al., 2010).  

 

Another complexity ignored by basic models is population heterogeneity. Simple compartmental 

models assumed that population is homogenous and parameters of transmission are the same for all 
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individuals within the same compartment. Population heterogeneity can be included in the model 

partitioning the population into groups, which may represent age groups, risk stratification, different 

intervention uptake rates among others. In these models each group would have the same 

compartments, but parameters may differ (Rock et al., 2014).  For instance, some analyses for the 

control of malaria are based on a mathematical model for the transmission which stratifies humans 

by age and heterogeneity in heterogenous exposure to mosquito bites (Griffin et al., 2010b). These 

models with stratified populations have allowed epidemiologists to represent complex population 

structures and evaluate the outcome of intervention packages and elimination strategies (Duintjer 

Tebbens et al., 2015, Winskill et al., 2019, Walker et al., 2016).  

 

1.1.2 Metapopulation models  

One of the most common population heterogeneities in disease modelling are those associated with 

spatial aggregations and connections. Simple compartmental models can be modified to represent 

spatial heterogeneity by using metapopulation models. These models divide the population into 

independent subpopulations or patches. Each patch has homogenous internal dynamics (e.g., SIR or 

SIS) and is connected by some degree of migration between the other patches   (Keeling and Rohani, 

2008, Yan et al., 2018, Colizza and Vespignani, 2008).  This metapopulation structure is generalisable 

to another context to capture different transmission heterogeneity patterns.  

  

Metapopulation models were initially developed for theoretical conservation ecology but are now 

widely used to represent transmission heterogeneity for infectious diseases. In the epidemiological 

version of metapopulation models, infection events and susceptible individuals are analogous to 

colonisation events and patch resources, respectively, from the ecological version of metapopulation 

models. In 1997, Grenfell and Hardwood developed the first spatial metapopulation model in 

epidemiology. They modelled measles transmission using the same principles applied in theoretical 

ecology models (Grenfell and Harwood, 1997). Since then, spatial modelling using metapopulations 

has been used for the analysis of disease heterogeneity for control and elimination strategies.  

 

To date, the implementation of metapopulation models to analyse disease control strategies has 

allowed modellers to have a good insight into disease dynamics. Particularly for measles,  

metapopulation structure and parameterisation has been widely studied (Ball et al., 2015). 

Furthermore, metapopulation models for measles have been implemented to support research 
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towards planning of control and elimination plans  (Ferrari et al., 2008, Grenfell et al., 2002, Hanski 

and Gaggiotti, 2004). This can be seen in a study by Lee et al. (2019), where they considered whether 

Kenya should invest in vaccination to geographically hard-to reach population. For this, the authors 

developed a metapopulation model to estimate the potential benefits of vaccinating the hard-to-

reach population over continuing with traditional vaccination campaigns. In their analysis, they 

conclude that in order to achieve 2020 elimination goals, the efforts of vaccinating hard-to-reach 

populations are worthy and cost-effective (Lee et al., 2019). 

 

In mathematical terms, in metapopulation models, disease dynamics in each patch are described by a 

set of differential equations representing homogenous internal dynamics. Connection between 

patches is represented by a modified force of infection that considers both the infectious population 

of the patch and the coupling with other patches (Keeling and Rohani, 2008). For a simple 

compartmental model, the force of infection is represented as  𝜆 =  𝛽
𝐼

𝑁
 .  Here 𝛽 is the effective 

contact rate and 𝐼/𝑁 represents the infectious population. In a metapopulation model the force of 

infection can be defined as follows.   

𝜆𝑖 =  𝛽𝑖 ∑𝜌𝑖𝑗

𝐼𝑗

𝑁𝑖
𝑗

 

The subscript i refers to a particular patch and 𝜌𝑖𝑗  is the strength of interaction to patch i from patch 

j (Keeling and Rohani, 2008). In the absence of interaction 𝜌𝑖𝑗 = 0  (𝑖 ≠ j) and the dynamics of each 

patch can be defined independently.  The interaction coefficients shape the model’s mixing matrix 

(Ρ), where the diagonal values 𝜌𝑖𝑖  represent strength of transmission associated with infectious 

agents from the same patch and the non-diagonal elements of the mixing matrix 𝜌𝑖𝑗 (𝑖 ≠ j)  represent 

coupling interactions between patches.  

𝛲 = [

𝜌11 ⋯ 𝜌1𝑛

⋮ ⋱ ⋮
𝜌𝑛1 ⋯ 𝜌𝑛𝑛

] 

 

There are different types of coupling interactions depending on the nature of hosts and their 

movement. For instance, plant interactions assume that the hosts do not move, so the coupling 

transmission is assumed to be wind or vector borne. Animal interactions on the other hand assume 

that spread of the disease is due to migration and permanent movement between patches. Finally, 

human interactions assume that the coupling interaction is due to temporal commuters between 
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patches (Keeling and Rohani, 2008).  Throughout this thesis, I will focus on the last type of coupling 

interaction.  

 

For human coupling interactions, the force of infection in a patch can be expressed as a weighted sum 

of prevalence in all patches, where the weight is given by the interaction coefficient 𝜌𝑖𝑗, under these 

critical assumptions  (Keeling et al., 2004, Keeling and Rohani, 2008): 

• All patches are the same size.  

• Time spent away from the home patch is relatively short compared to the disease dynamics.  

• Distribution of commuting individuals is at equilibrium.  

 

1.2 Economic analyses for disease control  

The advantages of controlling disease transmission were reaiterated with the eradication of smallpox 

in 1980.  These advantages went beyond the health gain of preventing an infection and include the 

economic gains of averted morbidity and mortality in addition to the avoidance of the cost of future 

control measures. When smallpox was declared eradicated, public health organizations were able to 

stop investing in surveillance, vaccinations and treatment of cases. Economic analyses have 

demonstrated that smallpox eradication was the best global public investment in history (Barrett, 

2013b) and since then, these analyses have been assisting public health and healthcare decision 

making.  

 

As mentioned above, epidemiological models can be a reliable representation of infection dynamics 

and the effects of interventions. However, these models ignore aspects which could affect 

implementation of policies. Including the impact of healthcare on a population, the evaluation of 

costs, and the analysis of supply and demand of healthcare resources might alter decisions based only 

on epidemiological model outputs (Klein et al., 2007). Therefore, health economic analyses are key 

when assessing intervention control policies, particularly in determining the societal value of 

interventions (Carande-Kulis et al., 2007).  

 

Health economic analyses are challenged by a suboptimal market. The demand and supply of 

healthcare and health protection goods rely on individual and collective actions which may not be 

aligned toward allocative efficiency. Individual demand for intervention is usually less than the 
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economic optimal, given that some indirect effects of prevention and services may be overlooked by 

individuals.  Some of these indirect effects are related to disease prevention interventions which 

convey benefits to other individuals (not only the one consuming it). Additionally, some public health 

interventions are public goods (e.g. the infrastructure to respond to disease outbreaks) and people 

cannot be excluded from benefiting from these (Carande-Kulis et al., 2007). 

 

Given that the private market results in suboptimal outcomes for disease intervention strategies, 

government interventions are required to achieve socially optimal outcomes. Functioning markets 

assure allocative and technical efficiency. This assures that the socially optimal quantity of public 

health goods are produced, and that production uses least amount of resources. In the absence of 

functioning markets, other tools need to be employed to assure efficiency. One of the most widely 

used tools are cost-effectiveness and cost-benefit analyses. These analyses are used to estimate the 

costs and outcomes of alternative health interventions. Cost-effectiveness analysis measures 

outcomes in natural units or summary measures of health, such as Quality-Adjusted-Life-Years 

(QALYs), whereas cost-benefit analysis measures both costs and outcomes in monetary terms (Turner 

et al., 2021). The former is more widely accepted in health policy,  as the monetization of health can 

be challenging (Garber and Sculpher, 2011). 

 

1.2.1 Resource allocation  

Both cost-effectiveness and cost-benefit analyses are used to analyse different intervention strategies 

in order to inform resource allocation decisions. These comparisons are usually made against a 

counterfactual or baseline scenario that represents the current standard of care (Turner et al., 2021). 

For both analyses, costs estimation usually includes direct costs such as resources, training, 

surveillance, and administration logistics in addition to the intervention prices. These costs are then 

compared to the outcomes of interventions, which can be estimated using transmission modelling 

projections translated to QALYs or monetary value. Implementing disease transmission models to 

analyse interventions requires significantly more computation than linear methods applied in other 

areas of economics. Yet, it is the best approach to capture the non-linear relationship between 

investment in intervention and health outcomes and most importantly, to estimate the impact of the 

intervention on both the treated and the untreated individuals, which is a unique challenge for 

infectious diseases (Brandeau, 2004).  
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The complexity of cost-effectiveness analyses and disease modelling can be seen in the case 

of poliovirus control studies. In a comprehensive study of long-term poliovirus risk management 

policies, Tebbens et al. (2015) used a metapopulation model to assess different vaccination strategies 

towards polio eradication. They evaluated different policies in relation to the cessation of oral 

poliovirus vaccine (OPV), the current status quo vaccination policy in LMIC countries. These policies 

included different timeframes for the cessation of vaccination and supplementary immunisation 

activities with an injectable inactivated poliovirus vaccine. They estimate the cost-benefits of these 

policies over the current policy of administrating OPV and confirmed the cost effectiveness of a 

coordinated cessation of OPV after eradication is achieved. However, the authors acknowledge the 

limitations of their analysis, as there is high uncertainty for future costs and transmission parameters, 

which can alter the results significantly (Duintjer Tebbens et al., 2015).   

 

Comparisons between interventions like the example above can help decide which is the best option 

available over a finite set of alternatives. Yet, these comparisons do not associate the best option 

with the funding available (Knerer et al., 2021). The distribution of funds requires optimisation 

analyses to identify the set of public health interventions that maximise health gain within limited 

health care resources. In order to do this, the use of constrained optimisation methods integrated 

with the output of epidemiological models has been proposed (Brandeau et al., 2003).  These 

methods use epidemiological model outputs to assess different intervention packages (i.e. coverages 

or scheduling) and find the option that maximise the health benefits subject to a funding constraint. 

This involves complex computational and mathematical calculations.  To date, relatively few studies 

have used constrained optimisation to analyse real-world allocation challenges; some examples can 

be found for dengue (Knerer et al., 2021), malaria (Walker et al., 2016, Winskill et al., 2019, Scott et 

al., 2017) and measles (Klepac et al., 2012).  

 

Allocating interventions and funds optimally is not always enough to achieve disease control targets. 

In order to do so, disease control programs require strong political and societal commitment (Tomori, 

2011). This is partly because control interventions not only have effects on the individuals that 

received them but can have consequences for other people. For example, in vaccination campaigns, 

when herd immunity is achieved, disease transmission can be stopped without vaccinating everyone. 

These indirect consequences are known in economics as externalities (Barrett, 2004) and usually are 

not considered in cost-benefit intervention policy discussions (Boulier Bryan et al., 2007). However, 

externalities can have a large effect on the costs and benefits of infectious disease control programs. 
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1.2.2 Externalities  

In economics, externalities are defined as the effects to uninvolved parties, that arise from an 

individual’s actions. In epidemiology these effects are known as spillover or community-wide effects 

(Hauck, 2018).  Externalities can also be defined as the gap between social and private benefits. Social 

benefits refer to the overall benefits of an intervention and include both the direct and indirect effects. 

On the other hand, private benefits refer to the direct benefits derived by the person who received 

the intervention. Private benefits determine the quantity demanded of products and services, 

including public health prevention; it is assumed that an individual will purchase based on their 

estimation of the private benefit which will depend on the expected risk of infection and the cost of 

the disease (Boulier Bryan et al., 2007, Hauck, 2018). 

 

Externalities may be positive or negative. Preventive interventions (e.g., vaccination) by one individual 

have positive externalities reducing the risk of infection of others. Most of the time treatments also 

have a positive effect when they increase the recovery rate of individuals, reducing the infectious 

population (Hauck, 2018). Negative externalities such as tobacco consumption have indirect health 

effects on non-consumer due to passive smoking, increasing their healthcare expenses and reducing 

their quality of life (Carande-Kulis et al., 2007). Moreover, treatments like antibiotics may have both 

positive and negative externalities, limiting the spreading of a disease but increasing the likelihood of 

development of resistant bacteria (Klein et al., 2007).  

 

When analysing public health interventions, welfare economics assume humans are altruistic and 

would base their actions on the social benefits (Hauck, 2018).  Yet, when making decisions individuals 

tend to consider only the effects impacting them directly  (Gersovitz, 2011). Thus, positive externalities 

can generate incentives for individuals, and for countries, to free ride on disease control programs 

(Barrett, 2004). At the individual level, indirect protection conferred by preventive interventions can 

encourage individuals to not participate in prevention campaigns and rely on the protection conferred 

by others. Individual decisions made by free-riders can influence the success of disease control 

programs. When individuals do not participate in prevention campaigns, the impact can be lower than 

expected and coverage milestones may be delayed, as has previously been seen for polio (Tomori, 

2011) and measles (Larson, 2018) vaccination initiatives. Reluctance to take up interventions is more 

likely to happen when disease incidence is low, externalities are high, and the perceived risk of 

vaccination increases (Boulier Bryan et al., 2007). Unfortunately, to date, the impact of individual free-
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riding on disease control programs is understudied, particularly when budget allocation for 

vaccination strategies is evaluated (Deka and Bhattacharyya, 2019).  

 

At the country level, when a country makes the decision to eliminate a disease, this decision will 

depend on whether all countries  in the region eliminate it (Barrett, 2004). This is because countries 

cannot be excluded from the benefits of disease control in a neighbouring country. These benefits 

may lead neighbouring countries to free-ride from the countries implementing disease control 

strategies in the bordering region, as it is the profit maximizing strategy. For example, countries with 

high malaria transmission usually have little incentive to invest in control on areas bordering low 

malaria transmission (Khadka et al., 2018). Welfare economics usually addresses these collective 

decision processes and their outcomes, which are important for disease control success (Sicuri et al., 

2015). Retrospective analyses of the smallpox eradication program have used a game theory approach 

to understand the impact of cooperation on the eradication of the disease (Barrett, 2013b, Barrett, 

2006). Still, the effects of neighbouring countries' decisions and cooperation across borders does not 

receive enough attention when taking public health decisions.  

 

Because of these free-riders, calculating the externality becomes important for the analysis of disease 

control plans, particularly if there is more than one stakeholder involved. Knowing the effect of 

externalities allows public policy makers to align private and social benefits when designing disease 

control programs (Hauck, 2018, Gersovitz, 2011).  The most common solution to fill the gap between 

private and social benefits is to subsidize actions that cause positive externalities, and tax or fine those 

actions that generate negative externalities (Gersovitz, 2011). Financial incentives (or disincentives) 

are mechanisms used by governments to correct for market failure in healthcare and increase 

economic efficiency (Chaudhuri et al., 2017). Known examples of this are high taxes on cigarettes that 

promote a reduction in tobacco consumption and subsidised cost of vaccines that promote their 

uptake (Carande-Kulis et al., 2007).  
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1.3 Diseases of interest 

The section below describes three diseases that will be implemented as case studies throughout this 

thesis.  I will analyse challenges faced by public policy makers that are particular for each disease. This 

case-study approach was chosen to allow a deeper insight into the complexity of planning disease 

control in real life.  

 

1.3.1 COVID-19  

COVID-19 is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2). The first human case was identified in Wuhan, China in December 2019. In January 2020 

cases were reported outside China and subsequently the virus started spreading worldwide. On March 

11, 2020, the WHO declared COVID-19 a pandemic. At the time this thesis is being written the 

pandemic is still ongoing, the virus is present across the globe, and more than 511 million cases and 

6.2 million deaths have been reported worldwide (World Health Organization, 2022b).  

 

 

Figure 1. 1 Cumulative reported COVID-19 cases by May 3rd, 2022. Reproduced from (Our World in Data, 2022) 
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The infection with SARS-CoV-2 causes a mild respiratory illness, which in some cases can become 

severe and even cause death, particularly in older age groups and those with underlying medical 

conditions. The virus can be transmitted by respiratory droplets or aerosols from an infectious 

individual. Once in the host, wild type SARS-CoV-2 has an average incubation period of 5-6 days and 

can be transmitted from a couple of days before symptoms appear (Anderson et al., 2021, World 

Health Organization, 2022b). A particular feature of COVID-19 is the high proportion of pre-

symptomatic transmission and asymptomatic infectious cases, which make the disease hard to 

control. Efforts to control the spread of COVID-19 have relied on Non-Pharmaceutical Interventions 

(NPIs) like social distancing, stay-at-home orders, and venue closures. In the early stages of the 

pandemic, most countries implemented strict lockdowns, which helped contain the spread of the 

disease (Banholzer et al., 2021). However, some healthcare systems were saturated and more recent 

data on excess deaths have shown a high level of mortality (Wang et al., 2022, World Health 

Organization, 2022a). Now, some pharmaceutical interventions are available, and most countries 

continue to control the spread of the disease by a combination of these new interventions and NPIs 

(Anderson et al., 2021).  

 

New coronavirus drugs have been under development since the beginning of the pandemic. To date, 

8 have been approved by the European Medicines Agency (EMA) (European Medicines Agency, 2022) 

and 1 by the Food and Drug Administration (FDA) in the USA (National Institutes of Health, 2022). 

These treatments reduce the probability of severe COVID-19 and accelerate recovery time. Currently, 

these drugs are now included in clinical protocols to treat COVID-19. However, treatments are not the 

key pharmaceutical intervention for the control of COVID-19.  Since the licensing and mass production 

of vaccines, vaccination to build up herd immunity has been the focus for COVID-19 control. 

 

1.3.1.1 Vaccines  

During the pandemic, unprecedented speed in scientific research to develop vaccines was witnessed. 

On December 11, 2020, the first vaccine was approved under emergency use by the FDA and by May 

2021, 14 vaccines had been licenced across different countries. These vaccines are based on different 

underlying technologies, from novel methodologies like mRNA or viral vector vaccines to more 

traditional methods like inactivated virus vaccines (LSHTM Vaccine Centre, 2021). Ther efficiency 

against symptomatic disease from wild type SARS-CoV-2 has been reported to vary from 50% to over 

95% (Polack et al., 2020, Voysey et al., 2021, Baden et al., 2020, Logunov et al., 2021, Hitchings et al., 

2021).  
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At the beginning of 2021, mass vaccination campaigns started to rollout worldwide and since then a 

significant reduction in morbidity and mortality has been evidenced (Anderson et al., 2021). To date, 

11.5 billion doses have been administered (World Health Organization, 2022b), mainly in high income 

countries.  Unfortunately, only 1.9% of individuals in LMIC have received at least one dose of a COVID-

19 vaccine (Batista et al., 2022), whereas in HIC booster dose coverage exceeds 50 doses per 100 

individuals (Our World in Data, 2022). This inequity in access has complicated the control of the 

pandemic, given that until high coverage is achieved worldwide, the risk of new variants emerging is 

high (Pilkington et al., 2022). 

 

1.3.1.2 SARS-CoV-2 variants    

Another feature of SARS-CoV-2 is the continual evolution of the virus, that has led to new and more 

transmissible variants. Which have established and have dominated transmission in different parts of 

the world. Each of these variants differs in some way epidemiologically and biologically from the 

original wild-type virus. Thanks to high throughput sequencing platforms, mutations and 

phylogenetics of these variants have been identified in record time. However, how these mutations 

provide an evolutionary advantage and alter the infection process is still under research (Anderson et 

al., 2021). It has been estimated that for the Delta variant mutations resulted in a 2-3-fold increased 

infectiousness compared to the original wild type strain (Liu and Rocklöv, 2021). For the Omicron 

variant, this increase is estimated to be as high as 5 times (Burki, 2022).   

 

Vaccine efficacy and vaccination programmes have also been affected by new SARS-CoV-2 variants. 

Although vaccines seem to protect against severe disease for most variants, more research is needed 

to assess the effects on vaccine efficacy and protection durability (Krause et al., 2021). In particular, 

the Omicron variant has posed a challenge to current vaccination plans as vaccine efficacy against this 

variant show reduced protection compared with previous variants  (Nyberg et al., 2022). This has 

hastened booster dose programmes in HIC, where both vaccinated and unvaccinated individuals 

seemed to be similarly infected when Omicron started circulating  (Burki, 2022).  More research about 

new variants and vaccine efficacy is needed to estimate how to optimally allocate available vaccines 

into current vaccination programmes (Krause et al., 2021).  
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1.3.2 Malaria  

Malaria is a vector-borne disease transmitted by the bite of an Anopheles mosquito and caused by 

Plasmodium parasites.  Currently, there are five species of Plasmodium parasites that can cause 

malaria in humans, with P. falciparum and P. vivax posing the greatest threat and the former being 

the deadliest (World Health Organization, 2021c).  In 2020 there were 241 million cases and 627 000 

deaths reported in the 85 malaria endemic countries. It is estimated that the Africa region accounted 

for 95% of all malaria cases and 96% of deaths (World Health Organization, 2021d).  

 

Figure 1. 2 Countries with malaria indigenous cases in 2020.  Reproduced from (World Health Organization, 2021d) 

 

1.3.2.1 Life cycle  

Malaria has a complex life cycle that starts when a malaria-infected Anopheles mosquito bites a human 

and inoculates parasites that travel to the liver. In the liver, the parasite remains for 9-16 days, where 

it reproduces asexually. Afterwards, the parasite leaves the liver to infect erythrocytes. During the 

blood stages of infection, the parasite undergoes asexual reproduction and the human experiences 

clinical malaria symptoms. A small proportion of the parasites in the bloodstream differentiate into 

gametocytes, which are the mosquito’s infective stages. This process lasts between 48-72 hours. 

When a susceptible mosquito bites an infected human, gametocytes are ingested and travel to the 

mosquito’s midgut. The parasite undergoes sexual reproduction and becomes a motile ookinete, that 

migrates to the midgut wall, grows and matures as an oocyst. The oocyst breaks and releases 

sporozoites, the infective stage for humans, which travel to the salivary glands to start the life cycle 

again (Tuteja, 2007).  
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Figure 1. 3 Malaria life cycle. Reproduced from (Tuteja, 2007) 

 

1.3.2.2 Malaria control  

To date, vector control has been the pillar of malaria prevention. This type of control aims to reduce 

the vectorial capacity of vector populations and it is tailored to each location based on environmental, 

epidemiological and entomological characteristics (World Health Organization, 2015, Tizifa et al., 

2018). The two main vector control interventions that are broadly implemented are long-lasting 

insecticidal nets (LLINs) and indoor residual spraying (IRS).  

 

LLINs are nets hung over the bed that protect the sleeper by creating a barrier between vectors and 

humans. LLINs also act to reduce the vector population size as they are treated with insecticides that 

can last up to three years. Most national malaria control programs have implemented high coverage 

LLINs, with 2.3 billion bed nets distributed from 2004-2020, the majority in the African region (World 

Health Organization, 2021d). Although this has been one of the most successful interventions, in 

recent years it has been threatened by the resistance to pyrethroid insecticides, which is the most 
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common insecticide used in LLINs  (Tizifa et al., 2018). This resistance is widely spread across the globe, 

with high levels of resistance reported in at least 27 countries (World Health Organization, 2021d).   

 

IRS aims to kill the vectors by covering indoor surfaces (ceilings and walls) with long lasting 

insecticides. For the last decades, IRS has been the main strategy for vector control, and it has been 

responsible for the elimination of malaria in various countries and the reduction of its burden in others 

(Tizifa et al., 2018). In 2021, it is estimated that 87 million people were protected by this intervention.  

In the same manner as LLINs, the efficacy of this intervention has been threatened by insecticide 

resistance  (World Health Organization, 2021d). 

 

Besides vector control, seasonal malaria chemoprevention is also employed as a control intervention 

in countries where malaria is seasonal (World Health Organization, 2021c). This intervention was 

recommended in 2012 for young children and consists of monthly course of malaria treatment 

administered during the malaria transmission season (Coldiron et al., 2017). By 2021 at least 33.5 

million children had been offered at least one dose in the Sahel region (World Health Organization, 

2021d). Unfortunately, due to scale-up, logistic restrictions and drug resistance, this intervention 

cannot be used in all settings. 

 

All in all, malaria control requires multiple intervention strategies working in conjunction with each 

other. The distribution of long-lasting insecticidal nets, indoor residual spraying, seasonal 

chemoprevention and an efficacious treatment have been used as control strategies for malaria and 

have reduced malaria incidence by 26% between 2000-2013 (Walker et al., 2016). However, new tools 

will be needed to augment existing control interventions to achieve higher levels of control. New 

interventions are expected to become available in the next decade to support the fight against 

malaria. These new tools include new insecticide formulations and methods of application, better 

rapid diagnostic tests to identify different species and drug resistance and several vaccine candidates, 

which are in different stages of development (World Health Organization, 2021b). 

 

In 2021 RTS,S, the first vaccine against malaria, was approved to be implemented in children living in 

regions with moderate to high transmission as a complement to the current package of existing 

interventions. RTS,S is a pre-erythrocyte vaccine, which targets Plasmodium falciparum before it 
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enters the blood cells. Pilot implementation in three countries showed a favourable safety profile and 

significant reductions in severe malaria cases, which led to its recent approval (World Health 

Organization, 2021d). 

 

1.3.2.3 Malaria elimination campaigns    

Malaria elimination campaigns have been on the agenda of public health agencies since the 1950s 

when the potential of reducing transmission levels using insecticides was demonstrated by successful 

field experiments and mathematical models by Ross and MacDonald (Macdonald, 1956). In 1955 the 

Global Malaria Eradication Program was launched and by 1978, 68 countries had been declared 

malaria free (Feachem et al., 2009).  

 

Efforts to eradicate malaria decreased in the late half of the 20th century causing an increase in malaria 

morbidity and mortality rates. Consequently, early in the 21st century, malaria was recognised again 

as priority global health issue by the WHO. Since then, unprecedented efforts have been made 

towards reducing the burden of the disease. In 2015 the Global Technical Strategy for Malaria (GTSM) 

2016-2030 was established and new goals towards malaria elimination and control were outlined. 

These new goals aim to reduce malaria deaths and incidence by 90% and eliminate the disease in at 

least 35 countries compared with 2015 (World Health Organization, 2015). However, the case 

incidence 2020 milestone was reported to be off track by 40% and only 3 countries have been certified 

malaria-free instead of the 10 expected by this date (World Health Organization, 2021d).   

 

1.3.3 Measles 

Measles is a highly contagious human viral pathogen. It is caused by a paramyxovirus, and it is air-

borne transmitted by respiratory droplets. This virus mainly affects children and can cause a febrile 

rash illness, which usually starts with general symptoms like fever, conjunctivitis and cough followed 

by a characteristic maculopapular rash. In some cases, measles can cause life-long complications and 

even death (Holzmann et al., 2016, Rota et al., 2016).   
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Figure 1. 4 Measles cases reported to WHO in the first half of 2019. Reproduced from (Hotez et al., 2020) 

 

Measles is highly infectious,  and a single infected person can infect up to 15-18 people in a fully 

susceptible population (Anderson et al., 1992). Before the 1960s it was estimated that annual measles 

incidence was around 30 million cases and 2-3 million deaths globally  (Rota et al., 2016). In 1963 an 

effective and safe vaccine was developed and it was included in the Expanded Immunization 

Programme of WHO a decade later (Hotez et al., 2020). Since then, measles deaths have decreased 

94% with 140 000 deaths reported worldwide in 2018  (World Health Organization, 2019a).  

 

Even though there is no specific anti-viral treatment, measles has all the components of an eradicable 

disease: a safe and efficient vaccine, no animal reservoirs and adequate infrastructure for global 

surveillance and control (Paules et al., 2019b). Despite these conditions, the high infectiousness of the 

disease poses a challenge for elimination plans as vaccine coverages greater than 95% are required to 

stop the circulation of the virus (WHO, 2012) .  

 

1.3.3.1 Measles elimination strategies  

In 2012 the WHO set up a strategic plan to eliminate measles in five of the six WHO regions by 2020. 

This plan was based on surveillance, routine and supplementary mass vaccination. Before the plan 

was set, the Americas region had already achieved the goal of elimination in 2002;  and the European, 

Western Pacific, and Eastern Mediterranean Regions were on the path to elimination (WHO, 2012).  
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By the end of 2020, this strategy aimed to interrupt  virus transmission for more than 12 months 

worldwide and achieve at least 95% coverage for both doses of measles vaccine (WHO, 2012, Paules 

et al., 2019b).  

 

Unfortunately, despite the elimination efforts in the different WHO regions, measles cases have been 

increasing since 2017 and now the disease is endemic around the world. In 2019 the number of 

measles cases reported was the highest of the decade, almost tripling the cases reported in 2018. This 

set back in the elimination program has been attributed to a decrease in vaccination coverage. 

Reasons behind lower vaccine uptake include war, and political and socioeconomical conflicts that 

limit vaccination access to susceptible populations. Additionally, vaccine refusal has been 

acknowledged as one of the main reasons for the increase in measles cases in countries where 

vaccines are available and accessible (Hotez et al., 2020).  Moreover, the decrease in vaccination 

coverage has been exacerbated in the last two years by the COVID-19 pandemic.  Measles surveillance 

and vaccination systems weakened during the pandemic response, registering in 2020 the largest 

increase in unvaccinated children in 20 years (World Health Organization, 2021a).  

 

In 2021 a new measles strategic framework was set up by WHO.  This new strategy aims to eliminate 

measles by 2030, taking into account the rising contextual changes and challenges. In this new strategy 

weak healthcare systems, increased vaccine refusal and deteriorated surveillance and vaccination 

programmes are recognised as key challenges.   

 

1.4 Thesis aims and overview 

Designing intervention control policies is a multidisciplinary challenge. Epidemiological models can 

represent pathogen’s complex life cycles and help estimate the direct and indirect impact of 

interventions on disease burden. Economic analyses of these indirect effects or externalities also play 

an important role in the design of intervention plans with available resources, particularly when 

multiple stakeholders are involved, and their goals are not aligned.  To date, there has been limited 

connection between epidemiological models and externalities analyses for disease control.  Without 

considering aspects of both the economics and epidemiology, policy makers findings may be biased 

when assessing disease intervention strategies.   
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Considering the above, in this thesis I aim to investigate the trade-offs and economic optimisations of 

infectious disease control strategies in an heterogenous population. I begin the thesis by analysing 

optimal strategies for the allocation of interventions from different stakeholder perspectives. Then, in 

the second part of the thesis, I focus on assessing the effect of intervention uptake choices on disease 

prevention strategies.  

 

The methodology used throughout the thesis is developed in Chapter 2.  In this chapter, I establish a 

metapopulation model framework to analyse impact of control strategies when there are 

neighbouring populations with different transmission conditions. As a first example, I evaluate 

vaccination externalities in a heterogenous population for basic SIR and SIS models.  Additionally, I 

compare different vaccine allocation strategies in order to maximise global externalities. In Chapter 3, 

malaria is used as a case study to compare global and local perspectives on different intervention 

allocation strategies. For this, I extend the metapopulation model to include malaria transmission 

dynamics. Using this model, I assess the health impact of different LLIN distribution strategies when 

sub-populations have different transmission levels. I then compare optimal intervention allocation 

from different stakeholders’ perspectives, minimising health burden for the population and analysing 

the effects of cooperation between sub-populations to control the disease.  

 

In the second part of the thesis, I evaluate social effects for disease control when intervention uptake 

varies between populations. In Chapter 4, I adapt the metapopulation framework to model patches 

with different willingness to adopt optimal vaccination programs instead of modelling different 

transmission. As a case study, I analyse measles dynamics and assess the societal economic burden of 

low vaccine uptake due to anti-vaccinators within a population. Using previously reported parameters 

and costs for measles outbreaks, I estimate the economic impact of an emerging anti-vaccination 

population in an England-like scenario. In Chapter 5, the methodological approach developed for 

measles is implemented to understand the likely impact of low vaccine uptake on control of the 

COVID-19 pandemic. For this, a previously developed mathematical model is implemented and 

different vaccine uptake scenarios are projected and compared based on survey data on self-reported 

intention to be vaccinated. Finally, I conclude in Chapter 6 by discussing the key findings of this thesis, 

their public policy implications, limitations of the methodology implemented and future directions of 

this work. 
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Chapter 2 Estimating vaccination externalities 

in heterogeneous populations   

 

2.1 Introduction  

As introduced in Chapter 1, externalities determine the indirect effects of interventions and measure 

the difference between private and social benefits. Estimating externalities is key when taking public 

health decisions given that they can help align individual and social goals towards disease control 

(Gersovitz, 2011).  A good illustration of externalities in public health is vaccination programmes. From 

the social perspective, the ultimate goal of vaccination campaigns is to achieve herd immunity by high 

vaccine coverage, in order to stop the transmission of the pathogen (Barrett, 2013a).  However, this 

can be challenged by selfish behaviours. Vaccination confers protection not only to vaccinated 

individuals but to non-vaccinated individuals, by reducing the risk of infection. This incentivises 

individual behaviour to free ride on the protection conferred by those already vaccinated, particularly, 

when vaccine coverage levels are close to the herd immunity threshold and consequently the risk of 

infection is low (Hauck, 2018).   

 

To date, relatively few studies have analysed the role of externalities in vaccination policies. Whilst 

some theoretical studies had been carried out (Boulier Bryan et al., 2007, Perrings et al., 2014) there 

have been few empirical investigations into estimating externalities of disease control interventions. 

Furthermore, these empirical applications fail to include epidemiological frameworks that represent 

complex infection dynamics (Cook et al., 2009, White, 2021).   

 

In 2007, Boulier et al. implemented a basic SIR model to analyse externalities under different 

vaccination coverage, disease infectiousness and vaccine efficacy. Their results illustrated that the 

vaccination externalities behaviour is complex and does not follow a linear relationship with vaccine 

coverage (Boulier Bryan et al., 2007).  This simple approach taken by Boulier et al. (2007) gave 

important insights about the behaviour of externalities using epidemiological models.  Nonetheless, 

research to date has not yet determined how these externalities vary in more realistic disease models. 

As described in the previous Chapter, population heterogeneity is omitted in basic SIR models. 

However, these heterogeneities represent key aspects of disease transmission which may have a 
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significant effect on intervention externalities. In this Chapter, I assess the effect of population 

heterogeneity in vaccination externalities, building up on the work developed by Boulier et al.  

 

To evaluate vaccination externalities in a heterogenous population, I develop a generic 

metapopulation deterministic model. The model represents an infectious disease with three 

interconnected subpopulations, each with an independent transmission intensity. Using the 

metapopulation model as a foundation and vaccination as an intervention example, I estimate 

marginal externalities for different vaccine allocation strategies. These strategies are then compared 

to find the strategy that maximises health gains under a limited number of vaccine doses.  

 

I evaluate vaccination externalities by adapting the methods proposed by Boulier et al  (Boulier Bryan 

et al., 2007). These methods are based on three key concepts: 

 

i. Marginal Social Benefit: The marginal social benefit (MSB) of an intervention is the social 

value of the number of cases averted due to an additional unit of intervention in this 

application or context. This benefit includes both direct benefits to vaccinated individuals and 

indirect benefits to the unvaccinated people (Boulier Bryan et al., 2007). When the cost of the 

disease (c) is constant and homogeneous for all individuals in the system, the MSB can be 

defined as the product of the cost of the disease and the marginal effect of vaccination, where 

the marginal effect of vaccination is the difference in the number of cases averted due to 

vaccinating an additional person (Boulier Bryan et al., 2007). Usually, the marginal effect of 

vaccination is expressed as number of cases prevented, while MSB represent the economic 

value of these prevented cases.  

ii. Marginal Private Benefit:  Marginal private benefit (MPB) refers to the expected value of 

illness avoided by an unvaccinated individual due to an additional person in the population 

being vaccinated. The MPB determines the demand for vaccination considering level of 

population coverage (and therefore perceived risk of infection). It is assumed that an 

individual will purchase vaccination based on their estimation of the private benefit, which 

will depend on the expected risk of infection and the cost of the disease (Boulier Bryan et al., 

2007). 

iii. Marginal externalities: The difference between MPB and MSB refers to the indirect effects 

on the population due to an additional vaccination. This is known as the marginal externality 

(Boulier Bryan et al., 2007). This value represents the welfare loss, and it is not constant. 
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Marginal externalities may rise or fall depending on the infectiousness of the disease,  the 

number of vaccines available and the existing level of vaccination coverage in the population 

(Boulier Bryan et al., 2007) .   

2.2 Methods  

 

2.2.1 The models 

I developed two metapopulation models. Each model consisted of three different transmission-

stratified interconnected patches, each with a closed population (i.e.no births or deaths). In the first 

model, each patch represented an SIR disease dynamic as shown in  Figure 2. 1A. In the second model, 

each patch represented an SIS disease dynamic as shown in below Figure 2. 1B. For both models, 

susceptible individuals can acquire infection from infectious individuals at a transmission rate 𝛽. 

Individuals remain infectious on average a period of time 1/𝛾, at which point they enter the recovered 

population (SIR model) or go back to the susceptible population (SIS model). The relative strength of 

transmission between and within patches is described with the mixing matrix (Κ), where each entry 

𝜅𝑖𝑗 represents the strength of transmission to patch i from patch j. For this matrix, a stronger 

transmission strength is assumed within patches compared to between patches (𝜅𝑖𝑖 > 𝜅𝑖𝑗  𝑓𝑜𝑟  𝑖 ≠

𝑗)  and the sum of entries of each row is equal to one  (∑ 𝜅𝑖𝑗𝑗 = 1) .  

Table 2. 1 shows the differential equations describing disease dynamics for each patch i in the models.  

 

Table 2. 1 Differential equations for the SIR and SIS metapopulation models. Patches are represented by i and j indexes. 
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Figure 2. 1  Metapopulation transmission models. Diagrams show metapopulation structure for the transmission model, 

where each patch has a different transmission intensity: High (H), medium (M) and low (L). Within each patch, boxes represent 

infectious states: Susceptible (S), infectious (I) and recovered (R). 𝜷𝒊  and 𝜸𝒊 are transmission and recovery rates, respectively; 

and  𝜿𝒊𝒋 represent transmission force between patches. A) Metapopulation model with SIR diseases dynamics. B) 

Metapopulation model with SIS disease dynamics.  

 

2.2.2 Reproductive number   

The basic reproductive number (R0) of an infectious disease is an epidemiological metric, which 

represents the number of expected secondary infections caused by a single infectious individual in a 

totally susceptible population. Once there is immunity in the population, this number is referred as 

the effective reproductive number (R).  When this number is greater than 1, the disease can persist 

within the population. Thus, it is necessary to decrease and maintain R below 1 to successfully achieve 

disease elimination (Knipl, 2016).  Because of this, R0 is an indicator of the effort required to eliminate 

an infection. For instance, for basic SIR and SIS models, transmission can be interrupted if a proportion 

of the population greater than 1 − 1 𝑅⁄   is protected from becoming infected. This value is known as 

the herd immunity threshold  (Roberts and Heesterbeek, 2003).  

 

For metapopulations, the reproductive number can be determined with the spectral radius of the next 

generation matrix (NGM). In the NGM, each entry 휂𝑖𝑗  represents the number of secondary infections 

in a fully susceptible population i that are expected to arise from an infectious individual from 
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population j  (Knipl, 2016).  In 2010, Diekmann et al proposed a step-by-step method for the 

construction of the NGM. This method is based on the differential equations of the infectiousness 

states and it follows the steps outlined below (Diekmann et al., 2010).  

 

Step 1:  Linearisation of the infectious subsystem  

First, the equations that describe the changes and production of infected individuals are selected as 

the infectious subsystem (Diekmann et al., 2010). For the models presented here, the equations for 

the infectious states are equal for both the SIR and SIS metapopulation models. Therefore, the 

infectious subsystems and the NGM are the same.  

Once the infectious subsystem is identified, the linearisation is done for the infection-free steady 

state. At this state the susceptible population (S) is almost the same as the total population (N). In 

which case, the linearised equations for the subsystem are described by the following equation:  

𝑑𝐼𝑖
𝑑𝑡

= 𝛽𝑖 (∑𝜅𝑖𝑗𝐼𝑗
𝑗

) − 𝛾𝑖𝐼𝑖 

Step 2: The transmission matrix (T)  

The transmission matrix describes the production of new infections. Each entry of this matrix 𝑡𝑖𝑗  

represents the rate at which an individual from population j generates a new infected individual  in 

population i (Diekmann et al., 2010).  Regarding the linearised subsystem, the transmission matrix for 

the metapopulation model is:  

𝑇 = [

𝛽𝐿𝜅𝐿𝐿 𝛽𝐿𝜅𝐿𝑀 𝛽𝐿𝜅𝐿𝐻

𝛽𝑀𝜅𝑀𝐿 𝛽𝑀𝜅𝑀𝑀 𝛽𝑀𝜅𝑀𝐻

𝛽𝐻𝜅𝐻𝐿 𝛽𝐻𝜅𝐻𝑀 𝛽𝐻𝜅𝐻𝐻

] 

Step 3: The transition matrix (Σ)  

The transition matrix represents changes in the infectious states, such as death or immunity 

acquisition. The negative inverse of this matrix −(𝛴−1) describes the average time an individual from 

population j spends in population i (Diekmann et al., 2010).  For the metapopulation model, this 

transition matrix is:  

−𝛴−1 = [

1 𝛶𝐿⁄ 0 0
0 1 𝛶𝑀⁄ 0

0 0 1 𝛶𝐻⁄
] 
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Step 4:  The next generation matrix  

The NGM of the infectious subsystem is the product of the transmission matrix and the inverse of the 

transmission matrix (Diekmann et al., 2010).  

𝑁𝐺𝑀 = −𝑇𝛴−1 =

[
 
 
 
 
 
 
𝛽𝐿𝜅𝐿𝐿

𝛾𝐿

𝛽𝐿𝜅𝐿𝑀

𝛾𝑀

𝛽𝐿𝜅𝐿𝐻

𝛾𝐻

𝛽𝑀𝜅𝑀𝐿

𝛾𝐿

𝛽𝑀𝜅𝑀𝑀

𝛾𝑀

𝛽𝑀𝜅𝑀𝐻

𝛾𝐻

𝛽𝐻𝜅𝐻𝐿

𝛾𝐿

𝛽𝐻𝜅𝐻𝑀

𝛾𝑀

𝛽𝐻𝜅𝐻𝐻

𝛾𝐻 ]
 
 
 
 
 
 

 

Using the NGM, the basic reproductive number is the dominant eigenvalue of this matrix. However, 

for the metapopulation models presented here, the NGM eigenvalues cannot be estimated 

analytically, thus R0 does not have an explicit expression.  

 

2.2.3 Interventions: Vaccination  

As an intervention strategy, vaccination was included into the metapopulation models. Infection 

dynamics with vaccination are described by the equations in Table 2. 2. For both models, it is assumed 

that the vaccine has 100% efficiency (to simplify the model structure) and confers life-long immunity,  

the coverage level is 𝜎𝑖 in each patch and susceptible individuals are vaccinated at a rate 𝛿𝑖. In the SIR 

model, when individuals are vaccinated, they enter the recovered population. Conversely, in the SIS 

model, vaccinated individuals enter a new compartment V, reducing the fraction of the population 

susceptible to the diseases.  

Table 2. 2 Differential equations for the SIR and SIS metapopulation models with vaccination 

SIR  SIS  

𝑑𝑆𝑖

𝑑𝑡
=

−𝛽𝑖

𝑁𝑖

(∑𝜅𝑖𝑗𝐼𝑗
𝑗

)𝑆𝑖 − 𝛿𝑖𝑆𝑖  

𝑑𝐼𝑖
𝑑𝑡

=
𝛽𝑖

𝑁𝑖

(∑𝜅𝑖𝑗𝐼𝑗
𝑗

)𝑆𝑖 − 𝛾𝑖𝐼𝑖  

𝑑𝑅𝑖

𝑑𝑡
= 𝛾𝑖𝐼𝑖 + 𝛿𝑖𝑆𝑖  

𝑑𝑆𝑖

𝑑𝑡
=

−𝛽𝑖

𝑁𝑖

(∑𝜅𝑖𝑗𝐼𝑗
𝑗

)𝑆𝑖 + 𝛾𝑖𝐼𝑖 − 𝛿𝑖𝑆𝑖  

𝑑𝐼𝑖
𝑑𝑡

=
𝛽𝑖

𝑁𝑖

(∑𝜅𝑖𝑗𝐼𝑗
𝑗

)𝑆𝑖 − 𝛾𝑖𝐼𝑖  

𝑑𝑉𝑖

𝑑𝑡
= 𝛿𝑖𝑆𝑖  
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In order to evaluate the impact of vaccination as an intervention, R was estimated using the NGM of 

the model with vaccination. To construct the NGM, the method outlined above was implemented.  

The linearised infectious subsystem for the model including vaccination is given by,  

𝑑𝐼𝑖
𝑑𝑡

= 𝛽𝑖 (∑𝜅𝑖𝑗𝐼𝑗
𝑗

)(1 − 𝜎𝑖) − 𝛾𝑖𝐼𝑖  

And the NGM is as follows:  

𝑁𝐺𝑀 = −𝑇𝛴−1 =

[
 
 
 
 
 
 

𝛽𝐿𝜅𝐿𝐿(1 − 𝜎𝐿)

𝛾𝐿

𝛽𝐿𝜅𝐿𝑀(1 − 𝜎𝐿)

𝛾𝑀

𝛽𝐿𝜅𝐿𝐻(1 − 𝜎𝐿)

𝛾𝐻

𝛽𝑀𝜅𝑀𝐿(1 − 𝜎𝑀)

𝛾𝐿

𝛽𝑀𝜅𝑀𝑀(1 − 𝜎𝑀)

𝛾𝑀

𝛽𝑀𝜅𝑀𝐻(1 − 𝜎𝑀)

𝛾𝐻

𝛽𝐻𝜅𝐻𝐿(1 − 𝜎𝐻)

𝛾𝐿

𝛽𝐻𝜅𝐻𝑀(1 − 𝜎𝐻)

𝛾𝑀

𝛽𝐻𝜅𝐻𝐻(1 − 𝜎𝐻)

𝛾𝐻 ]
 
 
 
 
 
 

 

Infection trajectories with vaccination were evaluated for different model scenarios for both the SIR 

and SIS metapopulation models.  These scenarios evaluated the effect of mixing between populations 

and the effect of limited vaccine availability. The scenarios analysed were as follow:  

i. Isolated model:  For the first scenario, there is no transmission between patches in the 

model. Additionally, it is assumed that the vaccine is available for the whole population in 

each patch. 

ii. Interconnected patches:  In this scenario, there is transmission between patches and, as 

in the previous scenario, the vaccine is available for the whole population in each patch. 

iii. Limited vaccines available: For the final scenario, it is assumed there is transmission 

between patches and there is a limited number of available vaccines (Vmax).  Different 

vaccine allocation strategies are evaluated to understand the effects of resource 

allocation on externalities.  

For all scenarios, the model parameters are listed in Table 2. 3. The parameter values are for a 

plausible hypothetical disease and are based on values for common diseases (Anderson et al., 1992). 

Transmission rates for each patch (𝛽𝑖) were estimated based on the local reproductive number and 

the recovery rate. Each simulation was initiated as a fully susceptible population with one infectious 

individual per patch and projected for 80 weeks.   

 

For the SIR model, it was assumed that all vaccines were administrated before the onset of the 

outbreak.  As a simulation output, the total number of infected individuals during the outbreak 
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(outbreak size) was estimated. The number of cases averted by vaccination was determined by 

comparing the outbreak sizes of the vaccination model to the outbreak size without intervention. On 

the other hand, for the SIS model, it was assumed that all vaccines were administered before the 

simulation started. As an output, prevalence of infection was estimated at the steady state. The 

number of cases averted was calculated as the difference in infectious individuals at the endemic state 

between the model with vaccination and the model without vaccination. 

Table 2. 3 Parameters used in the model. Values are for a hypothetical disease, with assumed reproductive numbers and 

interaction matrices which produce a realistic disease dynamics. 

Parameter Symbol Value Reference 

Total population per patch 𝑁𝑖  1,000,000 Assumed 

Recovery rate 𝛾𝑖  0.5 weeks-1 (Verguet et al., 2015) 

Reproductive number for low 

transmission intensity patch 

𝑅0𝐿 

 
1.5 (Anderson et al., 1992) 

Reproductive number for the 

medium transmission intensity 

patch 

𝑅0𝑀 

 

3 (Anderson et al., 1992) 

Reproductive number for the high 

transmission intensity patch 

𝑅0𝐻 

 
9 (Anderson et al., 1992) 

Interaction matrix for simulations 

for isolated scenarios. 
α (

1 0 0
0 1 0
0 0 1

) Assumed 

Interaction matrix for simulations 

with interconnected patches. 
α (

0.95 0.02 0.03
0.02 0.96 0.02
0.03 0.02 0.95

) Assumed 

Expected cost of the disease per 

case 
c US$ 1 Assumed 

 

 

2.2.4 Vaccination externalities  

For each scenario, marginal externalities were estimated following the methods presented by Boulier 

et al. In their study, marginal externalities are defined as the difference between marginal social and 

private benefits (Boulier Bryan et al., 2007).  As described in the introduction, the term marginal refers 

to the change in the quantity of benefits or costs per one additional unit produced, in this case, when 

an additional vaccination is administered. Table 2. 4 summarises the most important concepts 

required for the analysis of vaccination externalities.  
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Table 2. 4 Summary of important marginal benefit terms used for the estimation of externalities. 

Expression Acronym Definition  Equation 

Marginal effect of 

vaccination 
MEV 

Additional number of cases averted per 

additional person vaccinated. 
𝑀𝐸𝑉 =

𝜕(𝐴𝑣𝑒𝑟𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠)

𝜕(𝑉𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠)
 

Marginal social benefit  MSB 

Social value of the change in the number of 

cases averted per additional person 

vaccinated.  

MSB = MEV* c 

Marginal private 

benefit  
MPB 

Change in the expected risk of infection per 

additional person vaccinated 
MPB = p(V) *c 

Marginal externalities  ME 
Change in indirect effects of vaccination per 

additional person vaccinated 
ME= MSB- MPB 

 

The risk of infection (𝑝(𝑉))  is the probability of being infected given that V individuals are vaccinated, 

and it is estimated as follows 

𝑝(𝑉) =
𝐼𝑇 − 𝐼𝑜

𝑁 − 𝑉 − 𝐼𝑜
 

where  𝐼𝑜  is the initial infectious population and  𝐼𝑇 represents the overall infectious individuals at the 

end of the simulation. For the SIR model, 𝐼𝑇 refers to the outbreak size and for the SIS, 𝐼𝑇 refers to the 

prevalence at the steady state.  

 

To understand the effect of vaccine allocation on externalities, three different allocation schemes 

were evaluated (Table 2. 5).  With 80% global vaccine coverage, vaccination externalities were 

evaluated for a scenario where vaccines were distributed equally; a scenario where vaccine 

distribution was prioritised to high and medium transmission patches; and a scenario where vaccine 

distribution was prioritised to low and medium transmission patches. 

Table 2. 5 Number of vaccines allocated in each patch under different schemes. The total number of vaccines available was 

2,400,000 which covered 80% of total population. 

Allocation Scheme Low transmission Medium transmission High Transmission 

Equal 800 000 800 000 800 000 

Scheme 1 400 000 1 000 000 1 000 000 

Scheme 2  1 000 000 1 000 000 400 000 
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2.3 Results  

 

2.3.1 Isolated dynamics  

The marginal benefits for the SIR isolated metapopulation model are shown in Figure 2. 2. For all 

panels the x-axes represent vaccination coverage, and the y-axes represent the monetary value for 

each marginal benefit assuming an expected cost of the disease (c) of US$1 per case.  

Marginal externalities are initially small and start to rise as the number of vaccinations increases until 

they reached a peak, and then decrease sharply.  After the herd immunity threshold for each patch is 

reached, marginal benefits become negligible given that transmission has been interrupted.  

Additionally, as can be seen from the three panels in Figure 2. 2, the magnitude of marginal benefits 

depends strongly on the transmission intensity of the disease.  In low transmission intensity settings, 

vaccination has a MSB effect greater than 1.5 from the first vaccination. The magnitude of this benefit 

is related to a low demand for a vaccine; therefore, MBP are relatively low and never exceed 0.58 

(Figure 2. 2B). For this patch, after 19.6% of the population is vaccinated, the magnitude of MSB peaks 

and drops below 1.  Conversely, in higher transmission intensity settings, vaccination coverage needs 

to be higher than 82.1% in order to have a MSB greater than 1.5 (Figure 2. 2A). This relates to a high 

MPB that only decreases steeply once the patch herd immunity threshold (88.9% coverage) is 

achieved. 
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Figure 2. 2.  Marginal benefits of vaccination for an SIR disease dynamic. Simulations are run for three isolated patches with 

differing transmission intensity: high transmission intensity (green), medium transmission intensity (purple), low 

transmission intensity (orange) and global results (Pink).  Y- axes show monetary value of each marginal benefit assuming 

an expected cost of the disease of US$1.  A)  Marginal social benefits (MSB) of vaccination.  B) Marginal private benefits or 

demand curve.  C)  Marginal Externalities. These are the differences between marginal social and private benefits. 

Simulations are run with a vaccine coverage of 100% with even distribution among patches. 

 

When modelling the metapopulation for a disease with SIS dynamics, marginal benefits showed a 

similar behaviour to those for the SIR dynamics (Figure 2. 3). Nonetheless marginal benefit values are 

significantly lower than those from the SIR simulations. This difference is associated with individuals 

who were infected and entered the recovered population contributing to herd immunity in the SIR 

model. Whereas, for the SIS model, vaccination is the only contributor to herd immunity. Figure 2. 3A 

shows that MSB are significantly large for coverages close to the herd immunity threshold. However, 

the range of coverages where MSB are greater than one is small and varies between transmission 

intensity settings. When transmission intensity increases, this range decreases. 1 
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Figure 2. 3 Marginal benefits of vaccination for an SIS disease dynamic. Simulations are run for three isolated patches with 

differing transmission intensity: high transmission intensity (green), medium transmission intensity (purple), low transmission 

intensity (orange) and global results (Pink).  Y- axes show monetary value of each marginal benefit assuming an expected 

cost of the disease of US$1.  A)  Marginal social benefits (MSB) of vaccination.  B) Marginal private benefits or demand curve.  

C)  Marginal Externalities. These are the differences between marginal social and private benefits. Simulations are run with a 

vaccine coverage of 100% with even distribution among patches. 

 

2.3.2 Metapopulation dynamics  

When transmission between patches is included in the model, the dynamics of social benefits and 

externalities change. In the low and medium transmission patches, dynamics are strongly influenced 

by the dynamics of the high transmission intensity patch (Figure 2. 4). Given that transmission cannot 

be interrupted in the high transmission setting with a low number of vaccines, importation of cases 

reduces the MSB in the low and medium transmission patches. The most striking reduction can be 

seen in Figure 2. 4D, where MSB never exceeds one.  This means that in these patches, vaccination 

can only protect the vaccinated individuals as it generates only benefits for the vaccinated individual 

herself 

 

On the other hand, MBP do not change drastically with the introduction of transmission between 

patches (Figure 2. 4B, E).  MPB are initially the same for both the interconnected and isolated 

metapopulation model.  As vaccination increases, the demand for a vaccine decreases along with the 

expected risk of infection.  However, when there is transmission between patches, MPB do not 

decrease as steeply after the herd immunity threshold is reached. Given the importation of cases, the 
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demand for the vaccine only reaches zero, in all the patches, when there is no risk of infection in the 

high transmission intensity patch.  

 

Figure 2. 4  Marginal benefits of vaccination for a metapopulation model with three interconnected patches with differing 

transmission intensity: High transmission intensity (green), medium transmission intensity (purple), low transmission 

intensity (orange) and global results (pink). Upper row shows marginal benefits for SIR disease dynamics. Bottom row shows 

marginal benefits for SIS disease dynamics. A, D) Marginal social benefits of vaccination.  B, E) Marginal private benefits or 

demand curve.  C, F) Marginal externalities for each patch. These are the difference between marginal social and private 

benefits. Simulations are run with a vaccine coverage of 100% with even distribution among patches. Y-axis represent the 

monetary value of each marginal benefit assuming an expected cost of the disease of US$1.    

 

Marginal externalities represent the benefit to the unvaccinated individuals.  Values greater than one 

imply that more than two cases are averted per vaccination.  Figure 2. 4 shows that in the high 

transmission patch (green line), marginal externalities can be remarkably large and vaccinating an 

individual can fully protect up to 4 unvaccinated individuals in the SIR model (Figure 2. 4C) and up to 

2 unvaccinated individuals in the SIS model (Figure 2. 4F). Marginal externalities for the overall 

population are determined by a weighted average of marginal externalities in each patch, based on 

the population size of each patch. Given the large discrepancy in externalities between high and low 

transmission patches, marginal externalities for the whole population (pink line), rarely exceed a value 
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of one. This difference between local and global marginal benefits demonstrates how local benefits of 

an intervention may not align with global benefits when there is transmission heterogeneity.  

 

2.3.3 Vaccine allocation 

 

Figure 2. 5 Marginal global benefits and effects of vaccination for the metapopulation model with limited number of 

vaccines. Maximum number of vaccine available:  80% global coverage. Colours show different resource allocation 

strategies: Equal distribution among parches(green), prioritisation to high transmission patch (yellow), prioritisation to 

low transmission patch (red).  For the purpose of comparison with vaccination available for everyone, dashed grey line 

shows global marginal benefits when vaccines are allocated equitably. Upper row shows vaccination effects for an SIR 

disease dynamic. Bottom row shows vaccination effects for an SIS disease dynamic. A) Outbreak size under different 

allocation schemes. C)  Endemic prevalence for the different allocation schemes B, D)   Global marginal externalities for 

SIR and SIS models respectively. Y-axis shows the monetary value of each marginal benefit assuming an expected cost 

of the disease of US$1 per case.  

 

Simulations under different vaccine allocation schemes suggest that prioritising high transmission 

settings has the greatest effect on increasing the marginal global benefits of vaccination (Figure 2. 5). 

When there is a limited number of vaccines, equal distribution of resources cannot guarantee a peak 

for the overall benefits. However, when prioritising high transmission intensity settings, the maximum 

global externalities peak is reached approximately with 20% fewer vaccinations and is 47.5% and 
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56.1% higher for the SIR and SIS metapopulation model respectively, compared to an equal 

distribution of resources.   Additionally, model simulations showed that changing vaccine allocation 

strategies can significantly impact the number of vaccinations required to interrupt the transmission 

of the disease (𝑅 < 0). When high transmission intensity settings are prioritised, transmission can be 

stopped with 17% less vaccine coverage compared to equal allocation for both the SIS and the SIR 

disease dynamics (Figure 2. 6).  

 

Figure 2. 6 Global reproductive number for each vaccine allocation scheme. Colours show different resource allocation 

strategies: Equal distribution among parches(green), prioritisation to high transmission patch (yellow), prioritisation to low 

transmission patch (red).  For the purpose of comparison with vaccination available for everyone, dashed grey line shows 

global marginal benefits when vaccines are allocated equitably. Horizontal dotted line denotes elimination threshold (R=1) 

and vertical dotted line denotes herd immunity threshold for the system without interventions.  Maximum number of vaccine 

available:  80% global coverage. 

 

2.4 Discussion 

In this chapter a framework is developed for modelling a metapopulation model in order to analyse 

the impact of control strategies. The framework proposed here is flexible enough to incorporate 

different infection dynamic structures and its outputs can be integrated into any economic analyses. 

Here, I use the framework to analyse vaccination externalities under different vaccine allocation 

schemes for two simple disease dynamics models.  
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As a first analysis, I compared marginal benefits between the SIR and SIS dynamics. For both models, 

transmission intensity has a strong effect on the magnitude of marginal benefits as reported by Boulier 

et al. (Boulier Bryan et al., 2007). In higher transmission intensity settings vaccination would generate 

higher marginal benefits but in order to do so, higher vaccination coverage is required.   Additionally, 

my results illustrated how model structure has an important effect on the marginal benefits for the 

individual populations as well as for the overall population. Model projections estimated substantially 

higher benefits for the SIR model structure compared with the SIS model. Nevertheless, when mixing 

between populations was included in the simulations, this discrepancy was less prominent given that 

importation of cases from higher transmission patches influenced transmission in lower transmission 

intensity patches. These results further support the idea that including importation of cases in disease 

dynamics has a strong effect on infection trajectories (Hickson and Roberts, 2014) and therefore has 

significant impact on marginal economic benefits (Klepac et al., 2011). 

 

As a second analysis, I evaluated different vaccine allocation strategies. Funding allocation for control 

strategies aims to distribute interventions as efficiently as possible to maximise welfare. Results 

presented here showed that when vaccines are allocated equally between patches, the indirect effect 

of an additional vaccination is fairly low and marginal externalities rarely exceed 1. However, when 

vaccines are allocated proportional to transmission intensity, marginal externalities can be as high as 

four cases averted among the nonvaccinated for the high transmission patch. These results reflect 

those by Ndeffo Mbah et al. (Ndeffo Mbah and Gilligan, 2011), who also found that the most efficient 

and simple strategy to allocate resources in a metapopulation with different rates of transmission is 

to give preference to the sub-population with the greatest disease burden, protecting the other 

subpopulations through herd immunity (Ndeffo Mbah and Gilligan, 2011).  Additionally, results from 

vaccine allocation evaluation also evidenced the importance of aligning local and global goals. 

Intervention schemes that improve welfare in one patch, eliminating transmission locally, may not 

generate benefits for the overall population and would slow down disease control processes globally. 

As discussed in Chapter 1, international cooperation is important for disease control success (Barrett, 

2004). Including global externalities in analyses can help determine the optimal allocation of 

interventions that maximises the well-being from both social and local perspectives, encouraging 

cooperation from all parties (Gersovitz, 2011). 

 

Overall, the results in this chapter illustrate that in order to formulate correct social policies, 

externalities cannot be ignored from policy analyses. High externalities were found, particularly when 
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coverages levels are closer to the herd immunity threshold and the disease is just transmissible 

enough to survive, as has been reported previously (Goodkin-Gold et al., 2020, Boulier Bryan et al., 

2007). These results further support the idea that overlooking vaccination indirect effects may 

underestimate the real social benefits of intervention programs, leading to biased public policy 

decisions, which would result in an underprovision of vaccinations (Hauck, 2018, Gersovitz, 2011, 

Perrings et al., 2014).  

 

The integration of economic and epidemiological models like the one presented in this Chapter, allows 

public policy makers to identify and quantify the gap between social and private benefits. Economic 

incentives such as subsidies are common economic instruments implemented to fill this gap (Perrings 

et al., 2014, Klein et al., 2007, Althouse et al., 2010). However, to date, there is little guidance on how 

to estimate the magnitude of these incentives (Goodkin-Gold et al., 2020). The methods developed in 

this chapter provide a robust framework for estimating externalities and guide public health planners 

to efficiently control infectious diseases.  

 

The scope of this study was limited to the development of a general framework that integrated 

metapopulation modelling and economic analysis. I have described simple SIR and SIS dynamics that 

do not represent a particular disease but instead give insights into how disease projections can be 

used to analyse marginal benefits of interventions. More complex transmission models may be 

required to better capture the effect of interventions for a specific disease. Additionally, all results 

presented in this chapter are based on one metapopulation structure with a single mixing matrix 

analysed. The number of subpopulations and the strength of coupling between populations have been 

recognised to be important factors in metapopulation dynamics (Klepac et al., 2011, Ndeffo Mbah and 

Gilligan, 2011). As an extension to this work, a sensitivity analysis to assess the effect of 

metapopulation structure (i.e. number of patches and interconnectivity strength) and vaccine 

allocation strategies would help to identify relationships between the structure of the population and 

the most efficient way for allocating interventions. As discussed above, externalities evaluation can 

help policy makers improve disease control planning. Therefore, results from the sensitivity analysis 

would provide general guidance to policy makers on how interventions can be allocated efficiently for 

a specific scenario.  Another complexity not explicitly included here is human behaviour. Uptake of an 

intervention depends on individual behaviour which may change over time (Klein et al., 2007). I have 

assumed individual’s demand for vaccination depends only on MPB, yet it has been demonstrated 

that risk perception and group pressure have a direct effect on vaccination uptake and may slow down 
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vaccination programmes (Oraby and Bauch, 2015). Combining behavioural economics and 

epidemiological externalities is an important topic for future work.  

 

In spite of its limitations, this Chapter adds to the understanding of the dynamics of externalities for 

infectious disease interventions. I have demonstrated that intervention externalities strongly depend 

on disease structure and population heterogeneity.  This chapter has described the methods used in 

this thesis and it has emphasised the great need for further research in the integration of economic 

and epidemiological analyses to aid public policy makers to maximise global and local welfare. Using 

this framework as a starting point, in the chapters that follow I consider more complex transmission 

models in order to address real-world disease challenges such as optimal resource allocation and low 

intervention uptake.   
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Chapter 3  Evaluating trade-offs between local 

and global priorities for the control 

of malaria   

 

3.1 Introduction   

As described in Chapter 1, the Global Technical Strategy for Malaria (GTSM) sets out global goals to 

eliminate the disease in 35 countries and reduce the burden by 90% by 2030 (World Health 

Organization, 2015). One of the main challenges faced in achieving this ambitious goal is the 

heterogeneous geographical distribution of malaria. Of the 86 countries where malaria is endemic, 29 

carry 96% of the disease burden, whereas almost 20 have low transmission rates and are on the path 

to elimination (World Health Organization, 2021d). Even within countries, the incidence of malaria 

varies significantly based on seasonality profiles, urbanization, vegetation, nearest mosquito breeding 

site, among other factors (World Health Organization, 2015, Bousema et al., 2016). This varied 

epidemiology between geographical regions makes the planning of malaria control strategies a 

difficult task. 

 

Another challenge faced by the GTSM is insufficient resources to achieve the stated objectives. In 

order to achieve 2030 milestones, it is estimated that malaria investment would need to increase 

substantially from the current annual spending of US$ 3.0 billion to US$10.5 billion (World Health 

Organization, 2021d). Therefore, the optimal allocation of available resources is crucial to get closer 

to achieving GTSM goals. Currently, allocation of interventions is based on stratification by malaria 

burden, defined by the annual number of reported cases and deaths (World Health Organization, 

2021b). In 2018 the WHO launched the “High burden to high impact” strategy in order to support the 

11 highest burden countries (World Health Organization, 2021d). This strategy focuses on allocating 

more resources to high-burden settings where interventions can have the greatest impact. However, 

this approach may not be fitting for countries at near elimination stages where disease burden is low 

but still require significant investment for surveillance and prevention (Newby et al., 2016).  

Malaria epidemiology in near elimination settings is different from high transmission settings. This 

poses distinct challenges towards the control of the disease. In near elimination settings, the 
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population at risk usually shifts towards working adults, particularly men, and hard to reach 

populations such as nomadic communities (Cotter et al., 2013). Additionally, as local transmission 

declines, attention shifts to importation of cases as these become an important source of infection 

(Cotter et al., 2013, Walker et al., 2016). The introduction of parasites from linked areas with ongoing 

transmission may cause the resurgence of local transmission, hindering efforts to eliminate malaria. 

This importation is normally linked to travellers from countries with economic, cultural and 

geographical ties (Lai et al., 2019). In order to reduce the risk of importation of cases, cross-border 

control initiatives are important to support individual control efforts. These initiatives are based on 

sharing resources between neighbouring countries to control the disease in the bordering region.  

 

Cross-border control initiatives are not novel and have been implemented in the last decades as part 

of malaria control (Lover et al., 2017).  This type of cooperation between countries supports 

elimination plans when low transmission countries are epidemiologically linked with high transmission 

countries (Moonasar et al., 2016). Sharing resources with neighbouring countries has been proven to 

be successful for China, which was certified malaria free in 2021. Elimination was possible due to a 

strong surveillance and response program as well as the cooperation with Myanmar to control malaria 

transmission in the bordering province of Yunnan, where the highest number of imported malaria 

cases during the elimination stage were reported (Huang et al., 2021, Lai et al., 2019). In the 8 

southernmost countries of Africa, efforts to accelerate malaria control and achieve 2030 goals have 

been facilitated by the E8 cross-border initiative (Maharaj et al., 2019). A successful example of this 

initiative is the MOSAWA region. Since 1999, Swaziland (now Eswatini) and South Africa, two malaria 

eliminating countries, have been collaborating with Mozambique, a neighbouring country with high 

transmission. South Africa and Eswatini have been extending their malaria interventions, particularly 

IRS, to the southern region of Mozambique in order to reduce the risk of importation. This strategy 

has reduced substantially malaria burden in the bordering regions (Moonasar et al., 2016). 

 

Cross-border initiatives, like in the MOSAWA region, rely on cooperation between countries, more 

than relying on equal (i.e. all parties received the same resources) or equitable (i.e. resource allocation 

according to health need) allocation in each country individually. Cooperation in disease control is 

based on sharing resources and coordinating activities to ensure the optimal use of funding towards 

a common end. However, there is currently limited evidence on the quantifiable impact of such 

cooperative strategies and whilst global donors like the Global Fund support some regional initiatives 

like the E8, most of their resources are still focused on supporting countries individually, allocating 
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funds equitably and prioritising those with a high burden of malaria (Gueye et al., 2012, Khadka et al., 

2018). Cooperative interventions still rely on national funding and the willingness for cooperation from 

neighbouring countries. 

 

In this chapter, I aim to provide quantitative evidence of the impact of cooperative strategies in the 

malaria context. In the previous chapter, I highlighted the importance of aligning local and global 

strategies toward disease control. In the case of malaria, aligning strategies at the local, regional, and 

global level is a hard task due to the extreme geographical heterogeneity in disease burden and 

complex funding landscape. Modelling studies have been useful to understand how to prioritise the 

use of current malaria interventions with the available funding. Non-linear constrained optimisation 

methods have been developed (Drake et al., 2017) to find the optimal combination of malaria 

interventions. In these studies, health gain is maximised using a set budget (Scott et al., 2017, Winskill 

et al., 2019, Drake et al., 2017) or an epidemiological target as a constraint (Walker et al., 2016). 

Nonetheless, given the complexity of the disease epidemiology, substantial computation time is 

required to run these optimisations. Therefore, sometimes the complexity of models has been 

reduced, assuming homogeneous conditions within countries (Scott et al., 2017). In this chapter, I 

extend the metapopulation framework developed in Chapter 2 to compare global and local 

perspectives on different resource allocation strategies incorporating malaria disease dynamics and 

transmission heterogeneity.  

 

3.2 Methods  

In order to capture the complex disease dynamics as well as transmission heterogeneity, I modified 

the metapopulation model from Chapter 2 such that in each patch malaria transmission was 

represented by a previously published age-structured mathematical model for P.falciparum. This 

deterministic compartmental model captures mosquito biology as well as disease dynamics among six 

different infection states in humans (Griffin et al., 2010a). The model is coded in R, and it is available 

as the ICDMM package (Hellewell et al., 2022). The package allows users to create new versions of the 

original model. Using this package, I extended the original model code to create a metapopulation 

model, where in each patch the original model was represented. Mathematical details on the model 

and how it was modified to represent a metapopulation model are explained below.  
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3.2.1 Human model 

In each patch, i, susceptible individuals (𝑆𝑖) become infected at a rate determined by a force of 

infection Λ𝑖. This force of infection depends on mixing coefficients between patches and the 

proportion of infectious mosquitoes per patch as described in section 3.1.1.1. A delay (𝑑𝐸) in the force 

of infection is included to represent the latent liver stage of infection. Infected people can develop 

clinical disease with a probability 𝜙 and be treated (𝑇𝑖) at a fixed probability 𝑓𝑇. These treated 

individuals will clear the infection at a rate 𝑟𝑇 and enter a prophylactic protection state (𝑃𝑖) before 

becoming susceptible again at a rate 𝑟𝑃. Untreated individuals (𝐷𝑖), start clearing the infection at a 

rate 𝑟𝐷 and become patently asymptomatic (𝐴𝑖).  Asymptomatic individuals will move to a sup-patent 

stage (𝑈𝑖) (asymptomatic infection undetectable by microscopy) at a rate 𝑟𝐴. Sub-patent individuals 

will clear the infection at a rate 𝑟𝑈 and become susceptible again (Griffin et al., 2010a).   

 

 

Figure 3. 1  Schematic representation of malaria transmission in humans. Reproduced from (Griffin et al., 2010a) 

The model partial differential equations for the human dynamics are as follows, with t representing 

time, a age and i patch.  

𝜕𝑆𝑖

𝜕𝑡
+

𝜕𝑆𝑖

𝜕𝑎
=  − Λi(𝑡 − 𝑑𝐸)𝑆𝑖(𝑡) + 𝑟𝑃𝑃𝑖(𝑡) + 𝑟𝑈𝑈𝑖(𝑡) 

𝜕𝑇𝑖

𝜕𝑡
+

𝜕𝑇𝑖

𝜕𝑎
=  𝜙 𝑓𝑇𝛬𝑖(𝑡 − 𝑑𝐸)[𝑆𝑖(𝑡) + 𝐴𝑖(𝑡) + 𝑈𝑖(𝑡)] − 𝑟𝑇𝑇𝑖(𝑡) 

𝜕𝐷𝑖

𝜕𝑡
+

𝜕𝐷𝑖

𝜕𝑎
=  𝜙(1 − 𝑓𝑇) 𝛬𝑖(𝑡 − 𝑑𝐸)[𝑆𝑖(𝑡) + 𝐴𝑖(𝑡) + 𝑈𝑖(𝑡)] − 𝑟𝐷𝐷𝑖(𝑡) 

𝜕𝐴𝑖

𝜕𝑡
+

𝜕𝐴𝑖

𝜕𝑎
= (1 − 𝜙)𝛬𝑖(𝑡 − 𝑑𝐸)[𝑆𝑖(𝑡) + 𝑈𝑖(𝑡)] + 𝑟𝐷𝐷𝑖(𝑡) − 𝜙Λ(𝑡 − 𝑑𝐸) 𝐴𝑖(𝑡) − 𝑟𝐴𝐴𝑖(𝑡) 

S
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T
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P
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(1 ) −



54 
 

𝜕𝑈𝑖

𝜕𝑡
+

𝜕𝑈𝑖

𝜕𝑎
= 𝑟𝐴𝐴𝑖(𝑡) − 𝑟𝑈𝑈𝑖(𝑡) − 𝛬𝑖(𝑡 − 𝑑𝐸) 𝑈𝑖(𝑡) 

𝜕𝑃𝑖

𝜕𝑡
+

𝜕𝑃𝑖

𝜕𝑎
= 𝑟𝑇𝑇𝑖(𝑡) − 𝑟𝑃𝑃𝑖(𝑡) 

The probability of developing clinical disease(𝑓𝑇) as well as all transition rates (𝑟𝑥) are assumed 

constant and equal for all patches.  

3.1.1.1 Force of Infection   

The force of infection in the original model was defined by:  

Λ =  휀 𝑏 =  𝐼𝑀
𝛼

𝜔
휁 (1 − 𝜌𝑒

−
𝑎
𝑎0)𝑏,  

where 𝐼𝑀 is the proportion of infectious mosquitoes, 𝛼 is the biting rate on humans, 𝜔 a constant to 

normalise the biting rate over ages, 1- is the relative biting rate at birth compared to adults, a0 

determines the timescale of the increase in biting rate with age and b is the probability of infection if 

bitten by an infectious mosquito. The model assumes each person has a relative biting rate . This 

relative rate has a log-normal distribution between people with a mean of 1. 

log(휁)~ 𝑁(−
𝜎2

2
, 𝜎2) 

For the metapopulation model, the force of infection also depends on the mixing between patches 

and the proportion of infectious mosquitoes in other populations. The new force of infection in each 

patch is described by:  

Λ𝑖 = 
𝛼

𝜔
휁 (1 − 𝜌𝑒

−
𝑎
𝑎0) 𝑏 ∑𝜅𝑖𝑗𝐼𝑀𝑗

𝑗

 

As explained in Chapter 1, in a metapopulation mixing between patches is described by the mixing 

matrix. In this matrix, diagonal values (𝜅𝑖𝑖) represent the transmission within the patch. This 

transmission is associated with infectious agents from the same patch. Non-diagonal elements of the 

mixing matrix (𝜅𝑖𝑗 (𝑖≠𝑗)) represent transmission between patches. This transmission is associated with 

infectious individuals from patch j transmitting to susceptible individuals in patch i. The mixing matrix 

is symmetrical, and row and column values always sum to 1.  

 

  𝑀𝑖𝑥𝑖𝑛𝑔 𝑚𝑎𝑡𝑟𝑖𝑥 = (

𝜅11 ⋯ 𝜅1𝑛

⋮ ⋱ ⋮
𝜅𝑛1 ⋯ 𝜅𝑛𝑛

) 
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For the force of infection in this metapopulation model I assume that 

• the biting rate is the same in all patches; 

• the age distribution is the same in all patches; and 

• the probability of infection if bitten is the same in all patches.  

 

3.1.1.2 Human Immunity Functions 

The model incorporates three different points at which immunity may act in the transmission of 

malaria. First is the pre-erythrocytic immunity, (𝐼𝐵) which reduces the probability of infection 

establishment after an infectious bite. Then, clinical immunity (𝐼𝐶), which reduces the probability of 

clinical disease after infection. Finally, blood-stage immunity (𝐼𝐷), which reduces the duration of 

patent parasitaemia. Each of these points is considered as separate functional forms that depend on 

age and exposure (Griffin et al., 2014). 

 

Immunity to infection  (𝐼𝐵𝑖)  reduces the probability of symptomatic or asymptomatic infection. For 

a population in patch i, exposed to an entomological inoculation rate (EIR) 휀 and a mean duration of 

immunity 𝑑𝐵is defined by the equation: 

𝜕𝐼𝐵𝑖

𝜕𝑡
+

𝜕𝐼𝐵𝑖

𝜕𝑎
=

휀𝑖  

휀𝑖 𝑢𝐵 + 1
−

𝐼𝐵𝑖

𝑑𝐵
                  𝐼𝐵𝑖(0, 𝑡) = 0  

 

Clinical immunity reduces the probability of symptomatic infection in favour of asymptomatic 

infection. It is driven by the combined impact of acquired immunity (𝐼𝐶𝐴𝑖)  and maternal immunity 

(𝐼𝐶𝑀𝑖):  

𝐼𝐶𝑖 = 𝐼𝐶𝐴𝑖 + 𝐼𝐶𝑀𝑖 

Clinical acquired immunity depends on the force of infection Λ𝑖 , described above, the mean 

duration of immunity 𝑑𝐶  and the time between immunity boosting of  𝑢𝐶.   

𝜕𝐼𝐶𝐴𝑖

𝜕𝑡
+

𝜕𝐼𝐶𝐴𝑖

𝜕𝑎
=

Λ𝑖 

Λ𝑖 𝑢𝐶 + 1
−

𝐼𝐶𝐴𝑖

𝑑𝐶
                   𝐼𝐶𝐴𝑖(0, 𝑡) = 0                 

Clinical maternal immunity at birth (𝐼𝐶𝑀𝑖(0, 𝑡)) is assumed to be a proportion (PCM) of the level of 

immunity present in a 20-year-old woman living in the same location and which decays at a constant 

rate 
1

𝑑𝑀
. 
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𝜕𝐼𝐶𝑀𝑖

𝜕𝑡
+

𝜕𝐼𝐶𝑀𝑖

𝜕𝑎
= −

𝐼𝐶𝑀𝑖

𝑑𝑀
                   𝐼𝐶𝑀𝑖(0, 𝑡) = 𝑃𝐶𝑀 𝐼𝐶(20, 𝑡)            

 

Blood-stage immunity (𝐼𝐷𝑖)  immunity reduces the detectability and infectiousness of asymptomatic 

infections. This immunity depends on the force of infection Λ𝑖, the duration of immunity 𝑑𝐷 and the 

time between immunity boosting 𝑢𝐷.  This immunity is given by the equation: 

𝜕𝐼𝐷𝑖

𝜕𝑡
+

𝜕𝐼𝐷𝑖

𝜕𝑎
=

Λ𝑖 

Λ𝑖 𝑢𝐷 + 1
−

𝐼𝐷𝑖

𝑑𝐷
                   𝐼𝐷𝑖(0, 𝑡) = 0   

 

3.1.1.3 Immunity dependent parameters  

The probabilities of infection (b) and clinical disease (𝜙) are given by Hill functions that depend on 

immunity to infection and clinical immunity respectively:  

𝑏(𝑎) = 𝑏0  ( 𝑏1 +
1 − 𝑏1

1 + (
𝐼𝐵
𝐼𝐵0

)
𝜅𝐵

)                         𝜙(𝑎) = 𝜙0  ( 𝜙1 +
1 − 𝜙1

1 + (
𝐼𝐶
𝐼𝐶0

)
𝜅𝐶

) 

 

where 𝑏0 and 𝜙0 are the probability with no immunity.  𝑏0 𝑏1  and 𝜙0𝜙1 are the minimum 

probability.  𝐼𝐵0,𝐼𝐶0,𝜅𝐵 and 𝜅𝐶  are scale and shape parameters. These parameters are set and 

assumed to be constant for all patches.  

 

The probability that an asymptomatic infection (A) will be detected by microscopy is given by, 

𝑞 =  𝑑1 +
1 − 𝑑1

1 + 𝑓𝐷 (
𝐼𝐷
𝐼𝐷0

)
𝜅𝐷

     

where 𝑑1 is the minimum probability, 𝐼𝐷0  and 𝜅𝐷 are scale and shape parameters. 𝑓𝐷 is and age-

dependent function, described by 𝑓𝐷 = 1 −
1−𝑓𝐷0

1+(
𝑎

𝑎𝐷
)
𝛾𝐷 
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3.2.2 Mosquito model  

In each patch i, susceptible mosquitoes (𝑆𝑀𝑖) get infected after biting an infected human (T, D, A, U). 

Infected mosquitoes first are latently infected (𝐸𝑀𝑖) before becoming infectious (𝐼𝑀𝑖). A delay in this 

last transition is included to represent the extrinsic incubation period (𝜏𝑀). The transmission dynamics 

in mosquitoes can be represented by the equivalent set of differential equations for a deterministic 

model (though the code implements this stochastically):  

𝑑𝑆𝑀𝑖

𝑑𝑡
=

𝑃𝐿𝑖

2𝑑𝑃𝐿
− 𝑆𝑀𝑖  (∑ΛMj𝜅𝑖𝑗

𝑗

) − 𝜇𝑀𝑆𝑀𝑖 

𝑑𝐸𝑀𝑖

𝑑𝑡
=  (∑ΛMj𝜅𝑖𝑗

𝑗

)𝑆𝑀𝑖 − (∑ΛMj(𝑡 − 𝜏𝑀) 𝜅𝑖𝑗

𝑗

)𝑆𝑀𝑖 (𝑡 − 𝜏𝑀)𝑃𝑀 − 𝜇𝑀𝐸𝑀𝑖 

𝑑𝐼𝑀𝑖

𝑑𝑡
=  (∑ΛMj(𝑡 − 𝜏𝑀) 𝜅𝑖𝑗

𝑗

)𝑆𝑀𝑖 (𝑡 − 𝜏𝑀)𝑃𝑀𝑖 − 𝜇𝑀𝐼𝑀𝑖  

 

It is assumed that half of emerging adult mosquitoes from the pupal stage (𝑃𝐿𝑖) are female (noting 

that only female mosquitoes are involved in transmission). The probability that a mosquito survives 

the latency period is defined by 𝑃𝑀𝑖 = exp(−𝜇𝑀𝜏𝑀)  and 𝜇𝑀 is the mosquito mortality rate which is 

constant and independent of infection status. 𝜅𝑖𝑗 represents the mixing coefficient between patches 

and it is assumed to be the same for humans and mosquitoes. 

 

The force of infection acting on a mosquito in patch j (ΛMj) is defined by, 

Λ𝑀𝑗 =
𝛼𝑀

𝜔
∬휁(1 − 𝜌𝑒

−
𝑎
𝑎0)(𝑐𝐷𝐷𝑗 + 𝑐𝑇𝑇𝑗 + 𝑐𝐴𝐴𝑗 + 𝑐𝑈𝑈𝑗)𝑑𝑎 𝑑휁 

where 𝛼𝑀 is the rate at which mosquito takes human blood, and Dc , Tc , Ac  and Uc  are the onward 

infectivity to mosquitoes of the different infectious human states, which are assumed constant for all 

patches. 

3.1.1.1 Mosquito population dynamics  

Mosquito population dynamics are taken from White et al. (2011). In the model, the vector’s lifecycle 

is simplified into three main stages:  Early larval instar stage (𝐸𝐿𝑖), which groups the eggs and the first 

larval instars (i.e. the first and second larval stages); late larval stages (𝐿𝐿𝑖), which groups the third 
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and fourth larval stages; and the pupal stage (𝑃𝐿𝑖). The equations that describe these dynamics are as 

follows:  

𝑑𝐸𝐿𝑖

𝑑𝑡
=  𝛽𝑀𝑖 − 𝜇𝐸

0 (1 + 
𝐸𝐿𝑖 + 𝐿𝐿𝑖

𝐾𝑖
)𝐸𝐿𝑖 −

𝐸𝐿𝑖

𝑑𝐸𝐿

 

𝑑𝐿𝐿𝑖

𝑑𝑡
=  

𝐸𝐿𝑖

𝑑𝐸𝐿

− 𝜇𝐿
0 (1 + 𝛾𝐿

𝐸𝐿𝑖 + 𝐿𝐿𝑖

𝐾𝑖
) 𝐿𝐿𝑖 −

𝐿𝐿𝑖

𝑑𝐿𝐿
 

𝑑𝑃𝐿𝑖

𝑑𝑡
=  

𝐿𝐿𝑖

𝑑𝐿𝐿
− 𝜇𝑃𝐿𝑃𝐿𝑖 −

𝑃𝐿𝑖

𝑑𝑃𝐿
 

The average number of eggs laid per day by a female mosquito is defined by 𝛽. The developmental 

time periods are defined by 𝑑𝐸𝐿
,  𝑑𝐿𝐿, 𝑑𝑃𝐿 for each stage. The overall vector population is given by 

𝑀𝑖 = 𝑆𝑀𝑖 + 𝐸𝑀𝑖 + 𝐼𝑀𝑖 . The larvae experience density dependent daily mortality where 𝜇𝐸
0   and 𝜇𝐿

0 are 

the death rates at very low densities and 𝐾𝑖 is the environmental carrying capacity of the patch (White 

et al., 2011).  

 

3.2.3 Model validation  

The dynamic metapopulation model presented above was coded in R v4.1.2 as an extension of the 

ICDMM package. To check the metapopulation version of the model code, I simulated disease 

dynamics for 3 isolated patches with equal population sizes and compared model outputs with 

individual simulation results for each patch. Individual simulations were run implementing the original 

model within the ICDMM package. Each patch was modelled to have a different transmission intensity: 

low, medium, and high. Transmission intensity in the model is expressed as the entomological 

inoculation rate (EIR), which refers to the number of infective bites per person per year. The model 

was run for 21 years with the parameters specified in Table 3.1. Initial conditions for all simulations 

were set as the algebraic solution for the equilibrium of the original model, which is estimated by the 

ICDMM package.  

 

In order to assess the effect of including population mixing in malaria dynamics, I carried out a 

sensitivity analysis for 3 different mixing matrices. In these matrices, diagonal values were varied 

between isolated populations (𝑘𝑖𝑖 = 1) and totally mixed populations (𝑘𝑖𝑖 = 0.33). For each 

simulation, diagonal values were set the same for all three patches and non-diagonal values were set 

such that the matrix was symmetrical, and columns and rows values added to 1. As an output, parasite 

prevalence in children between 2- and 10-years old at the steady state was analysed.   
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Table 3.1  Model parameters for a three patched metapopulation analysis 

Parameter Value 

EIR 

Low transmission intensity 1 

Medium transmission intensity 10 

High transmission intensity  100 

Mixing matrix  

(Three patches) 

Isolated populations 
(
1 0 0
0 1 0
0 0 1

) 

Mixed population  
(
0.63 0.18 0.18
0.18 0.63 0.18
0.18 0.18 0.63

) 

Perfectly mixed populations 
(
0.33 0.33 0.33
0.33 0.33 0.33
0.33 0.33 0.33

) 

 

3.2.4 Malaria interventions  

The ICDMM package in R also allows the user to analyse the effects of long-lasting insecticide treated 

bed nets (LLINs) and indoor residual spraying (IRS) on malaria transmission.  In this chapter, I will focus 

on the effects of LLINs as an illustration of implementing an intervention in the metapopulation model.  

LLINs have four different effects on the mosquitoes dynamics:  killing directly the mosquito that lands 

on the net; repelling the mosquito, which leads the mosquito to other blood sources; reducing 

transmission from an infectious human sleeping under the net to a susceptible mosquito; and directly 

protecting susceptible humans sleeping under the net from an infectious bite (Griffin et al., 2010a).  

These effects are incorporated into the equations impacting the mortality rate of the vector (𝜇𝑀) and 

the probability of a mosquito biting a host, which further affects the biting rates 𝛼 and 𝛼𝑀. 

 

3.2.5 LLIN allocation strategies  

I used the extended metapopulation model to evaluate and compare different LLIN allocation 

strategies. For a fixed number of LLINs, I sought to find the allocation strategy for the LLINs between 

the patches that maximised health.  I estimated the LLIN coverage in each patch for each LLIN 

availability scenario that resulted in the maximum achievable reduction in the health metric using a 

constrained optimisation by linear optimisations algorithm (COBYLA) (Powell, 1994). This optimisation 

algorithm was implemented as part of the R package nlopt (Johnson, 2022). Due to limited 

computational capacity for the optimisations, the model was reduced to a two-patch population for 

all the allocation scenarios analysed.  
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In the first analysis, to understand the effect of mixing and transmission intensity disparity between 

patches on the optimal LLIN allocation, I used the overall parasite prevalence in 2–10-year-olds at 

steady state as a measure of health impact. I undertook the optimisation across different 

combinations of EIRs and 3 mixing matrices (Table 3. 2). For each optimisation, the model was run for 

40 years, with LLINs implemented at the beginning of the 21st year (to ensure equilibrium had been 

reached) and renewed every three years.  I assumed that the maximum global LLIN coverage was 50% 

across all patches and that the population size and demographic structure were the same for all 

patches. 

Table 3. 2 Mixing matrices used for the optimisation analysis for a metapopulation with two patches 

Mixing matrix Value 

Isolated populations (
1 0
0 1

) 

Mixed populations (
0.75 0.25
0.25 0.75

) 

Perfectly mixed population  (
0.5 0.5
0.5 0.5

) 

 

Next, to analyse the effect of different allocation strategies on local and global control objectives, I 

implemented a scenario representing two neighbouring populations with different transmission 

intensities (EIRs: 5 and 50), again with a maximum LLIN coverage across all patches of 50%. For this 

scenario 4 LLIN allocation strategies were evaluated under different mixing patterns. The allocation 

strategies assessed were as follows: 

1. Equal allocation:  50% LLIN coverage in each patch.   

2. Health equity allocation:  In this scenario, LLNIs are distributed proportionally to the 

transmission intensity in each patch, based on the following equation: 

 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛 𝑝𝑎𝑡𝑐ℎ 𝑖 =  
𝐸𝐼𝑅𝑖

𝐸𝐼𝑅1 + 𝐸𝐼𝑅2
 

For the scenario modelled, this corresponded to 9% coverage for the low transmission 

patch and 91% coverage for the high transmission patch.  

3. Donor’s optimal allocation: Optimal LLINs coverage per patch was estimated minimising 

average global parasite prevalence in 2-10 year olds at steady state. The optimisation 

was constrained by a maximum overall LLIN coverage of 50%.  
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4. Individual optimal allocation: Optimal LLIN coverage was estimated minimising average 

prevalence in 2-10 year olds at steady state in the patch with low transmission intensity. 

As before, the optimisation was constrained by a maximum LLIN coverage of 50% for the 

overall population and the low transmission patch, so that LLIN sharing only occurs from 

the low transmission patch to the high transmission patch.  

For each allocation strategy, the average parasite prevalence in 2-10 year olds and yearly clinical 

incidence in 0-5-year-olds at steady state were analysed as outputs. Additionally, I defined the level 

of cooperation as the deviation in LLIN coverage from the equal allocation scenario. 

 

3.3 Results  

 

Figure 3. 2 Projected malaria dynamics from the original model described by (Griffin et al., 2010a) and the metapopulation 

framework described in this chapter. A and C Simulations run independently using the original model. B and D projected 

malaria dynamics for a metapopulation with three isolated patches A-B ) Dynamics without any intervention, initial conditions 

are set as the equilibrium point. C-D) Dynamics when population has 50% LLINs coverage, renewed every 3 years. 

Transmission intensities evaluated: Low (EIR=1), Medium (EIR=10) and High (EIR=100). 
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3.3.1 Metapopulation model validation  

To validate the extension of the ICDMM package to model metapopulation dynamics, I compared the 

outcomes from the original malaria model and the extended metapopulation model. Figure 3. 2 A and 

C show how malaria trajectories from independent simulations implementing the original model are 

the same as the simulations from the metapopulation extension (Figure 3. 2 B and D).  However, when 

populations are mixed, infection trajectories diverge from the isolated patches trajectory (Figure 3. 3 

mid and right panel) towards a new equilibrium. Figure 3.4  illustrates how this new equilibrium state 

varies in relation to the level of mixing between populations. When populations are isolated, the 

equilibrium is the same as when patches are modelled individually, whereas when patches are 

perfectly mixed the equilibrium converges to a single value for the overall population.   

 

 

Figure 3. 3 Projected malaria dynamics under different mixing matrices: Isolated populations (left), mixed populations 

(middle) and perfectly mixed populations (right).  Dynamics are shown for a metapopulation with three patches with different 

transmission intensities: EIR  1(Green), EIR 10(Blue) and EIR 100 (Red). 
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Figure 3.4 The modelled impact of population mixing on malaria burden. Yearly incidence in 0–5 years-old individuals (left) 

and prevalence in 2-10 years old individuals (right) in an endemic state are shown for a metapopulation with three patches 

with different transmission intensities: EIR  1(Green), EIR 10(Blue) and EIR 100 (Red).  Mixing coefficient refers to the diagonal 

of the mixing matrix where 0.33 is perfectly mixed and 1 is perfectly isolated. 

 

The relationship between population mixing and malaria burden at equilibrium is non-linear and varies 

between patches. The low transmission intensity patch experiences the greatest impact from mixing, 

increasing yearly incidence by 806% at equilibrium (Figure 3.4A). In contrast, the highest transmission 

intensity patch benefits from mixing, decreasing yearly incidence at equilibrium by 14.2% when 

patches are perfectly mixed compared to a scenario where patches are totally isolated (Figure 3.4A).   

 

3.3.2 LLIN allocation  

To explore the impact of LLINs in the metapopulation dynamics, I first ran the model implementing 

LLINs for all patches with 50% coverage in each and replacement every three years. When LLINs are 

implemented, malaria trajectories display an oscillatory behaviour given by the LLIN renewal schedule. 

In the same way as projections with no intervention (Figure 3. 3), higher mixing between populations 

leads to malaria trajectories converging to the same equilibrium point in all patches (Figure 3. 5), 

benefiting higher transmission intensity patches by reducing the burden of the disease at equilibrium.  
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Figure 3. 5 Projected malaria dynamics when LLINs are implemented as intervention for different mixing matrices:  Isolated 

populations (left), mixed populations (middle) and perfectly mixed populations (right). It is assumed a 50% coverage of LLINs 

in each patch with renewal every three years. Dynamics are shown for a metapopulation with three patches with different 

transmission intensities: EIR  1 (Green), EIR 10 (Blue) and EIR 100 (Red). 

 

In order to determine the LLIN coverage that would benefit the overall population when there is 

heterogeneity in transmission, I performed an optimisation minimising average population prevalence 

in 2–10-year-olds at steady state. This optimisation was constrained by 50% total coverage of LLINs in 

the overall population. From Table 3. 3  it can be seen that the optimal allocation is aligned with the 

GTSM “high burden to high impact” allocation strategy with LLINs prioritised to the highest 

transmission settings, leaving low transmission settings with low or no coverage.  

 

Mixing between populations does not change the optimal LLIN allocation. This could be attributed to 

the large transmission disparity between patches in the metapopulation analysed. To confirm this, I 

explored the extent to which optimal LLIN allocation would change when transmission intensities 

between patches varied, screening different transmission intensity combinations and three mixing 

scenarios. Due to limited computational capacity, the metapopulation model was reduced to two 

patches for this analysis. 
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Table 3. 3 Optimal LLIN coverage for a three-patch metapopulation under different mixing scenarios 

Mixing Low transmission 

EIR=1 

Medium transmission 

EIR=10 

High transmission 

EIR =100 

Isolated  0% 50% 100% 

Mixed 0% 50% 100% 

Perfectly mixed 0% 50% 100% 

 

 

Figure 3. 6A shows the optimal allocation for different transmission intensity combinations in a two-

patch metapopulation model. When transmission disparity between patches is high, the most efficient 

allocation is to distribute all available LLINs to the high transmission patch, leaving the low 

transmission patch without any intervention. By contrast, when transmission disparity between 

patches is low, the most efficient allocation suggests distributing resources between the two patches. 

This disparity can be measured as the ratio of transmission intensities between 

patches (𝐸𝐼𝑅ℎ𝑖𝑔ℎ 𝐸𝐼𝑅𝑙𝑜𝑤⁄ ) , which is shown in more detail in Figure 3. 6B.  

 

The white border in Figure 3. 6A, delimits the disparity threshold from which one deviates from giving 

all resources to the highest transmission population alone and starts distributing LLINs in both 

patches; this area is amplified in Figure 3. 6B. As mixing between populations increases, the area 

within the white border narrows, and the disparity threshold decreases. This threshold is not constant 

across all EIR combinations, for the mixed population this threshold can be as high as 30, whereas for 

a perfectly mixed population the maximum threshold is 7.   For a scenario with isolated populations, 

LLIN distribution between two patches only occurs when both have low transmission levels (EIR <10). 



66 
 

 

 

Figure 3. 6 Optimal LLIN distribution for a two patched metapopulation under different mixing matrices. A) Allocation for 

all EIR combinations evaluated. (B) Allocation and transmission ratio for EIR combination where LLINs are distributed between 

both patches. Isolated populations (left), mixed populations (centre) and perfectly mixed populations (right). Colours show If 

LLIN are all allocated to patch 1 (purple), patch 2 (red) or equally distributed between patches (white). It was assumed a total 

LLIN coverage of 50% for the overall population.  

 

In Figure 3. 6, when patches are isolated (left panel), the optimal LLIN allocation for high transmission 

intensity patches (EIR >10) displays different trends compared to the other scenarios evaluated. This 

can be explained by the non-linear relationship between transmission intensity (EIR) and prevalence 

at the steady state (Figure 3. 7A).  Small changes in transmission (EIR) have a higher impact on 

infection prevalence at lower transmission intensities than in high transmission settings. 

Consequently, reducing the prevalence of infection in high transmission settings requires greater 

effort. This is evidenced in Figure 3. 7B, where the reduction in malaria prevalence when increasing 

LLIN coverage displays a convex decay for low EIRs compared to a concave decay for high transmission 

settings. As a result of this, LLINs are most likely to display an “all or nothing” impact in high 

transmission settings. This is illustrated in Figure 3. 7C when the objective function in high 
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transmission patches is lower when all LLINs are distributed to one of the patches instead of sharing 

resources between the two patches.   

 

Figure 3. 7 Impact of LLINs coverage and EIR for a metapopulation of two isolated patches with the same transmission 

intensity. A) Relationship between metapopulation prevalence and EIR when there are no interventions in place. B) 

Average prevalence at steady state in one patch for different LLINs coverages metapopulation. C) Overall average 

prevalence at steady state in the overall population. 

 

3.3.3 Cooperation effects  

As shown in Figure 3. 6, it is more efficient to give most resources to the high transmission intensity 

population to reduce overall infection prevalence in a population, which is usually the donor’s 

objective when allocating resources. However, this may not be the optimal allocation strategy for a 

patch with low transmission intensity, which may be also aiming to reduce or eliminate local infection. 

Here I compare the perspective of the low transmission patch in determining whether there is value 

in sharing some of their LLINs with the high intensity patch in order to reduce their own transmission. 

I contrast this with the perspective that the global actor would have in determining the optimal 

allocation across the two patches. I defined the degree of sharing as the proportion of LLINs given to 

the other patch, assuming an equal allocation as a baseline scenario.  

Figure 3. 8 illustrates these different perspectives for four resource allocation strategies.  From the 

individual (low transmission patch) point of view, this patch would only start sharing LLINs with their 

high transmission neighbour if there are at least moderate levels of mixing between the populations 

(> 16%) (Figure 3. 8A.).  From this level upwards, there is a linear relationship between the level of 

mixing and the proportion of the low transmission patch LLINs that would be shared with the high 

transmission patch in order to minimise infection prevalence in the low transmission patch.  Figure 3. 



68 
 

8B compares the effect of allocation strategies on the low transmission patch. With low levels of 

mixing, equal distribution of LLINs is predicted to have similar results to the optimal allocation from 

an individual point of view, given that low levels of sharing are expected. On the other hand, strategies 

focusing on health equity and minimising optimal allocation from the donor’s point of view increase 

the prevalence of infection in the low transmission patch at low levels of mixing. However, as mixing 

and sharing increase, optimal allocation from the individual point of view converges to the optimal 

allocation from the donor’s perspective.   

 

 

Figure 3. 8 Cooperation under different LLINs distribution scenarios. Assuming a total bed net coverage of 50% for the overall 

population with an equal distribution between two patches, the low transmission intensity patch (EIR=5) can share LLINs to 

high-intensity transmission patch (EIR=50). (A) Percentage of LLINs shared by low transmission intensity patch compared to 

a base scenario of equal distribution (B) Prevalence at steady state in low transmission intensity patch. (C) Overall 

metapopulation prevalence at steady state. Yellow line shows equal distribution between the two patches. Blue line shows 

optimal distribution from the donor's point of view. Orange line shows optimal distribution from the low transmission intensity 

patch point of view.  Red shows distribution based on health equity allocation. 

 

Health equity strategy allocation results are similar to those from the optimal allocation from the 

donor’s point of view. Both strategies are in line with current allocation guidelines, distributing most 

LLIN to the high transmission patch. From the donor’s point of view, in order to minimise infection 

prevalence in the overall population, the low transmission patch would need to share all LLINs with 

the high transmission patch (Figure 3. 8A). Optimisation results from the donor’s point of view (blue 

line Figure 3. 8A) show a dip between 13-53% mixing, where some LLINs are allocated to the low 

transmission patch, which can be attributed to artefacts of the optimisation algorithm chosen. As 
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COBYLA is a local derivative-free optimization (Powell, 1994), it is plausible that during the 

optimisation process the algorithm got stuck in a local optima value close to the global optima.  

 

In order to measure the value of each strategy, I compared all allocation strategies against an equal 

distribution baseline and estimated the annual number of cases averted in the low transmission patch 

and globally (Figure 3. 9). Findings from this comparison emphasise that for low levels of mixing, 

sharing resources to the high transmission patch has a negative effect increasing the number of cases 

in the low transmission patch (Figure 3. 9A).  For this patch, optimal allocation from the donor’s 

perspective is sub-optimal across almost all mixing levels. However, when analysing the value of 

allocation strategies as cases averted in the overall population, all allocation strategies at moderate 

and high levels of mixing propose sharing LLINs with the high transmission patch (Figure 3. 8A) and 

could generate additional value, averting up to 2795 cases per 10,000 individuals annually when 

populations are perfectly mixed (Figure 3. 9B). When comparing the health equity allocation and 

donor’s perspective optimisation, there is a slight increase in benefits of the latter, regardless of the 

mixing conditions, at the expense of leaving the low prevalence patch without any intervention. 

 

 

Figure 3. 9. Annual cases averted at steady state compared with an equal allocation policy. A) Annual cases averted in 

the low transmission patch. B) Annual cases averted in the overall population. Assuming a total bed net coverage of 50% for 

the overall population, low transmission intensity patch with EIR=5 and high-intensity transmission patch with EIR=50.  LLIN 

coverage per patch is defined as explained in the main text for three scenarios: health equity (red), individual’ optimal 

allocation (orange) and donor’s optimal allocation (blue) 
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3.4 Discussion 

In this chapter, the metapopulation framework developed in Chapter 2 was modified to include a 

malaria transmission model. With this model, I evaluated optimal LLIN allocation strategies under 

different assumptions for the level of transmission in the patches and the degree of mixing between 

patches. These optimal allocation strategies were then used to estimate the trade-off between local 

and global priorities to control malaria.  

 

First, I have shown that including malaria connectivity between populations has a major effect on 

disease dynamics projections. As mixing between populations increases, so does the infection 

prevalence in low transmission patches. In accordance with these results, previous studies have 

demonstrated the effect of including interaction with neighbouring populations on infection 

trajectories and the impact of interventions (Citron et al., 2021, Silal et al., 2015). Whilst the work 

presented here simulated a theoretical scenario, these results reflect those of real-life scenarios, like 

the ones found by Silal et al., who also implemented a metapopulation model and demonstrated that 

controlling importation of cases was crucial to achieve elimination in the MOSAWA region, endorsing 

the need for regional support to achieve elimination goals (Silal et al., 2015).   

 

 

Sensitivity analysis showed that levels of mixing between populations affect optimal allocation 

strategies. When populations are isolated, interventions only have a local effect. However, as the level 

of mixing between populations increases, there is an indirect effect of local interventions in other 

patches. This indirect effect is clearly evident when populations are perfectly mixed. In this scenario, 

the single optimal allocation strategy for all parties is to distribute all resources to the high 

transmission patch, where higher coverage will reduce malaria burden for all settings (i.e., individual 

patches and overall population). Consequently, when planning resource allocation for malaria 

interventions it is important to consider transmission connectivity between populations. In real-life 

scenarios, this linkage is not the same for all settings and varies between populations and in time. 

Recent studies have indicated that when planning intervention strategies, some populations may be 

considered as isolated  (Chang et al., 2021), whereas in other settings high levels of mixing between 

populations cannot be ignored (Silal et al., 2015).  
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In the second part of this Chapter, I sought to determine optimal allocation strategies from different 

perspectives. Results showed that the current allocation strategy based on health equity is in line with 

optimal resource allocation strategy from the donor’s point of view. There are minor differences 

between both allocation strategies, given that optimisation results allow patches to go without any 

intervention. In contrast, global donors like the Global Fund ensure funding is not overly concentrated 

in a few countries by constraining shares distributed to a country between a minimum (US$500,000 

per disease) and a maximum value (10% funding available for the disease) (The Global Fund, 2019). 

Both strategies prioritise high burden locations to minimise global burden, which is disadvantageous 

for the low transmission locations when populations are poorly mixed or isolated. 

 

The high burden to high impact strategy is not the only strategy towards malaria elimination. In 2007, 

the Roll Back Malaria Global Malaria Action Plan included shrinking the malaria map as a dimension 

of moving towards eradication.  In this action plan, this strategy was viewed to be as important as 

reducing burden in high transmission settings. The shrinking the map strategy focuses first on 

eliminating malaria where feasible to concentrate resources to high burden locations later (Feachem 

et al., 2009). From the individual perspective of a near-eliminating country, keeping LLINs in the low 

transmission patch is the optimal allocation strategy and averts more cases than current allocation 

strategies, particularly if populations are not well connected. However, my results have shown that 

when mixing levels are high, sharing resources may be better for the low transmission setting as it 

prevents importation and benefits from the indirect protection of reducing transmission in the high 

transmission patch.  

 

The mathematical model implemented in this work is a simplification of complex malaria dynamics 

and the scenarios simulated are representative examples to provide intuitive insight into the malaria 

dynamics between different populations. I have assumed that the parameters of transmission 

between patches are the same for human and vector populations. However, mosquitoes cannot travel 

long distances and humans are usually thought to be responsible for moving infections between 

populations (Midega et al., 2007). Additionally, I have also assumed vector-human interactions are 

equal in all patches. However, ecological conditions in each patch may vary and change vector biting 

behaviours such as the level of anthropophagy. A deeper insight into human-mosquito dynamics 

heterogeneity would help to provide more accurate predictions of the effect of mixing populations. 
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As an illustrative example, this analysis was constrained to use LLINs as the only resource to be 

distributed. This intervention reduces both malaria burden and transmission significantly when 

implemented. It is plausible that optimisation results with other preventive interventions like seasonal 

chemoprevention, would not strongly support cooperation with neighbouring populations as these 

are unlike to provide indirect protection and reduce transmission significantly (Walker et al., 2016). 

However, malaria interventions are usually deployed as packages of multiple interventions to ensure 

the reduction of disease burden (Winskill et al., 2019). It is, therefore, possible that results presented 

here may have underestimated the effect of interventions in each patch. Furthermore, funding for 

disease control comprises more than the cost of buying intervention commodities (e.g., LLINs, 

treatment etc.). In low transmission settings, surveillance and response account for the major costs 

instead of intervention commodities (Feachem et al., 2009). Hence, resources needed by low 

transmission settings may be underestimated by results presented in this work.  While optimal 

allocation strategies suggest low transmission settings may benefit from sharing LLIN, these settings 

may need higher funding to support surveillance plans.  

 

 

Despite its exploratory nature, this study offers some insight into how transmission heterogeneity and 

mixing between populations is a challenge that needs to be considered when allocating malaria 

interventions. I have shown that there is not a “one size fits all” optimal allocation strategy and that 

linkage between populations is a key factor when deciding how to share resources. Cross-border 

funding is necessary to encourage cooperation between countries in order to align individual and 

global goals.  Due to computational limitations, optimisation analyses were restricted to a two patched 

metapopulation and a generic scenario. Thus, further work is required to analyse allocation strategies 

with more patches and realistic mixing parameters.  
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Chapter 4 Estimating the cost of vaccine 

hesitancy for measles 

 

4.1 Introduction 

 

4.1.1 Vaccine Hesitance  

Since the introduction of the smallpox vaccine in 1853, vaccines have had a significant impact on the 

global burden of disease and were responsible for successfully eradicating smallpox in 1980. However, 

despite the evident benefit of this intervention, vaccinations have not always had full public 

acceptance. Vaccination campaigns have faced scepticism throughout history due to concerns about 

vaccine safety and efficacy (Simas and Larson, 2021).  In the 1970s, a significant drop in Pertussis 

vaccination uptake was seen in the U.K, after a link between the vaccine and brain damage was 

suggested by some medical doctors. Two decades later, another vaccination crisis arose. After 

unfortunate publicity around erroneous research findings of the MMR (Measles, Mumps and Rubella) 

vaccine in 1998, vaccine coverage fell from 91.8% in 1996 to 79.7% in 2004 in England (Millward, 

2019).  

 

Vaccine hesitancy is defined as a “delay in acceptance or refusal of vaccination despite availability of 

vaccination services” (MacDonald, 2015). It is a spectrum that ranges from complete vaccine refusal 

(in this thesis referred as anti-vaccination) to acceptance and eventually active demand for 

vaccination. Within those who accept vaccines (from now on referred as pro-vaccination), vaccination 

uptake can still be less than ideal due to system failures such as limited vaccination services 

(MacDonald, 2015) or medical exemptions. Vaccine hesitancy leads to lower vaccination uptake, 

which has caused the resurgence of diseases that had previously been eliminated as a public health 

concern, such as measles (Paules et al., 2019a). Because of this concern, in 2019, the WHO declared 

vaccine hesitancy a threat to global health (de Figueiredo et al., 2020).  

 

Underlying reasons for vaccine hesitancy are a complex interaction between trust in government and 

health authorities (Lazarus et al., 2021) coupled with misinformation on vaccine safety and risk 
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perception of the disease (Larson and Broniatowski, 2021).  Previous studies have found that vaccine 

hesitancy is heterogeneous among individuals and can be found in various socioeconomic, ethnic and 

cultural settings  (Simas and Larson, 2021) (Dubé et al., 2018).  Yet, most determinants of vaccine 

refusal can be related to mistrust in pharmaceutical companies, healthcare providers and the 

government (Larson, 2018). Additionally, contextual factors such as social norms are also associated 

with vaccine uptake decisions. A systematic literature review assessing the determinants of vaccine 

acceptance shows that in societies where vaccination is the “normal thing to do”,  most individuals 

accept vaccination without second thoughts (Dubé et al., 2018). Political and historical experiences 

also contribute to strengthening or weakening trust and communal vaccine perceptions. For instance, 

in Nigeria, the controversial Pfizer drug trial in 1996 where many children died and developed 

disabilities, resulted in community mistrust towards the company and contributed to the boycott of 

the Polio vaccination campaigns in 2003 and also possibly the low vaccine acceptance reported during 

the COVID-19 pandemic (Pertwee et al., 2022).  

 

4.1.2 Negative Externalities  

As mentioned above, low vaccine uptake leads to increased transmission of preventable diseases and 

a higher risk of infection for those that are unvaccinated.  Additionally, as most vaccines are imperfect 

(i.e., not 100% effective), vaccinated individuals can still get the disease,  especially when community 

transmission rates are high (Chen and Fu, 2019).  Because of suboptimal vaccination coverages and 

imperfect vaccines, pro-vaccination individuals cannot be excluded from the health and economic 

burden caused by anti-vaccination individuals due to a decrease in vaccination coverage and the 

associated increase in infection risk.  In the same manner, anti-vaccination individuals cannot be 

excluded from the population-level benefits of vaccination.  

 

Anti-vaccination individuals can be considered to be “free riders” that are protected from the disease 

because of the indirect effects of vaccination, particularly at high population coverage levels and once 

herd immunity is reached (Bauch et al., 2010). In addition to the immediate public health impact of 

sub-optimal vaccine coverage, anti-vaccination individuals may also be delaying disease elimination 

plans as resources need to be allocated to control the outbreaks (Deka and Bhattacharyya, 2019). Anti-

vaccination individuals impose negative externalities onto pro-vaccination individuals by increasing 

transmission of the disease. This spillover effect can be compared to the consumption of goods with 

adverse impacts that impose a cost on a third party such as tobacco. The costs that society has to bear 

due to the consumption of these goods may be offset by prohibition mandates or higher taxation to 
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compensate for early deaths and indirect health effects (e.g., passive smoking for tobacco consumers) 

(Hoffer et al., 2014, Yurekli and Beyer, 2001).  

 

The analysis of negative externalities from consumption of specific goods has been examined since 

the 1990s. However, negative externalities caused by the decision of not consuming a good such as 

vaccination have received scant attention in the research literature. As evidenced in previous 

Chapters, externalities and social benefits of vaccination have been previously studied (Boulier Bryan 

et al., 2007, Perrings et al., 2014, Gersovitz and Hammer, 2003). Yet, the aggregate societal burden of 

deciding not to take vaccinations has rarely been determined. Some researchers have estimated the 

costs of reported outbreaks of previously eliminated diseases (Pike et al., 2020, Ghebrehewet et al., 

2016, Njau et al., 2019). Recently, a study evaluated the increase in annual costs due to increased 

measles vaccine hesitancy in the United States, from the perspective of the public sector (Lo and 

Hotez, 2017). However, the dynamics and societal economic burden of anti-vaccinators within a 

population have not yet been studied. 

 

4.1.3 The case of measles  

As was indicated in Chapter 1, the remarkable progress in reducing measles burden, and the global 

efforts towards disease elimination, has slowed over the last couple of years resulting in an increase 

in measles cases worldwide (World Health Organization, 2019b). Since the vaccine crisis in early 2000s, 

multiple measles outbreaks across England have been reported (Millward, 2019). In 2019, this increase 

in local cases led the U.K. to lose its measles-free status. Similarly, in the United States, after being 

eliminated in 2000, measles incidence has been increasing. In 2019, more than 1200 cases were 

reported in this country, threatening its measles elimination status  (Larson, 2018, Hotez et al., 2020, 

CDC, 2020) . 

 

One of the key determinants that has been attributed to the increase in measles incidence is vaccine 

hesitancy (Hotez et al., 2020). Hesitancy for measles vaccination is a growing public health concern 

worldwide and has been acknowledged as a key challenge in the new Measles and Rubella Strategic 

Plan (World Health Organization, 2020). Given the high reproductive number of measles, small 

reduction in measles vaccine uptake can have a big impact and precipitate the risk of measles 

outbreaks (Kirby, 2022).  This risk has been aggravated in the last two years as measles vaccination 
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rates have dropped dramatically below critical thresholds as a consequence of the COVID-19 

pandemic (Kirby, 2022, Dubé and MacDonald, 2020, Dixon et al., 2021).  

 

In this Chapter, I use measles as a case study to examine the societal burden of an outbreak due to a 

growing anti-vaccination population. For this, the metapopulation framework developed in Chapter 2 

is adapted to represent measles dynamics. I use simulation outputs to estimate the economic burden 

of additional measles cases based on previously reported costs and to evaluate how the health and 

economic costs increase when the anti-vaccination population increases within the overall population. 

 

4.2 Methods 

 

4.2.1 Mathematical model  

I adapted the SIR metapopulation framework developed in Chapter 2 to represent measles dynamics 

based on the compartmental model developed by Verguet et al. (Verguet et al., 2015). Unlike the 

metapopulation models described in Chapters 2 and 3, this metapopulation model consists of two 

patches with the same transmission intensity but opposing vaccine acceptance views. Vaccinations 

are given to newborns with a coverage 𝛿𝑖  and a vaccine efficacy 𝜏. Successfully vaccinated and 

protected individuals are assumed to have lifetime protection against infection, along with recovered 

individuals (R). Susceptible individuals (S) get infected at a rate that is proportional to the existing 

proportion of infectious individuals (I), as well as the strength of transmission between patches  (𝜅𝑥𝑦),  

which represents the rate of coupling between patches between the two populations.  
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Figure 4. 1 Measles metapopulation model   Each patch represents a population with different vaccine acceptance views. 

Boxes represent infectious states S, susceptible; I, infected; R, recovered.  

 

The rate of coupling between patches (𝜅𝑥𝑦), was modelled as proposed by Keeling et al (Keeling and 

Rohani, 2008). This rate depends on short duration movements from individuals from patch i to patch 

j. The expected fraction of time an individual from patch i spends away from home is defined as 𝜆. In 

the absence of mixing (𝜆 = 0), patches are isolated and the dynamics in each patch are independent. 

As the mixing increases, so does the correlation between patches. When patches are perfectly mixed 

(𝜆 = 0.5) the dynamics in both patches are the same. It was assumed that time away from home is 

short compared to the disease dynamics.  

Measles dynamics is described in each patch i by the following set of equations:  

𝑑𝑆𝑖

𝑑𝑡
= 𝐵(1 −  𝜏𝛿𝑖) 𝑁𝑖 − 𝛽𝑖𝑆𝑖(𝜅𝑖𝑗𝐼𝑗 + 𝜅𝑖𝑖 𝐼𝑖) −  𝜇𝑆𝑖 

𝑑𝐼𝑖
𝑑𝑡

= 𝛽𝑖𝑆𝑖(𝜅𝑖𝑗𝐼𝑗 + 𝜅𝑖𝑖 𝐼𝑖) −  𝜇𝐼𝑖 − 𝛾𝑖𝐼𝑖 

𝑑𝑅𝑖

𝑑𝑡
= 𝐵 𝜏𝛿𝑖  𝑁𝑖 + 𝛾𝑖𝐼𝑖 −   𝜇𝑅𝑖 

where B is the birth rate for the population and 𝜇 the mortality rate, which are assumed to be the 

same to maintain a constant population.  β is the transmission coefficient and γ is the recovery rate. 

𝜅𝑖𝑗 are the conventional rate of coupling between populations and these are given by the equations 

described by (Keeling et al., 2004):  
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𝜅𝑖𝑖 = 
(1 − 𝜆)2

(1 − 𝜆)𝑁𝑖 + 𝜆 𝑁𝑗
+ 

𝜆2

𝜆𝑁𝑖 + (1 − 𝜆)𝑁𝑗
 

𝜅𝑖𝑗 = 
(1 − 𝜆)𝜆

(1 − 𝜆)𝑁𝑖 + 𝜆𝑁𝑗
+ 

(1 − 𝜆)𝜆

𝜆𝑁𝑖 + (1 − 𝜆)𝑁𝑗
 

𝑁𝑖  and 𝑁𝑗  are each sub-population size. While these may vary in the scenarios 

modelled, the overall population remains constant  for all simulations (𝑁𝑖 + 𝑁𝑗 = 𝑁). 

 

4.2.2 Model analysis  

The dynamic compartmental model presented above was run for 200 years to find a post-vaccination 

equilibrium as a baseline scenario. In this scenario, both populations were assumed pro-vaccination 

and were perfectly mixed with a vaccine coverage of 90%. This coverage represents the reported value 

for a high-income country like England (NHS, 2019) and considers the proportion of the population 

that cannot get vaccinated due to medical conditions or accessibility difficulties. Vaccine efficacy and 

model parameters are specified in Table 4. 1. The endemic equilibrium of this baseline scenario was 

used as the counterfactual scenario and as initial conditions for the different scenarios modelled.  

Table 4. 1 Measles metapopulation model parameters  

Parameter Value Reference 

𝑩 Birth rate 
2 𝑥 10−4 𝑤𝑒𝑒𝑘  (ONS, 2019, Love-Koh et al., 

2015) 

𝝁 Death rate B - 

𝜸 Recovery rate 1 14 ⁄ 𝑑𝑎𝑦𝑠−1 (Verguet et al., 2015) 

𝜷 Force of infection 𝑅0 (𝜇 + 𝛾) - 

𝑹𝟎 Basic reproductive number 15 (Anderson et al., 1992) 

𝜹𝒊 Vaccine coverage 90% (NHS, 2019) 

𝝉 Vaccine efficiency 95% (Verguet et al., 2015) 

𝝀 Interaction parameter 0 – 0.5  Assumed 

𝑨𝒑 
Proportion of anti- 

vaccination population 
0-100% Assumed 
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To understand the effect of anti-vaccination population size and mixing between sub-populations (λ) 

in disease dynamics, I carried out a sensitivity analysis for different combinations of these parameters. 

For this, the anti-vaccination population size was represented as a fraction of the overall population 

(Ap) (Figure 4. 2). For all simulations, the initial conditions and overall population were kept the same. 

Vaccine coverage was maintained at 90% for the pro-vaccination population and was set to 0% for the 

anti-vaccination population.  

 

Figure 4. 2 A schematic illustrating anti-vaccination population and population mixing scenarios considered in the 

sensitivity analysis. The mixing coefficient was varied between 0-0.5 and anti-vaccination population size was varied as a 

proportion of the overall population. 

 

For the analysis, dynamics for the first outbreak were extracted and compared to the baseline 

scenario. All simulations were run in R 4.1.2, the model equations were solved using the odin package 

(FitzJohn and Fischer, 2022).  

 

4.2.3 Case study parameters  

To estimate disease costs due to an anti-vaccination population, I selected a case scenario 

representing a developed country like England, with a population of 60 million individuals. Vaccine 

refusal in Europe has been reported to vary between 0.7% (Giambi et al., 2018)  and 20% (Rey et al., 

2018). For this case scenario, the antivaccination population was set at 3%, which is the reported 

percentage of parents refusing to vaccinate children in the United Kingdom  (Bamber et al., 2019). 

 

The mixing coefficient (λ) between sub-populations was estimated based on the anti-vaccination 

interaction network described by Johnson et al (Johnson et al., 2020). In their work, the authors 

analysed data from Facebook groups related to vaccine acceptance. Using groups posts and 
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connections with other Facebook groups, Johnson et al. generated an interaction network between 

anti-vaccination, pro-vaccination, and neutral groups. The latter ones are groups without a set stance 

but linked to the vaccine uptake debate (e.g., school parents associations). Using their network matrix, 

I estimated the network assortative mixing coefficient (𝑟) using the assornet package in R (Farine, 

2016).  The assortative coefficient describes the tendency of nodes with the same characteristics to 

link to each other.  A fully assortative network (𝑟 = 1) will have separate communities that do not 

mix (Newman, 2003). This coefficient relates to the mixing parameter (𝜆) in the model as follows.   

𝜆 =
1 − 𝑟

2
 

Given that the measles metapopulation model only considered two populations, I assumed neutral 

groups behave like pro-vaccinators and determined the level of assortative mixing of the network 

based on vaccine uptake behaviour. After doing this, the mixing parameter 𝜆  was set to 0.292.  

 

4.2.4 Economic impact 

To estimate the societal costs of vaccine refusal for measles, economic impact was classified into two 

categories:  costs and disease burden. The former considers direct healthcare costs due to the disease 

as well as costs associated with productivity loss. Direct medical costs include GP consultation time, 

additional staff hours and hospitalisation related costs. Productivity losses are costs associated with 

absenteeism of adult patients and carers of child patients due to measles related issues (Ghebrehewet 

et al., 2016). While there is no agreed definition on what constitutes productivity costs (Drummond 

et al., 2015), in this Chapter, these costs are defined as those borne by the employers due to 

absenteeism of measles non-fatal cases.   

 

For the case scenario simulations, I used the direct and productivity costs from the 2012 measles 

outbreak in northwest England. These values were estimated by Ghebrehewet et al. based on 

literature reviews and interviews with key stakeholders in the outbreak (Ghebrehewet et al., 2016).  

Costs per case were converted to present value (i.e., GBP in 2020) using the quantmod package in R 

(Ryan et al., 2020) and the “Consumer Price Index of All Items in the United Kingdom” database from 

the Organization for Economic Co-operation and Development (OECD, 2022).   
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Table 4. 2 Economic parameters of measles. Prices are shown in 2020 GBP   

Parameter Value Reference  

Health care cost per case  GBP 312.13  (Ghebrehewet et al., 2016) 

Productivity cost per case(non-fatal) GBP 898.56 (Ghebrehewet et al., 2016) 

Disease burden per case 0.019 QALY (Thorrington et al., 2014) 

QALY value  GBP 30 000/GBP 13 000 (Claxton et al., 2015, McCabe et al., 2008) 

Health related quality of life (Qt) 0.86 (Love-Koh et al., 2015) 

Life expectancy  82 years (Love-Koh et al., 2015, ONS, 2019) 

 

The second category, disease burden, refers to the impact of the disease due to direct health problems 

caused by morbidity and mortality. Morbidity is associated with the loss of health-related quality of 

life while sick and due to the disease’s long-term consequences. Disease burden due to mortality 

refers to the years lost due to an earlier death caused by the disease. For both cases, disease burden 

is measured in Quality-adjusted life years (QALY).  In the case of measles, short term morbidity has 

been previously estimated for an England-like context by Thorrington et al (2014). In their study, the 

authors measure the short-term impact of measles, through standardised health impact 

questionnaires from individuals with measles from the 2012 outbreak in England (Thorrington et al., 

2014).  Long-term morbidity was not considered for the case scenario analysis given that measles long-

term effects are very rare in HIC like England (Edmunds and Van Hoek, 2009).    
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Figure 4. 3 Measles in the U.K. (A) Measles age distribution for cases reported in the last 20 years. (B) Case fatality ratio per 

age group. Estimated from the U.K official reported cases and deaths (Public Health England, 2019, Public Health England, 

2020). 

 

To determine the burden due to mortality, I first calculated deaths by age group, using model 

projections of measles incidence and the estimated case fatality ratio (CFR).   CFR per age group was 

estimated from reported measles cases and deaths in the U.K. over the last 20 years (Public Health 

England, 2020, Public Health England, 2019) and uncertainty was captured with binomial confidence 

intervals  (Figure 4. 3). This uncertainty was carried over to the economic analysis.  I then quantified 

QALYs due to mortality based on the Quality-adjusted life expectancy (QALE) (Table 4. 3) and the 

estimated deaths per age group. QALE was determined using reported life expectancy parameters for 

England (Love-Koh et al., 2015) and the following equation, defined by (Sassi, 2006):  

𝑄𝐴𝐿𝐸 = ∑
𝑄𝑡

(1 + 𝛿)𝑡−𝑎

𝑎+𝐿

𝑡=𝑎

               

where L is the residual life expectancy at age 𝑎;  𝛿 is the discount rate, which was set at 3%; and 𝑄𝑡 is 

the health-related quality of life weight attached to a year of life. Table 4. 3 shows discounted QALE 

estimated per age group. 
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Table 4. 3 QALE per age group estimated based on equation above and parameters in Table 4. 2 

Age group QALE 

<1 26.99 

1-4   26.83 

5-9  26.40 

10-14  25.91 

15-19 25.33 

20-24  24.66 

25-29 23.89 

30-34 22.99 

>35  15.42 

 

The overall economic impact of measles was estimated over a time horizon of 20 years. This impact 

represents the welfare (i.e., economic wellbeing) loss as a result of a reduction in consumption of 

vaccination. In order to estimate this welfare loss, health care costs, productivity costs and disease 

burden were totalled for each year.  To translate disease burden into monetary terms, I assumed a 

value per QALY of GBP30 0000 as it this is the current upper threshold accepted by the U.K. healthcare 

system when assessing intervention technologies (McCabe et al., 2008).  Given that this valuation of 

QALY has been contested before as being too high (Claxton et al., 2015),  I also implemented a more 

conservative valuation of QALY. For this, I assumed a value per QALY of GBP 13,000 per QALY as this 

value has been suggested as an alternative national guidance for England (Claxton et al., 2015). Future 

costs took into account an inflation rate of 1% and the net present value (NPV) of the overall economic 

impact was calculated assuming a 3% discount rate. 
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4.3 Results 

4.3.1 Model dynamics  

 

Figure 4. 4 Projected measles dynamics for different anti-vaccination population sizes, represented as a percentage within 

the overall population (rows), and different mixing between anti-vaccination and pro-vaccination populations (𝜆 in columns). 

Incidence is presented weekly per 10 000 individuals. Dashed blue line represents the end of the first outbreak.  

 

Measles trajectories under different mixing levels and anti-vaccinator population sizes are shown in 

Figure 4. 4. The first column shows how outbreaks are contained to the anti-vaccination population in 

the absence of mixing. When there is mixing between both populations a dilution effect is evidenced. 

While outbreaks include cases from both sub-populations when there is mixing, unvaccinated 

individuals from the anti-vaccination sub-population are also protected by those vaccinated in the 

pro-vaccination sub-population. As a consequence, outbreaks are longer and flatter.  The number of 

outbreaks and their magnitude differ in each one of the scenarios modelled. In order to compare these 

scenarios, I evaluated disease trajectories from the first outbreak of each simulation and estimated 

their average yearly incidence. This incidence was then compared to the baseline scenario to estimate 

the number of additional cases.  
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The level of mixing between pro- and anti-vaccination populations, (𝜆) has a significant effect on the 

first outbreak size.  For a scenario with 15% of anti-vaccination individuals, increasing the mixing 

coefficient 𝜆 by 0.03 can increase annual incidence by up to 10.65 cases per 10 000 individuals in the 

overall population (Figure 4.5A).  However, the relationship between mixing and outbreak size is not 

monotonic. The largest changes in outbreak size are observed with changes in 𝜆 at low levels of mixing 

(0 < 𝜆 < 0.1);  increasing mixing beyond 20% (𝜆 = 0.1), does not have an additional significant 

impact on the total number of cases in the first outbreak (Figure 4.5A).  The effect of low levels of 

mixing for the pro-vaccination population on the pro-vaccination population is shown as a steep 

increment for the cases per capita, which peaks before 𝜆 = 0.05 and then plateaus (Figure 4.5B). 

While, for the anti-vaccination population the effect is seen as a steep decrease in the outbreak size 

as mixing is incremented, after 𝜆 = 0.1 the decline slows down (Figure 4.5C).   

 

 

Figure 4.5 The modelled impact of population mixing and vaccine hesitancy on measles cases.  Additional yearly cases 

presented during the first outbreak compared to the number of cases in the same time frame for a steady state without anti-

vaccinators. Results are shown for different anti-vaccination population percentages within the overall population: 2%, 5%, 

10% and 15%. Additional yearly cases are presented per 10 000 individuals for the overall population (A) and individually for 

the pro-vaccination population (B) and the anti-vaccination population (C). Dotted vertical line shows mixing coefficient used 

for an England-like scenario simulation 
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On the other hand, as the anti-vaccination fraction in the overall population increases so does the 

additional yearly incidence for the first outbreak (Figure 4.5A) as a result of an increase in the 

susceptible population. However, this increase is not proportional to the anti-vaccination population 

increment. When incrementing the anti-vaccination population from 5% to 10% the peak number of 

cases increases by 62.4%.  At 15% we see that this increment rises by 114% 

 

4.3.2 Case scenario simulations  

Disease trajectories for the case scenario projected two outbreaks during the 20 years analysed. 

During the first outbreak, incidence peaks at 36 070 cases per year (Figure 4. 6A). This translates to a 

cumulative impact of 340 857 additional cases and 416 deaths in the 20 years analysed compared to 

a situation in which 90% of the population are vaccinated. The majority (82%) of these are predicted 

to happen in the pro-vaccination population (Figure 4. 6 B and D).  However, the impact per capita in 

the anti-vaccinator population is significantly higher compared to the pro-vaccination population 

(Figure 4.7); during the peak of the first predicted outbreak, the incidence per million for the anti-

vaccination population is 2.6 times that of the pro-vaccination population. Low estimates for deaths 

projections are consistent with a case scenario where the CFR is low. Due to the low reported number 

of deaths the projected deaths in Figure 4. 6 have wide uncertainty intervals.  
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Figure 4. 6. Measles projections for the case scenario.  (A) Model trajectories for annual measles incidence. (B) Additional 

cases in each subpopulation for the 20 years analysed. (C) Measles deaths dynamics estimated using measles age distribution 

and CFR from Figure 4. 3. (D) Cumulative deaths for the 20 years analysed.  Shaded area shows uncertainty in the number of 

deaths carried from the CFR estimates.  Simulations were run for a 60 million population with a 3% anti- vaccination 

population and a λ= 0.292. Additional incidence and deaths were estimating comparing simulation’s output with baseline 

scenario.  

 

Figure 4.7  Measles trajectories per capita for each sub-population. Results are shown for each population independently: 

Anti-vaccination (right) and pro vaccination (left). (A) Additional annual incidence per million individuals (B) Additional annual 

deaths per capita. Shaded area shows uncertainty in the number of deaths given confidence intervals of CFR.  Simulations 

were run for 20 years in a 60 million population, with a 3% anti-vaccination population and  λ= 0.292 
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4.3.3 Cost of vaccine refusal 

Total costs for the case scenario modelled are shown in Figure 4. 8. These costs represent the 

estimated cost of additional measles cases and deaths due to the presence of an anti-vaccination 

population.  During the first outbreak projected by the model, the costs are estimated to peak at 99 

(78-196) million GBP yearly. Over the 20 years analysed the total welfare loss was estimated at 536 

(423- 1 059) million GBP at net present value assuming a 3% discount rate. Of these costs: 35.2% are 

attributed to productivity costs of non-fatal cases, which are borne by the employer for sickness 

absence and sick pay due to measles related issues; 30.3% are due to deaths and 22.3% due short-

term morbidity, both of which are borne by the patient and the remaining 12.2% are attributed to the 

direct costs of healthcare, which are borne by taxpayers contributing to the healthcare system in a 

country with a national health service (Figure 4. 8 A). When assuming a more conservative value for a 

QALY (Figure 4. 8B), total welfare loss over 20 years was estimated at 376 million GBP (327- 603) (NPV 

with 3% discount rate), with the majority of costs attributed to productivity  costs (50.1%) followed by 

costs attributed to deaths (18.7%). 

  

Figure 4. 8 Economic impact of an anti-vaccination population for the case scenario. Additional costs compared to a 

baseline scenario without anti-vaccinators in the population. (A) –(B) Total welfare loss per year discretised by cost type: 

direct healthcare costs, productivity costs, economic burden due to deaths, short term burden of the disease while sick.  

Confidence intervals show minimum and maximum costs per year given uncertainty in the number of deaths. (C) –(D) Mean 

cumulative welfare loss over the 20 years analysed, discretised by population. Results are shown for a 60 million population, 

with a 3% anti-vaccination population and a mixing parameter. λ= 0.292. Costs are estimated assuming a 1% inflation rate 

and a QALY value of GBP30 000 for (A) and (C) and a value of GBP13 000 for (B) and (D). 
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The cumulative costs over time (Figure 4. 8 B, D) emphasise how the pro-vaccination population 

accrued most of the costs, as the majority of cases are predicted in this sub-population and anti-

vaccination individuals only constitute 3% of the overall population. Despite their low proportion in 

the population, the effects of anti-vaccination individuals are substantial. Welfare loss per anti-

vaccination individual is projected to be 298 (235- 588) GBP for the case scenario modelled. Despite a 

proportional increase in the societal welfare losses as the size of the anti-vaccination population 

increases (Table 4. 4), this impact per anti-vaccinator remains relatively stable (Figure 4. 9), with the 

highest cost per antivaccination predicted to be 347 (274 – 686) GBP, when the anti-population is 10%.  

 

  

Figure 4. 9 Total welfare loss sustained by the overall population per individual in the anti-vaccination population. 

Values were estimated based on simulation results with λ=0.292 projected for 20 years and assuming a cost per QALY of 

GBP 30 000. Net present values were estimated with a discount rate of 3%. Shaded area shows uncertainty in welfare loss 

which is determined by uncertainty in the number of deaths.  
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Table 4. 4 Estimated welfare loss sustained by the overall population due to an anti-vaccination population.   Total 

welfare loss is shown per capita and per anti- vaccination.  Values were estimated based on simulation results with a 

λ=0.292 projected for 20 years and assuming a cost per QALY of GBP 30 000. Values were brought to 2020 GBP with a  

discount rate of 3%. 

Anti-vaccination 

population  

Total Welfare Loss 

Million GBP 

Welfare loss per 

capita 

GBP 

Welfare loss per 

anti- vaccinator 

GBP 

3% 536 (423 -1059)  9 (7 -8)  298 (235- 588) 

5% 906 (715 - 1790) 15 (12 – 30)  302 (238 -596) 

10% 2083 (1646 – 4119) 35 (27-69) 347 (274 – 686) 

25% 5131 (4054 - 10144) 86 (68 -169) 342 (270 – 676)   

 

 

4.4  Discussion  

Vaccine use is an individual choice; however, this choice not only has an impact on the individual’s 

health but has social welfare consequences as well. In this Chapter, I modified the metapopulation 

model developed in Chapter 2 to represent measles dynamics when sub-populations have different 

vaccine acceptance views. I used the measles metapopulation model combined with measles outbreak 

health burden estimates and estimates of economic costs to investigate the societal effects of an 

emerging anti-vaccination population in a HIC context. Results presented in this Chapter suggest that 

the presence of an anti-vaccination population is responsible for a substantial economic burden to 

society. For simulations projected for 20 years in an England-like scenario, the societal economic 

burden was estimated to be 536 (423 -1059) million GBP.  

 

The economic consequences of sub-optimal vaccination coverage are greater than just the costs of 

treating the disease, as most of the welfare loss is attributed to indirect costs. Productivity costs to 

employers due to measles-related absenteeism account for the largest portion of the economic 

impact. This is followed by the monetised health loss costs owing to deaths. However, these costs 

usually tend to be overlooked when outbreak costs are analysed.  Many of the studies in the literature 

focus on the health care cost of measles, underestimating the full societal impact of measles cases 

(Pike et al., 2020); my estimates show that these healthcare costs only comprise 12% of the total 

economic burden.    
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Overall, as the anti-vaccination population increases the welfare loss increases proportionally and the 

mean time between epidemics decreases. For the 20 years analysed, there is a maximum of six 

outbreaks once the anti-vaccination population is greater than 50% of the total population (not 

shown).  More outbreaks entail a higher burden to the public health system given that besides the 

welfare loss due to the cases, outbreak response interventions will require more resources. Response 

interventions such as supplementary vaccination campaigns and contact tracing can represent up to 

40% of outbreak costs (Ghebrehewet et al., 2016). However, model simulations did not consider 

outbreak response interventions and simulations illustrated measles trajectories of unmitigated 

outbreaks. Therefore, these results, therefore, need to be interpreted with caution.  

 

In order to mitigate the economic consequences of vaccine hesitancy, countries have put into place 

mandates to incentivise vaccination among parents and health practitioners. In countries like Italy and 

France, children are restricted access to nurseries and schools if they do not have the mandatory 

vaccinations (Maltezou et al., 2019). This intervention has been shown to motivate parents to 

vaccinate their children and reduce the number of contacts between pro- and anti-vaccination 

populations. However, the partial isolation of anti-vaccination individuals may increase the number of 

measles cases as results presented here suggest that when mixing levels are low, the incidence in the 

anti-vaccination population increases. In the modelled scenario, I used a relatively high interaction 

parameter, resulting in the anti-vaccination population benefitting from the dilution effect. This 

parameter was obtained from a social network analysis (Johnson et al., 2020); however, this estimate 

was based on data from media platform interactions and it is likely that this number is different for in-

person interactions. Further research is required to establish the interaction patterns between anti- 

and pro-vaccination populations.  

 

Monetary incentives are another strategy established to promote vaccine uptake. These can take the 

form of monetary subsidies for each child vaccinated or sanctions to parents that do not vaccinate 

their children (Gostin et al., 2020, Attwell and M, 2019). These incentives have been shown to improve 

vaccination coverages when they are implemented  (Li and Toll, 2021).  The value of these incentives 

and sanctions varies between countries and represents the monetary compensation due to the anti-

vaccination population free-riding on the benefits of vaccination-induced herd immunity and causing 

negative externalities to the population.  The methods developed in this study allowed me to estimate 
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the economic burden of one anti-vaccination individual to society and can be used as a guide to help 

policymakers determine the extent to which these incentives would be justifiable.  

 

Besides mandates and monetary incentives, understanding the underlying reasons behind vaccine 

refusal and addressing these reasons through appropriate health communication strategies has 

proven to increase vaccine acceptance (Goldstein et al., 2015, Dubé et al., 2018). However, these 

communication strategies require great financial and human resources given that optimal 

communication is case specific (Dubé et al., 2020, Larson, 2018).The findings of this Chapter can be 

used to justify the investing on communication strategies as these results can help to assess the 

societal value of reducing the anti-vaccination population.   

 

It is important to note that the model described in this Chapter has several limitations. First, the model 

is a simplification of measles dynamics and does not account for spatial or age heterogeneity. I have 

assumed a uniform interaction between anti- and pro-vaccinators, which may have overestimated the 

role of herd immunity. Anti-vaccination groups are not evenly distributed in the territory and usually, 

outbreaks start off in small, insular communities with low vaccination rates (Gostin et al., 2020). A 

study assessing the effect of heterogenous uptake of MMR vaccine in California, USA, found that 

interactions between children are heterogenous, and this heterogeneity has a strong effect on the 

disease dynamics  (Glasser et al., 2016). For the analysis presented here, I have assumed homogenous 

mixing for all age groups, and have ignored age-specific interactions, which may have led me to 

underestimate transmission. Furthermore, the scope of the analysis was limited to HIC countries given 

the parameters and costs assumed. However, vaccine hesitancy has also been reported in LMIC 

(Tomori, 2011, Njau et al., 2019, de Figueiredo et al., 2020).  For these settings, mortality and 

morbidity are higher, and health care costs are different (Njau et al., 2019); in order to estimate the 

impact of anti-vaccination population in these settings the methods developed in this Chapter could 

be replicated using new parameters accordingly.  

 

Moreover, there is uncertainty around cost estimates and findings may be somewhat limited by the 

cost types included in the cost estimation. I have considered productivity costs as part of the economic 

impact analysis. However, the inclusion of productivity costs in economic evaluations is an area of 

controversy in health economics (Drummond et al., 2015). Estimates of productivity cost are variable 

to the methods used to calculate them. Some authors argue that including these costs could lead to 
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the double counting of effects, given that disease burden measurements (QALY) could already include 

the value of productivity (Drummond et al., 2015, Turner et al., 2021). It is, therefore, possible that 

results presented here may have overestimated the societal costs of vaccine refusal for measles. 

Another reason my results do not necessarily provide a general representative estimate of measles 

costs is that these were estimated for a specific outbreak in England (Ghebrehewet et al., 2016, 

Thorrington et al., 2014).   Furthermore, the value placed on a QALY has been the subject of intense 

debate within the economic community. Finding a single all-purpose monetary value of a QALY has 

shown to be theoretically unattainable and most authors agree that the willingness to pay per QALY 

is context specific (Gyrd-Hansen, 2005, Pinto-Prades et al., 2009). In this Chapter I have analysed two 

different monetary values per QALY, which have been suggested for economic analyses in the U.K. 

Yet, these values may be country specific and cost estimates presented here may be difficult to 

translate into other countries. 

 

Despite these limitations, the metapopulation model was useful in understanding the impact of an 

emerging anti-vaccination population. The results of this Chapter provide a valuable and practical 

insight into the economic strains pro-vaccination populations undergo due to the growing anti-

vaccination movement and demonstrate that the economic burden of anti-vaccination is greater than 

just the cost of treating cases. Vaccine hesitancy movements have put a burden on society, and a 

demand on countries’ policymakers as the return of previously eliminated disease needs to be 

stopped. The findings of this study can be considered when assessing investments, monetary 

compensations and incentives to promote vaccination.  

 

 

 

 

 

 

 

 



94 
 

Chapter 5 The impact of vaccine hesitancy in 

the COVID-19 pandemic  

 

During the development of this thesis, the COVID-19 pandemic started. When the first vaccines were 

approved, this Chapter was conceived to estimate the effects of vaccine hesitancy for the vaccine 

rollout being deployed at the time, implementing the tools developed in this thesis. Two versions of 

this work have been previously published as a paper in Communications Medicine with an earlier 

version released as a report for the MRC Centre for Global Infectious Disease Analysis 

• Olivera Mesa, D., Hogan, A. B., Watson, O. J., Charles, G. D., Hauck, K., Ghani, A. C., & 

Winskill, P. (2022). Modelling the impact of vaccine hesitancy in prolonging the need for 

Non-Pharmaceutical Interventions to control the COVID-19 pandemic. Communications 

Medicine, 2(1), 14. doi:10.1038/s43856-022-00075-x  

• D Olivera Mesa, AB Hogan, OJ Watson et al. Quantifying the impact of vaccine hesitancy in 

prolonging the need for Non-Pharmaceutical Interventions to control the COVID-19 

pandemic. Imperial College London (24-03-2021), doi: https://doi.org/10.25561/87096. 

 

5.1 Introduction  

As described in Chapter 1, in March 2020, the World Health Organization declared the novel 

coronavirus (COVID-19) outbreak a pandemic and countries started implementing non-

pharmaceutical interventions (NPIs) to stop the spread of the virus. These interventions were based 

on encouraging social distancing and imposed lockdowns. NPI strategies varied between countries, 

yet the economic consequences of these restrictions were observed worldwide (Lenzen et al., 2020, 

Wang et al., 2021). Governments were faced with the decision to trade-off between public health and 

economic impact (Anderson et al., 2021). 

 

In December 2020, the first vaccine against SARS-CoV-2 was approved and a new road out of the 

pandemic was made possible.  Vaccination rollout plans started being implemented in HIC and the 

world started working towards herd immunity. To achieve this goal by mass vaccination, 5 factors have 

been significant (Anderson et al., 2021). First, infectiousness of SARS-CoV-2, given by the basic 

https://doi.org/10.25561/87096
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reproduction number, which was estimated to range between 3-4 for the wild type variant (Flaxman 

et al., 2020). Second, vaccine efficacy of available vaccines, which was reported to range from 50% to 

over 95% against symptomatic disease (Polack et al., 2020, Voysey et al., 2021, Baden et al., 2020, 

Logunov et al., 2021, Hitchings et al., 2021). Third, supply chain and logistics of mass production. 

Fourth, the rate at which population can be vaccinated, which could vary between urban and rural 

settings. Lastly, the public acceptance of the vaccines (Anderson et al., 2021). Given all these factors, 

high levels of vaccine uptake were required to achieve herd immunity (Hogan et al., 2021), particularly 

if children were not vaccinated during the first phase of roll-out. 

 

One major concern that threatens the herd immunity goal has been vaccine hesitancy (Loomba et al., 

2021). As explained in Chapter 4, vaccine hesitancy leads to lower vaccination uptake which hinders 

efforts to control the pandemic. Since vaccines were at the development stage vaccine hesitancy was 

acknowledged as a risk to the pandemic and multiple surveys were conducted to assess the problem. 

These surveys found that between 14% (Lazarus et al., 2021) and 27%  (Jones et al., 2021) of adults 

would not accept a vaccine if available, whilst between 14% (Lazarus et al., 2021)  and 19% (Jones et 

al., 2021) said that they were uncertain. A large variation in vaccine hesitancy between countries was 

also identified, with the proportion saying that they would get a SARS-Cov-2 vaccine if it became 

available, ranging from 40% for France (Jones et al., 2021) to 89% for China (Lazarus et al., 2021). As 

evidenced for other vaccines, vaccine hesitancy was found to be heterogenous across sub-populations 

depending on gender, age, ethnicity, religion, or socioeconomic status (Lazarus et al., 2021, Freeman 

et al., 2020, Jones et al., 2021). Furthermore, these surveys highlighted that the key drivers of SARS-

CoV-2 vaccine hesitancy were related to concerns about the accelerated pace of vaccine development 

(Freeman et al., 2020), side-effects (Jones et al., 2021), and the spread of misinformation about the 

pandemic (Loomba et al., 2021).   

 

The aim of this Chapter is to understand the likely impact of vaccine hesitancy on control of the 

pandemic, using a mathematical model of SARS-CoV-2 transmission (Hogan et al., 2021).  For this, I 

capture the effect of reduced coverage using measured levels of vaccine hesitancy from behavioural 

survey data on self-reported intention to be vaccinated. Then, I implement a deterministic COVID-19 

transmission model to project pandemic trajectories with low vaccination coverage due to vaccine 

hesitancy and compare them to an ideal counterfactual.  I model each scenario with both a high and 
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a moderate vaccine efficacy profile that represents the range of efficacies of vaccines approved by 

March 2021.   

 

5.2 Methods  

 

5.2.1 Vaccine hesitancy data  

Attitudes towards COVID-19 vaccination were obtained from the Imperial College London YouGov 

Covid 19 Behaviour Tracker Data (Jones et al., 2020). This data set includes weekly surveys about 

people’s behaviours in response to COVID-19 (including vaccines) as well as standard demographic 

questions on age, gender, and household structure.  Ethics approval and informed consent were not 

required given that all data was publicly available and de-identified.  

 

I extracted the survey results from February 8th - February 15th, 2021 for 10 European countries. To 

assess vaccine hesitancy, I used data from one question pertaining to COVID-19 vaccine acceptance in 

which participants were asked to what extent they would definitely get a COVID-19 vaccine if it 

became available to them next week. Answers were obtained on a numeric scale ranging from 

“Strongly agree – 1” to “Strongly disagree – 5”. To capture survey uncertainty, answers per age group 

were used to parameterise a multinomial distribution, from which 100 replicates were drawn. To 

capture further uncertainty associated with the translation of survey response to vaccine uptake, for 

each replicate, coverage per age group was estimated assuming the probability of vaccination as a 

beta distribution with means: 0.98, 0.75, 0.50, 0.25 and 0.02 for survey responses 1, 2, 3, 4 and 5, 

respectively. Coverage distributions per age group, median as well as the 10% and 90% quantiles are 

shown in Figure 5. 1. 
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Figure 5. 1 Vaccine uptake distribution per age group. Based on vaccine acceptance reported by Jones et al (Jones et al., 

2021)  distribution of coverage per age group (panel in the plot) was estimated after translating survey results into 

multinomial distribution and drawing 100 replicates. Probability of vaccination was modelled as a beta distribution with 

mean 0.98, 0.75,0.50,0.25 and 0.02 for survey response 1,2,3,4,5, respectively.  

 

5.2.2 Mathematical model  

To predict the public health impact of vaccine hesitancy, I used a previously developed mathematical 

model for SARS-CoV-2 transmission and vaccination (Hogan et al., 2021). The model captures the 

disease dynamics among nine different infection states, stratified by age and vaccination status ( 

Figure 5. 2 ). 

• S = uninfected and therefore susceptible to infection 

• E = exposed to infection but not yet infectious 

• IMILD = infected and infectious with mild infection that does not require hospitalisation (this 

includes both symptomatic and asymptomatic infection) 

• ICASE = infected and infectious with disease that will require hospitalisation 

• IHOSP = cases that have been hospitalised in a general ward bed 

• IICU = cases that have been admitted to an intensive care unit (ICU) 

• IREC = cases that have been stepped down from ICU into a general ward bed for recovery 

• D = cases that have died 
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• R = infections and cases that have recovered and are immune to re-infection 

Disease states E, ICASE, IHOSPITAL, IICU and R are split into two sequential states such that the durations of 

stay are Erlang-distributed. Individuals become infected at a rate that depends on the number of 

people in states IMILD and ICASE and the transmission probability. Following infection, individuals in the 

ICASE state proceed to an ICU unit (IICU) or hospitalisation in general ward (IHOSP) at rates based on age 

specific probabilities and country-specific hospital bed capacity. After infection, cases either died (D) 

or recover (R) following the path shown in  

Figure 5. 2  (with the final outcome tracked by splitting both the IHOSP and IICU states into two 

compartments reflecting those that die or recover respectively in order to capture the different 

durations of stay associated with these outcomes). Finally, recovered individuals can lose naturally 

acquired immunity and then return to the susceptible state. Additional constraints are included in the 

hospitalisation pathway to capture situations in which the need exceeds capacity; with those that do 

not receive appropriate care experiencing higher death rates(Walker et al., 2020).  These constrains 

are country-dependent for the country-specific scenarios and are described in Table 5. 1.  

Table 5. 1 Hospital capacity parameters per country 

Parameter  Country  Value Description 

Maximum hospital 

beds per capita  

U.K 4.63 Values taken from R package squire using methods 

described by Walker et al.  (Walker et al., 2020). For the 

representative scenario U.K values were implemented  

France 6.5 

Germany 7.4 

Maximum ICU beds 

per capita  

U.K 0.15 Values taken from R package squire using methods 

described by Walker et al.  (Walker et al., 2020) For the 

representative scenario U.K values were implemented 
France 0.21 

Germany 0.24 

 

The level of transmission in the model is parameterised by the reproduction number, Rt, in the absence 

of vaccine or naturally induced immunity. This is equal to R0 at the start of the simulation and may be 

modified forwards in time by the introduction of NPIs. The transmission probability is obtained as the 

ratio between the reproductive number and the leading eigen value of the next generation matrix, 

which depends on duration of infectiousness, the age-stratified mixing matrix and age-dependent 

probability of hospitalisation.  
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Figure 5. 2 Schematic of SARS-Cov-2 transmission model. Reproduced from (Hogan et al., 2021). The schematic 

Susceptible-Exposed- Infected-Recovered (SEIR) model representation is based on the model described by Hogan et al 

Hogan et al. (Hogan et al., 2021). Infected individuals are disaggregated into mild cases and the disease clinical cases, which 

include hospitalisation and intensive care. Vaccination status is included as a new dimension in the model. Only individuals 

in the susceptible (S), exposed (E) and recovered (R) compartments can be vaccinated. 

Vaccination is modelled as an additional dimension disaggregating the population into 6 vaccination 

classes, with the vaccinated states split into two compartments (v1/v2 and v3/v4) to generate Erlang-

distributed waiting times:  

• v0 = unvaccinated 

• v1 and v 2 = vaccinated but not yet protected, reflecting the two-dose vaccine schedule and 

need to wait approximately 28 days from dose 1 for protection to develop 

• v3 and v4 = vaccinated and protected 

• v5 = previously vaccinated but no longer protected, used to capture waning vaccine efficacy.  
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Only individuals who are susceptible, in the latent period, or recovered can be vaccinated. It is 

assumed that individuals receive a single two-dose schedule (with no drop-out) and that vaccine 

efficacy is generated after the second dose. This approximation, therefore, ignores the partial efficacy 

obtained from the first dose.  It is assumed that the vaccine protects against infection – by reducing 

the transmission parameter by a constant factor; and against severe disease in breakthrough 

infections – by reducing the rate of hospitalisation by a constant factor.   

 

Vaccines are distributed by age groups at a constant rate and a matrix of coverage targets that 

represents prioritisation strategies. In this matrix, rows represent ordered prioritisation steps and 

columns the age group. The target coverage per age group was changed according to the different 

scenarios modelled. In each prioritisation step (s), vaccines are given at a rate to all age groups that 

satisfy. Once all target coverages are met in the current prioritisation step, the step is incremented, 

and the process is repeated. When all coverage targets in the final prioritisation step are met, 

vaccination is ceased. This, therefore, means that if vaccine uptake is lower, vaccines will be 

distributed to younger age-groups rather than waiting for a set period of time for each age-group. This 

is consistent with a constant supply of vaccines and best matches the roll-out of vaccines in high-

income countries.    

 

5.2.3 Parameters 

Parameters for SARS-CoV-2 infection, health care capacity, age-distribution and contact patterns are 

based on previous work (Walker et al., 2020, Hogan et al., 2021).  With these parameters, the 

transmission probability is estimated based on the reproductive number (Rt), which is given as an 

input for each simulation as a function of time. Vaccine induced immunity is assumed lifelong, while 

natural immunity is assumed to last for an average of one year (Hall et al., 2021). To produce 

simulations representing the different vaccines approved by March 2021, scenarios are run for two 

vaccines: one with high efficacy (94% efficacy against infection (Polack et al., 2020)) and one with 

moderate efficacy (63% efficacy against infection (Voysey et al., 2021)). For both vaccines I assumed 

an additional 60% efficacy against hospitalisation for breakthrough infections, resulting in an overall 

vaccine efficacy against hospitalisation and death of 98% for the high efficacy vaccine and 85% for the 

moderate efficacy vaccine.   

 

To mimic vaccine rollout plans, vaccination is introduced to the population at the beginning of 

January 2021.  I assume a constant vaccination rate (𝜅), at which all individuals aged 15 years and 
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above (~78% of the population) will be vaccinated over a 10-month period. This rate is implemented 

for all scenarios modelled since I assume vaccination rate is constrained not by vaccine uptake but 

by the supply and delivery of vaccines. Therefore, lower levels of coverage, result in shorter 

vaccination campaigns; given that in the model, once coverage targets are met, vaccination is 

ceased. To illustrate the effect including children vaccination, vaccination rate is maintained 

constant and vaccination period was extended such that all individuals aged 5-15 years could be 

vaccinated.   

 

Vaccines are targeted by age groups at the constant rate 𝜅, prioritising older age groups: with 80+ 

years vaccinated first and then sequentially including additional age groups in 5-year age-bands 

down to 15-19 years for adults only vaccination simulations and down to 5-10 years for simulations 

including children vaccination. 
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Table 5. 2 Vaccination parameters and values 

Parameter  Symbol Value Description 

Vaccine efficacy 

against infection 

1 − 𝜐𝑖𝑛𝑓(𝑎) 

94%; 63%  It was assumed infection-blocking efficacy is the same as 

reported vaccine efficacy against clinical disease. Values 

were selected to cover the range of approved vaccines 

efficacies reported to March 2021 (Polack et al., 2020, 

Voysey et al., 2021)  

Vaccine efficacy 

against disease  

1 − 𝜐𝑑𝑖𝑠(𝑎) 

60% Estimate based on reported vaccine effectiveness data in 

the UK which suggests ~86% efficacy against 

hospitalisation/death compared to ~65% against mild 

disease for a single dose of the Pfizer vaccine (Public 

Health England, 2021, Bernal et al., 2021). The assumed 

value of 60% generates 98% efficacy against 

hospitalisation/death for the high efficacy vaccines and 

85% for the moderate efficacy vaccine, with both 

representing two dose schedules.  

Vaccine mean 

duration of 

protection  

1/𝜓 

5000 days Assumption generating durable immunity for 1 year 

simulations.  

Rate of vaccination 

𝜅(𝑎) 

135 399 per day 

(representative) 

183 834 per day 

(U.K)  

176 810 per day 

(France) 

237 142 per day 

(Germany) 

Population-dependent: set such that number of people 

vaccinated per day achieves vaccination of all individuals 

aged 15 years and above in a 10-month period. 

Representative scenario assumes a total population of 50 

million individuals and U.K age demographics  

Mean time to 

develop vaccine-

acquired immunity 

following second 

dose 

1/𝜓 

7 days Based on immunogenicity data from Phase II trials in 

which antibody titres plateau ~7 days post dose 2 

(Jackson et al., 2020, Zhu et al., 2020, Mulligan et al., 

2020, Sahin et al., 2020, Folegatti et al., 2020)   

Vaccine schedule 

- 

21 days  2 doses modelled 21 days apart(Voysey et al., 2021, 

Polack et al., 2020, Baden et al., 2020, Logunov et al., 

2021). Efficacy follows 2nd dose (so only modelling final 

dose of any vaccine schedule) 
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5.2.4 Reproductive number profiles 

To simulate a representative pre-vaccination scenario, a reproductive number profile was generated. 

In this profile, Rt was the same as R0 (𝑅0 = 3 (Walker et al., 2020)) up to April 2020, subsequently 

decreased to 1 to represent the impact of NPIs against the first wave, and then rose to 1.5 during the 

latter half of 2020 to represent a second wave. Following the introduction of vaccination in January 

2021, I set Rt to increase in 10 fixed steps. Each step representing the lifting of NPIs. The time for each 

step increase was determined by estimating when vaccination coverage had reached levels such that 

the herd immunity threshold due to vaccine immunity was reached. At the end of the vaccination 

period, Rt remained at a value such that the herd immunity threshold was maintained, given final 

vaccination coverage and vaccine efficacy against infection.  

 

To estimate the coverage needed for each Rt step, the following herd immunity threshold equation 

was used:   

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = (1 −
1

𝑅𝑡
)

1

𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦
          

 

When analysing the impact of lifting NPIs, the Rt profile following the introduction of vaccination was 

generated based on an ideal scenario for vaccination uptake.  Conversely, when evaluating the degree 

to which NPIs would need to remain in place, the Rt profile after the introduction of vaccination was 

set up based on vaccine coverage due to vaccine hesitancy.  

 

5.2.5 Scenarios  

I consider two potential scenarios for vaccine coverage target per age group: An ideal scenario where 

final coverage was 95% for all age groups vaccinated, and a vaccine hesitancy scenario where final 

coverage per age group was given by the multinomial distribution from the survey. For the first 

scenario, it was assumed that a small proportion (5%) of the population cannot be reached for 

vaccination. This value is based on maximum vaccination uptake reported for England’s COVID-19 

vaccine rollout (NHS, 2021).  For the latter scenario, it was assumed vaccine hesitancy remain the 

same within the age bins reported by the survey and I modelled the median coverage per age group 

as well as the 10% and 90% quantiles, to determine upper and lower bounds. Representative scenarios 

were simulated using U.K demographics and representative contact matrix (Funk et al., 2020)  and 

epidemics were seeded at the end of February 2020 with 20 cases. A simulation was run for each 

vaccine coverage scenario for both adult-only vaccination campaign and vaccination campaign 

including children. As an output for each simulation, I estimated the number of deaths and 
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hospitalisations associated with COVID-19 over the two-year period from 1 January 2021 to 31 

December 2022.  

To generate country specific simulations, I parameterise the model with data on the population size 

and age distribution of the country and representative contact matrices obtained from a systematic 

review of social contact surveys through the socialmixR package in R (Funk et al., 2020).  Rt trajectories 

up to December 31st, 2020, were extracted from the Global LMIC reports for each country. These 

trajectories are estimated, fitting the model, without vaccination, to reported daily cases and deaths 

(MRC Centre for Global Infectious Disease Analysis, 2020). After January 1st, 2021, Rt was set to 

increase by 10 fixed steps, up to the theoretical herd immunity threshold based on an ideal vaccination 

schedule (as described above). The pandemic trajectory was evaluated using country specific data on 

vaccine hesitancy and demography for the two coverage scenarios described above and assuming 

vaccination for individuals aged 15 years and above only. 

 

5.3 Results 

 

5.3.1 Vaccine hesitancy public health impact 

I first sought to determine the public health impact of vaccination and vaccine hesitancy as NPIs are 

lifted.  To do so, I allowed the time-varying reproductive number in the absence of immunity Rt, to be 

increased in steps such that the herd immunity threshold accounting for vaccine-induced immunity 

was maintained, under the assumption of ideal vaccination uptake (Figure 5. 3a, c). In this ideal 

scenario, NPIs can be fully lifted at the end of the vaccination period with a high efficacy vaccine (94% 

efficacy, Figure 5. 3a). However, with a moderate efficacy vaccine (63% efficacy), some NPIs or other 

population-level behavioural changes may need to remain to control the epidemic (Figure 5. 3c).  
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Figure 5. 3 Projected COVID-19 dynamics given vaccine hesitancy. Panels a-b show a high vaccine efficacy (94% against 

infection, 98% against hospitalisation and death), panels c-d moderate vaccine efficacy (63% against infection, 85% against 

hospitalisation and death). Panels a and c show the reproductive number Rt profile, which represents the level of NPI 

stringency, with lower numbers indicating higher stringency. In this illustrative example, I assume that a first wave of 

transmission occurred at the beginning of 2020 with the assumed value of Ro: 3. This was followed by NPIs leading to a 

reduction in Rt to 1, followed by an Rt of 1.5 as NPIs are lifted leading to a second wave of transmission in the latter half of 

2020. After vaccination is introduced at the beginning of 2021, NPIs in all scenarios are lifted according to a schedule based 

on coverage under the ideal scenario (no vaccine hesitancy, 95% of individuals 15 years plus are vaccinated). Panels b and d 

show projected deaths per million under vaccine hesitancy scenarios: adults-only vaccination (orange), vaccination including 

children (purple). Continuous lines represent simulations of median vaccine coverage per age group, while dashed lines 

represent simulations of 10% and 90% quantiles. For the ideal scenario, black line represents adults-only vaccination and 

green line represents ideal scenario when children vaccination is considered.  In each scenario, final vaccination coverage per 

age group and deaths vary according to vaccine hesitancy. Vertical dashed lines indicate the vaccination rollout period in the 

ideal scenario. 

 

In the presence of vaccine hesitancy, lifting NPIs and relying on vaccine-induced immunity for control 

is predicted to lead to periodic outbreaks determined by the duration of naturally induced immunity 

(Figure 5. 3b, d). For a high efficacy vaccine, daily deaths per million at the peak of the first outbreak 

are projected to be 11.5 (10.1-13.2) times higher than under the ideal scenario (Figure 5. 3b). This 

translates to a cumulative impact of 532 (457-612) more deaths per million population in the two 

years after vaccination begins. Simulations project fewer deaths are projected for a vaccine of 

moderate efficacy compared to a higher efficacy vaccine. This is partly due to prolonged NPIs being 
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required to maintain herd immunity where efficacy is lower, resulting in an outbreak that is more 

spread out and resulting in a lower final Rt compared to the high vaccine efficacy simulations. For a 

moderate efficacy vaccine, the cumulative impact of vaccine hesitancy is projected to lead to 456 (416-

504) extra deaths per million population.  

These adverse impacts of vaccine hesitancy on transmission, symptomatic disease, hospitalisations, 

and deaths affect vaccinated as well as unvaccinated individuals because of imperfect vaccine efficacy 

(Figure 5. 4). Under the vaccine hesitancy scenario, the resulting lower vaccination coverage is 

projected to lead to a 16.7% and 30.4% increase in hospitalisations in the vaccinated population for 

the high and moderate vaccine efficacy profile, respectively, and a 9.4% and 27.2% increase in deaths 

in the vaccinated population, compared to an ideal vaccination scenario (Figure 5. 4).  

 

Figure 5. 4 Public health impact of vaccine hesitancy. High vaccine efficacy is shown on the left and moderate vaccine 

efficacy on the right. The annotated numbers are the cumulative deaths (a) and hospitalisations (b) per million individuals 

for the vaccinated and unvaccinated populations at the end of the projection horizon (1 January 2021 - 31 December 2022).  

Vaccination coverage of individuals aged 15 years and older is highest in the ideal scenario at 95%. For the hesitancy 

scenario annotated number is for median vaccine coverage per age group, number in parenthesis are results for 10% and 

90% quantiles coverage per age group.  
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5.3.2 Relaxation of NPIs 

As an alternative way to assess the impact of vaccine hesitancy on the pandemic, I evaluated the 

degree to which other NPIs would need to remain in place given the real-time achieved vaccine 

coverage in order to prevent further epidemics (i.e. maintain herd immunity threshold, Figure 5. 5). 

For the high efficacy vaccine, under the ideal scenario, simulations predict that NPIs could be fully 

lifted by the end of 2021 whilst keeping transmission under control (Figure 5. 6). However, under the 

vaccine hesitancy scenario, limited NPIs or other behavioural modifications might need to remain in 

place, with Rt having to stay below 2.05 (1.96-2.14) to prevent further epidemics, this represents a 

32% reduction of the assumed R0 of 3. A difference of ~35% in the effective reproductive number 

could represent the closure of educational institutions or limiting interaction between households to 

achieve control of the epidemic (Brauner et al., 2021); both of which are not sustainable or desirable. 

 

Figure 5. 5  Stringency of NPIs required to control the epidemic under different vaccine hesitancy scenarios.  Panel a shows 

Rt profiles for an adults-only vaccination campaign. Panel b shows Rt profiles for a vaccination campaign including children. 

Reproductive number profiles are estimated to keep the herd immunity threshold such that epidemic impact is the same for 

each scenario as in the ideal scenario. A lower reproductive number corresponds to more stringent NPIs. Continuous lines 

represent profiles for a high efficacy vaccine and dashed lines represent profiles for a moderate efficacy vaccine.  Vertical 

dotted lines show the period of vaccination in the ideal scenario.  
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Figure 5. 6 COVID-19 dynamics for different reproductive number profiles. Profiles were estimated for each vaccine 

hesitancy scenario in order to achieve herd immunity and control the pandemic.  a) Daily projected deaths per million for a 

high vaccine efficacy. b) Daily projected deaths per million for a moderate vaccine efficacy. Orange shows a scenario with 

vaccine hesitancy and adults-only vaccination. Purple shows scenario with vaccine hesitancy and vaccination including 

children Ideal scenario. Ideal scenario for adults-only vaccination is shown with a black line shows and for a vaccination 

including children is shown with a green line. Continuous lines show results for median vaccine coverage per age group and 

dashed lines show results for 10% and 90% quantiles.   

 

5.3.3 Vaccination of children 

During the development of this Chapter, vaccination rollout plan of adults was going swiftly in most 

high-income countries and public health authorities were looking to include children into their 

vaccination campaigns while results of  COVID-19 vaccine efficacy in children became available 

(Mahase, 2021).  To evaluate the impact of including children in vaccination rollouts, I model all 

scenarios with a longer vaccination campaign, which allowed individuals above 5 years old to get 

vaccinated, assuming vaccine hesitancy for 5-17 years old the same levels reported for 18-24 years 

old. If children are included in vaccine rollout, results illustrate that in a scenario with vaccine hesitancy 

daily deaths per million at the peak of the first outbreak could be reduced by 56% (51%-60%) for a 

vaccine with high efficacy (Figure 5. 3b). Which implies a total reduction of 272 (242-346) deaths per 

million in the two years after vaccination begins (Figure 5. 7). For a moderate vaccine efficacy, higher 

NPIs stringency at the end of vaccine rollout entails later outbreaks, which do not take place during 

the two years after vaccination begins, resulting in similar results for the ideal and vaccine hesitancy 
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scenario when including the vaccination of children (Figure 5. 3d). Including children in vaccine rollout 

leads to higher vaccine coverage that compensates for vaccine hesitancy levels in adults. This is 

evident when evaluating the degree to which other NPIs would need to remain in place in order to 

maintain the herd immunity threshold based on vaccine-acquired immunity levels. For a high efficacy 

vaccine, in a vaccine hesitancy scenario, Rt levels can increase up to 2.5 (Figure 5. 5b), ~20% more 

than for adult-only vaccination rollout. This increase entails milder NPIs at the end of the vaccination 

campaign.  

 

Figure 5. 7 Public health impact of vaccine hesitancy for a vaccine roll out including children. High vaccine efficacy is 

shown on the left and moderate vaccine efficacy on the right. The annotated numbers are the cumulative deaths (a) and 

hospitalisations (b) per million individuals for the vaccinated and unvaccinated populations at the end of the projection 

horizon (1 January 2021 - 31 December 2022).  Vaccination coverage of individuals aged 5 years and older is highest in the 

ideal scenario at 95%. For the hesitancy scenario annotated number is for median vaccine coverage per age group, number 

in parenthesis are results for 10% and 90% quantiles coverage per age group. 

 

5.3.4 Country specific simulations 

The representative scenarios described above are comparable to the waves of COVID-19 outbreaks in 

Europe. However, as explained in Chapter 4 vaccine hesitancy varies between countries. To evaluate 

the impact of these variations, I chose three European countries with different vaccine acceptance 

views: France, Germany, and the United Kingdom (UK) (Figure 5. 8b). For each country, I extracted Rt 
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trajectories up to December 31sr 2020 and I modelled the trajectory of the pandemic under an ideal 

vaccination and a vaccine hesitancy scenario for each country independently. Rt profiles for each 

country are shown in Figure 5. 8c.  

 

 

Figure 5. 8 Impact of vaccine hesitancy for three European countries.  a) Cumulative death ratios per age group compared 

to the ideal vaccine uptake scenario, by country and vaccine efficacy profile. The ratio compares cumulative deaths 

projected over a two-year period after vaccination starts for two scenarios:  An ideal scenario, where 95% of the population 

older than 15 years gets vaccinated and a vaccine hesitancy scenario, where coverage for people over 15 years old is based 

on vaccine acceptance from b) Reported vaccine acceptance per age group in France, Germany and the United Kingdom 

reproduced from Jones et al.(Jones et al., 2021)  Values show median vaccine coverage and bars show 10-90% quantiles 

obtained by running the model at the quantiles from the data.. c) Reproductive number profile for country specific 

simulations.  Profiles, before vaccination begins, are taken from model fittings to country-specific data (MRC Centre for 

Global Infectious Disease Analysis, 2020). After vaccination starts, NPIs are lifted based on an ideal vaccination coverage 

over time. Reproductive number is set to increase in ten steps from the value at the beginning of vaccination to an average 

initial reproductive number. Continuous lines show profiles for a high efficacy vaccine. Dotted lines show profiles for a 

moderate efficacy vaccine. 
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For a vaccine with high efficacy, I project 1.2 (1.1-1.3), 5.0 (4.0- 6.3)- and 6.6 (5.7-7.6) times more 

deaths in 2021/2022 in a scenario with hesitancy compared to an ideal scenario in the UK, Germany 

and France respectively (Figure 5. 8a). Death ratios vary between age groups, vaccine efficacy and 

countries depending on deaths predicted in their corresponding ideal scenarios. Nonetheless, for both 

high and moderate vaccine efficacy, the highest impact on total deaths is for the oldest age groups 

and it increases in countries with higher vaccine hesitancy (Figure 5. 9 and Figure 5. 10).  

 

 

Figure 5. 9 Predicted COVID-19 dynamics for each country for a high efficacy vaccine. a) Daily projected deaths per 

million. Black line shows an ideal scenario without vaccine hesitancy and 95% of individuals above 15 years old, are 

vaccinated. Purple shows scenario with vaccine hesitancy. Continuous lines show results for median vaccine coverage per 

age group and shadowed area show upper and lower bounds for 10% and 90% quantile for vaccination coverage.   b) Total 

deaths per age group for median vaccination coverage. Total deaths are estimated over a two-year period since vaccination 

starts. Vertical dotted lines show vaccination period for an ideal scenario. 
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Figure 5. 10 Predicted COVID-19 dynamics for each country for a moderate efficacy vaccine. a) Daily projected deaths per 

million. Black line shows an ideal scenario without vaccine hesitancy and 95% of individuals above 15 years old, are 

vaccinated. Purple shows scenario with vaccine hesitancy. Continuous lines show results for median vaccine coverage per 

age group and shadowed area show upper and lower bounds for 10% and 90% quantile vaccination coverage.   b) Total 

deaths per age group for median vaccination coverage. Total deaths are estimated over a two-year period since vaccination 

starts. Vertical dotted lines show the period of vaccination in the ideal scenario. 

 

5.4 Discussion 

In this Chapter, I have examined the effects of low vaccine uptake due to vaccine hesitancy for the 

current COVID-19 pandemic and have shown the substantial impact of vaccine hesitancy, detailing the 

considerable mortality that could be averted with increased vaccine coverage. Results presented here 

have demonstrated that including less vulnerable groups, like children, can reduce the impact of 

vaccine hesitancy for current vaccination campaigns. These results further support the idea of the 

indirect benefits of vaccination, which are necessary to achieve herd immunity (Bonsall et al., 2021, 

Hogan et al., 2021).  However, the control of the pandemic as a reduction of severe cases (i.e., 

hospitalisations) and mortality, does not only depend on vaccine uptake but on vaccine efficacy and 

stringency levels of NPIs (Hogan et al., 2021, Bubar et al., 2021, Moore et al., 2021), which I have 

represented as underlying transmissibility (Rt).  Simulation outputs confirm that vaccination alone is 

unlikely to control the current pandemic and NPIs still have a large impact on the epidemic trajectories 

until sufficient coverage is reached (Giordano et al., 2021).  In a scenario with lower vaccine efficacy 

and vaccine hesitancy, longer and more stringent NPIs would be required to compensate lower 

efficacy as higher coverage levels are required to achieve herd immunity (Bonsall et al., 2021).  
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The model structure presented here was able to capture vaccine hesitancy heterogeneity between 

age groups (Jones et al., 2020, Lazarus et al., 2021, Freeman et al., 2020) and analyse its effect in 

current vaccine rollout plans, which are prioritising older individuals.  I have shown that even though 

older age groups have higher vaccine acceptance levels, these groups have higher mortality in a 

vaccine hesitancy scenario.  As the model does not capture differential risk within sub-populations, it 

was not possible to assess the effect of vaccine hesitancy in other prioritised populations like health 

care workers. In which high levels of vaccine hesitancy have been reported despite having higher risk 

of infection (Biswas et al., 2021).   

 

Country specific Rt profiles are higher compared to the illustrative example. These values are 

consistent with those estimated for other European countries, where initial Rt values have been 

estimated as high as ~4.5, which may be due to possible under-ascertainment in deaths in early 

periods of the pandemics (Flaxman et al., 2020).  It is still unknown how transmission levels will 

develop in the long term as more transmissible variants have emerged and NPIs behaviour may persist 

after the pandemic. Here I have assumed a staged release of NPIs with a step-wise increase of Rt, 

representing governments’ easing of restrictions. This step function is a simplification to illustrate the 

process of balancing the relaxation of NPIs whilst continuing to suppress transmission. Nonetheless, 

the evaluation approaches introduced in this study can be adjusted to include complex Rt dynamics 

as more information on COVID-19 transmissibility evolution become available.  

 

The analysis in this Chapter necessarily makes many simplifying assumptions, and it is important to 

note that the future trajectory of the epidemic will depend on the complex interactions between 

vaccination uptake, behaviour, and government interventions. First, I have assumed homogenous 

mixing between vaccine hesitant individuals. However, as has been seen for other diseases, COVID-19 

vaccine hesitancy is heterogeneous and clustered within population subgroups (de Figueiredo, 2020). 

Transmission is more likely to be sustained within clusters with low vaccine coverage (Truelove et al., 

2019, Salathé and Bonhoeffer, 2008). In Chapter 4 I demonstrated that when modelling vaccine 

hesitancy in a heterogeneous population, mixing between pro and anti-vaccination individuals can 

have a significant impact on disease dynamics.  If vaccine hesitant individuals are mostly isolated, 

therefore future outbreaks may be limited to these sub-populations. Secondly, I have modelled 
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hesitancy levels constant over the time frame analysed; yet, self-reported attitudes to COVID-19 

vaccines are changing over time (Jones et al., 2020, Lazarus et al., 2021)  as the perceived risk for both 

disease and vaccines keeps varying (Moore et al., 2021, Larson and Broniatowski, 2021). Thirdly, I have 

assumed vaccination rate remains constant over the vaccination period. However, vaccination 

logistics depend on multidisciplinary factors (Wouters et al., 2021) and both vaccine availably and 

uptake can be dynamic. Finally, the model assumes vaccine induced life-long immunity and does not 

account for immune escape from the vaccine due to new variants arising. Current vaccines seem to 

protect against severe disease for most variants, yet the higher infectiousness reported for these new 

variants has accelerated booster programmes and raised herd immunity threshold goals (Anderson et 

al., 2021, Krause et al., 2021).  Whilst second generation vaccines will likely become available to 

address these issues, it is currently unclear whether some of the high levels of vaccine uptake 

observed in early vaccine rollouts would be sustained in subsequent booster programmes.   

 

Getting vaccinated is an individual choice, but these individual choices have population wide effects 

that are likely to challenge current efforts to control COVID-19. Findings from this Chapter suggest 

that vaccine hesitancy may have a substantial impact on the pandemic trajectory, deaths, and 

hospitalization. To prevent such adverse outcomes, NPIs would need to stay in place longer, or 

possibly indefinitely, resulting in high economic and social costs (Nicola et al., 2020, Mandel and Veetil, 

2020).  Reducing vaccine hesitancy is, therefore, an important public health priority. Interventions that 

aim to build trust, for example with community-based public education or via positive role models, 

are proven efficacious approaches to address hesitancy (Vergara et al., 2021). There is an ongoing 

debate about vaccine passports as a condition to travel, or a vaccination requirement for employees 

(Brown et al., 2021). Such interventions may be effective because they incentivize individuals to get 

vaccinated, but they are controversial in libertarian democracies because they curtail personal 

freedom and individual choice about medical treatments. The alternative will be to accept some level 

of disease, hospitalisation and deaths given the level of vaccine coverage achieved whilst allowing 

NPIs to be lifted, given that NPIs are not a sustainable long-term method for control.  
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Chapter 6 Discussion  

 

6.1 Key findings and implications  

The aim of this thesis was to investigate the trade-offs and economic optimisations of infectious 

disease control strategies in a heterogeneous population, integrating economic analysis and 

epidemiological tools. After developing a metapopulation framework to analyse heterogeneities and 

evaluate the health and economic impact of different control strategies, results from this thesis 

highlighted how the optimal approach for disease control varies between stakeholders. The approach 

that benefits a stakeholder the most and affects their decision to contribute to an intervention (e.g., 

invest in a prevention strategy, share resources, vaccinate), may generate positive or negative 

externalities to other involved parties and might interfere with public health goals.  Estimating benefits 

for different actors can help to inform policymakers on how far to extend interventions or to find 

incentives for individuals/countries to take up an intervention.  

 

Regional and global resource allocation are compared in Chapters 2 and 3. In Chapter 2, the concept 

of aligning goals is introduced after comparing three different vaccine allocation strategies. Results 

from both the SIS and SIR models illustrated that while keeping resources in low transmission patches 

improves welfare locally and might achieve elimination of the disease in those patches, it also 

increases disease burden globally. This concept is further explored in Chapter 3 for the malaria 

context. Optimisation results showed that current international funding allocations for malaria are 

aligned with the global optimal allocation strategy. Yet, this allocation may not be beneficial for low 

transmission settings, particularly if these are not well mixed with neighbouring populations. 

However, when there are high levels of mixing between populations, allocating resources to high 

transmission settings reduces the burden of malaria both locally and globally.  

 

Elimination of malaria is a regional and global public good. Once a country eliminates malaria, the risk 

of importation to neighbouring countries is reduced facilitating the elimination path in those countries 

(Newby et al., 2016).  The findings reported in Chapter 3 suggest that cooperation between countries 

would prevent importation of cases to near elimination country settings while reducing the burden of 

the disease in high transmission neighbouring countries.  Currently, 68% of funding towards malaria 

comes from international donors like the Global Fund (World Health Organization, 2021d), which gives 
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most grant support to individual countries (although there are a few regional initiatives). However, 

the insights gained from this study support the need for cross-border funding to support a regional 

approach where countries are well connected and at different stages of the malaria elimination path.  

 

Cooperation between different actors is important to achieve optimal disease control. In Chapters 4 

and 5 I have evaluated the need for cooperation at the individual level, using vaccination as an 

intervention example. I demonstrated how decisions based on individual benefits could change 

considerably the course of transmission and hence the overall health burden. From the traditional 

economics perspective, an individual’s demand for vaccination is associated with the marginal private 

benefits (MPB) of the intervention. In Chapter 2, my results illustrated how these MPB can differ 

significantly from marginal societal benefits (MSB), particularly at high vaccination coverages near the 

herd immunity threshold. As explained in Chapters 4 and 5, vaccine demand is also determined by 

social factors like trust in health authorities and perception of risks associated with the disease and 

vaccine risk perception of the disease and vaccine. These social factors amplify the difference between 

private and social benefits as more individuals decide not to vaccinate and rely on indirect protection 

from vaccinated individuals. Results from Chapters 4 and 5 demonstrated how this decision generates 

negative externalities, represented as substantial health and economic burden to society.  

 

To reduce the negative externalities generated by vaccine hesitant individuals, policy interventions 

need to increase vaccine uptake using appropriate incentives to individuals. Currently, restrictions that 

limit access to places for the unvaccinated and monetary compensation have been implemented to 

encourage vaccination uptake in some places (Maltezou et al., 2019, Attwell and M, 2019). However, 

there remains a paucity of evidence on how these policies increase and sustain vaccination coverage 

(Salisbury, 2012). Theoretical analysis suggests that subsidising vaccination costs will counter vaccine 

hesitancy more efficiently than penalising anti-vaccination individuals through restrictions or fines 

(Gans, 2021).  Additionally, understanding and addressing the reasons underlying vaccine hesitancy 

instead of implementing vaccine mandates has been suggested as an efficient long-term strategy to 

increase vaccine uptake (Dubé et al., 2018). Ensuring the appropriate response should be a priority to 

reduce the gap between individual and global goals. Otherwise, without appropriate incentives, 

considerable negative externalities are expected.  
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This thesis has provided a comprehensive assessment of the differences between actors’ perspectives. 

Results from the individual and local perspectives are in accord with economic analyses that assess 

private perspectives, which may be narrow and underestimate the effects of interventions (Meltzer 

and Smith, 2011). I also evaluated the effects of interventions from the societal perspective. Results 

from these analyses account for all benefits regardless of to whom they accrue. However, they ignore 

the distribution of effects between the affected parties. Including multiple perspectives when 

analysing disease interventions can help increase engagement from all parties as decision makers can 

identify suitable incentives to align private and social net benefits (Meltzer and Smith, 2011).  

 

In order to include a multi perspective analysis, I combined different epidemiological and economic 

methods. In Chapter 2, I integrated analyses of externalities and an epidemiological framework that 

represented heterogeneous transmission dynamics, which contributed towards the understanding of 

the role of externalities in vaccination policies. In Chapter 3, I used constrained optimisation to analyse 

real-world allocation challenges for the malaria context. Results from this Chapter provided a deeper 

insight into how to maximise health gain with limited health care resources. In Chapter 4, I conducted 

a cost analysis including both private and societal perspectives to estimate the burden of an emerging 

anti-vaccination population. This analysis established a quantitative framework for assessing the 

impact of individual free-riding on disease control programs, which was then explored in the context 

of the COVID-19 pandemic in Chapter 5. 

 

Throughout this thesis, I was able to represent heterogeneous disease dynamics by adapting the 

metapopulation framework developed in Chapter 2. This framework was flexible enough to 

incorporate complex infection dynamics like malaria transmission and its structure was generalisable 

for different heterogeneity contexts such as various transmission intensities or intervention uptake 

levels. Additionally, simulation outputs from this framework were easily integrated into further 

analyses including constrained optimisations and economic analyses. The framework developed in this 

thesis was designed to be general, flexible, and adaptable to any disease and heterogeneity context.  

The methods used for this thesis may be applied to support public policy makers’ analyses in order to 

improve infectious disease control planning. 
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6.2 Limitations and future work 

 There are several limitations to the approaches taken in this thesis. Even with the inclusion of 

heterogeneity with the metapopulation model, the mathematical models implemented in this work 

were a simplification of complex disease dynamics.  As discussed in more depth in previous chapters, 

within each patch, transmission was assumed homogenous, and most parameters were assumed the 

same between patches. I have ignored model complications such as age heterogeneity in measles, 

transmission heterogeneity due to new SARS-CoV-2 variants or seasonal transmission in malaria 

given by climate patterns. The ability to make recommendations based on the results presented 

here is limited by these simplifications. Further modelling work can incorporate these complexities 

into the metapopulation framework in order to model more specific and realistic contexts.  

 

Moreover, results from sensitivity analysis in Chapters 3 and 4 demonstrated disease trajectories are 

highly sensitive to the mixing parameters. In the metapopulation framework, the mixing matrix 

represents the coupling strength between sub-populations, which is a simplification of human 

movement patterns. Previous studies have shown that this simplification can overestimate the 

transmission rate of infection (Keeling et al., 2010). Therefore, great care is needed when interpreting 

the magnitude of results presented here. In order to model more realistic scenarios, and provide a 

useful tool for policymakers, further research is required to match the coupling strength matrix with 

complex human movement patterns.  

 

In addition, the time horizon varied between the diseases and intervention analysed. When assessing 

future costs, implementing discount rates and optimising resource allocation, the time horizon of 

analyses becomes relevant, and results can change significantly if this horizon changes (Klepac et al., 

2012, Meltzer and Smith, 2011). For instance, it has been demonstrated that the allocation of 

interventions that eradicate a disease may not be the same as the allocation that maximises health in 

the next couple of years (Brandeau, 2004). I evaluated the effect of malaria interventions at steady 

state, assessed costs of measles for 20 years and estimated the effect of vaccine hesitancy after two 

years for COVID-19.  I selected each of these time windows, based on the natural history of infection, 

such that time impact of interventions could be evaluated by balancing out against future 

uncertainties, particularly for COVID-19, where the research landscape is evolving quickly.  

Additionally, when analysing future costs in Chapter 4, I evaluated different discount rates to estimate 

the effect of different discounting methods. Yet, results from this thesis must be interpreted with 

caution as they may be specific for the time window analysed.  
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Finally, an issue that was not addressed in depth in this study was whether the intervention strategies 

analysed were equitable. I have assumed constant and equal access to all interventions.  However, 

policymakers face political and social challenges, which may invalidate this assumption and make 

allocation of interventions harder. Targeting resources to underserved populations like marginalised 

groups or hard to reach populations sometimes is not the most cost-effective solution or does not 

account for the greatest reduction in disease burden. Yet, governments still need to protect these 

populations (Dieleman and Haakenstad, 2015, Brandeau, 2004).  The disparity in access is currently 

one of the main challenges in the policy response to the COVID-19 pandemic. While only 1.9% of 

individuals in LMIC have received at least one dose of vaccine, HIC have bought more doses than 

needed (Pilkington et al., 2022, Usher, 2021).  Further work could extend the methodology proposed 

in this thesis to develop models to reflect inequity issues and understand their effect on control 

intervention plans.  

6.3 Conclusions 

In spite of the limitations mentioned above, this thesis provides a comprehensive assessment of 

epidemiological and economic aspects of disease preventive interventions. Results from this study 

highlighted the importance of considering different perspectives when assessing disease 

intervention strategies. For this, I developed a metapopulation framework that allows the estimation 

of the effects of interventions for different transmission strata.  I was also able to adapt this 

framework to various disease dynamics and analyse specific challenges for the control of each 

disease. Although much of this work is theoretical, it may be used to guide future research questions 

and to provide an initial framework for analysing the trade-offs between different infectious disease 

control strategies.  
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