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Abstract

This thesis focuses on redefining the notion of emergence to a mathematically

tractable concept: emergence in state spaces.

In doing that, we will study the probabilistic measures of state spaces with emer-

gence, how to control their volume growth and the differences between them and

typical state spaces. This study will introduce two stylistic models, both intuitively

simple and practically helpful.

To provide statistical tools for modelling randomness with similar emerging prop-

erties, we will introduce different probability distributions from the first principle

and derive their preliminary properties. At the same time, we will see that these

results are expressible in closed form, by which we can analytically study the emer-

gence in states. Also, for practical reasons, statistical inference will be revisited for

distributions’ parameter estimation.

Next, we briefly study systems with emerging properties in state spaces by using

information-theoretic measures. Alongside that and inspired by the ideas from this

discussion, we will propose a pairing time series that combines certainty and uncer-

tainty. In addition, we prove that the Shannon entropy and the rate entropy are

well-defined in various circumstances for infinite pairing time series.

And finally, we show that standard statistical mechanics methods fail to yield ther-

modynamical quantities for some simplistic models with emerging states. We will

propose a mathematical tool rooted in the geometry of emergence states spaces from

the first part of the thesis to resolve this problem.
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Chapter

ONE

Introduction

The concept of emergence has been debated for around 150 years [16, 25], and more

often than not, it is characterised ambiguously as “the whole is greater than the

sum of the parts”[24]. Nevertheless, it seems baffling us in the modern-day without

any coherent agreement about its definition. One can sceptically assume that the

lack of consensus about the meaning of the emergence is rooted in its subjectivity.

Therefore, there is no practical reason to utilise it in our mathematical modelling,

let alone to take it as more than philosophical speculation.

However, a resolution of such a dilemma is mathematical clarity in the definition

of the emergence. Moreover, the price of it would compromise the generality of the

description. In this thesis, we shall pursue this goal by restricting the extent of

emergent phenomena that one may categorise as such.

After a brief review of different definitions and perspectives, especially in complex

systems science, we shall narrow the meaning of emergence to a concrete mathemat-

ical notion. Although our account may not be all-encompassing regarding the vast

and diverse conceptions of emergence, its clear mathematical definition enables us

to apply it to tractable models of complex systems.

We shall see that this intentional restriction is fruitful. We construct stylistic models

that are intuitively straightforward, applicable and have practical consequences on
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our understanding of the distinction of complex systems from other phenomena.

Besides discerning the distinction, we shall construct novel mathematical artefacts

from first principles, such as probability distributions. Along the way, we will also

discuss the geometry of state spaces with emergence property.

Common state spaces grow exponentially for the number of constituents elements of

systems of interest. i.e., for a system with N individual components, Ω(N) denotes

the number of available states accessible to a fully interacting system. Asymptot-

ically, such exponential state space grows as Ω(N) ∼ O(kN) for a real, positive

constant k. Accordingly, deviation from exponential growth is sometimes a signa-

ture of complex systems [34, 62, 68].

For example, suppose the interdependence between the components can freeze some

of the states and make them inaccessible. In that case, Ω(N) may grow slower than

exponentially – some examples of this case are described in [26]. On the contrary,

if new collective states become possible due to the inter-component interaction,

Ω(N) will grow faster than exponentially. The faster than exponential growth as an

indicator of complexity was initially proposed and reported in [33].

Some generic simplified models, known as pairing models [33, 53], construct the be-

haviour of faster than exponential state spaces and have been studied in relating the

N dependence of Ω(N) to generalised entropies in several complexity publications

– see [3, 26, 31, 33, 34, 38, 39, 40, 62, 68, 70]. We will revisit the pairing models in

detail here.

The direct consequence of an exponential state space manifests itself as the additivity

property of macroscopic quantities. We will see how the exponentially growing

spaces result in additive quantities such as free energy in disciplines like statistical

mechanics. In contrast, non-extensivity of the same quantities is inevitable for faster

than exponential spaces. Consequently, the standard statistical mechanics fails to

find well-defined quantities like specific free energy, and based on that, applying

standard statistical mechanics for complex systems requires attention, or one might

say, new techniques.
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1.1: Emergence

1.1 Emergence

The concept of emergence was first coined by British philosopher George H. Lewes

[16, 25] around 150 years ago. In the early 20 century, Emergent Evolutionist philoso-

phers and scientists [43] were discussing:

“the emergence in terms of a sudden arising of new ‘collocations’ or ‘integrations’

with new properties arising on a new ‘higher’ emergent level out of ‘lower’ level

components.” [25].

The idea continued in contemporary research, specifically complexity science, in-

cluding biology, cellular biology, evolutionary biology [1, 13], solid-state physics and

statistical mechanics [1, 2, 18, 5], etc.

Ironically, the most cryptic and mystical definition of the emergence is the most

well-known statement of it: the whole is greater than the sum of the parts [24].

The ambiguity in this definition is what we try to exclude in this study, as David

Chalmers clearly refers to here:

“The term ‘emergence’ often causes confusion in science and philosophy, as it is

used to express at least two quite different concepts.” [11].

Or, as John Holland humbly cautions us:

“It is unlikely that a topic as complicated as emergence will submit meekly to a

concise definition, and I have no such definition to offer”[29].

He again tries to give us a flavour of what he believes in as:

“The behaviour of the whole is much more complex than the behaviour of the parts”[29].

Loosely speaking, emergence refers to the properties of an entity that is not observed

in or owned by its parts. Perhaps one of the carefully articulated definitions of

emergence finds in [52] Timothy O’Connor:

“Property P is an emergent property of an object O iff

(1) P supervenes on properties of the parts of O,

(2) P is not had by any of the object’s parts,

(3) P is distinct from any structural property of O, and

(4) P has a direct (“downward”) determinative influence on the pattern of behaviour

31



Chapter 1: Introduction

involving O’s parts” [6].

Nevertheless, reductionism, as an opposition position to emergence, believes that

understanding the fundamental laws accounts for the detailed knowledge of the

behaviour of nature. To put it merely as what reductionism conveys, for example,

elementary particle physics entails the explanation of solid-state physics, chemistry

explains molecular biology, molecular biology maps the details of cell biology, and

so on [2]. However, reductionism is not entirely immune from the same ambiguity

and hypothesises a debatable claim. Following an argument by Phil Anderson in his

celebrated article “More is different”, he said:

“The reductionist hypothesis does not by any means imply a constructionist one: The

ability to reduce everything to simple fundamental laws does not imply the ability to

start from those laws and reconstruct the universe”[2]. One can argue that the

upward explanation of reductionism is a self-imposed assumption that might not be

justifiable based on its merits.

Similarly, Mark Bedau pushes the definition further into more fine-grained categories

of emergence. He tries to make a sharp distinction between two types of emergence:

weak and strong. In his view, a strong emergence is a form of causal influence that

is not irreducible to the micro-properties of its part [6]. For instance, Chalmers sug-

gests consciousness is a strongly emergent phenomenon [11] in the light of Bedau’s

definition. And similarly, as Bedau explains, for a system S composed of micro-

states/micro-levels and various macros-states/macro-levels, weak emergence defines

such that “macrostate P of S with micro-dynamic D is weakly emergent iff P can

be derived from D and S’s external conditions but only by simulation”[6]. Here, it

is assumed that the number and identity of micro-levels might change in time by the

micro-dynamics denoted by D, and simulation corresponds to numerical modelling

of the system’s evolution.

The ambiguity around the definition of emergence increases as one tries to reconcile

ideas from different thinkers and philosophers, and as usual, the mentioned brief

definitions are the favourites of the author of this thesis, which can be prone to

biases. At some point, it might not be unreasonable to say the number of accounts

for emergence is close to the number of thinkers in that matter. However, one thing

is clear: a definition with practical purpose will be justified by its merits in its

applicability, as we try to develop in this thesis.

Intentionally, we kept the emergence review very brief without details of philosoph-
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ical debates around it. The reason for omitting them is more practical than philo-

sophical. Accessing a simple but mathematically rigorous definition of a concept

turns it into a tractable mathematical practice and a verifiable model for natural

phenomena. If history is any guide, from Newton’s to modern time, constructing

a mathematical model provides a level playing field for scientists to evaluate their

understanding of a concept, up to the extent of the boundary of their hypothesis,

and leaves philosophical debates for philosophers of science.

Considering this point of view, later in the next section, we shall define what we

believe is a precise definition of emergence, not tacitly but explicitly in a mathe-

matical fashion. We do not claim the proposed definition is universal, although it is

unambiguous in its stance.

1.2 Emergence in State Space

For experiments or observations whose results involve uncertainty, the set of all

possible outcomes is called sample space, denoted by W , whereas its subsets are

event sets [22]. In general, modelling the randomness in experiments is instrumental

in defining a probability space [51, 57], denoted by (W,F , P ), such that F is the σ-

algebra of subsets of the sample space W , and P : F → [0, 1] is a probability measure

satisfies

(1) P (W ) = 1,

(2) P (A1 ∩ A2) = P (A1) + P (A2) for disjoint subsets A1, A2 ⊆ W .

This thesis handles probability spaces defined over discrete sample spaces, so we

do not use measure-theoretic treatment. For discrete sample spaces, the probability

measure P defines as usual, whereas the volume of the sample space is the cardinality

of the number of its elements – or its points. We will distinguish the volume from

the sample space by Ω = |W |.

The sample state set is general enough for modelling the uncertainty in observa-

tion outcomes of any abstract object. However, the systems we are interested in

are composed of individual elements; each has pre-specified states, and the proper-

ties of elements directly depend on their states. Hence, the properties of members

supervene in their statistical states.

In the same way, this is true for the properties of an aggregate of the same elements:
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the aggregate properties occur as the result of its states, and further, the set of

aggregate states, namely the system’s ensemble, is formed of all possible distinct

configurations in experiment outcomes. Consequently, to highlight this fact, we

rename the sample space to state space1.

To elaborate, consider a die. The outcome of throwing a die involves observing a

number between one to six on its top side. Thus, one can say, the die has six possible

states. Meanwhile, when we denote the state space of N dice with DN , throwing N

dice together involves a combination of an N -tuple, say (X1, X2, . . . , XN), for Xi ∈
D = {1, 2, 3, 4, 5, 6}. For such an aggregate of N dice, the possible configurations

are all in DN . In other words, the independently combined states of dice are the

points of the aggregate’s state space.

For the case of N dice and many other similar aggregates, the state space is de-

composable to the states of single entities such that the aggregate state space is a

Cartesian product of its elements’ states. Thus, for instance, the N dice state space

is a Cartesian product of N individual sets

DN = D ×D × · · · ×D︸ ︷︷ ︸
N

. (1.1)

Calling it a Cartesian product space, if each individual element has k ∈ N distinct

states, an aggregate of identical entities has an exponential volume/cardinality equal

to kN . For instance, for N dice, we have

|DN | = 6N . (1.2)

One can observe that for Cartesian state spaces, the state of individuals is indepen-

dent of each other. i.e. the accessible states to a single element remain unaffected

irrespective of being part of an aggregate or the aggregate’s size. e.g. the state of a

die does not depend on the states of others. To emphasise this feature in Cartesian

state spaces, we say element states are aggregate independent.

We have to stress that independence concerns the possible outcomes of observa-

tion and not their probabilities. For example, the probability of observing a six

in throwing a die might depend on the others – statistical dependence – while the

die states are always in D – aggregate independence. Consequently, since element

1State space or phase space is more common terminology in statistical mechanics literature.
The name phase space usually implies there is a dynamic over the states of the system.
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properties depend on their states, they are independent of other elements’ states or

their properties too.

Despite the commonality of aggregate independence assumption, we argue it is not

always the case. As we will see in some examples later, one can easily envisage

objects that access more states whenever they are part of a group. Two or more

elements together can access more states than any single one for such systems.

Nevertheless, we shall see that new states are accessible only to compound elements,

and stand-alone elements have their own state space.

Through such a mechanism, the new states emerge and directly result from being

part of the aggregate. Therefore, we call them emergent states. As a result, proper-

ties that depend on these new states are emergent properties. To elaborate further,

we start by giving two examples and next introduce a prototype model to define the

emergent states more rigorously.

1.2.1 Example One: Larvae

The larvae of Perreyia Flavipes Konow has been documented in some part of South

America since 1899 [60]. The larvae form small, closely packed masses on the ground

– see figure (1.1) – and from June to September, these masses of larvae are found

crawling over the grass, forming an orderly column approximately 15 cm long and

8 cm wide [60].

Looking at the rolling swarm of larvae2, one can see the group is composed of moving

layers with different speeds such that larvae in each layer move over the others in

the underlying layer. For example, when a single layer of larvae moves at speed V

– see figure (1.2) – the second one moves at 2V relative to the ground. Thus, on

average, the speed of each larva is 3V/2 when considering a complete circle.

Now, let us look at the speed state space of an aggregate of two larvae, as it is plotted

in panel (c), figure (1.2). The Cartesian state space of two larvae is the V ×V square.

However, when we include the aggregation effect of layers, the 3V/2× 3V/2 square

becomes accessible to both larvae together. It is important to emphasise that the

emergent state is accessible to the compound elements, not the stand-alone ones.

Hence, although a system of two larvae moving alone has the same size, its states are

aggregate independent, while the compound larvae states are aggregate dependent.

2A short video of a rolling swarm: https://twitter.com/rpazuki/status/1461692222215180294
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Figure 1.1: Perreyia Flavipes Konow Larvae.

Image reproduced with permission of the rights holder, Elsevier.

(a) (b)

(c)

Figure 1.2: (a): A layer of Larvae that moves with speed V . (b): The second layer

has a relative speed of 2V , and following a single larva around one loop, on

average, its speed is 3V/2. (c) The state space of stand-alone and compound

systems.
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1.2.2 Example Two: Delivery Joint Venture

As a second example, let us assume two delivery companies that established their

warehouses in two different locations, say A and B, separated by L. The first

company delivers goods from A to B, while the second carries from B to A. Since

each delivery vehicle must return to its original warehouse, one trip amounts to

driving 2L. Therefore, if the delivery per L values C/2, each trip must cost C, or

the cost of two companies that simultaneously operate is 2C – see figure (1.3).

Figure 1.3: (1) Delivery company carries the parcel from A to B, (2) delivers, (3)

and returns to its warehouse at A.

However, when both companies agree to set up a joint venture, they can reduce

the cost by half through a new emergent state. For example, imagine each delivery

vehicle drives L/2 of the AB road and exchanges its goods with another vehicle from

the other warehouse – see figure (1.4). Thereupon this arrangement, each vehicle

drives L, and the total cost of the joint venture reduces to C. Consequently, halving

the cost is accessible only to the joint venture and is impossible for stand-alone

companies.
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The joint venture and its emerging states are cooperative. However, the joint venture

can have a spectrum of cooperative/competitive states in a more general setting.

So, denoting α as the factor of cost reduction, α = 1 amounts to no change in

cost, or say, companies act stand-alone, while α < 1 corresponds to cooperation,

especially α = 1/2 is halving the cost like the midway exchange strategy. Similarly,

for α > 1, the system is in a competitive state, or say, the cost of delivery increases

when another delivery company is in the neighbourhood.

Figure 1.4: (1) Each company’s vehicle drives halfway through AB (2) exchanges

the parcels, (3) and returns to its warehouse of origin.

Finally, for a system of N companies, let us say at each moment 2np of them are

working together and ns = N − 2np are stand-alone. On average, the cost of the

system is

CN = αC〈2np〉+ C〈ns〉 =⇒ CN = C [N + (α− 1)〈2np〉] , (1.3)

where the expectation 〈.〉 is taken over the ensemble of states – see figure (1.5). In

section (5.3), we will derive CN analytically.
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Figure 1.5: A system of N delivery companies, some simultaneously working as a

joint venture.

1.2.3 Pairing Models: Introduction

Returning to the discussion of emergence, we will propose a generic model that

systematically generates emerging states. Recall that coins are an instrumental tool

to form binary variables in statistical modelling. Inspired by them, we propose

paring coins that every two can attach and stand upright. One can assume they

are magnetised on sides and stick together. The upright state, or the pair state, is

an emergent one and is not accessible to a single pairing coin or two in stand-alone

mode – see figure (1.6).

Figure 1.6: Pairing coins in single and pair states.

This model will be discussed in detail in the next chapter, but it is enough to mention

that the faster than exponential growth of their state space – due to emergent states

– is imposed by a recursive relation. This relation is one way to specify the state
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space’s geometry accurately. We will find it through a combinatorial argument,

making the calculation mathematically tractable.

In conclusion, to study the emergence in general, we will restrict our definition to

the emergence in states and, further, construct generic models that precisely control

the rate of emerging states. In the end, quantities in Cartesian state space have a

corresponding counterpart in state spaces that grow faster than exponentially, and

the differences between them are due to the emergence of states. For instance, the

entropy of binary random variables for ordinary coins has a corresponding pairing

entropy. We remark here that studying the pairing entropy and related quantities

is the main aim of this research program.

1.3 Additivity and Cartesian Product Spaces

As mentioned in the previous section, we restrict the definition of emergence to

state-space emergence to systematically study it. Furthermore, after studying its

effect on the volume growth rate, we will investigate the corresponding quantities

in faster than exponentially growing state spaces. Logically, the difference between

exponential and faster than exponential effects is due to emerging states.

In particular, perhaps the first effect of the emerging states is on the additivity of

some properties in that state space. In short, the additivity principle violates in

faster than exponentially growing state spaces. To clarify, the aggregate value of

an additive quantity is equal to the sum of its parts. Mathematically, denoting the

aggregate quantity and its parts by QN and Qi, respectively, it is

QN =
N∑
i=1

Qi, (1.4)

and for N identical parts such that Qi = Q, it simply is

QN = NQ. (1.5)

For instance, quantities like volume, energy and number of molecules are extensive

[10, 23], and the same additive relation governs them. In this brief introduction,

to differentiate between additivity and weaker conditions, we need to introduce

two more related concepts, namely extensivity and asymptotic extensivity, since
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sometimes the distinction between them can confuse, as we read in [35]:

“Many sources, tacitly if not explicitly, equate additivity and extensivity, often lead-

ing to trouble”.

One can say extensivity is a weaker condition, and additivity is sufficient and not

necessary for extensivity. Note that extensivity is a general property of a continuous

function Q : Rk → R. Mathematically, it is defined as [10]

Q(λX1, . . . , λXk) = λQ(X1, . . . , Xk), (1.6)

where λ ∈ R+ and Xis are intensive parameters of the function3 Q. Broadly speak-

ing, if a function is extensive, it is additive too, but not vice versa [35, 10]

QN = Q(NX1, . . . , NXk) = NQ(X1, . . . , Xk) = NQ =⇒ QN = NQ. (1.7)

In some contexts, a more relaxed version of the extensivity introduces in its asymp-

totic form, and we call it asymptotic extensivity to prevent confusion

lim
N→∞

QN

N
<∞. (1.8)

Asymptotic extensivity is more or less the same as additivity, although for macro-

scopic systems only – by macroscopic here, we mean 1� N . Mind that an extensive

function is asymptotic extensive, but the inverse is not necessarily true. In short,

for an extensive function Q, we have

Q(NX1, . . . , NXk) = NQ(X1, . . . , Xk) =⇒

lim
N→∞

Q(NX1, . . . , NXk)

N
= Q(X1, . . . , Xk) <∞. (1.9)

Specifically, in the following, we look at the additivity of some quantities in statistical

mechanics for exponential state spaces. Recall that the Boltzmann distribution finds

the probability of a configuration, say c, with its Hamiltonian H(c) and inverse

temperature β as

P (c) =
e−βH(c)

ZN
, (1.10)

where ZN is the normalisation constant or partition function – as it is called in

3Or more precisely, Q is a homogenous function degree one.

41



Chapter 1: Introduction

statistical mechanics literature [49] – and it is defined as

ZN =

Ω(N)∑
i=1

e−βH(ci). (1.11)

Here again, Ω(N) denotes the state space volume or the number of distinct config-

urations. Observe that for β → 0, we find

lim
β→0

ZN = Ω(N). (1.12)

So, properties like multiplicity and exponential growth that govern the partition

function must also comply with the state space volume. Thus, we will investigate

the property of both the emerging state space volume and the normalisation constant

of the probability distributions that define over them.

Figure 1.7: One dimensional Ising model, which is composed of up and down spins.

For the purpose of this introduction, we use the Ising model as a prototype of a

system with a Cartesian state space [27, 28, 37]. In this model, each element has

a spin that orients in an up or down direction, denoting by sj = 1 and sj = −1

respectively. So, a single spin has a binary state space – similar to an ordinary coin

– see figure (1.7).

The Hamiltonian of a configuration depends on the orientation of all its spins and

the interactions between them

H(c) = J
∑
i

∑
j

sisj +B
∑
j

sj, (1.13)

for B as external magnetic field and J as neighbour’s interaction strength coefficient.

Note that, depending on the dimensionality of the model (1D, 2D, 3D, etc.), the

sums run over the lattice that spins are located.
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(a)

(b)

Figure 1.8: One dimensional Ising model (a): spins only interact with an external

magnetic field. (b): spins only interact with the external magnetic field and

their nearest neighbours.

One can construct different variations of the above Hamiltonian. e.g., for J = 0, the

neighbour’s interaction is zero, and the Hamiltonian only depends on the interaction

of spins with the external magnetic field – figure (1.8), panel (a) –

H(c) = B
∑
j

sj, (1.14)

Or, including the nearest neighbour interactions – figure (1.8), panel (b) – the Hamil-

tonian is

H(c) = J
∑
〈i,j〉

sisj +B
∑
j

sj, (1.15)

where the sum is over nearest neighbours, 〈i, j〉. In particular, including all interac-

tions, as it is in
∑

i

∑
j, is known as Curie–Weiss model [8, 14, 65].

By listing the Hamiltonians here, we want to highlight that one always finds the

state space is Cartesian. In other words, this is an intrinsic feature of the spins that

their states are aggregate independent, regardless of the Hamiltonian. For instance,

for N spins, we see Ω(N) = 2N for all the mentioned Hamiltonians, and this fact is

valid for all d-dimensional Ising models for d ∈ N.

At the same time, the system’s free energy, say F , is proportional to the logarithm

of the partition function. As a result, the free energy is always additive in Cartesian

state spaces. To see that, since the partition function decomposes as a multiplicative
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quantity

ZN = Z1ZN−1, (1.16)

or equivalently its state space volume

Ω(N) = 2N = Ω(N − 1)Ω(1), (1.17)

therefore, the logarithm of partition function must be additive

FN ≡ lnZN = lnZ1 + lnZN−1 =⇒

FN = NF1. (1.18)

Later, we will propose probability distributions for systems with emerging states,

and these objects live in spaces that have faster than exponential growth. Also, we

will construct an emerging Ising model using pairing coins in chapter (5). Further,

we will show that the normalisation constants of these probability distributions are

not multiplicative, nor is the logarithm of their partition functions additive.

1.4 Parts of the Thesis

In what follows, chapter (2) introduces two pairing models: the pairing coins and

balls. After that, we will discuss the state space volume and its asymptotic leading

term.

Chapter (3) begins with constructing probability distributions over these models

from the first principle. Next, the normalisation constant of the distribution and

its properties are derived in the same section. After that, we will review the large

deviation probabilities of the mentioned distributions, plus two limiting distributions

which are resulted from parameter scaling.

Some of the statistics of the mentioned distributions are expressible in closed form.

First, section (3.3) addresses the statistics and their asymptotic leading terms in de-

tail, and following that, marginal and joint probability distributions will be discussed

in sections (3.4) and (3.5).

It is sometimes necessary to infer the distribution parameters from one or more

observed values. We derive the maximum likelihood estimations of the parameters
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in section (3.6). Finally, section (3.7) makes the statistical inference in a Bayesian

setting.

Chapter (4) is about information theory measures. In its first part, we will review

the ensemble entropy of distributions from chapter (3). Next, the joint entropy for

two or more elements in a system with size n is briefly discussed, and we will see how

it relates to the additivity property of the entropy in emerging state space. After

that, we shall derive the mutual information of a single element and the rest of the

system. Then, it follows the mutual information between two single elements or the

interaction entropy of three or more elements in a more general setting. Finally, we

shall see two non-extensive entropies derived for the pairing models.

Part two of the chapter (4) introduces a pairing time series. After devising a tech-

nique to enumerate their state space, we show that the entropy of the infinitely long

pairing time series is well defined under some assumptions.

Chapter (5) is about the application of the pairing model. Its first part introduces a

pairing Ising model and shows that free energy is diverging using standard statistical

mechanics. The second part briefly reviews the analytic solution of the delivery joint

venture introduced in the section (1.2.2).

Finally, the last chapter outlines the open questions and future works that this

research program can pursue. We have to remark that the details of the calculations

are reported in appendices to separate the results from calculations anywhere that

it was possible.
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Chapter

TWO

Pairing Models

After restricting the general definition of emergence to states, it demands a concrete

mathematical model to investigate the concept further. This section introduces mod-

els within which the generic state-space grows faster than exponentially. In what

follows, we shall briefly explain how immediately after a new element adds to the

system, the model’s emergent states accumulate in its state space by design. Fur-

thermore, as the arguments follow, we shall see that states emergence causes faster

than exponential growth of the state space volume. Additionally, the mechanism

details of the emerging state directly control the growth rate.

We shall introduce two intuitively simple but mathematically rigorous models, namely

pairing balls and coins, each of which constitutes elements with emerging properties.

Alongside their simplicity, pairing models are the first step toward modelling state

emergence. As we will describe later, both models include pairwise combinations.

The emerging properties result from double-element compounding, even though one

can easily generalise this machinery to include more than two coalescence elements.

However, this report contains the pairing mechanism for mathematical convenience,

although we must stress that every step is reproducible for the trio, quartet, quintet

mechanisms and more.

Meanwhile, a combinatorial argument finds a recursive relation by which the com-

plete description of the state space geometry is provided. Using that recursive
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equation inside a generating function technique lets us see the state space volume

regarding the number of constituent elements. From there, we find the asymptotic

leading term of the volume for large system sizes. Hence, it is not unreasonable to

say the recursive equation is the core of this chapter.

The importance of the combinatorial argument and its recursive relation becomes

evident when one generalises the model to more than two-element compounding:

There is a corresponding combinatorial structure and its recursive relation for every

number of elements in a compounding mechanism. Nevertheless, we touch on this

fact briefly in appendix (E.1) and postpone the matter to future work.

Finally, we will see the asymptotic form of the state space volume grows faster than

exponentially. We have to remark that this is the first manifestation of emerging

states. Consequently, the logarithm of the state space volume is no more additive.
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2.1 Pairing Coins: A Simple Model

Customarily, coins are a suitable prototype to envisage a Bernoulli random variable

and its binary states – see figure (2.1). Denoting the configuration of a single coin

by c1 and its state space by W1, the outcome of throwing a coin would be head (H)

or tail (T ) such that

c1 ∈ W1 = {H,T}. (2.1)

Figure 2.1: A normal coin in two different states.

Again, denoting a configuration of N coins by cN and its state space by WN , we

must have

cN ∈ WN = {(x1, x2, ..., xN) : xi = H,T}, (2.2)

whereby the state space is a Cartesian product of single coin state spaces

WN = {H,T} × · · · × {H,T}. (2.3)

Next, suppose a mechanism for aggregating two coins with two possibilities: The

first is that a coin behaves as an isolated one and takes either head or tail state.

The second possibility is that a coin enters into a pair state with another one as if

they were sticking to each other, such that two coins can stand upright. This new

state is solely the result of coins aggregation.

Figure (2.2) shows the case for two coins schematically. We see that the first four

configurations are the usual combinations for ordinary coins, while the last one is

the emergent state.

Of course, one might allow the pair to have internal states such as head against the

head or head against tail etc., but for simplicity, we assume the pair state of being

structureless and unique.

When the pair state is structureless and unique, the corresponding state space for

two pairing coins, denoted by W
(2)
2 , includes the set W2 and a pair state, P , such
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that

W
(2)
2 = W2 ∪ {P}. (2.4)

Figure 2.2: Two magnetic coins and their state space.

Let us first elaborate on the notation. Remember that a coin has two possibilities in

its stand-alone state. So, in general, for elements with k possible stand-alone states

(k ∈ N), we denote the state space of N pairing coins by W
(k)
N . Therefore, W

(2)
N

denotes the state space of N pairing coins.

(a) (b)

Figure 2.3: Pairing coins state space: (a) The fifth square in the top right is an

emergent state. The overall state space is larger than the usual two by two

squares of the Cartesian product. (b) For three coins, the inner blue cube is

a Cartesian product space. The three rectangular prisms are emergent states

that the pairing construct.

Notice that including the mechanism of pairing introduces emergent states com-

pared to standard sets constructed by Cartesian products. Figure (2.3) plots state

spaces for systems of two and three pairing coins, respectively, to elaborate on this
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statement. In panel (a), the first four distinct configurations construct as W1×W1,

or the Cartesian product of the set W1 = {H,T} by itself. And the fifth state is

an emergent one, resulting from the pairing mechanism. Panel (b) plots the state

space for three coins. The inner blue cube is a Cartesian product, or W1×W1×W1.

And the three rectangular prisms are emergent states of the pairing mechanism.

Indeed, compared to the subsets constructed by the Cartesian product, the state

space volume is generally larger than its inner hypercube. So, in conclusion, the

state space grows faster than exponential.

2.1.1 The Pairing Coins State Space Volume

For an aggregate of N pairing coins, Ω2(N) denotes the cardinality or volume of the

set W
(2)
N

Ω2(N) = |W (2)
N |. (2.5)

Figure 2.4: The mechanism of adding a new coin to the system.

To determine Ω2(N) through a combinatorial argument, we observe that adding a

new coin to an aggregate of N existing coins introduces two possibilities:

1. The new coin stays in a stand-alone (non-pair) state. So, it must be in one of

the head or tail states. Since the existing N coins have Ω2(N) distinct states,

there are 2Ω2(N) available states for the whole system of N + 1 coins. For

example, see the top row in figure (2.4).

2. The newly added coin pairs with another one in the aggregate. However, the
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remaining coins make an aggregate of N − 1 elements with Ω2(N − 1) distinct

configurations. Moreover, for the new coin, there are N possible choices to

make pair. Consequently, there are NΩ2(N − 1) available states for the whole

system of N + 1 coins. See the bottom row in figure (2.4).

Combining both cases, Ω2(N + 1) must be the sum of distinct configurations for

each possibility

Ω2(N + 1) = 2Ω2(N) +NΩ2(N − 1). (2.6)

Equation (2.6) is a recursive relation amongst volumes of state spaces with different

sizes. In fact, starting from initial values Ω2(0) = 1 and Ω2(1) = 2, it finds vol-

umes of every sizes iteratively. For instance, figure (2.5) shows the first four values

schematically. We shall find a closed form for Ω2(N) in the following section.

Figure 2.5: Magnetic coins and their state-space.

Image reproduced with permission of the rights holder, IOP Publishing Ltd.

2.2 Pairing Balls Model

The paring coins model (C-model) assumes two distinct states for a stand-alone coin

– panel (a) in figure 2.6. We introduce a second model whose constituent elements

52



2.2: Pairing Balls Model

are stateless, like balls in a stand-alone state, to simplify the matter further. We

call it the paring balls model, or in short, B-model. It is schematically plotted in

figure (2.6), panel (b). The B-model has an emerging state similar to the C-model.

Nevertheless, it is mathematically convenient to start from the B-model and later

move to the C-model.

(a) (b)

Figure 2.6: (a) Coins in single and pair state (b) Balls in pair and stand-alone

state.

Following the same notation, balls have a single state as a stand-alone element or

k = 1, and therefore, W
(1)
N denotes the state space of N pairing balls. Similarly,

Ω1(N) denotes its state space volume

Ω1(N) = |W (1)
N |. (2.7)

Adding a new ball introduces two possibilities:

1. The newly added ball stays in a stand-alone (non-pair) state. Since the ball is

in a single state and the existing N coins have Ω1(N) distinct states, in total,

there are Ω1(N) available states for the whole system of N + 1 balls.

2. The new ball makes a pair with another one in the aggregate, and in total,

there are NΩ1(N − 1) available states for the whole system of N + 1 balls.

Therefore, the total number of distinct configurations for N+1 pairing balls obtains

as

Ω1(N + 1) = Ω1(N) +NΩ1(N − 1). (2.8)

Notice that the difference between equations (2.6) and (2.8) is in the factor that

corresponds to the number of stand-alone element states. Specifically, for s ∈ N and

p ∈ N as the number of states for stand-alone and pair elements, respectively, the
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general state-space volume complies with the following recursive equation

Ωs(N + 1) = sΩs(N) + pNΩs(N − 1). (2.9)

For instance, the C-model corresponds to s = 2 and p = 1. In the next section, we

will derive the general form of Ωs(N) by using the following initial values

Ωs(0) = 1, Ωs(1) = s, (2.10)

and after that, find Ω1(N) and Ω2(N).

2.3 Finding Ωs(N)

By employing a power series generating function [71], we will show how to derive

Ωs(n). Denoting G(z) as a converging power series like

G(z) =
∑
n≥0

an
zn

n!
, (2.11)

for z ∈ A ⊆ R, we assume Ωs(n) is the coefficient of the term zn

n!
in the power series

expansion of G(z), or

an ≡ Ωs(n). (2.12)

The details of obtaining G(z) are explained in appendix (A.1). We see in equations

(A.16) and (A.17) the coefficients of even and odd powers are different, and G(z)

derives as

G(z) =
∑
n≥0

1odd(n)

n
2∑

k=0

n!
s2k(p

2
)
n
2
−k

2k!(n
2
− k)!

+ 1even(n)

n−1
2∑

k=0

n!
s2k+1(p

2
)
n−1
2
−k

(2k + 1)!(n−1
2
− k)!

 zn
n!
,

(2.13)

whereas 1odd(n) and 1even(n) are indicator functions for odd and even numbers. In

equation (A.26), the last result writes Ωs(N) as

Ωs(N) =

bN/2c∑
np=0

(
N

2np

)
(2np − 1)!!sN−2nppnp , (2.14)

where b.c denotes the floor function. Observe that
(
N

2np

)
(2np−1)!! is the degeneracy
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corresponds to np pairs among N elements. To elaborate, choosing 2np elements

from N is equal to
(
N

2np

)
distinct combinations, and there are (2np − 1)!! different

distinguishable pairs that 2np selected elements can make. In total,
(
N

2np

)
(2np − 1)!!

is the number of distinct configurations without considering the states of single or

pair elements.

For pairs with p state, pnp enumerates distinct combinations of a given np pairs.

Similarly, sN−2np enumerates combinations for stand-alone elements with s states.

Overall, in total, for np pairs

WN(np) =

(
N

2np

)
(2np − 1)!!sN−2nppnp , (2.15)

is the degeneracy of the set of N elements with np pairs.

In appendix (A.2), we used a second method to derive Ωs(N) in terms of the

renowned generalised Laguerre polynomials, denoted by L
(α)
n (x), for degree n and

α = {−1
2
, 1

2
}. Equations (A.36) and (A.37) write Ωs(N) as

Ωs(2N) = N !(2p)NL
(− 1

2
)

N (
−s2

2p
), (2.16)

Ωs(2N + 1) = sN !(2p)NL
( 1
2

)

N (
−s2

2p
). (2.17)

2.3.1 B-model’s Ω1(N)

For B-model, using s = p = 1 equation (2.14) obtains

Ω1(N) =

bN/2c∑
np=0

(
N

2np

)
(2np − 1)!! . (2.18)

2.3.2 C-model’s Ω2(N)

For C-model, s = 2 and p = 1 equation (2.14) yields

Ω2(N) =

bN/2c∑
np=0

(
N

2np

)
(2np − 1)!! 2N−2np . (2.19)
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2.4 Asymptotic Leading Terms

Generally, macroscopic systems have many constituent elements, namely, 1 � N .

Accordingly, for any practical purposes, the leading term of the asymptotic expan-

sion of state-space volume contains all the relevant information. On account of this

fact, in this section, we shall derive the asymptotic leading terms of equations (2.18)

and (2.19).

We start with a different form of equation (2.14), shown in appendix (A.1), equation

(A.23)

Ωs(N) = N !(
p

2
)bN/2c

bN/2c∑
k=0

(2s2

p
)k

(2k)!(bN
2
c − k)!

. (2.20)

Appendix (A.3) explains the details of the steps. Here, we go through the main

results in order.

First, note that we use the exact form for even numbers and start by numerically in-

vestigating the properties of the summand in equation (2.20). Since different choices

of s and p do not affect the general feature of the summand, the numerical calcula-

tion is done for s = 2 and p = 1. This choice corresponds to Ω2(2N) parameters.

Numerical calculation shows that the summand in the following sum has a maximum

at k∗ = b
√

2Nc (or in general k∗ = b
√
s2N/2pc) for even numbers

∑
0≤k≤N

23k

(2k)!(N − k)!
=
∑

0≤k≤N

tN(k). (2.21)

Next, we obtain the limit of the ratio tN(2
√

2N)/tN(
√

2N), and finds its limit

approaching zero exponentially fast

lim
n→∞

tN(
√

2N)

tN(2
√

2N)
= lim

n→∞

(e
4

)−2
√

2N

e4 → 0. (2.22)

In other words, other terms around the maximum decrease exponentially fast, and

in that sum, the bulk of contributions are from the terms around the maximum.
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Using these findings, we can divide the range of the sum into

Ωs(2N) =
(2N)!

(2/p)N

 1

N !
+

∑
1≤k≤2

√
s2N/2p

(2s2

p
)k

(2k)!(N − k)!
+ ∆

 , (2.23)

where 1
N !

and ∆ are exponentially small in comparison to the sum in the middle.

We have to highlight the term corresponds to k = 0 is 1/N !. After that, using the

Stirling approximation [7, 17]

N ! =
√

2πN(
N

e
)N(1 +O(

1

N
)), (2.24)

equation (2.23) simplifies to

Ωs(N) =
pN

√
2πe

s2

4p ( s
2N
2p

)
1
4

(
2N

e

)N ∑
1≤k≤2

√
s2N/2p


√

s2N
2p

e

k

2k [
1 +O(

1√
N

)

]
.

(2.25)

And finally, the Euler-Maclaurin summation formula [59] derives the leading term

for the summation as

Ωs(2N) =
pN

√
2e

s2

4p

(
2N

e

)N
e2
√
s2N/2p

(
1 +O(

1√
N

)

)
. (2.26)

Equation (2.26) gets the asymptotic leading term for both Ω1(2N) and Ω2(2N). For

the former, s = p = 1 and

Ω1(2N) =
1
√

2e
1
4

(
2N

e

)N
e2
√
N/2

(
1 +O(

1√
N

)

)
, (2.27)

while for the latter, s = 2 and p = 1

Ω2(2N) =
1√
2e

(
2N

e

)N
e2
√

2N

(
1 +O(

1√
N

)

)
. (2.28)

It is apparent from equation (2.26) that the dependence of state-space volume on

N grows faster than exponentially. For instance, keeping the most significant term
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written as

Ω(N) ∼
(
N

e

) e
2
×N

e

= ÑγÑ , (2.29)

for 1� N and Ñ = N/e, with e as Euler constant and γ = e
2

[33].

However, for a typical state space where a single element has k distinct states, the

Cartesian multiplications of N sets have a volume equal to kN . In comparison, the

state space volume equal to NγN grows asymptotically faster than exponentially for

positive γ. That is to say, NγN is faster than the exponential function, namely kN ,

and similar to NN for factorial state spaces1.

Indeed, state spaces with faster than factorial growth also exist. For example, the

state space growth rate for directed networks with self-loop is 2N
2

for an ensemble

of networks with N nodes.

2.5 Conclusion

In section (1.3), we reviewed the definition of additivity and its relation to multi-

plicative quantities such as partition function or the volume of exponential state

spaces. Recall that for elements with k states, the volumes of exponential state

space with different sizes write as

Ω(N + 1) = Ω(1)Ω(N). (2.30)

Since Ω(N) is a strictly increasing function and therefore has an inverse function,

there exist two continuous conjugate functions as

Ω(x) = kx ⇔ Ω−1(x) = lnk x, (2.31)

for a positive, real number x. Consequently, after taking the logarithm of the mul-

tiplicative relation, it transforms into an additive quantity

Ω(N + 1) = Ω(1)Ω(N) =⇒ lnk Ω(N + 1) = lnk Ω(1) + lnk Ω(N). (2.32)

For example, we observed that when the free energy is proportional to the logarithm

of the multiplicative partition function, say ZN , it complies with the additivity

1Note that the factorial state spaces correspond to NN , where the logarithm of the state space
volume is N lnN ∼ lnN ! when we use Stirling’s approximation.
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relation as

ZN+1 = Z1ZN , FN = lnk ZN =⇒ FN+1 = F1 + FN . (2.33)

On the other hand, for pairing models, the volumes with different sizes govern by

equation (2.9) written as

Ωs(N + 1) = Ωs(1)Ωs(N) + pNΩs(N − 1). (2.34)

Note that, since Ωs(1) = s, we rewrite the last equation in terms of Ωs(1) to make

the first term on the right-hand side similar to the multiplicative form.

Following the same idea, we observe Ωs(N) is a strictly increasing function, and it

must have an inverse function. Extending the domain of Ωs(N) from N to R+ and

assuming Ωs(N) is continuous in R+, the pairing conjugate functions written as

Ωs ≡ φs(x) : R+ → R+, Ω−1
s ≡ φ−1

s (x) : R+ → R+, (2.35)

and the relation equivalent to additivity obtains as

Ωs(N + 1) = Ωs(1)Ωs(N) + pNΩs(N − 1) =⇒

φ−1
s (Ωs(N + 1)) = φ−1

s (Ωs(1)Ωs(N) + pNΩs(N − 1)) . (2.36)

Although we found the exact form of Ωs(N) for discrete values in equation (2.14),

its continuous extension, φs(x), and its inverse , φ−1
s (x), are not expressible in terms

of elementary functions. Later, we will return to this idea and find the asymptotic

form of φs(x).

Generalising pairing models to more than two compounding elements is straightfor-

ward. Evidently, the recursive relation in equation (2.9) describes the geometry of

the pairing mechanism. For brevity, without proof, we report the recursive relation

for the n-tet mechanism. e.g. for the trio, quartet and quintet mechanisms, n is

equal to three, four and five, respectively. In general, adding a new element amounts

to a stand-alone configuration in s distinct states for the newly added element or

creating an n-tet in pn states with
(
N
n

)
distinct combinations. In total, the recursive

relation is

Ωs(N + 1) = sΩs(N) + pn

(
N

n

)
Ωs(N − n). (2.37)
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If all n-tet mechanisms are permitted simultaneously, each with pi states, we get

Ωs(N + 1) = sΩs(N) +
n∑
i=1

pi

(
N

i

)
Ωs(N − i). (2.38)

We do not pursue this program any further here, but it is possible to reapply the

arguments of this chapter and the next for the generalised cases. However, we report

some insights in appendix (E.1) containing future work conjectures.
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Chapter

THREE

Probability Distributions of

Pairing Models

The paring models introduced in the previous chapter are combinatorial objects. In

other words, they only enumerate the sets of distinct pairing configurations. How-

ever, a probability distribution over pairing configurations models the randomness

in the outcome of an observation. So, to find statistical emergence properties, it is

natural to construct such distribution from the first principle.

This section will find Binomial-like probability distributions for B and C models. It

is analytically and practically interesting that both probabilities are expressible in

closed form, and consequently, most of their statistics, such as their mean, standard

deviation, and other moments, are in closed form. Also, we find the asymptotic

leading terms of the same statistics for large system sizes.

Furthermore, distributions of B and C models satisfy the Large Deviation Principle

(LDP) [18, 65, 66]. As a result, we will derive their corresponding large deviation

distributions and their rate functions. In addition, as obtained in the previous

chapter, the logarithm of state-space volume is proportional to N lnN . Due to this

fact, we shall find the logarithm of LDP distribution has N lnN speed, which is the

direct consequence of faster than exponential state space for emerging states. We

also find the marginal and joint probability distributions for one or more elements in
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closed form. These distributions will be helpful in finding some information theory

measures in the later chapter.

The normalisation constant of distributions complies with a recursive relation cor-

responding to the state space recursive equation. We will see the geometry of the

state space encodes as the normalisation constant recursive relation.

To reduce the notation clutter and convenience in reading them, we use lower case

n in place of capital N to denote the number of elements and system sizes, although

the latter is common in physics publications. We will follow the same convention in

this and the following chapter but return to N in chapter (5).

In introductory statistics in the limit n → ∞, the Poisson distribution obtains

from the Binomial distribution when nρ = λ is kept constant, while ρ denotes the

probability of success and λ is the Poisson rate parameter [22]. On the same footing,

similar limiting distributions exist for B and C models. The limiting distributions

are obtained by scaling the B and C models’ parameters with system size such

that the ratio is kept constant – similar to the success parameter in the Binomial

distribution and rate parameter in the Poisson distribution.

Together, we shall see that the models’ averages can be considered as an order

parameter such that in the thermodynamic limit (n→∞): the average of LDP dis-

tributions is zero, whereas the limiting distributions have non-zero averages. Thus,

the average as an order parameter corresponds to a second-order phase transition

in physics [8]. One can envisage that the phase transition must occur whenever a

secondary model utilises one of B or C models as its building blocks and control the

size dependency of the free parameter through some internal mechanisms.

To use the resulting distributions in statistical modelling, one needs to infer the free

parameters from one or more observed values of realisations of random variables.

This chapter finds the maximum likelihood estimations for the free parameters in

both B and C distributions.

Lastly, we demonstrate the parameter inference of the distributions in a Bayesian

setting. Interestingly, we will derive a conjugate prior for the parameters that are

expressible in closed form. Meanwhile, we show that the normalisation constant

of the conjugate prior is well-defined, converging and expressible in closed form.

Finally, we remark that expressing the results in closed form for Bayesian statistics

or others is not only a mathematical convenience. It also provides an opportunity

to apply and employ them for further analytical investigation or modelling.
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3.1: Binomial-like Distribution

3.1 Binomial-like Distribution

This section examines random variables that are functions of emergent states of

pairing models, introduced in chapter (2). Before delving into the pairing random

variables, let us review the properties of an ordinary binary random variable. It is

common practice [9, 48] to model a binary random variable, say Xi, by the Bernoulli

distribution

Ber(Xi; ρ) = ρXi(1− ρ)(1−Xi), 0 ≤ ρ ≤ 1. (3.1)

For instance, the random variable Xi is a function over the state of a single coin

showing either head or tail

Xi : {tail, head} → {0, 1}, (3.2)

and the parameter ρ defines the probability of observing the head state.

Let us consider a model consisting of n distinct coins such that the random variable

nh denotes the number of coins showing head. For the random variable Xi, nh

defines as

nh =
n∑
i=1

Xi, (3.3)

and its probability is determined by the Binomial distribution [9, 48]

Bin(nh;n, ρ) =

(
n

nh

)
ρnh(1− ρ)(n−nh). (3.4)

Note that because of the Binomial expansion identity, the normalisation condition

is always satisfied

n∑
nu=0

(
n

nu

)
ρnu(1− ρ)(n−nu) = (ρ+ 1− ρ)n = 1. (3.5)

However, to model the pairing mechanism in B and C models, one needs to construct

similar distributions that satisfy the normalisation condition for their non-negative

probabilities. In these cases, the domain of random variables is the elements’ states,

resulting from an underlying pairing mechanism. Therefore, this section defines

random variables relevant to the pairing mechanism and their state spaces and

subsequently introduces their probability distributions.
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3.1.1 B-Model’s Probability Distribution

Let Sn denotes the set of all possible configurations for the B-Model, or as it is

called in statistical mechanics [64, 28], the ensemble of configurations. And also,

let np denotes the number of pairs in an observed configuration, say cnp , such that

np ∈ {0, 1, . . . , bn2 c}. Notice that since the number of pairs is a whole number, the

maximum of np is equal to bn/2c.

From the onset, for the purpose of this chapter, we assume equal probability among

configurations that consist of the same number of pairs, and therefore, np provides

the means to partition the ensemble accordingly. To use the number of pairs for

partitioning Sn, we define the subset of configurations with i pairs, denoted by Si,

as

Si ≡ {ci ∈ Sn : ci has i pairs}, (3.6)

such that

Sn =

bn
2
c⋃

i=0

Si, Si
⋂

Sj = ∅ for i 6= j. (3.7)

For instance, figure (3.1) represents partitions of S4, and as we can see for n = 4,

the number of pairs are restricted to np ∈ {0, 1, 2}.

Next, the probability of an event set Si, denoted by pi, defines as

pi ≡ Pn(Si) = Pn(np = i), 0 ≤ pi ≤ 1, (3.8)

and the normalization condition necessitates

bn
2
c∑

i=0

pi = 1. (3.9)

Although we assumed equal probability among configurations with the same number

of pairs, the cardinality of each subset is different from the others. Naturally, the

cardinality of the subset Si is the right measure to define pi. From the discussion in

the previous chapter, we know that the cardinality of the subset Si is equal to the

number of distinct 2i pairs choices among n elements times (2i−1)!! distinguishable

pairs

|Si| =
(
n

2i

)
(2i− 1)!!. (3.10)
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3.1: Binomial-like Distribution

In the case of a uniform probability over Sn, we must have

pi = Pn(Si) =
|Si|
|Sn|

=

(
n
2i

)
(2i− 1)!!

Ω1(n)
. (3.11)

However, while the event set Si can contain one or more configurations with i pairs,

the probability pi corresponds to the event of observing any of them. In addition,

to have a probability for each and every ci ∈ Si, we define a fine-grained probability

qi ≡ Pn(ci). (3.12)

Using the assumption of equal probability among configurations with the same num-

ber of pairs, pi must be equal to qi times the cardinality of the subset Si. Thus

Pn(Si) = |Si| Pn(ci)⇒ pi =

(
n

2i

)
(2i− 1)!! qi. (3.13)

Accordingly, the normalisation condition (3.9) is

bn
2
c∑

i=0

(
n

2i

)
(2i− 1)!! qi = 1. (3.14)

Figure 3.1: Partitioning S4 to three disjoint subsets. The arrows show the pairing

between balls.

Adapted from “New probability distribution describing emergence in state

space,” Pazuki, Roozbeh H. and Jensen, Henrik J., 2021, Journal of Physics

Communications, 5(9), p. 095002. DOI: 10.1088/2399-6528/ac1f74. Copyright

2021 under the terms of the Creative Commons Attribution 4.0 licence.

Two examples are provided here for such distributions over S4. Table 3.1 shows a
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uniform distribution, by which all configurations have the same probability: qi =

1/10. Whereas, table 3.2 shows the equal probability for all event sets: pi = 1/3.

Table 3.1: Uniform distribution.

pi qi

p0 = 1
10

q0 = 1
10

p1 = 6
10

q1 = 1
10

p2 = 3
10

q2 = 1
10

Table 3.2: S4 distribution.

pi qi

p0 = 1
3

q0 = 1
3

p1 = 1
3

q1 = 1
3×6

p2 = 1
3

q2 = 1
3×3

3.1.2 C-Model’s Probability Distribution

For the C-model, we use a similar notation as in the previous section to define the

set of configurations and the corresponding probability distribution. Let us denote

by S ′n the ensemble of the C-model’s configurations. As we did for the B-model,

S ′n partitions to disjoint subsets, namely Si. Recall that configurations in Si have

the same number of pairs, and consequently, each configuration has (n − 2i) coins

that are in a non-pair state. If nh denotes the number of coins in the head state,

then, we must have

nh ∈ {0, 1, . . . , (n− 2i)}. (3.15)

We assert an equal probability assumption for the C-model, such that the probability

of observing configurations that have the same number of pairs, np, and heads, nh,

are equal. Furthermore, Si partitions to disjoint subsets, denoted by Sij, that have

j coins in head states. Thus

Sij ≡ {cij ∈ Si : cij has j coins in head state}, (3.16)

and

Si =
n−2i⋃
j=0

Sij, Sij
⋂

Sik = ∅ for j 6= k. (3.17)

Given Sij is a subset of Si, we define the conditional probability of event Sij|Si, or
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the probability of observing configurations with j heads, given i pairs

Pn(Sij|Si) ≡ Pn(nh = j|np = i) = pj|i, ∀i : 0 ≤ pj|i ≤ 1. (3.18)

There are
(
n−2i
j

)
distinct configurations for selecting j heads among n− 2i non-pair

coins. Therefore, for the n−2i non-pair coins with j heads, the Binomial distribution

finds the probability pj|i as

pj|i =

(
n− 2i

j

)
ρj(1− ρ)n−2i−j, 0 ≤ ρ ≤ 1, (3.19)

where ρ defines the probability of getting head in throwing a single coin. Note that

the conditional distribution admits the normalisation condition

n−2i∑
j=0

pj|i = (ρ+ 1− ρ)n−2i = 1. (3.20)

Finally, the probability of event set Sij, or observing configurations with i pairs and

j heads, is

Pn(Sij) ≡ Pn(nh = j, np = i) = pij, (3.21)

and according to the probability chain rule [48], it can be written as

pij = pi × pj|i =

(
n

2i

)
(2i− 1)!! qi

[(
n− 2i

j

)
ρj(1− ρ)n−2i−j

]
. (3.22)

Apart from that, we observe the cardinality of Sij is equal to
(
n
2i

)
(2i − 1)!!

(
n−2i
j

)
.

At the same time, because all configurations in Sij have the same probability and

are similar to the B-model, one concludes the probability of observing a specific

configuration cij ∈ Sij must be

Pn(cij) = qiρ
j(1− ρ)n−2i−j. (3.23)

This argument is schematically represented in figure (3.2) as a probability tree.
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'

&

$

%

S ′n

p(Sbn
2
c) = (n− 1)!!qbn

2
c

P (Si) =
(
n
2i

)
(2i− 1)!! qi

P (Si(n−2i)|Si) = ρn−2i

P (Sij|Si) =
(
n−2i
j

)
ρj(1− ρ)n−2i−j

P (Si0|Si) = (1− ρ)n−2i

P (S0) = q0

...

...

...

...

Figure 3.2: The pairing coins probability tree.

Adapted from “New probability distribution describing emergence in state

space,” Pazuki, Roozbeh H. and Jensen, Henrik J., 2021, Journal of Physics

Communications, 5(9), p. 095002. DOI: 10.1088/2399-6528/ac1f74. Copyright

2021 under the terms of the Creative Commons Attribution 4.0 licence.

To check the normalisation condition for pij, we write

bn
2
c∑

i=0

n−2i∑
j=0

pij =

bn
2
c∑

i=0

n−2i∑
j=0

(
n

2i

)
(2i− 1)!! qi

[(
n− 2i

j

)
ρj(1− ρ)n−2i−j

]

=

bn
2
c∑

i=0

(
n

2i

)
(2i− 1)!! qi

n−2i∑
j=0

(
n− 2i

j

)
ρj(1− ρ)n−2i−j

=

bn
2
c∑

i=0

(
n

2i

)
(2i− 1)!! qi(ρ+ 1− ρ)n−2i =

bn
2
c∑

i=0

(
n

2i

)
(2i− 1)!! qi = 1. (3.24)

3.1.3 Finding pi and pij in Closed Form

One of the appealing aspects of well-known statistical probability distributions is

their handful of free parameters, through which the shape, rate, scale or other

properties are controlled. To put it simply, a small degree of freedom is enough
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3.1: Binomial-like Distribution

to specify the details. For example, in a statistical modelling setting, one needs to

estimate a small number of parameters from data.

In this section, we will redefine Pn(np = i) as a one parameter probability distri-

bution, and Pn(np = i, nh = j) as a two parameters one, including ρ, for the C

and B models, respectively. Let us focus on the C-model for a moment. For two

balls, as depicted in figure (3.3), there are two configurations in the set S2, and the

normalisation condition is written as

q0 + q1 = 1. (3.25)

Denoting the ratio of these two probabilities by r for

r =
q0

q1

, r ∈ [0,∞), (3.26)

we can write q0 and q1 in terms of r as

q0 =
r

r + 1
, q1 =

1

r + 1
. (3.27)

paired : q1

stand− alone : q0

stand− alone : q0

Figure 3.3: Two balls in paired or stand-alone state.

Adapted from “New probability distribution describing emergence in state

space,” Pazuki, Roozbeh H. and Jensen, Henrik J., 2021, Journal of Physics

Communications, 5(9), p. 095002. DOI: 10.1088/2399-6528/ac1f74. Copyright

2021 under the terms of the Creative Commons Attribution 4.0 licence.

Remember that for n balls, (bn
2
c+1) distinct probabilities are required to completely
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define the distribution of the C-model, namely qi. To find qi in terms of a single

parameter, we are pursuing a rule that relates qi for n − 1 to q′i for n. Therefore,

to stress the dependence of qi on the number of balls, we replace qi by qn(i), and

establish a relation between qn(i) and qn−1(i).

For n = 3, the number of possible pairs are the same as the two balls case, in other

words, np ∈ {0, 1}. Indeed, as it is shown in figure (3.4), the difference between

n = 2 and n = 3 is in the degenerate configurations for np = 1: there are three

distinguishable configurations for (n = 3, np = 1), when it compares to figure (3.3).

c

b
a

a

b
c

a
c

ba
b

c

Figure 3.4: Three balls in paired or stand-alone states.

This is true for all consecutive even and odd numbers, 2n and 2n + 1, since n =

b2n
2
c = b2n+1

2
c. But the number of degeneracies is different

P2n(np = i) =

(
2n

2i

)
(2i− 1)!! q2n(i),

P2n+1(np = i) =

(
2n+ 1

2i

)
(2i− 1)!! q2n+1(i). (3.28)

Therefore, it is reasonable to assume the differences between probabilities of observ-

ing the np pairs for even and odd numbers are due to the differences in degeneracies,

while the probability of making np pairs remains the same.

For example for n = 3, the ratio of q3(0) and q3(1) must be equal to r, while for

n = 2 the ratio of q2(0) and q2(1) is defined as r

q3(0)

q3(1)
=
q2(0)

q2(1)
= r. (3.29)
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So, writing the normalisation relation implies

q3(0) + 3q3(1) = 1 =⇒

q3(0) =
r

3 + r
, q3(1) =

1

3 + r
. (3.30)

To check the last result, consider the case of uniform distribution. In that case

for n = 2, when the probability of a pairing state is equal to a stand-alone state

(q2(0) = q2(1) = 1
2
), or r = 1, for n = 3 the probability distribution is also uniform

q3(0) =
1

4
, q3(1) =

1

4
. (3.31)

Thus, the equal probability for the n = 2 propagates to n = 3.

Furthermore, for n = 4, the number of pairs are np ∈ {0, 1, 2}, and the normalisation

is

q4(0) + 6q4(1) + 3q4(2) = 1. (3.32)

And since in a configuration for np = 2 there are twice more pairs in comparison

to np = 1, we expect r × r as the ratio between q4(0) and q4(2), and r as the ratio

between q4(0) and q4(1)
q4(0)

q4(2)
= r2,

q4(0)

q4(1)
= r, (3.33)

which implies

r2q4(2) + 6rq4(2) + 3q4(2) = 1 =⇒

q4(0) =
r2

r2 + 6r + 3
, q4(1) =

r

r2 + 6r + 3
, q4(2) =

1

r2 + 6r + 3
. (3.34)

Let us again check the case of the uniform distribution. For r = 1,

q4(0) =
1

10
, q4(1) =

1

10
, q4(2) =

1

10
, (3.35)

and once more it obtains the uniform distribution. Hence, again, the equal proba-

bility propagates to n = 4.

Using induction steps, while considering the alternating conditions between odds

and even numbers, we find

qn(i) =
rb

n
2
c−i∑bn

2
c

k=0

(
n
2k

)
(2k − 1)!! rb

n
2
c−k

, (3.36)
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and the probability distribution derives as

Pn(np = i) =

(
n
2i

)
(2i− 1)!! rb

n
2
c−i∑bn

2
c

k=0

(
n
2k

)
(2k − 1)!! rb

n
2
c−k

. (3.37)

Defining the normalisation constant cn(r) as

cn(r) =

bn
2
c∑

k=0

(
n

2k

)
(2k − 1)!! rb

n
2
c−k, (3.38)

the C-model’s probability distribution writes as

Pn(np = i) =
1

cn(r)

(
n

2i

)
(2i− 1)!! rb

n
2
c−i. (3.39)

The qi parameter in the B-model and C-model was defined based on the same

partitioning procedures, and therefore, they are the same. Hence, the B-model’s

probability distribution must be

Pn(np = i, nh = j) =
1

cn(r)

(
n

2i

)
(2i− 1)!! rb

n
2
c−i
(
n− 2i

j

)
ρj(1− ρ)n−2i−j. (3.40)

3.1.3.1 Example

For n = 4, when r = 1
2
, or the ratio of probability of being in stand-alone state is

half of making a pair, c4(1/2) obtains as

c4(
1

2
) =

(
1

2

)2

+ 6

(
1

2

)
+ 3 =

25

4
,

and the distribution is

P4(np = 0) 1
25

P4(np = 1) 12
25

P4(np = 2) 12
25

Table 3.3: The probability distribution for n = 4 and r = 1
2
.
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3.1.3.2 Finding cn(r)

The first eight iterations of cn(r) is shown in table (3.4). These are very similar

to Hermite polynomials as a function of r, though all their coefficients are positive.

Therefore, we expect to find properties similar to Hermite polynomials for cn(r).

n cn(r)

2 r + 1
3 r + 3
4 r2 + 6r + 3
5 r2 + 10r + 15
6 r3 + 15r2 + 45r + 15
7 r3 + 21r2 + 105r + 105
8 r4 + 28r3 + 210r2 + 420r + 105

9 r4 + 36r3 + 378r2 + 1260r + 945

Table 3.4: Normalisation constant for first eight ns.

We start with even numbers and write equation (3.38) for 2n

c2n(r) = rn
n∑
i=0

(
2n

2i

)
(2i− 1)!! r−i. (3.41)

If we define a power series, say f2n(x), as

f2n(x) ≡
n∑
i=0

(
2n

2i

)
(2i− 1)!! xi, (3.42)

then, the normalisation constant in terms of f2n(x) writes as

c2n(r) = rnf2n(
1

r
). (3.43)

Similarly, for odd numbers, we define

f2n+1(x) ≡
n∑
i=0

(
2n+ 1

2i

)
(2i− 1)!! xi, (3.44)
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and the normalisation constant writes in terms of f2n+1(x) as

c2n+1(r) = rnf2n+1(
1

r
). (3.45)

Using these power series in appendix (B.1), we find recursive relations between

normalisation constants as followsc2n(r) = rc2n−1(r) + (2n− 1)c2n−2(r)

c2n+1(r) = c2n(r) + 2nc2n−1(r).
(3.46)

This result resembles the recursive relation for the state space volume in equation

(2.9). For even numbers, it is equivalent to s = r and p = 1. And for odd numbers,

it is s = 1 and p = 1.

However, we must emphasise the generality of these relations in comparison to the

state space volumes in equation (2.9), since they are satisfied by these polynomials

of an arbitrary non-negative r. It seems that the state space structure is not only

encoded in a single recursive relation but also in normalisation constants of the

probability distributions that are defined over it.

One can even see them as the composition law that decomposes the normalisation

constant in terms of smaller system ones. Recall that in statistical mechanics jargon,

the normalisation constant is called partition function, and for this specific space,

we know its decomposition law [33].

Furthermore, it is important to mention that initial conditions for recursive relation

in equation (3.46) are

c1(r) = 1, c2(r) = r + 1, (3.47)

whereas Ω1(n) and Ω2(n) had different initial conditions

Ω1(1) = 1, Ω1(2) = 2, (3.48)

and

Ω2(1) = 2, Ω2(2) = 5. (3.49)

Note that for r = 4,

c2n(4) = Ω2(2n). (3.50)

The last observation tells us that the same machinery that derived the asymptotic
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leading terms of Ω2(2n) can also give us the asymptotic form of c2n(r). To achieve

that, first, observe the rearrangement of the terms in c2n(r) sum

c2n(r) =
n∑
i=0

(
2n

2i

)
(2i− 1)!! rn−i = (2n)!

n∑
i=0

rn−i2−i

i!(2n− 2i)!

= (2n)!
n∑
k=0

rk2k−n

(n− k)!(2k)!
, (3.51)

where we used k = n− i in the last step. The resulting sum is the same expansion

we had in equation (A.38) for Ωs(2n), whenever s =
√
r and p = 1. Thus, using

equation (A.73), one finds

c2n(r) =
1

√
2πe

r
4 ( rn

2
)
1
4

(
2n

e

)n ∑
1≤k≤2

√
rn/2

(√
rn
2

e

k

)2k [
1 +O(

1√
n

)

]
. (3.52)

However, when r is kept constant and 1 � n, all the assumptions and steps in

finding the asymptotic leading term of Ωs(2n) in equation (A.99) are valid and give

c2n(r) =
e−

r
4

√
2

(
2n

e

)n
e
√

2rn

(
1 +O(

1√
n

)

)
. (3.53)

We have to point out here that the above leading term is valid for r ≤ n, which

is good enough when r is kept constant and n is large. This is the case for large

deviation estimates in the next section.

3.2 Large Deviation Estimates

A probability distribution satisfies the Large Deviation Principle (LDP) [19, 65, 66]

if the limit

lim
n→∞

− 1

an
logPn(Xn), (3.54)

exists for a random variable Xn and a sequence of distributions Pn, and a sequence

of positive numbers an, called speed, for n ∈ {1, 2, . . . } that tends to ∞. In this

section, we will check the existence of the limit for both Pn(np) and Pn(np, nu).

For a configuration with size n, let the random variable Xi denote the states of a
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single element. Therefore, the number of pairs is defined as

np =
1

2

n∑
i=0

δXi,p, (3.55)

whereas δXi,p is the Kronecker delta if Xi is in a pair state. Moreover, the number

of elements in head state is defined as

nh =
n∑
i=0

δXi,h, (3.56)

whereas δXi,h is the Kronecker delta if Xi is in a head state.

To study the large deviation property of the distributions, we use the following

transformation to define a normalised random variable for the ratio of the number

of pairs as follows

mn ≡
2np
n

=
1

n

n∑
i=0

δXi,p, 0 ≤ m ≤ 1, (3.57)

and similarly, for the number of heads in a random configuration as

sn ≡
nh

n− 2np
=

1

n− 2np

n∑
i=0

δXi,h, 0 ≤ sn ≤ 1. (3.58)

In the continuum limit, or n→∞, both variables are in R [65].

3.2.1 Large Deviation Principle Satisfied by Pn(np)

In Appendix (B.2), equation (B.21), and by using Sterling’s approximation for log n!,

we obtain

lnPn(mn) = −(
1−mn

2
)n lnn− n

2

[
mn lnmn + (1−mn) ln

(1−mn)2

er

]
+O(

√
n).

(3.59)

The terms inside the square bracket in the last equation resemble the Shannon

entropy [15]. We remind the reader, for 0 ≤ p ≤ 1, Shannon entropy is defined as

H(p) = −p ln p− (1− p) ln(1− p), (3.60)

76
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and along the same line, we define H̃r(p) for different r as

H̃r(p) ≡ −p ln p− (1− p) ln
(1− p)2

er
, (3.61)

in which, e is Euler constant. So, lnPn(mn) rewrites as

lnPn(mn) = −(
1−mn

2
)n lnn+

n

2
H̃r(mn) +O(

√
n). (3.62)

To find the LDP limit, the speed is not linear but is of order O(n lnn). By dividing

lnPn(mn) with n lnn and taking the limit with respect to n, we find that the limit

exists and results in

lim
n→∞

− 1

n lnn
lnPn(mn) =

1−mn

2
. (3.63)

In other words, the large deviation principle is satisfied, and the rate function [19]

for the B-model distribution is

I(mn) =
1−mn

2
. (3.64)

In practice, when the value of n lnn is not appreciably larger than n, one requires

to include the correction due to terms in O(n) order as

Pn(mn) � e−n lnnI(mn)+n
2
H̃r(mn). (3.65)

In figure (3.5), left panel, we see the shape of H̃r(mn) and its dependence on r. As

it is shown, in spite of the right leg being fixed on zero, the left leg of the curve is r

dependent. Note that H̃r(mn) can be negative, which may seems problematic for a

rate function1. This is not a striking result, since H̃r(mn) is a O( 1
lnn

) correction to

the rate function.

Although the large deviation rate function is (1−mn)/2, for any practical purpose

the O( 1
lnn

) correction must be included. For instance, let say the number of elements

is of order of Avogadro’s number, n = 1023. Then n lnn = 53×1023 is 53 times larger

than n, and H̃r(mn) can have a comparable significant contribution in comparison

to (1−mn)/2.

Also, in figure (3.5), right panel, we plotted the error in estimating mn in comparison

to the directly calculated value at the point of maximum probability. The estimated

1Remember that rate functions must be non-negative [19].
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value is evaluated at the maximum of corrected rate function, say n lnnI(mn) −
(n/2)H̃r(mn), and we see that the error decreases for increasing n.

Figure 3.5: Left panel shows H̃r(mn) for different r. Similar to the Shannon

entropy, the H̃r(mn) is zero at mn = 1, and the value at mn = 0 depends on r.

Right panel plots the difference between the estimated mn at the maximum

of the distribution from the directly calculated value versus r. Each plot is for

a different n, and the error reduces for increasing n.

3.2.2 Large Deviation Principle Satisfied by Pn(np, nu)

In appendix (B.3), equation (B.24) finds lnPn(mn, sn) as

lnPn(mn, sn) = −(
1−mn

2
)n lnn+

n

2

[
H̃r(mn)− 2(1−mn)

(
sn ln(

sn
ρ

)

+(1− sn) ln(
1− sn
1− ρ

)

)]
+O(

√
n). (3.66)

Remember, ρ is the probability of getting head in the case of a single pairing coin,

and defining the Bernoulli rate function as [65, 66]

Iρ(x2) = x2 ln(
x2

ρ
) + (1− x2) ln(

1− x2

1− ρ
), (3.67)

lnPn(mn, sn) becomes

lnPn(mn, sn) = −(
1−mn

2
)n lnn+

n

2

[
H̃r(mn)− 2(1−mn)Iρ(sn)

]
+O(

√
n).

(3.68)
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Finally, the LDP limit exists and is equal to

lim
n→∞

− 1

n lnn
logPn(mn, sn) =

1−mn

2
. (3.69)

Therefore, Pn(mn, sn) satisfies the large deviation principle with the rate function

I(mn, sn) =
1−mn

2
. (3.70)

As we explained in the previous section, in practice, the correction terms of the rate

function are significant. So, including the correction terms in order O(n) obtains

Pn(mn, sn) � e−n lnnI(mn,sn)+n
2
H̃r(mn)−n(1−mn)Iρ(sn). (3.71)

3.2.3 The Limiting Case r/n→ ε

In the thermodynamic limit, or when n→∞, for B and C models, we can find

lim
n→∞

Pn(mn = 1)→ 1, (3.72)

and

lim
n→∞

Pn(mn = 1, sn = 0)→ 1. (3.73)

In other words, in both cases, all elements are in the pair state.

Recall that r is the ratio of abundance of stand-alone to pair states, and in finding

the above limits r is kept constant. To elaborate, mn = 1 in thermodynamic limit is

the consequence of the fast growth rate of the term
(
n

2np

)
(2np− 1)!! that for a given

np counts the degenerate states. So, in thermodynamic limit for any finite value of

r, the volume of the subset Sbn
2
c ∈ S is so large in comparison to the remaining ones

that we find all elements in the pair state.

Despite this fact, one can envisage a non-constant r, especially as an increasing and

size-dependent function, and consequently study the large deviation property of the

distributions if the following limit exists

0 < lim
n→∞

r

n
= ε <∞. (3.74)

Note that in finding the asymptotic leading term of cn(r) in equation (A.99), we
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assumed r is constant. However, in appendix (B.4), equation (B.55), for r/n is

non-zero and bounded above, we find the leading term for cn(ε) as

cn(ε) =


g(ε)−

n
2 g(ε)e

n
√

ε
e (n

e
)n/2√√

eεf(ε)g(ε)
ε ≤ e

g(ε)−
n
2 g(ε)(εn)n/2√
nπεf(ε)g(ε)

ε > e
(3.75)

where e is Euler constant, f(ε) is defined in equation (B.31) as

f(ε) =

√
1 +

4

ε
− 1, (3.76)

and g(ε) is defined in equation (B.35) as

g(ε) = (1− εf(ε)

2
). (3.77)

Taking the logarithm of ln cn(ε) results in

ln cn(ε) =

−n
2
g(ε) ln g(ε) + n

√
ε
e

+ n
2

lnn− n
2

+O(1) ε ≤ e

−n
2
g(ε) ln g(ε) + n

2
lnn+ n

2
ln(ε) +O(lnn) ε > e

, (3.78)

then, by replacing ln cn(r) by its asymptotic leading term and r by εn, equation

(B.19) rewrite as follows:

• For ε ≤ e:

lnPε(mn) = −n
2

[
2

√
ε

e
− g(ε) ln g(ε) +mn lnmn + (1−mn) ln

(1−mn)2

eε

]

= −n
2

[
2

√
ε

e
− g(ε) ln g(ε)− H̃ε(mn)

]
. (3.79)

• For ε > e:

lnPε(mn) = −n
2

[
ln(εe)− g(ε) ln g(ε) +mn lnmn + (1−mn) ln

(1−mn)2

eε

]

= −n
2

[
ln(εe)− g(ε) ln g(ε)− H̃ε(mn)

]
. (3.80)

So,

Pε(mn) � e−nI1(mn;ε), (3.81)
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where

I1(mn; ε) =
1

2

2
√

ε
e
− g(ε) ln g(ε)− H̃ε(mn) 0 < ε ≤ e

ln(εe)− g(ε) ln g(ε)− H̃ε(mn) ε > e
, (3.82)

Similarly, for Pε(mn, sn), all the terms are the same, and we have

Pε(mn, sn) � e−nI2(mn,sn;ε), (3.83)

for

I2(mn, sn; ε) = 2(1−mn)Iρ(sn) + I1(mn; ε). (3.84)

Notice that the logarithm of these two probability distributions are in order O(n).

Figure 3.6: Left panel: I1(x1; ε) against x1 ∈ [0, 1] for different εs. Right panel:

The maximum of the distribution versus ε. Blue circles are the maxima of

directly calculated distributions for n = 106. And the black line is the minimum

of I1(x1; ε). Because of discreteness of the distribution, we see step-like changes

in the position of maxima.

In figure (3.6), the left panel plots I1(mn; ε) and its minimum for different values

of ε. Also, the right panel compares the estimated maximum of the probability

distribution and directly calculated maximum with respect to ε in the vicinity of

ε = e. In the direct case, we took n = 106 and used Pn(mn, r = εn). The estimated

value is the minimum of I1(mn; ε).

81



Chapter 3: Probability Distributions of Pairing Models

3.3 Statistical Properties of Distributions

Having probability distributions in closed form for pointed out statistical models

enables us to derive their statistical properties and quantities. Apart from common

statistics such as mean and standard deviation, we also obtain the asymptotic form

of the same quantity for 1� n.

3.3.1 The closed form of Pn(np) moments

As we shall see, different moments of the probability distribution Pn(np) are ex-

pressible in closed form. Let us start with its first moment. Taking the expectation

of np with respect to Pn(np) finds

〈np〉n =

bn/2c∑
i=0

iPn(np = i) =
1

cn(r)

bn/2c∑
i=0

(
n

2i

)
(2i− 1)!! i rbn/2c−i. (3.85)

In appendix (B.5), we show that for the generating function fn(x), defined in equa-

tion (B.1), the first moment is equal to

〈np〉n =
rbn/2c

cn(r)

[
x
d

dx

]
fn(x)

∣∣∣∣
x= 1

r

. (3.86)

However equation(B.61) obtains

dfn(x)

dx
=
n(n− 1)

2
fn−2(x). (3.87)

Recall that equations (3.43) and (3.45) writes the normalisation constant in terms

of fn(x), and consequently, in equation (B.64), the first moment is derived as

〈np〉n =
n(n− 1)

2

cn−2(r)

cn(r)
. (3.88)

And also from mn = 2np/n, last result asserts

〈mn〉r = (n− 1)
cn−2(r)

cn(r)
. (3.89)

Remember that cn(r) is a polynomial, evaluated at r. Indeed, the first moment is
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the ratio of two polynomials times a constant.

3.3.2 The Asymptotic Form of the First Moment

In this part, we find the asymptotic form of 〈mn〉n for 1� n. Equation (3.53) finds

the asymptotic leading term of cn(r), so it writes

cn−2(r)

cn(r)
∼

e−
r
4√
2

(
n−2

e

)n/2−1
e
√
rn−2r

e−
r
4√
2

(
n
e

)n/2
e
√
rn

∼ e−
√

r
n

n
, (3.90)

and therefore, using equation (3.89), we get

〈mn〉r ∼ e−
√

r
n . (3.91)

This last result is reasonable, since for n → ∞, the expectation of mn is one. This

is the same result that we found for the large deviation distribution.

For Pε(mn), when we replace r/n by its limit, namely ε, we get

〈mn〉ε ∼ e−
√
ε. (3.92)

The substitution of r/n by ε in the asymptotic leading term is justifiable from the

fact that the function f(x) = e−
√
x is analytic everywhere for non-zero x [7].

For 1� n, equation (3.53) provides accurate asymptotic expansion, as long as r is

constant. But for the scaling case ε = r/n, we use cn(ε) asymptotic leading term in

equation (3.75) that we rewrite it here

cn(ε) =


g(ε)−

n
2 g(ε)e

n
√

ε
e (n

e
)n/2√√

eεf(ε)g(ε)
ε ≤ e

g(ε)−
n
2 g(ε)(εn)n/2√
nπεf(ε)g(ε)

ε > e
. (3.93)

The assumption 1 � n asserts ε = r/n ∼ r/(n − 2), therefore, the ratio of the

normalisation constants writes

cn−2(ε)

cn(ε)
∼

g(ε)g(ε)e
−2
√

ε
e

n
ε ≤ e

g(ε)g(ε)

εn
ε > e

. (3.94)
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Hence, combining it with equation (3.89), we find

〈mn〉ε ∼

g(ε)g(ε)e−2
√

ε
e ε ≤ e

g(ε)g(ε)

ε
ε > e

. (3.95)

So, we have three asymptotic cases and one solution of the minimum of I1(mn; ε):

1. For ε→ 0, the first moment obtains as

〈mn〉ε ∼ e−
√
ε. (3.96)

2. For 0 < ε ≤ e, the first moment writes as

〈mn〉ε ∼ g(ε)g(ε)e−2
√

ε
e . (3.97)

3. For ε > e, it writes as

〈mn〉ε ∼
g(ε)g(ε)

ε
. (3.98)

4. The minimum of I1(mn; ε) obtains 〈mn〉ε as

dI1(mn; ε)

dmn

= 0 =⇒ dH̃ε(mn)

dmn

= lnmn − 2 ln(1−mn) + ln ε = 0 =⇒

〈mn〉ε ∼ g(ε) = 1− εf(ε)

2
(3.99)

as f(ε) defined in equation (B.31).

Figure (3.7) plots the numerical comparison of the first case for n = 106. It is

accurate for ε� 1. Figure (3.8) plots the second and third cases, which are accurate

for ε� 1 and ε� 1. And finally, figure (3.9) plots the fourth case or the minimum

of I1(mn; ε). The last estimate is accurate for all values of ε.
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Figure 3.7: The comparison of exact and estimated 〈mn〉ε ∼ e−
√
ε for ε ∈ (0, 30],

given n = 106.

Figure 3.8: The comparison of exact and estimated 〈mn〉ε ∼ g(ε)g(ε)e−2
√

ε
e and

〈mn〉ε ∼ g(ε)g(ε)

ε
for ε ∈ (0, 30], given n = 106.

Figure 3.9: The comparison of exact and estimated 〈mn〉ε ∼ 1− εf(ε)
2

for ε ∈ (0, 30],

given n = 106.
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Putting all together, there are three choices that exist that one can select based on

the situation. One asymptotic case is written as

〈mn〉ε ∼

e−
√
ε ε� 1

g(ε)g(ε)

ε
ε� 1

, (3.100)

or the second choice is

〈mn〉ε ∼

g(ε)g(ε)e−2
√

ε
e ε� 1

g(ε)g(ε)

ε
ε� 1

. (3.101)

Finally, the accurate asymptotic leading term for all values is written as

〈mn〉ε ∼ 1− εf(ε)

2
= 1 +

ε

2
− ε

2

√
1 +

4

ε
. (3.102)

3.3.3 Other Moments

The kth moment defines as the expectation of the kth power of np with respect

to Pn(np). In the previous part, we showed that applying the operator
[
x d
dx

]
once

on fn(x) (defined in equation (B.1)) finds the first moment. And applying
[
x d
dx

]
k-times results in [

x
d

dx

]k
fn(x) =

bn/2c∑
i=0

(
n

2i

)
(2i− 1)!! ik xi. (3.103)

Evaluating the last result at 1/r, the kth moment 〈nkp〉n must be

〈nkp〉n =
rbn/2c

cn(r)

[
x
d

dx

]k
fn(x)

∣∣∣∣∣
x= 1

r

. (3.104)

In appendix (B.6), equation (B.68), we show that

[
x
d

dx

]k
fn(x)

∣∣∣∣∣
x= 1

r

=
k∑
i=1

b
(k)
i

2i
cn−2i(r)

rbn/2c
, (3.105)

where

b
(k)
i ≡

n!

(n− 2i)!
a

(k)
i , (3.106)
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and

a
(k)
i = a

(k−1)
i−1 + ia

(k−1)
i , a

(k)
1 = a

(k)
k = 1. (3.107)

Hence, the kth moment writes as

〈nkp〉n =
rbn/2c

cn(r)

[
x
d

dx

]k
fn(x)

∣∣∣∣∣
x= 1

r

=
k∑
i=1

b
(k)
i

2i
cn−2i(r)

cn(r)
. (3.108)

3.3.4 The Asymptotic Form of the kth Moment

Appendix (B.9), equation (B.82) finds the asymptotic expansion of 〈nkp〉n as

〈nkp〉n ∼
nke−k

√
r/n

2k

(
1 +

k(k − 1)

n
(e
√
r/n − 1)

)
+O(nk−2), (3.109)

and 〈nks〉n = n− 2〈nkp〉n in equation (B.86) as

〈nks〉 ∼ nk
(

1− e−
√
r/n
)k 1 +

k(k − 1)e−
√
r/n

n
(

1− e−
√
r/n
)
+O(nk−2). (3.110)

3.3.5 A Relation Among First Moments with Different Sizes

There is an interesting property among the moments of systems in different sizes.

In appendix (B.8), equation (B.79) shows that the kth moment for a system size n

written in terms of smaller systems sizes as

〈nkp〉n =
k∑
i=1

a
(k)
i 〈np〉n〈np〉(n−2) . . . 〈np〉(n−2i+2). (3.111)

For instance, we can use the last result to write Var[np] in terms of the expectation

of smaller system sizes. The second moment writes as

〈n2
p〉n = a

(2)
1 〈np〉n + a

(2)
2 〈np〉n〈np〉(n−2)

= 〈np〉n
[
1 + 〈np〉(n−2)

]
. (3.112)

Hence

Var[np]n = 〈n2
p〉n − 〈np〉2n
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= 〈np〉n
[
1 + 〈np〉(n−2) − 〈np〉n

]
. (3.113)

3.3.6 Probability Generating Function of Pn(np)

Appendix (B.10) finds the probability generating function for random variables np

and nh. Recall that the normalization constant cn(r) is a polynomial degree n,

evaluates at r. For np, the probability generating function is

Gn(s) = s
n
2
cn( r

s
)

cn(r)
, (3.114)

where cn( r
s
) is the normalization constant, evaluates at r

s
.

Similarly, for the probability generating function for random variables np and nh is

Gn(s, u) = s
n
2

cn

(
r(ρu+1−ρ)2

s

)
cn(r)

. (3.115)

The normalization constant in the numerator evaluates at
(
r(ρu+1−ρ)2

s

)
.

3.4 Marginal Distributions

For a system with size n, a single random variable, say Xl, is a function of states

that projects the state of an element at index l to its domain. For example, for the

B-Model, Xl is defined as

Xl : Sn → {0, 1}, (3.116)

where Sn is the set of all configurations with length n. Here, we use the following

convention: Xl = 0 represents a pair state and Xl = 1 represents a stand-alone

state. In contrast, Xl for the B-model defines over the set of configurations, namely

S ′n, as

Xl : S ′n → {−1, 0, 1}, (3.117)

such that Xl = −1 represents a tail state, Xl = 0 a pair state and Xl = 1 a head

state.

To find the marginal distribution, clearly, it suffices to sum all probabilities of the
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states for which Xl is the same

Pn(Xl = s) =
∑

c∈Sn:Xl(c)=s

Pn(c). (3.118)

Therefore, partitioning the state space Sn according to the state of an element at

index l is the key to finding the marginal probability. Intuitively, we understand

that the marginal is invariant with respect to l, so the index l is arbitrary.

3.4.1 B-model’s marginal

Let us start with the B-model. Recall that in the previous section, we defined Si

as a subset of Sn that its member configurations have i pairs. We partition the

elements of Si like

Si = S
(1)
i

⋃
S

(2)
i , S

(1)
i

⋂
S

(2)
i = ∅, (3.119)

such that S
(1)
i contains only the configurations that do not have a paired link with

the element at index l – figure (3.10) – whereas S
(2)
i contains those configurations

that have one – figure (3.11). In other words, for every configuration in S
(1)
i , the

ball at l is in stand-alone state, whilst for configurations belong to S
(2)
i , the ball at

l is in pair state.

Figure 3.10: An example of configurations in subset S
(1)
i .
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Next, we partition S
(2)
i to disjoint subsets like

S
(2)
i =

n⋃
k=1
k 6=l

S
(2)
i,k , S

(2)
i,k

⋂
S

(2)
i,h = ∅ for k 6= h, (3.120)

such that, S
(2)
i,k contains the configurations that has a pair state between index k and

l.

Figure 3.11: An example of configurations in subset S
(2)
i .

Finally, the partitioning of Sn enables us to rewrite the marginal sum as

Pn({the index l is in stand-alone state}) = Pn(Xl = 1) =

bn/2c∑
i=0

P (S
(1)
i ), (3.121)

and

Pn({the index l is in pair state}) = Pn(Xl = 0) =

bn/2c∑
i=0

n∑
k=1
k 6=l

P (S
(2)
i,k ). (3.122)

We have already shown that the probability of each configuration in Si is equal to

Pn(c ∈ Si) =
rbn/2c−i

cn(r)
, (3.123)

subsequently, to find the marginal sums, the cardinalities of S
(1)
i and S

(2)
i,k are re-

quired. From its definition, S
(1)
i contains i pairs, whilst the index l is in stand-alone

state. So, there are n − 1 ways to choose 2i pairs among all the balls except the
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one at l, and there are (2i− 1)!! permutations among i pairs – see figure (3.12). It

concludes that the cardinality of S
(1)
i must be

|S(1)
i | =

(
n− 1

2i

)
(2i− 1)!!. (3.124)

n−1︷ ︸︸ ︷
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ ◦ ◦ ◦

Choosing 2i pairs from n−1:(n−1
2i )(2i−1)!!

◦

︸ ︷︷ ︸
n

Figure 3.12: |S(1)
i | cardinality.

In finding the cardinality of S
(2)
i,k , we see that one of the pairs has already been

selected, so there are 2(i−1) choices from n−2 candidates, and (2i−3)!! permutations

among them – see figure (3.13). It gets

|S(2)
i,k | =

(
n− 2

2i− 2

)
(2i− 3)!!. (3.125)

n−2︷ ︸︸ ︷
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ ◦◦

Choosing 2i−2 pairs from n−2:(n−2
2i−2)(2i−3)!!

••

︸ ︷︷ ︸
n

Figure 3.13: |S(2)
i,k | cardinality.

Eventually, the marginal for a stand-alone state writes as

Pn(Xl = 1) =
1

cn(r)

bn/2c∑
i=0

(
n− 1

2i

)
(2i− 1)!! rbn/2c−i
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=
1

cn(r)

bn/2c∑
i=0

n− 2i

n

(
n

2i

)
(2i− 1)!! rbn/2c−i

= 1− 2〈np〉
n

, (3.126)

where we used the definition of the normalisation constant and the expectation of

np in the last step. Similarly, for a pair state

Pn(Xl = 0) =
1

cn(r)

bn/2c∑
i=0

n∑
k=1
k 6=l

(
n− 2

2i− 2

)
(2i− 3)!! rbn/2c−i

=
1

cn(r)

bn/2c∑
i=0

(n− 1)

(
n− 2

2i− 2

)
(2i− 3)!! rbn/2c−i

=
1

cn(r)

bn/2c∑
i=0

2i

n

(
n

2i

)
(2i− 1)!! rbn/2c−i =

2〈np〉
n

. (3.127)

Note that

Pn(Xl = 0) + Pn(Xl = 1) = 1, (3.128)

by which, it assures the validity of the final result. In short, the marginal distribution

is

Pn(Xl) =


2〈np〉
n

, Xl = 0

1− 2〈np〉
n

, Xl = 1
, (3.129)

For n� 1, using equation (3.91) we get

Pn(Xl) =

e
−
√

r
n , Xl = 0

1− e−
√

r
n , Xl = 1

. (3.130)

3.4.2 C-model’s marginal

For the C-model, we start by partitioning Sij to disjoint subsets. Recall that con-

figurations in the set Sij contain i pairs and j head coins. Indeed, similar to the

previous section, Sij partitions into two subsets

Sij = S
(1)
ij

⋃
S

(2)
ij , S

(1)
ij

⋂
S

(2)
ij = ∅, (3.131)
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and further, S
(2)
ij partitions to more subsets that, for each, there is a pair links

between index i and k such that

S
(2)
ij =

n⋃
k=1
k 6=l

S
(2)
ij,k, S

(2)
ij,k

⋂
S

(2)
ij,h = ∅ for k 6= h. (3.132)

As a matter of fact, S
(1)
ij , S

(2)
ij and S

(2)
ij,h are similar to the subsets in the previous

section, except the j index includes the number of head states. Furthermore, for the

B-model, we have to partitions S
(1)
ij to two subsets

S
(1)
ij = S

(1)
ij,h

⋃
S

(1)
ij,t, S

(1)
ij,h

⋂
S

(1)
ij,t = ∅, (3.133)

where S
(1)
ij,h and S

(1)
ij,t contain stand-alone element in head and tail state at index l,

respectively.

Thus, one by one, we write the marginals of the element l in a different state. For

a head state

Pn({the site l is in head state}) = Pn(Xl = 1) =

bn/2c∑
i=0

n−2i∑
j=0

P (S
(1)
ij,h), (3.134)

for a tail state

Pn({the site l is in tail state}) = Pn(Xl = −1) =

bn/2c∑
i=0

n−2i∑
j=0

P (S
(1)
ij,t), (3.135)

and finally for a pair state

Pn{the site l is in pair state} = Pn(Xl = 0) =

bn/2c∑
i=0

n−2i∑
j=0

n∑
k=1
k 6=l

P (S
(2)
ij,k). (3.136)

The cardinality of these subsets are – see figures (3.14), (3.15) and (3.16) –

|S(1)
ij,h| =

(
n− 1

2i

)
(2i− 1)!!

(
n− 2i− 1

j − 1

)
, (3.137)

|S(1)
ij,t| =

(
n− 1

2i

)
(2i− 1)!!

(
n− 2i− 1

n− 2i− j

)
, (3.138)
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and

|S(2)
ij,k| =

(
n− 2

2i− 2

)
(2i− 3)!!

(
n− 2i

n− 2i− j

)
. (3.139)

n−1︷ ︸︸ ︷
↑↑↑↓↓ •• ↑ . . . ↑↓↑↑↑ •• ↑↑ ••

(n−1
2i )(2i−1)!! (n−2i−1

j−1 )

↑

︸ ︷︷ ︸
n

Figure 3.14: |S(1)
ij,h| cardinality.

n−1︷ ︸︸ ︷
↑↑↑↓↓ •• ↑ . . . ↑↓↑↑↑ •• ↑↑ ••

(n−1
2i )(2i−1)!! (n−2i−1

n−2i−j)

↓

︸ ︷︷ ︸
n

Figure 3.15: |S(1)
ij,t| cardinality.

n−2︷ ︸︸ ︷
↑↑↑↓↓ •• ↑ . . . ↑↓↑↑↑ •• ↑↑ ••

(n−2
2i−2)(2i−3)!! ( n−2i

n−2i−j)

••

︸ ︷︷ ︸
n

Figure 3.16: |P (S
(2)
ij,k)| cardinality.

Remember that the probability of observing a configuration in Si,j is

Pn(c ∈ Si,j) =
rbn/2c−iρj(1− ρ)n−2i−j

cn(r)
. (3.140)
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Hence, using the calculated cardinalities, we get

P2n(Xl = 1) =
1

cn(r)

bn/2c∑
i=0

n−2i∑
j=0

(
n− 1

2i

)
(2i− 1)!!

(
n− 2i− 1

j − 1

)
rbn/2c−iρj(1− ρ)n−2i−j

=
1

cn(r)

bn/2c∑
i=0

(
n− 1

2i

)
(2i− 1)!!

rbn/2c−i

n− 2i
(n− 2i)ρ,

= ρ

(
1− 2〈np〉n

n

)
, (3.141)

where we used the Binomial distribution’s mean value in the second step, and used

the result from the previous case for Xl = 1. Moreover, Pn(Xl = −1) finds similar

result, and we get

Pn(Xl = −1) = (1− ρ)

(
1− 2〈np〉

n

)
. (3.142)

Finally, for Pn(Xl = 0)

Pn(Xl = 0) =

bn/2c∑
i=0

n−2i∑
j=0

n∑
k=1
k 6=l

P (S
(2)
ij,k)

=
1

cn(r)

bn/2c∑
i=0

n−2i∑
j=0

n∑
k=1
k 6=l

(
n− 2

2i− 2

)
(2i− 3)!!

(
n− 2i

n− 2i− j

)
rbn/2c−iρj(1− ρ)n−2i−j

=
1

cn(r)

bn/2c∑
i=0

(n− 1)

(
n− 2

2i− 2

)
(2i− 3)!! rbn/2c−i

n−2i∑
j=0

(
n− 2i

n− 2i− j

)
ρj(1− ρ)n−2i−j

=
1

cn(r)

bn/2c∑
i=0

(n− 1)

(
n− 2

2i− 2

)
(2i− 3)!! rbn/2c−i, (3.143)

using the Binomial expansion in the last step. For this result, the sum has already

been calculated for the stand-alone case, and we know

Pn(Xl = 0) =
2〈np〉
n

. (3.144)
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Therefore, the marginal is

Pn(Xl) =


(1− ρ)

(
1− 2〈np〉

n

)
, Xl = −1

2〈np〉
n

, Xl = 0

ρ
(

1− 2〈np〉
n

)
, Xl = 1

. (3.145)

Also, for n� 1, the asymptotic result of the averages in equation (3.91) finds

Pn(Xl) =


(1− ρ)

(
1− e−

√
r
n

)
, Xl = −1

e−
√

r
n , Xl = 0

ρ
(

1− e−
√

r
n

)
, Xl = 1

. (3.146)

3.5 Joint Probability Distributions

In section (3.4), we described in detail how one could find the marginal distributions

of a single element for both B and C models. In this section, we will derive the

joint probability distribution of two or more elements in a system with the size

n. However, we shall focus on the B-model only and provide the combinatorial

arguments in appendices.

To begin, let us start with the joint probability distribution of the state of a single

element at an arbitrary index and the number of pairs in the whole system, denoted

by Pn(X1, np). As usual, X1 = 0 refers to a ball in pair state and X1 = 1 to stand-

alone state. It must be intuitively clear that the resulting distribution is the same

for all elements, and X1 can refer to an element at any index. Also, we suppose np

counts the number of pairs, including the state of X1.

Appendix (B.12.1) explains it in detail, and we do not reiterate the steps of the

derivation of the joint, conditional and marginal distributions here. Altogether, it

suffices to write them as

Pn(X1, np) =
rbn/2c(2np − 1)!!

cn(r)
×


(
n−1

2np−1

)
, X1 = 0(

n−1
2np

)
, X1 = 1

, (3.147)

Pn(X1|np) =
Pn(X1, np)

Pn(np)
=


2np
n

, X1 = 0

n−2np
n

, X1 = 1
, (3.148)
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Pn(X1) =

〈
2np
n
〉 , X1 = 0

〈n−2np
n
〉 , X1 = 1

, (3.149)

to reveal the pattern that we can exploit in the following parts. This pattern becomes

comprehensible when we derive the equivalent distributions for two elements, as we

do in appendix (B.12.2)

Pn(X1, X2, np) =
rbn/2c−np(2np − 1)!!

cn(r)
×



(
n−2

2np−2

)
, Xl = Xk = 0(

n−2
2np−1

)
, Xl = 1, Xk = 0(

n−2
2np−1

)
, Xl = 0, Xk = 1(

n−2
2np

)
, Xl = Xk = 1

, (3.150)

Pn(X1, X2|np) =


2np
n
× 2np−1

n−1
, Xl = Xk = 0

2np
n
× n−2np

n−1
, Xl = 1, Xk = 0

2np
n
× n−2np

n−1
, Xl = 0, Xk = 1

n−2np
n
× n−2np−1

n−1
, Xl = Xk = 1

, (3.151)

Pn(X1, X2) =


〈2np(2np−1)

n(n−1)
〉 , Xl = Xk = 0

〈2np(n−2np)

n(n−1)
〉 , Xl = 1, Xk = 0

〈2np(n−2np)

n(n−1)
〉 , Xl = 0, Xk = 1

〈 (n−2np)(n−2np−1)

n(n−1)
〉 , Xl = Xk = 1

. (3.152)

Observe that the difference between Pn(X1, np) and Pn(X1, X2, np) for different com-

binations of X1 and X2 is in a cardinality factor, which is found by an combinato-

rial argument in appendix (B.12.2). Besides, the conditional distributions, namely

Pn(X1|np) and Pn(X1, X2|np), find as the ratio of the cardinality factor divided by(
n

2np

)
. And finally, the marginal distribution is the average of ratios with respect to

Pn(np).

In general, to write the joint distribution for k elements, denoted by Pn(X1, . . . , Xk, np),

let us first define l = k −
∑n

i=1Xi as the number of zeros in a given k-tuple

(X1, . . . , Xk). Note that given l, it is possible to have
(
k
l

)
distinct k-tuples. To

elaborate,
∑n

i=1Xi is the number of ones in the k-tuple, or the number of stand-

alone elements, therefore, k−
∑n

i=1 Xi is the number of pairs. So,
(
k
l

)
is the number

of distinct arrangement of l zeros among k places.

As it is explained in appendix (B.12.3), for l = k −
∑n

i=1Xi, the joint distribution
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derives as

Pn(X1, . . . , Xk, np; l) =
rbn/2c−np

cn(r)

(
n− k

2np − l

)
(2np − 1)!!. (3.153)

Similarly, the conditional distribution is

Pn(X1, . . . , Xk|np) =
(2np)

(l)(n− 2np)
(k−l)

n(k)
, (3.154)

where x(l) = x(x− 1) . . . (x− k + 1) is a falling factorial, and the marginal is

Pn(X1, . . . , Xk) = 〈(2np)
(l)(n− 2np)

(k−l)

n(k)
〉, (3.155)

where the expectation is taken with respect to Pn(np).

It is worth representing in more detail the case of
(
k
l

)
distinct arrangements of k-

tuples, given l. In fact, the degeneracy for a given l is represented as
(
k
l

)
similar

entries in the definition of Pn(X1, . . . , Xk, np) in the following

Pn(X1, . . . , Xk, np) =

rbn/2c−np(2np − 1)!!

cn(r)
×



(
n−k
2np

)
, X1 = 0, X2 = 0, . . . , Xk = 0(

n−k
2np−1

)
, X1 = 1, X2 = 0, . . . , Xk = 0(

n−k
2np−1

)
, X1 = 0, X2 = 1, . . . , Xk = 0

...(
n−k

2np−1

)
, X1 = 0, X2 = 0, . . . , Xk = 1


k times

... (
n−k

2np−l

)
, X1, X2, . . . , Xk(

n−k
2np−l

)
, X1, X2, . . . , Xk

...(
n−k

2np−l

)
, X1, X2, . . . , Xk


(
k
l

)
times for l = k −

∑n
i=1Xi

... (
n−k

2np−k

)
, X1 = 1, X2 = 1, . . . , Xk = 1

.

(3.156)
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3.6 Parameters’ Maximum Likelihood Estimation

So far, all the probability distributions that we have derived depends on one or two

parameters, i.e. r for Pn(np), r and ρ for Pn(np, nh), and ε for Pε(mn). In this sec-

tion, we will derive the maximum likelihood estimation (MLE) of these parameters

whenever one or more empirical values of random variables are observed.

3.6.1 MLE for the B-model

We start by finding the maximum likelihood estimation of r, when K independent

n
(i)
p s for a pairing ball system are observed such that their joint probability distribu-

tion is Pn(n
(1)
p , . . . , n

(K)
p ). Meanwhile, we assume the consecutive observed random

variables are identical and statistically independent, therefore

Pn(n(1)
p , . . . , n(K)

p ) =
K∏
i=1

Pn(n(i)
p ). (3.157)

To maximise the logarithm of the joint probability for the K observed random

variables, we first take the derivative of lnPn(n
(1)
p , . . . , n

(K)
p ) with respect to the

parameter r

d

dr
lnPn(n(1)

p , . . . , n(K)
p ) =

K∑
i=1

d

dr
lnPn(n(i)

p ). (3.158)

Equation (B.18) finds lnPn(n
(i)
p ) as

d

dr
lnPn(n(i)

p ) = −
d
dr
cn(r)

cn(r)
+
bn/2c − n(i)

p

r
. (3.159)

Also, equation (B.74) in appendix (B.7) finds

d

dr
cn(r) =

bn/2c
r

cn(r)− n(n− 1)

2r
cn−2(r), (3.160)

and therefore, equation (3.159) becomes

d

dr
lnPn(n(i)

p ) =
n(n− 1)

2r

cn−2(r)

cn(r)
− n

(i)
p

r
. (3.161)
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To find rMLE, we set the derivative of lnPn(n
(1)
p , . . . , n

(K)
p ) equal to zero to find its

solution with respect to r. To do that, using the last result, equation (3.158) writes

as
d

dr
lnPn(n(1)

p , . . . , n(K)
p ) =

K∑
i=1

(
n(n− 1)

2r

cn−2(r)

cn(r)
− n

(i)
p

r
)

= K
n(n− 1)

2r

cn−2(r)

cn(r)
− 1

r

K∑
i=1

n(i)
p = 0. (3.162)

Denoting the empirical mean by n̂p that is defined as

n̂p ≡
1

K

K∑
i=1

n(i)
p , (3.163)

and equation (3.162) simplifies to

2n̂pcn(r)− n(n− 1)cn−2(r) = 0. (3.164)

The above equation is a polynomial degree bn/2c, and rMLE is its root.

3.6.2 MLE for the C-model

For the B-model, the observed tuple (n
(i)
p , n

(i)
h ) for a single observation provides

∂

∂r
lnPn(n(i)

p , n
(i)
h ) = −

d
dr
cn(r)

cn(r)
+
n− 2n

(i)
p

2r
, (3.165)

and
∂

∂ρ
lnPn(n(i)

p , n
(i)
h ) =

n
(i)
h

ρ
− n− 2n

(i)
p − n(i)

h

1− ρ
. (3.166)

Simultaneously setting both equations equal to zero finds parameters that maximise

the distribution. Each equation has only one parameter, and consequently, the first

one results in a similar polynomial, by which rMLE can be calculated

n(n− 1)cn−2(r)− 2n̂pcn(r) = 0. (3.167)

Moreover, the second equation finds∑K
i=1 n

(i)
h

ρ
−
∑K

i=1(n− 2n
(i)
p − n(i)

h )

1− ρ
= 0 =⇒
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ρMLE =
n̂h

n− 2n̂p
, (3.168)

for

n̂p ≡
1

K

K∑
i=1

n(i)
p , n̂h ≡

1

K

K∑
i=1

n
(i)
h . (3.169)

Therefore, both the average number of pairs and heads, namely n̂p and n̂h, are

sufficient statistics.

3.6.3 The Asymptotics of rMLE and ρMLE

For n� 1 and constant r, equation (3.90) derived the ratio of normalisation constant

as
cn−2(r)

cn(r)
∼ e−

√
r
n

n
. (3.170)

Note that the estimate is accurate when r is not in order of O(n). So for 1� n, we

have

n̂p =
n(n− 1)

2

cn−2(r)

cn(r)
=

(n− 1)

2
e−
√

r
n

∼ n

2
e−
√

r
n +O(

1

n
). (3.171)

Rearranging the terms to find rMLE for a system size n obtains

rMLE = n ln2

(
2n̂p
n

)
=⇒ rMLE = n ln2 m̂n. (3.172)

And similarly

ρMLE =
n̂h
n

1− 2n̂p
n

=⇒ ρMLE =
ŝn

1− m̂n

, (3.173)

are maximum likelihood estimates for given empirical means as

m̂n =
2n̂p
n
, ŝn =

n̂h
n− 2n̂p

. (3.174)

3.6.4 MLE for Pε(mn)

In the previous part, we found the maximum likelihood estimation of r for the

asymptotic case 1� n and constant r. Recall that when r is system size dependent

such that limn→∞ r/n = ε exists, the probability distribution of the random variable
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mn is Pε(mn). In this part, we will derive the maximum likelihood estimation of ε.

Let us start by assuming a single observed value, say m
(i)
n , is available for estimating

the parameter ε. The normalised probability distribution , Pε(m
(i)
n ), writes as

Pε(m
(i)
n ) =

e−nI1(m
(i)
n ;ε)∫ 1

0
e−nI1(mn;ε)dmn

, (3.175)

and therefore, taking the derivative of lnPε(m
(1)
n ) with respect to ε finds

∂

∂ε
lnPε(m

(i)
n ) = −n∂I1(m

(i)
n ; ε)

∂ε
+ n

∫ 1

0
∂I1(mn;ε)

∂ε
e−nI1(mn;ε)dmn∫ 1

0
e−nI1(mn;ε)dmn

= 0 =⇒

∂I1(m
(i)
n ; ε)

∂ε
= 〈∂I1(mn; ε)

∂ε
〉ε, (3.176)

where 〈.〉ε is the expectation with respect to Pn(mn; ε).

Similarly, for K statistically independent observed values, the joint probability dis-

tribution writes as

Pε(m
(1)
n , . . . ,m(K)

n ) =
K∏
i=1

Pε(m
(i)
n ), (3.177)

and consequently,

∂

∂ε
lnPε(m

(1)
n , . . . ,m(K)

n ) = −n
K∑
i=1

∂I1(m
(i)
n ; ε)

∂ε
+Kn

∫ 1

0
∂I1(mn;ε)

∂ε
e−nI1(mn;ε)dmn∫ 1

0
e−nI1(mn;ε)dmn

= 0 =⇒

K∑
i=1

∂I1(m
(i)
n ; ε)

∂ε
= K〈∂I1(mn; ε)

∂ε
〉ε. (3.178)

Using equation (3.82), we find

∂I1(mn; ε)

∂ε
=

1

2

 1√
eε

+ mn−1
ε
− g′(ε)(1 + ln g(ε)) 0 < ε ≤ e

mn
ε
− g′(ε)(1 + ln g(ε)) ε > e

, (3.179)

and the sum on the left-hand side of equation (3.178) written as

K∑
i=1

∂I1(m
(i)
n ; ε)

∂ε
=
K

2

 m̂n−1
ε

+ 1√
eε
− g′(ε)(1 + ln g(ε)) 0 < ε ≤ e

m̂n
ε
− g′(ε)(1 + ln g(ε)) ε > e

, (3.180)
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where m̂n is the empirical mean of the observed values

m̂n ≡
1

K

K∑
i=1

m(i)
n . (3.181)

Next, the expectation of equation (3.179) gets

〈∂I1(mn; ε)

∂ε
〉ε =

1

2


〈mn〉ε−1

ε
+ 1√

eε
− g′(ε)(1 + ln g(ε)) 0 < ε ≤ e

〈mn〉ε
ε
− g′(ε)(1 + ln g(ε)) ε > e

. (3.182)

Using the last result and equation (3.180) allows one to equate both sides of equation

(3.178) and derives

〈mn〉ε = m̂n, (3.183)

for both branches of ε ≤ e and ε > e. In other words, this equation implies the

probability is maximum whenever the parameter ε makes the empirical mean equal

to the expectation with respect to Pε(mn). Rewriting the last result as an integral

1∫
0

(mn − m̂n)e−nI1(mn;ε)dmn = 0, (3.184)

we see that estimating εMLE for the observed empirical m̂n is equivalent to solving

the integral equation to find εMLE that makes the above integral equal to zero. How-

ever, since 1� n, the term e−nI1(mn;ε) at the minimum of I1(m∗n; ε) is exponentially

larger than any other mn ∈ [0, 1] \ {m∗n}. If the minimum of I1(mn; ε) happens to

be at m̂n, then the term (mn − m̂n) is zero and the contribution of exponentially

large e−nI1(mn;ε) to the integral cancels. As a result, to find εMLE we need to find

the value of ε that sets the minimum of I1(mn; ε) at m̂n or

∂I1(mn; ε)

∂mn

∣∣∣∣
mn=m̂n

= 0. (3.185)

For both branches of ε ≤ e and ε > e, equation (3.82) obtains

∂I1(mn; ε)

∂mn

= −∂H̃ε(mn)

∂mn

= lnmn − 2 ln(1−mn) + ln ε. (3.186)
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Thus, equation (3.185) simplifies as

∂I1(mn; ε)

∂mn

∣∣∣∣
mn=m̂n

= ln m̂n − 2 ln(1− m̂n) + ln ε = 0 =⇒

εMLE =
(1− m̂n)2

m̂n

. (3.187)

This is the maximum likelihood estimate of ε, given empirical mean m̂n.

3.7 Bayesian Conjugate Prior

In a Bayesian inference setting, it is often possible to find a conjugate prior dis-

tribution that derives the posterior distribution in closed form. Consequently, the

inference part of statistical modelling reduces to updating the parameter(s) of the

posterior.

In this section, we show that natural conjugate priors for B and C models are well-

defined distributions and are expressible in closed form. Note that for probability

distributions and their parameters, we use a slightly different notation than the rest

of the thesis. The new notation is more broadly accepted in Bayesian statistics

related publications.

3.7.1 Conjugate Prior for B-model

Let us here reiterate what one pursues in the Bayesian inference, e.g., in the B-model

case. Pn(np|r) is a one-parameter distribution, and as a statistical model, one needs

to estimate r based on observed values of np. And in a Bayesian setting, the modeller

represents its prior knowledge as a prior distribution, say P (r), and next, the Bayes

rule finds the posterior distribution in terms of the likelihood Pn(np|r) and the prior

distribution P (r) as

Pn(r|np) =
Pn(np|r)P (r)

Pn(np)
=

Pn(np|r)P (r)∫
Pn(np|r)P (r)dr

. (3.188)

Accordingly, the likelihood for the B-model is

Pn(np|r) =
1

cn(r)

(
n

2np

)
(2np − 1)!! rbn/2c−np , (3.189)
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hence, the posterior writes as

Pn(r|np) =

1
cn(r)

rbn/2c−npP (r)∫∞
0

1
cn(r)

rbn/2c−npP (r)dr
, (3.190)

where the constant factors cancel from numerator and denominator. Since the num-

ber of stand-alone elements is equal to ns = n − 2np, we rewrite the posterior in

terms of ns

Pn(r|ns) =

1
cn(r)

rbns/2cP (r)∫∞
0

1
cn(r)

rbns/2cP (r)dr
, (3.191)

to make the notation less cluttered. By inspection, we find that the conjugate prior

distribution can be defined as

P (r) ≡ Λn(r|α, β) =
1

λn(α, β)

rα

cβn(r)
, α, β ∈ N, (3.192)

such that the normalisation constant, λn(α, β), is defined as

λn(α, β) ≡
∞∫

0

rα

cβn(r)
dr, α + 2 ≤ βbn/2c. (3.193)

Note that the denominator is a polynomial degree βbn/2c, and consequently, for

integers α and β, the condition α + 2 ≤ βbn/2c guarantees the convergence of the

integral, and consequently, a well-defined normalisation constant for Λn(r|α, β).

In general, for α, β ∈ R given the mentioned condition, the integral is converging.

However, integer α and β enable us to derive the integral in closed form. In practice,

as we will show in section (3.7.3), knowing the roots of cn(r) is enough to turn

λn(α, β) to partial fractions and to express it in closed form.

Since λn(α, β) is well-defined, plugging the prior Λn(r|α, β) in equation (3.191) ob-

tains

Pn(r|ns) =

1
cn(r)

rbns/2c × 1
λn(α,β)

rα

cβn(r)∫∞
0

1
cn(r)

rbns/2c × 1
λn(α,β)

rα

cβn(r)
dr

=
1

λn(α + bns
2
c, β + 1)

× rbns/2c+α

cβ+1
n (r)

=⇒

Pn(r|ns) = Λn(r|α + bns/2c, β + 1), (3.194)

which is the same probability distribution with shifted parameters. Simply put,

observing np, or equivalently ns, updates the parameter of Λn(r|α, β) by changing
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its parameters to Λn(r|α+bns/2c, β+1). Also, the convergence condition for λn(α+

bns/2c, β + 1) is satisfied, since

α + 2 ≤ βbn
2
c =⇒ α + 2 + bns

2
c ≤ βbn

2
c+ bn

2
c − np ≤ (β + 1)bn/2c. (3.195)

Similar to the maximum likelihood section, we can assume there are K independent

observations, and the empirical mean of stand-alone elements, namely n̂s, is defined

as

n̂s =
2

K

K∑
i=1

bn
(i)
s

2
c =

2

K

K∑
i=1

(bn
2
c − n(i)

p ). (3.196)

The likelihood function for K independent observations is

Pn(n(1)
s , . . . , n(K)

s |r) =
K∏
i=1

Pn(n(i)
s |r) ∝

K∏
i=1

rb
n
(i)
s
2
c

cn(r)
=
r
∑K
i=1b

n
(i)
s
2
c

cKn (r)
=⇒

Pn(n(1)
s , . . . , n(K)

s |r) ∝
r
Kn̂s
2

cKn (r)
. (3.197)

So, the posterior distribution derives like

Pn(r|n(1)
s , . . . , n(K)

s ) =
Pn(n

(1)
s , . . . , n

(K)
s |r)Λn(r|α, β)

Pn(n
(1)
s , . . . , n

(K)
s )

=

r
Kn̂s
2 +α

cK+β
n (r)∫∞

0
r
Kn̂s
2 +α

cK+β
n (r)

dr
=

1

λn(α + Kn̂s
2
, β +K)

r
Kn̂s
2

+α

cK+β
n (r)

=⇒

Pn(r|n(1)
s , . . . , n(K)

s ) = Λn(r|α +
Kn̂s

2
, β +K). (3.198)

Figure (3.17) shows Λn(r|α, β) for n = 8. The left panel plots it for β = 1, and

the right one is for β = 2. We see that when α is getting close to βbn/2c the

uncertainty in r, or the desperation of the distribution, increases. Also, figure (3.18)

plots λn(α, β) versus α for different βs and for n = 32.
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Figure 3.17: For n = 8, the left panel plots Λn(r|α, β) for β = 1, and similarly,

the right panel shows the case for β = 2.

Figure 3.18: The graph of λn(α, β) for n = 32 for different values of βs are plotted

along α. Note that λn(α, β) is continuous in α ∈ R, but for integer values

α ∈ N, we can express it in closed form.

3.7.1.1 Maximum a posteriori estimation

By taking the derivative of Λn(r|α, β) with respect to r, one can derive the maximum

a posteriori estimation, rMAP , as follows

dΛn(r|α, β)

dr
=

1

λn(α, β)
×
αrα−1cβn(r)− βrαcβ−1

n (r)dcn(r)
dr

c2β
n (r)

= 0 =⇒
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α

β
cn(r)− rdcn(r)

dr
= 0 =⇒(

n− 2α

β

)
cn(r)− n(n− 1)cn−2(r) = 0, (3.199)

where we used equation (B.74) in the last step to replace dcn(r)/dr. So, the root

of the last polynomial equation is rMAP . Compare equation (3.199) with (3.164) to

see the difference between rMLE and rMAP .

3.7.1.2 The asymptotic form of rMAP

For 1� n and constant n, equation (3.90) finds the ratio of cn−2(r)/cn(r) as

cn−2(r)

cn(r)
∼ e
√

r
n

n
. (3.200)

Thus, by replacing the asymptotic leading term of the ratio in equation (,3.199) one

finds

rMAP = n ln2

(
1− 2α

nβ

)
. (3.201)

Compare this result with the asymptotic estimate of rMLE in equation (3.172).

3.7.1.3 Posterior Predictive Distribution

The posterior predictive distribution simply derives by integrating the likelihood

and the posterior with respect to r

Pn(np|D) =

∞∫
0

Pn(np|r)Λn(r|D)dr =

(
n

2np

)
(2np−1)!!

∞∫
0

rbn/2c−np

cn(r)
× rα

λn(α, β)cβn(r)
dr

=

(
n

2np

)
(2np − 1)!!

λn(α + bn/2c − np, β + 1)

λn(α, β)
. (3.202)
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3.7.1.4 Moments of Λn(r|α, β)

The moments of the probability distribution Λn(r|α, β) are expressible in closed

form. To find the kth moment, we write

〈rk〉 =

∞∫
0

rkΛn(r|α, β)dr =
1

λ(α, β)

∞∫
0

rα+k

cβn(r)
dr =⇒

〈rk〉 =
λ(α + k, β)

λ(α, β)
. (3.203)

3.7.2 Conjugate Prior for the C-model

The probability distribution of the C-model, say Pn(np, nh|r, ρ), can be seen as

the probability distribution of the B-model multiplied by a Binomial distribution.

Therefore, if we assume parameter r and ρ are independent, the prior for the C-

model is simply the multiplication of Λn(r|α1, β1) by the Beta distribution for the

Binomial part, Beta(ρ|α2, β2) as

Λ(2)
n (r, ρ|α1, β1, α2, β2) = Λn(r|α1, β1)Beta(ρ|α2, β2). (3.204)

So, the posterior writes as

Λ(2)
n (r, ρ|α1, β1, α2, β2) =

Pn(np, nh|r, ρ)Λn(r|α1, β1)Beta(ρ|α2, β2)∫∞
0

∫ 1

0
Pn(np, nh|r, ρ)Λn(r|α1, β1)Beta(ρ|α2, β2)dρdr

= Λn(r|α1 + bn/2c − np, β1 + 1)Beta(ρ|α2 + nh, β2 + n− 2np − nh)

= Λ(2)
n (r, ρ|α1 + bn/2c − np, β1 + 1, α2 + nh, β2 + n− 2np − nh), (3.205)

which is again expressed in the same mathematical form as the prior.

3.7.3 Finding λn(α, β) in closed form

The function λn(α, β) is defined as

λn(α, β) =

∞∫
0

rα

cβn(r)
dr, α, β ∈ N, (3.206)
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in which the normalisation constant of the pairing models, namely cn(r), is a degree

bn/2c polynomial with positive coefficients. In principle, the Fundamental Theorem

of Algebra guarantees the existence of cn(r) roots in the complex plane [50], and

factorises like

cn(r) = f1(r) . . . fk(r), (3.207)

where fi(r) is either a power of a linear factor (r + ai)
li or a quadratic factor (r2 +

bir+ci)
li (The quadratic factors are resulted in by complex conjugate solutions, and

therefore, we must have b2
i < 4ci). Note that li ∈ 1, 2, . . . , bn/2c is the degeneracy

of the roots. However, we will show that for n ≥ 2, cn(r) has bn/2c distinct roots,

and therefore, li = 1 for all roots and fi(r) is only a linear factor such that

cn(r) = (r + a1)(r + a2) . . . (r + abn/2c) =

bn/2c∏
i=1

(r + ai). (3.208)

Also for 0 ≤ r, we have cn(r) > 0. Hence, all the roots must be negative, which

assert ai > 0. Considering these observations and for β ∈ N, the ratio rα/cβn(r) can

be rewritten as partial fractions like

rα

cβn(r)
=

rα∏bn/2c
i=1 (r + ai)β

=

bn/2c∑
i=1

β∑
j=1

Aij
(r + ai)j

, (3.209)

for real numbers Aij. Later, we shall show that for β ∈ N and all such that α ≤
βbn/2c − 2, we have

bn/2c∑
i=1

Ai1 = 0. (3.210)

At this stage, we assume it is true. Next, plugging equation (3.209) in equation

(3.206) yields

λn(α, β) =

∞∫
0

bn/2c∑
i=1

β∑
j=1

Aij
(r + ai)j

dr =

bn/2c∑
i=1

Ai1

∞∫
0

dr

(r + ai)
+

bn/2c∑
i=1

β∑
j=2

Aij

∞∫
0

dr

(r + ai)j

= lim
b→∞

bn/2c∑
i=1

Ai1 ln(r + ai)

∣∣∣∣∣∣
b

0

−
bn/2c∑
i=1

β∑
j=2

Aij
(j − 1)(r + ai)j−1

∣∣∣∣∣∣
∞

0

= lim
b→∞

bn/2c∑
i=1

Ai1 ln(b+ ai)−
bn/2c∑
i=1

Ai1 ln(ai) +

bn/2c∑
i=1

β∑
j=2

Aij

(j − 1)aj−1
i

. (3.211)
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However,

lim
b→∞

bn/2c∑
i=1

Ai1 ln(b+ ai) = lim
b→∞

ln

bn/2c∏
i=1

(b+ ai)
Ai1


= lim

b→∞
ln b

∑bn/2c
i=1 Ai1 = lim

b→∞
ln b0 = 0, (3.212)

where we used equation (3.210) in the last line. Finally, λn(α, β) can be expressed

as

λn(α, β) = −
bn/2c∑
i=1

Ai1 ln(ai) +

bn/2c∑
i=1

β∑
j=2

Aij

(j − 1)aj−1
i

. (3.213)

To reiterate the steps to write λn(α, β) in closed form, remember that for cn(r) we

can numerically find bn/2c distinct roots, namely ai, up to the required precision

once, and use them to find λn(α, β). Next, for given α and β, one constructs a linear

system for Aij to use the last result to find λn(α, β).

In addition, there exist some iterative algorithms that find the partial decomposition

coefficients directly with efficiency and speed [12, 41, 44]. However, writing λn(α, β)

in closed form is independent of the estimated values of Aij, by which, one can

investigate the problem of interest further analytically.

Returning back to the sum of Ai1, let us rewrite the partial fraction of the ratio

rα

cβn(r)
=

rα∏bn/2c
i=1 (r + ai)β

=

bn/2c∑
i=1

β∑
j=1

Aij
(r + ai)j

, (3.214)

where we will show that
bn/2c∑
i=1

Ai1 = 0, (3.215)

for β ∈ N and all α ∈ {0, 1, . . . , βbn/2c − 2}. Observe that for r →∞, the Ai1 are

the dominant partial decomposition coefficients. Therefore, we multiply both side

of equation (3.214) by r

rα+1∏bn/2c
i=1 (r + ai)β

=

bn/2c∑
i=1

β∑
j=1

Aijr

(r + ai)j
, (3.216)

and take the limit r →∞. Since α+1 < βbn/2c, the left hand side approaches zero

lim
r→∞

rα+1∏bn/2c
i=1 (r + ai)β

→ 0. (3.217)

111



Chapter 3: Probability Distributions of Pairing Models

At the same time,

lim
r→∞

bn/2c∑
i=1

β∑
j=1

Aijr

(r + ai)j
= lim

r→∞

bn/2c∑
i=1

β∑
j=1

Aijr
1−j =

bn/2c∑
i=1

Ai1. (3.218)

Combining both results finds
bn/2c∑
i=1

Ai1 = 0, (3.219)

which complete the proof of the claim.

3.7.4 Finding the number of distinct roots of cn(r)

In this section, we will show that the polynomial cn(r) has bn/2c distinct roots. To

start, we need to introduce the Sturm sequence [4]. For Polynomial P the Sturm

sequence, denotes by SS(P, P ′) = P0, P1, . . . , Pi, is defined as

P0 = P,

P1 = P ′,

Pi = −rem(Pi−1, Pi−2) (3.220)

where P ′ is the first derivative of the polynomial P , rem(Pi, Pi−1) is the remain-

der of the Euclidean division of Pi−1 by Pi−2, and the sequence terminates when

rem(Pi, Pi−1) is a constant. In addition, the number of sign variations [4], denoted

by V (A), for a sequence A = a0, a1, . . . , ai of elements in R \ {0} is defined as

V (a0) = 0,

V (a0, a1, . . . , ai) =

V (a1, . . . , ai) + 1 if a0a1 < 0

V (a1, . . . , ai) if a0a1 > 0
. (3.221)

In other words, V (A) gives the number of sign changes in the sequence A. And fi-

nally, if P = P0, P1, . . . Pi is a sequence of polynomials, the number of sign variations

of P at a, denotes by V (P , a), is defined as

V (P , a) = V (P0(a), P1(a), . . . , Pi(a)). (3.222)
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Theorem 3.7.1. [Sturm’ Theorem] [4] Given a and b in R ∪ {−∞,∞},

V (SS(P, P ′), a)− V (SS(P, P ′), b)

is the number of roots of P in the interval (a, b).

To see the detail of proving that the polynomial cn(r) has bn/2c distinct roots, check

appendix (B.13). In there, we use Sturm’s Theorem and prove the claim for even

and odd values separately.

3.8 Immigration Models

Using pairs or aggregates as building blocks of statistical modelling is not unique to

this study and has already been investigated in statistical and probability modelling

literatures. For instance, two relevant models, namely death-multiple immigration

and birth-death-multiple immigration [30, 32, 47], model a stochastic process by

which the population size increases by the arrival of singles, pairs, . . . , m-tuples of

migrants.

Let us discuss the case of death-multiple immigration in more detail here in order

to explain the differences between the assumptions and approaches of this study

and what has already been discussed in the publication. According to this model,

population size is depleted at a constant rate µ by death that occurs in proportion to

the instantaneous size of the population, and the population size increases through

immigration of m-aggregates that arrive at the rate αm ≥ 0, for m = 1, 2, . . . and

the momentary population size N . The Kolmogorov forward rate equation for the

process is written as [30]

dPN(t)

dt
= µ(N + 1)PN+1(t)− µNPN(t)− PN(t)

∞∑
m=1

αm +
N∑
m=1

αmPN−m(t), (3.223)

in which PN(t) is the probability that the population comprises N members at time

t. In the case of birth-death-multiple immigration models, the birth rate of the

elements is included.

Interestingly, these stochastic models have analytic solutions. For example, only
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including pairs of immigration, or for

αm =

ν, m = 2

0, otherwise
, (3.224)

the equilibrium probabilities asymptotically are derived as [47]

P2n(∞) = N̄n+1 exp(−3N̄/4)L(−1/2)
n (−N̄/4)n!/(2n)! (3.225)

P2n+1(∞) = N̄n+1 exp(−3N̄/4)L(1/2)
n (−N̄/4)n!/2(2n+ 1)!, (3.226)

where N̄ = 2ν/µ and L
(b)
n (x) are Laguerre polynomials.

The similarity between these models and the pairing models in this thesis is striking,

e.g., when we compare the equilibrium probabilities with phase space volumes in

equations (2.16) and (2.17). However, we must emphasise what makes our results

different and how these two models are related.

First, in deriving pairing models, we start from combinatorial arguments and the fo-

cus is on the states the aggregates can occupy in an arbitrary configuration. Second,

there is no assumption about the existence of a dynamic or a stochastic process, and

the resulting probability distribution is for the number of pairs (or, in the case of the

C-model, the number of pairs and heads). And finally, when in chapter (5), by using

statistical mechanics, we use the pairing model to study systems in equilibrium, the

dynamics are governed by the Hamiltonian that we construct for some prototype

models.

In comparison, the immigration processes are by design out of an equilibrium al-

though they have an equilibrium solution, and the random variable in these equi-

librium probability distributions is the population numbers instead of the number

of pairs in our case. Simultaneously, the dynamics specify by death and migration

rates, namely µ and αm, unlike our models that govern by the Hamiltonian structure

that we impose.

We must emphasise that the paring models that we have introduced, or any other

aggregate models, are prototypes that can be used to investigate the notion of emer-

gence in the state space. So, it is an interesting question to find how the new defini-

tion of emergence can be revisited in immigration processes, however, it is not the

intention and goal of our study.
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3.9 Conclusion

This chapter derived two probability distributions, namely Pn(np) and Pn(np, nh),

and their equivalent large deviation probabilities, namely Pn(mn) and Pn(mn, sn),

for B and C models, respectively. Due to emerging states and faster than the

exponential growth rate, we observed that the large deviation speeds of Pn(mn) and

Pn(mn, sn) are in order O(n lnn). In contrast, for the limiting case limn→∞ r/n =

ε, the probability distributions Pε(mn) and Pε(mn, sn) have linear large deviation

speed, or O(n).

One significant result of this chapter is the normalisation constant recursive relation

in equation (3.46), which resembles the pairing model recursive relation in equation

(2.9). We argue that this property must generally be valid for every n-tet compound-

ing mechanism. Recall that the state space recursive relation in equation (2.9) was

based on a combinatorial argument, and the degeneracies in the probability distri-

butions in equation (2.15) are also based on the same argument, which resulted in

equation (3.46).

Therefore, the state space geometry of compounding mechanisms encodes as a re-

cursive relation like equation (2.37). Moreover, a probability distribution with its

normalisation constant must exist that governs by a recursive equation. Apart from

that, the normalisation constant in equation (3.38) is a polynomial with degenera-

cies as its coefficients. So do the normalisation constants of other compounding

mechanisms.

In addition, the normalisation constant’s polynomial imposed the form of the Bayesian

conjugate prior. Thus, replacing it with other compounding mechanisms introduces

a class of well-defined conjugate priors. Hence, again, we see that starting from

the emerging states based on the compounding mechanism has far-reaching conse-

quences in the mathematical forms down the line.

As we mentioned at the start of this chapter, the B and C models’ averages exhibit

second-order phase transition[8]. To be precise, defining the ratio of the number of

stand-alone elements to the total as

m
′

n ≡ 1−mn =
ns
n
, (3.227)
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in thermodynamic limit, the averages with respect to Pn(mn) or Pn(mn, sn) finds

lim
n→∞
〈m′n〉 = 0. (3.228)

Simultaneously, the same averages for the corresponding distributions Pε(mn) and

Pε(mn, sn) are non-zero

lim
n→∞
〈m′n〉 = 1− e−

√
ε. (3.229)

Likewise, the order parameters of the second-order phase transition have the same

property. Due to this observation, assume a secondary model that utilises the pairing

mechanism as its building blocks such that some other internal mechanism controls

the parameter r. If the mechanism changes the scaling property of r, the phase

transition must occur with the number of stand-alone elements as its order param-

eter.

Lastly, in light of the results in the large deviation section, we review the additivity

of the pairing models further. Recall that the large deviation probability of Pn(mn)

in equation (3.63) writes

lim
n→∞

− 1

n lnn
lnPn(mn) =

1−mn

2
. (3.230)

As a first step and based on the asymptotic extensivity definition in section (1.3) we

ask what other continuous, strictly increasing function f(.) can be replaced by the

logarithm of Pn(mn) such that the speed of LDP – n lnn – is replaced by a linear

speed n?

lim
n→∞

− 1

n
f(Pn(mn)) <∞. (3.231)

One might propose to replace the natural logarithm with the logarithm base n. We

see that since logarithms satisfy the identity

lnn(x) =
ln(x)

ln(n)
, (3.232)

the LDP limit writes as

lim
n→∞

− 1

n
lnn Pn(mn) =

1−mn

2
, (3.233)

and the function f(x) ≡ lnn(x). However, f(x) is a class of functions that parametrises

by the system size, n, and therefore, different than a single size-independent func-

tion. Furthermore, we will see there is a second possibility. Using equation (3.59),
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we write

lnPn(mn) = −(
1−mn

2
)n lnn− n

2

[
mn lnmn + (1−mn) ln

(1−mn)2

er

]
+O(

√
n)

= −n(1−mn)

2
ln
n(1−mn)

2
+
n

2
H(mn)− n(1−mn)

2
ln

2

er
+O(

√
n), (3.234)

where H(mn) is Shannon entropy of mn, explained in equation (3.60). Consequently,

if we define the transformation function as

φ(x) =

eL(−x) x ≤ 0

eL(x) x > 0
, (3.235)

and its inverse as

φ−1(x) =

−L−1(lnx) x ≤ 0

L−1(lnx) x > 0
, (3.236)

where L(x) is the Lambert function2, we find

lim
n→∞

1

n
φ(− lnPn(mn)) = lim

n→∞

1

n
eL(− lnPn(mn)) =

(1−mn)

2
. (3.238)

The last result is the limit of the transformed large deviation with speed n. So,

one can say this transformation makes the logarithm of the probability distribu-

tion Pn(mn) asymptotically extensive. It is interesting to mention that, the same

conjugate functions transform lnPn(mn, sn) to an asymptotically extensive quantity.

Mathematically, using a different one-to-one function other than logarithm to write

the large deviation limit might seem as not more than a triviality. However, in

chapter (5), we will see its applicability for a system with dynamics, specifically,

statistical mechanics systems. Despite the seeming triviality, the large deviation

estimate and its rate function are unaffected by the φ(x) transformation. e.g., the

position of the rate function maximum, or the distribution expectation, is the same

in the transformed case and written as

Pn(mn) � e−L
−1(lnnI(mn)). (3.239)

2The Lambert L function is defined as

L(x lnx) = lnx. (3.237)
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To finish this chapter, we show that the logarithm of the normalisation constant

ln cn(r) is asymptotically extensive when it is transformed by φ(x)

lim
n→∞

1

n
φ(ln cn(r)) = lim

n→∞

eL(ln cn(r))

n
=

1

2
. (3.240)

Also, we find the limit of the transformed degeneracy in equation (2.15), Wn(np).

First, observe that

ln(Wn(mn)) =
mn

2
n lnn− n

2

[
mn ln

mn

p
+ 2(1−mn) ln

1−mn

s
+mn

]

=
nmn

2
ln
nmn

2
− n

2

[
mn ln

m2
n

p
+ (1−mn) ln

(
1−mn

s

)2

+mn

]
. (3.241)

Then, the limit writes as

lim
n→∞

1

n
φ(lnWn(mn)) = lim

n→∞

eL(lnWn(mn))

n

= lim
n→∞

eL(nmn
2

ln nmn
2

)

n

= lim
n→∞

eln nmn
2

n
=
mn

2
. (3.242)

We will use the last result in chapter (5).
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Chapter

FOUR

Pairing Models in Information

Theory

The probability distributions that we studied in the previous chapter provide an op-

portunity to explore the state space emergence through information-theoretic mea-

sures, such as Shannon entropy, mutual information, and joint entropy [15, 45].

Before reporting the results, let us elaborate on the goals that we will follow in

this chapter. Ideally, suppose in comparison to typical systems, complex systems

have inherently different emergent properties. In that case, measures for a complex

system deviate from their usual counterparts, and we assert that the deviation is due

to emergent properties. We must emphasise that the deviation we are looking for is

in the mathematical form of the measures, which might be some additional terms

in the formula. Consequently, by studying quantities of information for emergent

systems, one can look for features specific to complex systems as a new or extra

term compared to well-known results.

Apparently, this goal is achievable since we have pairing probability distributions,

and more importantly, most of their relevant statistics are expressible in closed

form, and as a result, it is possible to study the pertinent quantities analytically.

At the same time, we need to select a so-called typical system such that its inherent

properties be relevant to the pairing models and their state spaces.
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At this stage, it is evident that the Binomial distribution has a Cartesian state space.

Consequently, the states of its constituent elements are statistically independent, and

its statistical and information-theoretic quantities are expressible in closed form.

In addition, numerous mathematical models constitute a binary random variable

and are modelled based on the Binomial distribution. Due to its simplicity and

ubiquity, we use the Binomial distribution as a benchmark to show the deviation in

mathematical form.

Meanwhile, emergent properties of the pairing models can inspire us to look at some

theorems and applications in information theory from a new angle. To do so, we

shall construct a transmission model with a pairing time series and show for this

model that the rate entropy [15, 42, 45] is a well-defined quantity under certain

assumptions.

In this brand-new transmission model, the pairing time series distinguishes from the

usual one so that the momentary state of the received signal can carry with certainty

the value of the signal in the future. Furthermore, we shall see the Shannon entropy

results in converging rate entropy depending on the distance distribution between

paired elements.

4.1 Information-theoretic Measures

The Shannon entropy [15, 45] measures the associated uncertainty for a random

variable, given its probability distribution function. So, for a set of probability

distributions of system size n, denoted by Pn, the Shannon entropy is a functional

such that

H[Pn] : Pn → R+ ∪ {0}, (4.1)

and is defined as

H[Pn] = −
∑
i

pi ln pi, pi ∈ Pn. (4.2)

Besides, for a system with n statistically independent elements, each with two states

– say head and tail – Bernoulli random variables describe the randomness in obser-

vations – we call them Bernoulli coins. In contrast, if they are pairing balls or coins,

one can use statistical random variables introduced in the previous chapter. At the

same time, the states of Bernoulli coins are independent of the rest of the system,

and if the head and tail probabilities are equal to (ρ, 1−ρ) respectively, the entropy
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finds as

H[(ρ, 1− ρ)] = −ρ ln ρ− (1− ρ) ln(1− ρ). (4.3)

On the contrary, in pairing models, the state of a single element is system-dependent.

Thus, using marginals in equation (3.129) from chapter (3), one can write the entropy

of a single pairing ball as

HB[Pn(Xl)] = −〈2np
n
〉 ln〈2np

n
〉 − (1− 〈2np

n
〉) ln(1− 〈2np

n
〉), (4.4)

and similarly, by using equation (3.145) for a single pairing coin the entropy is equal

to

HC [Pn(Xl)] = −〈2np
n
〉 ln〈2np

n
〉 − (1− 〈2np

n
〉) ln(1− 〈2np

n
〉)

− (1− 〈2np
n
〉)(ρ ln ρ+ (1− ρ) ln(1− ρ)). (4.5)

Interestingly, the pairing mechanism changes the entropy of the Bernoulli coin from

a local quantity to a system-dependent one in the pairing ball case since the mean

values in the derived equations above are system-dependent. Meanwhile, later we

will derive that entropy is decomposable to a pairing effect and a Bernoulli effect

for a pairing coin

HC [Pn(Xl)] = HB[Pn(Xl)] + 〈ns
n
〉H[(ρ, 1− ρ)], (4.6)

where 〈ns
n
〉 = 1−〈2np

n
〉 is the average of the ratio of elements in a stand-alone state.

Furthermore, unlike Bernoulli’s entropy, the system-dependency of pairing entropies

has an asymptotic leading term when 1� n. For example, for HB[Pn(Xl)], we will

show

HB[Pn(Xl)] =

√
r

n

[
1− ln

√
r

n

]
+O(

1

n
), (4.7)

and for HC [Pn(Xl)]

HC [Pn(Xl)] =

√
r

n

[
1− ln

√
r

n
+H[(ρ, 1− ρ)]

]
+O(

1

n
). (4.8)

This introductory explanation can give us the general theme of what we should

expect in the following parts: We first study information-theoretic quantities of

paring random variables and then compare them to an ordinary one. Next, we

derive the asymptotic leading term and discuss its consequence and interpretation
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provided system size effects.

The asymptotic entropies of a handful of pairing random variables are microscopic

quantities since they belong to a minuscule subsystem inside a macroscopic system

(assuming 1� n). Thus, for 1� n, based on the number of random variables of a

quantity and their relative size to the system, we can classify the derived measure as

microscopic, mesoscopic or macroscopic. e.g. if k represents the number of random

variables in, say, joint entropy, k = O(1) is microscopic, k = O(
√
n) is mesoscopic,

and k = O(n) is macroscopic. Therefore, we shall use the joint entropy for two or

more elements to study the spectrum of subsystem sizes using the joint distribution

we derived in section (3.5).

Nonetheless, for macroscopic entities, we study the ensemble entropy over the proba-

bilities of all configurations. Let us elaborate on the difference between the ensemble

entropy and the entropy of a system-wide random quantity like the number of heads

by giving an example for Bernoulli coins: the probability of observing a given con-

figuration as a sequence of head and tail states is

Pi = ρnh(1− ρ)n−nh , (4.9)

for 2n distinct configurations. So, the ensemble entropy finds as

H[Bern] = −
2n∑
i=1

ρnh(1− ρ)n−nh(nh ln ρ+ (n− nh) ln(1− ρ))

= −〈nh〉 ln ρ− (n− 〈nh〉) ln(1− ρ), (4.10)

and since 〈nh〉 = nρ, it simplifies to

H[Bern] = nH[(ρ, 1− ρ)]. (4.11)

At the same time, the Binomial distribution for the number of heads, denoted by

nh, is defined as

Binn(nh) =

(
n

nh

)
ρnh(1− ρ)n−nh . (4.12)

However, nh is a system-wide quantity, and its entropy derives as

H[Binn(nh)] = −
n∑

nh=0

(
n

nh

)
ρnh(1− ρ)n−nh(nh ln ρ+ (n− nh) ln(1− ρ) + ln

(
n

nh

)
)
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= H[Bern] + 〈lnnh!〉+ 〈ln(n− nh)!〉 − lnn!, (4.13)

which is different from the ensemble entropy. In essence, the point we try to make

here is that the ensemble entropy has a subtle difference from its corresponding

random variable’s entropy, H[Binn(nh)]. This situation is more pronounced for the

B-model when the probability of configurations writes as

Pn(ci) =
rbn/2c−i

cn(r)
, (4.14)

whereas the probability of the number of pairs is

Pn(np) =

(
n

2np

)
(2np − 1)!!rbn/2c−i

cn(r)
. (4.15)

This distinction is the case for the C-model too, and we will be precise to express

which entropy we refer to in the following sections.

Before starting, we define some notations that simplify the results further in the

following parts. Recall that the Shannon entropy is a functional over the set of

probability distributions of system size n

H[Pn] : Pn → R+ ∪ {0}. (4.16)

At the same time, for k ∈ N, we define a Shannon function Hk(x1, x2, . . . , xk) :

[0, 1]k → R+ ∪ {0} as

Hk(x1, x2, . . . , xk) = −
k∑
i=1

xi lnxi − (1−
k∑
i=1

xi) ln(1−
k∑
i=1

xi). (4.17)

For instance, H2(x1) : [0, 1]→ R+ ∪ {0} is

H2(x1) = −x1 lnx1 − (1− x1) ln(1− x1), (4.18)

and H3(x1, x2) : [0, 1]2 → R+ ∪ {0} is

H3(x1, x2) = −x1 lnx1 − x2 lnx2 − (1− x1 − x2) ln(1− x2 − x2). (4.19)

Using this notation, the following entropies rewrite as

H[(ρ, 1− ρ)] = H2(ρ), (4.20)
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HB[(Pn(Xl))] = H2(〈np
n
〉), (4.21)

HC [(Pn(Xl))] = H2(〈np
n
〉) + 〈n2

n
〉H2(ρ), (4.22)

and

H[Bern] = nH2(ρ). (4.23)

4.1.1 Ensemble Entropy

This section derives the ensemble entropy of pairing models. In appendix (C.1.2),

in equation (C.9), we see that the ensemble entropy for the B-model is

HB[Pn] = 〈np〉n ln r +
n−1∑
i=1

ln(1 +
〈ns〉i
r

), (4.24)

in which, 〈ns〉x denotes the average number of stand-alone elements for a system

size x. Hence, it must be recognisable in much the same way the kth moment

was derived in equation (3.111), here, the entropy is expressed in terms of the first

moment of smaller system sizes.

Likewise, for the C-model, equation (C.16) finds the ensemble entropy as

HC [Pn] = HB[Pn] + 〈ns〉H2(ρ). (4.25)

The term H2(ρ) on the right-hand side is the entropy of a Bernoulli sequence in

equation (4.23). Therefore, the C-model’s entropy decomposes to the sum of the

B-model and the Bernoulli’s sequence entropies

HC [Pn] = HB[Pn] + 〈ns
n
〉H[Bern]. (4.26)

This result proves that the C-model’s entropy is an additive quantity of its con-

structive mechanisms, namely pairing and Bernoulli, even if the HB[Pn] part might

not be additive itself. Besides, the effect of the pairing mechanism is decomposable

into a purely pairs entropy (HB[Pn]) and a normal binary states entropy (H[Bern])

whenever the Bernoulli part is scaled by the average ratio of elements in a stand-

alone state. This result is understandable since only these elements are in a head or

tail state.

Recall that r is a free parameter that defines the ratio of abundance of stand-alone

124



4.1: Information-theoretic Measures

elements to pair ones. Accordingly, the limit r → ∞ is equivalent to removing the

pairing mechanism from the model, whereas r → 0 forces all elements into a pair

state. In the following parts, we first look at both cases and study their effect on

entropies, and further, we will explain a qualitative picture of the obtained results.

4.1.1.1 The limiting case r →∞

Without the pairing mechanism, all the B-model elements are in a stand-alone state,

so only one configuration must be allowed, and consequently, the entropy must be

zero. To show that, let us start from the probability distribution of this case. Since

the probability of a configuration with np pairs is

Pn(cnp) =
rb

n
2
c−np∑bn/2c

i=0

(
n
2i

)
(2i− 1)!!rbn/2c−i

, (4.27)

then, for constant n

lim
r→∞

Pn(cnp) = lim
r→∞

rb
n
2
c−np

rbn/2c
=

{
1 , np = 0

0 , np > 0
. (4.28)

Clearly, from the definition of entropy (−
∑

i pi ln pi) the last result implies

lim
r→∞

H[Pn(cnp)] = 0. (4.29)

Also, equation (4.28) asserts that we must have

〈ns〉n = n+O(
1

r
), 〈np〉n = 0 +O(

1

r
), (4.30)

and hence, for constant n, we get the same result from equation (4.24)

lim
r→∞

[
〈np〉n ln r +

n−1∑
i=1

ln(1 +
〈ns〉i
r

)

]
→ 0, (4.31)

as expected. For the B-model, the probability of observing a configuration with np

pairs and nh heads is

Pn(cnp,nh) =
rb

n
2
c−iρj(1− ρ)n−2i−j∑bn/2c

i=0

(
n
2i

)
(2i− 1)!!rbn/2c−i

, (4.32)
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and therefore,

lim
r→∞

Pn(cnp,nh) = lim
r→∞

rb
n
2
c−np

rbn/2c
ρnh(1− ρ)n−2np−nh

=

{
ρnh(1− ρ)n−nh , np = 0

0 , np > 0
, (4.33)

which is the probability of observing a sequence of Bernoulli random variables with

nh heads. To check that in the limit HC [Pn] is equal to the Bernoulli entropy, recall

the average number of heads in the Binomial distribution is 〈nh〉n = nρ. Meanwhile,

for this limiting case, we showed HB[Pn] = 0 and 〈ns〉n = n in equations (4.30) and

(4.29), respectively. Hence, equation (4.26) writes

lim
r→∞

HC [Pn] = H[Bern]. (4.34)

4.1.1.2 The limiting case r → 0

Similar to the previous section, for r → 0 and constant n, we have

lim
r→0

Pn(cnp) = lim
r→0

rb
n
2
c−np∑bn/2c

i=0

(
n
2i

)
(2i− 1)!!rbn/2c−i

=

{
1

(n−1)!!
, np = bn

2
c

0 , otherwise
, (4.35)

1 and

〈ns〉n = 0 +O(r), 〈np〉n = bn
2
c+O(r), (4.36)

which for (n− 1)!! distinct configurations with equal probabilities we get

lim
r→0

HB[Pn] = ln(n− 1)!!. (4.37)

As a side note, it is not clear at first sight how in the limit r → 0, equation (4.24)

becomes zero. Therefore, we have to return to equation (C.7), from which we derived

1In fact, for even 2ns it finds as(
2n

2n

)
(2n− 1)!! = (2n− 1)!!,

and for odd 2n− 1, it is (
2n− 1

2b 2n−12 c

)
(2b2n− 1

2
c − 1)!! = (2n− 1)!!.

So, for every two consecutive odd and even numbers, we get the same limit.
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equation (4.24)

HB[Pn] =
[
〈np〉n − b

n

2
c
]

ln r + ln cn(r). (4.38)

We see that in the limit r → 0, the term
[
〈np〉n − bn2 c

]
ln r approaches zero, since

the 〈np〉n − bn2 c has the order O(r). Meanwhile,

lim
r→0

cn(r)→ (n− 1)!!, (4.39)

which implies

lim
r→0

HB[Pn] = lim
r→0

[
〈np〉n − b

n

2
c
]

ln r + ln cn(r)→ ln(n− 1)!!, (4.40)

as expected.

For the C-model, when n is even2, we get

lim
r→0

Pn(cnp,nh) = lim
r→0

r
n
2
−npρnh(1− ρ)n−2np−nh∑n/2
i=0

(
n
2i

)
(2i− 1)!!rn/2−i

=

{
1

(n−1)!!
, np = n

2
, nh = 0

0 , otherwise
. (4.43)

Consequently,

〈ns〉n = 0 +O(r), 〈np〉n =
n

2
+O(r), 〈nh〉n = 0 +O(r) (4.44)

and

lim
r→0

HC [Pn] = ln(n− 1)!!. (4.45)

2For odd n we have

lim
r→0

Pn(cnp,nh
) =


ρ

(n−1)!! , np = bn2 c, nh = 1
(1−ρ)
(n−1)!! , np = bn2 c, nh = 0

0 , otherwise

, (4.41)

and
lim
r→0

HC [Pn] = ln(n− 1)!! +H2(ρ). (4.42)
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4.1.1.3 Maximum of HB[Pn]

HB[Pn] is an r-dependent, non-negative, continuous function, and let us say its

maximum value happens in its domain at r∗ ∈ [0,∞). In appendix (C.1.4), equation

(C.19) finds the derivative of HB[Pn], and by setting it equal to zero, we find its

maximum location for constant n as

dHB[Pn]

dr
= (〈np〉2n − 〈n2

p〉n) ln r = 0 =⇒ r∗ = 1. (4.46)

Recall that r equal to one corresponds to a uniform distribution over all the config-

urations.

4.1.1.4 Ensemble entropy: Conclusion

Previous results show that the ensemble entropies for both models are well defined.

Moreover, the choice of the parameter r controls the strength of the pairing mech-

anism on the entropy, e.g., in the limit r →∞, the pairing mechanism is removed.

To have a qualitative understanding of the calculated quantities, figure (4.1) shows

the entropy of the B-model for different system sizes. We see the entropy is ap-

proaching zero for r →∞, and is maximum at r∗ = 1, whilst it is equal to ln(2n−1)!!

for both sizes 2n− 1 and 2n.

Also, we can see in figure (??) entropy increases when the system size increases.

However, unlike entropies in Cartesian spaces, it does not grow linearly with the

system size. To elaborate, recall the entropy of a Bernoulli sequence is

H[Bern] = nH2(ρ), (4.47)

and it has a Cartesian state space. Consequently, since the term H2(ρ) is the entropy

of a single element and is constant, Bernoulli’s entropy is of order H[Bern] = O(n).

On the other hand, in appendix (C.2), equation (C.22) obtains the asymptotic

leading terms of HB[Pn] as

HB[Pn] ∼ n

2
ln
n

r
+O(n), (4.48)

and we see its order is O(n lnn).

Figure (4.2) plots the ensemble entropy of the C-model with respect to ρ. For ρ = 0
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or ρ = 1, we observe HC [Pn] is the same as HB[Pn] in figure (4.1). Meanwhile,

changing ρ from these two extremes moves the maximum from r∗ = 1 to higher

values. Recall that r∗ = 1 is where HB[Pn] is maximum. And finally, the overall

entropy is the highest for ρ = 1/2 in comparison to other values.

As discussed for the C-model, even when the pairing mechanism is present, the

entropy can be separated into the contribution of pairing random variables and

Bernoulli random variables, so as it manifests itself as head or tail states for stand-

alone elements. Defining the difference between HC [Pn] and Bernoulli part as

G(r, ρ) ≡ HC [Pn]− 〈ns
n
〉nH[Bern] = HB[Pn], (4.49)

we obtain a ρ-independent, continuous function. This fact is depicted in figure (4.3).

Note that since G(r, ρ) is independent of ρ, one might say that all curves overlap

for different values of ρ, which represents a universality class among all C-models.

Figure 4.1: The B-model’s Shannon entropy, H[Pn(np)], for different system sizes.

Notice that the maximum is at r = 1, and for r →∞, it approaches zero.
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Figure 4.2: The C-model’s Shannon entropy, H[Pn(np, nh)] for different ρs. Notice

that the curve is the same for ρ = 0 and ρ = 1. Also, ρ shifts the position of

the maximum entropy to r > 1.

Figure 4.3: The plot of G(r, ρ) for different values of ρ. As it is depicted, G(r, ρ)

represents a universality property and is independent of ρ.
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4.1.2 Joint Entropy

Recall that in equation (3.155), we derived the joint probability distribution for k

arbitrary elements as

Pn(X1, . . . , Xk; l) = 〈2n
(l)
p n

(k−l)
s

n(k)
〉, (4.50)

when n(k) is a falling factorial and l out of k elements are in a pair state, i.e., for a

given k-tuple (X1, . . . , Xk), we have l = k −
∑k

i=1Xi. And also, given l, there are(
k
l

)
possible combinations among the arguments of Pn(X1, . . . , Xk; l). Hence, the

joint entropy derives as

H[Pn(X1, . . . , Xk)] = −
k∑
l=0

(
k

l

)
Pn(X1, . . . , Xk; l) lnPn(X1, . . . , Xk; l)

= −
k∑
l=0

(
k

l

)
〈2n

(l)
p n

(k−l)
s

n(k)
〉 ln〈2n

(l)
p n

(k−l)
s

n(k)
〉. (4.51)

Although, in theory, this result is the joint entropy in closed form, no clear insight

can be gained about its property. At the same time, as discussed in the introduction,

for k = O(1), the joint entropy of such a small subsystem is a microscopic quantity

compared to the ensemble entropy. It is needless to say that the ensemble entropy

is equal to the joint probability for k = n. Based on this fact, it is interesting to find

the asymptotic behaviour of the joint entropy, especially for the case k ∼ O(
√
n),

in which we categorise a mesoscopic quantity.

Accordingly, for 1 � n, and by using equations (B.82) and (B.86), the asymptotic

leading terms of the ratio of pairs and stand-alone elements are

〈
(

2np
n

)k
〉 ∼ e−k

√
r/n +O(

1

n
), 〈

(ns
n

)k
〉 ∼

(
1− e−

√
r/n
)k

+O(
1

n
). (4.52)

However, to find the asymptotic leading term of the joint entropy, one needs to

evaluate the asymptotic of the falling factorial. So, we have

2np(l)n
(k−l)
s

n(k)
=

2np(2np − 1) . . . (2np− l + 1)× ns(ns − 1) . . . (ns − k + l + 1)

n(n− 1) . . . (n− k + 1)
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=
(2np)

lnk−ls +O(nl−1
p nk−l−1

s )

nk +O(nk−1)
∼
(

2np
n

)l (ns
n

)k−l
+O(

1

n
) =⇒

〈2np
(l)n

(k−l)
s

n(k)
〉 ∼ 〈

(
2np
n

)l
〉〈
(ns
n

)k−l
〉+O(

1

n
)

∼ e−l
√
r/n
(

1− e−
√
r/n
)k−l

+O(
1

n
). (4.53)

Using the last result and equation (4.51), we get

H[Pn(X1, . . . , Xk)] ∼
k∑
l=0

(
k

l

)
l

√
r

n
e−l
√

r
n

(
1− e−

√
r/n
)k−l

−
k∑
l=0

(
k

l

)
(k − l)e−l

√
r/n
(

1− e−
√
r/n
)k−l

ln
(

1− e−
√

r
n

)
, (4.54)

which in appendix (C.3), equation (C.28) finds it as

H[Pn(X1, . . . , Xk)] = k

√
r

n

[
1− ln

√
r

n

]
+O(

1

n
). (4.55)

Before discussing the consequences of the last result, let us re-examine the interpre-

tation of the joint entropy. Suppose we are studying a subsystem composed of k

elements in a system with n constituent elements. For a system with a Cartesian

state space and statistically independent elements, the subsystems’ state is unaf-

fected by the rest of the n−k other elements. Moreover, technically, the probability

distribution of the whole system is the multiplication of the distribution of both k

and n− k subsystems.

However, for non-Cartesian state spaces and statistically dependent subsystems, one

must first derive the subsystem’s joint distribution by marginalising the rest of the

system to obtain the subsystem’s entropy. In other words, the subsystem’s entropy

is identical to the joint entropy of k elements. For example, this is the case for

pairing systems.

Considering this preliminary explanation, equation (4.55) finds the entropy of a

subsystem whenever the whole system is macroscopic (1 � n). For k = 1, we get

the entropy of a single element, which is exactly the same as equation (4.7). And

as it is shown in appendix (C.3), equation (C.26) derives the joint entropy in terms
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of the entropy of a single element as

H[Pn(X1, . . . , Xk)] = kHB[Pn(X1)] +O(
1

n
). (4.56)

Therefore, for macroscopic systems, the entropy of subsystems is the additive quan-

tity of its elements’ entropy

H[Pn(X1, . . . , Xk)] =
k∑
i=1

HB[Pn(Xi)] +O(
1

n
). (4.57)

We must stress this result is valid up to mesoscopic subsystem sizes, or k = O(
√
n).

It is explained in appendix (B.9), the asymptotic leading term of 〈nkp〉 and 〈nks〉 are

valid for k = O(
√
n). Consequently, the additive result that we get here is valid up

to mesoscopic subsystem sizes.

We must remind ourselves, unlike statistically independent elements, that the en-

tropy of microscopic subsystems is system-size-dependent. In addition, when we

repeat equation (4.7) here

HB[Pn(Xl)] =

√
r

n

[
1− ln

√
r

n

]
+O(

1

n
), (4.58)

we see that in thermodynamic limit n → ∞, the entropy of a single element ap-

proaches zero. Consequently, for subsystems with size k = o(
√
n), the entropy

approaches zero too. But, for subsystems size k = O(
√
n) the entropy is finite

H[Pn(X1, . . . , Xk)] =
√
r, k = O(

√
n). (4.59)

Nonetheless, the macroscopic entropy has an order O(n lnn). So, the additivity

property cannot stay intact from mesoscopic to macroscopic sizes; what happens in

between is an open question that needs careful analysis of the asymptotic terms for

order other than O(
√
n).

4.1.3 Mutual Information

In much of the same way as the previous section, suppose a system composed of

pairing balls or coins is divided into two subsystems. When a pair happens between

elements in different subsystems, the pairing link can be considered an interaction
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between subsystems. So it is illuminating to study the mutual information between

two subsystems and find its dependence in inter-system pairs. We found the sys-

tem’s ensemble entropy and its subsystems in the previous section as a measure of

uncertainty/information about the system and its sub-components. Nevertheless,

the mutual information is equivalent to the information content of one subsystem

about the other one [61].

This part will derive the mutual information of two kinds of system decomposition

for a system of pairing balls. In the first case, a system with n elements, namely

Sn, is divided into Sn−1 and S1 subsystems, containing n− 1 and a single element,

respectively. We denote the mutual information by In(Sn−1, S1), and eventually,

since all elements are identical, the mutual information of each is the same with

respect to every other one as a whole. Also, for 1� n, In(Sn−1, S1) is the information

contribution of a microscopic element to a macroscopic one.

In the second case, we will derive the mutual information between two arbitrary

balls, or In(S1, S1). One can do further and derive higher-order interactions by

including three or more elements. In general, interaction information [72] is defined

as

In(X1, X2, . . . , Xk) =
∑

T⊆{X1,X2,...,Xk}

(−1)|T |−1HB[T ], (4.60)

where T runs over all the subset of {X1, X2, . . . , Xk}, and |T | is its cardinality. Note

that, for n = 2, the interaction information is identical to the mutual information.

4.1.3.1 Finding In(Sn−1, S1)

The mutual information of the subsystems Sn−1 and S1 is defined as

In(Sn−1, S1) = HB[Pn(X1)]−HB[Pn(X1|np)], (4.61)

where H[Pn(X1)] is the entropy of a single element and H[Pn(X1|np)] is the entropy

of a single element conditioned on the remaining part of the system. It is necessary

to write down the marginal distribution of a single element to find the first term

and the conditional distribution of a single element given the number of pairs for

the second term. We have already obtained the marginal entropy in equation (4.21)

as

HB[Pn(X1)] = H2(〈np
n
〉). (4.62)
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Note that H2(〈2np
n
〉) is the Shannon function evaluated at 〈2np

n
〉 ∈ [0, 1] – equation

(4.18). In other words, if we interpret 〈2np
n
〉 like a probability, H2(〈2np

n
〉) is its

Shannon entropy.

However, the quantity 〈2np
n
〉 is a system-wide average and a global quantity for the

system, and in the case 1� n, this is a macroscopic quantity. So we can say that a

single element’s entropy is equal to the Shannon entropy evaluated at the value of the

macroscopic quantity 〈2np
n
〉 for the whole system. To emphasis the size-dependency,

we use the subscript on 〈2np
n
〉n and write

HB[Pn(X1)] = H2

(
〈2np
n
〉n
)
. (4.63)

Next, equation (3.148) derives the conditional distribution as

Pn(X1|np) =

{
2np
n

, X1 = 0
n−2np
n

, X1 = 1
, (4.64)

and the conditional entropy, H[Pn(X1|np)], must be equal to

H[Pn(X1|np)] = −
bn/2c∑
np=0

Pn(np)
1∑

Xl=0

Pn(X1|np) lnPn(X1|np)

= −
bn/2c∑
np=0

(
n

2np

)
(2np − 1)!!

rbn/2c−np

cn(r)

[
2np
n

ln
2np
n

+ (1− 2np
n

) ln(1− 2np
n

)

]

= 〈−2np
n

ln
2np
n
− (1− 2np

n
) ln(1− 2np

n
)〉n = 〈H2(

2np
n

)〉n. (4.65)

Finally, the mutual information writes as

In(Sn−1, S1) = H2

(
〈2np
n
〉n
)
−
〈
H2(

2np
n

)

〉
n

. (4.66)

To put it as a sentence, the mutual information between each element and the rest

of the system is equal to the Shannon function of the macroscopic quantity 〈2np
n
〉n

minus the ensemble average of the Shannon function at 2np
n

of the microstates.

In Appendix (C.5), equation (C.37) expands In(Sn−1, S1) as a power series in terms
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of 〈2np/n〉 and 〈ns/n〉 like

In(Sn−1, S1) =
∑
k≥2

〈(2np
n

)k〉 − 〈2np
n
〉k + 〈(ns

n
)k〉 − 〈ns

n
〉k

k(k − 1)
. (4.67)

This power series is converging fast, by which one can find a numerical estimation for

both In(Sn−1, S1) and 〈H2(2np
n

)〉n. Check appendix (C.5) for details. Also, equation

(C.40) obtains the asymptotic leading term as

In(Sn−1, S1) ∼ 1

n
+O(

1

n2
). (4.68)

Subsequently, this result implies that increasing the system size reduces the mutual

information, and in the limit n → ∞, it approaches zero. In other words, the

information about S1 reduces the uncertainty about the whole system. Nevertheless,

when the system size increases, the information about the whole system from a single

element is negligible, as expected.

4.1.3.2 Finding Interaction Information

This part first finds the mutual information, In(S1, S1), and then moves to derive

the interaction information. For the B-model, the mutual information between two

elements equals

In(S1, S1) = HB[Pn(X1)] +HB[Pn(X2)]−HB[Pn(X1, X2)],

= 2HB[Pn(X1)]−HB[Pn(X1, X2)], (4.69)

where X1 and X2 are the random variables representing the states of two arbitrary

indices. Note that, since the marginal of a single element is the same for all indices,

we used HB[Pn(X1)] +HB[Pn(X2)] = 2HB[Pn(X1)] in the last step.

Equation (3.152) derives the marginal for two elements as

Pn(X1, X2) =


〈2np(2np−1)

n(n−1)
〉 , Xl = Xk = 0

〈 2npns
n(n−1)

〉 , Xl = 1, Xk = 0

〈 2npns
n(n−1)

〉 , Xl = 0, Xk = 1

〈ns(ns−1)
n(n−1)

〉 , Xl = Xk = 1

. (4.70)

Observe that the terms in Pn(X1, X2) entries show a pattern. For example, the term
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〈2np(2np−1)〉n is quadratic in 2np, but it is neither a second moment nor a cumulant.

Instead, the falling factorial 〈2np(2np− 1)〉n equals the correlation between 2np, the

number of pairs in the system, and 2np − 1, the number of pairs after removing the

first one. Moreover, the identity

〈2np(2np − 1)〉n + 2〈2npns〉n + 〈ns(ns − 1)〉n = n(n− 1), (4.71)

implies for a system size n, knowing two of these quantities are enough to find the

third one. So that, using the definition of H3(x, y), the joint entropy writes as

H[Pn(X1, X2)] = H3

(
〈2np
n

(2np − 1)

(n− 1)
〉n, 〈

ns
n

(ns − 1)

(n− 1)
〉n
)
. (4.72)

Finally, the mutual entropy is

In(S1, S1) = 2H2

(
〈2np
n
〉n
)
−H3

(
〈2np
n

(2np − 1)

(n− 1)
〉n, 〈

ns
n

(ns − 1)

(n− 1)
〉n
)
. (4.73)

Asymptotically, for 1 � n, equation (4.56) writes the asymptotic expansion of

H[Pn(X1, X2)] as

H[Pn(X1, X2)] = 2HB[Pn(X1)] +O(
1

n
), (4.74)

and therefore,

In(S1, S1) = 0 +O(
1

n
). (4.75)

In short, the mutual information is negligible for large systems, and the knowledge

about an element does not obtain any information about another randomly selected

one.

Next, to derive higher-order interactions by including three or more elements, we

derive the interaction information or information correlation [72], which is defined

as

In(X1, X2, . . . , Xk) =
∑

T⊆{X1,X2,...,Xk}

(−1)|T |−1HB[T ], (4.76)

where T runs over all the subset of {X1, X2, . . . , Xk}, and |T | is its cardinality.

Observe that the marginal in equation (3.155) is the same for all elements in different

indices

Pn(X1, . . . , Xk; l) = 〈2np
(l)n

(k−l)
s

n(k)
〉. (4.77)

Using this fact and considering the cardinality of the subsets, say
(
k
i

)
, the interaction
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information equals to

I(X1, X2, . . . , Xk) =
k∑
i=1

(−1)i−1

(
k

i

)
HB[Pn(X1, . . . , Xi)]. (4.78)

But, the joint entropy HB[Pn(X1, . . . , Xi)] writes as

H[Pn(X1, . . . , Xi)] = −
i∑
l=0

(
i

l

)
Pn(X1, . . . , Xi; l) lnPn(X1, . . . , Xi; l)

= −
i∑
l=0

(
i

l

)
〈2np

(l)n
(i−l)
s

n(i)
〉 ln〈2np

(l)n
(i−l)
s

n(i)
〉, (4.79)

where
(
i
l

)
is the cardinality of the i-tuple when l = i −

∑
j Xj. Therefore, The

interaction information derives as

In(X1, X2, . . . , Xk) = −
k∑
i=1

(−1)i−1

(
k

i

) i∑
l=0

(
i

l

)
〈2np

(l)n
(i−l)
s

n(i)
〉 ln〈2np

(l)n
(i−l)
s

n(i)
〉.

(4.80)

Again, no insight is directly gained from this result. However, we can study the

asymptotic form of the interaction information, and by using equation (4.56), the

asymptotic expansion of H[Pn(X1, . . . , Xk)] is equal to

H[Pn(X1, . . . , Xk)] = kHB[Pn(X1)] +O(
1

n
). (4.81)

Therefore, the asymptotic expansion of the interaction information obtains as

In(X1, X2, . . . , Xk) =
k∑
i=1

(−1)i−1

(
k

i

)
iHB[Pn(X1)] +O(

1

n
)

= kHB[Pn(X1)]
k∑
i=1

(
k − 1

i− 1

)
(−1)i−1 +O(

1

n
)

kHB[Pn(X1)](1− 1)k−1 +O(
1

n
) = 0 +O(

1

n
). (4.82)

So, for a large system size, the interaction information is negligible for any number

of elements up to the mesoscopic scale, k ∼ O(
√
n). One can say pairing models

do not exhibit higher-order information correlation. It seems reasonable since the

pairs are the most complex entity constructed in the pairing mechanism. So, for
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large system sizes, pairs and stand-alone elements are the only atomic structures

that exist. It is an interesting open question to study the interaction information

when we include a variety of compounding mechanisms.

4.1.4 Non-extensive Entropies

Both B and C probability distributions are polynomials of a single variable r. For

entropies written in terms of probabilities’ power, such as Rényi’s and Tsallis en-

tropies, this form is conveniently written in closed form. Also, later in the coming

section for pairing time series, we will discuss the non-extensivity property of Rényi’s

and Tsallis entropies, and therefore, it is helpful to write them in terms of pairing

models probability distribution.

4.1.4.1 Tsallis Entropy

Tsallis’s entropy [67] is defined as

Hq[Pn] =
1

q − 1

1−
W (n)∑
i=1

pqi

 , (4.83)

for positive q 6= 1, where W (n) is the number of elements in the state space. In

appendix (C.7), equation (C.42), for B-model we find

Hq[Pn] =
1

q − 1

(
1− cn(rq)

cqn(r)

)
. (4.84)

For the C-Model, equation (C.45) derives it as

Hα[Pn] =
1

q − 1

(
1− cn(rq [ρq + (1− ρ)q]2)

cqn(r)

)
. (4.85)

4.1.4.2 Rényi’s Entropy

Rényi’s entropy [56] is defined as

Hα[Pn] = − 1

1− α
ln

W (n)∑
i=1

pαi

 , (4.86)
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for positive α 6= 1, where W (n) is the number of elements in the state space. In

appendix (C.6), equation (C.41), for B-model we find

Hα[Pn] = − ln cn(rα)− α ln cn(r)

1− α
. (4.87)

Recall that cn(rα) is a polynomial degree n, evaluates at rα. And for the C-Model,

it derives as

Hα[Pn] = − ln cn(rα [ρα + (1− ρ)α]2)− αcn(r)

1− α
. (4.88)

Again, cn(rα [ρα + (1− ρ)α]2) is a polynomial degree n, evaluates at rα [ρα + (1− ρ)α]2.

4.2 Pairing Time Series

4.2.1 Introduction

Pairing models are intuitively simple and fortunately have quantities that can be

expressed in closed form. This combination opens up opportunities to use them as

the building block of other mathematical models. To show that, we will propose a

transmission model with a pairing time series.

The pairing time series distinguishes from the ordinary time series so that the current

state of the received signal can carry a definite value of the state of the signal in the

future. To a certain extent, one can find time series with similar properties in the

real world.

For example, imagine a faulty mechanical clock such that now and then its hand

ticks backwards. So, the clock’s time series can be modelled as a Bernoulli sequence

of successful or failed ticks – see figure (4.4). Next, suppose a mechanical constraint

like a cogwheel forces the clock to fail once again exactly after one rotation of the

wheel, or equivalently, exactly after some pre-determined number of ticks. Therefore,

regarding the clock behaviour, the first failed tick indicates the subsequent failure

in the future, although other backward ticks can happen by chance between these

two moments.
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Figure 4.4: Left panel: A faulty clock that randomly fails. Right panel: A

faulty clock repeats itself. After the first backward tick, the next one happens

at a pre-determined number of ticks since the cogwheel mechanism forces it to

repeat itself.

We can even think of more than one cogwheel and more than one type of failed state.

Thus, different types of backward ticks repeat once more with different duration or,

say, make a pair with a different moment in future. Nevertheless, the pairing time

series works the same.

While such a paring time series can have applications in the real world, at the same

time, we shall see under some assumptions for infinite time series that the Shannon

entropy of a single moment becomes undefined. Also, without providing proof, we

will propose a scheme that might resolve this problem with non-extensive entropies.

Despite this failure, we have to remark that the Shannon entropy is well behaved

for a large class of conditions, and a pairing time series can be utilised in modelling.

Non-extensive entropies have been introduced in publications for many years [20],

and the criteria to choose them are not clear cut. However, at least for this model,

there is no doubt that the Shannon entropy is problematic, and non-extensive ones

might have their merits.

All in all, the pairing time series is an example that paring models, in general, have

the potential not just to impose interesting mathematical questions but also to be

the building block of practically valuable models. Nevertheless, they can show the

limit of the applicability of information-theoretic quantities like Shannon entropy,

which is usually accepted as universally valid.
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After this preliminary introduction, let us make our definition mathematically pre-

cise. Intuitively, a configuration that is composed of pairing coins can be arranged

in space. Moreover, when elements are ordered along one dimension, by definition,

pairing between any two elements is possible, irrespective of the distance between

them.

For example, in figure (4.5), the head and tail states are represented by up and

down arrows, respectively, and the pairs that are denoted by P are linked along a

one-dimensional string of pairing coins.

Let us replace the tail and head states with 0 and 1. Moreover, pair coins can be

replaced by a number that represents the distance between them (figure 4.5, 4.6

and 4.7). So, the set AL = {0, 1, 2, . . . , L} is the alphabet that constructs all the

admissible strings composed of pairing coins for any configuration with length L.

Figure 4.5: An example of paring coins configuration.

Figure 4.6: Labelling pair coins by the distance between them.

Figure 4.7: Replacing the configuration in figure (4.5) with its elements corre-

sponding alphabets.
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Note that the set of all possible strings that one can construct by AL is larger than

the admissible pairing coins strings. To be precise, the volume of the former is LL+1,

and the latter one is (L/e)L/2.

For instance, although “222” is a string constructed by elements of A3, this is not

an admissible pairing coin string. The reason for rejecting the admissibility of this

configuration is understood if one considers two coins at each end of the configuration

link to the middle one. The C-model requires at most two coins in a pair state with

each other.

Generally, ordering binary random variables in time constructs a stochastic time

series. Let’s say there is a receiver that can register the arrival of these random

variables in discrete time steps. So, each recorded string is a realisation of the

stochastic process. Then, we may ask, is it possible to order a pairing coin string

in time? What does that mean to say two random variables make a pair by each

other along the arrow of time? To elaborate on the new model, let us assume that

Xt ∈ AL is a random variable that the subscript t denotes its time-step index. In

other words, it is ordered in time, and the receiver gets a new input at each step t.

See figure (4.8).

Figure 4.8: At the time t, the random viable Xt arrives at the receiver.

When Xt ∈ {0, 1}, we have a usual binary random variable. However, when Xt > 1,

the future value at index t + Xt − 1 will be the same as the current one (figure

4.9). In other words, there is no uncertainty at time step t + Xt − 1 whenever the

receiver registers a random variable Xt > 1 at time t. This assumption is equivalent

to having the two states as a pair.

Figure 4.9: A random variable Xt can make a pair with the one that is Xt − 1

steps away in the future. In other words, after receiving Xt at t, the receiver

certainly gets Xt once more at time step t+Xt − 1.
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Therefore, the time series is a mixture of randomness and deterministic inputs. For

example, in figure (4.10) at time t (between two dashed lines), we see that future

states are partially known based on what has been already seen in the past, while

other future states are uncertain.

Figure 4.10: The receiver has observed values in the past up to the time-step t

(between dashed lines). The state at t and t + 1 is definite, although farther

than that is uncertain.

After this introduction, in what follows, we shall look at a model of pairing time

series to show the possibility of mixing certainty and uncertainty in the explained

fashion. First, we shall see, using the Shannon entropy, one can define the rate

entropy when the length of the string approaches infinity. Later, we show that

depending on the probability distribution one imposes on the length of the pairs,

the Shannon entropy of each time-step is a well-defined quantity.

4.2.2 Enumerating admissible configurations

To enumerate the set of admissible configurations, we suppose the time series size is

finite. So, let us denote by L the maximum length of a time series. e.g., XL is the

last random variable that arrives at the receiver in figure (4.8). This assumption

permits us to take a finite alphabet, AL, to enumerate the state space.

Simultaneously, assuming that n ≤ L random variables have arrived at the receiver,

Λn denotes the state space of all admissible configurations with length n. Fur-

thermore, when the joint probability P (X1, . . . , Xn) is defined on Λn, the Shannon

entropy must be equal to

HL(X1, . . . , Xn) = −
∑

(X1,...,Xn)∈Λn

P (X1, . . . , Xn) logP (X1, . . . , Xn). (4.89)

Note that the state space of admissible configurations is not the Cartesian product
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of the alphabet set

Λn 6= A×A× · · · × A︸ ︷︷ ︸
n

= AnL. (4.90)

Therefore, we have to devise a method to enumerate the admissible configurations

properly. To make the formulas compact, we represent a sequence of n random

variables as a vector

Xn ≡ (X1, . . . , Xn). (4.91)

For example, the Shannon entropy writes as

HL(Xn) = −
∑
Xn∈Λn

P (Xn) logP (Xn). (4.92)

Also, the chain rule for the joint distribution of n random variables writes the joint

distribution as the past conditioned on the present

P (X1, X2, . . . , Xn) = P (Xn)P (X1, . . . , Xn−1|Xn), (4.93)

or in vector notation

P (Xn) = P (Xn)P (Xn−1|Xn). (4.94)

4.2.2.1 Decomposing the state space

The state-space structure, which is imposed by pairing coins’ emergent properties,

is not multiplicative. And therefore, it does not easily enumerate two independent

sums over states in the present and the past. We shall elaborate on this point

later, but first, we decompose the state space to disjoint subsets. To enumerate the

admissible configurations, we divide Λn into two disjoint subsets

Λn = Λ1
n ∪ Λ2

n, Λ1
n ∩ Λ2

n = ∅, (4.95)

such that:

• Λ1
n is a subset of configurations in which a pair exists between Xn and one and

only one time-step in the past – see figure (4.11). To emphasise that the pairs

are part of this subset, the state of the present random variable is indicated

by a left arrow over their values

Xn ∈
←−
Xn = {←−2 , . . . ,←−n }. (4.96)
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Figure 4.11: Xn is making a pair with one and only one time-step in the past. In

other words, the state of Xn has been known in the past.

• Λ2
n is a subset of configurations with no pair state between Xn and previous

ones – see figure (4.12). Hence, it can be in a head or tail state or make a pair

to a single step in the future. Similar to the first case, Xn states are indicated

by a right arrow over their values

Xn ∈
−→
Xn = {0, 1,−→2 , . . . ,

−−−−−−→
L+ 1− n}. (4.97)

Note that the most distant step from t = n is t = L+ 1− n.

Figure 4.12: Xn can be in a head or tail state or make a pair with one and only one

time-step in the future. In other words, the state of Xn contains the information

about now or carries the information about the future.

4.2.2.2 Decomposing Λ1
n

To begin the enumeration, we define a new set, namely Γ1
n−1, that contains all the

configurations in Λ1
n such that their last random variables at n are excluded – see

figure (4.13). In other words, it says elements of Γ1
n−1 are the first n − 1 states of
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configurations in Λ1
n.

Figure 4.13: Constructing Γ1
n−1 from Λ1

n.

We understand that the Cartesian product of Γ1
n−1 and

←−
Xn introduces non-admissible

configurations,

Λ1
n 6= Γ1

n−1 ×
←−
Xn, (4.98)

since every element in Γ1
n−1 makes an admissible configuration with one and only

one element in the set
←−
Xn. The consequence of this observation implies∑

Xn∈Λn

(.) 6=
∑

Xn−1∈Γ1
n−1

∑
Xn∈

←−
Xn

(.) , (4.99)

and makes the calculation of the Shannon entropy problematic.

To resolve this problem, observe that from the definition of Λ1
n every configuration

in Γ1
n−1 has a time-step in the past, say i, which makes a pair with Xn, and we can

partition Γ1
n−1 to disjoint subsets, denotes by Γ1,i

n−1, such that

Γ1
n−1 =

n−1⋃
i=1

Γ1,i
n−1, Γ1,i

n−1

⋂
Γ1,j
n−1 = ∅, i 6= j. (4.100)

Note that, when Xn ∈ Λ1
n, the domain of conditional probability P (Xn−1|Xn = i)

depends on Xn. In short, for Xn = i

P (Xn−1|Xn = i) : Γ1,i
n−1 → [0, 1], P (Xn) : Λ1

n → [0, 1]. (4.101)

So, extending the domain of the conditional probability P (Xn−1|Xn = i) from Γ1,i
n−1
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to Γ1
n−1 is simply equivalent to

PE(Xn−1|Xn = i) ≡

P (Xn−1|Xn = i) ,Xn−1 ∈ Γ1,i
n−1

0 , otherwise
, (4.102)

where

PE(Xn−1|Xn = i) : Γ1
n−1 → [0, 1], (4.103)

and it introduces an extended joint probability such that

PE(Xn) = P (Xn)PE(Xn−1|Xn), PE(Xn) : Γ1
n−1 ×

←−
Xn → [0, 1]. (4.104)

Thus, using the convention 0 log 0 = 0, the extension results in∑
Xn∈Λ1

n

P (Xn) logP (Xn)

=
∑

Xn∈
←−
Xn

P (Xn)
∑

Xn−1∈Γ1
n−1

PE(Xn−1|Xn) log [P (Xn)PE(Xn−1|Xn)] . (4.105)

Likewise, includingXn ∈
−→
Xn in the domain of the extension such that the conditional

probability is zero, PE(Xn) becomes

PE(Xn) : Γ1
n−1 × (

←−
Xn ∪

−→
Xn)→ [0, 1]. (4.106)

Then we can write ∑
Xn∈Λ1

n

P (Xn) logP (Xn)

=
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn)
∑

Xn−1∈Γ1
n−1

PE(Xn−1|Xn) log [P (Xn)PE(Xn−1|Xn)] . (4.107)

4.2.2.3 Decomposing Λ2
n

From the definition of Λ2
n, we know it contains configurations in which there is no pair

between Xn and previous time-steps. Thus, similar to how Γ1
n−1 was constructed,

Γ2
n−1 constructs after removing random variable at n from configurations in Λ2

n –

see figure (4.14). Surely,

Λ2
n 6= Γ2

n−1 ×
−→
Xn. (4.108)
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Figure 4.14: Constructing Γ2
n−1 from Λ2

n.

Furthermore, we also partition Γ2
n−1 into disjoint subsets, say Γ2,i

n−1. For Xn =
−→
i ,

observe that the time-step at n+ i−1 in the future must make a pair state with Xn.

Therefore, a configuration that makes a pair from any time-step except n to n+i−1

is not admissible. So, Γ2
n−1 partitions into Γ2,i

n−1 for all i ∈ {−→2 , . . . ,
−−−−−−→
L+ 1− n}.

Afterward, for Xn ∈ Λ2
n, the domain of the conditional probability P (Xn−1|Xn)

depends on Xn. In other words, for Xn = i and i ∈ {−→2 , . . . ,
−−−−−−→
L+ 1− n}

P (Xn−1|Xn = i) : Γ2,i
n−1 → [0, 1], (4.109)

while for i ∈ {0, 1}
P (Xn−1|Xn = i) : {0, 1} → [0, 1]. (4.110)

Notice that in the last relation, the domain of the conditional probability is Γ2
n−1

since for Xn = 0 or 1, there is no pair between the present and the future time steps.

Similar to the case Xn ∈ Λ1
n, we extend the conditional probability P (Xn−1|Xn = i)

from Γ2,i
n−1 to Γ2

n−1 like

PE(Xn−1|Xn = i) ≡

P (Xn−1|Xn = i) ,Xn−1 ∈ Γ2,i
n−1 ∪ {0, 1}

0 , otherwise
, (4.111)

and

PE(Xn−1|Xn = i) : Γ2
n−1 → [0, 1]. (4.112)

Consequently, the extended joint probability distribution defines as

PE(Xn) ≡ P (Xn)PE(Xn−1|Xn), PE(Xn) : Γ2
n−1 ×

−→
Xn → [0, 1]. (4.113)
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Thus ∑
Xn∈Λ2

n

P (Xn) logP (Xn)

=
∑

Xn∈
−→
Xn

P (Xn)
∑

Xn−1∈Γ2
n−1

PE(Xn−1|Xn) log [P (Xn)PE(Xn−1|Xn)] . (4.114)

Furthermore, by defining the joint probability for Xn ∈
←−
Xn equal to zero, we can

write

PE(Xn) : Γ2
n−1 × (

←−
Xn ∪

−→
Xn)→ [0, 1], (4.115)

and hence, using the convention 0 log 0 = 0, the extension results in∑
Xn∈Λ2

n

P (Xn) logP (Xn)

=
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn)
∑

Xn−1∈Γ1
n−1

PE(Xn−1|Xn) log [P (Xn)PE(Xn−1|Xn)] . (4.116)

4.2.2.4 Decomposition theorems

Before proceeding further, we prove the following theorems, and we shall use them

to enumerate the state space for calculating the entropy.

Theorem 4.2.1. Γ1
n−1 ∩ Γ2

n−1 = ∅.

Proof. Let us say cn−1 ∈ Γ1
n−1. From the definition of Γ1

n−1, the configuration cn−1

is constructed from cn such that cn ∈ Λ1
n. Since Λ1

n and Λ2
n are disjoint sets, then

cn /∈ Λ2
n. Consequently, cn−1 /∈ Γ2

n−1. Similarly, cn−1 ∈ Γ2
n−1 results in cn−1 /∈ Γ1

n−1 ,

which implies the claim of the theorem.

Lemma 4.2.1. All admissible configurations, say cn−1, is in Λn−1 if and only if

there exists at least one admissible configuration cn ∈ Λn.

Proof. We star from the forward case, namely cn−1 ∈ Λn−1. The configuration cn−1

may or may not have a pair that links to the site n. Let assume it does not have one.

So, for example Xn = 0 constructs an admissible configuration, and consequently

cn ∈ Λn. Otherwise, there is a time step in cn−1 which makes a pair to Xn, and from

the definition of admissible configurations it implies cn ∈ Λn.
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The converse case is straightforward. For any cn ∈ Λn, constructing cn−1 by drop-

ping the element’s states at n must create an admissible configuration, otherwise cn

cannot be an admissible one. Hence, cn−1 ∈ Λn−1.

Theorem 4.2.2. Λn−1 = Γ1
n−1 ∪ Γ2

n−1.

Proof. Let us assume cn−1 ∈ Λn−1. From lemma 4.2.1, there exists one configuration

cn ∈ Λn. And since cn is admissible, constructing a configuration c′n−1 by dropping

its last state at n implies that c′n−1 is in Γ1
n−1 or Γ2

n−1. This conclusion is justified

based on the definition of Γ1
n−1 and Γ2

n−1.

Consequently, c′n−1 ∈ Γ1
n−1 ∪ Γ2

n−1. It only remains to show that cn−1 = c′n−1.

This must be trivially true, since constructing cn from cn−1 was equivalent to add

one element at n in the start of the argument, which we dropped it later to make

c′n−1. So, all the states in the previous n − 1 positions are intact and cn−1 = c′n−1.

Therefore, cn−1 ∈ Γ1
n−1 ∪ Γ2

n−1, which implies Λn−1 ⊂ Γ1
n−1 ∪ Γ2

n−1.

For the converse case, Let us assume cn−1 ∈ Γ1
n−1 ∪ Γ2

n−1. From definitions of Γ1
n−1

and Γ2
n−1, we can always construct cn such that it is in Λn, therefore, lemma 4.2.1

requires cn−1 ∈ Λn−1, which implies Γ1
n−1 ∪ Γ2

n−1 ⊂ Λn−1. This complete the proof

of the claimed statement.

4.2.2.5 Shannon entropy for pairing time series

In this part for a finite pairing time series, we show that the Shannon entropy is an

additive, recursive relation over an ensemble of strings with length n and writes as

HL(Xn) = HL(Xn) +HL(Xn−1|Xn), (4.117)

such that the present entropy is defined as

HL(Xn) ≡ −
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn) logP (Xn), (4.118)
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and the past conditional entropy, given present, is

HL(Xn−1|Xn) ≡ −
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn)
∑

Xn−1∈Λn−1

PE(Xn−1|Xn) logPE(Xn−1|Xn).

(4.119)

Here, we show only the steps that use the results from previous sections. The details

of the derivation are explained in appendix (C.8).

Proof:

We write the Shannon entropy over an ensemble of strings with length n as

HL(Xn) = −
∑
Xn∈Λn

P (Xn) logP (Xn)

= −
∑

Xn∈ Λ1
n

P (Xn) logP (Xn)−
∑
Xn∈Λ2

n

P (Xn) logP (Xn) (Λn = Λ1
n ∪ Λ2

n)

= −
∑

Xn∈
←−
Xn

∑
Xn−1∈ Γ1

n−1

P (Xn)PE(Xn−1|Xn) [logP (Xn) + logPE(Xn−1|Xn)]

(from 4.105)

−
∑

Xn∈
−→
Xn

∑
Xn−1∈ Γ2

n−1

P (Xn)PE(Xn−1|Xn) [logP (Xn) + logPE(Xn−1|Xn)]

(from 4.114)

= −
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn) logP (Xn)

−
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn)
∑

Xn−1∈Λn−1

PE(Xn−1|Xn) logPE(Xn−1|Xn).

(Γ1
n−1 ∪ Γ2

n−1 = Λn−1)

4.2.3 Entropy for Infinite Alphabet

The entropy HL(Xn) is defined for a finite alphabet and finite-length time series.

However, for infinite time series, or the limit L→∞, one must prove the existence

of entropy and examine that it is well-define. Put it differently, the Shannon entropy

of infinite time series at n is defined as

H(Xn) ≡ lim
L→∞

HL(Xn). (4.120)
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And therefore, HL(Xn) must be bounded and converging to have a non-absurd

Shannon entropy H(Xn) for infinite time series. To find an upper bound for the

limit, we use the inequality that governs the conditional entropy [15]

HL(Xn−1|Xn) ≤ HL(Xn−1), (4.121)

and write

HL(Xn) = HL(Xn) +HL(Xn−1|Xn)

≤ HL(Xn) +HL(Xn−1) (from (4.121))

= HL(Xn) +HL(Xn−1) +HL(Xn−2|Xn−1) (from (4.117))

= . . .

≤
n∑
i=1

HL(Xi), (4.122)

where

Xi ∈
←−
Xi ∪

−→
Xi. (4.123)

Let us assume the marginal entropy HL(Xi) has an upper bound such that

∀i ≤ L : HL(Xi) ≤ hc. (4.124)

Then

HL(Xn) ≤
n∑
i=1

HL(Xi) ≤ nhc. (4.125)

The upper bound of HL(Xn) is n-dependent, and in the limit L→∞, we have

H(Xn) ≡ lim
L→∞

HL(Xn) ≤ nhc. (4.126)

Consequently, H(Xn) does not diverge and is well-defined. Conversely, the non-

negativity of conditional entropy HL(Xn−1|Xn) in equation (4.117) implies

HL(Xn) ≤ HL(Xn), (4.127)

and therefore, in the limit L→∞, if HL(Xn) is unbounded, we must have

lim
L→∞

HL(Xn)→∞. (4.128)
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So, for ∃i ∈ N and a diverging entropy HL(Xi), equation (4.127) implies for every

i ≤ n the entropy of the sequence, namely HL(Xn), is diverging too. Consequently,

the joint entropy HL(Xn) is not defined.

Finally, these two results enable us to investigate the existence of Shannon entropy

by studying the divergence of the entropy at an arbitrary time-step, say HL(Xi), for

the limit L→∞ as follows:

1. The diverging HL(Xi) for ∃i ∈ N implies the divergence of ∀i ≤ n : HL(Xn).

Thus, H(Xn) is undefined.

2. The boundedness of HL(Xi) for ∀i ∈ N implies the convergence of HL(Xn) for

all n. Hence, H(Xn) exists and is well-defined.

In addition, to study the entropy of a single moment, we must find the marginal

probability and recall that the marginal probability is defined as

P (Xn = x) =
∑

Xn∈Λn:Xn=x

P (Xn). (4.129)

4.2.3.1 The Rate Entropy

The rate entropy [64] is defined as

H(X ) ≡ lim
n→∞

H(X1, . . . , Xn)

n
= lim

n→∞

H(Xn)

n
. (4.130)

Whenever the Shannon entropy H(Xn) is defined, using equation (4.126), we find

H(X ) = lim
n→∞

H(Xn)

n
= lim

n→∞
lim
L→∞

HL(Xn)

n
≤ hc. (4.131)

And since H(X ) is a non-negative function and has an upper bound, it must have

a limit. In other words, the rate entropy exists and is well-defined.

For ergodic, stationary stochastic processes, the Shannon-McMillan-Breiman theo-

rem [15] finds that

− 1

n
lnP (X0, . . . , Xn−1)→ H(X ), (4.132)

with probability one. This theorem is used to prove the Asymptotic Equipartition

property (AEP) [15] and is an important result in Information Theory and its appli-

cation. However, a pairing time series is not stationary, and at the moment, we do

154



4.2: Pairing Time Series

not know the validity of AEP for them. Therefore, we leave it as an open question

that can be pursued as a future research problem.

4.2.4 Uniform Distribution

Similar to the first case, we start with the uniform distribution for configurations

with length L. Knowing the state space volume, say Ω2(L), the uniform distribution

is equal to

P (XL) =
1

Ω2(L)
. (4.133)

From the combinatorial argument about the C-model, we remember that the Ω2(L)

is composed of 2Ω2(L− 1) configurations whenever we take into account the effect

of adding a new head or tail state of a single coin and (L−1)Ω2(L−1) for making a

pair that coin can make with any other ones. So, accordingly, the marginal sum in

equation (4.129) has Ω2(L−1) equal terms when Xn = 0, 1, and Ω2(L−1) otherwise.

As a result

P (Xn = x) =


Ω2(L−1)

Ω2(L)
Xn = 0, 1

Ω2(L−2)
Ω2(L)

Xn ∈ {
←−
2 , . . . ,←−n ,−→2 , . . . ,

−−−−−−→
L+ 1− n}.

(4.134)

In appendix (C.9), equation (C.59) finds as

Ω2(L− 1)

Ω2(L)
∼ 1√

L
, (L− 1)

Ω2(L− 2)

Ω2(L)
∼ 1− 2√

L
, (4.135)

and, for 1� L, the Shannon entropy for the uniform distribution in equation (4.134)

writes

HL(Xn) = −
∑

Xn∈{
←−
2 ,...,←−n ,0,1,−→2 ,...,

−−−−−→
L+1−n}

P (Xn) logP (Xn)

= −2
Ω2(L− 1)

Ω2(L)
log

Ω2(L− 1)

Ω2(L)
− (L− 1)

Ω2(L− 2)

Ω2(L)
log

Ω2(L− 2)

Ω2(L)

= − 2√
L

log
1√
L
− (1− 2√

L
) log

1− 2√
L

L− 1
(from eq. (4.135))

∼ (1− 1√
L

) logL ∼ logL. (4.136)

We see that, in the limit L→∞, the above result is unbounded, and consequently,

HL(Xn). Hence, based on the explanation in the previous section, the unbound-

155



Chapter 4: Pairing Models in Information Theory

edness of HL(Xn) implies HL(Xn) and the rate entropy is undefined for uniform

distributions.

4.2.5 Exponential distribution

Observe that the random variable Xn in equation (4.129) can be partitioned into

the following subsets

{←−2 , . . . ,←−n } ∪ {0, 1} ∪ {−→2 , . . . ,
−−−−−−→
L+ 1− n}, (4.137)

and note that the size of the last set is L-dependent. In this section, we assume the

probability of observing Xn ∈ {
−→
2 , . . . ,

−−−−−−→
L+ 1− n} is exponentially decreasing with

respect to n

P (Xn = l) ∝ e−λl, λ > 0. (4.138)

To keep the assumption as general as possible, no other condition is assumed for the

probability P (Xn) for Xn ∈ {
←−
2 , . . . ,←−n , 0, 1}. So, we define

P (Xn) =

Ae−λl Xn = l ∈ {−→2 , . . . ,
−−−−−−→
L+ 1− n}

f(l) Xn = l ∈ {←−2 , . . . ,←−n , 0, 1},
(4.139)

where A is the normalisation constant and f(l) is an arbitrary function

f : {←−2 , . . . ,←−n , 0, 1} → [0, 1]. (4.140)

Applying the normalisation condition on P (Xn), we get

A =
1−

∑
l∈{←−2 ,...,←−n ,0,1} f(l)∑L+1−n
l=2 e−λl

. (4.141)

In the limit

lim
L→∞

L+1−n∑
l=2

e−λl =
e−λ

eλ − 1
, (4.142)

therefore, for L → ∞, the normalisation constant is well-defined. Next, we write

156



4.2: Pairing Time Series

the entropy of the moment n as

HL(Xn) = −
∑

Xn∈{
←−
2 ,...,←−n ,0,1,−→2 ,...,

−−−−−→
L+1−n}

P (Xn) logP (Xn)

= −
∑

Xn∈{
←−
2 ,...,←−n ,0,1}

f(Xn) log f(Xn)− A logA
L+1−n∑
l=2

e−λl + Aλ
L+1−n∑
l=2

le−λl. (4.143)

In the limit, the third term is equal to

lim
L→∞

L+1−n∑
l=2

le−λl = − 1

(1− e−λ)2
− e−λ. (4.144)

Hence, using equations (4.142) and (4.144)

H(Xn) = lim
L→∞

HL(Xn)

= −
∑

Xn∈{
←−
2 ,...,←−n ,0,1}

f(Xn) log f(Xn)− A logAe−λ

eλ − 1
− A

(1− e−λ)2
− Ae−λ, (4.145)

and it is bounded, which implies H(Xn) is well-defined.

4.2.6 Power law

Similar to the previous section, we study the power law probability distribution on

the length of pairs into the future, or for pairing Xn ∈ {
−→
2 , . . . ,

−−−−−−→
L+ 1− n}

P (Xn = l) ∝ l−λ, λ > 1. (4.146)

So the probability distribution is

P (Xn) =

Al−λ Xn = l ∈ {−→2 , . . . ,
−−−−−−→
L+ 1− n}

f(l) Xn = l ∈ {←−2 , . . . ,←−n , 0, 1},
(4.147)

where A is the normalisation constant, and f(l) is an arbitrary function

f : {←−2 , . . . ,←−n , 0, 1} → [0, 1]. (4.148)
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So, the normalisation constant is

A =
1−

∑
l∈{←−2 ,...,←−n ,0,1} f(l)∑L+1−n
l=2 l−λ

, (4.149)

and, in the limit L→∞, we get

lim
L→∞

L+1−n∑
l=2

l−λ = ζ(λ)− 1, (4.150)

where ζ(λ) is the Riemann’s zeta function. Therefore, for L→∞

lim
L→∞

A =
1−

∑
l∈{←−2 ,...,←−n ,0,1} f(l)

ζ(λ)− 1
, (4.151)

is well defined. Then, using equation (4.150), the entropy obtains as

HL(Xn) = −
∑

Xn∈{
←−
2 ,...,←−n ,0,1,−→2 ,...,

−−−−−→
L+1−n}

P (Xn) logP (Xn)

= −
∑

Xn∈{
←−
2 ,...,←−n ,0,1}

f(Xn) log f(Xn)−A logA
L+1−n∑
l=2

l−λ+Aλ
L+1−n∑
l=2

l−λ log l. (4.152)

As we have already shown for the normalisation constant, the second sum on the

right-hand side has a limit

lim
L→∞

L+1−n∑
l=2

l−λ = ζ(λ)− 1. (4.153)

It remains to check the convergence of the last term to conclude that HL(Xn) is

bounded for all ns. In the limit L→∞, we have

lim
L→∞

L+1−n∑
i=2

i−λ log i =
∞∑
i=1

log(i+ 1)

(i+ 1)λ
, λ > 1. (4.154)

And to check the convergence of the above series, we use the integral test by taking

the summand as a continuous function in (1,∞)

∞∫
1

log(x+ 1)

(x+ 1)λ
dx, (4.155)
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and check the convergence of the integral instead. Using the integration by parts

technique

∞∫
1

log(x+ 1)

(x+ 1)λ
dx =

1

(1− λ)

log(x+ 1)

(x+ 1)λ−1

∣∣∣∣∞
1

− 1

(1− λ)

∞∫
1

1

(x+ 1)λ
dx. (4.156)

For λ > 1, the term log(x+1)
(x+1)λ−1 is zero in ∞. Therefore

∞∫
1

log(x+ 1)

(x+ 1)λ
dx = − log 2

2λ−1(1− λ)
− 1

(1− λ)

∞∫
1

1

(x+ 1)λ
dx

= − log 2

2λ−1(1− λ)
− 1

(1− λ)2

1

(x+ 1)λ−1

∣∣∣∣∞
1

=
1

2λ−1(1− λ)

[
1

(1− λ)
− log 2

]
. (4.157)

So, since the integral is bounded, the series is bounded too, and it concludes that

the HL(Xn) is bounded for λ > 1.

4.2.7 Conclusion

The previous section showed that for an ensemble of finite pairing strings, the Shan-

non entropy is additive and is equal to the sum of the present entropy plus the past

conditional entropy, given the present.

This result is not surprising considering that the Shannon entropy is the unique

function that satisfies a set of axioms, including the additivity [21, 36]. In contrast,

for infinite time series, we found that the Shannon entropy is well-defined as long

as the distribution over the length of pairs is an exponential distribution or a power

law with an exponent greater than one.

The Asymptotic Equipartition Property theorem [15] separates the ensemble of er-

godic, stationary stochastic sequences into a set of typical and atypical sets, such

that the probability of observing an atypical sequence is negligible. We do not know

a similar characteristic is held by pairing time series, but proving the existence of a

well-defined Shannon entropy is the first step in that direction that we did here.

At the same time, for uniform distribution and power law with an exponent equal
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to or lower than one, the Shannon entropy is not defined. Reminding that our

proof was based on the additivity of Shannon entropy, we can ask ourselves, is it

possible to use a non-extensive entropy and get a well-defined state entropy when

the Shannon entropy fails for infinite time series?

To elaborate, let us use the Tsallis entropy [67, 69]. For a composed system, Tsallis

entropy writes as

Hq(A ∪B) = Hq(A) +Hq(B) + (1− q)Hq(A)Hq(B), (4.158)

for a positive, real number q 6= 1. We see that, for q > 1, the above equality finds

Hq(A ∪B) < Hq(A) +Hq(B), (4.159)

and incorporating Tsallis entropy in equations (4.121) and (4.122), we expect to get

a sharper upper bound depending on the choice of q. So, we conjecture that in the

cases that the Shannon entropy diverges, a sharper upper bound finds a well-defined

entropy for infinite time series when Tsallis entropy is used. It is particularly inter-

esting if the choice of q can be written in terms of the parameter of the distribution,

e.g. the exponent of the power-law distribution [53].

Similarly, Rényi’s entropy [56] satisfies an inequality for two different parameters as

α1 ≤ α2 =⇒ Hα1 [P ] ≥ Hα1 [P ]. (4.160)

So, the same property can be exploited to find a proper upper bound.
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Chapter

FIVE

Pairing Models: Applications

This chapter uses the pairing models in two different contexts: (1) Statistical me-

chanics and (2) Delivery joint venture, described in the introduction. Note that, as

was mentioned in chapter (3), we shall use N to denote the number of elements or

system size. This notation is common in physics publications.

Statistical mechanics models are probabilistic ones that incorporate energy function,

known as Hamiltonian, for different microscopic states of a system. Similarly, we

will introduce energy levels for stand-alone and pair states to calculate standard

macroscopic quantities. Our toy models have discrete phase space (state space),

and therefore, the Hamiltonian is defined for discrete energy levels. Hence, any

difference in the resulting quantities from their corresponding ones in an ordinary

model must be due to the emerging states.

As it is common practice in statistical mechanics modelling, we will review the

microcanonical and canonical models. For the former ensemble, the system is closed,

and the total energy and number of elements are conserved, while in the latter one,

the number of constituent elements is conserved. Also, the system in the canonical

ensemble is in contact with a heat bath at a constant temperature, so it exchanges

energy with the heat bath.

Unlike standard statistical mechanics, we shall see that the specific free energy is
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diverging and ill-defined in the thermodynamic limit. At this stage, before seeing

the result, the reason is apparent. Free energy is the logarithm of the normalisation

constant of the Boltzmann distribution, such that its degeneracy of states is equal

to the pairing model. Therefore, it scales as N lnN .

However, specific free energy is scaled by 1/N , and in the limit, it diverges. There-

fore, the standard statistical mechanics does not apply to the pairing model or

emergence state models.

As we mentioned in the introduction, section (1.2.2), we can find the cost of the

delivery joint venture analytically. We will touch on this problem briefly in the last

section.

162



5.1: Standard Statistical Mechanics: Problem

5.1 Standard Statistical Mechanics: Problem

One of the extensively studied models in statistical mechanics is the Ising model

[49]. Besides its intuitive simplicity, it has an analytical solution that makes it a

suitable model to inspire and outreach other branches of science.

For the B-model, stand-alone elements have a binary state, say, head or tail state.

So, naturally, one can construct an Ising model with stand-alone elements while

actively introducing emergent states among the pair states. Energy levels are the

only missing ingredient to turning the pairing models into statistical mechanics

models. In doing so, in this section, we try to construct models similar to standard

statistical mechanics ones, and from the onset, we know that these models have

faster than exponential growth phase spaces. Therefore, it is insightful to see how

the standard statistical model can capture their properties or fails and results in

unbounded quantities.

Based on this roadmap, we introduce a system with different energy levels and

then use micro-canonical and canonical ensemble settings to find the subsequent

thermodynamic quantities. We will see that these systems have unboundedness in

free energy and entropy in the thermodynamic limit.

5.1.1 Introducing Energy Levels

Suppose a system of N pairing coins and three distinct energy levels, ε1, ε2 and ε3,

such that, n1, n2 and n3 coins are in each level respectively. Obviously

N = n1 + n2 + n3. (5.1)

Let us say ε2 is the energy level of coins in pair state. Therefore, there must be

even number of coins in ε2 such that, n2 = 2k for k ∈ N ∪ {0}. Then, for any given

(n1, k, n3) the phase space volume partitions as

Ω2(n1, k, n3) =
N !(2k − 1)!!

(2k)!n1!n3!
=

N !

2kk!n1!n3!
. (5.2)
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Figure (5.1) shows the combinatorial argument schematically. Without loss of gen-

erality, to simplify the calculations, let us suppose

ε1 = −1, ε2 = 0, ε3 = 1, (5.3)

while the total energy of the system, say E, is obtained as

E = n1ε1 + n2ε2 + n3ε3 = n3 − n1. (5.4)

Therefore in terms of (E,N, k), the volume of the partition of the phase space is

equal to

Ω2(E,N, k) =
N !

2kk!(N−E
2
− k)!(N+E

2
− k)!

. (5.5)

We shall use these energy levels and their corresponding phase space partitions for

both micro-canonical and canonical ensemble settings in the following sections.

Figure 5.1: The combinatorial problem of distributing paring coins in three energy

levels.
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5.1.2 Micro-canonical Ensemble

For the phase space volume in equation (5.5), when the specific energy, namely

u = E
N

, is kept constant, we can show Ω2(E,N, k) is asymptotically maximum at k∗

for 1� N,E

k∗ =


N
2

(1− u), u ≥ 0

N
2

(1 + u), u < 0

=


N−E

2
, E ≥ 0

N+E
2
, E < 0

, (5.6)

where −N ≤ E ≤ N . Check appendix (D.1) for details. Defining

E∗ = E+ = − |E−| , (5.7)

the phase space volume is maximum at k∗ = N−E∗
2

, and therefore,

Ω2(E∗, N) =
N !

2
N−E∗

2 (N−E∗
2

)!E∗!
. (5.8)

Meanwhile, the phase space volume for fixed (E,N) is

Ω2(E,N) =

bN/2c∑
k=0

Ω2(E,N, k). (5.9)

However, in the above sum, almost all the mass of Ω2(E,N) concentrates around its

maximum at k∗, with a deviation equal to
√
N . So, as is shown in appendix (D.1),

we can safely write

Ω2(E,N, k∗) ≈
bN/2c∑
k=0

Ω2(E,N, k) = Ω2(E,N). (5.10)

For an isolated system in equilibrium, the micro-canonical entropy is defined as

SB(N,E) = kB ln Ω(N,E), (5.11)

where the total energy, E, and the number of elements, N , are conserved and kB is

the Boltzmann constant [64]. Therefore in the thermodynamic limit, the system’s

specific entropy is

sB ≡ lim
N→∞

SB
N

= kB lim
N→∞

log Ω2(E,N)

N
. (5.12)
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Defining the specific internal energy

u ≡ lim
N→∞

E

N
, −1 ≤ u ≤ 1, (5.13)

and using the Stirling’s approximation for N !, we get

lim
N→∞

log Ω2(E,N)

N
=

1

2
(1− u) lim

N→∞
(logN)− u log u− 1

2
(1− u) log(1− u)

− 1

2
(1− u)→∞, (5.14)

which is diverging, and therefore, sB is unbounded. Check appendix (D.2) for details.

The divergence of sB is equivalent to say SB is non-extensive. In other words, for the

micro-canonical ensemble of paring coins, by using the standard statistical mechanics

and the Boltzmann definition of entropy, we get a non-extensive entropy. This is the

direct result of a faster than exponential growth phase space of the paring mechanism

that manifests itself as lim
N→∞

(logN) in the Boltzmann entropy.

5.1.3 Canonical Ensemble

Suppose the previous model is not in isolation, and a heat bath at temperature T

is in thermal contact with the system. Also, we will define the Hamiltonian of a

one-dimensional Ising model with no neighbour interaction for a configuration σi.

As is depicted in figure (5.2), for a system size n, σi is a sequence of paring coins

σi ≡ (σi1, . . . , σij, . . . , σin), (5.15)

such that σij is the state of the element at index j in the configuration i. As usual,

σij = −1 and σij = 1 corresponds to tail and head states respectively.

We assume the energy contribution of a single element in the head or tail state is

caused by its interaction with an external magnetic field, namely B. And to make

the notation less cluttered, taking B = 1 in an arbitrary unit system. Therefore for

tail state or σij = −1, we must have

εij = Bσij = −1, (5.16)
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and for σij = 1 or the head state

εij = Bσij = 1. (5.17)

In addition, similar to the micro-canonical model in the previous section, the pair

coins are at a zero-energy level, which is equivalent to saying they do not interact

with the magnetic field or, simply put, their energy contribution is zero. Conse-

quently, there are three different energy levels

εij ∈ {−1, 0, 1}, (5.18)

and the Hamiltonian of the configuration σi must be

H(σi) = −
N∑
j=1

εij. (5.19)

Surely, the energy contribution of the pair coins is zero in the Hamiltonian. In other

words, removing them from the sum does not change its value.

Figure 5.2: One dimensional Ising model including pair states. The up and down

states interact with an external magnetic field.

In canonical ensemble, finding thermodynamic quantities corresponds to calculating

the partition function. To find it for the one-dimensional paring model, suppose M

coins among N are in head or tail states. Thus, the partition function over all the
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canonical ensemble, say {σi}, is defined as

ZM =
∑
{σi}

e−βH(σi) =
∑
{σi}

e−β
∑N
j=1 εij

=
∑
{σi}

e−β
∑M
j=1 εij , (5.20)

where β = 1
kBT

. In appendix (D.3), equation (D.33) for B = 1 finds

ZM = 2M coshM(β). (5.21)

Notice again that the pair coins do not contribute to Hamiltonian, and we removed

their energy contributions from the Hamiltonian. Therefore, ZM is not the partition

function of the paring model, say Z(N, β). To find Z(N, β), we need to include the

effect of pairing in the phase space.

We can see, for 2k pair coins there are

(
N

2k

)
ways to construct distinct configu-

rations. At the same time, there are (2k − 1)!! distinguishable pairs among 2k pair

states. By enumerating ZM , or ZN−2k, over all possible pairs, the partition function

derives as

Z(N, β) =

bN
2
c∑

k=0

(2k − 1)!!

(
N

2k

)
ZN−2k

=

bN
2
c∑

k=0

2N−2k(2k − 1)!!

(
N

2k

)
coshN−2k(β). (5.22)

Let us define the summand in equation (5.22) as

tN,k = 2N−2k(2k − 1)!!

(
N

2k

)
coshN−2k(β). (5.23)

So, the free energy per coin (specific free energy) is

f(β) = lim
N→∞

1

N
ln

 N
2∑

k=0

tN,k

 , (5.24)

for a system in contact with heat bath with constant temperature, and after taking

the thermodynamic limit. From the fact that all the terms in equation (5.22) are
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positive, each summand, namely tN,k, is smaller than the sum, or

tN,k ≤
N
2∑

k=0

2N−2k(2k − 1)!!

(
N

2k

)
coshN−2k(βB). (5.25)

Hence, if we show that in the limit N → ∞ the term ln tN,k/N is unbounded for a

single k, then f(β), or specific free energy, is necessarily unbounded. Furthermore,

since 0 < k < N/2, the limit lim
k,N→∞

k/N = ε for ε > 0 exists, and in appendix (D.4)

we show that

lim
N→∞

1

N
ln tN,2k = (1− 3ε) ln 2− ε− ln(1− 2ε) + 2ε ln(1− 2ε)

+ (1− 2ε) ln(cosh(βB))− ε ln ε+ lim
N→∞

ε lnN →∞. (5.26)

Consequently, the free energy per element is unbounded too

f(β) = lim
N→∞

1

N
log

 N
2∑

k=0

tN,k

→∞. (5.27)

Unboundedness of specific free energy means free energy is non-extensive. It is worth

noting that the average energy and the heat capacity are well-defined

〈u〉 =
〈U〉
N

= −B tanh(βB)

(
1− 〈k〉

N

)
, (5.28)

and

cB =
CB
N

= kBβ
2B2

[
sech2(βB)(1− 〈k〉

N
) + tanh2(βB)

〈k2〉 − 〈k〉2

N

]
, (5.29)

and in the thermodynamic limit we find

〈u〉 = 0, cB = 0. (5.30)

(the expectations are ensemble averages). We have shown this final result, both

numerically and analytically. But details are not included here.

Also, we have to emphasise that the above result is not a pathological case specific

to the energy levels, which we defined at the start of this section. To check this
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claim further, we can use another Hamiltonian with different energy levels

σ1 = −1, σ2 = 2L, σ3 = 1, (5.31)

where L ≥ 1, i.e., the new energy level for paired states is higher than the other

two. Interestingly, we get

〈u〉 = L. (5.32)

Since 〈u〉 is the average energy per particle, for any pair of two elements, it becomes

2L, as we expected, while the free energy is non-extensive.

5.2 Standard Statistical Mechanics: Remedy

In the previous section, we saw the problem of diverging specific free energy in the

thermodynamic limit. This section will propose a remedy by using the conjugate

functions of pairing model state space, introduced in section (3.9)

φ(x) = eL(x), φ−1(x) = L−1(lnx). (5.33)

Before starting, let us review the standard statistical mechanics procedure that finds

thermodynamic specific free energy from the partition function.

5.2.1 Standard Procedure

In canonical ensemble, one assumes the system is in thermal equilibrium with a

heat bath in temperature T and exchanges energy with no particle exchange. In

this ensemble, the Boltzmann distribution finds the probability of a microstate –

configuration –, say c, with its Hamiltonian H(c) and inverse temperature β = 1/T

as1

P (c) =
e−βH(c)

ZN
, (5.34)

where Zn is the normalisation constant or the partition function, and is defined as

ZN =

Ω(N)∑
i=1

e−βH(ci). (5.35)

1We assumed the Boltzmann constant k = 1 in any relevant unit system.
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Here again, Ω(N) denotes the volume of the state space or the number of distinct

configurations. In general, one can factorise the degeneracy of configurations that

have the same Hamiltonian value. For example, factorising the partition function

for l as a parameter that specifies the energy levels of microstates and WN(l) as the

degeneracy of the number of microstates at energy level H(l) writes as

Zn =
∑
l

WN(l)e−βH(l). (5.36)

For 1� N , the summand in partition function concentrates around its peak value,

and the sum can be approximated with its maximum, such that for n→∞, the peak

turns into Dirac delta and the dispersion around the maximum decreases as 1/
√
N .

This fact is explained in detail, e.g., in [27, 54, 58, 63, 64], and more systematic

techniques like steepest decent can be employed to estimate ZN . However, we take

this assumption for granted and for the maximum of the Boltzmann distribution at

l∗, write the estimate as

ZN =
∑
l

WN(l)e−βH(l) ≈ e[lnWN (l∗)−βH(l∗)]. (5.37)

At the same time, since the free energy is defined as [49]

FN = −T lnZN , (5.38)

one writes the equation (5.36) as

FN = −T ln
(
elnWN (l∗)−βH(l∗)

)
= H(l∗)− T lnWN(l∗) =⇒

FN = UN − TSN , (5.39)

where UN ≡ H(l∗) is the internal energy and SN ≡ lnWN(l∗) is the entropy. Notice

that the internal energy equals the energy level at the maximum of the Boltzmann

distribution. This assumption is reasonable since the system is in thermal equi-

librium with a heat bath, and the energy fluctuation is negligible compared to its

value.

It is essential to recognise that a microscopic model in statistical mechanics obtains

the last result, so, to obtain the equivalent thermodynamic quantities, one needs to

take the thermodynamic limit. Therefore, to derive the well-known thermodynamic

identity between specific free energy, entropy, and internal energy in the thermody-
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namic limit [23, 27, 28], we must write

f ≡ lim
N→∞

1

N
FN = lim

N→∞

lnH(l∗)

N
− T lnWN(l∗)

N
=⇒

f = u− Ts, (5.40)

for f ≡ FN/N as specific free energy, s ≡ SN/N = lnWN(l∗)/n as specific thermo-

dynamic entropy and u ≡ UN/N = H(l∗)/N as specific internal energy.

Following this procedure, the program of statistical mechanics reduces to finding

the partition function, and from there, one can find thermodynamics quantities.

However, section one of this chapter showed that this procedure fails for simple

Hamiltonian and its energy levels, and consequently, the free energy diverges. We

have to remark that the results obtained for large deviation limits in chapter (3)

and appendix (A.3) proved that the probability distributions in pairing state spaces

concentrate around their peak. Therefore, the shape of the distribution is not the

source of the problem, while the estimation by maximum is valid for the pairing

space partition function as well.

5.2.2 A Solution

One solution that we propose in this thesis constitutes defining the specific values

of quantities of pairing models with transformation function in equation (3.235)

that was introduced in section (3.9). When the statistical mechanics’ free energy is

defined as

FN = ln(ZN), (5.41)

then, we define its specific value as

f ≡ −T lim
N→∞

1

N
φ(FN) = −T lim

N→∞

1

N
eL(ln(ZN )), (5.42)

and for the entropy

SN = ln(WN(mN)), (5.43)

the specific entropy is

s ≡ lim
N→∞

1

N
φ(SN) = lim

N→∞

1

N
φ(ln(WN(mN))). (5.44)
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Let us write the canonical ensemble partition function that we discussed in section

(5.1.3), but for a general Hamiltonian function of np, and estimate its sum by its

maximum value at n∗p

ZN =

bN/2c∑
np

WN(np)e
−βH(np) ≈ elnWN (n∗p)−βH(n∗p). (5.45)

Hence, using equation (5.42), the conjugate function derives the specific free energy

as

f = −T lim
N→∞

eL(lnWN (n∗p)−βH(n∗p)). (5.46)

The specific free energy limit has three different regimes:

1. For asymptotically extensive Hamiltonians, for 1 � N and a function h(.)

that is bounded above, we must have

H(m∗N) ∼ h(m∗N)N. (5.47)

Using equation (3.241) for the degeneracy WN(m∗N), the entropy writes as

SN = ln(WN(m∗N)) =
Nm∗N

2
ln
Nm∗N

2
+O(N), (5.48)

and the specific free energy limit obtains as

f = −T lim
N→∞

1

N
eL(

Nm∗N
2

ln
Nm∗N

2
−βNh(m∗N )+O(N))

= −T lim
N→∞

1

N
eL(

Nm∗N
2

ln
Nm∗N

2
) = −T lim

N→∞

Nm∗N
2

N
=⇒

f = −T m
∗
N

2
. (5.49)

Note that the Hamiltonian is order O(N), and the first term is dominant in

the limit. Subsequently, the specific free energy is well defined. However, the

energetic interaction of the system does not involve the system’s dynamic. To

be more precise, the minimum of the free energy, which is its thermodynamic

equilibrium, is solely determined by the entropy term. Most importantly, the

entropy term derives from the maximum of the degeneracy term, and from
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equation (5.48), the specific entropy finds as

s = lim
N→∞

1

N
φ(SN) = lim

N→∞

1

N
eL(ln(WN (m∗N ))) =

m∗N
2
. (5.50)

and therefore, the free energy is written as

f = −Ts. (5.51)

2. The second possibility happens for the Hamiltonian that scales as N lnN

H(m∗N) ∼ h(m∗N)N lnN. (5.52)

In this case, the Hamiltonian leading term’s order is the same as ln(WN(m∗N)).

Therefore, we use equation (3.241), which derives ln(WN(m∗N)) as

ln(WN(m∗N)) =
m∗N
2
N lnN − N

2

[
m∗N ln

m∗N
p

+ 2(1−m∗N) ln
1−m∗N

s
+m∗N

]

=
m∗N
2
N lnN +O(N), (5.53)

and then,

lnWN(m∗N)− βH(m∗N) =
m∗N
2
N lnN − βh(m∗N)N lnN +O(N)

=
N

2
[m∗N − 2βh(m∗N)] lnN +

N

2
[m∗N − 2βh(m∗N)] ln

[
m∗N − 2βh(m∗N)

2

]
−N

2
[m∗N − 2βh(m∗N)] ln

[
m∗N − 2βh(m∗N)

2

]
+O(N)

=

[
N

2
(m∗N − 2βh(m∗N))

]
ln

[
N

2
(m∗N − 2βh(m∗N))

]
+O(N). (5.54)

Finally, the specific free energy limit yields

f = −T lim
N→∞

1

N
eL([N2 (m∗N−2βh(m∗N ))] ln[N2 (m∗N−2βh(m∗N ))]+O(N))

= −T lim
N→∞

1

N
eln[N2 (m∗N−2βh(m∗N ))] =⇒

f = h(m∗N)− T m
∗
N

2
. (5.55)

The second term in the last equation is the specific entropy. The specific
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internal energy defines in a similar way

u ≡ lim
N→∞

1

N
φ(UN) = lim

N→∞

1

N
φ(H(m∗N)) = lim

N→∞

1

N
eL(h(m∗N )N lnN+O(N))

= lim
N→∞

1

N
eL(h(m∗N )N lnN+h(m∗N )N lnh(m∗N )−h(m∗N )N lnh(m∗N )+O(N))

= lim
N→∞

1

N
eL(Nh(m∗N ) lnNh(m∗N )+O(N)) = h(m∗N), (5.56)

and therefore, the free energy writes as

f = u− Ts. (5.57)

Subsequently, energetic and entropic effects simultaneously evolve the system’s

dynamics, or say, both determine the minimum free energy.

3. Naturally, the third case happens when the Hamiltonian is the dominant one.

Then, depending on the order of Hamiltonian, one has to use a different func-

tion to get a converging free and internal energy. So, the minimum of the

Hamiltonian always determines the minimum free energy. Accordingly, the

system freezes in the corresponding configurations, and thermodynamical evo-

lution does not happen.

To interpret these results, we recall the definition of free energy as the maximum

amount of work that a thermodynamic system can extract from the input heat at

a constant temperature. So, the quantity Ts acts as an entropic sink while u is

the internal energy storage. In a thermodynamic process, part of the input energy

– heat – increases the internal disorder and entropy increases after absorbing the

external heat. At the same time, the other part increases the internal energy, which

acts as heat storage. Thus, the difference between internal energy – storage – and

entropy – sink – is available as free energy that can be turned into work.

In exponential state spaces, the storage and the sink terms have the same order.

However, for the pairing space in the first regime, the entropy’s sink absorbs and

turns all the heat into internal disorder since it has more room than exponential

spaces. Surely, the emerging states cause the system to turn into a sink of heat such

that the system is always at minimum free energy.

At the same time, in the second regime, the Hamiltonian has the same order as the

entropy, and therefore, the usual thermodynamic processes can occur.
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At first sight, it might seem unrealistic to assume Hamiltonians that are not asymp-

totically extensive. On the contrary, such Hamiltonians are not unknown in physics.

For example, as we showed in section (1.3), the Curie–Weiss model’s Hamiltonian

[8, 14, 65] is order O(N2). Classical statistical mechanics books suggest scaling this

Hamiltonian by 1/N to prevent the specific free energy from diverging without pro-

viding any sound reason – this is known as Kac prescription [8, 63]. However, we

understand that this scaling converts the Hamiltonian order to O(N) and makes the

procedure tractable.

Although we do not report the details, it is worth mentioning that we have crafted

a Hamiltonian that is of order O(N lnN) and is in the pairing state space. Interest-

ingly, this model has well-defined free energy and a phase transition that numerical

simulation confirms its prediction.

5.3 Pairing Models Applications: Delivery Joint

Venture

As mentioned in section (1.2.2), we can generalise the delivery joint venture model

for N different actors. At the same time, by assuming C/2 is the cost for driving

a distance L, and 0 < α is the free parameter of the model, the average cost of the

aggregate, denoted by CN , found as

CN = C [N + (α− 1)〈2np〉] , (5.58)

or specific cost as

CN ≡
CN
N

= C [1 + (α− 1)〈mN〉] . (5.59)

Recall that for α = 1, all the actors are in a stand-alone state, and α less than

one corresponds to cooperation, especially α = 1/2. Similarly, for α greater than

one, the system is in a competitive state, or say, the cost of delivery increases when

another delivery company is in the neighbourhood.

176



5.3: Pairing Models Applications: Delivery Joint Venture

Figure 5.3: The specific cost, say CN , for a system of six actors.

Using equation (3.89), which finds the average of the B-model in terms of cN(r) and

cN−2(r), the specific cost obtains as

CN = C

[
1 + (α− 1)(N − 1)

cN−2(r)

cN(r)

]
, (5.60)

or for 1� N , by using equation (3.91), the last results writes as

CN = C
[
1 + (α− 1)e−

√
r
N

]
. (5.61)

We see that CN depends on two free parameters, r and α, as plotted in figure

(5.3) for six actors. Here, we assumed C = 1. Note that α controls the cost

of cooperation/competition, whereas r controls the probability of making a joint

venture. In figure (5.3), the band CN = 1 shows there is no incentive to work

together or compete. Outside this band, depending on the parameters, one regime

dominates and influences the cost.
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Chapter

SIX

Summary and Future Work

As we have seen, the central idea of this research program was to restrict the defini-

tion of emergence to states’ emergence. However, new emerging states are not the

property of stand-alone elements and cannot be deduced from their states. There-

fore, the emerging states must be observed directly to be included in modelling the

phenomena of interest. Despite that, the emerging states have a mathematically

tractable structure suitable for analytical and numerical modelling.

We saw that the state spaces with the emerging states are growing faster than expo-

nentially for the number of elements in the system. Faster than exponential growth

breaks the additivity property of quantities usually used in information theory and

statistical mechanics.

At the same time, to study the state emergence more rigorously, we further restricted

the mechanism of emergence to pairwise compounding and introduced pairing mod-

els: Paring Balls and Coins models. Although we postponed studying them for fu-

ture works, the two pairing models are generalisable to more complex mechanisms.

In other words, the pairing model machinery by which the results were derived ap-

plies to more complex mechanisms that include more elements in a compound and

allow variates of combinations. Even more, compounds can make compounds, and

a hierarchy of structures emerges.
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In pairing models, the faster than exponential growth of the state space volumes

and their asymptotic leading terms were derived and quantitatively showed that the

volume is in orderO(NN). Furthermore, the derivation was based on a combinatorial

argument that resulted in a recursive relation among volumes for different sizes.

Thus, one can say, all the relevant information of the emerging states is encoded in

the corresponding recursive relation.

The pairing model is both insightful and instrumental as a combinatorial object, and

it enabled the modelling of the randomness and uncertainty with the same emerg-

ing properties. Consequently, we proposed two probability distributions with large

deviation properties. Interestingly, the statistics of the distributions are expressible

in closed form. We also derived the joint and marginal distributions to include them

in the catalogue of analytical results of statistical pairing models.

We obtained limiting distributions that are again defined in exponential state spaces

by properly scaling parameters for the statistical pairing model. Notably, the rele-

vance of the limiting distributions to the main ones is similar to the relation between

the Poisson distribution and the Binomial distribution [22]. Alongside these results,

we also touched on statistical inference by finding maximum likelihood estimates of

parameters and obtained a conjugate prior for the Bayesian inference.

One of the mentionable features of the limiting distribution is the similarity of its ex-

pectation to the order parameter of a second-order phase transition. Pairing model

distributions have a zero average for stand-alone elements in the limit N → ∞.

However, for the limiting distribution, the mean is non-zero. For a continuous func-

tion, the zero to non-zero switching is a discontinuity in the first derivative, which

indicates second-order phase transition occurs for the order parameter. Although

the pairing models do not have dynamics and consequently do not have a phase

transition per se, the change in the mean happens in the limit N →∞. Therefore,

models that incorporate the pairing models as their building blocks and have an

internal mechanism through which their scaling law changes from one distribution

to the other will manifest the second-order phase transition.

In the meantime, studying the speed of large deviation property and the state space

volume directed us to propose a mapping function to control the diverging specific

values. Using the standard statistical mechanics, we observed that the free specific

energy diverges. So, to overcome this problem in pairing state space, we proposed a

one-to-one increasing function that maps the statistical mechanic’s quantity to their
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thermodynamic ones such that in the limit N →∞, they are converging.

Studying the Shannon entropy of the pairing models’ ensembles revealed that the

entropy resulting from the uncertainty in pairing is separable from the uncertainty

from stand-alone elements, say, the entropy of the C-model decomposes to the en-

tropy of the B-model and the Binomial distribution.

The entropy of the subsystems, up to mesoscopic sizes, is additive. The mesoscopic

scale is defined as order O(
√
N), and the entropy of subsystems in this order is

the sum of all its parts. The decomposition of larger subsystems’ entropy and its

relation to the system entropy is an open question, and we postpone it to future

works.

Unlike systems with independent elements, the mutual information between one el-

ement and the rest is non-zero. However, for large system sizes, mutual information

approaches zero. One interpretation of this observation is as follows: in a macro-

scopic system, similar to stand-alone elements, pairs do not carry information about

the system, or say, the pairs look like independent elements.

The mutual information between two elements approaches zero in the limit N →
∞. It is the same for all interaction information as a higher-order form of mutual

information. To have non-zero interaction information, we conjecture that one needs

to include more complex emerging states by including more elements in a compound.

Inspired by paring models, we proposed a paring time series that mixes certainty

and uncertainty in time. We showed that the Shannon entropy is well-defined for

infinite time series when the probability distribution on the length of the pairs

follows an exponential or power-law distribution. Having a well-defined Shannon

entropy provides the foundation for further study. For instance, one can study

similar stochastic quantities that are defined for a Markov process. Similarly, finding

information-theoretic quantities like active information storage [42] or predictive

information [45] for pairing time series is the next step to investigate further.

The proof of the existence of Shannon entropy for infinite pairing time series relied

on an inequality that finds an upper bound in the limit. We propose that replacing

the Shannon entropy with non-extensive entropies has the potential to derive the

upper bound that fails for the uniform distribution or power-law distributions with

an exponent smaller than one.

In addition, the mapping that we found for the pairing space divergence provides a
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solution to control the divergence of specific free energy, entropy and internal energy.

Moreover, this program can be repeated for other growth rates when one finds the

corresponding mapping. Thus, contrary to Kac’s prescription, our proposal is not

merely a mathematical convenience and has a more detailed explanation for the

reason for applying it.

Finally, we constructed an elementary model with some dynamics and emerging

states – delivery joint venture – to show that the pairing models can be utilised in

more elaborated modelling.

Here, we suggest a list of future works and research aligned with the thesis:

• Generalising the compounding mechanism and studying their state-space ge-

ometry – A brief sketch of the details is included in appendix (E.1).

• Finding the corresponding probability distributions for new compounding mech-

anisms – A brief sketch of the details is included in appendix (E.1).

• The normalisation constants, namely cn(r), are closed under the derivative/anti-

derivative operations. Therefore, they might possess an algebraic structure.

Studying this abstract structure for cn(r) and normalisation constants for new

compounding mechanisms is a possible open line of research.

• Revisiting the entropy, mutual entropy and interaction entropy for new com-

pounding mechanisms.

• We showed that in pairing models, the entropy of subsystems is additive up

to mesoscopic scales. Increasing system sizes from order O(
√
N) is an open

question.

• For pairing time series, since the rate entropy is well-defined, we guess the

Asymptotic Equipartition Property theorem must also be valid.

• Similar to Markov processes, the pairing time series can be represented by

a finite number of states for uncertain parts of the dynamics. Then, certain

evolutions can be modelled as a definite recurrence. So, exploring techniques

similar to the first passage is one possibility to calculate different infinite time

limits.

• As briefly mentioned in chapter (5), at the moment of writing this thesis, we are

working on a Hamiltonian in order O(N lnN) for a system in the pairing state
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space. Different Hamiltonians and state space growth rates are the natural

next step for future research.
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fice of Naval Research. Higher Transcendental Functions. Number v. 2 in

Bateman manuscript project. McGraw-Hill, 1953.
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Appendix

A

Pairing Models

A.1 Recursive Relation: Solution

Denoting G(z) as a converging power series like

G(z) =
∑
n≥0

an
zn

n!
, (A.1)

for z ∈ A ⊆ R. Next, we assume Ωs(n) is the coefficient of term zn

n!
in power series

expansion of G(z) or

an ≡ Ωs(n). (A.2)

Thus, the recursive relation in equation (2.9) is written as

an+1 = san + pnan−1. (A.3)

After that, by multiplying each side of the last equation by zn

n!
and sum for n ≥ 1

we derive to the following equation,

∑
n≥1

an+1
zn

n!
= s

∑
n≥1

an
zn

n!
+ p

∑
n≥1

nan−1
zn

n!
. (A.4)
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The left-hand side term is

G′(z) =
∑
n≥1

an
zn−1

n− 1!
=
∑
n≥0

an+1
zn

n!
= a1 +

∑
n≥1

an+1
zn

n!
. (A.5)

The first term on the right-hand side is

G(z) =
∑
n≥0

an
zn

n!
= a0 +

∑
n≥1

an
zn

n!
, (A.6)

and the second term in right hand side can be written by multiplying the G(z) by

z,

zG(z) =
∑
n≥0

an
zn+1

n!
=
∑
n≥0

(n+ 1)an
zn+1

n+ 1!
=
∑
n≥1

nan−1
zn

n!
. (A.7)

Plugging back relations (A.5), (A.6) and (A.7) in (A.4) obtains

G′(z)− a1 = sG(z)− sa0 + pzG(z). (A.8)

The initial condition in equation (2.10) requires

a0 = 1, a1 = s, (A.9)

and therefore

G′(z)− (s+ pz)G(z) = 0. (A.10)

It is a first-order differential equation. Solving its solution results in

G(z) = exp(sz) exp(
pz2

2
). (A.11)

Each factor of G(z) has a power series expansion such as

esz =
∑
n≥0

snzn

n!
, (A.12)

and

e
pz2

2 =
∑
n≥0

pnz2n

2nn!
. (A.13)

Indeed, we can write them back as a convolution of one by considering the other as
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the kernel of the convolution

G(z) =
∑
i≥0

sizi

i!

∑
j≥0

pjz2j

2jj!
=
∑
i,j≥0

si(p
2
)j

i!j!
zi+2j =

∑
i,j≥0

si(p
2
)j(i+ 2j)!

i!j!
× zi+2j

(i+ 2j)!
(A.14)

such that

G(z) =
∑
n≥0

[∑
k

◦

]
zn

n!
(A.15)

where (◦) represents all the coefficients indexed on k such that i + 2j = n. There

are two cases for even and odd n:

• n = 2p is even and i+ 2j = n for consecutive 0 ≤ k ≤ n
2
:

1. i ∈ {0, 2, ..., 2p} = {0, 2, ..., n} ≡ 2k.

2. j ∈ {p, p− 1, ..., 0} = {n
2
, n

2
− 1, ..., 0} ≡ n

2
− k.

3. i− j ∈ {−p, 3− p, 6− p, ..., 2p} = {−n
2
, 3− n

2
, ..., n} ≡ 3k − n

2
.

4. i+ 2j ∈ {2p, 2p, ..., 2p} = {n, n, ..., n}.

So inside of the bracket must be

∑
0≤k≤n

2

n!
s2k(p

2
)
n
2
−k

2k!(n
2
− k)!

. (A.16)

• n = 2p+ 1 is odd and i+ 2j = n:

1. i ∈ {1, 3, ..., 2p+ 1} = {1, 3, ..., n} ≡ 2k + 1.

2. j ∈ {p, p− 1, ..., 0} = {n−1
2
, n−3

2
, ..., 0} ≡ n−1

2
− k.

3. i− j ∈ {1− p, 4− p, 7− p, ..., 2p+ 1} = {3−n
2
, 9−n

2
, ..., n} ≡ 3k + 3

2
− n

2
.

4. i+ 2j ∈ {2p+ 1, 2p+ 1, ..., 2p+ 1} = {n, n, ..., n}.

So inside of the bracket must be

∑
0≤k≤n−1

2

n!
s2k+1(p

2
)
n−1
2
−k

(2k + 1)!(n−1
2
− k)!

. (A.17)

193



Chapter A: Pairing Models

By defining the following functions

1odd(n) =

{
1 if n is even

0 if n is odd
, (A.18)

and

1even(n) =

{
0 if n is even

1 if n is odd
, (A.19)

G(z) becomes

G(z) =

∑
n≥0

1odd(n)
∑

0≤k≤n
2

n!
s2k(p

2
)
n
2
−k

2k!(n
2
− k)!

+ 1even(n)
∑

0≤k≤n−1
2

n!
s2k+1(p

2
)
n−1
2
−k

(2k + 1)!(n−1
2
− k)!

 zn
n!
.

(A.20)

So, Ωs(N) is the coefficient of the above power series expansion:

Ωs(2N) = (2N)!(
p

2
)N

N∑
k=0

(2s2

p
)k

2k!(N − k)!
(A.21)

and

Ωs(2N + 1) = (2N + 1)!(
p

2
)N

N∑
k=0

s(2s2

p
)k

(2k + 1)!(N − k)!
, (A.22)

or in general

Ωs(N) = N !(
p

2
)bN/2c

bN/2c∑
k=0

(2s2

p
)k

(2k)!(bN
2
c − k)!

. (A.23)

It is possible to write both equations (A.21) and (A.22) differently. We will see, that

the next forms are more intuitively related to a combinatorial argument, while the

resulted ones are more suitable for finding the asymptotic leading terms in the next

section.

To start, let rewrite equation (A.21) as

Ωs(2N) =
N∑
k=0

(2N)!

2k!(2N − 2k)!
× (2N − 2k)!

(N − k)!2N−k
× s2kpN−k

=
N∑
k=0

(
2N

2N − 2k

)
(2N − 2k − 1)!!s2kpN−k (np = N − k)
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=
N∑

np=0

(
2N

2np

)
(2np − 1)!!s2N−2nppnp . (A.24)

Similarly, equation (A.22) is written as

Ωs(2N + 1) =
N∑
k=0

(2N + 1)!

(2k + 1)!(2N − 2k)!
× (2N − 2k)!

(N − k)!2N−k
× s2k+1pN−k

=
N∑
k=0

(
2N + 1

2N − 2k

)
(2N − 2k − 1)!!s2k+1pN−k (np = N − k)

=
N∑

np=0

(
2N + 1

2np

)
(2np − 1)!!s2N+1−2nppnp . (A.25)

In general, for odd and even N , it writes as

Ωs(N) =

bN/2c∑
np=0

(
N

2np

)
(2np − 1)!!sN−2nppnp . (A.26)

Observe that
(
N

2np

)
(2np−1)!! is the degeneracy correspond to np pairs among N ele-

ments. And since N−2np is the number of stand-alone elements, sN−2np enumerates

the distinct configurations of stand-alone elements, whereas pnp enumerates pairs.

A.2 Recursive Relation: Second Method

In the previous section, we derived the generating function of Ωs(N) in equation

(A.11) as

G(z) = exp(sz +
pz2

2
), (A.27)

and as we shall see, it is possible to write Ωs(N) in a different form than equation

(A.26). To start, let us use the well-known exponential generating function of the

Hermite polynomial [55]

∞∑
n=0

Hn(x)
yn

n!
= exp(2xy − y2), (A.28)
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where Hn(x) is the Hermite polynomial with degree n. Using the transformation

y =
z

i

√
p

2
,

x =
is√
2p
, (A.29)

where i =
√
−1, the right hand side of equation (A.28) becomes

exp(2xy − y2) = exp(sz +
pz2

2
) = G(z). (A.30)

At the same time, the left-hand side of equation (A.28) transforms as

∞∑
n=0

Hn(x)
yn

n!
=
∞∑
n=0

(p
2

)n/2
Hn(

is√
2p

)
zn

inn!
, (A.31)

in which the Hermite polynomial’s domain is transformed into the imaginary axis.

So, the generating function G(z) is

G(z) =
∞∑
n=0

(p
2

)n/2
Hn(

is√
2p

)
zn

inn!
. (A.32)

Considering the identity between the Hermit polynomial and the generalised La-

guerre polynomial, denoted by L
(α)
n (x), we have [55]

H2n(x) = n!(−1)n22nL
(− 1

2
)

n (x2)

H2n+1(x) = n!(−1)n22n+1xL
( 1
2

)
n (x2), (A.33)

and the Hermit polynomial on the imaginary axis can be written as

H2n(
is√
2p

) = n!(−1)n22nL
(− 1

2
)

n (
−s2

2p
)

H2n+1(
is√
2p

) = n!(−1)n22n+1

(
is√
2p

)
L

( 1
2

)
n (
−s2

2p
). (A.34)

Therefore, substituting these results in equation (A.32) obtains the generating func-

tion G(z) in terms of the generalised Laguerre polynomial as

G(z) =
∑
2n

(p
2

)n
H2n(

is√
2p

)
z2n

i2n(2n)!
+
∑
2n+1

√
p

2

(p
2

)n
H2n+1(

is√
2p

)
z2n+1

i2n+1(2n+ 1)!
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=
∑
2n

(p
2

)n
n!(−1)n22nL

(− 1
2

)
n (

−s2

2p
)

z2n

(−1)n(2n)!

+
∑
2n+1

√
p

2

(p
2

)n
n!(−1)n22n+1

(
is√
2p

)
L

( 1
2

)
n (
−s2

2p
)

z2n+1

i(−1)n(2n+ 1)!

=
∑
2n

n!(2p)nL
(− 1

2
)

n (
−s2

2p
)
z2n

(2n)!
+
∑
2n+1

sn!(2p)nL
( 1
2

)
n (
−s2

2p
)
z2n+1

(2n+ 1)!
. (A.35)

by which, from the definition of G(z) in equation (A.1), we directly find

Ωs(2n) = n!(2p)nL
(− 1

2
)

n (
−s2

2p
), (A.36)

Ωs(2n+ 1) = sn!(2p)nL
( 1
2

)
n (
−s2

2p
). (A.37)

A.3 Asymptotic Leading Term of Ωs(N)

In this section, we calculate the asymptotic leading term of Ωs(N) in equation (A.23)

which is written as

Ωs(N) = N !(
p

2
)bN/2c

∑
0≤k≤bN/2c

(2s2

p
)k

(2k)!(bN
2
c − k)!

. (A.38)

In what follows, first, we numerically study the location of the maximum of the sum-

mand to exploit the exponentially fast drop of the other terms around the maximum.

Next, using the Stirling approximation of N ! the leading terms simplify further. Be-

sides, the numerical results will support the claim. And finally, the Euler-Maclaurin

summation formula [59] derives an approximated leading term for the summation.

A.3.1 Numerical investigation

In this section, without loss of the generality, we numerically study Ω2(N) instead

of the general form, namely, Ωs(N). The final finding regarding the maximum of

the summand and the exponential decreasing of terms around the maximum do not

affect by a different choices of s.

197



Chapter A: Pairing Models

For Ω2(N), consider the case for even numbers

Ω2(2N) =
2N !

2N

∑
0≤k≤N

23k

(2k)!(N − k)!
. (A.39)

We define

tN(k) =
23k

(2k)!(N − k)!
. (A.40)

For N = 200, figure (A.1) shows tN(k) where it is normalised and scaled on [0, 1].

Figure A.1: tN(k) for N = 200

It shows that the maximum value of tN(k) is for k somewhere between 0 < k < N .

The ratio of two consecutive terms lets us find the maximum point,

tN(k + 1)

tN(k)
=

(
23k+3

23k

)(
2k!

(2k + 2)!

)(
(N − k)!

(N − k − 1)!

)

198



A.3: Asymptotic Leading Term of Ωs(N)

= 23 (N − k)

(2k + 2)(2k + 1)
=

4(N − k)

(k + 1)(2k + 1)
, (A.41)

which tN (2)
tN (1)

> 1 for N > 2 and tN (N)
tN (N−1)

< 1 for N > 1. Indeed for

tN(k + 1)

tN(k)
= 1 (A.42)

evaluates k for which tN(k) is maximum,

4(N − k) = (k + 1)(2k + 1) = 2k2 + 3k + 1 =⇒ (A.43)

2k2 + 7k + 1− 4N = 0 =⇒ (A.44)

k = ±
√

2N +
41

16
− 7

4
(A.45)

k must be positive and it can be approximated like k = b
√

2Nc. In figure (A.1) we

can see tN(k) around its maximum decreases fast and becomes exponentially small

in comparison to tN(k) maximum. To prove this claim, first we approximate tN(k)

by using Stirling approximation for factorials

tN(k) =
23k

(2k
e

)2k(N−k
e

)N−k
=

2keN+k

k2k(N − k)N−k
. (A.46)

Thus

tN(
√

2N) =
2
√

2NeN+
√

2N

(
√

2N)2
√

2N(N −
√

2N)N−
√

2N
=

eN+
√

2N

N
√

2N(N −
√

2N)N−
√

2N
, (A.47)

and

tN(2
√

2N) =
22
√

2NeN+2
√

2N

(2
√

2N)4
√

2N(N − 2
√

2N)N−2
√

2N

=
eN+2

√
2N

16
√

2NN2
√

2N(N −
√

2N)N−
√

2N
, (A.48)

Notice that the ratio of these two terms is

tN(
√

2N)

tN(2
√

2N)
=

(
eN+

√
2N

eN+2
√

2N

)(
16
√

2NN2
√

2N(N − 2
√

2N)N−2
√

2N

N
√

2N(N −
√

2N)N−
√

2N

)

199



Chapter A: Pairing Models

=

(
16

e

)√2N
(

1−
√

2N

N −
√

2N

)N−
√

2N (
1− 4√

2N

)−√2N

(A.49)

Using the following two limits

lim
N→∞

(
1−

√
2N

N −
√

2N

)N−
√

2N

= e−
√

2N , (A.50)

lim
N→∞

(
1− 4√

2N

)−√2N

= e4, (A.51)

it finds

lim
N→∞

tN(2
√

2N)

tN(
√

2N)
= lim

N→∞

( e

16

)√2N

e
√

2Ne−4 = lim
N→∞

(e

4

)2
√

2N

e−4 → 0. (A.52)

So tN(k) becomes exponentially small when k moves from
√

2N to 2
√

2N . This is

same on moving toward k = 1, as it is shown in Appendix A. In figure (A.2) and

(A.3) exact values and approximated ratios are depicted for 6 ≤ k ≤ 1000.

Figure A.2: tN (2
√

2N)

tN (
√

2N)
for 6 ≤ N ≤ 1000
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Figure A.3:
tN (
√
2N
2

)

tN (
√

2N)
for 6 ≤ N ≤ 1000

These results allow us to divide the range of k into three regimes

Ω2(2N) =
(2N)!

2N

 1

N !
+

∑
1≤k≤2

√
2N

23k

(2k)!(N − k)!
+

∑
2
√

2N<k≤N

23k

(2k)!(N − k)!



Ω2(2N) =
(2N)!

2N

 1

N !
+

∑
1≤k≤2

√
2N

23k

(2k)!(N − k)!
+ ∆

 (A.53)

where 1
N !

and ∆ are exponentially small in comparison to the sum in the middle.

For Ωs(2N) the range of the summation divides as

Ωs(2N) =
(2N)!

(2/p)N

 1

N !
+

∑
1≤k≤2

√
s2N/2p

(2s2

p
)k

(2k)!(N − k)!
+ ∆

 , (A.54)

and the maximum is at k = b
√
s2N/2pc.
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A.3.2 Approximating tN(k)

For large numbers like N , the Stirling approximation is

N ! =
√

2πN(
N

e
)N(1 +O(

1

N
)). (A.55)

Recall that the summand tN(k) for Ωs(2N) is

tN(k) =
(2s2

p
)k

(2k)!(N − k)!
. (A.56)

By using the Stirling approximation to find the leading terms in tN(k) asymptotic

expansion we have

tN(k) =
(2s2

p
)k

√
4πk(2k

e
)2k
√

2π(N − k)(N−k
e

)N−k(1 +O( 1
k
))(1 +O( 1

N−k ))

=
1

2
√

2π
√
k(N − k)

×
( s

2

2p
)keN+k

k2k(N − k)N−k
× 1

(1 +O( 1
k
))(1 +O( 1

N−k ))
. (A.57)

The maximum of tN(k) is at k =
√
s2N/2p, and therefore for N � 1, around

the maximum we must have O( 1
k
) = O( 1√

N
). At the same time by using Taylor

expansion for small x we get (1− x)−1 = 1 +O(x). Hence

1

N − k
=

1

N(1− k
N

)
=

1

N
(1 +O(

k

N
)) =

1

N
+O(

k

N2
), (A.58)

which around k =
√
s2N/2p is of the order

O(
1

N − k
) = O(

1

N
+O(

1

N
3
2

)) = O(
1

N
). (A.59)

Afterwards, both asymptotic orders combine as[
1 +O(

1

k
)

] [
1 +O(

1

N − k
)

]
=

[
1 +O(

1√
N

)

] [
1 +O(

1

N
)

]
= 1 +O(

1√
N

).

(A.60)

And finally,

tN(k) =
1

2
√

2π
√
k(N − k)

×
( s

2

2p
)keN+k

k2k(N − k)N−k
×
[
1 +O(

1√
N

)

]
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=
1

2
√

2π
√
k(N − k)

×
( s

2

2p
)keN+k

k2kNN−k ×
(1− k

N
)k

(1− k
N

)N
×
[
1 +O(

1√
N

)

]
. (A.61)

Other fractions can be expanded and written as their asymptotic leading terms. For

instance, the first fraction rewrites as

1√
k(N − k)

=
1√
kN

(
1− k

N

)− 1
2

, (A.62)

and using Taylor expansion for small x as (1− x)−
1
2 = 1+O(x), the fraction leading

term must be

1√
kN

(
1 +O(

k

N
)

)
=

1

( s
2

2p
)
1
4N

3
4

(
1 +O(

1√
N

)

)
. (A.63)

Remember that the tN(k) is maximum at k =
√
s2N/2p, and we finds its magnitude

around its peak.

Defining k = c
√
N where c ∈ R and 0 ≤ c ≤ 2

√
s2/2p, the next fraction writes as

(1− k
N

)k

(1− k
N

)N
=

(1− c√
N

)c
√
N

(1− c√
N

)N
=

(
(1− c√

N
)c

(1− c√
N

)
√
N

)√N

=

(
1− c2√

N
+O( 1

N
)

e−c(1− c2

2
√
N

+O( 1
N

))

)√N
(A.64)

The numerator is the Taylor expansion at x = 0 in which we assume c/
√
N is small.

And the denominator is the asymptotic expansion of (1 − c√
N

)
√
N . Remember the

below limit when
√
N →∞

lim√
N→∞

(1− c√
N

)
√
N = e−c. (A.65)

For small x, writing the Taylor expansion of the fraction 1
1−x = 1+x+O(x2) implies

the denominator obtains as

ec(1 +
c2

2
√
N

+O(
1

N
)), (A.66)

203



Chapter A: Pairing Models

and therefore the fraction becomes[
ec(1 +

c2

2
√
N

+O(
1

N
))(1− c2

√
N

+O(
1

N
))

]√N

= ec
√
N

[
1− c2

2
√
N

+O(
1

N
)

]√N
= ec

√
N exp{

√
N ln(1− c2

2
√
N

+O(
1

N
))}. (A.67)

Next, the Taylor expansion ln(1− x) = −x+O(x2) for logarithm provides

ec
√
N exp{

√
N(− c2

2
√
N

+O(
1

N
))} = ec

√
N− c

2

2 exp{O(
1√
N

)}

= Aek(1 +O(
1√
N

)). (A.68)

In the last step we used eO(x) = 1 + O(x), and defined the constant A = e−
c2

2 .

For maximum at k =
√
s2N/2p it corresponds to c =

√
s2/2p, and therefore,

A = e−s
2/4p. Thus, the fraction’s asymptotic leading term must be

(1− k
N

)k

(1− k
N

)N
= e−

s2

4p ek(1 +O(
1√
N

)). (A.69)

Plugging back both fractions into equation (A.61), it finds

tN(k) =
1

2
√

2πe
s2

4p ( s
2

2p
)
1
4N

3
4

[
1 +O(

1√
N

)

]
ek
[
1 +O(

1√
N

)

]
( s

2

2p
)keN+k

k2kNN−k

[
1 +O(

1√
N

)

]
.

(A.70)

After multiplying all three
[
1 +O( 1√

N
)
]

terms and truncating up to the order

O( 1√
N

), it results in

tN(k) =
1

2
3
2πe

s2

4p ( s
2

2p
)
1
4N

3
4

×
( s

2

2p
)kNkeN+2k

k2kNN

[
1 +O(

1√
N

)

]

=
1

2
3
2πe

s2

4p ( s
2

2p
)
1
4N

3
4

( e

N

)N 
√

s2N
2p

e

k

2k [
1 +O(

1√
N

)

]
. (A.71)

Figure (A.4) compares approximated relations and the exact form in log-normal

scale for s = 2, p = 1, and N = 1000.
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Figure A.4: Asymptotic estimates of tN(k) for N = 2× 103, s = 2, and p = 1.

Putting altogether, Ωs(2N) becomes

Ωs(2N) =
(2N)!

2
3
2πe

s2

4p ( s
2

2p
)
1
4N

3
4 (2/p)N

( e

N

)N ∑
1≤k≤2

√
s2N/2p


√

s2N
2p

e

k

2k [
1 +O(

1√
N

)

]
.

(A.72)

When we use the Stirling approximation of (2N)!, we find

Ωs(2N) =

√
4πN

2
3
2πe

s2

4p ( s
2

2p
)
1
4N

3
4 (2/p)N

(
2N

e

)2N ( e

N

)N ∑
1≤k≤2

√
s2N/2p


√

s2N
2p

e

k

2k [
1 +O(

1√
N

)

]

205



Chapter A: Pairing Models

=
pN

√
2πe

s2

4p ( s
2N
2p

)
1
4

(
2N

e

)N ∑
1≤k≤2

√
s2N/2p


√

s2N
2p

e

k

2k [
1 +O(

1√
N

)

]
. (A.73)

A.3.3 Approximating the Summation

In this section, we estimate the sum in equation (A.73) to make the Ωs(2N) asymp-

totic leading term more analytically tractable. Let say we are seeking the asymptotic

form of Ωs(2N) for N → ∞. Hence, in this limiting case, it is possible to approxi-

mate the summation by replacing the sum with a suitable asymptomatic form. To

do that, by defining m =
√
s2N/2p the sum is

∑
1≤k≤2

√
s2N/2p


√

s2N
2p

e

k

2k

=
2m∑
k=1

(me

k

)2k

, (A.74)

in which case, the Euler-Maclaurin formulas can address the evaluation of the trans-

formed summation.

Theorem (Euler-Maclaurin summation formula, first form [59]): for a function

defined on an interval [a, b] with a and b as integers, and suppose that the derivatives

f (i)(x) exist and are continuous for 1 ≤ i ≤ 2q, where q is a fixed constant, then

b∑
k=a

f(k) =

b∫
a

f(x)dx+
f(a) + f(b)

2
+

q∑
i=1

B2i

(2i)!
f (2i−1)(x)

∣∣∣∣∣
b

a

+Rq (A.75)

where B2i is the Bernoulli number and Rq is a reminder term satisfying

|Rq| ≤
|B2q|
(2q)!

b∫
a

|f (2q)(x)|dx < 4

(2π)2q

b∫
a

|f (2q)(x)|dx. (A.76)

�

So for

f(x) =
(me

x

)2x

, (A.77)
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we can rewrite the Euler-Maclaurin summation for f(k) like,

2m∑
k=1

(me

k

)2k

=

2m∫
1

(me

x

)2x

dx+
f(2m) + f(1)

2
+

B2
f ′(2m) + f ′(1)

2
+Rq, (A.78)

and for x = mt, the first integral is

2m∫
1

(me

x

)2x

dx = m

2∫
1
m

(e

t

)2mt

dt = m

2∫
1
m

exp {2mt− 2mt ln(t)} dt (A.79)

Using Saddle-Point Method [46] allows us to approximate the integral. Suppose,

g(t) = 2mt− 2mt ln(t), (A.80)

then for first and second derivatives of g(t) we have,

g′(t) = −2m ln(t) = 0 =⇒ t0 = 1, (A.81)

and

g′′(t) = −2m

t
, (A.82)

t0 is where g(t) is maximum. Taylor expansion of g(t) around t0 is

g(t) ≈ 2m−m(t− 1)2. (A.83)

The expansion approximates the integral like,

m

2∫
1
m

exp {2mt− 2mt ln(t)} dt ≈ m exp(2m)

2∫
1
m

exp
{
−m(t− 1)2

}
dt. (A.84)

A resulting integral is a Gaussian form and its width is equal to 1√
2m

. It is safe to

extend the limits of the integral from −∞ to +∞ and approximate the integral like

m exp(2m)

 ∞∫
−∞

exp
{
−m(t− 1)2

}
dt− εm


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≈
√
π

m
me2m =

√
πme2m, (A.85)

where εm is a constant that depends only onm and exponentially small in comparison

to integral.

For other terms in the Euler-Maclaurin formula, the value of f(x) and its derivatives

at endpoints are required. we again define x = mt and then

f(x)→ F (t) =
(e

t

)2mt

(A.86)

Therefore,

df(x)

dx
=

1

m

dF (t)

dt
=

1

m

d

dt

[(e

t

)2mt
]

=
1

m
(−2mF (t) ln(t))

= −2F (t) ln(t) (A.87)

and
d2f(x)

dx2
=

1

m2

d2F (t)

dt2
=

1

m2

(
2mF (t)(2m ln2(t)− 1

t
)

)
= 4F (t) ln2(t)(1 +O(

1

m
)) (A.88)

Plugging back the end points in f(x) and its derivatives,

f(x = 2m) = F (t = 2) =
(e

2

)4m

, (A.89)

f(x = 1) = F (t =
1

m
) = (me)2 , (A.90)

f ′(x = 2m) = F ′(t = 2) = −2
(e

2

)4m

log(2), (A.91)

f ′(x = 1) = F ′(t =
1

m
) = 2 (me)2 log(m). (A.92)

Meanwhile from relation (A.76),

|Rq| < O

 2m∫
1

|F ′′(x)|dx

 = O

 1

m

2∫
1
m

|F ′′(t)|dt

 = O(

(
e
2

)4m

m
). (A.93)

The last result comes from the fact that from relation (A.87) we have already found

the solution of the integral and therefore the order of Rq.
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Putting all the results together, the approximate value of the sum is

2m∑
k=1

f(k) =
√
πme2m +

(e

2

)4m

+ (me)2

−2
(e

2

)4m

log(2) + 2 (me)2 log(m) +O(

(
e
2

)4m

m
)

=
√
πme2m +

(e

2

)4m

(1− 2 log(2)) +O(

(
e
2

)4m

m
). (A.94)

Comparing the first and second terms on the right-hand side brings up this question:

between
√
πme2m (A.95)

and (
e2

4

)2m

≈ (1.8472640)2m , (A.96)

which one is the leading term? We can see m
1
2 e2m grows faster than (1.8472640)2m

(e is greater than e2/4 and m
1
2 is N dependent). Therefore,

2m∑
k=1

f(k) =
√
πme2m

1 +O(

(
e2

4

)2m

√
me2m

)


=
√
πme2m

(
1 +O(

1√
m(4

e
)2m

)

)
. (A.97)

Recall that m =
√
s2N/2p, hence the sum becomes

2
√

2N∑
k=1

f(k) = (
s2N

2p
)
1
4
√
πe2
√
s2N/2p

1 +O(
1

( s
2N
2p

)
1
4 (4

e
)2
√
s2N/2p

)

 . (A.98)

Indeed finding the sum’s approximation transforms the relation (A.73) to

Ωs(2N) =
pN

√
2πe

s2

4p ( s
2N
2p

)
1
4

(
2N

e

)N
(
s2N

2p
)
1
4
√
πe2
√
s2N/2p

1 +O(
1

( s
2N
2p

)
1
4 (4

e
)2
√
s2N/2p

)


×
[
1 +O(

1√
N

)

]
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=
pN

√
2e

s2

4p

(
2N

e

)N
e2
√
s2N/2p

(
1 +O(

1√
N

)

)
. (A.99)

Table (??) list ratios between the approximate form and the exact value for s = 2,

p = 1 and different Ns. As we can see, the ratio converge very slowly because of

O( 1√
N

).

N ratio difference between two ratios

100 0.5829109953992809790245939305 -

101 0.7945985775377341167964762797 0.7945985775377341167964762797

102 0.9231601917908334849576657660 0.1285616142530993681611894863

103 0.9743185402276979494843280135 0.0511583484368644645266622475

104 0.9917344176841455851197054511 0.0174158774564476356353774376

105 0.9973715645660685975096529035 0.0056371468819230123899474524

106 0.9991673469451725833525477959 0.0017957823791039858428948924

107 0.9997365448979457992519574128 0.0005691979527732158994096169

108 0.9999166761297524947566204494 0.0001801312318066955046630366

The

raptionRatio between the approximate form and the exact value of different Ns.
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Appendix

B

Probability Distributions

B.1 Finding cn(r) from Generating Function Method

For even numbers, the power series f2n(x) is defined as

f2n(x) =
n∑
i=0

(
2n

2i

)
(2i− 1)!! xi, (B.1)

and the normalisation constant in terms of f2n(x) writes as

c2n,r = rnf2n(
1

r
). (B.2)

summing both sides of equation (B.1), we get the F1(Y ;x), which is a generating

function with its Y 2n coefficients as f2n(x)

F1(Y ;x) =
∑
2n≥0

f2n(x)
Y 2n

2n!
=
∑
2n≥0

n∑
i=0

(
2n

2i

)
(2i− 1)!! xi

Y 2n

2n!

=
∑
2n≥0

n∑
i=0

(x
2
)i

i!

Y 2n

(2n− 2i)!
. (B.3)
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Looking at table (B.1), you see that we filled the cells that have a value with respect

to i and 2n in the double sums above. So, it is possible to swap the sums when we

start first on columns instead of rows

∑
2n≥0

n∑
i=0

(.) =
∑
i≥0

∑
2n≥2i

(.) (B.4)

i i = 0 i = 1 i = 2 i = 3 i = 4 . . .

2n = 0 0 . . .

2n = 2 0 1 . . .

2n = 4 0 1 2 . . .

2n = 6 0 1 2 3 . . .

2n = 8 0 1 2 3 4 . . .
...

...
...

...
...

...
. . .

Table B.1: Range of i values for a fixed 2n.

Therefore

F1(Y ;x) =
∑
2n≥0

n∑
i=0

(x
2
)i

i!

Y 2n

(2n− 2i)!
=
∑
i≥0

(x
2
)i

i!

∑
2n≥2i

Y 2n

(2n− 2i)!

=
∑
i≥0

(x
2
Y 2)i

i!

∑
2n≥0

Y 2n

2n!
= e

x
2
Y 2

coshY. (B.5)

Similarly, for odd numbers, the generating function is defined as

f2n+1(x) =
n∑
i=0

(
2n+ 1

2i

)
(2i− 1)!! xi, (B.6)

and

F2(Y ;x) =
∑

2n+1≥1

f2n+1(x)
Y 2n+1

(2n+ 1)!
=

∑
2n+1≥1

n∑
i=0

(2n+ 1)!

(2n+ 1− 2i)!

(x
2
)i

i!

Y 2n+1

(2n+ 1)!

=
∑
i≥0

(x
2
Y 2)i

i!

∑
2n+1≥0

Y 2n+1

(2n+ 1)!
= e

x
2
Y 2

sinhY. (B.7)
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Using both F1(Y ;x) and F2(Y ;x)

F (Y, x) := F1(Y ;x) + F2(Y ;x) =
∑
2n≥0

f2n(x)
Y 2n

2n!
+
∑

2n+1≥1

f2n+1(x)
Y 2n+1

(2n+ 1)!

=
∑
2n≥0

[
f2n(x)

Y 2n

2n!
+ f2n+1(x)

Y 2n+1

(2n+ 1)!

]
=
∑
n≥0

fn(x)
Y n

n!

= e
x
2
Y 2

[coshY + sinhY ] = e
x
2
Y 2+Y . (B.8)

On summing F1(Y ;x) and F2(Y ;x), we wrote F (Y, x) as a power series with odd

and even powers of Y . F (Y, x) is an analytic function and is infinitely differentiable,

hence, the coefficients of Taylor expansion of F (Y, x) at Y = 0 results in fn(x)

fn(x) =
dnF (Y, x)

dY n

∣∣∣∣
Y=0

:= F (n)(0, x). (B.9)

Since the first derivative of F (Y, x) is recursively related to itself

F ′(Y, x) = (xY + 1)F (Y, x), F ′(0, x) = 1, (B.10)

repeating the derivatives gets the recursive relation for F (n)(Y, x)

F (n+1)(Y, x) = nxF (n−1)(Y, x) + (xY + 1)F (n)(Y, x). (B.11)

Table (B.2) shows the procedure.

n = 1 F ′(Y, x) = (xY + 1)F (Y, x)

n = 2 F (2)(Y, x) = (xY + 1)F ′(Y, x) + xF (Y, x)

n = 3 F (3)(Y, x) = (xY + 1)F (2)(Y, x) + 2xF ′(Y, x)

n = 4 F (4)(Y, x) = (xY + 1)F (3)(Y, x) + 3xF (2)(Y, x)

n = 5 F (5)(Y, x) = (xY + 1)F (4)(Y, x) + 4xF (3)(Y, x)
...

...

n F (n+1)(Y, x) = (xY + 1)F (n)(Y, x) + nxF (n−1)(Y, x)

Table B.2: Recursive relation for F (Y, x) derivatives.
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n = 0 F (0, x) = 1

n = 1 F ′(0, x) = 1

n = 2 F (2)(0, x) = x+ 1

n = 3 F (3)(0, x) = 3x+ 1

n = 4 F (4)(0, x) = 3x2 + 6x+ 1

n = 5 F (5)(0, x) = 15x2 + 10x+ 1
...

...

n F (n+1)(0, x) = F (n)(0, x) + nxF (n−1)(0, x)

Table B.3: Recursive relation for F (n+1)(0, x) derivatives.

Also in table (B.3), we show the F (n+1)(0, x) in terms of its previous values, and

therefore

F (n+1)(0, x) = F (n)(0, x) + nxF (n−1)(0, x). (B.12)

When we plug in equation (B.9) in the last relation it finds

fn+1(x) = fn(x) + nxfn−1(x). (B.13)

Remember the normalisation constants relate to f2n(x) and f2n+1(x) asc2n(r) = rnf2n(1
r
)

c2n+1(r) = rnf2n+1(1
r
)

. (B.14)

So, it is necessary to rewrite fn(x) for odds and even numbers separately. It means

equation (B.13) for odd and even numbers rewrites asf2n(x) = f2n−1(x) + (2n− 1)xf2n−2(x)

f2n+1(x) = f2n(x) + 2nxf2n−1(x)
. (B.15)

Then, we havernf2n(1
r
) = rnf2n−1(1

r
) + (2n− 1)rn−1f2n−2(1

r
)

rnf2n+1(1
r
) = rnf2n(1

r
) + 2nrn−1f2n−1(1

r
)

=⇒
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c2n(r) = rc2n−1(r) + (2n− 1)c2n−2(r)

c2n+1(r) = c2n(r) + 2nc2n−1(r).
(B.16)

B.2 Finding the LDP Limit of Pn(np)

Let us start with Pn(np). We have

Pn(np) =
1

cn(r)

(
n

2np

)
(2np − 1)!! rbn/2c−np , (B.17)

then, using Sterling’s approximation for log n!, we get

lnPn(np) = − ln cn(r)+n lnn−n−np ln 2−(n−2np) ln(n−2np)+(n−2np)−np lnnp+np

+(bn/2c − np) ln r

= − ln cn(r) + np lnn− n

2

[
2np
n

ln
2np
n

+ 2(1− 2np
n

) ln(1− 2np
n

)

+
2np
n
− (1− 2np

n
) ln r

]
. (B.18)

Equation (3.57) defines mn = 2np
n

, and the last equation becomes

lnPn(mn) = − ln cn(r) +
nmn

2
lnn− n

2
[mn lnmn + 2(1−mn) ln(1−mn)

+mn − (1−mn) ln r] . (B.19)

To find log cn(r) for 1� n, its asymptotic leading term in equation (3.53) gives

ln cn(r) = ln

(
e
−r
4

√
2

(n
e

)n/2
e
√
rn

)
=
n

2
lnn− n

2
+O(

√
n). (B.20)

Hence

lnPn(mn) = −n
2

lnn+
n

2
+
nmn

2
lnn− n

2
[mn lnmn + 2(1−mn) ln(1−mn)

+mn − (1−mn) ln r] +O(
√
n)

= −(
1−mn

2
)n lnn− n

2

[
mn lnmn + (1−mn) ln

(1−mn)2

er

]
+O(

√
n). (B.21)
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B.3 Finding the LDP Limit of Pn(np, nu)

The Pn(np, nu) distribution is written as

Pn(np, nu) =
1

cn(r)

(
n

2np

)
(2np−1)!! rbn/2c−np

(
n− 2np
nu

)
ρnu(1−ρ)n−2np−nu . (B.22)

Let us find the logarithm of
(

2−2np
nu

)
ρnu(1 − ρ)n−2np−nu terms, which are extra in

comparison to Pn(np), and then, we can use the results from the previous section to

check the large deviation principle.

Recall that mn = 2np/n and sn = nu/(n− 2np). Thus, we have

ln

[(
n− 2np
nu

)
ρnu(1− ρ)n−2np−nu

]
= ln(n− 2np)!− lnnu!− ln(n− 2np − nu)!

= −n(1− 2np
n

)

[
nu

(n− 2np)
ln(

nu
(n−2np)

ρ
) + (1− nu

n− 2np
) ln(

1− nu
n−2np

1− ρ
)

]

= −n(1−mn)

[
sn ln(

sn
ρ

) + (1− sn) ln(
1− sn
1− ρ

)

]
. (B.23)

Combining the last result with equation (3.62) completes the remaining terms

lnPn(mn, sn) = −(
1−mn

2
)n lnn+

n

2

[
mn lnmn + (1−mn) ln

(1−mn)2

er

−2(1−mn)

(
sn ln(

sn
ρ

) + (1− sn) ln(
1− sn
1− ρ

)

)]
+O(

√
n)

= −(
1−mn

2
)n lnn+

n

2

[
H̃r(mn)

−2(1−mn)

(
sn ln(

sn
ρ

) + (1− sn) ln(
1− sn
1− ρ

)

)]
+O(

√
n). (B.24)

B.4 Asymptotic Leading Term of cn(ε)

It was mentioned in the text that equation (B.20) is a valid asymptotic leading term

when r is kept constant. However, one special case happens when we assume r is

increasing with 2n such that

lim
2n→∞

r

2n
= ε, (B.25)
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and the asymptotic term of log(c2n,ε) needs considering this limit. Here, we start

from equation (3.51)

c2n,r = (2n)!
n∑
k=0

rk2k−n

(n− k)!(2k)!
,

and replace r by 2εn

c2n,ε = (2n)!
n∑
k=0

(2εn)k2k−n

(n− k)!(2k)!

=
(2n)!

2n

n∑
k=0

(4εn)k

(n− k)!(2k)!
. (B.26)

Without rearranging the order of k (check equation (3.51) to see how the order

changes), k∗ or where the summand is maximum, approaches n in the limit 2n→∞.

Yet, in the above form, k∗ is ε dependent.

Denoting

t2n(k) =
(4εn)k

(n− k)!(2k)!
(B.27)

for the summand, and using Sterling’s approximation log n! = n log n − n, we find

the k∗(ε) by taking the derivative1 of the logarithm of t2n(k), since the logarithm is

a strictly increasing function, so the maximum of t2n(k) coincides with log t2n(k)

log t2n(k) = k log(4εn)− 2k log(2k) + 2k − (n− k) log(n− k) + (n− k) =⇒

d log t2n(k)

dk
= log(4εn)− 2− 2 log(2k) + 2 + 1 + log(n− k)− 1

= log(4εn) + log
n− k
4k2

= 0 =⇒

k2 + εnk − εn2 = 0. (B.28)

The solutions of the above quadratic equation are

k = −εn
2
± εn

2

√
1 +

4

ε
, (B.29)

1This is true that we treat a discrete variable, k, as a continuous one. However, in the continuum
limit, 2n→∞, the distinction disappears.

We can also use the ratio
t2n(k + 1)

t2n(k)
= 1,

to find the maximum where the difference between two consecutive terms is negligible. Doing that,
we find the same solution for k∗, round to closest integer.
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however, k is non-negative, and therefore, the maximum of t2n(k) is at

k∗ =
εn

2

[√
1 +

4

ε
− 1

]
. (B.30)

To not clutter the notation, we denote the bracket as

f(ε) =

√
1 +

4

ε
− 1, (B.31)

and write

k∗ =
εnf(ε)

2
. (B.32)

Now that we found the k∗, and knowing the fact that the sum in c2n,ε is concentrated

at its maximum, we find the asymptotic leading term of t2n(k) by first simplifying

it using the Sterling’s approximation, n! =
√

2πn
(
n
e

)n
, and next evaluating it at k∗

t2n(k) =
(4εn)k

(n− k)!(2k)!
=

(4εn)ken+k

2π
√

2k(n− k)(2k)2k(n− k)n−k

=
( eεn
k2

)ken

2π
√

2k(n− k)nn−k(1− k
n
)n−k

=
1

2
√

2π
× 1√

k(n− k)
× 1

(1− k
n
)n−k

× (
eεn2

k2
)k
( e

n

)n
. (B.33)

The n-dependence of k∗ allows us to exploit the same argument that we used to find

Ω(n) asymptotic leading term. For instance, the first ratio 1/
√
k(n− k) approxi-

mates as
1√

k∗(n− k∗)
∼ 1

n
√

εf(ε)
2

(1− εf(ε)
2

)
, (B.34)

considering the fact that the bulk of the distribution is concentrated around the k∗.

Let us define

g(ε) = (1− εf(ε)

2
). (B.35)

Then
1√

k(n− k)
∼ 1

n
√

ε
2
f(ε)g(ε)

, (B.36)

and

(1− k

n
)n−k ∼ (1− εf(ε)

2
)n(1− εf(ε)

2
) = g(ε)ng(ε). (B.37)
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Therefore, the summand turns to

t2n(k) ∼ 1

2
√

2π
× 1

n
√

ε
2
f(ε)g(ε)

× g(ε)−ng(ε) × (
eεn2

k2
)k
( e

n

)n
, (B.38)

and c2n,ε becomes

c2n,ε ∼
(2n)!

2n+1π

g(ε)−ng(ε)
(

e
n

)n
n
√
εf(ε)g(ε)

n∑
k=1

(
eεn2

k2
)k. (B.39)

We have to emphasise that we started the sum from k = 1 instead of k = 0. To

justify it, observe that using the equation (B.26), we find the ratio of two consecutive

summands for k = 0 and k = 1

t2n(0)

t2n(1)
=

1

4εn
× (n− 1)!

n!
× 0!

2!
=

1

8εn2
, (B.40)

which means asymptotically t2n(0) � t2n(1) for any ε > 0 and n → ∞, which

justify the exclusion of k = 0. It will become clear later that this removal gives a

mathematically nicer form to handle.

If we approximate the above (2n)! too, we get

c2n,ε ∼
√

4πn(2n
e

)2n
(

e
n

)n
2n+1π

g(ε)−ng(ε)

n
√
εf(ε)g(ε)

n∑
k=1

(
eεn2

k2
)k

=
(2n

e
)ng(ε)−ng(ε)√
nπεf(ε)g(ε)

n∑
k=1

(
eεn2

k2
)k. (B.41)

Finally, we need to estimate the asymptotic leading term of the sum
∑n

k=0(
√

eεn
k

)2k.

Resort back to the result for Ω(2n) asymptotic leading term, the sum can be esti-

mated as an integral. Still, the free parameter ε introduces two different behaviours

that introduce a subtle consideration in estimating the current sum.

Let us call the summand as

d(k) = (

√
eεn

k
)2k. (B.42)

Similar to what we have already done to find k∗, we treat d(k) as a continuous

function and find its maximum w.r.t. ε for constant n by taking the derivative of

log d(k)
d log d(k)

dk
= 2 log(

√
eεn

k
)− 2 = 0 =⇒
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√
eεn

k
= e =⇒

k∗

n
=

√
ε

e
. (B.43)

However, k∗ ≤ n, and for ε > e the above result implies

k∗ = n. (B.44)

In other words, the maximum of the sum is concentrated at k∗ = n. The ε > e

bound is what we need to consider when we seek to find the asymptotic leading

term of the sum.

Continuing the estimation by an integral, we divide our study into two regions

• ε > e: In this case, the sum can be estimated by its largest term which is

t2n(n)
n∑
k=1

(
eεn2

k2
)k ∼ (

eεn2

n2
)n

n∑
k=1

(
eεn2

k2
)k ∼ (

eεn2

n2
)n = (eε)n . (B.45)

Later, we shall show that the numerical analysis supports the above result,

except for ε→ e+.

• ε ≤ e: We have
n∑
k=1

(
eεn2

k2
)k ∼

n∫
1

(√
eεn

x

)2x

dx

=
√

eε n

1√
eε∫

1√
eεn

x−2
√

eε nxdx (x→
√

eε nx)

=
√

eε n

1√
eε∫

1√
eεn

e−n[2
√

eε x lnx]dx. (B.46)

We are going to use the steepest descent approximation here. Define

h(x) = 2
√

eε x lnx, (B.47)
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and see that h′(x∗) = 0 gives

x∗ = e−1. (B.48)

So, the Taylor expansion of h(x) around x∗, up and including the quadratic

term, is

h(x) = h(x∗) +
h′′(x∗)

2
(x− x∗)2 +O(x3)

= −2

√
ε

e
+
√

e3ε(x− e−1)2 +O(x3). (B.49)

Then, defining a2 :=
√

e3ε, the integral estimate gives

n∑
k=1

(
eεn2

k2
)k ∼

√
eε n

1√
eε∫

1√
eεn

e−n[−2
√

ε
e
+a2(x−e−1)2]dx

=
√

eε ne2n
√

ε
e

1√
eε∫

1√
eεn

e−a
2n(x−e−1)2dx

=

√
eε

a
√
n
ne2n
√

ε
e

a
√

n
e

( 1√
ε
− 1√

e
)∫

a
√
n( 1√

eεn
−e−1)

e−t
2

dt (t = a
√
n(x− e−1))

=
( ε

e

) 1
4 √

n e2n
√

ε
e

(eε)
1
4
√
n( 1√

ε
− 1√

e
)∫

−
[
( εe)

1
4−( e

ε)
1
4 1
n

]
√
n

e−t
2

dt (a = (e3ε)
1
4 )

=
( ε

e

) 1
4 √

n e2n
√

ε
e

[
( e
ε)

1
4−( εe)

1
4

]
√
n∫

−
[
( εe)

1
4−( e

ε)
1
4 1
n

]
√
n

e−t
2

dt. (B.50)

For n → ∞ and considering the condition ε ≤ e, the limits of the integral

become

lim
n→∞

−
[( ε

e

) 1
4 −

(e

ε

) 1
4 1

n

]√
n→ −∞, (B.51)

and

lim
n→∞

[(e

ε

) 1
4 −

( ε
e

) 1
4

]√
n→∞. (B.52)
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Then

n∑
k=1

(
eεn2

k2
)k ∼

( ε
e

) 1
4 √

n e2n
√

ε
e

∞∫
−∞

e−t
2

dt =
( ε

e

) 1
4 √

πn e2n
√

ε
e . (B.53)

So, in both cases

n∑
k=0

(
eεn2

k2
)k ∼


(
ε
e

) 1
4
√
πn e2n

√
ε
e ε ≤ e

(εe)n ε > e
(B.54)

Finally, the c2n,ε asymptotic leading term is

c2n,ε ∼
(2n

e
)ng(ε)−ng(ε)√
nπεf(ε)g(ε)

×


(
ε
e

) 1
4
√
πn e2n

√
ε
e ε ≤ e

(εe)n ε > e

=


g(ε)−ng(ε)e

2n
√

ε
e ( 2n

e
)n√√

eεf(ε)g(ε)
ε ≤ e

g(ε)−ng(ε)(2εn)n√
nπεf(ε)g(ε)

ε > e
. (B.55)

B.5 First Moment

The first moment of Pn(np) is defined as

〈np〉n =

bn/2c∑
i=0

iPn(np = i) =
1

cn(r)

bn/2c∑
i=0

(
n

2i

)
(2i− 1)!! i rbn/2c−i. (B.56)

From equation (B.1) for the generating function fn(x) we have

fn(x) =

bn/2c∑
i=0

(
n

2i

)
(2i− 1)!! xi =⇒

[
x
d

dx

]
fn(x) =

bn/2c∑
i=0

(
n

2i

)
(2i− 1)!! i xi. (B.57)
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So, combining it with equation (B.14) derives

〈np〉n =
rbn/2c

cn(r)

[
x
d

dx

]
fn(x)

∣∣∣∣
x= 1

r

. (B.58)

Furthermore for even numbers, say 2n, equation (B.9) implies

f2n(x) :=
d2nF (Y, x)

dY 2n

∣∣∣∣
Y=0

=⇒

df2n(x)

dx
=

d

dx

d2nF (Y, x)

dY 2n

∣∣∣∣
Y=0

=
d2n

dY 2n

dF (Y, x)

dx

∣∣∣∣
Y=0

=
d2n

dY 2n

d

dx
e
xY 2

2
+Y

∣∣∣∣
Y=0

=
d2n

dY 2n

(
Y 2

2
F (Y, x)

)∣∣∣∣
Y=0

. (B.59)

At this stage to make the notation less cluttered denote F (Y, x) by F and take

derivatives with respect to Y repeatedly as follows

d

dY

(
Y 2

2
F

)
= Y F +

Y 2

2
F ′,

d2

dY 2

(
Y 2

2
F

)
= F + 2Y F ′ +

Y 2

2
F ′′,

d3

dY 3

(
Y 2

2
F

)
= 3F ′ + 3Y F ′′ +

Y 2

2
F (3),

d4

dY 4

(
Y 2

2
F

)
= 6F ′′ + 4Y F (3) +

Y 2

2
F (4),

d5

dY 5

(
Y 2

2
F

)
= 10F (3) + 5Y F (4) +

Y 2

2
F (5),

d6

dY 6

(
Y 2

2
F

)
= 15F (4) + 6Y F (5) +

Y 2

2
F (6),

. . . ,

d2n

dY 2n

(
Y 2

2
F

)
= n(2n− 1)F (2n−2) + 2nY F (2n−1) +

Y 2

2
F (2n), (B.60)

which implies

df2n(x)

dx
=

d2n

dY 2n

(
Y 2

2
F (Y, x)

)∣∣∣∣
Y=0

= n(2n− 1)F (2n−2)(0, x)

= n(2n− 1)f2n−2(x). (B.61)
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For odd numbers we find

df2n+1(x)

dx
= n(2n+ 1)f2n−1(x). (B.62)

Therefore, in general for n we obtain

dfn(x)

dx
=
n(n− 1)

2
fn−2(x). (B.63)

We can say the derivative transform a polynomial fn(x) to fn−2(x) times n(n−1)/2.

Using the last result and equations (B.58) and (B.14)

〈np〉n =
rbn/2c

cn(r)

[
x
d

dx

]
fn(x)

∣∣∣∣
x= 1

r

=
rbn/2c

cn(r)

n(n− 1)

2
xfn−2(x)

∣∣∣∣
x= 1

r

=
rbn/2c−1

cn(r)

n(n− 1)

2
fn−2(

1

r
) =⇒

〈np〉n =
n(n− 1)

2

cn−2(r)

cn(r)
. (B.64)

B.6 The operator
[
x d
dx

]
In order to find a pattern, let us apply k times the operator

[
x d
dx

]
on fn(x) consec-

utively [
x
d

dx

]
fn(x) =

n(n− 1)

2
xfn−2(x) =⇒

[
x
d

dx

]2

fn(x) =
n(n− 1)

2
xfn−2(x) +

n(n− 1)(n− 2)(n− 3)

4
x2fn−4(x)

=
n!

(n− 2)!

x

2
fn−2(x) +

n!

(n− 4)!

(x
2

)2

fn−4(x),

[
x
d

dx

]3

fn(x) =
n!

(n− 2)!

x

2
fn−2(x)+

3n!

(n− 4)!

(x
2

)2

fn−4(x)+
n!

(n− 6)!

(x
2

)3

fn−6(x),

[
x
d

dx

]4

fn(x) =
n!

(n− 2)!

x

2
fn−2(x) +

7n!

(n− 4)!

(x
2

)2

fn−4(x) +
6n!

(n− 6)!

(x
2

)3

fn−6(x)

+
n!

(n− 8)!

(x
2

)4

fn−8(x),
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[
x
d

dx

]5

fn(x) =
n!

(n− 2)!

x

2
fn−2(x) +

15n!

(n− 4)!

(x
2

)2

fn−4(x) +
25n!

(n− 6)!

(x
2

)3

fn−6(x)

+
10n!

(n− 8)!

(x
2

)4

fn−8(x) +
n!

(n− 10)!

(x
2

)5

fn−10(x),

. . .[
x
d

dx

]k
fn(x) =

k∑
i=1

n!

(n− 2i)!
a

(k)
i

(x
2

)i
fn−2i(x), (B.65)

where the recursive relation for a
(k)
i s is

a
(k)
i = a

(k−1)
i−1 + ia

(k−1)
i , a

(k)
1 = a

(k)
k = 1. (B.66)

Using equation (B.14) we writer−if2n−2i(
1
r
) = c2n−2i

rn

r−if2n+1−2i(
1
r
) = c2n+1−2i

rn

=⇒ r−ifn−2i(
1

r
) =

cn−2i

rbn/2c
, (B.67)

and then[
x
d

dx

]k
fn(x)

∣∣∣∣∣
x= 1

r

=
k∑
i=1

n!

(n− 2i)!
a

(k)
i

(x
2

)i
fn−2i(x)

∣∣∣∣∣
x= 1

r

=
k∑
i=1

n!

(n− 2i)!

a
(k)
i

2i
cn−2i

rbn/2c

=
k∑
i=1

b
(k)
i

2i
cn−2i

rbn/2c
, (B.68)

where

b
(k)
i ≡

n!

(n− 2i)!
a

(k)
i . (B.69)

B.7 Finding dcn(r)/dr and d ln cn(r)/dr

To find dc2n(r)
dr

, we use equations (B.14) and (B.61)

dc2n(r)

dr
=

d

dr

[
rnf2n(

1

r
)

]
= nrn−1f2n(

1

r
) + rn

df2n(1
r
)

dr

= nrn−1f2n(
1

r
)− rn−2df2n(1

r
)

d(1
r
)
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= nrn−1f2n(
1

r
)− n(2n− 1)rn−2f2n−2(

1

r
), (B.70)

where we used f ′2n(x) = n(2n − 1)f2n−2(x) in the last step. Using equation (B.14)

by which

c2n(r) = rnf2n(
1

r
), c2n−2(r) = rn−1f2n−2(

1

r
), (B.71)

hence equation (B.70) rewrites as

dc2n(r)

dr
=
n

r
c2n(r)− n(2n− 1)

r
c2n−2(r), (B.72)

Similarly, for odd numbers we find

dc2n+1(r)

dr
= nrn−1f2n+1(

1

r
)− n(2n+ 1)rn−2f2n−1(

1

r
)

=
n

r
c2n+1(r)− n(2n+ 1)

r
c2n−1(r). (B.73)

Hence, in general, we have

dcn(r)

dr
=
bn/2c
r

cn(r)− n(n− 1)

2r
cn−2(r). (B.74)

Also, since
d ln cn(r)

dr
=

1

cn(r)

dcn(r)

dr
, (B.75)

we have
d ln cn(r)

dr
=
bn/2c
r
− n(n− 1)

2r

cn−2(r)

cn(r)
=
bn/2c − 〈np〉n

r
, (B.76)

where we used equation (B.64) in the last step.

For even numbers, taking the derivative directly on the definition of c2n(r) obtains

another result. We have

dc2n(r)

dr
=

d

dr

n∑
i=0

(
2n

2i

)
(2i− 1)!!rn−i

=
n−1∑
i=0

(n− i)
(

2n

2i

)
(2i− 1)!!rn−i−1

=
n−1∑
i=0

n

(
2n− 1

2i

)
(2i− 1)!!rn−i−1 = nc2n−1(r). (B.77)
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B.8 Finding kth Moments in terms of Other First

Moments

To find the relation between kth moment and the first moments of smaller system

sizes, if we use the definition of b
(k)
i in equation (3.106), we observe

b
(k)
i

2i
cn−2i(r)

cn(r)
=

n!

(n− i)!
a

(k)
i

2i
cn−2i(r)

cn(r)

=

[
n(n− 1)

2

cn−2(r)

cn(r)

]
×
[

(n− 2)(n− 3)

2

cn−4(r)

cn−2(r)

]
×
[

(n− 4)(n− 5)

2

cn−6(r)

cn−4(r)

]
× . . .

×
[

(n− 2i+ 2)(n− 2i+ 1)

2

cn−2i(r)

cn−2i+2(r)

]
a

(k)
i

= 〈np〉n〈np〉(n−2)〈np〉(n−4) . . . 〈np〉(n−2i+2)a
(k)
i . (B.78)

Therefore, using the definition of kth moment for a system size n in equation (3.108)

and equation (B.68) finds

〈nkp〉n =
k∑
i=1

a
(k)
i 〈np〉n〈np〉(n−2) . . . 〈np〉(n−2i+2). (B.79)

B.9 The Asymptotic Form of the kth Moment

For 1� n and k = O(
√
n), using equations (3.90)2 and (3.108) we must have

〈nkp〉n =
k∑
i=1

a
(k)
i

2i
n!

(n− 2i)!

cn−2i(r)

cn(r)
=

k∑
i=1

a
(k)
i

2i
n!

(n− 2i)!

cn−2(r)

cn(r)

cn−4(r)

cn−2(r)
. . .

cn−2i(r)

cn−2i+2(r)

∼
k∑
i=1

a
(k)
i

2i
n!

(n− 2i)!

e−
√
r/n

n− 2

e−
√
r/(n−2)

n− 4
. . .

e−
√
r/(n−2i+2)

n− 2i

2Note that in equation (3.90), the denominator is n− 2 as

cn−2(r)

cn(r)
∼ e−

√
r/n

n− 2
, (B.80)

that we used its asymptotic form as n.
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∼
k∑
i=1

a
(k)
i

2i
n(n− 1)

n− 2

(n− 2)(n− 3)

n− 4
. . .

(n− 2i+ 2)(n− 2i+ 1)

n− 2i
e
−
√
r/n

(
1+
√
n/n−2+···+

√
n/n−2(i−1)

)

∼
k∑
i=1

a
(k)
i

2i
n(n− 2) . . . (n− 2i+ 2)e−i

√
r/n

(Using n−2j+1
n−2j

∼ n
n−2j

∼ 1, 1 ≤ j ≤ k ≤
√
n)

∼
k∑
i=1

a
(k)
i

2i
ni(1− 2

n
) . . . (1− 2(i− 1)

n
)e−i
√
r/n

∼
k∑
i=1

a
(k)
i

2i
ni
(

1− i− 1

n

)i
e−i
√
r/n

∼ a
(k)
k nk

2k

(
1− k − 1

n

)k
e−k
√
r/n+

a
(k)
k−1n

k−1

2k−1

(
1− k − 2

n

)k−1

e−(k−1)
√
r/n+O(nk−2).

(B.81)

And since a
(k)
k = 1 and a

(k)
k−1 = k(k − 1)/2 and assuming 1− k−2

n
∼ 1− k−1

n
, we get

〈nkp〉n ∼
nke−k

√
r/n

2k

(
1− k − 1

n

)k−1(
1− k − 1

n
+
k(k − 1)

n
e
√
r/n

)
+O(nk−2)

∼ nke−k
√
r/n

2k

(
1− (k − 1)2

n
+O(

1

n2
)

)(
1− k − 1

n
+
k(k − 1)

n
e
√
r/n

)
+O(nk−2)

∼ nke−k
√
r/n

2k

(
1− k − 1

n
+
k(k − 1)

n
e
√
r/n − (k − 1)2

n
+O(

1

n2
)

)
+O(nk−2) =⇒

〈nkp〉n ∼
nke−k

√
r/n

2k

(
1 +

k(k − 1)

n
(e
√
r/n − 1)

)
+O(nk−2) (B.82)

The resulting asymptotic leading term is based on the assumption k = O(
√
n),

especially, the expansion of (1− (k − 1)/n)k−1 in the second line. Despite that, we

see a good estimation even for k as a fraction of n in the numeric investigation in

figures (B.1) and (B.2). Notice that the estimate is good enough for as small as

n = 100.

At the same time, although for larger k the estimate starts to deviate from the

actual, 〈(2np
n

)k〉 is exponentially smaller for larger ks. Therefore, for a sum that

includes 〈(2np
n

)k〉, one can truncate the sum over k around
√
k such that the error

is exponentially small.
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Figure B.1: Plotting 〈(2np
n

)k〉 and its asymptotic leading term against k for as

small n as n = 100. In the left panel, the k axis extends around
√
n. The right

panel shows the k axis extends to k = O(n).

Figure B.2: Plotting 〈(2np
n

)k〉 and its asymptotic leading term against k for

n = 10000. In the left panel, the k axis extends to n/5, and it shows a

good agreement even beyond
√
n. The right panel shows the k axis extends

to k = O(n).

It is useful to also find the asymptotic leading term of the moments of stand-alone

elements, 〈nks〉. So, from the definition of n− 2np we get

〈nks〉 = 〈(n− 2np)
k〉 = 〈

k∑
j=0

(
k

j

)
nk−j(−2np)

j〉

=
k∑
j=0

(
k

j

)
nk−j(−2)j〈njp〉. (B.83)
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Next, for 1� n, equation (B.82) obtains

〈nks〉 ∼
k∑
j=0

(
k

j

)
nk−j(−1)jnje−j

√
r/n

(
1 +

j(j − 1)

n
(e
√
r/n − 1) +O(

1

n2
)

)

∼ nk
(

1− e−
√
r/n
)k

+ nk−1(e
√
r/n − 1)

k∑
j=0

(
k

j

)
j(j − 1)

(
−e−
√
r/n
)j

+O(nk−2)

∼ nk
(

1− e−
√
r/n
)k

+ nk−1k(k− 1)(e
√
r/n − 1)

k∑
j=2

(
k − 2

j − 2

)(
−e−
√
r/n
)j

+O(nk−2)

∼ nk
(

1− e−
√
r/n
)k

+nk−1k(k−1)(e
√
r/n−1)

k−2∑
j=0

(
k − 2

j

)(
−e−
√
r/n
)j+2

+O(nk−2)

∼ nk
(

1− e−
√
r/n
)k

+
nkk(k − 1)(e

√
r/n − 1)e−2

√
r/n

n

(
1− e−

√
r/n
)k−2

+O(nk−2).

(B.84)

It finds

〈ns〉 ∼ n
(

1− e−
√
r/n
)

+O(
1

n
), (B.85)

and

〈nks〉 ∼ nk
(

1− e−
√
r/n
)k 1 +

k(k − 1)e−
√
r/n

n
(

1− e−
√
r/n
)
+O(nk−2). (B.86)

B.10 Probability Generating Functions

For constant n, the number of pairs has an upper bound as np ∈ {0, 1, . . . , n/2}.
Hence, Pn(np > n/2) = 0. The probability generating function of np with respect

to Pn(np) is

Gn(s) =
∞∑

np=0

Pn(np)s
np =

1

cn(r)

∞∑
np=0

(
n

2np

)
(2np − 1)!! r

n
2
−npsnp

=
s
n
2

cn(r)

∞∑
np=0

(
n

2np

)
(2np − 1)!!

(r
s

)n
2
−np

= s
n
2
cn( r

s
)

cn(r)
. (B.87)
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Notice that the normalization constant in the numerator evaluates at (r/s).

Doing the same for Pn(np, nh) one finds

Gn(s, u) =
∞∑

np=0

n−2np∑
nh=0

Pn(np, nh)s
npunh

=
1

cn(r)

∞∑
np=0

(
n

2np

)
(2np − 1)!! r

n
2
−npsnp

n−2np∑
nh=0

(
n− 2np
nh

)
ρnhunh(1− ρ)n−2np−nh

=
s
n
2

cn(r)

∞∑
np=0

(
n

2np

)
(2np − 1)!!

(r
s

)n
2
−np

(ρu+ 1− ρ)n−2np

= s
n
2

cn

(
r(ρu+1−ρ)2

s

)
cn(r)

. (B.88)

The normalization constant in the numerator evaluates at
(
r (ρu+ 1− ρ)2 /s

)
.

B.11 Finding Identities for cn(r)

In this section, we prove the identities that we use in other sections.

B.11.1 Even Numbers Identities

For even numbers, we will show the following identities are valid:

c2n(r)− (r + 2n− 1)c2n−1(r) = −(2n− 1)(2n− 2)c2n−3(r), (B.89)

and

c2n−1(r)− (r + 4n− 5)c2n−3(r) = −(2n− 3)(2n− 4)c2n−5(r). (B.90)

We start from the left-hand side of equation (B.89)

c2n(r)−(r+2n−1)c2n−1(r) =
n∑
i=0

(
2n

2i

)
(2i−1)!! rn−i−(r+2n−1)

n−1∑
i=0

(
2n− 1

2i

)
(2i−1)!! rn−1−i
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= (2n− 1)!! +
n−1∑
i=0

(
2n

2i

)
(2i− 1)!!rn−i −

n−1∑
i=0

(
2n− 1

2i

)
(2i− 1)!!rn−i

−(2n− 1)(2n− 1)!!− (2n− 1)
n−2∑
i=0

(
2n− 1

2i

)
(2i− 1)!! rn−1−i

= −(2n−2)(2n−1)!!+
n−1∑
i=1

[(
2n

2i

)
−
(

2n− 1

2i

)]
(2i−1)!!rn−i−(2n−1)

n−2∑
i=0

(
2n− 1

2i

)
(2i−1)!! rn−1−i

= −(2n−2)(2n−1)!!+
n−2∑
i=0

[(
2n

2i+ 2

)
−
(

2n− 1

2i+ 2

)]
(2i+1)!!rn−1−i−(2n−1)

n−2∑
i=0

(
2n− 1

2i

)
(2i−1)!! rn−1−i

= −(2n−2)(2n−1)!!+
n−2∑
i=0

[
2n

(2i+ 2)(2n− 2− 2i)
− 1

2i+ 2
− 2n− 1

(2n− 1− 2i)(2n− 2− 2i)

]
(2n− 1)!

(2i)!(2n− 3− 2i)!

×(2i− 1)!! rn−1−i

= −(2n−2)(2n−1)!!+
n−2∑
i=0

[
−2i

(2n− 1− 2i)(2n− 2− 2i)

]
(2n− 1)!

(2i)!(2n− 3− 2i)!
(2i−1)!! rn−1−i

= −(2n− 2)(2n− 1)!!−
n−2∑
i=1

(2n− 1)!

(2i− 2)!(2n− 1− 2i)!
(2i− 3)!! rn−1−i

= −(2n− 2)(2n− 1)!!−
n−3∑
i=0

(2n− 1)!

(2i)!(2n− 3− 2i)!
(2i− 1)!! rn−2−i

= −(2n−1)(2n−2)
n−2∑
i=0

(2n− 3)!

(2i)!(2n− 3− 2i)!
(2i−1)!! rn−2−i = −(2n−1)(2n−2)c2n−3(r),

(B.91)

and get the left right hand side. Similarly, for equation (B.89)

c2n−1(r)−(r+4n−5)c2n−3(r) =
n−1∑
i=0

(
2n− 1

2i

)
(2i−1)!! rn−1−i−(r+4n−5)

n−2∑
i=0

(
2n− 3

2i

)
(2i−1)!! rn−2−i

= (2n− 1)!! +
n−2∑
i=0

(
2n− 1

2i

)
(2i− 1)!!rn−1−i −

n−2∑
i=0

(
2n− 3

2i

)
(2i− 1)!!rn−1−i

−(4n− 5)(2n− 3)!!− (4n− 5)
n−3∑
i=0

(
2n− 3

2i

)
(2i− 1)!! rn−2−i

= −(2n−4)(2n−3)!!+
n−2∑
i=1

[(
2n− 1

2i

)
−
(

2n− 3

2i

)]
(2i−1)!!rn−1−i−(4n−5)

n−3∑
i=0

(
2n− 3

2i

)
(2i−1)!! rn−2−i
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= −(2n−4)(2n−3)!!+
n−3∑
i=0

[(
2n− 1

2i+ 2

)
−
(

2n− 3

2i+ 2

)]
(2i+1)!!rn−2−i−(4n−5)

n−3∑
i=0

(
2n− 3

2i

)
(2i−1)!! rn−2−i

= −(2n−4)(2n−3)!!+
n−3∑
i=0

[
(2n− 1)(2n− 2)

(2i+ 2)(2n− 3− 2i)(2n− 4− 2i)
− 1

(2i+ 2)
− (4n− 5)

(2n− 3− 2i)(2n− 4− 2i)

]

× (2n− 3)!

(2i)!(2n− 5− 2i)!
(2i− 1)!! rn−2−i

= −(2n−4)(2n−3)!!+
n−3∑
i=0

[
−(2i)(2i+ 2)

(2i+ 2)(2n− 3− 2i)(2n− 4− 2i)

]
(2n− 3)!

(2i)!(2n− 5− 2i)!
(2i−1)!! rn−2−i

= −(2n− 4)(2n− 3)!!−
n−3∑
i=1

(2n− 3)!

(2i− 1)!(2n− 3− 2i)!
(2i− 1)!! rn−2−i

= −(2n− 4)(2n− 3)!!−
n−4∑
i=0

(2n− 3)!

(2i+ 1)!(2n− 5− 2i)!
(2i+ 1)!! rn−3−i

= −(2n−3)(2n−4)
n−3∑
i=0

(2n− 5)!

(2i)!(2n− 5− 2i)!
(2i−1)!! rn−3−i = −(2n−3)(2n−4)c2n−5(r).

(B.92)

B.11.2 Odd Numbers Identities

For odd numbers, we define

h2n+1(r) ≡ dc2n+1(r)

dr
= nc2n−1(r) + 2n

dc2n−1(r)

dr
, (B.93)

and show the following identities are valid:

c2n+1(r)− r + 2n+ 1

n
h2n+1(r) = −2(2n+ 1)h2n−1(r), (B.94)

and

h2n+1(r)− n(r + 4n− 3)

n− 1
h2n−1(r) = −2n(2n− 1)h2n−3(r). (B.95)

We start from the left-hand side of equation (B.94)

c2n+1(r)− r + 2n+ 1

n
h2n+1(r) =

n∑
i=0

(
2n+ 1

2i

)
(2i− 1)!! rn−i
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−r + 2n+ 1

n

n−1∑
i=0

(n− i)
(

2n+ 1

2i

)
(2i− 1)!!rn−1−i

= (2n+ 1)!! +
n−1∑
i=0

(
2n+ 1

2i

)
(2i− 1)!! rn−i − 1

n

n−1∑
i=0

(n− i)
(

2n+ 1

2i

)
(2i− 1)!!rn−i

−2n+ 1

3
(2n+ 1)!!− 2n+ 1

n

n−2∑
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(n− i)
(

2n+ 1

2i

)
(2i− 1)!!rn−1−i

= −(2n− 2)

3
(2n+1)!!+

n−1∑
i=1

i

n

(
2n+ 1

2i

)
(2i−1)!! rn−i−2n+ 1

n

n−2∑
i=0

(n−i)
(

2n+ 1

2i

)
(2i−1)!!rn−1−i

= −(2n− 2)

3
(2n+1)!!+

n−2∑
i=0

i+ 1

n

(
2n+ 1

2i+ 2

)
(2i+1)!! rn−1−i−2n+ 1

n

n−2∑
i=0

(n−i)
(

2n+ 1

2i

)
(2i−1)!!rn−1−i

= −(2n− 2)

3
(2n+1)!!+

1

n

n−2∑
i=0

[
i+ 1

2i+ 2
− (2n+ 1)(n− i)

(2n+ 1− 2i)(2n− 2i)

]
(2n+ 1)!

(2i)!(2n− 1− 2i)!
(2i−1)!!rn−1−i

= −(2n− 2)

3
(2n+ 1)!!− 1

2n

n−2∑
i=0

[
2i

(2n+ 1− 2i)

]
(2n+ 1)!

(2i)!(2n− 1− 2i)!
(2i− 1)!!rn−1−i

= −(2n− 2)

3
(2n+ 1)!!− 1

2n

n−2∑
i=1

(2n− 2i)(2n+ 1)!

(2i− 1)!(2n+ 1− 2i)!
(2i− 1)!!rn−1−i

= −(2n− 2)

3
(2n+ 1)!!− 1

n

n−3∑
i=0

(n− 1− i)(2n+ 1)!

(2i+ 1)!(2n− 1− 2i)!
(2i+ 1)!!rn−2−i

= −(2n− 2)

3
(2n+ 1)!!− 2n(2n+ 1)

n

n−3∑
i=0

(n− 1− i)
(

2n− 1

2i

)
(2i− 1)!!rn−2−i

= −2(2n+ 1)
n−2∑
i=0

(n− 1− i)
(

2n− 1

2i

)
(2i− 1)!!rn−2−i

= −2(2n+ 1)h2n−1(r), (B.96)

and obtain the right hand side. Similarly, for equation (B.95) we find

h2n+1(r)− n(r + 4n− 3)

n− 1
h2n−1(r) =

n−1∑
i=0

(n− i)
(

2n+ 1

2i

)
(2i− 1)!!rn−1−i

−n(r + 4n− 3)

n− 1

n−2∑
i=0

(n− 1− i)
(

2n− 1

2i

)
(2i− 1)!!rn−2−i
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=
n

3
(2n+1)!!+

n−2∑
i=0

(n−i)
(

2n+ 1

2i

)
(2i−1)!!rn−1−i− n

n− 1

n−2∑
i=0

(n−1−i)
(

2n− 1

2i

)
(2i−1)!!rn−1−i

−n(4n− 3)

3
(2n− 1)!!− n(4n− 3)
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(n− 1− i)
(
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2i

)
(2i− 1)!!rn−2−i

= −2n(n− 2)

3
(2n−1)!!+

n−2∑
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[
(n− i)

(
2n+ 1

2i

)
− (n− n

n− 1
i)

(
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2i

)]
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−n(4n− 3)
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(
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2i

)
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3
(2n−1)!!+

n−3∑
i=0

[
(n− 1− i)

(
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2i+ 2

)
− (n− n(i+ 1)
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)

(
2n− 1

2i+ 2

)]
(2i+1)!!rn−2−i

−n(4n− 3)

n− 1

n−3∑
i=0

(n− 1− i)
(

2n− 1

2i

)
(2i− 1)!!rn−2−i

= −2n(n− 2)

3
(2n−1)!!+

n−3∑
i=0

[
n(2n+ 1)

(2i+ 2)(2n− 1− 2i)
− n(

1

2i+ 2
− 1

2(n− 1)
)− n(4n− 3)

2(n− 1)(2n− 1− 2i)

]

× (2n− 1)!

(2i)!(2n− 3− 2i)!
(2i− 1)!!rn−2−i

= −2n(n− 2)

3
(2n−1)!!− n

n− 1

n−3∑
i=1

i

(2n− 1− 2i)
× (2n− 1)!

(2i)!(2n− 3− 2i)!
(2i−1)!!rn−2−i

= −2n(n− 2)

3
(2n−1)!!− n

n− 1

n−4∑
i=0

i+ 1

(2n− 3− 2i)
× (2n− 1)!

(2i+ 2)!(2n− 5− 2i)!
(2i+1)!!rn−3−i

= −2n(n− 2)

3
(2n−1)!!−2n(2n−1)

n−4∑
i=0

(n−2−i)× (2n− 3)!

(2i)!(2n− 3− 2i)!
(2i−1)!!rn−3−i

= −2n(2n− 1)
n−3∑
i=0

(n− 2− i)
(

2n− 3

2i

)
(2i− 1)!!rn−3−i = −2n(2n− 1)h2n−3(r).

(B.97)
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B.12 Joint Probability Distributions

B.12.1 Pn(X1, np)

We can use a combinatorial argument to find the joint distribution Pn(X1, np) as

follows: given there are np pairs, when the element at an arbitrary index is in a pair

state (X1 = 0) there must be (n− 1)
(
n−2

2np−2

)
(2np − 3)!! =

(
n−1

2np−1

)
(2np − 1)!! distinct

configurations, and similarly, if the element is in a stand-alone state (X1 = 1), there

are
(

2n−1
2np

)
(2np − 1)!! distinct configurations, and in total there are

(
n

2np

)
(2np − 1)!!.

Note that the above statement is equivalent to the following identity(
n

2np

)
(2np − 1)!! =

(
n− 1

2np − 1

)
(2np − 1)!! +

(
n− 1

2np

)
(2np − 1)!!. (B.98)

And since the probability of a single configuration with np pairs is rbn/2c−np/cn(r),

the joint probability must be

Pn(X1, np) =
rbn/2c−np

cn(r)
×

{ (
n−1

2np−1

)
(2np − 1)!! , X1 = 0(

n−1
2np

)
(2np − 1)!! , X1 = 1

. (B.99)

Also, the conditional distribution can be calculated by dividing Pn(X1, np) by Pn(np)

Pn(X1|np) =
Pn(X1, np)

Pn(np)
=

{
2np
n

, X1 = 0
n−2np
n

, X1 = 1
. (B.100)

B.12.2 Pn(X1, X2, np)

There are four different combinations regarding Xl and Xk, through which, we use

combinatorial arguments to find the joint probability distribution:

• For X1 = X2 = 1, or both balls in stand-alone state, there are
(
n−2
2np

)
(2np− 1)!!

distinct configurations, whenever np pairs are in the remaining n − 2 ele-

ments. And since the probability of a single configuration with np pairs is

rbn/2c−np/cn(r), the joint probability must be

Pn(X1 = 1, X2 = 1, np) =
rbn/2c−np

cn(r)

(
n− 2

2np

)
(2np − 1)!!. (B.101)
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• For X1 = 1 and X2 = 0, or one ball in stand-alone state and the other one

in pair state with another one of the n − 2 remaining elements, there are

(n−2)
(
n−3

2np−2

)
(2np−3)!! distinct configurations. And since the probability of a

single configuration with np pairs is rbn/2c−np/cn(r), the joint probability must

be

Pn(X1 = 1, X2 = 0, np) =
rbn/2c−np

cn(r)
(n− 2)

(
n− 3

2np − 2

)
(2np − 3)!!

=
rbn/2c−np

cn(r)

(
n− 2

2np − 1

)
(2np − 1)!!. (B.102)

• The argument for the case X1 = 0 and X2 = 1 is similar to the previous one.

Pn(X1 = 0, X2 = 1, np) =
rbn/2c−np

cn(r)

(
n− 2

2np − 1

)
(2np − 1)!!. (B.103)

• The case X1 = X2 = 0 corresponds to two different possibilities. The first

combination consists of a pair between the elements at indices l and k and

2np − 2 elements among the remaining part are in pairs with each others.

Therefore, there are
(
n−2

2np−2

)
(2np− 3)!! distinct configurations, each with prob-

ability rbn/2c−np/cn(r).

In contrast in the second case, both elements 1 and 2 are in a pair state with one

element in the remaining balls. And hence, there are (n−2)(n−3)
(
n−4

2np−4

)
(2np−

5)!! distinct configurations, each with probability rbn/2c−np/cn(r).

Therefore,

Pn(X1 = 0, X2 = 0, np) =
rbn/2c−np

cn(r)

(
n− 2

2np − 2

)
(2np − 3)!!

+
rbn/2c−np

cn(r)
(n− 2)(n− 3)

(
n− 4

2np − 4

)
(2np − 5)!! =⇒

Pn(X1 = 0, X2 = 0, np) =
rbn/2c−np

cn(r)

(
n− 2

2np − 2

)
(2np − 1)!!. (B.104)

Putting all the results together, we get

Pn(X1, X2, np) =
rbn/2c−np

cn(r)
×



(
n−2

2np−2

)
(2np − 1)!! , X1 = X2 = 0(

n−2
2np−1

)
(2np − 1)!! , X1 = 1, X2 = 0(

n−2
2np−1

)
(2np − 1)!! , X1 = 0, X2 = 1(

n−2
2np

)
(2np − 1)!! , X1 = X2 = 1

. (B.105)
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The condition distribution finds by dividing the last result by Pn(np) as

Pn(X1, X2|np) =
Pn(X1, X2, np)

Pn(np)
=



(
n−2

2np−2

)
(2np − 1)!!/

(
n

2np

)
(2np − 1)!! , X1 = X2 = 0(

n−2
2np−1

)
(2np − 1)!!/

(
n

2np

)
(2np − 1)!! , X1 = 1, X2 = 0(

n−2
2np−1

)
(2np − 1)!!/

(
n

2np

)
(2np − 1)!! , X1 = 0, X2 = 1(

n−2
2np

)
(2np − 1)!!/

(
n

2np

)
(2np − 1)!! , X1 = X2 = 1

=⇒ Pn(X1, X2|np) =


2np(2np−1)

n(n−1)
, X1 = X2 = 0

2np(n−2np)

n(n−1)
, X1 = 1, X2 = 0

2np(n−2np)

n(n−1)
, X1 = 0, X2 = 1

(n−2np)(n−1−2np)

n(n−1)
, X1 = X2 = 1

. (B.106)

Or by using ns = n− 2np it simplifies to

Pn(X1, X2|np) =


2np(2np−1)

n(n−1)
, X1 = X2 = 0

2npns
n(n−1)

, X1 = 1, X2 = 0
2npns
n(n−1)

, X1 = 0, X2 = 1
ns(ns−1)
n(n−1)

, X1 = X2 = 1

. (B.107)

The marginal distribution finds by summing over np as

• For X1 = X2 = 0

Pn(X1 = 0, X2 = 0) =

bn/2c∑
np=1

rbn/2c−np

cn(r)

(
n− 2

2np − 2

)
(2np − 1)!!

=

bn/2c∑
np=0

2np(2np − 1)

n(n− 1)

rbn/2c−np

cn(r)

(
n

2np

)
(2np − 1)!!

=
〈2np(2np − 1)〉n

n(n− 1)
. (B.108)

• For X1 = 1, X2 = 0 or X1 = 0, X2 = 1 we obtain

Pn(X1 = 0, X2 = 1) = Pn(X1 = 1, X2 = 0) =

bn/2c∑
np=1

rbn/2c−np

cn(r)

(
n− 2

2np − 1

)
(2np−1)!!

=

bn/2c∑
np=0

2np(n− 2np)

n(n− 1)

rbn/2c−np

cn(r)

(
n

2np

)
(2np − 1)!!
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=
〈2np(n− 2np)〉n

n(n− 1)
=
〈2npns〉n
n(n− 1)

. (B.109)

• For X1 = X2 = 0

Pn(X1 = 1, X2 = 1) =

bn/2c−1∑
np=0

rbn/2c−np

cn(r)

(
n− 2

2np

)
(2np − 1)!!

=

bn/2c∑
np=0

(n− 2np)(n− 2np − 1)

n(n− 1)

rbn/2c−np

cn(r)

(
n

2np

)
(2np − 1)!!

=
〈(n− 2np)(n− 2np − 1)〉n

n(n− 1)
=
〈ns(ns − 1)〉n
n(n− 1)

. (B.110)

Consequently,

Pn(X1, X2) =



〈2np(2np−1)〉n
n(n−1)

, X1 = X2 = 0

〈2npns〉n
n(n−1)

, X1 = 1, X2 = 0

〈2npns〉n
n(n−1)

, X1 = 0, X2 = 1

〈ns(ns−1)〉n
n(n−1)

, X1 = X2 = 1

. (B.111)

B.12.3 Pn(X1, . . . , Xk, np)

Let us assume for Pn(X1, . . . , Xk, np) we have l = k −
∑k

i=1 Xi. In other words,∑k
i=1Xi gives the number of elements in stand-alone state among k ones (Xi = 1),

and l denotes the number of elements that are in pair state. So, l ∈ {0, 1, 2, . . . , k}.

However, among these l elements in the pair state, some make pairs with each other,

and some with n−k other elements in the system. Denoting by ω the elements that

are paired among l, we must have ω ∈ {0, 2, . . . , bl/2c}. As a result, it asserts we get(
l

2ω

)
(2ω− 1)!! distinct combinations resulted from the pairing among the k element.

In addition, l − ω of the remaining pairs must have a counter part in n − k other

elements, through which, there are (n− k)(l−2ω) = (n− k)(n− k− 1) . . . (n− k− l+
2ω+1). Furthermore, the np−l remaining pairs have

(
n−k−(l−2ω)
2np−2l+2ω

)
(2np−2l+2ω−1)!!

distinct combinations. In total, the number of distinct configurations for a given
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(X1, . . . , Xk, np) is

W =

bl/2c∑
ω=0

(
n− k − (l − 2ω)

2np − 2l + 2ω

)
(2np − 2l + 2ω − 1)!!

(
l

2ω

)
(2ω − 1)!!(n− k)(l−2ω).

(B.112)

To simplify the sum, observe that(
n− k − (l − 2ω)

2np − 2l + 2ω

)
(n− k)(l−2ω) =

(n− k − l + 2ω)! (n− k)(l−2ω)

(2np − 2l + 2ω)! (n− k − 2np + l)!

=
(n− k)!

(2np − 2l + 2ω)! (n− k − 2np + l)!
. (B.113)

and the sum is written as

W =
(n− k)!

(n− k − 2np + l)!

bl/2c∑
ω=0

(2np − 2l + 2ω − 1)!!

(2np − 2l + 2ω)!

(
l

2ω

)
(2ω − 1)!!

=
(n− k)!(2np − 2l − 1)!!

(n− k − 2np + l)!(2np − 2l)!

bl/2c∑
ω=0

(
l

2ω

)
(2ω − 1)!!

×(2np − 2l + 1)(2np − 2l + 3) . . . (2np − 2l + 2ω − 1)

(2np − 2l + 1)(2np − 2l + 2) . . . (2np − 2l + 2ω)

=
(n− k)!(2np − 2l − 1)!!

(n− k − 2np + l)!(2np − 2l)!

bl/2c∑
ω=0

(
l

2ω

)
(2ω − 1)!!

(2np − 2l + 2)(2np − 2l + 4) . . . (2np − 2l + 2ω)

=
(n− k)!(2np − 2l − 1)!!

(n− k − 2np + l)!(2np − 2l)!

×
∑bl/2c

ω=0

(
l

2ω

)
(2ω − 1)!!(2np − 2l + 2ω + 2) . . . (2np − 2l + 2bl/2c)

(2np − 2l + 2)(2np − 2l + 4) . . . (2np − 2l + 2bl/2c)
(B.114)

For an even l we have

W =
(n− k)!(2np − l − 1)!!

(n− k − 2np + l)!(2np − l)!

l/2∑
ω=0

(
l

2ω

)
(2ω− 1)!!(2np− 2l+ 2ω+ 2) . . . (2np− l)

=
(n− k)!(2np − l − 1)!!

(n− k − 2np + l)!(2np − l)!
× (2np − l + 1) . . . (2np − 3)(2np − 1)

=
(n− k)!(2np − 1)!!

(n− k − 2np + l)!(2np − l)!
=

(
n− k

2np − l

)
(2np − 1)!!. (B.115)
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And for an odd l we have

W =
(n− k)!(2np − l)!!

(n− k − 2np + l)!(2np − l)!

(l−1)/2∑
ω=0

(
l

2ω

)
(2ω−1)!!(2np−2l+2ω+2) . . . (2np−l−1)

=
(n− k)!(2np − l)!!

(n− k − 2np + l)!(2np − l)!
× (2np − l + 2) . . . (2np − 3)(2np − 1)

=
(n− k)!(2np − 1)!!

(n− k − 2np + l)!(2np − l)!
=

(
n− k

2np − l

)
(2np − 1)!!. (B.116)

And since the probability of a single configuration with np pairs is rbn/2c−np/cn(r),

for l = k −
∑k

i=1 Xi the joint probability must be

Pn(X1, . . . , Xk, np) =
rbn/2c−np

cn(r)

(
n− k

2np − l

)
(2np − 1)!!. (B.117)

In addition, the conditional distribution derives by dividing the joint distribution

by Pn(np) like

Pn(X1, . . . , Xk|np) =
Pn(X1, . . . , Xk, np)

Pn(np)
=

(
n−k

2np−l

)
(2np − 1)!!(

n
2np

)
(2np − 1)!!

=
2np(2np − 1) . . . (2np − l + 1)× (n− 2np)(n− 2np − 1) . . . (n− 2np − k + l + 1)

n(n− 1) . . . (n− k + 1)
=⇒

Pn(X1, . . . , Xk|np) =
2n

(l)
p (n− 2np)

(k−l)

n(k)
, (B.118)

or in terms of ns = n− 2np, it writes

Pn(X1, . . . , Xk|np) =
2n

(l)
p n

(k−l)
s

n(k)
. (B.119)

Finally, the marginal finds by summing over np

Pn(X1, . . . , Xk) =

bn/2c∑
np=0

Pn(X1, . . . , Xk, np) =

bn/2c∑
np=0

Pn(X1, . . . , Xk|np)Pn(np)

=

bn/2c∑
np=0

2n
(l)
p (n− 2np)

(k−l)

(n− k)(l)
Pn(np) = 〈2n

(l)
p (n− 2np)

(k−l)

n(k)
〉, (B.120)
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or in terms of ns

Pn(X1, . . . , Xk) = 〈2n
(l)
p n

(k−l)
s

n(k)
〉. (B.121)

B.13 Proving cn(r) Has bn/2c Distinct Roots

Theorem B.13.1. [Sturm’ Theorem] [4] Given a and b in R ∪ {−∞,∞},

V (SS(P, P ′), a)− V (SS(P, P ′), b)

is the number of roots of P in the interval (a, b).

We will use Sturm’s Theorem to find the number of distinct roots of cn(r). And since

the even and odd values require different treatment, we will prove them separately.

B.13.0.1 Case one: even numbers

For even number in appendix (B.7), equation (B.77) we show that

d

dr
c2n(r) = nc2n−1(r), (B.122)

and therefore, the first two elements of the Sturm sequence are P0 = c2n(r) and

P1 = c2n−1(r). In appendix (B.11), the derivations of some useful identities are

explained in details. We start with equation (B.89) that finds the Euclidean division

of P0 by P1 as

c2n(r)− (r + 2n− 1)c2n−1(r) = −(2n− 1)(2n− 2)c2n−3(r). (B.123)

We see the quotient polynomial of the Euclidean division is equal to r+ 2n− 1, and

the remainder polynomial is −(2n−1)(2n−2)c2n−3(r). Therefore, the next element

of the Sturm sequence is the negative of this reminder polynomial P2 = c2n−3(r).

Note that the positive constant term does not have any effect on the sign of the

polynomial and we can safely remove it.

In addition, equation (B.90) finds the reminder of the division of c2n−1(r) by c2n−3(r),

or P1 by P2, as

c2n−1(r)− (r + 4n− 5)c2n−3(r) = −(2n− 3)(2n− 4)c2n−5(r). (B.124)
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This result shows that the next element of the Sturm sequence again is the next

normalisation constant with an odd degree, say c2n−5(r). If we continue the Eu-

clidean division consecutively, we get a sequence of the normalisation constant with

decreasing odd degrees. In other words, all the elements of the Sturm sequence for

an even number are

SS(c2n(r), c2n−1(r)) = c2n(r), c2n−1(r), c2n−3(r), . . . , c3(r), c1(r), (B.125)

for constant c1(r) = 1. Since all the coefficients of cn(r) are positive

lim
r→∞

cn(r) > 0 (B.126)

for all degrees, and therefore

V (SS(c2n(r), c2n−1(r)),∞) = 0. (B.127)

Hence, from the Sturm’ Theorem, the number of distinct roots of c2n(r) is equal to

V (SS(c2n(r), c2n−1(r)),−∞).

Observe that the degree of two consecutive polynomials in the Sturm sequence, say

c2n−(2i+1)(r) and c2n−(2i−1)(r), are

b2n− (2i+ 1)

2
c = n− i, b2n− (2i− 1)

2
c = n− i− 1, (B.128)

are even and odd. Hence, in the limit r → −∞, from one polynomial to the next

the sign changes. So, it is straightforward to use the definition of the number of sign

changes and start from c3(r) as the basis of induction and show that

V (c2n−1(r), c2n−3(r), . . . , c3(r), c1(r),−∞) = n− 1. (B.129)

The alternating degree happens for the first element of the Sturm sequence too

b2n
2
c = n, b2n− 1

2
c = n− 1, (B.130)

and therefore,

V (SS(c2n(r), c2n−1(r)),−∞) = V (c2n(r), c2n−1(r), c2n−3(r), . . . , c1(r),−∞)

= V (c2n−1(r), c2n−3(r), . . . , c1(r),−∞) + 1 = n. (B.131)
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Last result proves that the polynomial c2n(r) has n distinct roots.

B.13.0.2 Case two: odd numbers

The odd case is very similar to the even case. The main difference is in the derivative

of the c2n+1(r). We define a polynomial h2n+1(r) as

h2n+1(r) ≡ dc2n+1(r)

dr
= nc2n−1(r) + 2n

dc2n−1(r)

dr
, (B.132)

which is again a polynomial degree 2n − 1 with positive coefficients. In appendix

(B.11), equation (B.94), the Euclidean division of the first two elements of the Sturm

sequence obtains as

c2n+1(r)− r + 2n+ 1

n
h2n+1(r) = −2(2n+ 1)h2n−1(r), (B.133)

where the reminder is −h2n−1(r). Besides, equation (B.95) derives the Euclidean

division of the subsequent elements as

h2n+1(r)− n(r + 4n− 3)

n− 1
h2n−1(r) = −2n(2n− 1)h2n−3(r). (B.134)

And finally, the Sturm sequence finds as

SS(c2n+1(r), h2n+1(r)) = c2n+1(r), h2n+1(r), h2n−1(r), . . . , h3(r), (B.135)

for constant h3(r) = 1. Because all elements in SS(c2n+1(r), h2n+1(r)) are polynomi-

als with positive coefficients, here again no sign changes occur in the limit r →∞,

and thus,

V (SS(c2n+1(r), h2n+1(r)),∞) = 0. (B.136)

Notice that from its definition, the degree of h2n−(2i+1)(r) is equal to the degree of

c2n−(2i+3)(r), which is n− i− 2. e.g. h2n+1(r) is a polynomial degree n− 1.

Consequently, the signs of the sequence h2n+1(r), h2n−1(r), . . . , h3(r) alternates, and

we must have

V (h2n+1(r), h2n−1(r), . . . , h3(r)) = n− 1. (B.137)

The alternating sign happens between c2n+1(r) and h2n+1(r) from the fact that the
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former is a polynomial degree n and the latter is n− 1. Therefore, we get

V (SS(c2n(r), h2n−1(r)),−∞) = V (c2n+1(r), h2n+1(r), h2n−1(r), . . . , h3(r),−∞)

= V (h2n+1(r), h2n−1(r), . . . , h3(r),−∞) + 1 = n. (B.138)

This result proves that the polynomial c2n+1(r) has n distinct roots.
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Appendix

C

Information Theory

C.1 Information Theory Measures

In this part, we will show the steps to derive some of the results in the Information

Theory section. Before starting, we define some notations that simplify the notations

further in the section.

Recall that the Shannon entropy is a functional that is defined over the space of

probability distributions for system size n, denotes by Pn, such that

H[Pn] : Pn → R+ ∪ {0}. (C.1)

At the same time, we define a Shannon function H2(x) : [0, 1]→ R+ ∪ {0} as

H2(x) = −x lnx− (1− x) ln(1− x), (C.2)

for random variables that are in [0, 1]. We shall use these definition in the following

sections.
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C.1.1 The entropy of the Binomial Distribution

For ρ as the probability of getting head, the probability of observing a distinct

configuration with nh head among n coins is

ρnh(1− ρ)n−nh , (C.3)

and therefore, the Shannon entropy of the Binomial distribution, Binn(nh), derives

as

H[Binn(nh)] = −
2n∑
i=1

Pi lnPi = −
n∑

nh=0

(
n

nh

)
ρnh(1−ρ)n−nh (nh ln ρ+ (n− nh) ln(1− ρ))

= −〈nh〉 ln ρ− (n− 〈nh〉) ln(1− ρ) = n (−ρ ln ρ− (1− ρ) ln(1− ρ)) , (C.4)

where we used the fact that for the Binomial distribution 〈nh〉 = nρ. Then, using the

definition of the function H2(x), the Shannon entropy of the Binomial distribution

is

H[Binn(nh)] = nH2(ρ). (C.5)

Note that since H2(ρ) is the entropy of a single Bernoulli random variable, the last

result is the sum of n independent Bernoulli random variables. In other words, the

Shannon entropy is additive in the Cartesian space of binary random variables.

C.1.2 The entropy of the B-model’s Probability Distribu-

tion

In the B-model the probability of observing a configuration ci with i pairs obtains

as

Pn(ci) = qi =
rb

n
2
c−i

cn(r)
. (C.6)

To find the ensemble entropy for the B-model, which has W (n) distinct configura-

tions, one can write

HB[Pn] = −
W (n)∑
i=1

qi ln qi = −bn
2
c ln r

W (n)∑
i=1

rb
n
2
c−i

cn(r)
+ln r

W (n)∑
i=1

irb
n
2
c−i

cn(r)
+ln cn(r)

W (n)∑
i=1

rb
n
2
c−i

cn(r)

=
[
〈np〉n − b

n

2
c
]

ln r + ln cn(r), (C.7)
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where we used the definition of 〈np〉n and the fact that the probability distribution

is normalised. In appendix (C.4), equation (C.32) finds ln cn(r) as

ln cn(r) = bn
2
c ln r +

n−1∑
i=1

ln(1 +
〈ns〉i
r

). (C.8)

Notice that, 〈ns〉n is the expectation of the number of elements in stand-alone state

for a system size n (ns = n−2np). Therefore, the Shannon entropy for the B-Model

is equal to

HB[Pn] = 〈np〉n ln r +
n−1∑
i=1

ln(1 +
〈ns〉i
r

). (C.9)

C.1.3 The entropy of the C-model’s Probability Distribu-

tion

In the C-Model, the probability of a configuration with i pairs and j heads, say cij,

is written as

Pn(cij) =
rb

n
2
c−iρj(1− ρ)n−2i−j

cn(r)
, (C.10)

and therefore, the ensemble entropy derives as

HC [Pn] = − 1

cn(r)

W (n)∑
i=1

rb
n
2
c−iρj(1− ρ)n−2i−j

[
(bn

2
c − i) ln r + j ln ρ

+(n− 2i− j) ln(1− ρ)− ln cn(r)]

= −bn
2
c ln r + 〈np〉n ln r − 〈nh〉n ln ρ− (n− 2〈np〉n − 〈nh〉n) ln(1− ρ) + ln cn(r)

= 〈np〉n ln r+
n−1∑
i=1

ln(1 +
〈ns〉i
r

)−〈nh〉n ln ρ− (n− 2〈np〉n−〈nh〉n) ln(1−ρ), (C.11)

where we used the definition of 〈np〉n, the probability distribution normalisation

and equation (C.32) in appendix (C.4). Finally, we write HC [Pn] in terms of the

B-model entropy, HB[Pn], and the remaining terms

HC [Pn] = H[Pn(np)]− 〈nh〉n ln ρ− (n− 2〈np〉n − 〈nh〉n) ln(1− ρ). (C.12)
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Furthermore,

HC [Pn] = HB[Pn]− (n− 2〈np〉n)

[
〈nh〉n

n− 2〈np〉n
ln ρ+ (1− 〈nh〉n

n− 2〈np〉n
) ln(1− ρ)

]

= HB[Pn]−(n−2〈np〉n)

[
(
〈nh〉n

n− 2〈np〉n
− ρ) ln ρ+ (1− 〈nh〉n

n− 2〈np〉n
− (1− ρ)) ln(1− ρ)

+ρ ln ρ+ (1− ρ) ln(1− ρ)]

= HB[Pn]− (n− 2〈np〉n)

[
〈nh〉n

n− 2〈np〉n
− ρ
]

ln
ρ

1− ρ
+ (n− 2〈np〉n)H2(ρ) =⇒

= HB[Pn] + (ρn− ρ〈2np〉n − 〈nh〉n) ln
ρ

1− ρ
+ (n− 〈2np〉n)H2(ρ). (C.13)

However, we will show that the term ρn − ρ〈2np〉n − 〈nh〉n is equal to zero. To do

that, first remember that the expectation of the Binomial distribution is nρ for the

system size n. Hence,

n−2np∑
nh=0

(
n− 2np
nh

)
nhρ

nh(1− ρ)n−2np−nh = (n− 2np)ρ, (C.14)

and consequently for the C-model, 〈nh〉n obtains as

〈nh〉n =

bn/2c∑
np=0

(
n

2np

)
(2np − 1)!!

rbn/2c−np

cn(r)

n−2np∑
nh=0

(
n− 2np
nh

)
nhρ

nh(1− ρ)n−2np−nh

=

bn/2c∑
np=0

(
n

2np

)
(2np − 1)!!

rbn/2c−np

cn(r)
(n− 2np)ρ = ρn− ρ〈2np〉n, (C.15)

which assert the claim ρn − ρ〈2np〉n − 〈nh〉n = 0. Eventually, H[Pn(np, nh)] writes

as

HC [Pn] = HB[Pn] + (n− 〈2np〉n)H2(ρ). (C.16)

C.1.4 Derivative of the Entropy of the B-model

Taking the derivative of HB[Pn] in equation (C.7) with respect to r finds

dHB[Pn]

dr
=

d

dr

[
(〈np〉n − b

n

2
c) ln r + ln cn(r)

]
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=
d〈np〉n
dr

ln r +
〈np〉n − bn2 c

r
+
d ln cn(r)

dr
=
d〈np〉n
dr

ln r, (C.17)

where we used equation (B.76) in the last step. Continuing from definition 〈np〉n

d〈np〉n
dr

=
d

dr

bn/2c∑
np=0

(
n

2np

)
(2np − 1)!!

np r
bn/2c−np

cn(r)

=

bn/2c∑
np=0

(
n

2np

)
(2np − 1)!!

rbn/2c−np

cn(r)

[
npbn/2c − n2

p

r
− np

d ln cn(r)

dr

]

=

bn/2c∑
np=0

(
n

2np

)
(2np − 1)!!

rbn/2c−np

cn(r)

[
npbn/2c − n2

p

r
− npbn/2c − np〈np〉n

r

]
= 〈np〉2n − 〈n2

p〉n, (C.18)

where again we used equation (B.76) in the step before the last one. Plunging the

last result in the derivative of HB[Pn] we get

dHB[Pn]

dr
= (〈np〉2n − 〈n2

p〉n) ln r. (C.19)

C.2 Finding the Asymptotic of HC [Pn]

For 1� n, equation (3.91) gives the asymptotic of 〈2np〉 and 〈ns〉 as

〈2np〉n = ne−
√

r
n , 〈ns〉n = n(1− e−

√
r
n ). (C.20)

Therefore, we can write the equation (4.24) as

HB[Pn] = 〈np〉n ln r +
n−1∑
i=1

ln(1 +
〈ns〉i
r

) ∼ ne−
√

r
n ln r +

n−1∑
i=1

ln(1 +
i(1− e−

√
r
i )

r
)

∼ ne−
√

r
n ln r +

n−1∑
i=1

ln(1 +

√
i

r
) ∼ ne−

√
r
n ln r +

n−1∑
i=1

∑
k≥1

(−1)k+1

k

(√
i

r

)k

∼ ne−
√

r
n ln r +

∑
k≥1

(−1)k+1

krk/2

n−1∑
i=1

(i)k/2
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∼ ne−
√

r
n ln r + 2

∑
k≥1

(−1)k+1

krk/2
n
k+2
2

k + 2
, (C.21)

where we used Faulhaber’s formula to find the asymptotic leading term in the last

step. Continuing

HB[Pn] ∼ n ln r × e−
√

r
n + 2n

∑
k≥1

(−1)k+1

k(k + 2)

(√
n

r

)k

∼ n ln r ×
(

1−
√
r

n
+O(

1

n
)

)
+ n

∑
k≥1

(−1)k+1

(√
n

r

)k
(
1

k
− 1

k + 2
)

∼ n ln r −
√
rn ln r + n

∑
k≥1

(−1)k+1

k

(√
n

r

)k
− n

∑
k≥1

(−1)k+1

k + 2

(√
n

r

)k
+O(1)

∼ n ln r −
√
rn ln r + n ln

√
n

r
− n

∑
k≥3

(−1)k−1

k

(√
n

r

)k−2

+O(1)

∼ n

2
ln
n

r
+ n ln r − n

(√
n

r

)−2∑
k≥3

(−1)k+1

k

(√
n

r

)k
+O(

√
n)

∼ n

2
ln
n

r
+ n ln r − r

∑
k≥1

(−1)k+1

k

(√
n

r

)k
+ r

(√
n

r
− n

2r

)
+O(

√
n)

∼ n

2
ln
n

r
+ n ln r − r ln

√
n

r
− n

2
+O(

√
n)

∼ n

2
ln
n

r
+ n(ln r − 1/2) +O(

√
n). (C.22)

C.3 Finding the Asymptotic of H [Pn(X1, . . . , Xk)]

First, using the following identity

l

(
k

l

)
= k

(
k − 1

l − 1

)
, (C.23)

and Binomial expansion, we have

k∑
l=0

(
k

l

)
lxl = k

k∑
l=1

(
k − 1

l − 1

)
xl
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= k

k−1∑
l=0

(
k − 1

l

)
xl+1 = kx(1 + x)k−1. (C.24)

Next, following equation (4.54), and using the last result, we have

H[Pn(X1, . . . , Xk)] ∼
k∑
l=0

(
k

l

)
l

√
r

n
e−l
√

r
n

(
1− e−

√
r/n
)k−l

−
k∑
l=0

(
k

l

)
(k − l)e−l

√
r/n
(

1− e−
√
r/n
)k−l

ln
(

1− e−
√

r
n

)

=
(

1− e−
√
r/n
)k

(

√
r

n
+ ln

(
1− e−

√
r
n

)
)

k∑
l=0

(
k

l

)
l
(

e
√

r
n − 1

)−l

−k
(

1− e−
√
r/n
)k

ln
(

1− e−
√

r
n

) k∑
l=0

(
k

l

)(
e
√

r
n − 1

)−l
=
(

1− e−
√
r/n
)k

(

√
r

n
+ ln

(
1− e−

√
r
n

)
)× k(e

√
r
n − 1)−1

(
1 + (e

√
r
n − 1)−1

)k−1

−k
(

1− e−
√
r/n
)k

ln
(

1− e−
√

r
n

)
×
(

1 + (e
√

r
n − 1)−1

)k
= ke−

√
r/n(

√
r

n
+ ln

(
1− e−

√
r
n

)
)− k ln

(
1− e−

√
r
n

)
= k

(√
r

n
e−
√
r/n − (1− e−

√
r/n) ln

(
1− e−

√
r
n

))
. (C.25)

This is exactly k times the entropy of a single element when we directly use equation

(3.130) and write H[Pn(X1)]. Therefore,

H[Pn(X1, . . . , Xk)] ∼ kHB[Pn(X1)]. (C.26)

Using the asymptotic expansion of the exponential function

e−
√

r
n = 1−

√
r

n
+O(

1

n
), (C.27)

simplifies the asymptotic leading term of H[Pn(X1, . . . , Xk)]

H[Pn(X1, . . . , Xk)] = k

(√
r

n
(1−

√
r

n
)−

√
r

n
ln

√
r

n

)
+O(

1

n
) =⇒
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H[Pn(X1, . . . , Xk)] = k

√
r

n

[
1− ln

√
r

n

]
+O(

1

n
). (C.28)

C.4 The Governing Recursive Relation of ln cn(r)

To find ln cn(r) in terms of the average number of pairs for odd and even system

sizes, say 〈np〉2n and 〈np〉2n−1, equation (3.88) finds the dependence of ratios of the

normalisation constants to the average number of pairs, while equation (3.46) finds

the recursive relation for the normalisation constant. Combining both, we find{
r c2n−1(r)

c2n(r)
= 1− 2〈np〉2n

2n
c2n−2(r)
c2n−1(r)

= 1− 2〈np〉2n−1

2n−1

. (C.29)

Recall that the subscript in expectation 〈.〉n represents the system size. Next, we

write the logarithm for the normalisation constant by using equation (3.46). For

even system sizes and using equation (C.29), we have

ln c2n(r) = ln (rc2n−1(r) + (2n− 1)c2n−2(r))

= ln r + ln c2n−1(r) + ln(1 +
2n− 1

r
× c2n−2(r)

c2n−1(r)
)

= ln r + ln c2n−1(r) + ln(1 +
(2n− 1)− 〈2np〉2n−1

r
)

= ln r + ln c2n−1(r) + ln(1 +
〈ns〉2n−1

r
). (C.30)

Similarly, for odd system sizes, one finds

ln c2n−1(r) = ln c2n−2(r) + ln(1 +
〈ns〉2n−2

r
). (C.31)

Hence, there are two different equations for odd and even system sizes. Applying

the last two equations iteratively on ln cn(r) for n−1 times and considering the fact

that c1(r) = 1, one obtains

ln cn(r) = bn
2
c ln r + ln c1(r) +

n−1∑
i=1

ln(1 +
〈ns〉i
r

)

= bn
2
c ln r +

n−1∑
i=1

ln(1 +
〈ns〉i
r

). (C.32)
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C.5 Power Series Expansion for In(Sn−1, S1)

The power series expansion of (1 − x) ln(1 − x) for a random variable x ∈ [0, 1]

derives as

(1− x) ln(1− x) = −(1− x)
∑
k≥1

xk

k
=
∑
k≥1

xk+1 − xk

k
=⇒

(1− x) ln(1− x) = −x+
∑
k≥2

xk

k(k − 1)
. (C.33)

Consequently, taking the expectation with respect to an arbitrary distribution finds

〈(1− x) ln(1− x)〉 = −〈x〉+
∑
k≥2

〈xk〉
k(k − 1)

. (C.34)

Let us define y = 1− x. Then, using the last result, H2(x) drives as

H2(x) = −x lnx− y ln y = −(1− y) ln(1− y)− (1− x) ln(1− x)

= x+ y −
∑
k≥2

xk + yk

k(k − 1)
(eq. C.33)

= 1−
∑
k≥2

xk + yk

k(k − 1)
. (C.35)

At the same time,

〈H2(x)〉 = 〈−(1− y) ln(1− y)− (1− x) ln(1− x)〉

= 〈1−
∑
k≥2

xk + yk

k(k − 1)
〉

= 1−
∑
k≥2

〈xk〉+ 〈yk〉
k(k − 1)

. (C.36)

Combining the results from equations (C.35) and (C.36), and using result for In(Sn−1, S1)

in equation (4.66), we derive the power series expansion as

In(Sn−1, S1) =
∑
k≥2

〈(2np
n

)k〉 − 〈2np
n
〉k + 〈(ns

n
)k〉 − 〈ns

n
〉k

k(k − 1)
. (C.37)
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Notice that in practice since x ∈ [0, 1] the power series converge very fast, e.g., the

terms for k ≥ 4 are at least one order of magnitude smaller than the first two terms.

When the system size increases, we expect the mutual information approaches zero,

since the information about S1 reduces uncertainty when the whole system is larger.

To show that, we need to find the asymptotic form of In(Sn−1, S1) from its power

series expansion.

Using equation (B.82) one derives

〈(2np
n

)k〉 − 〈2np
n
〉k = e−k

√
r/n

(
1 +

k(k − 1)

n
(e
√
r/n − 1)

)
− e−k

√
r/n +O(

1

n2
)

=
k(k − 1)e−k

√
r/n

n
(e
√
r/n − 1) +O(

1

n2
), (C.38)

and equation (B.86) finds

〈(ns
n

)k〉 − 〈ns
n
〉k ∼ k(k − 1)(e

√
r/n − 1)e−2

√
r/n

n

(
1− e−

√
r/n
)k−1

+O(
1

n2
). (C.39)

Putting all together,

In(Sn−1, S1) ∼
∑
k≥2

k(k−1)e−k
√
r/n

n
(e
√
r/n − 1) + k(k−1)(e

√
r/n−1)e−2

√
r/n

n

(
1− e−

√
r/n
)k−1

k(k − 1)
+O(

1

n2
)

∼ (e
√
r/n − 1)

n

[∑
k≥2

e−k
√
r/n + e−2

√
r/n
∑
k≥1

(
1− e−

√
r/n
)k]

+O(
1

n2
)

∼ (e
√
r/n − 1)

n

 e−2
√
r/n

1− e−
√
r/n

+
e−2
√
r/n
(

1− e−
√
r/n
)

e−
√
r/n

+O(
1

n2
)

∼ 1

n

[
1 + e−2

√
r/n − e−

√
r/n
]

+O(
1

n2
) ∼ 1

n
+O(

1

n3/2
). (C.40)

Note that, as it was explained in section (B.9), numerical estimation of asymptotic

leading term of 〈(2np
n

)k〉 decreases exponentially fast.
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C.6 Rényi Entropy

For B-Model, Rényi Entropy writes as

Hα[Pn] = − 1

1− α
ln

W (n)∑
i=1

qαi

 = − 1

1− α
ln

 n∑
np=0

(
n

2np

)
(2np − 1)!!rα(bn

2
c−np)

cαn(r)



= − 1

1− α
ln

 1

cαn(r)

n∑
np=0

(
n

2np

)
(2np − 1)!!(rα)b

n
2
c−np

 = − 1

1− α
ln

(
cn(rα)

cαn(r)

)

= − ln cn(rα)− α ln cn(r)

1− α
. (C.41)

C.7 Tsallis Entropy

For the B-Model, Tsallis Entropy writes as

Hq[Pn] =
1

q − 1

1−
W (n)∑
i=1

pqi

 =
1

q − 1

1−
n∑

np=0

(
n

2np

)
(2np − 1)!!rq(b

n
2
c−np)

cqn(r)



=
1

q − 1

1− 1

cqn(r)

n∑
np=0

(
n

2np

)
(2np − 1)!!(rq)b

n
2
c−np


=

1

q − 1

(
1− cn(rq)

cqn(r)

)
. (C.42)

Similarly, for the C-model, we have

Hq[Pn] =
1

q − 1

1−
n∑

np=0

(
n

2np

)
(2np − 1)!!rq(b

n
2
c−np)

cqn(r)

n−2np∑
nh=0

(
n− 2np
nh

)
ρqnh(1− ρ)q(n−2np−nh)



=
1

q − 1

1− 1

cqn(r)

n∑
np=0

(
n

2np

)
(2np − 1)!!(rq)b

n
2
c−np

n−2np∑
nh=0

(
n− 2np
nh

)
(ρq)nh((1− ρ)q)n−2np−nh

 .

(C.43)
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The second sum in the last line is written as

n−2np∑
nh=0

(
n− 2np
nh

)
(ρq)nh((1− ρ)q)n−2np−nh = [ρq + (1− ρ)q]n−2np . (C.44)

So

Hq[Pn] =
1

q − 1

1−
n∑

np=0

(
n

2np

)
(2np − 1)!!rq(b

n
2
c−np) [ρq + (1− ρ)q]n−2np

cqn(r)



=
1

q − 1

1− 1

cqn(r)

n∑
np=0

(
n

2np

)
(2np − 1)!!(rq [ρq + (1− ρ)q]2)b

n
2
c−np


=

1

q − 1

(
1− cn(rq [ρq + (1− ρ)q]2)

cqn(r)

)
. (C.45)

C.8 Finding the Shannon Entropy of Pairing Time

Series

We write the Shannon entropy over an ensemble of strings with length n as

HL(Xn) = −
∑
Xn∈Λn

P (Xn) logP (Xn)

= −
∑

Xn∈ Λ1
n

P (Xn) logP (Xn)−
∑
Xn∈Λ2

n

P (Xn) logP (Xn) (Λn = Λ1
n ∪ Λ2

n)

= −
∑

Xn∈
←−
Xn

P (Xn)
∑

Xn−1∈Γ1
n−1

PE(Xn−1|Xn) log [P (Xn)PE(Xn−1|Xn)]

−
∑

Xn∈
−→
Xn

P (Xn)
∑

Xn−1∈Γ1
n−1

PE(Xn−1|Xn) log [P (Xn)PE(Xn−1|Xn)] , (C.46)

where in the last step, we used the extension of the joint probability in equations

(4.105) and (4.114) to switch to Cartesian spaces. Continuing,

HL(Xn) = −
∑

Xn∈
←−
Xn

∑
Xn−1∈ Γ1

n−1

P (Xn)PE(Xn−1|Xn) [logP (Xn) + logPE(Xn−1|Xn)]
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−
∑

Xn∈
−→
Xn

∑
Xn−1∈ Γ2

n−1

P (Xn)PE(Xn−1|Xn) [logP (Xn) + logPE(Xn−1|Xn)]

= −
∑

Xn∈
←−
Xn

P (Xn) logP (Xn)
∑

Xn−1∈ Γ1
n−1

PE(Xn−1|Xn)

−
∑

Xn∈
←−
Xn

P (Xn)
∑

Xn−1∈ Γ1
n−1

PE(Xn−1|Xn) logPE(Xn−1|Xn)

−
∑

Xn∈
−→
Xn

P (Xn) logP (Xn)
∑

Xn−1∈ Γ2
n−1

PE(Xn−1|Xn)

−
∑

Xn∈
−→
Xn

P (Xn)
∑

Xn−1∈Γ2
n−1

PE(Xn−1|Xn) logPE(Xn−1|Xn). (C.47)

The normalisation condition requires that the sum over conditionals must be equal

to one. Therefore

HL(Xn) = −
∑

Xn∈
←−
Xn

P (Xn) logP (Xn)−
∑

Xn∈
−→
Xn

P (Xn) logP (Xn)

−
∑

Xn∈
←−
Xn

P (Xn)
∑

Xn−1∈ Γ1
n−1

PE(Xn−1|Xn) logPE(Xn−1|Xn)

−
∑

Xn∈
−→
Xn

P (Xn)
∑

Xn−1∈Γ2
n−1

PE(Xn−1|Xn) logPE(Xn−1|Xn)

= −
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn) logP (Xn)

−
∑

Xn∈
←−
Xn

P (Xn)
∑

Xn−1∈ Γ1
n−1

PE(Xn−1|Xn) logPE(Xn−1|Xn)

−
∑

Xn∈
−→
Xn

P (Xn)
∑

Xn−1∈Γ2
n−1

PE(Xn−1|Xn) logPE(Xn−1|Xn). (C.48)

Using equations (4.107) and (4.116), we extend the range of Xn in the second and

the third sums

HL(Xn) = −
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn) logP (Xn)

−
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn)
∑

Xn−1∈ Γ1
n−1

PE(Xn−1|Xn) logPE(Xn−1|Xn)

−
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn)
∑

Xn−1∈Γ2
n−1

PE(Xn−1|Xn) logPE(Xn−1|Xn)
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= −
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn) logP (Xn)

−
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn)
∑

Xn−1∈Γ2
n−1∪Γ2

n−1

PE(Xn−1|Xn) logPE(Xn−1|Xn). (C.49)

Theorem (4.2.2) showed that Γ1
n−1 ∪ Γ2

n−1 is equal to Λn−1, so

HL(Xn) = −
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn) logP (Xn)

−
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn)
∑

Xn−1∈Λn−1

PE(Xn−1|Xn) logPE(Xn−1|Xn). (C.50)

Calling

HL(Xn) ≡ −
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn) logP (Xn), (C.51)

as the present entropy, and

HL(Xn−1|Xn) ≡ −
∑

Xn∈
←−
Xn∪

−→
Xn

P (Xn)
∑

Xn−1∈Λn−1

PE(Xn−1|Xn) logPE(Xn−1|Xn),

(C.52)

as the past conditional entropy on present, we get

HL(Xn) = HL(Xn) +HL(Xn−1|Xn). (C.53)

C.9 Finding the Ratios of Ω2(L)

Clearly, we could use the asymptotic leading term of Ω2(L) to simplify the above

ratios. Instead, we use an elementary method that is easier to handle and is appli-

cable to any other recursive relation that we may see in future. Let us start with

the recursive relation for Ω2(L)

Ω2(L) = 2Ω2(L− 1) + (L− 1)Ω2(L− 2) =⇒

1 = 2
Ω2(L− 1)

Ω2(L)
+ (L− 1)

Ω2(L− 2)

2Ω2(L− 1) + (L− 1)Ω2(L− 2)
=⇒

1 = 2
Ω2(L− 1)

Ω2(L)
+

L− 1

2Ω2(L−1)
Ω2(L−2)

+ (L− 1)
(C.54)
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Defining

ρL =
Ω2(L− 1)

Ω2(L)
, ρL−1 =

Ω2(L− 2)

Ω2(L− 1)
, (C.55)

equation (C.54) writes as

1 = 2ρL +
L− 1

2/ρL−1 + (L− 1)
. (C.56)

Assuming for increasing L the sequence ρL has a limit, the fix-point of the above

relation requires ρL ∼ ρL−1, we get the following quadratic equation

(L− 1)ρ2
L + 2ρL − 1 = 0, (C.57)

such that its positive solution for 1� L is

ρL =

√
L− 1

L− 1
∼ 1√

L
. (C.58)

When we reorder the terms that define ρL as

Ω2(L− 1)

Ω2(L)
= ρL ∼

1√
L
, (L− 1)

Ω2(L− 2)

Ω2(L)
= 1− 2ρL ∼ 1− 2√

L
. (C.59)
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Appendix

D

Statistical Mechanics

D.1 Finding the Microcanonical Maximum

For 1 << N , taking the logarithm of Ω2(E,N, k) in equation (5.5) and using the

Stirling approximation we derive

ln Ω2(E,N, k) = N lnN −N − k ln 2− k ln k −
(
N − E

2

)
ln

(
N − E

2
− k
)

−
(
N + E

2

)
ln

(
N + E

2
− k
)

+ k ln

[
(
N

2
− k)2 − E2

4

]
+N − 2k =⇒ (D.1)

To find the maximum, taking the derivative of ln Ω2(E,N, k) with respect to k finds

d ln Ω2(E,N, k)

dk
= − ln 2− 1− ln k − 1 +

N−E
2

N−E
2
− k

+
N+E

2
N+E

2
− k

+ ln

[
(
N

2
− k)2 − E2

4

]
+

2k(k − N
2

)

(N
2
− k)2 − E2

4

= − ln 2k − 2 + ln

[
(
N

2
− k)2 − E2

4

]
+

N2−E2

2
− kN + 2k2 − kN

(N
2
− k)2 − E2

4
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= − ln 2k − 2 + ln

[
(
N

2
− k)2 − E2

4

]
+

2
(

(N
2
− k)2 − E2

4

)
(N

2
− k)2 − E2

4

= − ln 2k + ln

[
(
N

2
− k)2 − E2

4

]
= 0. (D.2)

Next, equating the last equation to zero to find its zero results in the following

quadratic equation

k∗2 − (N + 2)k∗ +
N2 − E2

4
= 0, (D.3)

with solutions as

k∗ =
N

2
+ 1± 1

2

√
E2 + 4N + 4. (D.4)

Taking u = E
N

as a constant and considering the fact that 1 � N , the asymptotic

leading term of k∗ obtains as

k∗ =
N

2
(1± u). (D.5)

Between these two solutions, one of them can be the acceptable one, depending on

the sign of total energy or u. We can divide energy values into three regions

1. u > 0 : For u = 1, k∗ = N or 0. From a combinatorial argument we are

sure that for u = 1 all the elements must be in head state. So the only

possible solution corresponds to k∗ = 0. It means that for u > 0, it must be

k∗ = N
2

(1− u).

2. u < 0 : Similar to the positive case, k∗ = 0 is the only possible solution for

u = −1 (all in tail state). It means that for u < 0, k∗ = N
2

(1+u) is the correct

solution.

3. u = 0 : This is correspond to E = 0 which implies

k∗ =
N

2
±
√
N + 4 + 1 ∼ N

2
.

Finally, we need to show that the bulk of the sum

Ω2(E,N) =

bN/2c∑
k=0

Ω2(E,N, k), (D.6)
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is concentrated around Ω2(E,N, k∗). In other words,

Ω2(E,N, k∗) ≈
bN/2c∑
k=0

Ω2(E,N, k) = Ω2(E,N). (D.7)

To do that, for a fixed N and E, we must ask what proportion of configuration

numbers does belong to k∗ in comparison to the others? Since

k∗ =


N
2

(1− u), u ≥ 0

N
2

(1 + u), u < 0

=


N−E

2
, E ≥ 0

N+E
2
, E < 0

, (D.8)

plugging back k∗ into Ω2(N,E, k), we get

Ω2(E±, N, k
∗) =


N !

2
N−E+

2 (
N−E+

2
)!(E+)!

, E+ ≥ 0

N !

2
N+E−

2 (
N+E−

2
)!(−E−)!

, E− < 0

(D.9)

Defining E∗ = E+ = − |E−|, makes k∗ = N−E∗
2

and

Ω2(E∗, N, k
∗) =

N !

2
N−E∗

2 (N−E∗
2

)!E∗!
. (D.10)

where u∗ = E∗
N
≥ 0. Deviating from k∗ for both negative and positive E corresponds

to k = k∗ − ∆k = N−E∗
2
− ∆k. Surly ∆k ≥ 0, otherwise k is outside of the valid

range, say 2k ± E ≤ N . Knowing that, we rewrite Ω2 as

Ω2(E∗, N, k
∗ −∆k) =

N !

2
N−E∗

2
−∆k(N−E∗

2
−∆k)!(∆k)!(E∗ + ∆k)!

. (D.11)

Therefore the ratio of volumes for k = k∗ −∆k to k∗ is

Ω2(E∗, N, k
∗ −∆k)

Ω2(E∗, N, k∗)
=

1

2−∆k(∆k)!
×

(N−E∗
2

)!

(N−E∗
2
−∆k)!

× E∗!

(E∗ + ∆k)!
. (D.12)

Using the Stirling approximation lets us simplify it as

Ω2(E∗, N, k
∗ −∆k)

Ω2(E∗, N, k∗)

265



Chapter D: Statistical Mechanics

=
1

2−∆k(∆k)!
×

(1−u∗
2

)
N
2

(1−u∗)

(1−u∗
2
− ∆k

N
)
N
2

(1−u∗)−∆k
× 1

(1 + ∆k
u∗N

)u∗N(u∗ + ∆k
N

)∆k
. (D.13)

We assume ∆k is small enough such that ∆k
N

approaches zero for large N (e.g.

∆k =
√
N). Thus

Ω2(E∗, N, kmax −∆k)

Ω2(E∗, N, kmax)
=

e∆k

(∆k)∆k
× (

1− u∗
u∗

)∆k × 1

(1 + ∆k
u∗N

)u∗N
. (D.14)

For non-zero u∗, the asymptotic (1 + ∆k
u∗N

)u∗N = e∆k implies

Ω2(E∗, N, kmax −∆k)

Ω2(E∗, N, kmax)
=

1

(∆k)∆k
× (

1− u∗
u∗

)∆k (D.15)

E.g. for ∆k =
√
N the ratio is

Ω(E∗, N, k
∗ −∆k)

Ω(E∗, N, k∗)
=

1

(
√
N)
√
N
× (

1− u∗
u∗

)
√
N (D.16)

which except for u∗ = 0, in the limit of N → ∞, the ratio approaches zero. The

final step is to compare the width of the deviation, ∆k, to the k∗ for 1� N

lim
N →∞
E →∞

u∗ = const.

∆k

kmax
= lim

N →∞
E →∞

u∗ = const.

√
N

N(1−u∗
2

)
= lim

N →∞
E →∞

u∗ = const.

1√
N(1−u∗

2
)

= 0. (D.17)

So it means almost all of the configurations for Ω2(E,N, k) concentrate on kmax with

deviation equal to
√
N . Therefore, we can safely conclude

Ω”(E,N, k∗) ≈
∑
k

Ω”(E,N, k) = Ω2(E,N). (D.18)

D.2 The Microcanonical Specific Entropy

Let start with negative energy, or E− < 0, as in equation (5.7). We define

E = |E−| = −E−, E > 0, (D.19)
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The sharp peak around the maximum implies negligible number of elements in head

states, or say n3 ≈ 0. Putting n3 = 0 and using (5.1) and (5.4),

n1 = −E− = E, n2 = 2p = N − E, n3 = 0, (D.20)

Consequently (5.2) becomes,

Ω(E,N) =
N !

2
N−E

2 (N−E
2

)!E!
. (D.21)

Taking logarithm from both sides and using the Stirling approximation, we derive

log Ω

N
=

1

2
(1− E

N
) logN − E

N
log

E

N
− 1

2
(1− E

N
) log(1− E

N
)− 1

2
(1− E

N
). (D.22)

Because E and N are positive numbers and E
N
≤ 1, there exists u such that

lim
N→∞

E

N
= u, 0 < u ≤ 1 (D.23)

Then

lim
N→∞

log Ω(E,N)

N
=

1

2
(1− u) lim

N→∞
(logN)− u log u− 1

2
(1− u) log(1− u)

− 1

2
(1− u)→∞. (D.24)

The l.h.s is molar entropy (if it is multiplied by Boltzmann constant) and diverging.

Therefore Entropy is non-extensive.

For positive energies n1 = 0. System’s total energy E+ > 0 and like negative case,

E = E+ E > 0, (D.25)

n3 = E+ = E, n2 = 2p = N − E, n3 = 0, (D.26)

Consequently (5.2) becomes,

Ω(E,N) =
N !

2
N−E

2 (N−E
2

)!E!
. (D.27)

which is exactly similar to the negative case. Consequently, it results in the same
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molar entropy

lim
N→∞

log Ω(E,N)

N
→∞ (0 < u < 1), (D.28)

where

lim
N→∞

E

N
= u, 0 < u ≤ 1. (D.29)

D.3 The Partition Function of 1-D Pairing Ising

Model

We defined a partition function of an Ising model without nearest-neighbour inter-

action and M elements in head or tail states (σi ∈ {−1, 1}) as follow

ZM =
∑
{σi}

e−βB
∑M
i=1 σij . (D.30)

Note that for each configuration, σi, we removed elements in the pair state, and

therefore, the sum for the Hamiltonian runs over M instead of N .

A transformation matrix between two neighbours can be defined by separating each

factor like e−βB(σi+σi+1)/2. So,

Ti,i+1 =

[
e−βB 1

1 eβB

]
. (D.31)

Eigenvalues of the matrix T are

λ1 = 2 cosh(βB), λ2 = 0. (D.32)

After diagonalizing and considering periodic boundary condition such as σ1 = σM+1,

the partition function is equal to,

ZM = Tr(TM) = 2M coshM(βB). (D.33)
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D.4 Evaluating the Partition Function’s Summand

Let’s define the elements of the sum in equation (5.22) like

tN,2k = 2N−2k(2k − 1)!!

(
N

2k

)
coshN−2k(βB). (D.34)

We have,

tN,2k =
2N−3kN !

k!(N − 2k)!
coshN−2k(βB). (D.35)

Then by taking the logarithm of the term and using Stirling approximation for logN !

we have,

log tN,2k = (N − 3k) log 2− k −N log(1− 2k

N
) + k log

N2

k
+ 2k log(1− 2k

N
)

+ (N − 2k) log(cosh(βB)). (D.36)

Dividing it by N ,

1

N
log tN,2k = (1− 3k

N
) log 2− k

N
− log(1− 2k

N
) +

k

N
log

N
k
N

+
2k

N
log(1− 2k

N
)

+ (1− 2k

N
) log(cosh(βB)). (D.37)

Since 0 ≤ k ≤ N/2, for ∃k ∈ N such that the limit lim
N→∞

k
N

= ε exists for ε > 0.

Thus

lim
N→∞

1

N
log tN,2k = (1− 3ε) log 2− ε− log(1− 2ε) + 2ε log(1− 2ε)

+ (1− 2ε) log(cosh(βB)) + lim
N→∞

ε log
N

ε
→∞. (D.38)
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E

Generalised Compounding

Mechanism

E.1 Generalised Compounding Mechanism

Case I:

• Mechanism:

iA↔ Ai. (E.1)

• Numbers conservation:

ns + ini = n. (E.2)

• Recursive relation:

Ωs(n+ 1) = sΩs(n) + pi

(
n

i

)
Ωs(n− i). (E.3)

• Degeneracy:

Dn(ni) =

(
n

ini

)
(ini − 1)!(i), (E.4)
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where n!(i) is a multifactorial defined recursively as

n!(i) =


1 −i < n ≤ 0

n 0 < n ≤ i

n× (n− i)!(i) n > ik

. (E.5)

• Probability distribution:

Pn(ni) =
Dn(ni)r

bn−ni
i
c

i

cn(ri)
=

(
n
ini

)
(ini − 1)!(i)r

bns
i
c

i

cn(ri)
, (E.6)

such that ri is the ratio of abundance of stand-alone elements to the i-tet

compound.

• Normalisation constant:

cn(ri) =
∑

ns+ini=n

Dn(ni)r
bns/ic
i =

bn/ic∑
ni=0

(
n

ini

)
(ini − 1)!(i)r

bn−ni
i
c

i . (E.7)

• Large deviation probability:

Pεi(mi) ∝ enH̃εi (mi), (E.8)

for

H̃εi(mi) = −mi lnmi − (1−mi) ln
e(1−mi

e
)i

εi
, (E.9)

where e is Euler constant, and

lim
n→∞

ri
n

= εi. (E.10)

Case II:

• Mechanism:

(ni1 + ni2 + · · ·+ nik)A↔ Ai1 + Ai2 + · · ·+ Aik , (E.11)

• Numbers conservation:

ns +
∑
i∈Ak

ini = n. (E.12)
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• Recursive relation:

Ωs(n+ 1) = sΩs(n) +
n∑
i=1

pi

(
n

i

)
Ωs(n− i). (E.13)

• Degeneracy:

Dn(ni1 , . . . , nik) =

(
n

i1ni1 , i2ni2 , . . . , iknik , ns

) ∏
i∈Ak

(ini − 1)!(i), (E.14)

where the factor on the right side of the equation is the multinomial coefficient.

• Probability distribution:

Pn(ni1 , . . . , nik) =
Dn(ni1 , . . . , nik)

∏
i∈Ak r

b
n(i)−ini

i
c

i

cn(ri1 , . . . , rik)
. (E.15)

• Normalisation constant:

cn(ri1 , . . . , rik) =
∑

ns+
∑
i∈Ak

ini=n

Dn(ni1 , . . . , nik)
∏
i∈Ak

r
b
n(i)−ini

i
c

i . (E.16)

• Large deviation probability:

P (mi1 , . . . ,mik ; εi1 , . . . , εik) ∝ enH̃(mi1 ,...,mik ;εi1 ,...,εik ), (E.17)

for

H̃(mi1 , . . . ,mik ; εi1 , . . . , εik) = −mi1 lnmi1 −
k∑
i=2

(1−
i−1∑
j=1

mij) ln
e(

1−
∑i−1
j=1mij
e

)ii

εii

(E.18)

where e is Euler constant, and

lim
n→∞

rii
n

= εii . (E.19)
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