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ABSTRACT 
 

Over the last decade, the levelised cost of energy (LCOE) of many renewable technologies 

has sharply declined. As a result, direct cost comparisons of LCOE figures have made 

renewables to be perceived as economically very competitive options to decarbonise energy 

systems when compared to other low-carbon technologies such as Nuclear and Carbon 

Capture and Storage. We identify several theoretical shortcomings in relation to using LCOE 

or similar life-cycle economic metrics to make inferences about the relative economic 

effectiveness of using renewable technologies to decarbonise energy systems. We outline 

several circumstances in which the sole reliance on these metrics can lead to suboptimal or 

misguided investment and policymaking decisions. 

 

The thesis proposes a new theoretical framework to measure and benchmark the cost-

effectiveness of decarbonising electric systems using renewables. The new framework is 

generic, technology-neutral, and enables consolidation of the results of decarbonisation 

studies that consider various renewable technologies and low carbon technologies. It also 

enables measuring and tracking the cost-effectiveness of the renewable decarbonisation 

process at a country or a system level. As a result, it also allows the direct comparison of the 

economic implications of different decarbonisation scenarios and various policy proposals in 

a very intuitive graphical way.  

 

In addition, the thesis  proposes a new, unit-free metric, tentatively called Carbon Economic 

Effectiveness Credit (CEEC), to benchmark the relative cost-effectiveness of using different 

renewable technologies to achieve long-term carbon emission savings. Theoretically, CEEC 

represents the elasticity of the system total cost with respect to the carbon reduction savings 

attributable to renewables. In contrast to stand-alone, life-cycle metrics such as the LCOE, 

the proposed metric considers the economic and technical parameters of the renewable 

technologies and characteristic of the system under study. It also allows expressing the cost-

effectiveness of the renewable decarbonisation process as a function of the system-wide 

decarbonisation level.  

 

Using historical load profiles, high-resolution solar radiation data and long-term 

meteorological data for a relatively small Gulf country, we investigate the deep 

decarbonisation of the electric system through the large-scale deployment of different 

renewables technologies. In particular, we use two well-established optimisation 
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methodologies that have been used extensively in the literature to study the decarbonisation 

of power systems, namely: the screening curve (SC) method and the unit commitment (UC) 

method. In analysing the results of the two methodologies, we find that the choice of the 

modelling methodology, in some cases, can greatly influence the perceived carbon cost-

effectiveness of renewables and subsequently their carbon abatement cost estimates. In 

particular, our results suggest that under deep decarbonisation scenarios, the estimate of the 

long-term carbon savings of renewables is strongly influenced by (1) the choice of the 

modelling method and (2) the technical specifications of the simulation models. Our results 

suggest that under deep decarbonisation scenarios, using simpler optimisation models 

may change the perceived economic effectiveness of renewables to decarbonise some 

electric systems. More importantly, our research sheds light on potential shortcomings in the 

current modelling practices and help identify patterns of possible inaccuracies or biases in 

renewable decarbonisation results.  

 

Moreover, our research suggests that the variations in the technical characteristics of 

renewable technologies can have a large influence on the economics of the decarbonisation 

process. We show that not all renewable technology types can have a suppressing effect on 

the variable costs of the systems due to their “zero marginal costs.” In particular, we identify 

certain technologies and circumstances in which an increase in renewable penetration can 

significantly inflate the variable energy costs of the system. More specifically, we find that 

under deep decarbonisation scenarios, renewable technologies with a highly volatile 

production profiles can act as an amplifier for the variable cost of the systems through (1) 

reducing the effectiveness of thermal generation units due the increased start-up and 

shutting downing activities, and (2) increasing the energy output levels from more flexible 

and yet more expensive thermal technologies. 

 

In addition, we identify circumstances in which an increased renewable penetration can 

materially affect the capacity adequacy of electric systems, leading to an increase in capacity 

investment in thermal flexibility assets. Perhaps more importantly, we find that these 

additional flexibility assets will not be commercially viable on an energy-output basis. We 

believe that this might have specific implications for the energy-only markets. 

 

Finally, we discuss the policy implications of our findings and propose several important 

recommendations. Altogether, we hope that our work will advance the understanding of the 

economics of climate change and integrating renewables into energy systems.   
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1.1 Motivation  
 

Mitigating the risks of climate change is believed to be one of the most challenging 

collective tasks of our lifetime. Governments around the world are busy negotiating 

commitments, setting targets, formulating strategies, and preparing roadmaps to 

decarbonise their economies and cut their greenhouse gas (GHG) emissions. A common 

starting point for governments is to set up plans to decarbonise their energy systems, from 

which significant quantities of GHGs are released into the atmosphere. According to the 

Intergovernmental Panel for Climate Change (IPCC), GHG emissions associated with 

energy services are a major cause of climate change (IPCC, 2011). In 2012, the CO2 

emitted by the energy sector accounted for approximately two-thirds of global CO2 

emissions, and the power sector alone was responsible for about 40% of the global 

primary energy use and CO2 emissions (IEA, 2015).  
 

At this juncture, there is no shortage of studies predicting a considerable increase in global 

renewable energy production, albeit that these studies tend to have varying projections 

about the expected share size of renewables, the technology mix, and the timescale of 

diffusion and adoption (IEA, 2014a, IEA, 2012, IEA, 2010b, IEA, 2010c, IEA, 2015, IEA, 

2016b, IEA, 2017, IRENA, 2021, Equinor, 2021, EIA, 2021, BP, 2020, McKinsey, 2019, 

ERINDRC, 2015, EC, 2012). The hope is that the projected expanded use of renewables 

will help stabilise the concentration of GHGs in the atmosphere to a safe level, or at least 

to the currently perceived lowest acceptable level, technically known as the 2-degree 

scenario (2DS)1. 
 

By the end of 2018, the total share of renewable output within the global electricity energy 

mix was estimated to be about 25%, covering almost 45% of the world's electricity 

generation growth in 2018 (IEA, 2019). A recent estimate by the International Energy 

Agency (IEA) suggests that under the 2DS, the share of renewables in the global 

generation mix might reach as high as 74% in 2060 (IEA, 2017). Besides, by 2050, 

electricity is expected to be the largest final energy carrier, boosting the role of renewables 

in reducing global carbon emissions (IEA, 2015).  

 

 
1 The 2DS is often linked in the literature to “Paris Agreement” which requires the signing nations to collectively 
limit global warming to well below 2 °C above pre-industrial levels by 2100 (United Nations, 2015).  
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To date, there has been little agreement in the literature on how to estimate and measure 

the carbon reduction contributions of renewables. More recently, studies have emerged 

that offer cautionary insights into overestimating or potentially underestimating the 

carbon reduction contributions of renewables and their role in achieving the deep 

decarbonisation of electric systems (Hart and Jacobson, 2012, Strbac et al., 2007, 

Thomson et al., 2017). In addition to historical estimates, difficulties often arise regarding 

the projections of the long-term CO2 saving potential of renewables, especially when an 

investment or a policy decision must be made based on these estimates or projections. 

These difficulties include (1) the wide variation in modelling techniques and practises used 

in the literature for carrying out renewable decarbonisation studies (2) the modeling 

complexity of existing of energy systems (3) the uncertainty about the characteristics of 

future electric systems (4) the lack consensus on the way that the renewable emission 

savings are measured and reported.  
 

One worry is that the possible systematic overestimation of the carbon savings of 

renewables might jeopardise the ability to meet carbon emission targets. In addition, this 

might result in misguided investment and policy-design decisions.  
 

Furthermore, uncertainty about the validity, accuracy, and robustness of the carbon 

saving estimates of renewables might raise further questions about the true economic costs 

of deeply decarbonising electric systems through expanding the use of renewables. 

Equally, this would cast doubts on the cost-effectiveness of the envisioned large-scale 

renewable decarbonisation process of electric power systems worldwide. Importantly, as 

the carbon saving potential of renewables is frequently cited as one of the primary drivers 

for expanding their use and justifying their capital-intensive investments and subsidies, 

there is a real need to ensure that renewables are capable of delivering the hoped-for 

carbon savings in a technically efficient and cost-effective manner. 

 

1.2 Overall Objective of the Thesis  
 

This thesis explores the economics of decarbonising electric systems, with a special focus 

on using renewables as a primary option for delivering the deep decarbonisation of 

electric systems. It seeks to uncover the some of the technical features of the renewable 

decarbonisation process and shows how these features impact the economics of electric 
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systems in an unconventional way. The ultimate purpose of this dissertation is to fully 

understand the value of incorporating renewables into electric systems from both climate 

change mitigation and economic perspectives. To that end, we summarise the key 

objectives of the thesis in the following points:  

1) Proposing a new theoretical framework and gauging metric for measuring and 

benchmarking the cost-effectiveness of decarbonising electric systems by means of 

renewables at a country or a system-level. 

2) Applying the framework to different analytical contexts including carrying out deep 

decarbonisation studies using different (a) renewable technologies, (b) modelling 

methods, and (c) model’s specifications to demonstrate the usefulness and versatility 

of the new developed framework as a powerful analytical tool to understand the 

different factors that could influence the perceived economic competitiveness of using 

renewables to decarbonise energy systems. 

3) Presenting several original insights about the economics of the renewable 

decarbonisation process of electric systems and providing multiple, practical policy 

recommendations related to the topic.  

 

1.3 Thesis Outline  
 

The thesis is organised into seven chapters and two appendices. The specific goals, 
objectives, and contents of each chapter can be summarised as follows:  
 

• Chapter 2 

o Includes a brief review of the challenges of climate change and the anticipated 
role of renewable energy systems in facilitating the decarbonisation of electric 
energy systems. 

o Provides a short review of the technical characteristics of intermittent 
renewables and their implications for the operation and planning of electric 
energy systems. 

o Presents a concise literature review of the flexibility options that have been 
suggested in the literature to support the evolution of low-carbon electric 
systems.  

 

• Chapter 3 

o Provides a broad literature review of the current modelling approaches used in 
the literature to estimate the carbon savings of renewables.  
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o Provides a technical literature review of the commonly used optimisation-based 
modelling methodologies to simulate the operations of electric systems and to 
make long-term projections about the carbon saving potential of renewables and 
its economic implications.  

o Presents the study’s input data and assumptions and provides a description of 
the electric system under study.  

 

• Chapter 4 

o Provides a critical review of the existing literature on the economics of electric 
systems’ decarbonisation. 

o Discusses the theoretical shortcomings of the existing metrics that are frequently 
used in the literature to make economic inferences about the competitiveness of 
renewable technologies to decarbonise electric systems.    

o Discusses the difficulty of making economic judgments about the long-term 
economic effectiveness of using renewable technologies to decarbonise electric 
systems in the absence of a theoretical framework that addresses the unique 
characteristics of the renewable decarbonisation process.   

o Introduces the newly proposed theoretical framework for measuring the 
economic effectiveness of the renewable decarbonisation process. 

o Introduces a new benchmarking metric for gauging the relative cost-
effectiveness of using different renewable technologies or low-carbon 
technologies to achieve sustained and long-term carbon emission savings. 

o Provides several illustrative examples of the usefulness of the proposed 
framework and metrics for policy evaluations.    

o Presents a case study comparing the performance of the newly proposed 
framework and gauging metrics against the performance of the most frequently 
used metric in the literature.  

o Presents the findings of the research and their policy implications. 
 

• Chapter 5 

o Provides a comparative case study featuring two of the well-established 
optimisation methodologies for studying the decarbonisation of power systems, 
namely the screening curve (SC) method and the unit commitment (UC) 
method. 

o Presents a detailed technical study using the UC method. The study features 
different UC models with different technical specifications. In essence, the study 
examines the sensitivity of the carbon emission and economic results of 
decarbonisation studies to variations in the technical specifications of the UC 
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models. The study features side-by-side comparisons of models with, without, 
and with varying values of specific technical factors.  

o Reports and discuss the results of the study.  
o Discusses the policy implications of the research findings. 

 

• Chapter 6 

o Presents a detailed technical study using different types of renewable 
technologies with different technical characteristics, namely the photovoltaic 
(PV) and wind technologies. In essence, the study examines to what extent 
variations in the technological characteristics across renewable technologies 
impact the economics of the decarbonisation process. 

o Presents a second detailed technical study using PV and wind technologies; 
however, it considers comparable cumulative energy output levels for the two 
technologies rather than comparing them on an equivalent capacity penetration 
basis as in the previous case study. The new case study helps capture the impact 
of the variations in the production profiles of the two technologies irrespective 
of the strength of their underlying renewable resource. In particular, the new 
case study seeks to uncover the impact of the variations in "production profiles" 
of renewable technologies on the economics of the decarbonisation process in 
isolation of the variations in renewable resources' potentials or strengths.  

o Presents a third case study featuring the PV and the concentrated solar power 
(CSP) technologies. The study cases investigate the effect of the “variability” of 
the production profile of the renewable technologies on the economics of the 
decarbonisation process.  

o Reports and discusses the results of the technical studies.  
o Discusses the policy implications of the research findings. 

 

• Chapter 7 

o Discusses the overall research findings and conclusions.  
o Discusses the limitations of the research carried out.  
o Discusses the planned future work and open questions.  

 

• Appendix A  

o Supplementary results appendix.  
 

• Appendix B  

o Modelling notes appendix.  
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2.1 Renewable Energy & Climate Change    
 

In December 2015, 196 nations, which are then parties to the United Nations Framework 

Convention on Climate Change (UNFCCC), signed a historic agreement to combat and 

mitigate the risks of climate change. This landmark "Paris Agreement" requires nations 

to collectively limit global warming to well below 2 °C above pre-industrial levels by 

21002 . Furthermore, in line with recommendations of the Intergovernmental Panel on 

Climate Change (IPCC), the agreement ambitiously obliges the signed nations to pursue 

efforts to limit the temperature increase to 1.5 °C above pre-industrial levels (United 

Nations, 2015). 

 

In November 2016, the Paris Agreement came into effect requiring all nations to prepare 

and publish their Intended Nationally Determined Contribution (INDC). The INDCs 

describe the plans of each party state to reduce its greenhouse gas (GHG) emissions and 

outline its strategies to adapt to or reduce the vulnerabilities expected to be posed by 

climate change. In principle, the submitted national plans must include a quantifiable 

carbon reduction target, a reference or a benchmark year, and an implementation 

timetable. In addition, national plans are expected to include detailed information about 

the assumptions and methodologies used to estimate and account for GHG emissions. 

Also, the agreement requires nations to report regularly on their emissions and 

implementation efforts and to review their plans every five years (United Nations, 2015, 

IEA, 2016a).  

 

Despite being recognised by the International Energy Agency (IEA) as "an important step 

forward," the initial collective carbon reduction pledges submitted by the party countries 

were deemed not sufficient to achieve the objective of the agreement, particularly in 

relation to limiting the global temperature increase to 2 °C by 2100. According to the 

IEA analysis, the submitted national carbon reduction pledges,3 if delivered, would lead 

to an average increase in global temperature of around 2.7 °C by 2100.4 Furthermore, 

 
2 There seems to be no consensus in the literature on the temperature increase that would constitute or meet the “well 

below 2 °C” threshold indicated in the agreement. Furthermore, there is a controversy in the literature about the 
probability or likelihood of achieving specific temperature targets (IEA, 2016a). Several studies have indicated that 
the global carbon reduction targets and budgets are very sensitive to this probability or likelihood (IPCC, 2014).    

3  Refers to the collective national pledges submitted ahead of the UNFCCC’s 21st conference.  
4  This figure is based on a 50% likelihood. Other studies suggested different figures. For example, Rogelj et al. (2016) 

suggested that the INDCs collectively would lead to a median global warming of 2.6-3.1 °C by 2100.      
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under the same scenario, global temperatures are likely to rise above 3 °C afterwards 

(IEA, 2016a).  

 

To bridge the gap between the carbon reduction pledges by the different party countries 

and the objective of the agreement, several governmental bodies, research centres, and 

thinktanks have engaged in efforts to shed light on the risks of failing to achieve the 2 °C 

target and to highlight the additional work needed to deliver on the agreement. One 

notable example is the comprehensive study carried out by the IEA in which they 

simulated the carbon reduction trajectories of the energy and climate policies announced 

by the countries as well as their national carbon reduction commitments, technically 

known as the Reference Technology Scenario (RTS). The study provides a detailed 

technical analysis of the RTS and compares the carbon emission trajectories of the RTS5 

with the desired two-degree scenario (2DS). 

 

 
Figure 1: Global CO2 emission reduction trajectories under the RTS and 2DS. Reproduced from (IEA, 2017). 

 

As Figure 1 indicates, under the RTS, the global CO2 emission would continue to grow 

until reaching its peak around 2050. On the other hand, under the 2DS, the global 

emission would peak around 2020 and continue to fall considerably afterwards, reaching 

less than 10 GtCO2 by 2060. This implies that the difference in global cumulative carbon 

budget between the two scenarios would become as high as 760 GtCO2 by 2060.  

 
 

 

 
5 This scenario is assumed as a baseline scenario in the context of the IEA study. 
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Figure 2: Estimates of the additional cumulative CO2 emission reduction figures needed to meet the 2DS target by 

2060 relative to the RTS estimates (by sector and technology). Reproduced from (IEA, 2017). 

 

As Figure 2 indicates, renewables are expected to contribute significantly to delivering the 

additional carbon reduction needed to achieve the 2DS targets for the power sector. In 

addition, the enhanced electrification will increase renewables’ role in decarbonising the 

transport and building sectors under the 2DS.  

 

Figure 3: Global generation mix under the RTS and 2DS. Reproduced from (IEA, 2017). 

 

In terms of the technology mix for electric systems, under the 2DS, renewables are 

expected to deliver around two-thirds of the sector’s emission reductions. Furthermore, 

about 98% of electric energy will come from low-carbon technologies, with the global 

carbon intensity approaching zero by 2060 (IEA, 2017). This implies a significant 

transformation of the existing energy systems over the next decades not only at the energy 

production and consumption levels but also at the planning and operation levels (IRENA, 

2017). 
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2.2 Renewable Energy & Energy Systems   
 

Despite the obvious benefits of renewables, there is a growing recognition that large-scale 

deployment of variable-output renewable technologies, such as solar and wind, will 

impose several technical challenges on the operation and planning of current electric 

systems (Boyle, 2009).  

 

Compared to other energy systems, electric systems are considered to be among the most 

challenging in terms of planning and operation complexities (Wood et al., 2013). More 

specifically, the operation of electric systems involves ensuring a continuous equilibrium 

between the production and consumption of electricity on a second-by-second basis6 

(Pérez-Arriaga, 2013). Furthermore, the multiple planning stages of electric systems 

involve safeguarding an instantaneous balance between electricity demand and supply for 

decades to come. 

 

Figure 5 illustrates the traditional planning studies of electric power systems and their 

respective scope and time horizons and the time resolution of the models used to carry 

out these studies.  

 

 
Figure 4: Traditional planning stages of electric power systems and their respective modelling timeframes and 

models’ time resolutions. Reproduced from IRENA (2017). 

 
6  In reality, the timescale can be as small as a few milliseconds for certain grid stability considerations (Kundur, 1994). 
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Figure 5 illustrates the interdependencies and feedbacks between the different planning 

stages of electric power systems.   

 

 
Figure 5: Traditional electric system planning models and their respective modelling scope and timescale. 

Reproduced from (IRENA, 2017). 

 

The erratic and intermittent nature of variable-output renewables (VRE) makes the 

already challenging task of long-term planning of electric systems even more difficult 

(IRENA, 2017). Furthermore, the uncertainty surrounding particular weather 

characteristics (e.g., cloud cover, dust, wind speed, and wind direction) adds a new layer 

of complexity to the already sophisticated task (Hart et al., 2012). 

 

Figure 6 illustrates how the unique characteristics of renewable energy sources impact the 

different stages of electric system planning on various technical levels and timescales.   

 

 
Figure 6: Key relationships between the characteristics of renewable energy sources and power system properties 

and planning stages. Reproduced from (IRENA, 2017). 
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2.3 Characteristics of Renewable Energy   
 

Compared to other dispatchable7 renewable generation technologies (e.g., hydro 

technology), non-dispatchable generation renewables (e.g., solar, wind, and tidal 

technologies) have some unique characteristics. Technical reviews of these characteristics 

are ample in the literature, such as IEA (2014b), Delarue and Morris (2015),  and (IRENA, 

2017). The following is a brief summary of these characteristics surveyed in the literature.  

 

1- Non-dispatchable output profile 
 

As mentioned earlier, the electricity output of the so-called intermittent8 generation 

depends on variations in the underlying natural resources (e.g., wind speed, wind 

direction, and solar irradiance). Therefore, the energy output of renewable generation 

can vary widely both on a seasonal and on a diurnal basis.  This variability limits the 

ability to control the output of intermittent generation technologies. Furthermore, it 

restricts the contribution of renewable generation to the adequacy9 of the electric system 

(Strbac et al., 2007). Importantly, this particular characteristic has the potential to affect 

the operation, economics, and reliability of power systems (Gross et al., 2006). 

 

2- Uncertain output profile 
 

Furthermore, the output of renewables carries a certain level of uncertainty due to its 

inherent dependence on uncertain weather conditions. However, it is worth noting that 

the output of conventional generation technologies can also be variable and uncertain.10 

Nevertheless, the output profiles of renewable and convention technologies differ in the 

frequency and magnitude of their variability and in the degree of uncertainty of their 

output11 (Hart et al., 2012). Several studies have indicated that the uncertainty in the 

output level of variable-output renewables necessitates bigger reserves to run electric 

 
7  Dispatchability in this context refers to the ability of the system operator or the asset owner to actively control the 

output level of renewable generation in real time (i.e., increasing or decreasing the output levels of the renewable 
generators).    

8  The literature is inconsistent in the terminology describing the exogenous variability of renewable energy sources 
due to variations in weather conditions. Some studies use the term “variable,” while others use the term 
“intermittent.”      

9   Generation adequacy refers to having sufficient generation to meet demand at all times (IRENA, 2017).  
10   These technologies can be variable due to their changing availability and can be uncertain due to forced outages.   
11 The output of wind and solar technologies can fluctuate rapidly over a relatively short timescale, from minutes to 

hours (Hart et al., 2012).  
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systems (Doherty and O'Malley, 2005, Ortega-Vazquez and Kirschen, 2009, Madrigal 

and Porter, 2012). Furthermore, several studies highlighted the importance of advanced 

computational techniques in improving the forecast of the output of renewable generation 

and their role in reducing and optimising the allocation of the system’s reserve (NERC, 

2010, IRENA, 2019, Hodge et al., 2015, Zeng and Qiao, 2011). 

 

3- Location-constrained output profile 
 

Unlike that of conventional generation projects, the technical and financial viability of 

renewable energy projects hinges to a great extent upon the geographical location of the 

project. In particular, the availability and the quality of the underlying renewable resource 

dictate the financials of many renewable projects. 

 

In reality, many optimal locations of intermittent generation can exist in remote areas 

(e.g., deserts for solar energy and offshore for wind energy). One of the direct implications 

of this reality is the need for grid infrastructure expansion. This adds to the cost of 

integrating renewables into electric grids. Several studies have identified the lack or the 

slow development of grid expansion as a major barrier for integrating renewables into 

electric systems in many countries around the world, including Europe, the US and China 

(Green et al., 2016, Lu et al., 2016, Ye et al., 2018). In addition, delays in grid connection 

have been identified as a driver behind renewables’ curtailment in the US and China 

(Bird et al., 2016, Ye et al., 2018). 

 

4- Modularity and scalability 
 

Solar panels and wind turbines typically come in smaller sizes compared to conventional 

generation units. The unit size of solar panels ranges from hundreds of watts to several 

kilowatts, while the size of wind turbines varies from hundreds of kilowatts to several 

megawatts (IRENA, 2012). The relatively small unit size of renewables makes it possible 

to connect them at the distribution network instead of at the transmission grid. Although 

this capability offers several advantages, the interconnection of renewables at the 

distribution grid raises a number of technical challenges as well, including voltage 

regulation, congestion management, and system protection and reliability (Walling et al., 

2008, Vovos et al., 2007, Harrison and Wallace, 2005, Masters, 2002). 
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5- Non-synchronous operation 

Maintaining the frequency of the system is one of the fundament tasks of system operators 

(Kundur, 1994, Wood et al., 2013). The frequency of an electric system is directly related 

to the rotational speed of the electricity generators synchronised with the system. 

Generators are required to rotate at the same speed (e.g., 3,000 or 3,600 rpm) to be 

synchronised with the network. As more synchronous generators are connected to the 

network, the electromechanical inertia of the system increases, thereby enhancing the 

stability12 of the system’s frequency. Unlike conventional generators, Photovoltaics (PV) 

cells do not have moving parts; therefore, they do not contribute to the electromechanical 

inertia of electric systems. On the other hand, wind turbines rotate at variable speeds.13 

However, the kinetic energy stored in the turbines’ blades is mechanically decoupled from 

the grid’s electromechanical inertia by power electronic converters (Morren et al., 2006). 

That is why wind turbines do not have a natural electromechanical inertia contribution14 

to electric systems. However, control strategies can be employed to provide an emulated 

electromechanical inertia response from the wind turbines, technically known as synthetic 

or virtual inertia, during situations in which the electric grid faces disturbances, as 

illustrated in Figure 7 (Mauricio et al., 2009, Teng and Strbac, 2015, Teng and Strbac, 

2016, Van de Vyver et al., 2016, Tamrakar et al., 2017).  

 
Figure 7: A schematic illustrating the perceived contribution of the so-called virtual inertia of a typical wind 

turbine to the frequency stability of the electric system. Reproduced from (Tamrakar et al., 2017). 

 
12 The stability of an electric system is a multidimensional concept. Kundur (1994) suggested three main dimensions, 

or categories, for studying this stability: (1) rotor angle stability, (2) frequency stability, and (3) voltage stability. 
Further subcategories are also proposed.    

13 These are technically known as asynchronous speeds.   
14 They do not naturally participate in system-wide frequency control (i.e., primary control response). For example, 

see Teng and Strbac (2015) and Van de Vyver et al. (2016).   
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frequency control has been activated. As conventional generators are displaced by RESs, the inertial
response also decreases. This leads to an increased rate-of-change-of-frequency (ROCOF), and a low
frequency nadir (minimum frequency point) in a very short time. The primary frequency control
cannot respond within the small time frame (typically less than 10 s) to arrest the system frequency
change. This period is highlighted as section AB in Figure 3. It is clear from the figure that in systems
with lower inertia, the frequency nadir is considerably lower along with a high ROCOF. Such situations
can lead to tripping of frequency relays (causing under-frequency load shedding (UFLS)) and, in the
worst case, may lead to cascaded outages [12,13]. The solution to such scenarios is to add virtual inertia
in the system. The basic requirements of a virtual inertia system is that it has to operate in a very short
time interval (typically less than 10 s) and in autonomous fashion. Deployed appropriately, virtual
inertia systems would enhance system stability and enable greater penetration of RESs.

Figure 3. Multiple time-frame frequency response in a power system following a frequency event.

This paper presents a literature review of the various topologies used for virtual inertia
implementation. The major topologies and the consequent improvements in these topologies are
reviewed through a literature search followed by a restudy through simulations. The problem of
large frequency variations due to high penetration of RESs are introduced first in Section 2. The “first
generation” of virtual inertia systems are introduced next in Section 3. The topologies and control
algorithms to effectively emulate inertia of synchronous generators (SGs) through power electronic
based converters are discussed. After a literature review of the virtual inertia topologies, three main
topologies are compared and evaluated in a common benchmark in Section 4. The “second generation”
of virtual inertia systems is then reviewed in Section 5. The optimization of these systems in terms of
dynamic performance and energy usage is discussed. Finally, a review of the challenges involved with
integrating virtual inertia systems into the existing power system and some future research directions
are discussed in Section 6. Section 7 discusses the conclusions of the paper.

2. Frequency Variations in Weak Power Systems with High Penetration of RES

Microgrids have been identified as the best option to integrate distributed generation (DG) units
in terms of flexibility and reliability [14–16]. The microgrids can be operated in three possible modes:
grid-connected, islanded, or isolated. A microgrid is said to have been islanded when a microgrid that
is grid-connected disconnects from the grid, either in a planned fashion or due to a fault/disturbance
in the main grid. In the isolated mode of operation, the microgrid is designed such that it is never
connected to the grid. Regardless, these microgrid systems represent weak power systems and the
high penetration of inertia-less PV and wind energy systems has a severe effect on the frequency
stability. The rapid changes in the generation can cause frequency variations in the system that are
outside standard limits and compromise the stability of the system.
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6- Very low marginal costs 

 

Broadly speaking, intermittent renewables tend to have very low marginal costs when 

compared to other generation technologies. Typically, renewables do not consume fuel 

and do not incur huge maintenance and variable costs (IEA, 2010a). As a result, their cost 

structures tend to be dominated by their investment and capital costs, as indicated in 

Figure 8.  

 

 

Figure 8: Comparison of the typical cost structures of conventional fossil fuels and renewable technologies. 
Adapted from (Agora Energiewende, 2018b) and based on data from the International Energy Agency (IEA) and the 

Nuclear Energy Agency (NEA). 

 

One direct implication of this characteristic is that the increased penetration of “zero 

marginal costs” renewables can lead to a reduction in the spot market prices. This effect 

has been reported in many studies covering different electricity markets around the world 

that have considerable renewable capacity, including the German, Danish, British, and 

Spanish electricity markets (Baker et al., 2010, Pöyry, 2010, Green and Vasilakos, 2011b). 

As demonstrated in Figure 9, due to their low marginal costs, renewable energy sources 

stack at the bottom of the supply curve. The addition of more renewable capacity tends 

to lower the average prices of the whole electricity market, a phenomenon technically 

known as “the merit order effect” (Sensfuß et al., 2008, Pöyry, 2010, Cludius et al., 2014, 

Clò et al., 2015). 
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Figure 9: An illustration of the changes in the whole market prices due to the increased penetration of renewables. 
Adapted from (Agora Energiewende, 2018a). 

 

Figure 10 illustrates the impact of wind power on the December 2005 spot power prices 

within the western Danish power system.  
 

 

Figure 10: The impact of wind power on the December 2005 spot power price within the western Danish power 
system. Adapted from (Pöyry, 2010). 

 

Furthermore, it has also been reported that spot market prices might fall to zero or even 

become negative, particularly when high renewable generation coincides with low-

demand periods (Baker et al., 2010). Besides, a 2014 study that investigated the effect of 

wind generation on spot market prices in Germany reported not only a decrease in spot 

market prices but also an increase in the prices’ volatility due to the increased penetration 

of wind power (Ketterer, 2014). 
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2.4 Flexibility Options to Enhance Renewables’ Integration 
 

It is widely recognised that accommodating large-scale penetration of intermittent 

renewables into the system will require additional power system flexibility15 (Denholm 

and Hand, 2011, Hart and Jacobson, 2012, Ma et al., 2013a, Brouwer et al., 2015, Strbac 

et al., 2015, Ulbig and Andersson, 2015).  Figure 11 maps some of the technical options 

that are often discussed in the literature to enhance the flexibility of power systems.   

 
Figure 11: A figure illustrating the different technical options available to enhance the flexibility of power 

systems. Reproduced from (IRENA, 2018a). 

 

There are many studies that address the flexibility options of power systems. In addition, 

many reviews have been written on this topic. The following review is based on the 

taxonomy of flexibility options suggested by Lund et al. (2015). 

 

2.4.1 Supply-side flexibility 
 

2.4.1.1 Generation plants’ flexibility 

Supply-side flexibility encompasses several operational measures and technologies that 

can be used to enhance the flexibility of electric systems. One of the major sources of 

 
15 There is no consensus in the literature on a definition for the “flexibility” of electric systems. For example, Ma et al. 

(2013b) defined flexibility as the ability of a power system to cope with variability and uncertainty in both generation 
and demand, while maintaining a satisfactory level of reliability at a reasonable cost, over different time horizons.  
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supply-side flexibility is the operational16 flexibility offered by the dispatchable plants 

connected to the system. In essence, the output levels of some plants can be frequently 

adjusted to cope with possible variations in the system's load, the production levels of 

renewables, and possible generation or network failures. The flexibility level offered by 

each generator depends on the technical characteristics of the generators. IRENA (2017) 

suggested five key technical parameters that determine the flexibility potential of 

dispatchable power plants:  

(1) the ramping rates,17  

(2) start-up times,18  

(3) the minimum loading levels,19  

(4) minimum up- and downtimes,20 and  

(5) the partial load efficiency21 of the thermal plants. 

 

Figure 12 provides a qualitative illustration of the key flexibility parameters of 

conventional generation plants.  
 

 
Figure 12: Qualitative illustration of the key flexibility parameters of power plants. Adapted from (Agora 

Energiewende, 2017). 

 
16 As for electric power flexibility, there is no consensus in the literature on a definition for the “operational flexibility” 

of electric systems. For example, EPRI (2014) defines the operational flexibility of a power system as the ability to 
ramp and cycle resources to maintain a balance of supply and demand on timescales of hours and minutes through 
reliably operating a system at least cost. Other studies suggest less specific definitions. For example, IRENA (2018a) 
refers to operational flexibility as “how the assets in the power system are operated.” 

17 A measure for how quickly a power plant connected to the grid can increase or decrease its output (Heptonstall et 
al., 2017).  

18 The time required for a power plant to start up and reach its minimum output level. Technically, plants’ start-ups 
are distinguished depending on how long a power plant has been down (i.e., cold, warm, and hot) (IRENA, 2017).  

19 The minimum generation level at which a power plant can be operated stably before it needs to be shut down 
(IRENA, 2017).   

20 The minimum time needed for a plant to be kept online or offline after being synchronised or desynchronised from 
the grid.   

21 The reduced efficiency of a thermal power plant due to its operation under its rated capacity (IRENA, 2017).   
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As indicated in Figure 13, some conventional generation technologies are better suited 

and faster than others in terms of responding to variations in the system's conditions.  

 

 
Figure 13: Variations in net power output levels and ramping rates of selected fossil-based generation 

technologies. Adapted from (Agora Energiewende, 2017). 

 

Table 2 shows indicative figures for the ramping rates, start-up times, and minimum load 

of different generation technologies. 

 

Technical  

Property 
 OCGT CCGT 

Hard Coal-

fired Plants 

Lignite-

fired Plants 

      
  Most Commonly Used Power Plants 

      
Minimum Load22 % 40-50 40-50 25-40 50-60 
Average Ramp Rate23 %/Min 8-12 2-4 1.5-4 1-2 
Hot Start-up Time Min 5-11 60-90 150-180 240-360 
Cold Start-up Time Min 5-11 180-240 300-600 480-600 
      

  State-of-the-art Power Plants 
      
Minimum Load22 % 20-50 20-40 25-40 35-50 
Average Ramp Rate23 %/Min 10-15 4-8 3-6 2-6 
Hot Start-up Time Min 5-11 30-40 80-150 75-240 
Cold Start-up Time Min 5-11 120-180 180-360 300-480 
Table 1: Indicative figures for the minimum load, start-up times, and ramping rates of different technologies. 

Adapted from (Agora Energiewende, 2017) and based on a survey from various sources. 

 
22 Expressed as a percentage of the nominal load. 
23 Expressed as a percentage of the nominal load per min.   
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2.4.1.2 Curtailment 
 

Limiting renewable energy output, technically referred to as curtailment, is one of the 

supply-side measures used to control the output of renewables. As the share of renewables 

considerably increases in the energy mix, this measure can be employed to address several 

technical issues. These issues include oversupply situations when large and inflexible 

baseload generation is present during periods of low load demand, when voltage 

management and system balancing difficulties occur, and when transmission congestion 

takes place (Fink et al., 2009).  

International experience with regard to renewables’ curtailment varies widely from 

country to country, both in scale and in its underlying drivers (Bird et al., 2016). For 

example, in China, the curtailed wind and solar generation in 2016 amounted to about 

17% and 10% of the total renewable power generated, respectively. According to IRENA 

(2018a), renewables’ curtailment in China was driven by several issues, including:  

(1) transmission grid constraints,  
(2) the existence of contracts that guarantee minimum generation from coal generators,  
(3) a lack of market structures that promote investment in flexible plants,  
(4) a geographic mismatch between renewable energy resources profiles and the 

consumption profiles at load centres,  
(5) interprovincial transmission restrictions due to bilateral contractual obligations, and  
(6) the inflexible operations of the combined heat and power (CHP) plants due to the 

increase in heat demand.24 
Several solutions and mitigation options have been proposed to address the curtailment 

of renewables. These options include storage systems; demand response; integrated 

planning for the generation, transmission, and distribution networks; investment in 

additional transmission capacity and interconnections to neighbouring systems; 

improving renewable generation forecasting accuracy; and providing financial incentives 

that encourage investment in flexibility assets (Black and Strbac, 2006, Strbac et al., 2015, 

Ye et al., 2018, Abdilahi et al., 2018, Frew et al., 2021, Zheng et al., 2020). In addition to 

that, several market and regulatory solutions have been proposed to address the 

renewable curtailment issue in several countries around the world. These market-based 

mitigation options include improving spot market and imbalance price signals; reducing 

 
24 CHP coal-fired plants were operated as baseload generation in the northern provinces during winter due to the need 

to provide constant heat. As a result, their operational flexibility was largely restricted  (IRENA, 2018a).    
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primary frequency regulation requirements allowing for a wider participation in reserve 

provision and imbalance markets from different market participants including renewable 

generators; and delivering markets reforms that ensure fairer competition and cost 

allocation, and greater market liquidity (Sorknæs et al., 2013, Chaves-Ávila and 

Hakvoort, 2013, Chaves-Ávila et al., 2014, Strbac et al., 2015, Hirth and Ziegenhagen, 

2015, Joos and Staffell, 2018, Frew et al., 2021).  
 

2.4.2 Demand-side management 
 

Demand-side management (DSM) or demand response25 encompasses several demand-

side measures and practices that can be used to enhance the flexibility of electric systems. 

These measures and practices include voluntary adjustments initiated by consumers to 

their amount or time of energy consumption in response to price signals (Albadi and El-

Saadany, 2008). The benefits of DSM are widely reported in the literature. Several studies 

have highlighted the importance of these benefits, which include reducing the need for 

generation capacity investments and network infrastructure expansion (Kirschen, 2003, 

Ma et al., 2013c, O׳Connell et al., 2014, Yan et al., 2018). In terms of benefits for 

electricity markets, DSM could reportedly reduce the prices of peak generation and could 

potentially shift the market bargaining power from suppliers to consumers (Mathieu et al., 

2013).   

For a long time, DSM measures were primarily intended to control peak demands and to 

reduce the need for investment in generation (Kirschen, 2003). Recently, the concept has 

regained momentum as a way to help accommodate the large-scale penetration of 

intermittent renewable generation (Aghaei and Alizadeh, 2013). Many studies have 

indicated that DSM can help reduce the integration costs of renewables (Lamadrid et al., 

2011, Jonghe et al., 2012, Papavasiliou and Oren, 2014, Zeng et al., 2014, Gross et al., 

2006, Heptonstall et al., 2017, Heptonstall and Gross, 2020, Zheng et al., 2020). For 

example, in analysing a future UK scenario with 15 GW wind penetration, Roscoe and 

Ault (2010) reported that demand response can help reduce the requirement for about 8-

11 GW of standby generation, potentially saving capital costs of around £2.6 to £3.6 

billion.  

 
25 Many definitions of demand response exist in the literature. For example, the Federal Energy Regulatory 

Commission (FERC) defines demand response as the changes in electricity usage by end-use customers from their 
normal consumption patterns in response to changes in the price of electricity over time or to incentive payments 
designed to induce lower electricity use at times of high wholesale market prices or when system reliability is 
jeopardised (FERC, 2011).   
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2.4.3 Storage 
 

A large and growing body of literature has investigated the role of storage systems in 

supporting the evolution of low-carbon systems (Herrmann and Kearney, 2002, Bathurst 

and Strbac, 2003, Black and Strbac, 2006, McDowall, 2006, Benitez et al., 2008, 

Denholm and Hand, 2011, Green and Vasilakos, 2012, Green et al., 2011, Foley and 

Lobera, 2013, Ummels et al., 2008, Kaldellis and Zafirakis, 2007, Strbac et al., 2012).  

Storage systems feature a wide range of technologies, including pumped hydroelectric 

storage (PHES), flywheels, compressed air energy storage (CAES), superconducting 

magnetic energy storage (SMES), supercapacitors, and different types of batteries.  

Examples of notable battery types 

include lead-acid (L/A) batteries, 

lithium-ion (Li-ion) batteries, 

sodium-sulfur (NaS) batteries, 

vanadium redox batteries (VRBs), 

and nickel-metal hydride (NiMH) 

batteries.  

Storage systems vary widely in cost, 

roundtrip efficiency,26 lifetime,27 

typical power output,28 standard 

energy capacity,29 charging time,30 

discharging time,31 response time,32 

power density,33 and other 

technical characteristics. 

 
26 The ratio of energy discharged by the system to the energy required to charge the system over each cycle, including 

losses commonly expressed as a percentage.   
27 Could be expressed as the number of operating years or the number of cycles depending on the specifics of the 

technology under consideration.  
28 The amount of power that can be discharged from the storage system within the typical discharge duration 

(measured in MW).   
29 The amount of energy that can be stored (measured in MWh).  
30 The time needed for the storage system to fully charge. 
31 The time needed for the storage system to fully discharge. 
32 The time needed for the storage system to start supplying power output.  
33 The maximum available power per unit volume (measured in W/L).  

Figure 14: Power output and discharge time for selected storage 
technologies. Reproduced from (Lund et al., 2015). 
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The versatility and broad variations in the technical characteristics of storage technologies 

allow storage systems to provide a wide range of grid services. For example, in their review 

of storage technologies,  Castillo and Gayme (2014) outlined ten grid services that storage 

technologies can provide: (1) power quality services,34 (2) transient stability services,35 (3) 

frequency regulation services, (4) spinning reserve provision services, (5) load-following 

services, (6) voltage control services,36 (7) energy arbitrage services, (8) firm capacity 

services,37 (9) congestion relief services, and (10) upgrade deferral services.38   

Similarly, in their well-cited review, Chen et al. (2009) outlined many grid services that 

can be provided by storage systems, including peak shaving, area transfer control,39 and 

black-start capabilities.40 They also highlighted the potential role of storage systems in 

enabling the cost-effective integration of intermittent generation. For example, they 

highlighted the potential role of storage systems in  

1) addressing the intermittency and variability of renewable generation through 

offsetting the imbalance between demand and supply, 

2) reducing the renewable curtailment caused by the lack of expansion of transmission 

and distribution networks,41 

3) enhancing the dispatchability of intermittent renewable generation through shifting 

the time of renewable generation delivery into the grid (i.e., capacity firming),  

4) mitigating the risk exposure in the energy markets associated with the forecast errors 

of renewable generators (i.e., forecast hedge), and 

5) suppressing the fluctuation levels in the renewable generation profile through 

absorbing and reinjecting the renewable generation into the grid over a short time 

(i.e., profile smoothing).  

 
34 Refers to services intended to improve the magnitude and the shape of voltage and current waves of the grid's 

electricity supply. This encompasses many services, such as voltage control, harmonics suppression, and power factor 
corrections. Some studies suggested that the large-scale deployment of renewables can cause many power quality 
issues, including voltage fluctuations, increasing harmonics, and flicker levels (Liang, 2017, Tareen et al., 2017). 

35 This includes providing support to maintain the synchronous operation of the grid when the grid is subject to a 
sudden or a large disturbance.  

36 For example, this might include injecting or absorbing reactive power from the grid to keep the voltage within 
acceptable operational limits. Other references suggested that storage systems might provide unbalanced load 
compensation services, which include injecting and absorbing power from the individual phases of the multiphase 
grid supply as a result of supplying unbalanced load  (Ibrahim and Ilinca, 2013).    

37 Refers to providing energy capacity to meet peak power demand (Castillo and Gayme, 2014). 
38 Refers to deferring either generation or transmission asset upgrades as a result of using energy storage to reduce the 

loading on the system (Castillo and Gayme, 2014). 
39 Refers to preventing unplanned transfer of power between one utility and another. 
40 Refers to units with the capability to start up on their own in order to energise the transmission system and assist 

other generation facilities to start up and synchronise to the grid after a full or a partial blackout (Ibrahim and Ilinca, 
2013).  

41 Other studies indicated that storage can also help reduce the curtailment caused by network congestion. For 
example, see Eyer et al. (2004). 
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Figure 15: Technical comparison of selected types of storage systems and technologies. Reproduced from  (Castillo and Gayme, 2014). 
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2.4.4 Infrastructure 
 

A considerable amount of literature has been published on the role of infrastructure 
development in enabling the effective and economic grid integration of renewables. These 
studies address a wide range of topics, including infrastructure development, the 
challenges of technical implementation, and the policies and market designs that facilitate 
the transition towards low-carbon systems (Kohler et al., 2010, Torbaghan et al., 2014, 
Xydis, 2013, Blarke and Jenkins, 2013, Coll-Mayor et al., 2007). Additionally, these 
studies often vary widely in their context, scope, and infrastructure elements under 
consideration. Moreover, terms such as supergrids, smart grids, and microgrids s are 
increasingly used in regard to renewables within infrastructure development research. 

Supergrids are made up of a network of high-voltage, direct-current (HVDC) lines 
connecting different remote sources of renewables (Torbaghan et al., 2014). One 
important driver for developing such grids is to smooth out the output fluctuations of 
renewables through connecting sources with different spatial characteristics and load 
profiles (Brinkerink et al., 2019, Chatzivasileiadis et al., 2013, Ardelean and Minnebo, 
2017). Several projects have been proposed as supergrid concepts, such as DESERTEC 
projects (Samus et al., 2013). 

Smart grid is an umbrella term that encompasses several concepts. In its simplest form, a 
smart grid is a grid in which all the market participants are connected through advanced 
communication networks with some level of automation to the network assets, which may 
involve distributed generation, storage systems, and remote metering (Farhangi, 2010, 
Mohsenian-Rad et al., 2010, Gungor et al., 2011). Microgrids, on the other hand, can be 
defined as distributed generation technologies that can be used to supply energy services 
to local areas. These technologies include generation technologies (e.g., micro-CHP), 
local distribution networks, storage systems, and controllable loads (Lund et al., 2015). 

2.4.5 Advanced technologies 
 

In addition to the flexibility options discussed earlier, in recent years, an increasing 
amount of literature has become available on several advanced technologies that could 
provide further grid flexibility to support the accommodation of renewables. These 

technologies include electricity-to-thermal (E2T), power-to-gas (P2G), power-to-H2�

(P2H), and vehicle-to-grid (V2G) technologies.  
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2.5 Renewables’ Grid Integration Impacts   
 

In recent years, several attempts have been made to quantify the economic and 

environmental implications of renewables’ grid integration (Dale et al., 2004, Doherty 

and O'Malley, 2005, Strbac et al., 2007, Leite da Silva et al., 2010, George and Banerjee, 

2011, Perez-Arriaga and Batlle, 2012, Ueckerdt et al., 2013, Brouwer et al., 2014, Huber 

et al., 2014, Paraschiv et al., 2014, Hirth et al., 2015b, Degeilh and Gross, 2015). 

However, these attempts vary widely in their scope, timescale, category of impact, 

technology under consideration, generation mix, and the market condition of the electric 

system under study. In addition, several review studies have been published on the topic. 

Good examples of these studies include Gross et al. (2006), Skea et al. (2008), Madrigal 

and Porter (2012), Heptonstall et al. (2017), and Heptonstall and Gross (2020).  

The integration of renewable generation into electricity grids has several technical and 

economic impacts. Different taxonomies have been proposed to classify these impacts. 

For example, Holttinen (2004) classified the technical impacts of renewables’ grid 

integration on power systems into (1) an increase in the size of generation reserve, (2) less 

efficient operation of thermal generation, (3) replacement of thermal capacity by 

renewable capacity, (4) limiting excess renewable generation (curtailment), and (5) 

transmission losses and voltage fluctuations.    

In assessing the economic implications of these technical impacts, various studies have 

taken different approaches to evaluating the grid integration costs of renewables. One 

stream of literature has focused on quantifying the costs of certain technical impacts in 

great detail. For example, some studies investigated the effects of increased cycling and 

start-up activities of thermal generators on the economics of the power system (Van den 

Bergh and Delarue, 2015, Göransson et al., 2017).  

 

Other studies have emphasised evaluating the increase in the unit cost of generation, or 

the levelised cost of energy (LCOE), due to renewables’ penetration in power systems. 

Good examples of this stream of studies include Dale et al. (2004), Strbac et al. (2007),  

Ueckerdt et al. (2013), and Hirth et al. (2015b). 

An extensive literature review on the costs of renewables’ grid integration reveals a lack 

of consensus on reporting these costs. For example, in their review, Gross et al. (2006) 
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proposed two categories to report the costs of renewables’ grid integration. The first 

category relates to the short-term adjustments needed to manage the fluctuations in 

renewables’ output, the so-called costs of intermittency or system balancing costs. The 

second category relates to the long-term contribution of renewables to the reliability of 

supply, the so-called reliability impacts. On the other hand, Strbac et al. (2007) reported 

the costs of wind integration into the UK system using three cost categories: (1) costs of 

wind generation, (2) balancing costs, and (3) network costs. Furthermore, Hirth et al. 

(2015) took a market perspective to report the costs of renewables’ grid integration. They 

proposed three categories to reflect the market value of renewables’ generation. The first 

category relates to the reduction in market value due to deviations from day-ahead 

generation schedules, the so-called balancing costs. This cost category is largely driven by 

forecast errors of renewables’ generation. The second category relates to a reduction in 

market value due to the location of renewables’ generation within the grid. This category 

is driven by transmission costs. The third category relates to the market value of 

renewables’ generation due to the profile of renewables’ generation, the so-called profile 

costs. This category reflects the time value of generation in the market. 

In addition, a literature review on the factors driving the grid integration costs of 

renewables reveals a wide range of factors, which vary widely with the scope of the study 

and the technical impact under consideration. Skea et al. (2008) identified several broad 

factors affecting the grid integration costs of renewables. These factors include (1) the 

nature of the environmental resource, (2) the level of penetration of renewables and their 

spatial diversity, (3) the condition of the electricity transmission and distribution 

infrastructure, and (4) the operating and regulatory practices related to the system 

operation. Based on these drivers, they suggested that the costs of renewables’ grid 

integration are context specific and that they can change over time. 

Likewise, a large and growing body of literature has looked at the environmental 

contributions of renewables. Broadly speaking, these studies vary widely in scope, 

timescale, and level of depth and details. Furthermore, they also tend to vary widely in 

their analytical approaches and technical and economic perspectives. A detailed review 

of the scholarly works covering the environmental contributions of renewables is a 

particularly lengthy topic. Therefore, in the interest of avoiding repetition and keeping 

this chapter as concise as possible, a more specific review on the topic will be included in 

the later chapters of this thesis. 
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3.1 Introduction  
 

Building on the literature review presented in Chapter 2, in this chapter, we briefly review the 

methodologies used in the literature to study and quantify the expected carbon savings of 

renewables. Then, we focus on discussing the methodologies we used in our study. In particular, 

we discuss their origins, merits, and present their mathematical formulations.   

 

In addition, we present and discuss the study’s input data and assumptions and we provide a 

description of the electric system under study. Furthermore, we briefly present our modelling 

approach and discuss the modelling assumptions we used in our study.  

 

3.2 Overview of Renewable Energy Carbon Saving  Estimation Methods  
 

Broadly speaking, there are two dominant types of modelling approaches or two “families of 

models’’ that have been used in the literature to quantify the carbon savings of renewables. The 

first family encompasses different variations of statistical models, and the second family includes 

different variations of optimisation-based models.  

 

3.2.1 Statistical Models 
 

In the statistical approach, researchers often use historical data and different regression 

methods and models to estimate the carbon savings of renewables. Owing to its simplicity and 

light technical data requirements, this approach has become particularly popular for studying 

the historical trends of carbon emission in the power sector in different regions of the world.  

 

In one study, for example, Cullen (2013) used two statistical models to estimate the emissions 

offset by wind power for a large electricity grid in Texas between 2005 and 2007. In contrast 

to similar statistical studies such as Kaffine et al. (2013), Cullen controlled in his analysis for 

some of the dynamic aspects of power system operations, such as the operation status of the 

units prior to dispatch, the congestion of the transmission lines, and the operating temperature 

of the generation units. He reported that not controlling for these dynamic impacts would 

overestimate the wind emission savings by approximately 31%. He attributed this to a 

significant shift in the composition of the displaced generation from carbon-intense 

technologies (i.e., coal) in his first “static” model to relatively cleaner technologies (i.e., gas-fired) 
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in his second “dynamic” model. His results highlight the significant difference between the two 

approaches in estimating the carbon savings of renewable technologies.  

 

In another study, Katzenstein and Apt (2009) compared the carbon emission estimates of a 

statistical model with an emission displacement analysis using average carbon displacement 

values. Using 1-minute resolution data capturing the interactions between the variable wind 

profile and solar resources in different parts of the United States and different types of 

regulating gas turbine units, Katzenstein and Apt simulated the CO2 emissions of the regulating 

gas units as a function of the units’ power level and ramp rate. They concluded that the 

conventional emission displacement analysis would overestimate the emission reductions by 

approximately 23% for CO2 emissions and between 55% and 80% for the NOx emissions of 

the simulated gas turbine units considered in the study. It is worth noting that their emission 

reduction analysis and simulations were carried out at the level of the gas generating units 

rather than at a system-wide level. Their analysis also suggests that the CO2 emission factors 

would decrease linearly with renewable penetration, albeit slower than expected under the 

conventional offset assumption. By contrast, the NOX emission factors were found to stay 

roughly constant at relatively high renewable penetration rates, limiting the effectiveness of the 

renewables in reducing the NOX emissions of the gas turbines under consideration.  

 

Despite the popularity of using this method to quantify the emission savings of renewables, this 

approach is believed to have several disadvantages. Cullen (2013) outlined several limitations 

of the statistical models in analysing the carbon saving trends of renewables. For example, 

Cullen pointed out that statistical models require a significant portion of renewable production 

to estimate its effects on reducing carbon emissions. This restricts studying the impact of shallow 

and modest penetration levels of renewables. Furthermore, it restricts the analysis beyond the 

observed levels. In addition, Cullen noted that statistical models cannot deal with grid technical 

issues such as reliability and congestions issues that engineering models can handle. Perhaps 

the most serious shortcoming is that it does not incorporate the mathematical and engineering 

relationships capturing the physical behaviour of the power systems and the economic and 

environmental implications of this behaviour. This serious drawback limits its power to analyse 

future scenarios and restricts the validity of its results beyond the historical data available. This 

explains why we did not use this method for carrying out our study as it focuses on projecting the long-term 

renewable carbon savings under deep decarbonisation scenarios. This also explains why we choose to build techno-

economic models for the purpose of our study.     
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3.2.2 Optimisation-based Models   
 

In the optimisation approach, researchers typically build bottom-up, techno-economic models 

for the power systems under study. There are significant variations among these models in 

terms of their temporal resolutions, the amount of technical detail included, and, in some cases, 

mathematical formulations. In the forthcoming sections, we will review the most common 

models’ types used in the literature to study the integration of renewables into electric systems 

and to quantify their emission savings. In particular, we will review two of the most extensively 

used variations in the literature: the Screening Curve (SC) models and the Unit Commitment 

(UC) models. This explains our focus on these particular optimisation-based methods’ 

variations for carrying out our research.  
 

3.2.2.1 Screening curve method  
 

The SC method is one of the earliest and most used methods for optimising the generation 

capacity mix of electric power systems. Owing to its simplicity and light computational and 

data requirements, the SC method continues to be extensively used in scholarly works.  Notable 

early works that contributed to the development of the SC method include  Kirchmayer et al. 

(1955), Massé and Gibrat (1957), Hicks (1959), Galloway et al. (1960) and Phillips et al. (1969).  
 

The SC method aims to find the optimal generation mix that minimises the investment and 

operation costs of generation assets in a given power system. The original formulation considers 

two cost components for each generation asset class or type namely: fixed and variable costs. The 

fixed cost is typically associated with the investment and the fixed Operation & Maintenance 

(O&M) costs42. The variable cost is typically broken down into fuel and variable (O&M) costs43. 

The total cost of each generator’s type is often expressed as a function of the number of 

operating hours over the desired planning horizon44. Then, a cost screening curve is plotted for 

each generator type over the optimisation period considered45. This allows for identifying the 

optimum number of operating hours for each generator’s type during which a particular type 

would be the least-cost option for meeting the system demand. This can be graphically 

identified by tracking the number of hours associated with the points of intersections for the 

 
42 Typically expressed as annualized cost figure (i.e., $/MW-y).  
43 Typically expressed as hourly cost figure (i.e., $/MWh).  
44 For example, 8760 hours. 
45 Each screening curve has a slope equal to the sum of the generator's variable costs and an intercept equal to the annualised 

fixed cost. 
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different screening curves considered. Then, these hours are typically matched with the Load 

Duration Curve46 (LDC) graph of the system to work out the corresponding size of each 

generator type required to meet the system demand. Traditionally in SC analysis, expensive to 

build and cheap to operate generators are called “baseload” or sometimes “must-run” plants. 

Cheaper to build but more expensive to operate are typically called “intermediate” plants. 

Cheap to build and expensive to operate are called “peakers” as they tend to operate in high 

or peak demand hours.  

 

Interestingly, the economic intuition of having “peakers” units in electric systems can be traced 

back to the early works of Kirchmayer et al. (1955) who explained the economic value of having 

a new class of units with low capital and high operating costs to co-optimise the investment and 

operation of electric systems having expensive to build and cheap to operate units. In 1960, 

using a heuristic computer model and LDC analysis, Galloway et al argued for having a third 

class of units “intermediate plants” to further optimise the investment in thermal power plants.  

 

In addition to early graphical solution approaches, the screening curve problem has been 

mathematically formulated and solved  as a linear programming (LP) problem with the 

objective of minimising the total system cost of meeting the system demand (Anderson, 1972)47. 

The objective function of the LP program can be expressed using the following mathematical 

formulation for all generators sets  over the planning horizon  :  
 

C Total =	min " # " Pg,t Cg,t
 Var

  
t ∈ T

+  	Ig Cg
 fix

   $
g ∈G  

 (1) 

 

Where C Total  represents the total system cost, Pg,t represents the power output of generator g 
at time t, Cg,t

 Varrepresents the total variable costs of generator g, Cg
 fix	represents the total fixed 

costs of generator g, and Ig represents the installed capacity48 of generator g. Subject to:  
 

" Pg,t
g ∈	G

= Lt ..    ∀     t∈ T (2) 

Where  Lt represents the total system load at time t 

 
46 LDCs are non-chronological load curves in which demand data is ordered in descending order of magnitude against the 

duration of the demand level over the time horizon considered (i.e., one week or one year).       
47 It is suggested that Massé and Gibrat (1957) introduced perhaps the first representation of the capacity planning investment 

model as an LP optimisation problem.    
48 Typically, implemented as a non-negative value decision variable.   
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Despite the dominance of the original formulation, incremental improvements to the basic 

method continue to emerge in the literature. These improvements tend to address the dynamic 

aspects of power system operations that the original method did not capture. These aspects 

include the start-up costs of generation units, the indivisibility of the generating plants, the 

minimum stable output levels, the partial loading efficiency penalty, the reserve margins and 

participation levels, and other system-level security constraints and requirements (De Sisternes, 

2013). Examples of these studies include Batlle and Rodilla (2013), Zhang and Baldick (2015), 

Staffell and Green (2016), and Zhang and Baldick (2017).  

 

In one study, for example, Staffell and Green (2016) propose a new heuristic for incorporating 

the generators’ start-up costs into the traditional SC model. Staffell and Green gauged the 

performance of their new heuristic against the performance of a traditional SC model and a 

more technically detailed mixed-integer linear programming (MILP) model for the British 

system. The heuristic yields a better representation of the hourly pattern of electricity prices 

and reduces the errors in capacity investment by a factor of two while preserving the model’s 

simplicity and light data requirement.  

 

Scholarly works using the SC modelling approach to study renewable grid integration are 

common in the literature. Examples of these studies include Martin and Diesendorf (1983), 

Grubb (1991), Lamont (2008), Green and Vasilakos (2011a), Ueckerdt et al. (2015), Belderbos 

and Delarue (2015), Palmintier and Webster (2016), and Poncelet et al. (2016).  

 

3.4.2.2 Unit commitment models  

 

As the name suggests, UC models seek to find the optimal commitment status (on, off) of the 

system’s generating units over a given period of time. In its simplest form, it seeks to minimise 

the operation costs of meeting the demand of an electric system subject to an array of 

operational, environmental, and reliability constraints (Wood and Wollenberg, 1996). 

Extended formulations of the basic UC models also allow for optimising the investment costs 

in building or retiring power plants49. Notable early works that led to the development and 

 
49 Literature review revealed inconsistency among researchers in using the technical terms to refer to this class of models. For 

example, some researchers use the term Resource Planning (RP) or Generation Resource Planning (GRP) models. Readers 
may refer to Marwali and Shahidehpour (2000) and Shahidehpour et al. (2005) as examples. Other researchers use the term 
Generation Expansion Planning (GEP) models. Examples of researchers using this term include Meza et al. (2009) and 
Dehghan et al. (2014).     
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popularity of the UC method for optimising the operation and investment in power systems 

include Baldwin et al. (1959), Kerr et al. (1966), Guy (1971), Anderson (1972), Pang and Chen 

(1976), and Cohen and Wan (1987). It might be worth noting that some of the literature 

surveyed tend to use the term, Short-term Resource Scheduling (STRP) to refer to the UC 

problem such as Ferreira et al. (1989) and Svoboda et al. (1997). Other studies refer to it as 

Short-term Generation Scheduling (STGS) such as Marwali and Shahidehpour (2000).  

 

In contrast to SC models, UC models allow for the representation of the operational 

characteristics of the generating units. These include the units’ sizes, start-up emissions and 

costs, the minimum stable output levels, ramping rates, heat curves, and reserve margins. It 

also allows for imposing system-level constraints, such as must-run technologies, transmission 

congestion restrictions50, interconnection transfer limits51, and reliability constraints52. While 

contributing to improving the quality of power system modelling, this increased modelling 

sophistication translates into a significant increase in the computational complexity of solving 

these models, especially for larger ones. In the literature, this increased complexity is often 

referred to as the “curse of dimensionality53” (Farhat and El-Hawary, 2009).  

 

Literature survey reveals multiple variations in the mathematical formulations of the UC 

models. One key variation among UC models is related to how uncertainty in the models’ 

inputs54 is treated. Traditional UC models take a deterministic approach in representing the 

models' inputs while UC models that consider data uncertainty uses a stochastic approach to 

formulating and solving the UC problem. Examples of scholarly works that adopt the stochastic 

approach include Carpentier et al. (1996), Takriti et al. (1996), Ozturk et al. (2004), Wu et al. 

(2007), Wu et al. (2008) and Tuohy et al. (2009).  

 

It is worth noting that a hybrid stochastic-deterministic approach to solving the UC problem 

does exist in the literature. Readers may refer to Restrepo and Galiana (2011) and Tan and 

Shaaban (2015) as examples of this class of hybrid UC models. 

 

 
50  See Batut and Renaud (1992), Shaw (1995), and Wang et al. (1995). 
51  See Yuan-Yin et al. (1991), (Lee and Feng, 1992), and Yong et al. (2005). 
52  See Guy (1971), Wu et al. (2008), and Hedman et al. (2010) 
53  The term can be traced back to the increased difficulty associated with solving dynamic programming models. In particular, 

it is believed that the term was first coined and popularised by Bellman (1957).  
54 This might include uncertainty in renewable generators' production levels, demand forecast, and failure of power systems 

components (Zheng et al., 2015).  
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Solution methods for the UC problem have attracted the attention of many researchers across 

multiple fields. These methods include heuristic methods (e.g., priority lists55), mathematical 

methods (e.g., dynamic programming56, Lagrangian relaxation57, quadratic programming58, 

mixed-integer linear programming, branch-and-bound59), and computational intelligence 

methods (e.g., artificial neural network60, simulated annealing61, genetic algorithms62, tabu 

search63, ant colony64, particle swarm optimisation65, firefly algorithm66, and fuzzy logic67).  

  

More recently, however, in contrast to other UC solution methods, the mixed-integer linear 

programming (MILP) method has become a popular method for solving large-scale UC 

models. Despite its early existence in the literature, high computational power requirements 

and long computational times have made MILP models an unattractive method for solving 

large UC problems in the early days68 (Dillon et al., 1978). Yet, continued advances in 

computing technologies and computational power capabilities, improved solving techniques, 

formulations, and algorithms have significantly contributed to its current popularity (Bixby and 

Rothberg, 2007, Morales-España et al., 2013a).     

 

New research tends to focus on improving the mathematical representation of some technical 

characteristics of the generating units and their operational constraints, introducing tighter 

formulations, and improving the computational performance of MILP UC models. Examples 

of these studies include Carrion and Arroyo (2006), Ostrowski et al. (2012), Morales-España et 

al. (2013a), Morales-España et al. (2013b), Palmintier and Webster (2014), and Morales-España 

et al. (2016). In addition, many studies compare the performance of MILP with other solving 

techniques, such as Lagrangian relaxation. This stream of studies includes Hobbs et al. (2001), 

 
55 See Baldwin et al. (1959), Tong et al. (1991), and (Senjyu et al., 2003) 
56 See Pang and Chen (1976) and Wang and Shahidehpour (1993). 
57 See Cohen and Wan (1987), Ruzic and Rajakovic (1991), (Shaw, 1995), and Ongsakul and Petcharaks (2004). 
58  See Finardi and Silva (2006).  
59  See Cohen and Yoshimura (1983) and Chen and Wang (1993).  
60  See Sasaki et al. (1992) and Ouyang and Shahidehpour (1992).  
61  See Zhuang and Galiana (1990), Mantawy et al. (1998b), Simopoulos et al. (2006) and Purushothama and Jenkins (2003). 
62  See Chuan-Ping et al. (2000), Dasgupta and McGregor (1994) and Swarup and Yamashiro (2002).  
63  See In-Keun et al. (1998), Mantawy et al. (1998a), Shi et al. (2004), and Victoire and Jeyakumar (2005).  
64  See Sisworahardjo and El-Keib (2002) and Simon et al. (2006).  
65  See Saber et al. (2007), Zwe-Lee (2003) and Zhao et al. (2006).  
66  See Rampriya et al. (2010) and Chandrasekaran and Simon (2012).   
67  See Saneifard et al. (1997) and Kadam et al. (2009). 
68  It is believed that the first MILP power scheduling model was introduced by Garver (1962). Other early works include 

Hara et al. (1966). Interestingly, it is widely recognised that the application of mathematical models to the optimisation of 
industrial processes, including power scheduling, was largely influenced by the development of economic planning models 
(Dantzig, 1955, Charnes and Cooper, 1957). 
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Tao and Shahidehpour (2005), and Frangioni et al. (2011). A full review of all solution 

techniques of UC models is understandably beyond the scope of this chapter; however, 

excellent reviews were provided by Sen and Kothari (1998), Padhy (2004), Yamin (2004), 

Saravanan et al. (2013), Zheng et al. (2015), and Abujarad et al. (2017).  

 

Table 2 summarises the advantages and disadvantages of the surveyed techniques for solving 

the UC models based on the review provided by Abujarad et al. (2017). In addition, Table 3 

compares the structure, solution algorithms, advantages, and disadvantages of the common 

stochastic UC models based on the literature survey done by Zheng et al. (2015).    

 

Studies using the UC modelling approach to study the impact of renewables integration into 

power systems and their carbon savings are ample in the literature. Examples include Denny 

and O’Malley (2006), Tuohy et al. (2009), Ma et al. (2013a), Belderbos and Delarue (2015), 

and Cebulla and Fichter (2017).  

 

In one study, for instance, Hart and Jacobson (2011) used UC models to investigate the 

potential of decarbonising the Californian electricity system using both a deterministic and a 

stochastic treatment of the output of renewables. Hart and Jacobson investigated the carbon 

abatement potential of multiple renewable technology portfolios, including wind turbines, 

photovoltaics (PV), concentrated solar power (CSP), and geothermal power in California. The 

results showed that the deterministic treatment of the output of renewables in integration 

studies might overestimate the achievable carbon emission reductions of the Californian system 

by approximately 33% when compared with the stochastic treatment using Monte Carlo 

simulations. Their study thus demonstrated the impact of the choice of modelling approach of 

the renewable output on carbon estimates of decarbonisation studies. 

 

In another study, Palmintier and Webster (2016) used SC and UC models to investigate the 

carbon emission savings for a hypothetical renewable target (i.e., 20% Renewable Portfolio 

Standard and carbon tax (i.e., $90/ton CO2), for Texas-like system data. they reported that the 

difference in CO2 emission results between the two models can be as high as 35% for the 

scenario reported. Their results thus highlighted the impact of incorporating flexible generator 

parameters on the accuracy of CO2 predictions.  



CHAPTER 3: METHODOLOGY & DATA    
 

 

64 

Method Advantages  Weakness/disadvantages 

 
    

Heuristic Priority List Simplest and easiest UC method and converge very fast. 
 

The solution is usually far from optimal and the quality is not very high. 
Classical/ Mathematical Dynamic Programming Relatively easy to add constraints that affect operation at any hour  

 
Require to limit the commitments considered at any hour. 

  
Ability to maintain the solution feasibility. 

 
Suboptimal treatment of minimum up and downtime constraints and 
time-dependent start-up cost.   

Ability to solve problems of a variety of sizes and to be easily 
modified to model characteristics of different utilities. 

 
Curse of dimensionality, which may result in unacceptable solution 
time. These disadvantages lead to suboptimal schedules.  

Lagrangian Relaxation Easily modified to model characteristics of specific utility. 
 

Require to limit the commitments considered at any hour.   
Flexibility in dealing with different types of constraints. 

 
Suboptimal treatment of minimum up and downtime constraints and 
time-dependent start-up cost.     
Curse of dimensionality, which may result in unacceptable solution 
time. These disadvantages lead to suboptimal schedules.  

Stochastic Programming The optimal decision ensures the minimum total cost in an 
expected value sense. 

 
The computational costs increase significantly compared to 
deterministic formulation  

Quadratic Programming Simultaneously solves UC and economic load dispatch. 
  

 
Mixed Integer Linear Programming Flexible and accurate modelling capabilities. 

 
Computational complexity   

Ability to reach a globally optimal solution. 
 

Takes a long time compared to fast methods like priority list.  
Branch-and-Bound Finds an optimal solution (if the problem is of limited size and 

enumeration can be done in a reasonable time). 

 
Exponential growth in the execution time with the size of the UC 
problem.   

Expresses power generation characteristics more accurately. 
 

Augments the problem dimension and the complexity. 
Hybrid Meta-Heuristic Different Hybrid 

Techniques 
Obtain better solutions through a strategy for 
escaping from a local solution. 

 
Fine-tuning is one of the main drawbacks faced by almost all heuristic-
based approaches.   

To handle indifferentiable cost functions and constraints. 
  

  
High speed and accurate solution. 

  
  

Improving the computational efficiency and accuracy of the model. 
  

Computational 
intelligence  

Artificial Neural 
Network 

Capable of dealing with a stochastic variation of the scheduled 
operation point with increasing data. 

 
The computation time increases exponentially with the increase of the 
size of the problem.   

Flexibility with noisy data. 
  

  
Implicit nonlinear modelling and filtering of system data. 

  
  

Ability to handle large and complex systems with many interrelated 
parameters. 

  

 
Simulated Annealing It does not need a complicated mathematical model of the 

problem. 

 
It takes a great deal of CPU time to find the near-optimal solution. 

  
The starting point can be any given solution and the algorithm will 
attempt to improve the solution. 

  

  
The final solution does not strongly depend on the initial solution. 

  
  

Does not need large computer memory. 
  

  
It has been theoretically proved to converge to the optimum 
solution. 

  

 

Table 2: Advantages and disadvantages of different solving techniques of the UC models. Reproduced from Abujarad et al. (2017) based on several sources. 
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Method  Advantages  Weakness/disadvantages 

     
Computational 
intelligence  

Genetic Algorithm it provides flexibility in modelling both time-dependent and coupling constraints.  It cannot guarantee the optimally of the provided solution 

  It can be very easily converted to work in a parallel converter.  GA has a high execution time. 

 Tabu search It is one of the general optimization techniques; the cost function has no 
limitations. 

 
It can be trapped in a local optimum, without the possibility of exploring 
other  regions of the solution space 

 
 

It is based on heuristics, but the computational efficiency is better than other 
optimization ones. 

  

 
 

It does not make use of random numbers. The obtained solutions are not 
influenced by the quality of the random number. 

  

 
 

Simplicity 
  

 Ant Colony Inherent parallelism 
 

Theoretical analysis is difficult. 
 

 
Positive Feedback accounts for the rapid discovery of good solutions 

 
Sequences of random decisions (not independent). 

 
 

Efficient for Traveling Salesman Problem and similar problems 
 

Probability distribution changes by iteration. 

 
 

Can be used in dynamic applications  
 

Research is experimental rather than theoretical. 

 
   

Time to convergence uncertain (but convergence is 
guaranteed!) 

 Particle swarm 
optimization 

Robust to solve problems featuring nonlinearity and non-differentiability 
 

The candidate solutions in PSO are coded as a set of real numbers. But, most 
of the control variables such as load changes and generation capacities 
change discretely. 

 
 

Multiple optima and high dimensionality through adaptation. 
 

Real coding of these variables represents a limitation of PSO methods as 
simple round-off calculations may lead to significant errors. 

 
 

Easy implementation, simple concept, and potential to achieve a high-quality 
solution with stable convergence characteristics. 

 
Slow convergence in refined search stage (weak local search ability). 

 
 

Fast convergence speed. 
  

 
 

Less parameter to tune. 
  

 
 

Easily deal with non-convex objective functions. 
  

 
 

Flexibility to control the balance between the global and local exploration of the 
research space. 

  

 
 

Easy search in large scale problems like UC problem. 
  

 Fire Fly Easy to understand and code. 
 

Slow convergence. 
 

 
It is more effective in optimization of environmental and economic dispatch 
problem 

  

 Fuzzy Logic The crisp output can be further used in developing a qualitative interpretation. 
 

Cannot handle large scale systems. 

 
 

Ability to handle any type of unit characteristics data 
  

 

Table 3: Advantages and disadvantages of different solving techniques of the UC models. Reproduced from Abujarad et al. (2017) based on several sources - Cont’d. 
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Stochastic 
Optimisation UC 
methods 

Structures Algorithm Advantage Disadvantage 

     
Stochastic Programming  Two-stage models • Benders Decomposition (BD)  

• Accelerated BD 
• Lagrangian Relaxation (LR) 
• Stabilized LR (using Bundle 

methods)  
• Sample Average 

Approximation  

• Minimize total expected; easier to understand (and 
compute) than minimizing regret or minimizing the 
worst-case cost. 

• Various decomposition and sampling-based algorithms 
already existed with convergence and performing 
guarantees. 

• Can address robustness issues using risk measures. 
• Can provide an expected value of perfect information 

(EVPI) and value of the stochastic solution (VSS). 

• Need to assign probabilities for scenarios. 
• Computationally demanding for large numbers 

of scenarios.  
• Difficulties in dealing with integer variables in 

the second stage (e.g., unit rescheduling in real-
time). 

• Static Assumption of the uncertainties. 

Multi-stage models • Lagrangian Relaxation (LR)  
• Augmented LR  
• Column Generation (CG)  
• Progressive Hedging  
• Stabilized LR or CG (using 

Bundle methods)  
• Nested CG  

• Truly a decision-making model (as opposed to “what-if” 
analysis) over multiple time periods under uncertainty.  

• Ability to model the dynamic process of uncertainties 
and decisions. 

• Useful for systems with generators that can reschedule 
quickly. 

• Can provide EVPI and VSS. 

• Curse of dimensionality, and hence 
computationally very expensive. 

• Need explicit scenario trees and random paths’ 
probabilities. 

• Even more difficult with integer variables present 
in all stages. 

Robust Optimization Bi-level and tri-level 
models 

• Benders Cutting Plane 
methods (dual) 

• Column-Constraint 
Generation methods (primal) 

• Do not need probability distribution.  
• Solutions can provide decision-makers guarantee 

towards the worst-case. 
• Computationally not as demanding as stochastic 

programming models with large numbers scenarios. 

• May yield over-conservative solutions. 
• Need expertise and rationale in uncertainty set 

construction. 
• Need to use different algorithms for different 

types of uncertainty sets. 
• Difficult to incorporate the uncertainty dynamics 

(e.g, multi-level/stage models). 

(Approx.) Stochastic 
Dynamics Programming 

Multi-stage, discrete-
time models 

• Value-function 
approximation 

• Policy iteration/Model 
predictive control  

• State-space approximation  

• ADP can handle multi-stage stochastic problems with a 
relatively low computational burden. 

• Can model closed-loop systems (such as real-time 
pricing). 

• For ADP, convergence to optimal solutions may 
be difficult to establish. 

• Integer variables may present difficulties in 
general. 

 
Table 4: Comparison of the structure, solution algorithms, advantages, and disadvantages of the common stochastic UC models. Reproduced from the review of Zheng et al. (2015) based 

on several sources.  
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3.3 Mathematical Formulations of Unit Commitment Models 
 

In this section, we present the mathematical formulations of the common unit 

commitment models due to their popularity in carrying out renewables grid integration 

studies (Abujarad et al., 2017). We also make references to the core UC model we used in 

our study and the additional extensions and constraints that might appear in some 

renewable integration studies based on the literature surveyed. It is worth noting that the 

mathematical formulations outlined in the following sections are largely based on the 

formulations presented in Palmintier (2013) and Palmintier and Webster (2014).  

 

For the remainder of the thesis, the following indices, parameters, and decision variables 

are defined as follows:  
 

Index Description  
   

g, G Generation units  

ĝ, G" Generation cluster or group  

t, τ Time period (hour)  

ρ Reserve category ∈ [1, 2, 3]  

dir Reserve direction ∈ [up, down] 

   
 

 

Variables Description Unit 
   

Ctotal Total system cost  [M$] 
Cg,t

var Variable costs  [M$] 

Cg,t
start Startup costs  [M$] 

ng  Total units in cluster g  Integer 69 

Pg,t  Power output  [GWh] 

Ug,t  Commitment state  [ 0, 1 ] 

Sg,t  Startup indicator  [ 0, 1 ] 

Dg,t  Shutdown indicator  [ 0, 1 ] 

Rg,t
1,up Regulation up reserves  

Rg,t
1,down Regulation down reserves  

Rg,t
2,up Load follow up & contingent reserves  

Rg,t
2,down Load follow down reserves  

Rg,t
3  Replacement reserves  

 
69 Usually implemented in optimisation environments as a positive integer 
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Parameters Description Unit 

   

ag
size 

 Size of 
units in cluster g 
[GW] 
 

Size of units in cluster g [MW] 
 

ag
CRF 

 Capital 
recovery factor 
(annual fraction) 

 

Capital recovery factor Fraction 

ag
life 

 Lifetime 
of unit type g [yrs] 

 

Lifetime of unit type g [yrs] 
 

cg
Capital

  
 Annualised capital cost [$/MW/y] 

 
cg
FixO&M  Annualised fixed O&M cost [$/MW/y] 

cg
VarO&M  Variable O&M cost [$/MWh] 

 
Cg

nl 
 

No load cost of generator g  [$/h] 

Cg
m 

 
Marginal cost of generator g [$/MWh] 

Lt Total system load at time t [MW] 
 

cg,t
fuel Fuel cost [$/mmbtu] 

 
fg,t  (Pg ) Affine fuel use function [mmbtu/MWh] 

 
fg
start Fuel usage at startup [mmbtu] 

 
cg
fixstart Fixed cost per startup [M$] 

 
Pg

Max  Maximum power output of g [MW] 
 

Pg
Min  Minimum power output of g [MW] 

 
∆pg

down Maximum downramp rate [MW/h] 

∆pg
up Maximum upramp rate [MW/h] 

r1,up Regulating up reserve load fraction 
 

Fraction 

r1,down Regulating down reserve load fraction 
 

Fraction 

r2,up Load follow up reserve load fraction 
 

Fraction 

r2,down Load follow down reserve load fraction 
 

Fraction 

routage Spinning contingency reserve load fraction 
 

Fraction 

rreplace Replacement reserve load fraction 
 

Fraction 

xnosync Load follow & contingency offline fraction Fraction 

ag
quickstart Quick start ability 

 
[ 0, 1 ] 

mg
Up  Minimum up time of g [h] 

 
mg

Down  Minimum downtime of g [h] 
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3.3.1 Core Model  
 

The generic UC problem formulation aims to minimise the total operation cost of meeting 

the system demand. In this section, however, we present one of the most common UC 

extended formulations to allow for optimising the investment costs in building power 

plants. The objective function of minimising the total system investment and operation 

costs can be expressed by the following equation:   
 

C Total =	min& ' ( ' Pg,t Cg,t
 Var

  
t ∈ T

+  	Ig Cg
 fix  ) +	

g ∈ G  

' Sg,t Cg,t
start

  
t ∈ T

 + (3) 

 

Where Pg,t  is the power output of generator g at time t,  
Cg,t

 Var is variable system costs, 
Ig is the installed capacity of each generator type 70,  

													Cg
 fix is total fixed costs  

 

Variable Cost 
 

Variable costs are typically expressed as a function power output Pg,t , fuel consumption  

fg,t   fuel cost cg
fuel, and variable O&M costs cg,t

varO&M as follows:   

Cg,t
var  =  fg,t ( Pg,t )  cg

fuel+  Pg,t  cg,t
varO&M      ∀       g ∈ G, t∈ T    (4)71 

Pg,t  ≥ 0,  fg,t  ≥0         ∀        g∈ G , t ∈ T    (5) 

 

Fuel Use Function 
 

Fuel usage is usually expressed as a function of the power output of the generators. In 

essence, this function captures the typical, non-linear relationship between fuel usage and 

power output of thermal plants. For many thermal plants, this relationship tends to be 

quadratic in nature (Padhy, 2004).  This particular relationship is a major source of non-

linearity of the UC problem (Abujarad et al., 2017). In UC literature, one common 

formulation for approximating the fuel usage function is to express it as a convex, 

piecewise, linear function constraint with segment Xg such as:   

 
70 Typically, expressed as a non-negative variable. 
71 It is a common practice to include the carbon cost as part of the variable costs of the system in other variations of 

UC models that consider the carbon cost of the system.  
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Fg,t ( Pg,t )  ≥   hg,x Pg,t  +  Ug,t  fg,x
		P=0             ∀   x ∈   Xg (6) 

 

Where for each piecewise linear segment, x:  

hg,x represents the incremental heat rate amount for each plant type (slope) 
fg,x
		P=0 represents the fuel use amount if it was allowed to hypothetically run at zero power 

(intercept) 
 

Enforcing this constraint will account for the fuel usage of each plant under different 

dispatch statuses. Mathematically, when the plant is running, the optimiser will always 

minimise the fuel usage as the fuel cost parameter has a positive value forcing the 

inequality to equality for the highest piecewise segments. On the other hand, the 

commitment variable, Ug,t , ensures that the fuel use goes to zero when the plant is not 

running.  
 

Fixed Cost 
 

Due to the capital-intensive nature of many generation projects, the investment costs are 

typically annualised using a Capital Recovery Factor (CRF) that covers both the capital 

costs and the interest payments over the economic lifetime ag
life of the project. In addition, 

the annualised, Capital Recovery Factor, ag
CRF is commonly expressed as a function of the 

Weighted Average Cost of Capital (WACC)72 as shown in Equation (7): 

 

ag
CRF  =  

WACC

 1 - - 1
1+ WACC .

ag
life

 

 (7) 

 

Furthermore, the total fixed cost Cg
 fix is commonly computed as a function of capital cost 

and fixed O&M costs as follows:  

 Cg
 fix=    cg

CRF  cg
capital  + cg

fixO&M     (8) 

 

 
72 It is the effective percentage interest rate adjusted for the debt and equity ratios of the project.    
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Startup Cost 
 

The startup cost covers the fuel cost of starting up the thermal plant in addition to the 

maintenance and personnel costs73. Variations in expressing the startup costs do exist in 

the literature. Some studies use exponential formulations to express the startup costs such 

as (Padhy, 2004). Other studies tend to present a discrete, stairwise cost formulation 

expressed as a function of the unit’s downtime or alternatively its operational startup status 

(i.e., hot, warm, and cold startup) such as  Morales-España et al. (2013b). Other studies 

present a linear model to calculate the startup cost such as Palmintier and Webster (2014). 

A common linear formulation assumes a constant fuel use per startup and a fixed cost 

component, cg
fix  , to cover the maintenance and personnel costs as follows: 

Cg,t
start=Sg,t   *  -		fgstart		cg

fuel+  cg
fix.             ∀   g ∈  G , t ∈ T   (9) 

Where Sg,t ,	represents the startup status of the unit.   

 

Startup and Shutdown Events  
 

The commitment Ug,t , startup Sg,t , and shutdown Dg,t , variables of the units are commonly 

expressed by the following state equation:  

 

Ug,t = Ug,t-1+ Sg,t 	-Dg,t       ∀   g ∈  G , t ∈ T (10) 

where  Ug,t 	, Sg,t ,	Dg,t 		∈  [0,1]  

 

Under this formulation, the startup and shutdown state variables are set to 1 only in 

dispatch periods during which startup or shutdown events take place. It is worth noting 

that some researchers suggested alternative formulations for the startup and shut down 

variables. For example, Carrion and Arroyo (2006) suggested an alternative formulation 

to relax the binary constraints for both variables in the interest of reducing the 

computational complexity and runtime of the UC problem. Yet, Ostrowski et al. (2012) 

showed that enforcing the binary constraint for the startup and shut down variables can 

 
73  Some studies presented formulations that allow for accounting for the startup carbon emissions such as Deng et al. 

(2015) and Göransson et al. (2017).  
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have a considerable computational advantage with modern solvers74. Likewise, Palmintier 

(2013) reported almost five times faster runtimes for the 3-discrete variable formulation 

as part of the numeric testing he did for his PhD thesis work75.  

 

System Energy Balance  
 

The energy balance constraint ensures that the demand-supply balance is maintained at 

all times. Mathematically, this implies that the sum of the instantaneous power output of 

all generators equals the total system demand Lt, at all time76,77. 
 

' Ug,t    Pg,t
g ∈G

= Lt ..   ∀  t ∈T (11) 

 

In addition, Equation (12) limits the production of the real power of generators to be less 

than the installed capacity. 

0  ≤ Pg,t ≤  Ig        ∀  t ∈ T,  g ∈ G   (12) 

 

Unit Minimum and Maximum Output Limits  
 

The below equation guarantees the power output of individual generators is falling 

between the generators’ minimum and maximum output levels, at all times.  
 

Ug,t  	Pg
Min  ≤ Pg,t ≤  Ug,t   Pg

Max        ∀  t ∈ T,  g ∈ G   (13) 

 
74 The work of Carrion and Arroyo (2006) was carried out using CPLEX solver version 9.0 while the study done by 

Ostrowski et al. (2012) was performed using CPLEX 12.1. A notable improvement between the two reported CPEX 
versions is the implementation of the "feasibility pump" approach developed by Fischetti et al. (2005). Feasibility 
pump is a computationally-efficient heuristic used to find feasible solutions to general mixed-integer problems and 
it is reportedly showing better performance for solving problems with binary variables than for general integer 
variables (Boland et al., 2012).  

75 His PhD work was implemented on GAMS using CPLEX 12.2. This might explain the consistency of his results 
with the findings reported by Ostrowski et al. (2012).  

76 As our model has a 1-h time resolution, the generators' power output and system demand are expressed in MWh 
while MW or GW are commonly used to express the instantaneous demand-supply balance for similar UC models.  

77 Other UC formulations add the network losses term to the right-hand side of the equation.  
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Spinning Reserve Margin 
 

The constraint below guarantees that committed plants have enough spinning reserve 

SRt capacity to deal with the potential deviation or uncertainty in demand forecasts or 

any unexpected loss of generation.     

 

'  Ug,t   Pg

Max

g ∈  G

 ≥  Lt  + SRt  ..   ∀  t ∈  T (14) 

 

Minimum Up and Down Times 
 

This constraint ensures enforcing the minimum time needed for a unit to be kept online 

or offline after being synchronised or desynchronised from the grid. This particular 

constraint tends to affect the effective dispatchability of the units after the start and stop 

activities of the units.  

 

The formulation below is based on the compact formulation suggested by Rajan and 

Takriti (2005), Hedman et al. (2009) and Ostrowski et al. (2012).  
 

Ug,t  ≥  ' Sg, T

t

T=t-mg
up

          ∀  t ∈ T,  g ∈ G (15) 

 

1  - Ug,t  ≥  ' Dg,t

t

T=t-mgdown
     ∀  t ∈ T,  g ∈ G (16) 

 

Where mg
upand mg

down are the minimum up and downtimes respectively.  

 

3.3.2 Additional Constraints  

 

In addition to the core model presented in the previous section, here we make brief 

references to additional constraints that can be found in UC literature that have been 

used in surveyed renewable integration studies, albeit they tend to appear less frequently 

compared to the constraints presented in the core model.      
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Units Ramping Limits  

 

These constraints restrict how fast committed plants can adjust their power output.  

 

Pg,t-1		-  Pg,t  ≤ Ug,t  ∆Pg
downmax+  max -pg

min, ∆Pg
downmax .Dg,t  (17) 

Pg,t 		-  Pg,t-1 ≤ Ug,t  ∆Pg
upmax+  max -pg

min, ∆Pg
upmax . Sg,t  (18) 

∀  g ∈  G, t ∈ T  

Where ∆Pg
downmax and ∆Pg

upmax are the down and up ramp limits of individual plants 

respectively. This formulation enforces the standard units’ ramp rates under the normal 

dispatch operating conditions while it allows for higher ramps during start-up and 

shutdown events if the standard up and down ramp rates are deemed low.   

 

Operating Reserves78  

Some UC formulations allow for modelling different classes of operating reserve such as 

the primary79, secondary80 and tertiary reserves81. The following equations and 

constraints show how these reserve types have been formulated in several UC models.        

 

1) Primary Reserve  

The following two constraints ensure that the sum of the up or down frequency regulating 

reserve contribution provided by the system’s generators Rg,t
1,up and Rg,t

1,down are in excess of 

the mandatory, pre-defined system-level, frequency reserve requirement  r1,up  expressed 

as a fraction of the system load lt .   
 

 
78 Literature review reveals variations in defining and classifying the different classes of operating reserve. Readers may 

refer to Ela et al. (2011) for a comprehensive discussion about the subject. In this section, however, we follow and 
adopt the definitions and formulation offered by Palmintier (2013) and Palmintier and Webster (2014) for all reserve 
classes presented here.  

79 Refers to the reserve needed to compensate for the frequency deviation of the grid. This reserve type is responsive to 
rapid changes to the system frequency (i.e., operates within a few seconds timescale).  

80 Refers to the reserve needed to compensate for the system contingencies and load following tasks (i.e., operates within 
a few minutes timescale).  

81 Refers to the offline reserve units that can be synchronised quickly to the grid when needed. This category might also 
include quick-start small units.  
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' Rg,t
1,up ≥  r1,up lt

g ∈  G
 ∀  t ∈ T 

(19) 

  

' Rg,t
1,down ≥  r1,down lt

g ∈  G
 ∀  t ∈ T 

(20) 

 

2) Secondary Reserve  

 

Similarly, Equations (21) and  (22) ensure that the sum of the up or down secondary 

reserve contribution provided by the system’s generators Rg,t
2,up and Rg,t

2,down  are greater than 

the mandatory, system-wide load following requirements expressed as a fraction of the 

system demand lt . For the secondary up reserve contributions, the formulation allows for 

expressing the load following requirement as a function of the additional reserve required 

for the system contingency routage which typically matches the size of the largest plant or 

the transmission capacity of the main interconnector of the system. In addition, the 

formulation allows for supplying a portion of the secondary up reserve by non-

synchronised resources  xnosyncsuch as quick starting units.   

 

' Rg,t
2,up

g ∈  G
 ≥  - r2,uplt  + r

outage.2 1- xnosync3 ∀  t ∈ T 
(21) 

  

' Rg,t
2,down

g ∈  G
 ≥	r2,downlt    ∀   t ∈ T (22) 

 

3) Tertiary Reserve  

 

The following constraints ensure that both the tertiary Rg,t
3 	, and secondary up reserve 

Rg,t
2,up, resources can jointly contribute to tertiary reserve requirements of the system rreplace 

as allowed by Equation (21) from the proportion provided by non-synchronised units 

while enabling the tertiary reserve to be met by committed units when appropriate.     
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'2  Rg,t
3 +Rg,t

2,up3
g ∈  G

 ≥  	r2,uplt  + r
outage + rreplace    ∀        g ∈ G ,  t ∈ T (23) 

 

In addition, the following constraint ensures that the quick start units can only be chosen 

from the non-synchronised units pool.  

 

Rg,t
3    ≤   2 1 - Ug,t 3 ag

quickstart   pg
max      ∀    g ∈ G ,  t ∈ T (24) 

 

Where ag
quickstart represents the fraction of units’ capacity that can be deployed fast enough 

as a dispatchable fast start capacity.   

 

Unit Reserve Capabilities  

 

The constraints below guarantee that units can only provide (1) the type and (2) amount 

of reserve that are deemed to be capable of depending on the units’ technical and 

flexibility characteristics82 or their mode of operation83. 

  

 Rg,t
 ρ,dir ≤    	ag

 ρ,dir			pg
max    ∀ , ρ , dir , g ∈  G ,t ∈ T (25) 

Where  Reserve category,  ρ ∈ [1, 2, 3] 

                  Reserve direction, dir ∈ [up, down] 
 

 

3.3.3 Clustered Formulation  

 

As indicated earlier, variations in mathematical formulations of the UC problem do exist 

in the literature. A notable variation among UC models is related to the way in which the 

status of the generating units with identical or similar characteristics is mathematically 

represented in optimisation models.  

 
82 Several technical characteristics affect the operational flexibility of thermal units including their ramping rates, start-

up times, the minimum loading levels, minimum up and downtimes, and their partial load efficiency (IRENA, 
2017).  

83 The operational flexibility and reserve contributions of thermal units can be sometimes restricted due to being part 
of combined heat and power (CHP) operation scheme (IRENA, 2018a).  
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The traditional approach treats the status of each plant separately. In other words, each 

plant would have an “on or off” status in each optimisation interval (e.g., each hour or 

half-hour). The main advantage of using this approach is that it allows for a “plant-by-

plant” analysis. However, it is computationally expensive. Other formulations assign a 

binary or an integer variable to a group or a cluster of units sharing the same or similar 

characteristics.  

 

For example, Sen and Kothari (2001) grouped similar thermal units using a binary 

variable for a UC model. A key drawback of using a binary variable to model the status 

of a group of units (i.e., 0 or 1) is that it switches the whole group or cluster on or off, 

which might not represent the actual behaviour of the cluster in real circumstances.   

 

In comparison to the typical UC binary formulations of generation units, grouping 

identical units drastically reduces the computational dimensionality, the number of 

equations, and the number of variables of the optimisation problem. It also speeds up the 

search for the optimum solution by eliminating the identical or very similar permutations 

of binary commitment decisions (Sherali and Smith, 2001, Palmintier and Webster, 

2016).  

 

For example, Palmintier and Webster (2014) compared the results and running speed of 

several models using both binary and aggregated units for a Texas-based system with 205 

generating units. They reported that models that grouped units had estimation errors of 

0.05%–0.9% across several metrics while providing several orders of magnitude faster 

solution times (about 400 times) compared to the traditional binary formulations. They 

also reported that further aggregation of units increases the error metrics slightly (about 

two times) while running 2000 times faster than the traditional binary formulation.  

 

Similarly, a more recent study by Meus et al. (2018) compared the total system costs of 

UC models with different formulations of the Central Western European (CWE) system, 

which encompasses the power systems of 5 countries, with 806 power plants and 4 

pumped storage units. They found that the error in approximating the total system cost 

of a traditional UC model with a binary formulation and another UC model with a 

clustering formulation does not exceed 0.06%.  
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This approach of grouping identical or similar units (“heterogeneous clustering’’) has been 

adopted by many researchers studying different aspects of power systems, including long-

term expansion planning, operation and maintenance planning, price estimation, and 

carbon emissions. Examples of such studies include Hara et al. (1966), Langrene et al. 

(2011), Gollmer et al. (2000), Staffell and Green (2016), and Palmintier and Webster 

(2016).  

 

Mathematical Formulation  
 

Conceptually, clustering formulation relies on the discretisation and grouping of all 

generation units that have very similar or identical economic and technical characteristics. 

Unlike the traditional formulation of UC expansion planning models, this modelling 

approach allows the optimiser to make plants’ investment decisions in discrete steps - 

typically equal to the units’ sizes - rather than in a continuous fashion. Mathematically, 

this can be expressed as follows:   
 

Ig ∈  [ 0 , ag
size,  2 ag

size ,  ……….. ,  ng
max ag

size ] (26) 

 

Where Ig is the total installed capacity of each generator type  

           ag
size is the unit size of each unit  

 

In common cluster formulations, however, in the interest of ease and increased 

tractability, the same concept is being implemented through replacing the individual units 

index, g, with a newly defined index representing the whole cluster or group of units 

sharing similar characteristics ĝ such that  
 

nĝ =	 Iĝ

Pĝ
Plantsize (27) 

 

Where nĝ  is an integer variable representing the number of units in the cluster.  

 

This allows the system modellers to neatly expand the range of the commitment, startup 

and shutdown variables of the units as follows:  
 

Uĝ
4 	,  Sĝ

4	- Dĝ
4 		∈  [0,1, ………., nĝ   ]     ∀ ĝ (28) 
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In addition, the common cluster formulation attracts minimal changes to the common 

UC formulation presented in sections 3.3.1 Core Model and 3.3.2 Additional Constraints.  In 

fact, after applying the substitutions suggested above, no changes are needed for the 

equations related to the objective function, variable costs, commitment state, startup costs, 

piecewise linear fuel use, system balance, unit output constraints, minimum up time, 

system reserve requirements, and the non-tertiary reserve capabilities. However, some 

changes are required for the below relationships and equations as follows:    

Ramping limits  

Equations (29) and (30)  replace Equations (17) and (18) respectively.   

 

Pĝ,t-1		-  Pĝ,t  ≤ (	Uĝ,t
4 - Sĝ,t

4 ) ∆Pĝ
downmax   -  pĝ

min  Sĝ,t
4  

 +  min - pĝ
max(t), max -pĝ

min, ∆Pĝ
downmax. 	Dĝ,t

4 . 

 

(29) 

Pĝ,t-1		-  Pĝ,t  ≤ (	Uĝ,t
4 - Sĝ,t

4 ) ∆Pĝ
upnmax   -  pĝ

min  Dĝ,t
4  

 +  min - pĝ
max(t), max -pĝ

min, ∆Pĝ
upmax, pĝ

quickstart		.  Dĝ,t
4. 

Where pĝ
quickstart ≡	 ag

quickstart	pg
max 

(30) 

 

 
Minimum Down Times 

 

Similarly, Equations (31) replaces Equation (16).   

 

nĝ   -  Uĝ,t
4  ≥  ' Dĝ,t

4
t

T=t-mĝ
mindownn

     ∀  t ∈ T,  g ∈ G (31) 

 

Tertiary reserve capabilities  
 

Likewise, Equations (32) replaces Equation (24).   

 

Rĝ,t
3    ≤    - nĝ  - Uĝ,t

4 .  aĝ
quickstart   pĝ

max      ∀    g ∈ G ,  t ∈ T (32) 
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3.4 Implementation of Optimisation Models 
 

3.4.1 Mathematical Formulation  
 

In our work, we used both SC and UC models for our simulations. For the SC model, we 

used the standard formulation presented in section 3.2.2.1 Screening curve method. In 

addition, for the UC work, we adopt a linearised version of the core UC model presented 

in section 3.3.1 Core Model based on the formulations presented by Baldick (1995) and 

Gollmer et al. (2000) for thermal-only systems. In addition, we adopted the clustered 

formulation presented in section 3.3.3 Clustered Formulation for building our MILP UC 

model based on the MILP model presented in Palmintier (2013) and Palmintier and 

Webster (2014). We specifically adopted the MILP modelling approach due to its demonstrated 

computational advantages and its wide prevalence in the literature for carrying out renewable 

decarbonisation studies (Abujarad et al., 2017).  

 

3.4.2 Software Environment  
 

We implemented the SC and UC models using the General Algebraic Modeling System 

(GAMS) software (Brooke et al., 1998). We run both models using CPLEX 12.6.3 

LP/MILP solvers (IBM, 2015).  
 

We used Microsoft Excel to manage and store the input data. However, we developed 

several GAMS routines to automate the process of recalling and pre-processing data from 

the Excel environment. We also developed additional GAMS routines to manipulate the 

input data to make it compatible with the standard units used in SC and UC models. 

Furthermore, we developed several GAMS routines to post-process the simulation results 

and to export them back to the Excel environment for graphing and analysis purposes. 

We include more details about the program codes, and other technical details in the 

modelling notes appendix. It might be relevant to mention that the core GAMS code was 

designed in a highly modular way in terms of data management, separation of functional 

utilities and configurability. Among other things, this proves useful for code-debugging 

activities and for automating the process of running multi-dimensional sensitivity analysis 

for specific data inputs or even running similar models using different types of solvers84.  

 
84 The relative Optimality Criterion (ROC) of all solvers used was set to zero for all simulations done.   
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4.4.3 Simulation Assumptions & Implementation notes 

 
As indicated earlier, our modelling is based on a linearised version of the core UC model 
presented in  3.3.1 Core Model. However, we made several assumptions and simplifications 
that we summarise as follow:   
 
Constant incremental heat rate with an offset 
 

• We assumed a single-segment piecewise heat curve with a constant incremental heat rate 
and offset for each plant type. This replaces the multiple-segment piecewise linear fuel 
usage constraints expressed in Equation (6). This assumption implies using a single 
incremental fuel usage rate with a fixed no-load fuel usage offset for each generator 
type. Palmintier (2013) showed that this assumption reduces the size of the UC 
problem by reducing the number of constraint equations while having a mild effect 
on the results. We also assumed that units in each generation cluster are in fact 
identical having the same heat-rate characteristics. 

• In terms of implementation, we derived the linearised no-load cost coefficients and a 
marginal cost coefficient for each generator type using both the heat-rate curves and 
the corresponding fuel costs. This was done by using a linear regression analysis for 
deriving the linearised no-load and marginal heat-rate usage coefficients from the 
quadratic heat-rate plants' data provided by Brouwer et al. (2015). Then, the cost 
coefficients were calculated by multiplying the derived linearised heat-rate usage 
coefficients by the corresponding fuel costs. The linear regression analysis was 
performed using the Microsoft Excel regression analysis toolbox for all thermal plants 
considered in this study.  

 
Constant Startup Cost  
 

• In our simulation, for simplicity, we assumed a constant total cost per startup for each 
type of generator. The assumed total cost covers the fuel cost per startup, and the 
additional fixed cost per startup to cover the maintenance and personnel costs. This 
replaces the startup cost equation (9). This simplification has been commonly used in 
the literature for similar long-term UC capacity planning studies that involve studying 
renewable integration. Examples of these studies include EnerNex (2010) and 
Kirschen et al. (2011).   
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Combined Reserves  
 

• For simplicity, we did not model the primary, secondary and tertiary reserve types 
discussed earlier. However, we assumed a combined reserve margin to deal with the 
potential grid frequency deviation, uncertainty in demand forecasts or any 
unexpected loss of generation for all UC model simulations considered. 

• We assumed this to be a 20% reserve margin (i.e., spinning reserve) relative to the 
system’s load demand to all UC model simulations considered. 

 
Must Run Generation Technology Choice  
 

• We also did not actively select or enforce a specific thermal generation technology to 
meet the minimum running generation constraints of the system. However, we let the 
optimiser choose the most cost-effective technology given the system conditions and 
renewable penetration levels.  

• In reality, energy system modellers might prefer a specific technology for a specific 
system. However, for the sake of exploring the natural investing tendency of the 
capacity optimiser, we gave the optimiser more flexibility in choosing the base and 
must-run generation.  

• We did not consider nuclear power as an option for providing a base or must-run 
generation. Owing to its relatively low contribution to meeting the global electricity 
demand (IEA, 2019), we focused more on coal and gas plants in these simulations. 
However, further research can study systems dominated by nuclear power plants. 

 
Renewable Curtailment  
 

• We only allowed renewable curtailment when the renewable production cannot be 
absorbed by the system due to the minimum running thermal generation constraints.  

• This was done for the sake of maximising the penetration levels of renewable 
generation in the energy mix to the greatest practical level possible. In particular, this 
assumption enables us to capture the effect of the envisioned deep renewable 
decarbonisation of the system which is one of the main focus points of our research.  

• In essence, we treated the renewable generation as a negative load for calculating the 
net residual load85 of the system. As a result, all renewable generation was given a top 
priority to meet the demand of the system. As such, the renewable production was 

 
85 Net residual load is defined in this context as the total system load minus the total renewable production. 
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only curtailed when the net residual load drops below the pre-defined minimum 
running thermal generation level.  

• Crucially, however, this assumption also allows us to implicitly integrate the minimum 
kinetic inertia requirement of the system as a lower-bound static limit86 into the dispatch 
model. Fundamentally, this assumption is intended to avoid a sustained low-inertia 
situation for the system under consideration as it is assumed to be not interconnected 
with other systems (Milano et al., 2018).  

• In reality, this assumption implies curtailing, wholly or partially, specific renewable 
generators or feeders under oversupply conditions. In practice, this is typically 
implemented through (1) automatic signaling or (2) order of curtailment (Bird et al., 
2014).  

• Under the automatic signaling scheme, control signals are sent in real-time to 
renewable generation facilities through the Supervisory Control and Data Acquisition 
(SCADA) systems87. These signals include pro-rata curtailment directives when 
certain power management conditions are met (i.e., oversupply conditions). These 
signals are initiated in the Automatic Control Generation (ACG) module of the 
SCADA system enabling precise sizing of the amount of power to be curtailed from 
different generators to maintain the nominal frequency of the system in real-time. 
These signals typically require a confirmation from the renewable facility for 
implementation. In some markets, regular market signals are used to send curtailment 
signals. Operators can send automatic flag signals to renewable generators that are 
needed to be dispatched below their full dispatchable level. These signals include their 
required base-points production levels as opposed to the curtailment amount. It is 
common practice for system operators to follow-up with a phone call to ensure that 
renewable generators will be curtailed as required (Bird et al., 2014).  

• Under the order of curtailment scheme, however, system operators use their technical 
judgments to order renewable generators to curtail their production levels. These 
orders are often issued under balancing-related challenges such as transmission 
congestion or oversupply conditions. The amount of the curtailed power required is 
influenced by several factors including the market design, contractual obligation, 
generators economics and the effectiveness of the renewable generators in mitigating 
the system challenge (Bird et al., 2014).  

 
86 It is important to note that, the system inertia is typically modelled as a time-dependent variable for stability 

studies (Kundur, 1994). However, modelling system stability aspects in great detail is understandably beyond the 
scope of our study.  

87  The standard software application used by system operators for managing and controlling networks assets remotely.  
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Residual Load Calculation  
 

• In terms of implementation, this was done at the pre-processing stage and before 
running the UC model by running a GAMS routine that calculates the hour-by-hour 
amount of renewable energy that cannot be absorbed by the system due to the 
minimum running thermal generation constraints, if applicable88. 

• Then, the routine is programmed to adjust the net hourly residual load of the system 
that must be met by the thermal plants accordingly, preventing the net residual load 
to drop below the minimum running thermal generation level. After that, the newly 
adjusted, effective hourly net residual load of the system gets passed to the UC 
program for running the thermal mix optimisation.  

 

Renewable Curtailment Cost  
 

• For all scenarios considered, the cost of renewable capacities was passed to the 
optimiser as an exogenous input. This cost includes the total investment costs89 for 
each renewable penetration scenario. Therefore, to avoid double-counting, we did 
not assume any additional curtailment cost in our simulations as the cost of spilled 
renewable generation is inherently included in the total renewable investment costs. 
This implies that occasionally renewable generators are not producing at their full 
potential as a result of being curtailed by the system operators.      

• In reality, this assumption might imply that all renewable generators are guaranteed 
to sell their full production to the network irrespective of the amount that can be 
absorbed by the system (i.e., they will be compensated otherwise for the unsold 
quantity on a pro-rata cost basis if curtailed by the system operator). Alternatively, 
this might imply a mutual agreement in which renewable generators can be curtailed 
at no cost while they are still compensated for their investment and fixed O&M costs. 

 

Other Considerations  
 

• Simulation Perspective: We take the perspective of a monopolistic system 
planner.  

• Demand: We assumed an inelastic, nonresponse electric demand profile with a 1-
hour temporal resolution. We also assumed that the load shape will stay the same 
during the hypothetical optimisation period considered. 

 
88 The program creates a separate time-series of the renewable generation that cannot be absorbed by the system 

due to the pre-defined minimum running thermal generation level. This series can be used later for calculation 
purposes such as calculating the total amount of power curtailed.    

89  This includes both the CAPEX and fixed O&M costs.  



CHAPTER 3: METHODOLOGY & DATA    
 

 
85 

• Transmission & Interconnections: We did not consider the impact of having 
access to interconnection capacity or having transmission- or reliability-related 
constraints. We also did not consider the cost associated with transmission losses or 
wheeling charges of power and we assumed that all generation units are connected to 
a single node. 

• Carbon Price: We assumed a zero carbon price. 

• Storage: We also did not consider the existence of storage systems. 

• Life Cycle Emissions: We did not take the life cycle emission considerations in 
our analysis or simulations    

 

3.5 Test System Details  
 

The study cases presented in this thesis are loosely based on the Qatari electric system. 

However, due to commercial data confidentiality issues, we were unfortunately not able 

to simulate the existing generation assets of the system. Therefore, for consistency and 

demonstration purposes, we used a greenfield approach for the simulations. 
 

3.5.1 Demand data  
 

We used historical hourly demand data for the Qatari system for the year 2011 

(Kahramaa, 2012). Each data point of the 8760 data points used represented the average 

demand for the recorded hour. Figure 16 shows the load shape and the daily demand 

curves of the test system. In addition, Table 5 provides a summary of the key descriptive 

statistics of the system’s load.    
 

      

Peak Demand  (MW) 5349 

Minimum Demand  (MW) 1752 

Minimum Thermal Running Load90 (MW) 500 

Total Annual Demand  (TWh) 29.3 
Table 5: Selected descriptive statistics for the test system under consideration based on datasets from 

(Kahramaa, 2012). 

It is worth noting that contrary to the widespread expectation for a hot country like Qatar, 

the load profile of the country is much flatter than someone would normally expect. This 

is due to the extended use of air-conditioning systems during night hours which makes up 

 
90 Assumed value for simulation purposes only for the baseline scenario.  
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the majority of the domestic load as the temperature tends to stay hot during night hours 

in the summer season. That also explains why during low demand period (i.e., wintertime) 

the system load drops by almost 60%, yet the load shape stays almost the same (Bayram 

et al., 2018). 

 Estimated normalised average daily demand curves for the test system (by month). 

 
 

 
 

 
 

 
 

Figure 16: Normalised average daily profiles for the system under consideration based on historical data 
(Kahramaa, 2012). Graphs were produced using the SAM viewer software based on 1h resolution data for the 

whole year (8760 data points for the whole year). 
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3.5.2 Generation plants’ data   
 

We collected and compiled the cost and technical data of the conventional and renewable 

technologies from multiple sources.  

 

For PV, CSP and wind power technologies, the capital cost values are sourced from a 

comprehensive cost review report prepared by the International Renewable Energy 

Agency (IRENA). The cost values used are the calculated, global weighted average values 

for renewable projects in 2015. It is worth noting that the cost values used for wind power 

are the values related to onshore wind power projects only.  

 

Similarly, the main cost and technical data of the conventional plants were sourced from 

a comprehensive review report prepared by the U.S. Energy Information Administration 

(EIA). The values used represent the technical data and cost estimates for generic utility-

scale electricity generating projects (EIA, 2013b).  

 

For the fuel and plants flexibility data, we compiled them from multiple sources, including 

EIA (2013b), EPA (2015), Brouwer et al. (2015), Van den Bergh and Delarue (2015), and 

Göransson et al. (2017). Similar to other governmental publications and peer-reviewed 

studies, the data presented in these studies were collected from a large number of sources. 

However, we can neither guarantee their full completeness nor their total accuracy.     

 

In addition, as indicated in the previous section, we derived the linearised no-load cost 
coefficients and a marginal cost coefficient for each generator type using the quadratic 
heat-rate plants' data provided by Brouwer et al. (2015). We present the original data and 
the respective derived coefficients in  Table 9 and Table 10. Moreover,  Table 6 -  Table 
8 summarise the key input cost and technical data with their respective sources.  
 

Technology Capex Fixed O&M Discount Rate Lifetime 

  [USD/kW] [USD/kW-yr] [%] [Yr] 
CSP 5550 67.26 5% 30 
PV 1810 24.67 5% 30 
Wind 1560 39.55 5% 30 
     
Data Sources  (IRENA, 2016) (EIA, 2013b) Assumed  Assumed 

Table 6: Key cost data for CSP, PV, and wind technologies
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Technology Full Load  
Efficiency Capex Fixed  

O&M 
Variable 
 O&M 

Discount  
Rate Lifetime 

 [%] [USD/kW] [USD/kW-yr] [USD/MWh] [%] [Yr] 
OCGT 35% 676 7.04 10.37 5% 30 
CCGT 48% 917 13.17 3.60 5% 30 
Steam Coal 39% 3246 37.80 4.47 5% 30 
CCS Coal  28% 5227 80.53 9.51 5% 30 
       Data Sources  (EIA, 2013b) (EIA, 2013b) (EIA, 2013b) (EIA, 2013b) Assumed Assumed 

Table 7: Key cost and technical data for conventional generation technologies. 

 

Technology Minimum 
Load Level 

Start-up 
Cost 

Minimum 
Up Time 

Minimum 
Downtime 

Unit 
Size 

  [%] [USD/MW] [h] [h] [MW] 
GT 50% 39.86 1.00 1.00 150 
CCGT 20% 53.15 6.00 6.00 300 
Steam Coal 35% 303.18 10.00 10.00 300 
      
Data Sources  (Göransson et al., 2017) (Van den Bergh and Delarue, 2015) Assumed 

Table 8: Selected flexibility parameters for conventional generation technologies. 

 

Technology a91 b c 

  [p.u] [p.u] [p.u] 
GT 0.41 1.16 -0.57 
CCGT 0.72 0.48 -0.19 
Steam Coal 0.82 0.35 -0.17 
    Data Sources  (Brouwer et al., 2015) 

Table 9: Quadratic part-loading efficiency coefficients for conventional generation types. 

 

Technology   No-Load92 Incremental  

    [p.u] [p.u] 
GT   0.183 0.815 
CCGT   0.088 0.914 
Steam Coal   0.047 0.952 
    
Data Sources   (Brouwer et al., 2015) 

Table 10: No-load and incremental cost estimates for conventional generation technologies.

 
91. Relative part-load efficiency of power plants as a percentage of full-load efficiency expressed as y = a + bx + cx2, 

where x is the load of the power plant as a percentage of max load based on (Brouwer et al., 2015) 
92. The relative (linearised) no-load and incremental fuel cost coefficients are based on data from Brouwer et al. (2015), 

following Staffell and Green (2016) approach. See Table 9 for the relative fuel cost curves for each technology 
against the relative plant output (based on generic quadratic curves for each technology).  
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Technology   Fuel Price Specific CO2 Emission 

    [USD/MMBtu] [Kg/MMBTu] 
Natural Gas    10 53.02 
Coal   2.19 95.52 
    

Data Sources   Assumed (EPA, 2015) 
Table 11: Cost and emission data for the fossil fuel types considered. 

 

3.5.3 Renewable resource data and capacity factors 
 

In the following study cases, depending on the focus and purpose of the study, we consider 

the PV, CSP, and wind technologies for the large-scale deployment for the system under 

study.  
 

3.5.3.1 CSP capacity factors   
 

We initially built a bottom-up technical model to simulate the operation of a generic CSP 

plant based on the long-term weather and solar radiation data obtained from 

Meteonorm93. The solar radiation dataset included hourly P90 and P50 solar datasets 

calculated based on recorded measurements covering the years from 1991 to 2010 

(Meteonorm, 2017).  It is worth noting that the P90 and P50 values are exceedance 

probability measures representing the amount of renewable resources expected to be 

available at a certain site. For example, P90 resource figures mean that there is a 90% 

chance that in any given year, the renewable resource at the site will exceed the specified 

amount. Likewise, this implies that there is only a 10% chance that that renewable 

resource will be lower than the stated amount. The P90, P70, and P50 figures are the 

most commonly used measures in the context of presenting statistical data on renewable 

resources. They are typically derived by employing probability and statistical analyses 

using many years of historical weather data.  Both P50 and P90 values of renewable 

projects are often required by banks and investment firms for project finance assessments. 

These figures are often used as measures of the economic risks associated with the inter-

annual variability of renewable resources (Dobos et al., 2012). However, in the interest of 

getting more accurate estimates, we did not use the loading profiles generated by the 

developed model as it is widely reported that the direct normal irradiance (DNI) data is 

site-specific and very sensitive to local meteorological and environmental factors (IRENA, 

 
93. We would like to thank Meteonorm for providing us with high-quality, commercial-grade solar data for free.   
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2013). Therefore, we did not use the DNI long-term average solar radiation data for the 

CSP simulations. Rather, we adopted the hourly loading factors from Martín-Pomares et 

al. (2017)94 of a 50 MW parabolic through (PT) plant, which was simulated based on 

measured solar radiation data in Qatar. Simulations were carried out using a technically 

detailed SAM95 model  (Blair et al., 2014).  
 

3.5.3.2 PV capacity factors   
 

For the solar PV scenarios, we used P90 solar data to simulate the hourly loading factors 

of the PV technology96 (Meteonorm, 2017). We used a generic PV system model to 

generate the hourly output profiles of the PV panels simulated using the System Advisor 

Model (SAM) software (Blair et al., 2014). We assumed 10% total PV system losses  

 

3.5.3.3 Wind capacity factors   

 

In addition, for the wind technology simulations, we obtained the hourly loading factors 

using the Renewables Ninja online simulation platform with a standard Vestas V90 2000 

frame (Staffell and Pfenninger, 2016).Table 12 presents a summary of the capacity factors 

for CSP, PV, and wind technologies and their respective sources.. 
 

Technology Capacity Factor Data Source 
  [%]  

CSP 26.4% Martín-Pomares et al. (2017) 
PV 22.8% Meteonorm (2017) 
Wind 29.0% Staffell and Pfenninger (2016) 

Table 12: Capacity factors for CSP, PV, and wind technologies and their respective sources. 

 

Figure 17 shows the normalised average daily production profiles for the CSP technology. 

Furthermore, Figure 18 present a reproduced solar map from Martín-Pomares et al. 

(2017) showing the DNI and GHI yearly average estimates in Qatar based on data for the 

period from 2003 to 2013. Likewise, Figure 19: compares the normalised average daily 

production profiles for the PV and wind technologies.   

 
94. We are grateful to Luis Martín-Pomares for sharing his quite sophisticated CSP simulation model and results with 

us.   
95  The System Advisor Model (SAM) is a free techno-economic modelling software of renewable energy technologies.  

The software was developed by the National Renewable Energy Laboratory (NREL) to assist and facilitate decision-
making for professionals in the renewable energy industry: 

96 We would like again to thank Meteonorm for providing us with high-quality, commercial-grade solar data for free. 
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Normalised daily production profiles for the CSP technologies (by month) 

 

 
 

 
 

 
 

 

Figure 20: Normalised average daily production profiles for the CSP technologies based on the simulation results 
of Martín-Pomares et al. (2017). Graphs were produced using the SAM viewer software based on 1h resolution 

data for the whole year (8760 data points for the whole year). 
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Figure 21: DNI and GHI yearly average estimates (2003–2013) in Qatar (kWh/m2/year). Reproduced from Martín-Pomares et al. (2017) 
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Normalised daily production profiles for the PV and wind technologies (by month) 

 
 

 
 

 
Figure 22: Normalised average daily production profiles (January to June) for the PV and wind technologies based on data from (Meteonorm, 2017) and Staffell and Pfenninger (2016) 

respectively. Graphs were produced using the SAM viewer software based on 1h resolution data for the w whole year (8760 data points for the whole year). 
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Normalised daily production profiles for the PV and wind technologies (by month) 

 
 

 
 

 
Figure 23: Normalised average daily production profiles (July to December) for the PV and wind technologies based on data from (Meteonorm, 2017) and Staffell and Pfenninger (2016) 

respectively. Graphs were produced using the SAM viewer software based on 1h resolution data for the whole year (8760 data points for the whole 
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97 Significant portion of this chapter was presented as a paper at the 7th Bergen Economics of Energy and  

Environment Research (BEEER) conference which was organised by the Norwegian Association for Energy 
Economics (NAEE) and the Energy and Environment Group at the Norwegian School of Economics (NHH). I 
would like to thank the participants of the conference for their insightful comments and very valuable feedback. I 
am very grateful to the Qatar Foundation for their generous support to attend the conference and funding my 
scholarship. 
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4.1 Introduction 
 

Building on the technical and economic literature review presented earlier, in this chapter, 

we critically review the existing literature on the economics of electric systems 

decarbonisation. In particular, we explore the existing metrics frequently used in the 

literature to make inferences about the economic effectiveness of using renewable 

technologies to decarbonise electric systems. We identify several theoretical shortcomings 

of the existing metrics and outline several circumstances in which the sole reliance on 

these metrics can lead to suboptimal or misguided investment and policymaking decisions. 

Recognising this gap in the literature, we aim to make a theoretical contribution by 

proposing a new theoretical framework and a new gauging metric for measuring and 

benchmarking the cost-effectiveness of decarbonising electric systems by means of 

renewables. Drawing on the research results and findings, we also present several original 

insights related to the economics of the renewable decarbonisation process, as well as 

providing several practical policy recommendations related to the evaluation of climate 

change economic policies. 
 

In the first section of this chapter, we review the existing technical literature related to 

measuring and quantifying the emission savings attributable to renewable energy sources. 

We also provide a review of the economic studies related to the subject. In the following 

section, we identify some of the gaps that exist in the current literature and explain the 

need for the proposed framework and metric. We also discuss the theoretical and practical 

shortcomings of existing metrics. In the third section, we introduce the proposed 

framework and present some explanatory examples to demonstrate its usefulness. 

Thereafter, we summarise our research findings and discuss some policy implications of 

our results. 

  

4.2 Summary of Literature Review  
 

There are many recent studies that examine the emission savings attributable to 

renewable energy sources. These studies tend to differ significantly in terms of their scope, 

methodological approaches, and technical and economic emphasis. In this work, we 

identify four related streams of literature that address the environmental benefits of 

renewables and the economics of integrating them into electric systems.      
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The first stream of the literature identified investigates the emission savings of renewables 

using detailed engineering models. These studies tend to underscore the technical aspects 

of efficiently reducing the carbon emissions of electric systems. Examples of this stream of 

literature include Denny and O’Malley (2006), Hart and Jacobson (2012), Gutiérrez-

Martín et al. (2013), Clancy et al. (2015) and Pereira et al. (2016).  

 

The second strand of literature uses a statistical approach to estimate and quantify the 

emission savings attributable to renewables in certain regions or systems. Representatives 

of this stream of literature include Hawkes (2010), Cullen (2013), Kaffine et al. (2013), 

Wheatley (2013), Novan (2015), Thomson et al. (2017), Staffell (2017), O’Mahoney et al. 

(2017) and Liddle and Sadorsky (2017). In one study, for example, Staffell (2017) 

investigated the carbon savings of renewable technologies for the British System between 

2013 and 2016. Following Hawkes (2010) approach, Staffell estimated and compared the 

displaced emissions by wind and solar power. Like Cullen (2013), Staffell reported 

different carbon displacement proportions for several conventional technologies. In 

addition, while he reported comparable carbon displacement figures per MWh generated 

for both solar and wind during the study period, Staffell further reported notable 

variations in their corresponding carbon displacement trends over time. 

 
The third stream of the literature identified takes a more economic perspective on the 

emission savings and environmental benefits delivered by renewable energy technologies. 

Examples of this stream of literature include Sims et al. (2003), Denny and O'Malley 

(2007), Fell and Linn (2013), Marcantonini and Ellerman (2015), Marcantonini and 

Valero (2017) and Cullen and Mansur (2017). For instance, in their well-cited review 

summary prepared for the Third Assessment Report of the Intergovernmental Panel on 

Climate Change (IPCC), Sims et al. (2003) examined the comparative costs of reducing 

the global carbon emissions from the power sector using a range of conventional and 

renewable energy technologies. They estimated the cost of CO2 abatement based on the 

anticipated long-term effects of displacing carbon-intense generation technologies with 

low carbon and renewable technologies. Their analysis was largely based on various 

assumptions and projections about diffusion scenarios of the low carbon and renewable 

technologies and the anticipated carbon intensity figures of the expected displaced 

carbon-intense technologies. Their analysis indicated that the abatement cost of CO2 

using PV and solar power was then predicted to be by far the most expensive option 
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compared with the alternative options, including coal- and gas-fired plants fitted with 

carbon capture and storage technologies. The conclusions of the study recognised that 

the cost savings and carbon emission reduction benefits are location-specific and are likely 

to vary from case to case. However, it did not include engineering modelling and 

simulations for the electric systems under consideration in the study.   

On the other hand, Denny and O'Malley (2007) used an hourly engineering dispatch 

power model to carry out an economic cost-benefit analysis of integrating wind for the 

Irish system. Their analysis concluded that the net benefits of wind are not particularly 

sensitive to the pricing regimes of SO2 and NOX emissions due to the relatively large 

difference in magnitudes between the saved CO2 emissions and the released SO2 and 

NOX emissions. They also presented similar findings in their previous work Denny and 

O’Malley (2006). Likewise, Cullen (2013) reported that the justification of wind subsidy 

will be predominantly driven by the CO2 emission savings rather than the SO2 and NOX 

emission saving benefits for the Texas System while using a statistical approach in his 

analysis. Denny and O'Malley (2007) also reported that under a high pricing scenario of 

CO2, the benefits of the altered merit order effect can be limited by the increased cycling 

costs given the fleet composition and technical emission data assumed for the Irish 

generation fleet for their study.  

Fell and Linn (2013) compared the cost-effectiveness for a range of renewable energy 

promoting policies in reducing the CO2 emissions for the Electric Reliability Council of 

Texas (ERCOT) market using long-term investment models. They compared the cost-

effectiveness of setting a carbon price, production subsidy, feed-in tariffs and other existing 

policies such as the clean electricity standard (CES) and the Renewable Portfolio Standard 

(RPS) for reducing the system’s carbon emission. In their analysis, Fell and Linn gauged 

the cost-effectiveness of these policies using the change in the value of the producer and 

consumer welfare divided by the change in value for the system’s emissions compared 

with a no-policy setting. Their results indicate the feed-in tariff policy promotes 

investment in technologies with the lowest cost irrespective of their environmental value, 

whereas the RPS policy and production subsidies were found to promote investment in 

technologies with the greatest market value. In comparison, the CES policy was found to 

promote investment in technologies with both the highest market and environmental 

value. Nevertheless, setting a CO2 price was found to be more cost-effective in reducing 
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the system’s carbon emissions than the CES policy. In another study, Marcantonini and 

Ellerman (2015) calculated the implicit carbon price of decarbonising the German system 

using solar and wind power. Using the cost and remuneration data covering the period 

between 2006 and 2010 and carbon emission saving estimates of Weigt et al. (2013), 

Marcantonini and Ellerman estimated that under a range of different scenarios, the 

implicit carbon price would always remain in the range of few tens €/tCO2 for wind 

energy and in the order of hundreds of €/tCO2 for solar energy.  

 

The fourth strand of literature examines the added costs and the economic and policy 

implications of integrating renewables into the electric energy system but not primarily 

from the emission saving or climate change perspective. Examples of this stream of 

literature include Denholm and Margolis (2007), Lamont (2008), Sáenz de Miera et al. 

(2008), Weigt (2009), Troy et al. (2010), MacCormack et al. (2010), Green and Vasilakos 

(2011a) , Mills and Wiser (2013), Hirth et al. (2015a) and Hirth (2015). For example, 

Green and Vasilakos (2011a) analysed the long-term impact of integrating wind power on 

electricity prices and generating capacity for the British system. They also investigated the 

impact of integrating wind power on the revenues and profitability of the conventional 

thermal generation. In addition, Hirth et al. (2015a) developed a framework to quantify 

and report the integration costs of renewables from the market perspective. Their 

framework proposed splitting the cost of integrating renewables into three categories. The 

three categories relate to the reduction in the market value of renewables due to deviations 

from day-ahead generation schedules, location, and profile of renewable generation. The 

cost categories reflect the cost of forecast error, transmission costs and the time value of 

renewable generation. In comparison, Gross et al. (2006) proposed two categories to 

report the cost of the grid integration of renewables: (1) costs of intermittency or system 

balancing costs, which relate to the short-term adjustments needed to manage the 

fluctuations of renewables output, and (2) reliability impacts, which relate to the long-term 

contribution of renewables to the reliability of supply. 

 

4.3 Issues with Existing Literature & Economic Effectiveness Metrics   

 

Following and building on our literature review section, we would like to note the 
following points. Firstly, our literature survey reveals that a large and growing body of 
literature has examined the emission savings attributable to renewables. We note that 
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many studies tend to focus on estimating, quantifying or monitoring the renewable carbon 
savings in a particular system or country. Although we recognise that these scholarly 
works make valuable contributions to estimating the expected environmental benefits of 
expanding the use of renewables, they nevertheless give little insight into the cost-
effectiveness of the renewable decarbonisation process at a system or a country level. In 
addition, we were unable to identify a theoretical framework tailored to the power sector 
for measuring or reporting the cost-effectiveness of the renewable decarbonisation 
process. For example, we note that the least-cost marginal abatement cost (MAC) curves 
presented by Jackson (1991) which is widely known as “McKinsey Curves”, despite their 
significant value and usefulness, cannot easily present the complexity and the dynamics 
of the renewable decarbonisation process of the power sector. A typical MAC curve 
consists of a set of rectangles showing the amount of emissions that can be saved by 
different technologies or abatement options at a given constant cost per ton of CO2 as 
shown Figure 24. This presentation does not easily allow reflecting the increasing 
difficulty of maintaining marginal carbon saving with increased renewable penetration. 
Likewise, it cannot easily represent the changes in the marginal abatement cost of 
renewables as the power system decarbonises. Although the MAC method is intuitive and 
appealing in representing the abatement costs of different technologies at a certain point 
or scenario, it cannot track the economic changes under different scenarios or 
assumptions as the system decarbonises.  
 

 
Figure 24: Illustrative graph showing typical MAC curves for different CO2 abatement options. Adapted from 

(CitySwitch, 2019) 
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Secondly, our literature survey reveals that renewable decarbonisation studies that have 

economic focus and emphasis vary widely in terms of their modelling methodology, level 

of analysis, amount of technical detail, characteristics of the system under study, and the 

renewable technologies under consideration. As a result of these variations, and in the 

absence of a universal theoretical framework for reporting the results, we find it 

increasingly difficult to compile and disseminate the results of these valuable studies in a 

comparative fashion.  
 

Thirdly, our review discloses a lack of consensus between researchers and practitioners 

with regard to the metrics they use to express the competitiveness of renewable 

technologies for decarbonising energy systems. We believe that this hinders the efforts of 

many researchers to compare, synthesise and draw meaningful insights from these 

valuable studies. For example, some studies tend to express their results in USD/ton of 

avoided CO2 emissions metric, along with its currency variations, to measure and 

compare the relative economic effectiveness of decarbonising electric systems using 

different renewable technologies. In our work, we argue that although the USD/ton of 

avoided CO2 provides a reasonable "snapshot" of the economic effectiveness of the 

renewable decarbonisation process at a given time, such a static metric falls short of 

encompassing its highly dynamic nature, especially for long-term studies. As we shall 

demonstrate in detail later in the chapter, the carbon savings delivered by renewables 

tend to change over time. In other words, the ability of renewable generation technologies 

to save carbon emissions changes as the share of renewables expands and grows. This 

variation in the long-term environmental value of renewable generation over time alters 

the economics of the decarbonisation process at the system level. In addition, the cost of 

integrating renewables changes with increased penetration too (Hirth et al., 2015a). This 

necessitates a more rigorous and robust economic treatment. 

Moreover, countless studies, professional reports, and governmental publications have 

used the levelised cost of energy for a wide range of renewable technologies as 

benchmarking metric to report their relative economic competitiveness. More recently, 

LCOE of many renewable technologies has sharply declined (IRENA, 2018). As a result, 

direct cost comparisons of LCOE figures have made renewables to be perceived as 

economically competitive options for decarbonising energy systems when compared to 

other low-carbon technologies such as nuclear power and carbon capture and storage 

(CCS). In his well-cited work, Joskow (2011) argued that the levelised cost of energy is a 

flawed metric for gauging the relative economic competitiveness of renewable 
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technologies when compared to other conventional generation technologies. Among 

other reasons, Joskow justified his conclusion based on the fact that the levelised cost of 

energy does not reflect the time-varying market value of renewable generation. In our 

work, we further argue that this metric should not be used to benchmark the relative 

economic competitiveness of renewable technologies for decarbonising electric systems as 

it does not reflect or internalise the varying carbon savings delivered by different 

renewable technologies. For example, there might be a situation in which a renewable 

technology is cheaper than another on a levelised cost basis. Nevertheless, this does not 

necessarily guarantee that the former will outperform the latter in terms of its cost-

effectiveness in reducing the carbon emission of a given system because of the different 

technical characteristics and varying expected carbon saving potentials of different 

technologies. In addition, we further argue that such a life-cycle metric does not take into 

account the changes in the long-term environmental value of renewables over time as the 

system decarbonises. Nor does it take into account the characteristics of the system under 

study. Therefore, we argue that these metrics, despite their usefulness, must be used with 

caution when evaluating the relative economic competitiveness of renewable technologies 

for decarbonising electric systems, especially for long-term studies.  

In this chapter, we intend to make the following contributions.  

Firstly, we want to make a theoretical contribution by proposing a new mathematical 

framework for measuring the cost-effectiveness of the system-wide decarbonisation 

process of electric systems. To the best of our knowledge, this is the first framework 

capable of measuring and tracking the cost-effectiveness of the decarbonisation process 

from a system-level perspective. The new framework is generic, technology neutral, and 

enables the consolidation of the economic results of decarbonisation studies that consider 

various renewable technologies as well as low-carbon technologies such as nuclear power 

and CCS. Furthermore, it allows the compilation of results from studies that use different 

modelling methodologies, assumptions, and data sets. Notably, the new framework 

enables measuring and tracking the cost-effectiveness of the renewable decarbonisation 

process at a country or a system level by directly linking the changes in the system’s total 

cost to the carbon reduction savings attributable to renewables. As a result, it allows the 

direct comparison of the economic implications of different decarbonisation scenarios and 

various policy proposals in a very intuitive graphical way. By doing so, we hope to fill this 

gap in the literature, and we believe this will be of particular relevance and importance in 
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informing the policy decision-making process and providing a useful tool for climate 

change policy evaluation.  
 

Secondly, we propose a new benchmarking metric for gauging the relative cost-

effectiveness of using different renewable technologies or low-carbon technologies to 

achieve sustained and long-term carbon emission savings. Unlike the existing cost-

effectiveness metrics, the proposed metric takes into account the dynamic nature of the 

decarbonisation process. In addition, it includes the technical and economic parameters 

of the renewable technologies and their interaction with the characteristics of the system 

under study. Moreover, the new metric allows expressing the cost-effectiveness of the 

decarbonisation process as a percentage of the system-wide decarbonisation level. By 

doing so, we aim to overcome the shortcomings of the existing metrics used in the 

literature.   
 

Thirdly, drawing on the multiple findings and results of the research carried out, we 

propose and provide several original, country-level policy recommendations and insights 

related to the economics of renewable decarbonisation. We hope that this will help 

researchers, policymakers and practitioners alike with regard to climate change economic 

policy evaluation. Altogether, we hope that our work will advance our understanding of 

the economics of climate change and contribute to the literature addressing the 

environmental economics of energy systems.  

 

4.4 Nature of the Decarbonisation Process  
 

Previous studies, such as Hart and Jacobson (2012) and Katzenstein and Apt (2009), 

reported that the system-wide carbon emission intensity tends to fall with increased 

renewable generation. Nevertheless, it tends to decline at different rates with increased 

penetration. For demonstration purposes, a typical system-wide decarbonisation graph 

using Photovoltaic (PV) technology or the so-called "carbon curve" can be depicted in 

Figure 25. As shown in Figure 25, the typical carbon curve tends to initially decline in a 

linear fashion with increased renewable penetration and then to gradually flatten as the 

incidence of curtailment becomes more pronounced. This explains the diminishing 

marginal carbon saving potential of renewables at relatively high penetration rates as the 

added renewable generation does not get readily absorbed by the system. Despite its 

usefulness, the carbon curve gives little insight into the economics of the decarbonisation 

process.  
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Figure 25: The system's carbon curve illustrating the fall of the system's average carbon intensity as the 

renewable generation share grows. The steepness of the curve tends to flatten as more solar energy is spilled with 
increased penetration. 

One way of examining the economic changes of increased penetration at the system level 

would be through tracking the changes in the system’s total production cost or the average 

unit production cost, which includes both the fixed (i.e. investment and fixed maintenance 

costs) and variable system costs (i.e. fuel and variable maintenance costs).  

 

 
Figure 26: The system's average unit projection with increased renewable penetration 
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As shown in Figure 26, in this example, the increased renewable penetration leads to a 

gradual increase in the average unit production cost. One might anticipate that the 

production cost changes at potentially different rates and magnitudes depending on the 

characteristics of the renewable energy considered and the system under consideration. 

Nevertheless, in many cases, this trend tends to be broadly linear.  A major drawback of 

exclusively using this relationship to make inferences about the economics of the 

decarbonisation process at a system level is its failure to take into account the potentially 

diminishing carbon savings with increased renewable penetration. In particular, the 

marginal carbon savings tend to decline as the system decarbonises. This makes it more 

likely for the production cost of energy and the underlying decarbonisation process to go 

at increasingly different speeds with increased renewable penetration. This, in turn, makes 

it particularly challenging to make informed inferences about the economics of the 

decarbonisation process by solely tracking the renewable penetration rates with the 

expected corresponding changes in the average unit production cost or the total system 

cost. We argue that a more useful approach would be to directly link the anticipated 

carbon emission savings with the corresponding economic changes taking place at the 

system level. A graph showing the anticipated saved volumes of CO2 with the expected 

changes in the system's cost is depicted in Figure 27. 

 

  
Figure 27: Relationship between the saved CO2 emissions and the change in the system's average energy 

production cost 
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Looking closely at this relationship, we can make the following initial observations. Firstly, 

the total production cost or the average unit production cost exhibits a nonlinear 

relationship with the additional carbon emission savings, even though the total production 

cost scales linearly with increased renewable penetration under the same penetration 

scenarios. We argue that this particular economic relationship is at the heart of studying 

the economics of decarbonising electric systems through the use of renewable energy 

sources, because it directly links the system-wide environmental benefits of renewables to 

the expected changes in the system’s production cost.Secondly, from the emission saving 

perspective, the graph clearly demonstrates the increasing difficulty of maintaining 

marginal carbon savings with increased penetration. The pace of saving carbon emissions 

tends to be highest at relatively low renewable penetration rates, and it tends to fall 

considerably afterwards. At relatively high penetration rates, the marginal carbon savings 

tend to decline sharply. This explains the exponential pace of production cost escalation 

at higher penetration rates. The sharp decline in the carbon savings might be attributed 

to the increased incidence of curtailment and the inability of renewable generation to 

achieve more capacity savings at the system level. 

 

4.5 Introducing the New Framework   
 

We further argue that a better way to examine and present the relationship between the 

saved carbon emissions and the system’s economics would be to examine their inter-

relationship in relative rather than absolute terms, as shown in Figure 28. This new 

presentation has many advantages.  

 

Firstly, it provides an intuitive representation of the renewable decarbonisation process at 

the system level. For example, as shown in Figure 28, the new framework provides a 

convenient and powerful tool for graphically estimating the economic implications of 

decarbonising electric systems using different renewable energy sources. For instance, for 

Technology 1 in Figure 28, it can be estimated that a 40% system-wide carbon reduction 

would result in an approximately 50% increase in the total system’s cost. On the other 

hand, achieving an additional 10% carbon reduction (50% system decarbonisation) 

would result in an approximately 100% increase in the total system’s cost.  
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Figure 28: Proposed representation of the relationship between the relative saved CO2 emissions and the relative 

change in the system's average energy production cost 

 

 

 
Figure 29: An example of the graphical benefits of the proposed framework 
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Technology 3 in Figure 29 has the edge compared to the other technologies in terms of 

its deep decarbonisation potential, which could reach as high as 53%. On the other hand, 

it could be estimated that with a 50% increase in the system's total cost, Technology 1, 

Technology 2, and Technology 3 can deliver about 30%, 40%, and 50% system 

decarbonisation, respectively. 

 

Thirdly, as we shall argue in the following section, presenting this relationship in relative 

terms has a significant theoretical and practical value in that it provides a new 

mathematical framework for measuring the cost-effectiveness of the renewable 

decarbonisation process. In addition, it has many practical advantages for practitioners 

and policymakers.  

 

4.6 Proposed Carbon Cost-effectiveness Metric  
 

Building on the previous sections, we can now introduce some useful formulas and 

definitions. In this work, we refer to each individual curve shown in the framework as the 

“carbon economic effectiveness curve”. Mathematically, each point on the curve 

represents the elasticity of the system’s total cost with respect to the corresponding 

system’s decarbonisation level or the level of the renewable carbon emission savings.   

    

The shape of the carbon economic effectiveness curve varies significantly across different 

technologies and systems. These variations in the curve’s shape reflect differences in the 

technical and economic parameters of the renewable technologies considered and their 

interaction with the characteristics of the system under study. In certain cases, the carbon 

economic effectiveness curve might take negative numbers. This implies that the 

penetration of renewable energy contributes to lowering the total systems cost. More 

generally, the relationship between the relative increase in total system cost and the 

corresponding carbon emission reduction or savings can be expressed in the following 

mathematical form:  

C  % , Tech  =  f   !E % , Tech "             (33) 
Where  

 

C% , Tech     The change in the system’s total cost (in %) as a result of a given technology penetration 	 
"%,#$%&	    The system-wide decarbonisation level (in %) attributable to the technology under study  
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In practice, researchers and policymakers might need to compile several data points that 

ideally cover a wide range of decarbonisation scenarios to construct this mathematical 

relationship. In the absence of a large number of data points, researchers also might 

consider using curve fitting techniques to construct a function that best represents their 

results' data points. the significance of this relationship is that it encompasses how the 

carbon cost- effectiveness of a system changes under a wide range of different 

decarbonisation scenarios or desired study outcomes considered by system planners, 

policymaker or researchers alike. In other words, it embodies the inherently dynamic 

nature of the renewable decarbonisation process and its corresponding expected 

economic implications over an extended period of time. Therefore, it will be very helpful 

to policymakers and system planners to examine this relationship carefully when taking a 

long-term policy or investment decision. In essence, the framework can be used as a tool 

to facilitate transparency with regard to proposed environmental and economic policies 

at the country level. We shall discuss this in more detail in the following section. Likewise, 

it can be used by project developers and investors to provide evidence about the economic 

and environmental soundness of their renewable investment portfolios in a given country. 

Among other possible usages, it could also be used by international donors as a tool for 

identifying renewable technologies with the highest environmental value at given host 

countries.    

  

Illustrative Example  

 

In evaluating the economic implications of a potential policy decision to decarbonise the 

electric system by 30% relative to the current level, a policymaker might refer to the 

relevant carbon economic effectiveness curves in his or her analysis. For instance, the 

policymaker will note that using Technology 1, 2 or 3 will result in an increase in the 

system’s total cost of about 10%, 20%, and 50%, respectively. We refer to each value of 

those numbers as the carbon economic effectiveness factors (CEEFs) for each technology; 

in other words, CEEF 30% , Tech1 = 10%, CEEF 30% , Tech2 = 20% and CEEF 30% , Tech3 = 

50%. Choosing to take Technology 2 as a reference technology, the policymaker could 

further express the relative economic effectiveness ratios as 2, 1, and 0.4, respectively. In 

other words, Technology 1 is twice as cost-effective in delivering the same carbon 

emission savings as the reference technology. Similarly, Technology 3 is about four-tenths 

as cost-effective, and so on. We refer to these relative cost elasticity ratios or the relative 
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CEEF as the carbon economic effectiveness credit (CEEC) for each technology. 

Mathematically, we can represent it using the following formula:  

 

CEEC % ,  Tech1 =    CEEF % ,Ref

CEEF % ,Tech1
     (34) 

 

  CEEF 30% , Tech  CEEC 30% , Tech  
      
      

Technology 1 10% 2.0 
Technology 2 (Ref) 20% 1.0 
Technology 3 50% 0.4 

 

Table 13: Summary of CEEF and CEEC factors for Technology 1, 2 and 3 for a 30% decarbonisation scenario 

 

The significance of expressing these factors in relative form is that they could be used as 

a weighting or multiplication factor for policy design purposes. For example, in 

considering the renewable subsidy level for different types of renewable technologies, a 

policymaker might allocate subsidy levels that are proportional to the expected CCEC 

values for each technology type.  
 

In addition, this gives the policymaker great flexibility in choosing the reference 

technology that suits the analysis’s needs. For example, a policymaker might consider 

benchmarking cost-effectiveness of renewable savings with respect to the savings delivered 

by a low-carbon technology like nuclear power. As the framework is generic and 

technology-neutral, it could be used to measure the cost-effectiveness of the 

decarbonisation process using different technologies, including non-renewable 

technologies. In the following sections, we discuss some policy implications of our work in 

more detail.  
 

4.7 Comparison to Existing Metrics   
 
In this section, we present an example to show how the sole reliance on the existing 

economic competitiveness metrics might lead to suboptimal or misguided long-term 

investment and policy-making decisions with regard to the economics of the 

decarbonisation process. In particular, we compare the levelised cost estimates for PV and 

CCS technologies with carbon cost effectiveness estimates using the framework developed 

for a wide-range of decarbonisation scenarios of a relatively small electric system.  
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Case Study Details Summary  

 

The study case presented is loosely based on the Qatari electric system. We used historic 

hourly demand data for the Qatari system presented in 3.5.1 Demand data. However, as 

indicated earlier, due to commercial data confidentiality issues, unfortunately, we were 

not able to simulate the existing generation assets of the system. Nevertheless, for 

consistency and demonstration purposes, we used a greenfield approach to help illustrate 

the cost-effectiveness of using the PV and CCS technologies for decarbonising the small 

electric system considered. Furthermore, for simplicity, we used a basic screening curve 

(SC) optimisation model to explore the different least-cost decarbonisation scenarios of 

the system. The SC model is based on the mathematical formulation presented in 3.2.2.1 

Screening curve method. We implemented the SC models for both technologies using the 

General Algebraic Modeling System (GAMS) software (Brooke et al., 1998, Bussieck and 

Meeraus, 2004). For more details on GAMS implementation, data processing and other 

modelling assumptions, the reader is encouraged to refer to 3.4 Implementation of 

Optimisation Models .In addition, section  3.5 Test System Details show selected graphs and 

summary tables about the characteristics of the system under consideration as well as 

details of the renewable energy resources of the test system.  

 

We consider four types of thermal generation technologies: open cycle gas turbine 

(OCGT), combined cycle gas turbine (CCGT), coal-fired steam plants (Steam Coal), and 

coal-fired steam coal fitted with carbon capture and storage technology98 (Steam Coal 

with CCS). The cost and technical data of conventional and renewable technologies are 

based on the compiled data presented in section 3.5.2 Generation plants’ data.  

 

Levelised Cost Estimation  

 

Levelised cost of energy is one of the most commonly used methods of comparing the 

relative competitiveness of different renewable and non-renewable generation 

technologies (IRENA, 2018b). Owing to its simplicity and its ease of applicability to a 

wide range of technologies, the LCOE continues to be used by many governmental 

entities and professional bodies to make inferences about the economics of renewable 

 
98 Based on amine scrubbing system, utilizing monoethanolamine as a solvent to capture CO2 from the flue gas  
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energy technologies (REN21, 2016, Fraunhofer ISE, 2018, EIA, 2019). In essence, the 

measure indicates the average fixed revenue per unit of electricity generated that would 

be needed to recover the costs of building, operating, and sometimes the decommissioning  

of a generating plant over its economic lifetime. Full derivation of the LCOE is included 

in Appendix A. As pointed earlier, Section 3.5.2 Generation plants’ data includes the key cost 

and technical data considered in this brief study for the PV and CCS technologies. 

Additional details about LCOE calculations and sensitivity analyses of key technical and 

economic inputs are enclosed separately at the supplementary results Appendix A.     

  

Study Cases Results  

 
Figure 30: A comparison between the LCOE metric and the proposed metric for gauging the cost-effectiveness of 

the decarbonisation process 

 

We simulated the deep decarbonisation of the system for a wide range of penetration 

scenarios for both the PV and CCS technologies. In addition, we develop the levelised 

cost estimates of the PV and CCS technologies respectively. As shown in Figure 30, 

although the cost of PV technology is almost half the cost of CCS technology on a levelised 

cost basis, this did not necessarily guarantee the cost-effectiveness of the PV technology 

to achieve sustained and deep decarbonisation of the electric system. In addition, the case 

study also highlights the wide variation among renewable and low-carbon technologies in 

terms of their potential to decarbonise electric systems and their cost-effectiveness in 

delivering that. For example, at shallow decarbonisation levels, PV tended to have the 

edge over CCS as a more cost-effective option to decarbonise the system. However, at 

deeper decarbonisation levels, CCS technology emerged as a superior option, although it 

is twice as expensive on a levelised cost basis.  
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It is important to note that the economic findings of this small case study do not necessarily 

hold true for all systems or to the same extent given the different natures of the systems 

and the studies’ underlying assumptions. Nevertheless, these findings highlight the 

shortcomings of the existing technology-level economic metrics such as LCOE to capture 

the complexity of the decarbonisation economic effectiveness at the system level. In 

addition, the findings highlight the usefulness of the proposed framework in 

understanding the economics of the decarbonisation process at a system level.  

 

4.8 Policy Implications and Insights  
 

Building on the research conducted, in this section, we briefly discuss and summarise 

some of the main findings of this part of the research.     
 

Our research establishes that the long-term environmental value of renewable generation 

changes over time. We find that the nature and scale of this change hinge upon the 

technical and economic characteristics of the renewable technology considered, the 

nature of the system under study, and the stage and level of the decarbonisation process.   
 

Furthermore, our results suggest that the environmental value of many renewable 

technologies is likely to depreciate over time. In particular, the carbon savings per GW of 

renewable capacity tend to decline as the system decarbonises. In other words, renewable 

carbon saving productivity is expected to slow down with increased renewable capacity 

growth.  

 

One relevant insight is the importance of making a distinction between the renewable 

decarbonisation process and the process of adding more renewable capacity to electric 

systems. Although our research suggests that these two processes tend to go hand-in-hand 

at the beginning of the decarbonisation process, they are likely to decouple at higher 

decarbonisation and renewable penetration rates. Another relevant insight is that 

renewable carbon saving productivity is expected to be highest at low renewable 

penetration rates. This would suggest that renewables would have much better chances 

to compete with low-carbon technologies for “shallow decarbonisation” levels rather than 

the envisioned “deep decarbonisation” levels of power systems, especially in the absence 

of cheap storage options.  At the policy level, this would suggest the following 

recommendations: 
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• Policymakers might need to revisit the environmental rationale of expanding 

certain renewable technologies as the system decarbonises, especially the ones 

with the fastest environmental depreciation rates.  

• In addition, policymakers might need to consider scaling down their renewable 

incentive programs as the system decarbonises in line with the expected decline in 

carbon savings of  renewables.     

• Furthermore, investors who expect that certain premiums on their renewable 

assets are proportional to the environmental value delivered should be aware that 

such premiums might decrease over time.  
 

Moreover, our research shows that the diminishing environmental benefits of  renewables 

affect the economics of  the decarbonisation process in a very fundamental way, especially 

at higher decarbonisation levels. In particular, as the systems decarbonise, the capital costs 

of  renewables grow at a much faster pace compared to fuel and operation savings of  

thermal generation at the system level. In addition, the energy value of  renewables tends 

to depreciate as a result of  the increased incidence of  curtailment (Mills and Wiser, 2013). 

At the same time, the renewable capacity value of  many renewable technologies tends to 

fall sharply with increased penetration (Castro and Ferreira, 2001, Ueckerdt et al., 2015). 

As a result, the marginal cost of  saving carbon emission at the system-level of  some 

renewable technologies tends to escalate with increased decarbonisation. This observation 

been reported in several previous studies such as Heuberger et al. (2016). 

 

This result has several policy implications. One fundamental policy implication is that the 

abatement carbon cost of  renewables is, in fact, neither static nor flat. It tends to be highly 

dynamic, and it changes as more renewable capacity is added to the system. Although the 

typical marginal abatement cost curve suggests a flat abatement carbon cost for different 

renewable technology types, we argue that for each renewable technology type, the 

implied cost of  saving carbon will change as the electric system decarbonises. Therefore, 

we believe that using a constant carbon abatement cost of  renewables in policy evaluation 

processes might lead to inaccurate estimates about the true cost of  decarbonisation. 

Furthermore, it might lead to suboptimal investment and policy design decisions. 

Therefore, for policy evaluation purposes, we recommend that policymakers 
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• consider setting a dynamic or progressive carbon abatement cost figures in their 

analysis as the system decarbonises and  

• frequently revise their implied carbon cost’ estimates for renewables over time, 

especially for systems with fast and impressive renewable adoption rates.   

 

Our additional research results demonstrate that renewable technologies vary widely in 

terms of their long-term environmental contributions. Although renewables are perceived 

by many to be equally green, renewable technologies vary significantly in terms of their 

ability to save carbon at the system level. Importantly, our results corroborate similar 

findings of previous works such as  Novan (2015) and Callaway et al. (2018).  

At the policy design level, a particular worry is the existence of policy or incentive 

programs that allocate equal economic incentives to renewable technologies that deliver 

unequal long-term environmental benefits. One relevant policy insight is that the 

economic effectiveness of such programs will hinge upon identifying and allocating 

investments to technologies that have the least-cost carbon abatement potential in the 

long run.  
 

Another relevant worry is the existence of policies that promote investment in 

technologies with the lowest production or levelised cost irrespective of their 

environmental value and cost-effectiveness. Our research shows that for renewable and 

low-carbon technologies, the economic competitiveness at the technology level (i.e. on a 

levelised cost basis) does not necessarily guarantee the cost-effectiveness of decarbonising 

an electric system. One important policy insight is that the failure to internalise the 

environmental value of renewable generation in investment and incentive programs is 

likely to lead to misguided or suboptimal long-term policy decisions. 
 

Based on that, we recommend policymakers to better align their renewable energy 

investment and subsidy programs with the environmental value delivered by renewable 

technologies and their relative economic effectiveness. As the carbon saving potential of 

renewables is frequently cited as one of the primary drivers to expand their use and justify 

their capital-intensive investments and subsidies, there is a real need to ensure that 

renewables are capable of delivering the hoped-for carbon savings in a cost-effective 

manner. As previously noted, we believe that using the ECCE values of renewable 

technology sources will greatly help in informing the policymaking process in this regard. 
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would like to thank the participants of the conference for their insightful comments and very valuable feedback 
particularly at the poster presentation session. I am very grateful for the Management Department of Imperial 
College Business School for their generous funding to support my participation at the conference. 
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5.1 Introduction  
 

Building on the theoretical framework presented in Chapter 4, in this chapter, we 

investigate several important factors that are often absent from the current debate about 

the carbon saving cost-effectiveness of renewables. In particular, we look at how the 

choice of modelling methodology of renewable decarbonisation studies can alter their 

economic results and hence change the perceived competitiveness of renewables to 

decarbonise electric systems. The chapter provides a methodological comparative study 

featuring two of the most used power systems modelling methodologies to investigate this 

effect. The guiding research question of the chapter is, how does the methodological 

variation across decarbonisation studies affect the perceived economic competitiveness of 

renewable technologies in decarbonising energy systems?  

 

In the following sections, we present three study cases to explore to what extent the 

modelling methodology or approach can influence the perceived carbon cost-effectiveness 

of renewables to decarbonise electric systems. In the first case, we compare the 

decarbonisation results of an SC model and a UC model. In the second case, within the 

UC approach, we compare two models with different technical model specifications to 

understand to what extent variations in the model’s specifications can alter the perceived 

carbon cost-effectiveness. In particular, we consider the variation in a system-level 

technical constraint, namely the minimum running thermal load (MRTL) level of the 

system. In contrast, in the third case, we consider omitting a unit-level technical detail to 

study the effect of omitting unit-level constraints on the accuracy of the decarbonisation 

results. 

 

Similar to the previous study cases, the study case presented is loosely based on the Qatari 

electric system. Reader may refer to section 3.5 Test System Details for details of the 

characteristics of the system under consideration as well as details of the renewable energy 

resources of the test system.  

 

In additional, readers are encouraged to refer to the Methods and Data Chapter for a full 

review of the data used, mathematical formulations of SC and UC models, and the 

implementation assumptions made for carrying out this study.   
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5.2 Effect of Choice of Modelling Methodology  
 

5.2.1 Baseline scenario results  
 

5.2.1.1 Optimum capacity mix and energy output results  
 

 
Figure 31: Capacity mix and energy output results for the baseline scenario for the SC and UC models under no 

renewable generation penetration. 

 

Figure 31 shows the baseline capacity mix and energy output results for the SC and UC 

models in the absence of renewable penetration. It is worth noting that, for the rest of the 

thesis, CCS technology appears in the legend of the results’ graphs to remind the reader 

that it was an option for the optimiser to choose from in the simulations carried out.   
 

Predictably, the UC model shows higher capacity requirements and a relatively more 

flexible mix compared to the SC model. The differential in the total capacity mix results 

of the two models amounts to about 1.1 GW in favour of the UC model. This reflects the 

additional capacity needed to (1) meet the reserve requirement of the system, (2) support 

the system’s flexibility needs, and (3) account for the specific characteristics of thermal 

generating units, such as the indivisibility of the generating units, their minimum running 

levels, up and downtimes, and other dynamic considerations that are not captured by the 

SC model.  Interestingly, although the capacity mixes of the SC and UC models are 

materially different, the cumulative energy outputs of the two models are still comparable. 

The SC model underestimates the energy output of the OCGT technology by about 

12.5% but overestimates the energy output of the CCGT technology by about 8.5% 

compared to the UC model results. The difference in energy output with the carbon-

intense coal technology is almost negligible, being in the region of 0.6%. This explains the 

convergence of the carbon emissions results of the two models, as shown in Figure 32. 
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5.2.1.2 Emissions results  

 

 

Figure 32: CO2 emission results for the baseline scenario for the SC and UC models, showing comparative 
emissions levels under no renewable generation penetration. 

 

Figure 32 shows the emissions results of the SC and UC models in the absence of 

renewable penetration. Referring to the figure, we can make several observations.  

 

First, in line with the energy output variations trends, at the aggregate level, the SC model 

slightly underestimates the carbon emissions relative to the UC model. The estimated 

error appears to be insignificant, being in the region of 1.5%.  

 

Second, at the technology level, the SC model underestimates the carbon emission by 

25.9%, 7.6%, and 1.2% for OCGT, CCGT, and Coal, respectively, when compared to 

the UC model results. The increased emissions of the UC model appear to reflect the 

added fuel consumption of the units due to the partial loading efficiency penalty that the 

SC model is unable to capture. For example, while the energy output deviation between 

the two models for the OCGT technology is in the region of 13%, the carbon emission 

deviation for the same technology is about 26%. This reflects the fact that OCGT plants 

tend to consume more fuel and consequently emit more CO2 per MWh generated when 

partly loaded. However, due to its relatively low generation volumes at the system level, 

the additional emissions of partly loaded OCGT plants tend to have a limited effect on 

the overall system's emission deviation.      
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5.2.1.3 System cost results  
 

 
Figure 33: Total system cost for the baseline scenario for the SC and UC models under no renewable generation 

penetration.  

 

Figure 33 compares the system cost results of the SC and UC models in the absence of 

renewable penetration. It is important to note that, for the rest of the thesis, the cost results 

will be reported into four100 categories: (1) renewable cost101, (2) capacity cost102, (3) energy 

cost103, (4) startup costs104. In addition, in some cases, we will use term variable system cost 

to refer to the total energy and startup costs.  

 

As  the figure indicates, at the aggregate level, the SC model underestimates the total 

system cost by almost 6% compared to the UC model. Overall, the cost differences reflect  

(1) the additional cost of a more flexible generation mix, (2) the cost of reserves, (3) the 

cost of generation start-ups, and (4) the implied part-load operation costs that are not 

captured by the SC methodology.  

 

The cost difference is mainly driven by the capacity cost, which is off by about 8.4%. The 

energy cost deviation is modest, being less than 2.8%.  

 
100 Although CO2 emission cost category shows in the legend of many graphs, we do not use it in the presented study 

cases. It appears, however, to remind the reader about the ability of the models used to take into account the 
emissions costs in case carbon price is considered.    

101 This is driven by CAPEX and fixed O&M costs of renewable technologies.  
102 This is driven by the CAPEX and fixed O&M costs of conventional generators (i.e., fossil fuel based).  
103 This is driven by the fuel and variable O&M costs of conventional generators.   
104 This is driven by the startup costs of conventional generators.  

0.0

0.5

1.0

1.5

2.0

Screening Curve Unit Commitment

To
ta

l S
ys

te
m

 C
os

t [
BU

SD
]

Base Case Scenario (No Renewables)

Renewable Cost
Startup Cost
CO2 Emission Cost

Energy Cost
Capacity Cost



CHAPTER 5: BENCHMARKING RENEWABLE ENERGY SOURCES CARBON SAVINGS: A METHDOLOGICAL COMPARATIVE STUDY    

 
121 

5.2.2 Shallow and deep renewable penetration scenarios 
 

Building on the baseline scenario, in this subsection, we compare the results of the SC 

and UC models under shallow and deep renewable penetration scenarios of CSP 

technologies. Figure 34 - Figure 51 summarise the key result of this section.   

 

5.2.2.1 Optimum capacity mix results  

 

 
Figure 34: Comparison of the optimum technology mix results for the SC and UC models under shallow and deep 

renewable penetration scenarios of the CSP technology. 

 

Figure 34 compares the optimum technology mix results for the SC and UC models under 

shallow and deep renewable penetration scenarios of the CSP technology.  
 

Referring to the figures, we can make several observations:  
 

1. Under shallow and deep scenarios, SC model produces in both cases a less flexible 

technology mix compared to the UC model results.  
 

2. Under the low-penetration scenario, the SC model underinvests in all thermal 

technologies, but by uneven proportions. In particular, the SC model underinvests in 

OCGT, CCGT and Coal by about 28%, 43% and 2% respectively. Notably, in line 

with capacity mix results under no renewable scenario, the deviation of investment in 
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Coal generation assets seems to be insignificant, being in the region of 2% under the 

low-penetration scenario.  

 

3. By contrast, under deep renewable penetration, the SC model underinvests in OCGT 

and CCGT by about 74% and 52%, respectively. However, it overinvests in Coal 

assets by a significant margin of about 134%. This can be explained by the inherent 

inability of the SC model to capture the dynamic aspects of power system operations 

imposed by the deep renewable penetration and the additional flexibility required to 

run the system with high shares of renewables. As a result, SC models tend to 

overinvest into cheap, inflexible, and more carbon-intensive generation capacities 

when compared to the results of the UC models for the system under study. This 

particular fact has significant implications on the ability of SC models to accurately 

predict the system-wide carbon emissions under deep renewable penetration 

scenarios. We will discuss this in more detail in the following sections.   

 

5.2.2.2 Energy output results 

 

 
Figure 35: Energy output comparison for the SC and UC models under shallow and deep renewable penetration 

scenarios of the CSP technology. 

 

Figure 35 compares the energy output for the SC and UC models under shallow and deep 

renewable penetration scenarios of the CSP technology.  
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As shown in the figure, the deviation amounts of the two models under shallow and deep 

decarbonisation scenarios are substantially different.  

 

For example, under a low renewable penetration scenario, the SC model underestimates 

the cumulative energy output of the OCGT technology by about 8.5% but overestimates 

the output of the CCGT technology by about 1.3%. However, the energy output of the 

Coal technology is almost the same.  

 

In contrast, under deep renewable penetration, the SC model underestimates the 

cumulative energy output of the OCGT and CCGT technologies by about 76% and 

68%, respectively, relative to the results of the UC model. At the same time, it 

overestimates the energy output of the Coal technology by a significant margin of about 

97%.   

 

5.2.2.3 Emissions results  
 

 
Figure 36: Comparison of carbon emission results for the SC and UC models under shallow and deep renewable 

penetration scenarios of the CSP technology. 

 

Figure 36 compares system-wide carbon emissions of the SC and UC models under 

shallow and deep renewable penetration scenarios of the CSP technology.  
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Referring to the figure, we can make several observations.  
 

Firstly, in line with the energy deviation trends, the deviation figures of the carbon 

emission results are significantly different under the two renewable penetration scenarios. 

As Figure 36  shows, on the one hand, at the aggregate level, under the shallow renewable 

penetration scenario, the SC model slightly underestimates the system-wide carbon 

emissions relative to the UC model’s results by less than 2%. On the other hand, it 

significantly overestimates the total system emission results under the deep 

decarbonisation scenario by about 29%. This can in part be explained by the scale of the 

error in estimating the energy output of the carbon-intense Coal technology in both cases.  
 

Under shallow renewable penetration levels, the energy output difference with the 

carbon-intense Coal technology for the SC and UC models is negligible. Nevertheless, 

under the deep renewable penetration scenario, the energy output deviation of the Coal 

technology is almost double the output energy of the UC model by volume. This 

observation explains the convergence of the carbon emissions results of the two models 

under the shallow renewable penetration scenarios and their significant divergence under 

the deep decarbonisation scenario. 
 

Second, at the technology level, the SC model underestimates the emissions from the 

OCGT and CCGT technologies under both the shallow and the deep decarbonisation 

scenario. However, the scale of the deviation appears to vary with the renewable 

penetration level. Under the shallow penetration scenario, the carbon results deviations 

were in the regions of 23% and 13% for the OCGT and CCGT technologies, 

respectively. In contrast, under the deep penetration scenario, the carbon results 

deviations were in the regions of 80% and 70% for the same technologies.   
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5.2.2.4 System cost results  
 

 
Figure 37: Comparison of the system total costs for the SC and UC models under shallow and deep renewable 

penetration scenarios of the CSP technology. 

 

Figure 37 compares total system costs of the SC and UC models under shallow and deep 

renewable penetration scenarios of the CSP technology. As shown in Figure 37, the SC 

model underestimates in both cases the costs of the system compared to the cost estimates 

of the UC model.  
 

Under the shallow renewable penetration scenario, the SC model underestimates the total 

system cost by about 6%. In contrast, it underestimates the cost by 9% under the deep 

decarbonisation scenario.  

 

It is worth noting that under the shallow renewable penetration scenario, the system cost 

deviation is dominated by the differences in the capacity cost estimates across the two 

models. Conversely, the differences in the energy cost estimates tend to dominate the cost 

deviation figures under the renewable penetration scenario.   

 

5.2.3 Effect on the perceived carbon cost-effectiveness  
 

Building on the scenarios presented earlier, we run additional decarbonisation scenarios 

using the CSP technology. We summarise the findings in Figure 38 - Figure 40.   
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5.2.3.1 System-wide carbon emission estimates  
 

 
Figure 38: Projected system-wide carbon intensity trends using SC and UC modelling methodologies. 

 

Figure 38 shows the predicted system-wide CO2 carbon intensity based on the SC and 

UC models under different solar penetration scenarios.  

 

As indicated in the previous sections, in the absence of renewables, at the aggregate level, 

the SC model slightly underestimates the carbon emissions relative to the UC model. This 

trend of underestimating the emissions continues under shallow solar penetration levels. 

However, this trend is likely to change with increased renewable generation. The 

inflection point occurs under deeper penetration rates when the UC model gravitates 

towards investing more into flexible yet cleaner units to deal with the increased residual 

demand volatility and the flexibility requirement of the system with increased variable 

generation (i.e., mostly from coal-fired to gas-fired generation). The inability of the SC 

model to capture this leads to systematically overinvesting into cheaper but more polluting 

units, leading to overestimating the expected carbon emission intensity of the system 

under deep decarbonisation levels. This also gives rise to systemically underestimating the 

system's decarbonisation potential of the solar technology under consideration. 
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5.2.3.2 System-wide cost estimates  

 
Figure 39: Projected average energy cost trends using SC and UC modelling methodologies. 

 

Figure 39 shows the predicted average production energy cost of the system based on the 

SC and UC models under different solar penetration scenarios.  

 

We find that the SC methodology tends to systemically underestimate the system’s total 

cost when compared with the cost estimates obtained by the UC method. Simulation 

results show that the estimation errors range from about 6% to 9% under different 

penetration scenarios. Overall, the cost differences reflect (1) the additional cost of a more 

flexible generation mix, (2) the cost of reserves, (3) the cost of generation start-ups, and (4) 

the implied part-load operation costs that are not captured by the SC methodology.  

 

It is worth noting that the relative importance of these factors tends to change for different 

renewable penetration levels. For example, in the low-penetration scenarios, the largest 

cost differences tend to stem from the difference in the capacity costs of the two models. 

However, at higher penetration rates, the differences in operating costs dominate, as a 

result of higher operating costs (i.e., fuel cost and increased switching activities). 

Additional results are available in the results appendix. 
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5.2.3.3 Effect of the perceived carbon cost-effectiveness  

 

 
Figure 40: Projected carbon cost-effectiveness trends using SC and UC modelling methodologies. 

 

Figure 40 shows the projected carbon cost-effectiveness trends of the system based on the 

SC and UC models under different system decarbonisations levels.  

 

The results suggest that under deep decarbonisation scenarios, the SC method might in 

some cases, perhaps counterintuitively, overestimate the carbon abatement costs of 

renewables. This is mainly driven by the tendency of the SC method to underestimate the 

carbon savings of renewables under deep decarbonisation scenarios due to its inability to 

identify the coal-gas switch for the study case considered. This would suggest that the precision of 

estimating the system’s total carbon emission, in some cases, has the greatest influence on 

accurately estimating the economic effectiveness of the renewable decarbonisation 

process.”   

 

More generally, our results suggests that the choice of modelling methodology can in some 

cases, considerably influence the perceived economic effectiveness of the renewables to 

decarbonise electric systems and subsequently their carbon abatement costs estimates. 
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5.3 Effect of Minimum Running Thermal Generation 
 

In the earlier sections, we look at how the choice of modelling methodology of renewable 

decarbonisation studies can systematically alter their economic and carbon emission 

results and hence change the perceived competitiveness of renewables to decarbonise 

electric systems. We explored this question with a comparative case study featuring two 

of the well-established optimisation methodologies that have been used extensively in the 

literature to study the decarbonisation of power systems.  

 

In the following two sections, we look at how the optimisation model’s specification and 

the amount of technical detail included in decarbonisation studies affect the perceived 

economic competitiveness of renewable technologies to decarbonise energy systems. We 

identify and investigate several underexplored technical factors that have a great influence 

on the economic results of decarbonisation studies. Our study features side-by-side 

comparisons of UC optimisation models with, without, and with varying values of the 

identified technical factors. The results of the study strikingly show to what extent ignoring 

these factors can impact the economic results of decarbonisation studies. In the following 

section, we focus on the system-level technical factors and in the next section we address 

the unit-level technical factors that can largely affect the results of renewable 

decarbonisation studies.  

 

In considering different system-level technical factors, we identify the minimum running 

thermal load (MRTL) of the system or the system’s total rotating load as a key factor that 

is likely to have a large influence on the perceived economic competitiveness of 

renewables to decarbonise electric systems. We were unable to find a study that examined 

or quantified this effect before.  

 

The minimum thermal system’s load or the “inflexible generation” level exists in the 

system for many technical and commercial reasons. For example, some thermal-based 

generation technologies are typically kept online to increase the system’s mechanical 

inertia and hence to enhance the system’s stability. Other fossil-fuel-based technologies 

become a must-run generation in the system as a result of being part of a cogeneration 

scheme. The need to produce a constant stream of steam for other industrial processes, 
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such as water desalination, necessitates the plants to be on at all times, restricting their 

flexibility.  

 

In this section, we assumed two levels of the minimum running thermal load constraint 

of the system. In the baseline scenario, we assumed an MRTL constraint of 0.5 GW, 

which represents about 9% of the system’s peak load. In the second scenario, we assumed 

an MRTL constraint of 1 GW, as shown in Figure 41.   

 

 
Figure 41: Assumed minimum thermal running load levels for the scenarios considered in this section. 

 

 

5.3.1 Shallow and deep renewable penetration scenarios 
 

In this section, we compare the results of two UC models with different MRTL constraints 

under shallow and deep renewable penetration scenarios of CSP technologies. We seek 

to understand to what extent variations in the model’s specifications can alter the results 

of the models under different renewable penetration scenarios. Figure 42 -  Figure 51 

summarise the key result of this section.  However, we include the full results in the 

supplementary results appendix.   
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5.3.1.1 Optimum capacity mix results  

 

 
Figure 42: Comparison of the optimum technology mix results for UC models with different minimum thermal 

running load levels under shallow and deep renewable penetration scenarios of the CSP technology. 

 

Figure 42 compares of the optimum technology mix results for UC models with different 

minimum thermal running load levels under shallow and deep renewable penetration 

scenarios of the CSP technology.  

 

As indicated above, the capacity mix deviation of the two models under shallow and deep 

decarbonisation scenarios are substantially different. Under the shallow renewable 

penetration scenario, the MRTL constraints have no effect on the optimum technology 

mix of the system 
 

On the other hand, under the deep renewable penetration scenario, the MRTL 

constraints have a significant effect on the optimum technology mix as the system’s 

dynamics becomes more pronounced. In particular, the UC model with a high MRTL 

constraint underinvests in OCGT and CCGT by about 29% and 33%, respectively. 

However, it doubles the capacity investment in the Coal technology relative to the 

investment level of the UC model with a lower MRTL constraint. This can be attributed 

to the reduced flexibility needs imposed by the higher MTRL level as a result of the 

reduced volatility of the residual demand and the increased incidence of curtailment.  
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5.3.1.2 Energy output results  
 

 
Figure 43: Energy output comparison for UC models with different minimum thermal running load levels under 

shallow and deep renewable penetration scenarios of the CSP technology. 

 

Figure 43 compares of the energy output for UC models with different minimum thermal 

running load levels under shallow and deep renewable penetration scenarios of the CSP 

technology. As shown in the figure, under the shallow renewable penetration scenario, 

the MRTL constraint has no effect on the energy output of the system. By contrast, under 

the deep renewable penetration scenario, the MRTL constraint has a significant impact 

on the energy out of the system's generating units. In particular, the UC model with a 

high MRTL constraint underestimates the cumulative energy output of the OCGT and 

CCGT technologies by about 4% and 67%, respectively. However, the energy output of 

the Coal technology is more than doubled.  
 

5.3.1.3 Carbon emissions results  
 

 
Figure 44: Carbon emission results comparison for UC models with different minimum thermal running load 

levels under shallow and deep renewable penetration scenarios of the CSP technology. 
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In line with energy output results, under the shallow renewable penetration scenario, the 

MRTL constraint does not affect the carbon emission estimates of the system, as shown 

in Figure 44.  

 

However, under the deep renewable penetration scenario, the MRTL constraint has a 

significant impact on the system's emissions. At the aggregate level, the UC model with a 

high MRTL constraint overestimates the carbon emissions of the system by about 39% 

relative to the results of the UC model with a lower MRTL constraint. This can be 

attributed to increased investment in and more utilisation of less flexible and yet more 

polluting generation technology (i.e., coal) at the expense of more flexible and relatively 

cleaner technologies (i.e., OCGT and CCGT) when a higher MRTL constraint is 

enforced. In terms of specifics, the UC model with high MRTL constraints 

underestimates the carbon emissions of the OCGT and CCGT technologies by about 4% 

and 66%, respectively. At the same time,  the energy output of the Coal technology is 

more than doubled.  

 

5.3.1.4 System cost results  
 

 
Figure 45: System total cost comparison for UC models with different minimum thermal running load levels 

(MRTL) under a shallow and deep renewable penetration scenario of the CSP technology. 

 

Figure 45 compares the system cost results for UC models with different minimum 

thermal running load levels under shallow and deep renewable penetration scenarios of 

the CSP technology. As shown, under the shallow renewable penetration scenario, the 

MRTL constraint does not affect the total system cost estimates. Furthermore, under the 

deep renewable penetration scenario, the higher MRTL constraint has a marginal effect 
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on carbon emissions of the system at the aggregate level. However, estimates of the 

capacity and energy costs have sizable deviation percentages.  
 

5.3.2 Effect on the perceived carbon cost-effectiveness  
 

 
Figure 46: Projected system-wide carbon intensity under different MRTL levels. 

 

Figure 46 shows the projected system-wide carbon intensity under different MRTL levels. 

As shown in Figure 46, we find that changing the system’s minimum thermal running 

generation from 500 MW (about 9% of the system’s peak load) to 1000 MW has limited 

impacts on the decarbonisation results under low-penetration scenarios. However, under 

deep decarbonisation scenarios, the effect of the minimum thermal running generation 

constraint of the model on estimating the system-wide carbon emission becomes more 

pronounced.  
 

For example, at a 5 GW penetration rate, this results in about a 39% deviation in 

estimating the total system carbon emission. This substantial difference in total carbon 

emission could be attributed to (1) the reduced decarbonisation potential and increased 

incidence of curtailment due to the increased thermal generation base and (2) a 

disproportionate increase in capacity investment and energy output from carbon-

intensive units (i.e., coal), which apparently becomes the more cost-effective option when 

a higher thermal generation base is enforced.  
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Figure 47: Projected average production cost of the system under different minimum running thermal load 

(MRTL) levels and renewable penetration scenarios. 

 

In addition, we find that the difference in total system cost is about 4% between the two 

aforementioned scenarios, as Figure 47 indicates. However, under low-penetration 

scenarios, the cost estimates are the same. Figure 48 shows how relatively small variations 

in the system’s minimum running load can greatly influence the perceived economic 

competitiveness of renewables to decarbonise electric systems and hence the projected 

abatement costs of renewables.  

 
Figure 48: Projected carbon cost-effectiveness trends using two UC models with different levels of MRTL 

constraints.  
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5.4 Effect of the Units’ Dynamic Constraints  
 

In the previous section, we examined the impact of a system-level technical factor, the 

MRTL, on the results of renewable decarbonisation studies. In this section, we investigate 

a unit-level technical factor that can largely affect the results of renewable decarbonisation 

studies. In particular, we considered the impact of including and excluding the minimum 

up- and downtimes of the generating units on the perceived economic competitiveness of 

renewables to decarbonise electric systems. We were unable to find a study that examined 

or quantified this effect before. In the interest of brevity, we will briefly summarise the 

results of the case in Figure 49, Figure 50 and Figure 51. However, we include the full 

results in the supplementary results appendix.   
 

 
Figure 49: Projected carbon cost-effectiveness trends with and without enforcing the minimum up- and 

downtimes of generating plants. 

 

Interestingly, we find that imposing the minimum up- and downtime constraints results 

in a relatively large difference in the projected carbon emission savings under deep 

decarbonisation scenarios. For example, running the previous baseline scenario without 

imposing the units’ minimum up- and downtime constraints results in about a 19% 

increase in the total system emissions. This carbon emission increase reflects the natural 

tendency of the optimiser to invest in a more polluting, less flexible, and cheaper 

generation mix in the absence of the dynamic constraint. Yet this also demonstrates how 

the exclusion of merely one dynamic constraint can impact the accuracy of the carbon 

projections of decarbonisation studies.  
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Figure 50: Projected average energy production cost of the system with and without enforcing the minimum up- 

and downtimes of generating plants. 

 

We find that the difference in cost estimates is very modest in the region of about 4% 

under a deep renewable penetration scenario, as indicated in Figure 50. Furthermore, 

Figure 51  shows how excluding one of the unit’s dynamic constraints can greatly 

influence the perceived economic competitiveness of renewables to decarbonise electric 

systems and hence the projected abatement costs of renewables.   

 

 
Figure 51: Projected carbon cost-effectiveness trends with and without enforcing the minimum up- and 

downtimes of the generating plants.  
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5.5 Research Findings and Policy Implications 
 

The scenarios presented in this study are not meant to predict the renewable carbon emissions savings 

from a particular system or to be generalisable to all systems in the same way or to the same extent. Instead, 

they serve as a diagnostic tool to understand a range of possible shortcomings in the 

current modelling practices. In essence, they are meant to identify patterns of possible 

systematic inaccuracies or biases in renewable decarbonisation results. In addition, these 

scenarios help evaluate to what extent methodological bias can alter the perceived cost-

effectiveness of renewable technologies to decarbonise electric systems. Although further 

research will be required to confirm and refine these findings for different electric systems, 

these findings already highlight some important trends and insights. We can summarise 

them as follows.   

  

We find that the tendency of the SC method to overestimate or underestimate the long-

term carbon savings of renewables depends largely on the renewable penetration rates 

and the decarbonisation level of the system under study. We find that under low and 

moderate renewable penetration rates and decarbonisation levels, at the aggregate system 

level, the SC method tends to slightly underestimate or even overestimate the carbon 

offsets of renewables. We find that the carbon projection error is too small to markedly 

affect the perceived cost-effectiveness of renewables to decarbonise electric systems.  

 

However, under deeper decarbonisation scenarios and renewable penetration rates, we 

find that the SC method can systemically underestimate the long-term carbon emission 

offsets. As a result, this leads to a systematic alteration of the projected estimates of the 

carbon abatement costs of renewables and the system-wide decarbonisation costs. We find 

that for coal-dominated systems, the scale of the errors is large enough to question the 

robustness and the quality of the carbon saving projections and subsequently the carbon 

abatement costs of renewables. Further research is needed to quantify the scale of the 

errors for systems with no or little coal generation assets. We also find that the SC method 

tends to systematically underestimate the total system costs. However, our results suggest 

that for deep decarbonisation studies, the perceived cost-effectiveness of renewables to 

decarbonise electric systems hinges predominantly on the accuracy of the long-term 

carbon projections or estimates of the system.        
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One relevant policy insight is that policymakers and researchers should pay special 

attention when evaluating the carbon emission projections of renewable deep 

decarbonisation studies carried out using the SC method. While it provides an excellent 

first approximation for carbon projections at shallow decarbonisation levels, there is 

convincing evidence to question the validity of its projections at deeper decarbonisation 

levels. Our results suggest that in some cases, the “accuracy penalty” might outweigh the 

speed and light data requirement benefits of SC models. The accuracy penalty appears 

to vary with the renewable penetration level105.  Researchers should be aware of the limits 

of this trade-off and the acceptable “operating bandwidth” of SC models, especially when 

doing long-term carbon emissions projections.   

 

In addition, while we find that SC models can underestimate the theoretical carbon saving 

potential of renewables, we also find that SC models can underestimate the role of 

renewables in the decarbonisation process. More generally, one important insight is that 

renewables might have an underappreciated but nonetheless important role in 

accelerating the deep decarbonisation process of energy systems that goes beyond their 

conventional role as “carbon-free energy producers”. Our research finds that some 

renewables act as “decarbonisation accelerators” by unnoticeably facilitating the fuel 

switching from high-carbon-intensity fuels to low-carbon-intensity fuels, particularly from 

coal to gas. Our research suggests that the increased flexibility requirements for running 

a system with a higher share of weather-dependent renewables are expected to attract 

more investment in technologies with high-flexibility characteristics (e.g., gas-fired 

OCGT). In addition, our results suggest that even in the absence of a carbon price, more 

flexible technologies with mid-Capex, high-Opex technologies (e.g., gas-fired CCGT) will 

be more economically viable to meet the baseload demand at the expense of the less 

flexible high-Capex, low-Opex technologies (e.g., coal-fired steam technology).  

 

It is worth noting, given the system size and the specific technologies mix considered in 

this study, this finding cannot be extrapolated to all electric systems. Neither it can be 

transferable to many systems in the same scale. Electric systems differ significantly in terms 

 
105 The error margin becomes materially significant after the coal-gas switch for the system under study and as it tends 

to increase with increased renewable penetration under the deep penetration scenarios considered. However, this 
might not be the case for other systems..  
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of their fleet technology composition and their relative sizes. For example, the large-scale 

deployment of weather-dependent renewables to some systems with a high share of 

nuclear power might not necessarily lead to the same effect reported. Similarly, for 

systems dominated by gas technologies, the deep penetration of renewables might lead to 

an increase in the production from inefficient but flexible gas units at the expense of the 

production from more efficient, less polluting and yet less flexible units due to the 

increased flexibility requirements of the system. However, given that the global energy 

system is still dominated by coal generation, such finding should not be discounted from 

the current debate about the role of renewables as a potential accelerator to the transition 

towards a low carbon energy system 

 

One relevant policy implication is that renewables might accelerate the retirement of 

existing coal generation assets much sooner than expected. This might increase the risk 

of “stranded assets” of the existing generation plants. Furthermore, it implies that in the 

future, coal generation plants must compete with other thermal plants with respect to 

both production cost and flexibility provision basis. We believe that the technical 

improvement of coal plant flexibility capabilities will be critical in this regard.  

 

In addition, our research suggests that in the long run, and even in the absence of a carbon 

pricing scheme, the projected carbon saving gains from the indirect fuel switching effect 

induced by adding more renewables might in some cases outweigh the carbon saving 

benefits of the direct capacity displacement effect. This occurs because the capacity and 

energy value of renewables tend to fall sharply under deep decarbonisation scenarios. 

Although this might not be observable in all systems, it is expected to be strongest in coal-

dominated systems, especially under deep decarbonisation scenarios. Yet, given that the 

global electricity mix is still dominated by coal-fired stations (IEA, 2019), our research 

suggests that this less obvious and often-forgotten role of renewables as decarbonisation 

accelerators should not be discounted from the current debate about the value of 

renewables in decarbonising electric systems. For some, this might count as a rather 

positive, unintended consequence of adding renewables to electric systems. For others, it 

might add another layer of complexity in analysing the long-term environmental and 

capacity value of renewables.  
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In terms of UC models, our results showed that using UC models does not automatically 

make the carbon predictions error free. Our results indicate that the technical 

specification of UC models has a significant impact on the accuracy of the long-term 

carbon projections and subsequently on evaluating the costs of the renewable 

decarbonisation process. We identify several technical factors that, if omitted, would have 

a large influence on the accuracy of the results. In particular, we find that considering the 

minimum running thermal generation of the system has a great influence on the accuracy 

of the decarbonisation results of UC models for a small system like that of Qatar. More 

generally, we find that the relative importance of these factors changes over time as the 

system decarbonises. For example, we find that the carbon savings of renewables will 

initially be dominated by the static factors of renewable integration, such as the capacity 

and energy values of renewable generation. This explains the convergence of different 

variations in the results of UC models at low-penetration scenarios. However, as the 

system decarbonises, the accuracy of the UC results will hinge upon the representation of 

the dynamic aspects of power systems. This explains the divergence between the different 

UC model variants at particularly deep decarbonisation levels as the interplay between 

these factors becomes more pronounced. In other words, our work suggests that the 

influence of variations in the specifications of UC models is more apparent under deep 

decarbonisation scenarios.  
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6.1 Introduction  
 

Building on the methodological work presented in Chapter 5, in this chapter, we look in 

depth at the relative importance of various technical factors that affect the renewables' 

ability to make sustained and cost-effective carbon reductions. We study the underlying 

drivers and mechanisms in which these factors affect the economics of the decarbonisation 

process. The guiding questions of this chapter are, how, why and to what extent can the 

technical variations across renewable technologies affect the cost-effectiveness of the 

decarbonisation process? We investigate these questions using several comparative case 

studies featuring different types of renewable technologies.  

 

We use the same input data and simulation assumptions given in CHAPTER 3: 

METHODOLOGY & DATA. In following sections, we will briefly present and comment 

on some of the simulation results of this case study. In particular, we will focus on the deep 

decarbonisation scenarios as the effects of the variations in the production profiles of 

renewable technologies become more pronounced. We include additional simulation 

results in the supplementary results appendix.  

 

Finally, we present several original insights related to the subject and discuss important 

policy implications.  

 

6.2 Case 1: Impacts of Renewable Technology Characteristics on the 
Economics of Decarbonisation 
 

In this section, we investigate to what extent variations in the technological characteristics 

across renewable technologies can affect the economics of the decarbonisation process. In 

particular, we provide comparative case studies featuring two renewable technologies 

with different technological characteristics: PV and wind technologies. 

 

Table 14 summarises the key technical and economic data of the two technologies. The 

reader is encouraged to refer to section  

3.5.3 Renewable resource data and capacity factors to compare the two technologies’ production 

profiles and to review the full details of their full technical and cost data. 
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Technology   PV Wind 
        

Capacity Factor % 22.8% 29.0% 
Overnight Capital Cost USD/kW 1810 1560 
Opex (Fix) USD/kW-yr 24.67 39.55 
Project Lifetime Yr 30 30 
Discount Rate % 5.0% 5.0% 

        
Table 14: Key technical and economic assumptions summary for the PV and wind technologies 

 

In the following sections, for brevity, we compare the decarbonisation results of the PV 

and wind models developed under deep renewable penetration scenarios.  
 

6.2.1 Deep renewable penetration scenarios results  
 

In this subsection, we present and compare the results of the PV and wind models under 

the deep renewable penetration scenarios. In the following section, we discuss the findings 

of our case studies. 
 

6.2.2.1 Capacity mix results  
 

 

Figure 52: Optimum capacity mix results comparison between the PV technology and wind technology models 
under deep renewable penetration scenarios (5 GW) 

 

Figure 52 compares the optimum capacity mix results of the PV and wind technology 

models under a 5 GW penetration scenario. In comparison to the shallow scenario, both 

PV and wind technologies fail to make additional thermal capacity savings under the deep 
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penetration scenarios. Furthermore, the deep penetration of the two technologies results 

in material changes to the structure of their respective capacity mixes. We can summarise 

some of the changes in the capacity mix in the following points. 

 

First, the PV technology mix has greater CCGT and fewer coal assets compared to the 

wind technology mix. In particular, the PV capacity mix has an additional 0.9 GW of 

CCGT assets and is short of 0.6 GW of coal assets relative to the wind technology’s 

capacity mix figures. This represents an increase of about 33% for the CCGT technology 

and a reduction of about 27% relative to the wind capacity levels.  

 

The considerable increase in the system flexibility requirements needed to run the system 

due to the higher volatility of the residual demand under the deep PV penetration rates 

can explain this difference. As Figure 53 indicates, the penetration of PV technology leads 

to a substantial increase in the thermal start-up activities. This explains the reduced 

effectiveness and competitiveness of coal generators to follow the system’s load under 

these demand conditions due to their less flexible characteristics and substantially more 

expensive start-up costs. Conversely, perhaps counterintuitively, the wind mix has slightly 

more OCGT generators. This can be explained by the variations in the scale of the 

flexibility requirements needed to run the system and the subsequent relative cost-

effectiveness of the different thermal technologies to meet them.  

 

 
Figure 53: Thermal generation start-up activities results comparison between the baseline model and the PV 

technology model under a deep penetration scenario (5 GW) 
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In particular, we find that although the volatility of the solar residual demand is greater 

than the volatility of the wind residual demand at the aggregate level, wind penetration 

can nevertheless cause a few erratic incidents of residual demand throughout that year. 

These few events tend to max out the flexibility characteristics of the incumbent thermal 

fleet requiring more investment in flexible assets with great load-following capability, 

which can be switched on and off in a short time frame. That explains the optimiser’s 

decision to invest in additional OCGT assets, which becomes the most cost-effective 

option to cover the system’s flexibility requirement for a few hours during the year due to 

its low investment costs. On the one hand, this underscores the role of demand response 

in saving thermal capacity with increased renewable penetration. On the other hand, this 

highlights the importance of keeping extra flexibility assets to deal with the possible erratic 

variations in residual load given the inherent variable and uncertain nature of the 

renewable generation.  

 

Figure 54 shows the reduced ‘utilisation effect’ of the OCGT assets under the deep 

penetration scenarios. As the figure indicates, the commitment incidents of the additional 

OCGT units needed for flexibility provision are substantially lower than the fleet’s 

average. We argue this effect can have many significant implications. One particular issue 

is that the investment in these flexibility assets might not be financially viable on an energy 

output basis given their very low utilisation figures. We will discuss this in more detail later 

in the chapter.  

 
Figure 54: Statistical summary about the commitment incidents of the OCGT fleet under the PV and wind scenarios  
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6.2.2.2 Energy output results 
 

 
Figure 55: Energy output results comparison between the PV technology and wind technology models under deep 

renewable penetration scenarios (5 GW) 

 

Figure 55 reveals significant changes to the energy output mix of the PV and wind 

technology models under 5 GW penetration scenarios. As Figure 55 indicates, wind 

power achieves deeper energy penetration rates. In particular, the differential in the 

cumulative energy output of the two technologies amounts to 2.66 TWh. This represents 

about a 33% increase in the energy output relative to the PV energy production levels. At 

the system level, however, this represents about 13% of the total system energy demand.  
 

This can be explained by the higher capacity factor of wind power compared to PV 

technology and the lower curtailment rates of wind relative to its production levels. For 

example, the total curtailed PV energy amounts to about 18% of the total. By contrast, 

for wind energy, despite having a higher capacity factor, the total curtailed wind energy 

amounts to about 15% of the total generated energy due to the higher variance of the 

shape of its load profile because the output is less concentrated at particular times. In line 

with the capacity mix changes, PV outperforms wind in terms of offsetting the energy 

generated from coal. More specifically, PV technology displaces an additional 1.74 TWh 

from coal as a result of having fewer coal generators; this represents a 14% reduction in 

energy output levels from coal relative to the wind scenario. By contrast, wind technology 

outperforms PV in offsetting the energy generated from OCGT and CCGT technologies. 

In particular, wind technology displaces an additional 0.01 TWh and 4.40 TWh from 
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OCGT and CCGT technologies, respectively, relative to the PV displacement figures. 

This translates to reducing the energy output levels by 4% from OCGT and 53% from 

CCGT relative to their respective production levels under the PV technology penetration 

scenario.  
 

6.2.2.3 Carbon emissions results  

 
Figure 56: Carbon emissions results comparison between the PV technology and wind technology models under 

deep renewable penetration scenarios (5 GW) 

 

As Figure 56 indicates, the two technologies result in comparable CO2 emission savings. 

The differential in CO2 emission levels between the two technologies amounts to 0.18 

Mton in favour of wind technology. This represents about a 1% reduction in CO2 

emission levels relative to the emissions levels of the PV model. This can be explained by 

the higher capacity factor of the wind model relative to the PV model and the ability to 

achieve deeper energy penetration levels.  

 

In line with the energy mix displacement trends, PV outperforms wind in terms of 

offsetting the CO2 emission generated from coal. Conversely, it underperforms wind 

technology in terms of offsetting CO2 emission generated from OCGT and CCGT 

technologies. This explains the comparable level of CO2 emission between the two 

scenarios despite the higher capacity factor and deeper energy penetration levels of wind 

technology because PV tends to displace more carbon-intensive energy. 
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6.2.2.4 System costs results  
 

 
Figure 57: System costs results comparison between the PV technology and wind technology models under deep 

renewable penetration scenarios (5 GW) 
 

Figure 57 and Table 15 reveal significant changes in the total cost trends under deep 

renewable penetration scenarios. Due to their importance, we will summarise them in the 

following points:  
  

Table 15: System costs results comparison between the PV technology and wind technology models under deep 

renewable penetration scenarios (5 GW) 

 

1) Overall cost trend 
 

As Table 15 indicates, wind technology penetration results in much cheaper total system 

costs when compared to the total costs of the PV system under the deep penetration 

scenario. The differential in the cost is about 256 MUSD, which represents about 10% of 

the total system cost relative to the PV model results. Notably, the differential in the 

annualised capacity costs of the two renewable technologies is negligible and amounts to 

about 0.3% of the total system cost. In other words, although the two technologies have 

almost the same capacity investment costs, due to their different technical characteristics, 
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they tend to have very diverse impact on the system’s costs structure. In turn, this has 

significant impact on their relative cost-effectiveness in saving carbon emissions. We will 

discuss this in more detail in a later section of this chapter. 
 

2) Capacity cost  

In line with the capacity mix figures presented earlier, PV results in a cheaper capacity 

mix as a result of having fewer coal generation assets compared to the wind mix; this 

explains the cheaper conventional capacity costs of the PV system. As Table 15 indicates, 

the differential in capacity costs amounted to 99.1 MUSD, which represents about a 13% 

reduction in capacity cost compared to the wind cost levels. 
 

3) Variable cost of conventional plants106 

Similar to the results of shallow penetration scenarios enclosed in the results appendix, 

changes in the cost of producing energy from conventional generators are the main driver 

of the system cost differential between the two technologies. However, under the deep 

penetration level, we notice a major shift in both the scale107 and the direction108 of this trend’s 

underlying driver. Due to the significance of these issues, we will separately summarise 

them in the following points:  
 

Variable costs escalation pace 

For example, under the shallow renewable penetration scenario (1 GW), the differential 

in energy costs of the two technologies was about 22 MUSD in favour of wind. By 

contrast, under the deep renewable penetration scenario (5 GW), the differential in energy 

costs amounted to 293 MUSD. This implies that increasing the PV capacity penetration 

by five times results in an increase in the cost differential of more than thirteen times. 

Similarly, under the PV 1 GW scenario, the start-up costs were about 11 MUSD. By 

 
106  We would like to remind the readers that variable costs of conventional plants are driven by the fuel, variable 

O&M, and startup costs of conventional generators.   
107 Refers to the pace at which the energy system costs decrease or escalate as a result of additional renewable 

penetration. For example, the increase of 10% generation from certain renewable technology may lead to a 5% 
increase in the energy cost of the system. However, a 20% increase in renewable generation may inflate the energy 
cost by 25% resulting in an unequal impact on the system cost for an equal increase in renewable generation 
penetration level. 

108 Refers to the way in which the renewable generation impacts the system’s energy cost structure (i.e. reducing or 
increasing the energy cost of the system).  The system energy cost is primarily driven by the fuel and operation 
costs of conventional plants. In many cases, the introduction of renewable generation leads to a reduction in the 
total energy costs as a result of fuel and operation costs savings from conventional plants that otherwise will be 
dispatched to meet demand. However, in some cases, the large-scale introduction of renewable generation might 
raise the energy cost of the system as the work of this thesis shows.  
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contrast, under the 5 GW scenario, the start-up costs exceeded 100 MUSD. In other 

words, under deep penetration scenarios, PV technology tends to raise the system’s 

variable cost. In addition, our simulations indicate that under the shallow and 

intermediate penetration scenarios, the penetration of the two technologies consistently 

results in an overall reduction in the energy cost relative to the base scenario. However, 

under the deep penetration scenario, this consistent trend is broken because PV 

technology leads to an increase in the total energy cost of the system relative to the 

baseline scenario.  

 
 

Drivers of variable costs escalation  
 

Under the shallow renewable penetration scenario, the differential in energy costs of the 

two technologies was largely driven by the variation of their respective capacity factors. 

In particular, the higher capacity factor of wind is the major driver underlying the energy 

cost differentials. However, under the deep penetration scenarios, we notice that the 

increase in the system’s energy cost is mainly driven by the substantial increase in the baseload 

generation costs of the system. This can be explained by the significant shift in the capacity mix 

and the subsequent substantial increase in the energy output towards more flexible, yet 

more expensive, technologies (mostly from coal to CCGT) under the deep PV scenarios. 

More specifically, the substantial increase in the flexibility requirements imposed by the 

deep penetration of PV makes flexible mid-Capex, high-Opex technologies (i.e. CCGT) 

more economically viable to meet the residual demand at the expense of the less flexible 

high-Capex, low-Opex technologies (i.e. coal-fired steam technology).  
 

In addition, the increased incidence of curtailment tends to limit the effectiveness of PV 

generation to make a deeper energy penetration, subsequently continuing to contribute 

to lowering the total energy system cost. This explains the increase in the energy system 

cost of the system compared to the baseline scenario. These factors combined tend to 

increase the ‘baseline’ of the energy costs at the system level109. We argue this often-

overlooked and largely unnoticed effect can have many significant implications. One 

 
109 It is worth noting that the minimum thermal generation running generation was assumed to be 500 MW, which 

represents 9% of the system’s peak load and about 28% of the system’s minimum load. Increasing this level might 
further increase the incidence of curtailment, preventing PV from further contributing to lowering the system costs. 
Conversely, this might reduce the residual demand volatility of the system and contribute to increasing the output 
levels from the cheap coal assets. It is particularly interesting to examine the sensitivity of this effect to changes in 
the minimum thermal generation running generation levels of the system.  
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particular implication is that in some cases the indirect increase in the baseload generation 

costs can outweigh the energy savings gained from the penetration of the ‘zero marginal 

cost’ renewable generation. Equally, this would suggest that renewable technologies vary 

significantly in terms of not only the scale of their influence on the energy market but also 

the direction of their influence. For example, we find that wind penetration consistently 

leads to a decrease in the energy cost on the system in the scenarios considered. By 

contrast, we find that under deep penetration scenario, PV penetration might lead to an 

increase in the energy costs of the system. This is particularly important in the context of 

energy-only markets. We will discuss this in more detail in this chapter’s findings sections.  

 

6.2.2 Effect on the perceived carbon cost-effectiveness  

 

 
Figure 58: Projected carbon cost-effectiveness trends of the PV and wind technologies models under different 

decarbonisation levels 

 

Figure 58 shows how the carbon reduction cost-effectiveness of the system changes across 

a range of different penetration and decarbonisation scenarios for both the PV and wind 

technologies.  

 

Notably, the carbon saving differentials between wind and solar technologies were modest 

under both the shallow and deep decarbonisation scenarios for the system under study. 
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In particular, the carbon saving differentials between the two technologies were in the 

range of 1% to 2% relative to the total system emissions under the different scenarios 

considered in favour of wind; however, wind technology has a clear edge in terms of its 

cost-effectiveness to reduce carbon emission. 

 

This can be explained by wind technology’s ability to deliver higher costs savings at the 

system level relative to the system’s costs incurred under the PV penetration scenarios. In 

particular, the penetration of wind results in a cheaper total system cost due to its higher 

capacity factors, its less volatile residual load and its ability to achieve higher maximum 

energy penetration rates compared to PV technology. These factors combined allowed 

wind to deliver more OPEX savings relative to the PV models’ OPEX costs. Of note, the 

differentials in the investment costs in both technologies were negligible. Nevertheless, the 

differentials in their respective system-level costs amounted to about 10% of the total 

system cost in favour of wind.  

 

Building on this, our results suggest that the variations in the technical characteristics of 

renewable technologies can have a marked influence on the economics of the 

decarbonisation process. For example, decarbonising the system by 50% will lead to an 

almost 20% increase in the system cost using wind technology, whereas doing so would 

increase the system cost by almost double percentage points (nearly 39%) using PV 

technology.  

 

6.3 Case Study 2: Impacts of Renewable Production Profiles on the 

Economics of Decarbonisation 

 

6.3.1 Scenario assumptions  

 

As indicated in our first case study, each GW of wind technology produces about 27% of 

usable energy than GW of solar110. As discussed earlier, the deeper energy penetration 

 
110 The total DC-to-AC conversion losses were about 10% of the generated energy. This is a conservative estimate. 

Recent research reports much lower losses figures that might further increase the PV output levels of the baseline 
scenario (Baumgartner, 2017). 
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levels of wind generation influenced its ability to (1) save carbon and (2) deliver cheaper 

total system costs, thereby levelling up its relative cost-effectiveness against PV technology.  

 

In this case study, we control for the variations in the cumulative energy output levels of 

the two technologies reported in our first case study by considering comparable 

cumulative energy output levels for the two technologies rather than comparing them on 

an equivalent capacity penetration basis . The new comparison is meant to allow us to 

capture the impact of the variations in the production profiles of the two technologies, 

irrespective of their underlying renewable resource’s strength. In particular, we seek to 

uncover the impact of the variations in ‘production profiles’ of renewable technologies on 

the economics of the decarbonisation process without factoring in the renewable 

resources’ variations in strength and potential.” 

 

In reality, this implies building additional PV capacity relative to the PV baseline scenario 

to allow the PV units to achieve energy penetration levels comparable to that of wind 

technology. In the interest of consistency and ease of comparison, we assumed 

comparable cost production levels of the PV and wind technologies. In the context of the 

previous case, this implies a sufficient drop of the per KWe cost of PV technology that 

would give an equal cost per MWh generated relative to wind technology’s production 

costs.  

 

For brevity, in this section, we will present and comment on some of the simulation results 

of this case study. In particular, we focus on the deep decarbonisation scenarios because 

the impact of the variations in the production profiles of the two technologies is more 

pronounced. However, we include additional simulation results in the supplementary 

results appendix.  
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6.3.2 Simulation results 
 

6.3.2.1 Capacity mix results  
 

 
Figure 59: Optimum capacity mix results comparison between the PV technology and wind technology models 

under deep renewable penetration scenarios (5 GW) 

 

As Figure 59 indicates, the capacity mixes of the two PV scenarios are materially different 

under the deep penetration scenario. In particular, the PV scenario with the higher 

capacity (PV Scaled) results in an additional 0.6 GW of CCGT capacity at the expense of 

0.6 GW coal capacity, relative to the baseline PV scenario. This represents an increase of 

about 18% in CCGT generation assets and a reduction of about 33% in coal assets 

relative to the baseline PV scenario. The shift in capacity mix is mainly driven by the 

increased volatility of residual demand due to the deeper penetration levels of the PV 

generation. This tends to reduce the effectiveness of the coal assets and attracts more 

flexible generation.  

 

6.3.2.2 Energy output results 

 

Figure 60 shows the changes in the energy mix under the deep decarbonisation scenarios. 

Referring to the figure, we can make several observations.  

 

First, by comparing the PV (scaled) and wind scenarios, we can note the following: 
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Figure 60: Energy output results comparison between the PV technology and wind technology models under deep 

renewable penetration scenarios (5 GW) 

 
 

1) As Figure 60 indicates, despite having the same energy generation levels, wind power 

still outperforms PV technology in terms of its deeper energy penetration ability. At 

the aggregate level, wind displaces an additional 1.73 TWh of thermal energy 

compared with the scaled PV penetration scenario; this represents about 19% of the 

total PV energy consumed by the system. 

2) The variations in the energy curtailment levels of the two technologies can explain the 

differential in the energy penetration levels. This is driven by the underlying 

significant variation in the shape of their respective production profiles and the 

subsequent correlation with the system’s demand profile.  

3) At the technology level, the total curtailed wind energy amounted to about 15% of 

the total generated power. By contrast, the total curtailed PV power amounted to 

about 28% of the total generated power. 

 

Second, by comparing the two PV scenarios, we can note the following: 

 

1) Under the scaled PV scenario, the generated PV energy increased by 2.71 TWh 

compared to the baseline scenario. Nevertheless, the system consumed only an 

additional 0.94 TWh overall. The curtailed power amounted to 1.77 TWh, which 
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represents a 98% increase in power curtailment levels compared to the baseline PV 

scenario despite the fact that the energy output levels increased by only 27% relative 

to the baseline scenario.  

 

2) Regarding the changes in displacement trends, as indicated in Figure 60, the energy 

mixes of the two scenarios are substantively different. In line with the changes in the 

capacity mix, the scaled PV model outperforms the baseline PV model in offsetting 

the energy generated from OCGT and coal technologies. In particular, the scaled PV 

model displaces an additional 0.01 TWh and 3.76 TWh from OCGT and coal 

technologies, respectively, relative to the baseline PV displacement figures. This 

translates to reducing the energy output levels by 3% from OCGT and 30% from 

coal relative to their respective production levels under the baseline PV penetration 

scenario. Conversely, this leads to an increase in the output levels from the CCGT 

technology. The differential represents a 34% increase in the energy output level 

relative to the PV baseline scenario.  

 

6.3.2.3 Carbon emissions results  
 

 
Figure 61: Carbon emissions results comparison between the PV technology and wind technology models under 

deep renewable penetration scenarios (5 GW) 

 

Figure 61 shows the changes in carbon emission trends under the deep decarbonisation 

scenarios. Referring to the figure, we can make several observations.  
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First, by comparing the PV (scaled) and wind scenarios, we can note the following: 
 

1) Despite its lower energy penetration levels compared to wind technology (as 

indicated earlier), PV technology is able to deliver more emission savings 

compared to wind at the aggregate level. Variations in their respective capacity 

and energy mix mainly drive this difference. The differential in the carbon 

emissions levels amounts to 1.92 Mton, which represents about 16% of the total 

PV emissions level. 
 

2) More importantly, this implies that the impact of the underlying shifts in the 

capacity and energy mixes caused by the PV and wind technologies penetration 

can outweigh their direct energy displacement effect in terms of their potential to 

save carbon emissions at the system level, especially under deep penetration 

scenarios. This would equally suggest that the variations in the renewable 

technologies’ production profiles have a critical impact on the renewables’ ability 

to save carbon emissions that goes beyond their direct energy displacement effect. 

We will discuss this in further detail later in the chapter.  

 

Second, by comparing the two PV scenarios, we can note the following: 
 

1) Under the scaled PV scenario, the generated CO2 emissions dropped by 2.1 Mton 

compared to the baseline scenario. This represents a reduction of 15% relative to 

the baseline PV scenario.  
 

2) Regarding the changes in displacement trends, the differential in the CO2 

emission levels of the two PV models is dominated by the reduction in the coal 

emission levels. In particular, the scaled PV model outperforms the baseline PV 

model in offsetting the CO2 emissions generated from coal by 3.15 Mton; this 

represents a reduction of about 30% relative to the baseline PV model. 

Conversely, the CO2 emissions displacement from the OCGT technology 

amounted to only 0.01 Mton, which represents about a 3% change relative to the 

levels of the PV baseline scenario. Furthermore, emissions levels from CCGT 

technology are up by 1.06 Mton; this represents about a 32% increase relative to 

the baseline PV scenario.  



CHAPTER 6: BENCHMARKING RENEWABLE ENERGY SOURCES CARBON SAVINGS: A TECHNICAL COMPARATIVE STUDY    
 

 
159 

6.3.2.4 System costs results  

 
Figure 62: System costs results comparison between the PV technology and wind technology models under deep 

renewable penetration scenarios (5 GW) 

 

Figure 62 shows the changes in the carbon emission trends under the deep 

decarbonisation scenarios. Referring to the figure, we can make several observations.  

 

First, by comparing the PV (scaled) and wind scenarios, we can note the following: 

1) Overall, the increase in the PV technology’s energy penetration levels leads to a slight 

reduction in the total system costs. Nevertheless, the changes in the two systems’ cost 

structure have become more pronounced under the scaled PV scenario.  

2) In particular, the differentials in the capacity and energy costs of the two systems have 

further expanded. For example, the differential in the capacity costs under the 

previous scenario amounted to 99.1 MUSD in favour of the wind scenario. Under the 

PV scaled scenario, the differential amounted to about 204 MUSD. Similarly, the 

energy cost differential amounted to 293 MUSD under the previous scenario; 

however, the differential amounted to 412 MUSD under the PV scaled scenario.  

 

Second, by comparing the two PV scenarios, we can note the following:  

1) As indicated in Figure 61, at the aggregate level, the increase in PV technology’s 

energy output levels leads to a slight reduction to the overall cost by about 26 MUSD. 

This represents about 1% of the total system costs. Nevertheless, the cost structures of 

the two scenarios are materially different.  
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2) In particular, under the scaled PV scenario, the capacity cost is down by about 106 

MUSD; this represents about a 14% reduction in the capacity costs relative to the 

baseline PV scenario. The retirement of the high CAPEX coal plants can explain this 

change. 

3) By contrast, the energy cost of the system increased by about 119 MUSD under the 

scaled PV scenario; this represents a 12% increase in the energy cost relative to the 

baseline PV scenario. Crucially, although the PV energy penetration further increases 

under the scaled scenario, this does not contribute to reducing the system’s total 

energy costs. This further confirms and validates our earlier findings concerning the 

amplification effect that the volatile PV generation has on the energy costs of the 

system, especially under the deep penetration scenario. This further underscores the 

significance of the production profile’s role in dictating the nature and scale of the 

economic impact that renewables would have on the energy market. 

4) Interestingly, although the number of start-ups increased under the scaled PV 

scenario, the system’s start-up costs dropped by about 40 MUSD nevertheless. This 

represents about a 39% reduction in the start-up costs relative to the baseline PV 

scenario; this occurrence can be explained by the retirement of the coal assets, whose 

start-up costs are particularly high when compared to the other thermal technologies’ 

start-up costs.  

5) As Figure 63 indicates, CCGT technologies are taking a leading role in providing 

the flexibility requirement needed under the deep PV renewable scenarios. We will 

discuss this point in more detail when we discuss our research findings. 
 

 

Figure 63: Thermal generation start-up activities results comparison between the baseline model and the PV 
technology model under a deep penetration scenario (5 GW) 
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6.3.3 Effect on the perceived carbon cost-effectiveness  
 

 

 

 
Figure 64: Projected carbon cost-effectiveness trends of the PV and wind technologies models under different 

decarbonisation levels 

 

Overall, the scaled PV scenario outperforms the baseline PV scenario in terms of its cost-

effectiveness in decarbonising the electric system under consideration. This can be 

explained by the lower system costs and the greater carbon reductions delivered per GW 

of the higher, load-factor scaled PV scenario.  
 

 

In addition, Figure 64  shows that the cost of achieving a given percentage reduction in 

emissions is lower with the scaled PV scenario than in the original PV case, but higher 

than with wind energy. The amount of PV output required for a given reduction in 

emissions tends to be identical between the two PV scenarios (since the pattern of PV 

output over time, and the fossil fuels that are displaced, are matching), but in the scaled 

PV scenario, this PV output comes at a lower unit cost. 
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6.4 Case Study 3: Impacts of Renewable Production Profile Variability on 
the Capacity and Flexibility Requirements of an Electric System  
 

In previous case studies, we explored the effect of variations in the production profile of 

technologies with different underlying renewable resource characteristics. In particular, 

we were interested in capturing the effect of the ‘shape’ of the production profile on 

influencing the economics of the decarbonisation process. In this case study, however, we 

focus on the effect of the ‘variability’ of the production profile on the economics of the 

decarbonisation process. We investigate this effect using a case study that features two 

technologies that share the same underlying renewable resource but have different 

variability levels in their respective output levels. In particular, we present a case study 

comparing the deep decarbonisation of the electric system using PV and CSP 

technologies.  

 

Figure 65 shows the variation in the standard deviation of the residual profiles of the two 

technologies under different renewable penetration scenarios. As the figure suggests, the 

variability of the CSP is greater than the variability of the PV profile.    

  

 
Figure 65: Variation in the standard deviation of the residual profiles of the two technologies under different 

renewable penetration scenarios 
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The increased variability of the CSP profile is driven by the following: 
 

1) The high sensitivity of CSP solar resources to variations in weather conditions. 

This is due to the fact that unlike solar PV, which utilises both the direct and 

indirect components of sunlight known technically as the Global Horizontal 

Irradiance, CSP technologies use only the direct component of sunlight, known 

technically as the Direct Normal Irradiance. For example, the direct component 

of sunlight represents up to 90% of the total sunlight during sunny days; however, 

it is negligible on cloudy days (Taylor et al., 2013). Equally, dust conditions can 

prevent direct sunlight from reaching the CSP mirrors, thereby largely affecting 

negatively its production levels even during extremely sunny days. 

   
2) The nonlinear relationship between the underling solar resources and CSP plant 

output. Unlike PV power, which converts sunlight directly to electricity, CSP 

plants concentrate the sun’s rays to heat fluids, which in turn are used to run a 

thermodynamic cycle that converts heat to electricity. This explains the 

nonlinearity of the relationship between the underlying solar resources and CSP 

energy output.  
 

It is worth noting that we actively did not consider a CSP system with a thermal storage 

(1) due to our limited knowledge in terms of jointly optimising the operation of a CSP 

plant and the operation of the power system at the same time (2) and more importantly 

because the existence of thermal storage might have a large smoothing effect on the 

production profile of the CSP plant, which would defeat the purpose of this case study 

because it focuses on the ‘variability’ effect of the renewable profile on the economics of 

decarbonisation studies.       

 

Similar to the previous, we use the same input data and assume the same simulation 

assumptions in CHAPTER 3: METHODOLOGY & DATA. In following sections, we will 

briefly present and comment on some of the simulation results of this case study. Similar 

to the previous case study, we will also focus on the deep decarbonisation scenarios as the 

effects of the variations in the production profile become more pronounced. We also 

include additional simulation results in the supplementary results appendix.  
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6.4.1 Simulation results 
 

6.4.1.1 Capacity mix results  

 
Figure 66: Optimum capacity mix results comparison between the PV and CSP technology models under deep 

renewable penetration scenarios (5 GW) 

 

Figure 66 compares the optimum generation technology mix results of the PV and CSP 

models under the deep (5 GW) penetration scenarios. As Figure 66 indicates, the capacity 

mixes of the PV and CSP models are materially different under the deep penetration 

scenario. Referring to the figure, we can make the following observation:  
 

Compared to the PV model, the CSP model is characterised by the following 

(1) a more flexible technology mix 

(2) and perhaps more importantly, an increase in the total thermal capacity 

requirements for running the system compared to the PV model 

At the aggregate level, the increase in thermal capacity requirement amounts to 0.9 GW. 

This represents about a 14% increase in the thermal generation assets compared to the 

levels of the PV scenario.  
 

This can be explained by a reduction in the operational availability of the incumbent 

thermal plants and subsequently their dispatchability potential due to the substantial 

increase in the number of starts and stops under the deep renewable penetration scenario. 

In particular, the significant increase in the thermal plants’ shutdown frequency reduces 

their effective operational availability to be re-dispatched again due to the minimum 
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downtime constraints of the units. Equally, the significant increase in the number of starts 

reduces the number of units available to respond to the sharp reduction in the system’s 

demand as a result of the minimum uptimes of the units. This, in turn, attracts additional 

investments in thermal capacity to compensate for the reduced dispatchability of the 

incumbent thermal plants to maintain the system’s ability to respond to rapid upward or 

downward changes in demand under high renewable penetration scenarios.  

 

For example, when a CCGT plant is stopped, it can be unavailable to be dispatched again 

for six hours. In other words, although the unit is counted as ‘installed capacity’ for 

statistical purposes, nevertheless it would not be contributing to the system adequacy from 

an operational perspective during its ‘minimum downtime’ period. Equally, when the 

same unit is started, due to certain technical considerations and the high startup costs of 

the unit, it should be kept online for up to six hours before it can be stopped again. This 

restricts the number of units that can be stopped during this period and subsequently 

affects the operational flexibility options available to the system operator to respond to a 

steep downward change in the system’s demand. Moreover, the minimum stable 

generation level of each individual unit further restricts the number of units that can be 

partially loaded, forcing the system operator to de-commit more units under steep 

downward load changes — thereby affecting the dispatchability potential of more thermal 

units. 
 

 
Figure 67: Thermal generation startup activities results comparison between the baseline, shallow, and deep 

penetration scenarios for the CSP technology   
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It is worth noting that under normal circumstances of relatively gradual changes in the 

system demand, the effective dispatchability of the power plants is also affected by the 

start and stop activities of thermal units. However, the scale of this effect tends to be more 

pronounced with the increased frequency in the rapid changes in the system demand. 

This explains the increase in the capacity investment in thermal generation under the 

deep penetration scenario compared to the capacity investment levels under the baseline 

and shallow decarbonisation scenario.  
 

The below figures compare the variations in residual demand as a result of deep 

penetration of PV and CSP technologies under heavy load conditions for a selected 

number of hours.  

 

 
Figure 68: Variations in residual demand under heavy load conditions and deep penetration scenario for the PV 

technology for selected hours of the year 

 

 
Figure 69: Variations in residual demand under heavy load conditions and deep penetration scenario for the CSP 

technology for selected hours of the year 
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CSP technology penetration tends to increase the level of volatility and the frequency of 

rapid changes in residual demand. This explains the additional investment in the OCGT 

assets, which have great load-following capability and can be started and stopped in a 

relatively short period of time compared to other types of thermal plants. 

 

To illustrate this point further, we ran the same CSP technology scenarios without 

enforcing the minimum up and downtime limits of the thermal units.  

 

Table 16 presents the optimum capacity mix results for a deep decarbonisation scenario 

with and without enforcing the minimum up and minimum downtimes constraints the 

thermal generating units.  

 

    Units Constraints 
Not Modelled 

Units 
Constraints 

Modelled 
    

  Baseline 5 GW CSP  5GW CSP Diff Diff 
  [GW] [GW] [GW] [GW] [%] 

OCGT 0.75 0.90 2.40 1.50 167
% CCGT 1.80 3.30 3.60 0.30 9% 

Coal 3.90 2.10 1.20 -0.90 -
43% CCS Coal 0.00 0.00 0.00 0.00 - 

        
  

Total 
Thermal 

6.45 6.30 7.20 0.90 14% 
Table 16: Optimum capacity mix with and without enforcing the minimum up and minimum downtime 

constraints of the thermal generating units under deep CSP technology penetration scenarios 

 

As Table 16 indicates, without enforcing the minimum up and downtime constraints, 

increasing renewable penetration does not lead to an increase in the thermal capacity 

requirement to run the system under the deep renewable penetration scenarios 

considered. This is because despite not enforcing the constraints, the effective availability 

and dispatchability of the thermal plants were not affected by the start and stop activities 

of the units. Not enforcing the constraints implies that, in practice, the system operator 

can sequentially switch the thermal plants on and off at the beginning of each dispatch 

period regardless of their respective operation statuses prior to that. In reality, however, 

this does not reflect the actual operations of power systems, which are largely dictated by 

the physical and thermodynamic characteristics of the generating units. 
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To illustrate this point further, we compare variations in the maximum committed 

capacity and the total installed capacity over the overall simulation period with and 

without enforcing the unit’s dynamic constraints, under the simulated deep CSP 

penetration scenario (5 GW).  

 

  Units Constraints Not 
Modelled 

Units Constraints 
Modelled 

  [GW] [GW] 
Peak System Load  5.35 5.35 
Peak Residual Load111 5.17  5.17 
Maximum Committed Capacity 6.30 6.30 
System Installed Capacity  6.30 7.20 

Table 17: Variations in maximum committed capacity and maximum installed capacity with and without 
enforcing the unit’s dynamic constraints under deep CSP penetration scenarios (5GW)  

 

As Table 17 indicates, without enforcing the units’ constraints, the maximum committed 

capacity amounts to 6.3 GW, which satisfies the optimisation conditions of meeting the 

maximum residual demand, in addition to the system reserve margin111 totalling about 

6.2 GW.  

 

Furthermore, the simulation results indicate there is no difference between the total 

maximum capacity committed during the overall simulation period and the total capacity 

installed to run the system when the units minimum up and downtimes are not enforced. 

This implies that, without enforcing the constraints, the investment decision regarding the 

total capacity requirements for running the system is dictated by the need to meet the 

system’s peak demand plus the respective reserve margin at the highest periods of system 

demand.   

 

In contrast, when the units’ constraints were enforced, as Table 17 indicates, the total 

maximum capacity committed during the simulations period did not change. 

Nevertheless, the total system capacity did. This implies that, with increased renewable 

penetrations, the investment decision in the total capacity is not only dictated by the 

ability of the system to meet the demand and reserve requirement under peak hours but 

also depends on meeting the flexibility requirement at the system level. In particular, the 

 
111. Reserve margin amounted to 1.03 GW at the peak demand.  
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optimiser tends to invest in more thermal assets to compensate for the reduced 

dispatchability of the incumbents’ thermal units that were affected by the increased start 

and stop activities due to the renewable penetration.  

 

Furthermore, to understand the value of flexibility of the thermal fleet in saving additional 

investment in thermal capacity, we ran the same CSP scenario again while considering 

half the minimum up and minimum downtimes of the units considered in the previous 

scenario. Table 18 summarises the results of our simulation.  

 

     Full  
Min Up/Downtime 

Half   
Min Up/Downtimes     

  Baseline Deep Penetration  Deep Penetration  Diff Diff 
  [GW] [GW] [GW] [GW] [%] 
OCGT 0.75 2.40 1.20 -1.20 -50% 
CCGT 1.80 3.60 3.30 -0.30 -8% 
Coal 3.90 1.20 1.80 0.60 50% 
CCS Coal 0.00 0.00 0.00 0.00 - 
CSP 0.00 5.00 5.00 0.00 -       
Thermal 6.45 7.20 6.30 -0.90 -13% 

 Table 18: Optimum capacity mix with enforcing (1) full and (2) half the minimum up and minimum downtime 
constraints of the thermal generating units’ deep penetration scenario of the CSP technology  

 

As Table 18 indicates, halving the minimum up and downtimes of the thermal fleet has a 

considerable impact on saving investments in thermal capacity. Referring to the table, we 

can make the following observations:   

 

1. At the aggregate level, more flexible thermal fleets result in a reduction of 0.9 GW in 

thermal capacity requirement compared to the baseline scenario. This represents 

about a 13% reduction in thermal generation assets compared to the levels of the less 

flexible generation fleet.  

 

2. The savings in the thermal capacity are dominated by savings in the flexible OCGT 

assets. In particular, the more flexible thermal fleet results in 1.2 GW savings in 

investment in OCGT assets. This represents a 50% reduction in the OCGT assets 

relative to the less flexible fleet. Equally, this represents 19% of the total thermal 

installed capacity of the system.  
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3. This would suggest the flexibility characteristics of the thermal fleets play an important 

role not only in terms of enabling the integration of renewable generation but also in 

terms of determining the extent to which renewable generation can affect the 

effectiveness and adequacy of the incumbent generation fleet and subsequently the 

ability of renewables to save thermal capacity.  

 

 

6.4.1.2 Energy mix results 

 
 Figure 70: Energy output results comparison between the PV and CSP technology models under deep renewable 

penetration scenarios (5 GW) 

 

 Figure 70 reveals significant changes to the energy output mix of the PV and CSP 

technology models under the 5 GW penetration scenarios. Figure 70 indicates that, 

although CSP has a higher capacity factor, both technologies tend to achieve comparable 

energy penetration rates. This can be explained by the higher curtailment incidences for 

CSP.  

 

In terms of energy displacement trends, in line with the changes in the capacity mix, the 

CSP outperforms PV in offsetting the energy generated from coal technologies as a result 

of needing a more flexible generation mix to deal with the increased residual demand 

volatility.   
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6.4.1.3 Carbon emission results  
 

 
Figure 71: Carbon emissions results comparison between the PV and CSP technology models under deep 

renewable penetration scenarios (5 GW) 

 

Figure 71 illustrates the changes to the CO2 emission results of the PV and CSP 

technology models under the 5 GW penetration scenarios. 

 

Figure 71 shows that CSP outperforms PV in terms of delivering greater CO2 emission 

reductions due to its ability to displace more coal energy than PV. At the aggregate level, 

the differential between the two models amounts to 1.57 Mton. This figure represents 

about an 11% reduction in CO2 emission at the system level.    

 

6.4.1.4 System costs results   
 

Figure 72 shows the changes in the carbon emission trends under the deep 

decarbonisation scenarios. Referring to the figure above, we can briefly make several 

observations: 
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Figure 72: System costs results comparison between the PV and CSP technology models under deep renewable 

penetration scenarios (5 GW) 

 

1) The cost differential between the two scenarios is massive. The CSP model causes the 

total system cost to increase by about 1.53 BUSD, which represents a 60% increase 

in the total system costs compared to the PV technology model. This massive system 

cost differential is by far dominated by the differential in their respective technology 

investment costs.   

2) The conventional capacity cost is cheaper under the CSP scenario due to having fewer 

coal assets.  

3) The cost of energy is higher under the CSP scenario despite the fact that CSP achieves 

higher energy penetration levels compared to PV. The differential in energy costs 

amounts to 214 MUSD, which represents a 22% in energy cost compared to the PV 

scenario. This further reinforces our earlier observation about the role of renewable 

profile volatility in inflating the energy cost of recipient systems.      

4) Furthermore, interestingly, we note that, although the number of startups increased 

under the CSP scenario, nevertheless the startup costs of the system dropped by about 

40 MUSD. This represents about a 40% reduction in the startup costs relative to the 

PV scenario. This can be explained by the retirement of the coal assets, whose startup 

costs are particularly high when compared to the startup costs of other thermal 

technologies.  
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Figure 73: Thermal generation startup activities results comparison between the PV and CSP technology model 

under deep penetration scenarios (5 GW) 

 

6.4.2 Effect on the perceived carbon cost-effectiveness  

 

Figure 74   shows how the carbon reduction cost-effectiveness of the system changes across 

a range of different penetration and decarbonisation scenarios for both the PV and CSP 

technologies. 

 
Figure 74: Projected carbon cost-effectiveness trends of the PV and CSP technology models under different 

decarbonisation levels 
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It is worth recalling that CSP was able to outperform PV in terms of its ability to save 

carbon per GW capacity addition because it was able to displace more coal assets 

compared to PV. Nevertheless, CSP had a significant edge in terms of its cost-effectiveness 

regarding decarbonising the electric system under consideration. This can be explained 

by the ability of PV to deliver much cheaper total system costs.  

 

It might be relevant to note that slope of the mostly linear region of the curve seems to be 

predominantly driven by the capex of the renewable technologies. While the profile 

characteristics seems to influence the steepness of the second slope of the curve (i.e., 

beyond the knee point)112 

 

Again, this would suggest that the relative system-level cost differentials between the two 

technologies tend to have more weight in terms of altering their respective carbon cost-

effectiveness than their carbon-saving differentials.  

 

6.5 Research Findings, Implications, Insights, and Conclusions   
 
6.5.1 Effect of technological variations on the environmental value of 
renewables  
 

Our research suggests that the variations in the technical characteristics of renewable 

technologies can have a large influence on the economics of the decarbonisation process. 

We found that the strength of this influence depends on the way by which the technical 

characteristics affect both the long-term economic and environmental values of renewables. 

 

In analysing the environmental value trends of renewables, we found that the mechanisms 

by which the variations in production profiles of renewables affect the carbon-saving 

potential change with increased penetration. In particular, we noted that, under the 

shallow and intermediate penetration level, the carbon-saving potential of renewables 

tends to be dominated by static factors such as variations in capacity factors across 

renewable technologies or the direct113 ‘energy displacement’ mechanism. Overall, we 

 
112  This note was added to the manuscript after passing my viva examination. I would like to thank my examiners Prof. 

Peter Taylor and Dr. Iain Staffell for bringing this observation to my attention.  
113. Reducing the carbon emissions released from the energy system by directly displacing the energy that would be 

otherwise generated from carbon-emitting technologies. The environmental value of the renewable generation 
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noted that, under shallow penetration rates, technologies with higher capacity factors tend 

to displace more carbon emissions per GW installed. However, under deeper penetration 

rates, we found that the environmental value tends to be dominated by dynamic factors, 

such as the shift in the capacity and energy mix as a result of the variations in the flexibility 

requirements to run the system. The technologies that attract more flexible requirements 

to run the system tend to achieve higher marginal savings per GW installed as a result of 

the indirect ‘fuel switching’ effect or mechanism (i.e., a shift in the fuel consumption trend 

from mostly coal-based generation to gas-based generation). This explains the ability of 

PV to achieve more carbon savings than wind technology in the second case when the 

two technologies achieve comparable capacity factors. Overall, we found that the scale of 

these dynamic effects is proportional to the renewable penetration levels.  

 

6.5.2 Effect of technological variations on the economic value of renewables  
 

In terms of the economic value of renewables, our results suggest that the relative system-

level cost differentials arising from the variation in production profiles of renewables can 

be quantitatively significant in terms of influencing the economics of the decarbonisation 

process. Furthermore, our results indicate that renewable technologies not only differ on 

the scale of their relative system-level costs but also vary significantly in the nature and 

breakdown of their respective system costs.  

 

As indicated in the three cases presented earlier, we discovered that carbon abatement 

cost-effectiveness is influenced by the relative system-level cost differentials across the 

different renewable technologies considered.  

 

One relevant insight is that the ability or the potential of renewable technology to save 

carbon emissions at the system level (i.e., measured in Mton of CO2 eq basis) does not 

necessarily guarantee its cost-effectiveness in decarbonising the electric system. One 

important policy insight is that the failure to internalise the economic value and the 

system-level cost differentials delivered by renewables in the evaluation process of 

investment and incentive programmes is likely to lead to misguided or suboptimal long-

term policy decisions. Equally, the failure to take into account the additional costs 

 
hinges upon the type of displaced carbon technology. Broadly speaking, the more carbon-intensive the displaced 
energy, the higher the environmental value delivered by the renewable generation. 
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required to run a system with a high share of weather-dependent renewables is likely to 

lead to suboptimal policy and investment decisions as well. At the policy level, this would 

suggest the following recommendations:  

 

• We recommend policymakers carefully consider both the expected carbon 

emissions savings and the system-level cost differentials or potential savings of 

renewables in their analysis and evaluation processes.   

• We also recommend policymakers keep a close eye on the changes in the 

environmental and economic values of renewables as the system decarbonises. 

The result of our research clearly establishes that both the carbon-savings 

potential of renewables and their respective cost differentials dynamically change 

as the system decarbonises.  

• This would also suggest that extra caution is required in drawing inferences about 

the cost-effectiveness of the decarbonisation process of power systems through 

expanding the use of renewables compared to other conventional low-carbon 

technologies, such as CCS and nuclear.    

 

6.5.3 Changes to the economic value of renewable capacity  
 

Our results suggest that the economic value of the capacity value tends to be the highest 

at shallow penetration scenarios. We also found that the capacity value of renewables 

drops significantly with increased penetration. This tends to wipe the direct economic 

value that arises from the thermal capacity savings at the system level. This suggests that 

the system-level savings arising from the direct capacity value of renewable capacity are 

of little significance in terms of influencing the economics of the decarbonisation process, 

especially under the deep renewable penetration scenarios. This further suggests that the 

energy value of renewables might outweigh the capacity value in terms of its contribution 

to the long-term economic value of renewables.  

 

At the policy level, this thus implies the following: 

 

• The synergies between the production profiles of renewable technologies and 

electric systems with some degree of correlated demand (i.e., solar technology and 
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system demand with relatively high midday demand) might be overvalued in the 

long run.   

• This would also suggest that renewable assets can be overvalued in terms of their 

long-term economic value given the fast pace of capacity value depreciation. 

 

6.5.4 Effect of technological variations on energy mix and costs    
 

Our results indicate that the variations in the production profiles of renewables can affect 

the scale, nature, and mechanisms by which renewable penetration can affect the energy 

mix and costs.  

 

Our research indicates that, in most cases, the increased renewable penetration leads to a 

reduction in the variable cost of the system. However, we found that this does not 

necessarily hold true for all technologies under all penetration scenarios. The mechanism 

by which the technical characteristics of renewables manifest their effects on the total 

energy cost can change significantly under deep decarbonisation scenarios.   

 

For example, we found that the penetration of wind technology consistently leads to a 

decrease in fuel or variable costs at the system level. In contrast, the PV and CSP 

technologies in some cases could lead to an increase in the system-level variable costs 

under particularly deep penetration scenarios. This can be explained by the significant 

shift in the technology capacity mix and the subsequent substantial increase in the energy 

output levels from more flexible yet more expensive technologies (mostly from coal to 

CCGT) under the deep PV and CSP penetration scenarios. More specifically, the 

substantial increase in the flexibility requirement imposed by the deep penetration of PV 

and CSP would make flexible technologies with mid-Capex, high-Opex technologies (i.e., 

gas-fired CCGT) more economically viable to meet the baseload demand at the expense 

of the less flexible high-Capex, low-Opex technologies (i.e., coal-fired steam technology).  

 

In addition, the increased incidence of curtailment tends to limit the effectiveness of 

renewable generation, causing deeper energy penetration and subsequently contributing 

to lowering the total energy system costs. These factors combined tend to increase the 

‘baseline’ of the energy costs at the system level. We found the pace of baseload cost 

escalation hinges upon the volatility level of the residual demand. This in turn depends 
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on the variability of the renewable profile and its respective level of correlation with the 

system demand. This explains why wind power tends to consistently suppress the total 

variable energy cost of the system. In fact, we argue that, under deep penetration levels, 

the volatility of the renewable profile acts as an amplifier to the energy cost of the system.  

 

In addition, we argue that despite the fact renewables enjoy almost a zero-marginal cost 

at the technology level, this does not necessarily hold true at the system level. The cost 

externality caused by the variability of the renewable profile can be substantial in some 

cases. This happens when the increase in the conventional generation costs grow at a 

much faster pace than the cost savings that arise from the penetration of renewable 

generation. However, we found this effect to be negligible under the shallow penetration 

scenario. Although we recognise that this effect might only materialise under particularly 

deep renewable penetration scenarios that are characterised by a high level of residual 

demand volatility (i.e., PV and CSP generation), we believe this effect should not be 

discounted from the possible economic implications of deep renewable decarbonisation.  

 

Furthermore, we argue that this effect might give rise to several serious concerns, 

particularly in the context of the ‘energy-only’ market. One possible implication is that 

this effect increases the level of financial risk exposure that the incumbent thermal plants 

with the least flexibility characteristics might face as a result of the expected reduction in 

their utilisation factors. In particular, under these circumstances, incumbent thermal 

plants will be required to compete not only on a production cost basis but also on their 

ability to provide system flexibility as well. More research is required to evaluate the extent 

to which this effect could affect the financial viability of incumbent plants with limited 

flexibility characteristics.    

 

6.5.5 Effect of technological variations on the flexibility requirement of the 
electric system   
 

As indicated earlier, our simulations under deep penetration rates reveal that the 

variations in the generation profiles of renewables can have a large influence on the 

flexibility requirements of the system. In relation to this point, we summarise our findings 

in the following points: 
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First, our results suggest that increased renewable penetration can reduce the effectiveness 

of thermal generation units, particularly in high penetration scenarios. In particular, we 

found that a significant increase in thermal plant startups and shutdown frequency 

reduces the effective dispatchability potential of the incumbent thermal plants, thereby 

affecting their potential utilisation levels.   

 

Second, our simulations indicate that, under particularly volatile demand conditions, the 

increased renewable penetration might attract additional investment in conventional 

dispatchable generation to (1) compensate for the reduced dispatchability of the 

incumbent thermal plants and (2) maintain the system’s ability to respond to rapid upward 

or downward changes in demand under high renewable penetration scenarios. This 

would indicate that, in some cases, additional renewable penetration might have a 

negative marginal capacity credit.  

 

Third, building on the previous point, we identify the flexibility characteristics of thermal 

units as an additional indirect driver that can influence the capacity value of renewables. 

Although this might not be a prime driver in terms of affecting the capacity value of 

renewables under the low and intermediate penetration rates, nevertheless we found 

evidence to suggest that, under deep penetration scenarios, the inflexibility of thermal 

plants can further reduce the capacity value of renewable capacity.  

 

Fourth, it is worth noting that although in some cases high penetration of renewables 

might attract additional generation capacity as a result of the increased flexibility 

requirements to run the system, we did not find evidence this will eventually lead to 

increasing carbon emissions at the system level. 

 

Fifth, in analysing the drivers of the increase of the flexibility requirement, we identify the 

relative level of volatility (or) smoothness of the residual demand as a key determinant that 

largely dictates the level of flexibility and hence the technology mix needed to integrate 

the renewable generation.  

 

At the policy level, the previous points mentioned would suggest the following:   
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• The results underscore the importance of the ‘capacity adequacy’ issue under the 

envisioned deep renewable decarbonisation scenarios.  

• For energy-only markets, this also might imply the need to introduce a capacity 

payment mechanism to ensure the realisation of investments in the ‘capacity 

adequacy’ of the system, especially because investments in these flexibility assets 

might not be commercially justified on an energy-output basis as a result of their 

low utilisation factors.  

• Perhaps counter-intuitively, our results suggest that extra renewable curtailment 

might be needed to reduce the volatility in the residual demand and prevent a 

large reduction in the operational effectiveness and the displaceability potentials 

of the incumbent generation fleet. Given the limited scope of this work, further 

research is needed to confirm the validity of this reasonably informed speculation.  
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7.1 Key Research Conclusions  

 

Thematically, the work of this thesis is related to several streams of literature on the 

economics of renewable energy resources. In addition, several findings of this thesis 

contribute to the growing body of literature addressing the environmental value of 

renewables. For brevity, in the following sections, we discuss the key conclusions of our 

research and their expected contributions to these streams of literature.  

 

7.1.1 Theoretical conclusions 

 

The first key, stream of literature related to our work is the growing body of studies that 

examines the environmental benefits delivered by renewable technologies. Examples of 

these studies include Hawkes (2010), Hart and Jacobson (2012), Fell and Linn (2013), 

Cullen (2013), Kaffine et al. (2013), Wheatley (2013), Marcantonini and Ellerman (2015), 

Novan (2015), Cullen and Mansur (2017), Thomson et al. (2017), Staffell (2017), 

Marcantonini and Valero (2017), and O’Mahoney et al. (2017). Importantly, the results 

of our research corroborate the findings of these studies which reported varying marginal 

emissions savings potential for different renewable technologies.  

 

In addition, several studies have investigated the economic inefficiencies that raise from 

allocating production and capacity-based incentives for renewable technologies that 

deliver different external environmental benefits. Examples of these studies include 

Novan (2015) and Callaway et al. (2018). Crucially, however, a key outstanding gap 

identified in this stream of literature is how can a policymaker allocate fair economic 

incentives for renewable generators delivering varying environmental values at different 

stages of the system decarbonisation process. One important contribution of our research 

is the development of a theoretical framework and specific mathematical metrics that will help 

policymakers in designing and allocating optimum subsidy levels for different renewable 

technologies at different decarbonisation levels of the system. To the best of our knowledge, this 

is the first theoretical framework trailered for this purpose. We believe that using the 

ECCE values of the framework will greatly help policymakers in internalising the 

heterogeneity of environmental benefits delivered by different renewable technology types 

or locations in their economic assessments.  
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7.1.2 Methodological conclusions 
 

Our work is related to many studies that investigated how the modelling methodology of 

renewable integration studies can affect their results. One key, related stream of literature 

looks at how differences in modelling methodology can influence the accuracy of carbon 

saving estimates of renewables such as Hart and Jacobson (2011) and Palmintier and 

Webster (2016). Yet, another key, related stream of literature to our work focuses on the 

effect of differences in modelling methodology on electricity mix, investment decisions, 

and system costs rather than on quantifying the environmental benefits and the carbon 

savings of renewables. Examples of this stream of literature include De Jonghe et al. 

(2011), Belderbos and Delarue (2015), and Poncelet et al. (2016). One important 

contribution of our work is reconciling and linking the insights of these two valuable 

streams of literature by offering a combined economic and environmental treatment of 

the subject.  
 

For example, the findings of our research are consistent and complementary to the 

findings of Palmintier and Webster (2016) who reported a significant difference in the 

CO2 emission results of an SC- and a UC-based optimisation models. Relative to their 

work, however, our work has the advantage of shedding more light on the extent to which 

can the differentials of carbon emission estimates of the two methods impact the perceived 

economic effectiveness of renewable to decarbonise the energy system.   

 

Similarly, our work extends the work of Belderbos and Delarue (2015) who compared the 

optimum capacity mix of a traditional SC model and a more detailed model using mixed-

integer linear programming (MILP) for different large-scale penetration scenarios of wind 

power for the Belgian system. In essence, the results of our study are consistent with 

Belderbos and Delarue's results which highlight the tendency of the model with 

operational constraints to invest more in a more flexible generation mix with increased 

renewable penetration (i.e., a shifting trend from baseload generation towards mid- and 

peak-load generation). Similar findings have been reported by De Jonghe et al. (2011) 

who compared the optimum capacity mix of a traditional SC model and a more 

technically detailed linear programming (LP) model under several wind energy 

penetration scenarios for the Belgian system. Although their results did not show 

significant differences in the peak load plant mixes for the two models, they reported a 
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shift in energy output from baseload to mid-load generators in the more technically 

detailed LP model. In contrast to these studies, however, our study digs a little a bit deeper 

and explores the individual technical factors that can strongly affect the capacity mix 

results of renewable decarbonisation studies. For example, in one case study, we explore 

the effect of including or omitting the minimum running up- and downtimes for the 

generation plants in unit commitment models as opposed to only comparing the results 

of renewable integration study of load duration optimisation-based models (i.e., SC 

models) with temporal optimisation-based models (i.e., UC models). We find that 

excluding the minimum up- and downtimes of generating units can result, in some cases, 

in a relatively large difference in the optimum capacity mix of UC models and 

subsequently on the projected carbon emission savings of renewables under deep 

decarbonisation scenarios. This in turn, in some cases,  alters the carbon abatement cost 

estimates and the perceived economic competitiveness of renewable technologies to 

decarbonise energy systems.  

 

Likewise, our modelling work is related to several studies which explored the technical 

factors affecting the retirement of more baseload plants (i.e., coal) with increased 

penetration of renewable energy. For example, similar to previous studies,  Nweke et al. 

(2012) and Poncelet et al. (2016) reported that models with low temporal and techno-

economic detail tend to overestimate the investments needed in baseload generation and 

underestimate the operation costs of the systems. In our work, we further extend the scope 

of their technical analysis by investigating underexplored technical factors that might have 

a great influence on the retirement of baseload plants.  For example, our study identifies 

the minimum running thermal load (MRTL) of the system or the system’s total minimum 

“rotating load” as a key factor that is likely to have a large influence on the size and 

timeline of retiring baseload power plants. More importantly perhaps, in some cases, we 

find that the MRTL level of the system can substantially affect the projections of 

renewable carbon savings. In one study case, we find that a moderate increase in the 

MRTL level can significantly reduce the decarbonisation potential of renewable 

generation and increase the incidences of curtailment, especially for systems with sizable 

coal generation assets. Additionally, in some cases, a moderate increase in the MRTL 

level can disproportionally increase the capacity investment and energy output from 

carbon-intensive units, leading to a large effect on the carbon abatement cost estimates of 

renewables.  
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We believe these methodological contributions combined would improve our 

understanding of the potential shortcomings in the current modelling practices and help 

identify patterns of possible inaccuracies or biases in renewable decarbonisation results.  

We think that this will bring more rigour and robustness to the economic treatment of 

renewables’ contributions to climate change 

 

7.1.3 New insights  

 

Another important contribution of this work lies within its new findings and original 

insights. Drawing on the multiple case studies of the research carried out, we identify 

several often-overlooked economic implications of the deep decarbonisation of electric 

systems through expanding the use of renewables. We show that not all renewable 

technology types can have a suppressing effect on the variable costs of the systems due to 

their "zero marginal costs." In particular, we identify certain technologies and 

circumstances in which an increase in renewable penetration can significantly inflate the 

variable energy costs of the system. More specifically, we find that under deep 

decarbonisation scenarios, renewable technologies with highly volatile production profiles 

can act as an amplifier for the variable cost of the systems through (1) reducing the 

effectiveness of thermal generation units due to the increased start-up and shutting 

downing activities, and (2) increasing the energy output levels from more flexible and yet 

more expensive thermal technologies. 

 

In addition, we identify circumstances in which an increased renewable penetration can 

materially affect the capacity adequacy of electric systems, leading to an increase in 

capacity investment in thermal flexibility assets. Perhaps more importantly, we find that 

these additional flexibility assets will not be commercially viable on an energy-output 

basis. We believe that this might have specific implications for the energy-only markets. 

We were unable to identify studies in the literature that examined these aspects in 

sufficient detail. By doing so ourselves, we hope to make a contribution to the literature 

addressing the economics of renewable decarbonisation of electric systems.  

 

Altogether, we hope that our work will advance the understanding of the economics of 

renewables and will help policymakers and practitioners in evaluating their economic 

climate change policies 
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7.2 Research Limitations    

 

In this the following sections, we summarise the limitations of our research.  

 

7.2.1 Study design limitation    
 

7.2.1.1 Single vs. multiple renewable portfolio simulations   

 

Arguably, one of the potential limitations of our study design is the lack of investigation 

of the impact of using a portfolio of renewable energy technologies in our study cases. 

Crucially, however, we believe that there is an impressive volume of research that has 

reported several technical and economic benefits of simulating a diverse portfolio of 

renewable technologies to decarbonising energy systems.  

 

In one study, for instance, Hart and Jacobson (2012) used a least-cost engineering dispatch 

model to investigate the carbon abatement potential of wind turbines, Photovoltaics (PV), 

Concentrated Solar Power (CSP), and geothermal power in California. They investigated 

the potential of decarbonising the Californian system using both single and multiple 

renewable technology portfolios. The results of their work highlighted the technical 

limitations of achieving deep decarbonisation using a single technology and the necessity 

of having high levels of flexibility and controllability over the renewable generation. The 

study also analysed the potential synergy between different renewable resources. Their 

results indicated that the effect of combining different renewable sources is almost additive 

under low penetration levels. However, they reported that the potential synergic benefit 

of combining different renewable resources is most apparent at high penetration levels. 

For their study, a portfolio of 30% wind and 70% solar was found to have a maximum 

carbon abatement potential of 79%, compared with 58% and 56% for wind and solar 

alone, respectively.  

 

Therefore, we believe that the synergic benefits of combining renewable profiles are 

sufficiently reported in the literature. In our research, however, we tried to depart from 

the dominant paradigm or practice of comparing single and multiple renewable 

technologies in the interest of shedding greater light on rather underreported insights. In 

other words, the single renewable technology simulation was done for research design 
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purposes. In particular, the single technology setting we presented is designed to remove 

some of the factors that arise from combining two or more renewable resources. For 

example, in one study case, we investigated the value of renewable technology profiles on 

the economics of the decarbonisation process. As such, we needed to carry out these 

scenarios individually to be able to carry out our differential analysis. Likewise, in another 

case study, we investigated the effect of variability of the renewable technology profile on 

the economics of the decarbonisation process. Therefore, per se, combining multiple 

renewable technology profiles with similar shapes (i.e., PV vs. CSP) will make it 

increasingly difficult to decompose the economic effects of the “profile variability” factor 

under study.  

 

Furthermore, while investigating hypothetical renewable portfolio options is undoubtedly 

useful in understanding a range of possible technical and economic synergies for electric 

systems, nevertheless, this might imply the guaranteed practicality of the large-scale 

deployment of two or more renewable resources which might not be necessarily available 

to many countries around the world. Similarly, some countries might be heavily 

dependent on a single technology such as solar or wind power due to its geographical 

location or size limitation. Accordingly, it might be argued that investigating such 

scenarios is not completely unrealistic for countries that share these characteristics.  

 

As indicated earlier, the scenarios presented in our study cases are not meant to be 

exhaustive, and therefore we acknowledge this limitation. It is feasible that considering 

alternative technology mix or input data could result in different system costs and different 

fuel mixes than those reported in our research. However, would many of the qualitative 

results presented here change noticeably with a greater range of input data? We believe 

not, but this is definitely an interesting avenue for further research.  

 

7.2.1.2 Analysis perspective: market vs. central planning perspective  
 

Another potential limitation of our study is that our research does not explore the critical 

questions pertaining to the variations in existing energy market structures and models and 

their economic implications on different market participants. Instead, we took a central 

planning perspective to explore the system-wide economic implications of the renewable 

decarbonisation process rather than focusing on exploring the specific economic effects of 
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a certain market model. For example, our research did not look at how the increased 

renewable penetration affects the profitability of conventional generators in a liberalised 

market setting. Similarly, our research did not consider the shifts in market power with 

increased renewable penetration. In particular, similar to Pérez-Arriaga and Linares 

(2008), we view that central or indicative planning models can be of particular importance 

in navigating the major sustainability questions facing both traditional systems and 

liberalised markets, such as exploring the system-wide economic impacts of setting 

renewable penetration levels and carbon emissions targets. In other words, indicative 

planning models that are based on a central planning perspective can serve as a 

complementary instrument to aid decision-makers in liberalised markets refine their 

understanding of the possible system-wide or long-term economic implications of 

delivering the hoped-for net-zero energy transition. Nevertheless, it is important to 

recognise that both models offer a best case solution that real-world decision-makers (in 

either model) may not achieve in practice. Undoubtedly, however, we will gain a better 

understanding of the implications of our findings if different market models are studied. 
 

7.2.1.3 Data uncertainty  
 

Another possible caveat of our simulations is that we have taken a deterministic approach 

in our treatment of the renewable energy profiles. Several studies have reported that the 

stochastic treatment of renewable generation profiles might impact the carbon predictions 

of UC models (Hart and Jacobson, 2011). Furthermore, in terms of demand profiles, we 

relied on historical load profiles, and we assumed nonresponsive, inelastic demand profiles 

in our simulations. As a result, like other renewable decarbonisation studies, our study 

does not take into account the possible long-term changes or shifts in electricity 

consumption patterns. These long-term changes can be driven by several factors, 

including social, economic, and demographic shifts; climate change impacts; and the 

anticipated increased electrification of heat and transportation sectors (Auffhammer et al., 

2017, Anderson and Torriti, 2018, Staffell and Pfenninger, 2018, Denholm et al., 2019). 

Furthermore, we also did not explore demand-side management considerations, 

including load shifting, direct load control, interruptible loads, time-of-use pricing, and 

the role of digitisation and smart metering in changing demand patterns (Strbac, 2008). 

However, we believe that taking these considerations into account might be an interesting 

research topic for a separate PhD thesis.  
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7.2.1.4 Study scope and system size   
 

Another possible limitation of our research is the scope of study and system size 

considered. Notably, the scale of the test system considered in this study is relatively small 

compared to the UK’s electric system or other major European114 countries’ electric 

systems. Therefore, the reader might find keeping this in mind useful when interpreting 

and drawing inferences from the results presented. 

  

As pointed out earlier we do not assert or imply that the results of the case studies 

presented in this work are transferable to all electric systems in the same way or to the 

same extent. Nor are they generalisable to same technologies considered under different 

electric systems. Instead, the scenarios presented are meant to explore the economics of 

the renewable decarbonisation process in the system modelled here, typical in load profile 

of a Gulf Cooperation Council (GCC) country. Yet, additional research will be required 

to further refine these findings for different electric systems and other renewable 

technology types. Unquestionably, however, this remains an opportunity for further 

investigation.  

 

7.2.2 Other Limitations    
 

Another limitation of our research is that the behaviour of a real power system might 

deviate from the results obtained using least-cost optimisation models because real power 

systems might have additional constraints that are not captured in this study. These 

constraints might be technical, such as transmission and congestion constraints, or non-

technical, such as issues related to the market structure and mechanism. In this research, 

however, we focus on the fundamental technical and economic inputs of the power system 

that have been used extensively in the literature to estimate and predict the carbon 

emissions of power systems. 
 

Furthermore, as with other renewable decarbonisation studies, several modelling 

considerations were beyond the scope of our analysis. For example, we did not consider 

the impact of energy exchange with neighbouring systems or having transmission- or 

 
114 The classification indicated is meant to be on a geographical basis, not necessarily or strictly based on political or 

institutional affiliation.  
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reliability-related constraints. For the renewable technologies, we did not consider the 

cost associated with the transmission losses or the wheeling charges of renewable power-

to-load centres. Likewise, we did not factor in the distribution or transmission investment 

costs needed to integrate the renewable energy sources into the grid. We also did not take 

into account the land requirement or issues related to the practicality of the development 

of renewable generation plants. For the thermal plants, among other things, we did not 

examine the plants’ forced outages and maintenance schedules. Finally, we did not 

investigate the wear-and-tear aspects of thermal plants due to increased cycling and start-

up activities.  
 

Another possible limitation of our work is that we focus only on carbon dioxide as the 

main environmental externality or negative emission category of power system operation. 

For example, we did not factor in the other emission types that can be reduced by the 

expansion of renewables, such as SO2, NOX, and PM2.5 (Council, 2010). In other words, 

we did not explore other emission types that might have negative environmental impacts 

or their respective GHG impact equivalences. In addition, we did not cover the GHG 

externalities from a life-cycle perspective. For example, we did not study the CO2 

emissions related to the extraction, processing, and transportation of the plant’s fuel or 

the decommissioning of the generation plants (Hendrickson et al., 2006). Similarly, we 

did not investigate the indirect and embedded emissions used to manufacture and 

produce the PV solar panels and the CSP modules.  

 

7.3 Future Work  

 

The limitations we pointed out earlier might serve as a basis for future lines of inquiry. 

Nevertheless, we are particularly interested in investigating the following research 

questions and issues.  

 

First, as indicated earlier in the thesis, in our simulations, we did not consider the existence 

of large-scale storage systems. In our future work, we intend to explore the role of storage 

systems not only in enabling the integration of renewables but also in facilitating the 

decarbonisation of energy systems. One relevant worry is that due to economic reasons, 

the existence of large storage systems might attract disproportionate charging from 

conventional generation rather than absorbing the excessive renewable generation, 
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thereby contributing to increasing system-wide emissions. In other words, we are 

interested in investigating the unintended consequences of expanding the use of storage 

systems in support of renewables from a system-level decarbonisation perspective.  

 

In particular, we would like to investigate the value of storage in maximising the carbon-

saving potential of renewables. The guiding question of our planned research is, what is 

the value of storage in maximising the carbon savings of renewables? In addition, we 

would like to explore the technical factors that could potentially enhance or limit the 

storage systems’ positive contribution to saving carbon. More specifically, we seek to 

understand the relative importance of the various technical factors that can affect the 

ability of storage systems to maximise the carbon savings of renewables.  

 

Second, we would like to investigate the economic implications of the large-scale 

deployment of storage systems for the economics of the decarbonisation process. In 

particular, we would like to understand the extent to which storage systems can impact 

the abatement costs of renewables. More specifically, we seek to establish whether the 

economic impact of storage systems on the abatement cost of renewables varies across 

different storage technologies. One particular concern is that storage systems with 

different technical characteristics might impact the abatement cost of renewables in 

significantly different ways. 

 

Third, we would like to investigate the impact of storage systems on the energy market. 

In particular, we would like to investigate the impact of the large-scale deployment of 

storage systems on energy prices. More specifically, we would like to investigate the 

following research question: what would large-scale adoption of storage systems do to the 

profitability of (1) conventional generators and (2) flexibility assets under a deep renewable 

penetration scenario?  

 

Given the complexity of these questions and issues, at this juncture, we can only hope to 

get the time and funding needed to pursue them.  
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Appendix Overview  

 

In this appendix, we include the extended results for the case studies presented in the core 

chapters. Moreover, we include some mathematical formulations and we present 

sensitivity analyses  for some of the work carried out.   
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A.1 Supplementary Results of Chapter 4    
 

A.1.1 PV and CCS technologies case study results  
 

 
Figure 75: Effect of increased penetration of PV technology on the optimum capacity mix for selected penetration 

scenarios 

 

 
Figure 76: Effect of increased penetration of CCS technology on the optimum capacity mix for selected penetration 

scenarios 

0

2

4

6

8

10

12

Basecase 1 GW 2 GW 3 GW 4 GW 5 GW

O
pt

im
um

 C
ap

ac
ity

 [G
W

]

Effect of PV Technology Penetration on Optimum Capacity

PV
CCS Coal
Coal
CCGT
OCGT

0

2

4

6

8

10

12

Basecase 1 GW 2 GW 3 GW 4 GW 5 GW

O
pt

im
um

 C
ap

ac
ity

 [G
W

]

Effect of CCS Technology Penetration on Optimum Capacity

PV
CCS Coal
Coal
CCGT
OCGT



APPENDIX A: SUPPLEMENTARY RESULTS   
 

 
194 

 

 

 
Figure 77: Effect of increased penetration of PV technology on the energy output for selected penetration scenarios 

 

 

 
Figure 78: Effect of increased penetration of CCS technology on the energy output for selected penetration scenarios 
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Figure 79: Effect of increased penetration of PV technology on the system’s carbon emissions for selected 

penetration scenarios 

 

 

 
Figure 80: Effect of increased penetration of CCS technology on the system’s carbon emissions for selected 

penetration scenarios 
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Figure 81: Effect of increased penetration of PV technology on the system’s costs for selected penetration scenarios 

 

 

 
Figure 82: Effect of increased penetration of CCS technology on the system’s costs for selected penetration scenarios 
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Levelised Cost of Energy (LCOE) Derivation 
 

As signified earlier, LCOE indicates the average fixed revenue per unit of electricity 

generated that would be needed to recover the costs of building, operating, and sometimes 

the decommissioning  of a generating plant over its economic lifetime. Mathematically, 

this can be expressed by equation (A.1) and (A.2)   
  

#Revenuesn

(1+r)n

N

n=0

  =		# Costsn

(1+r)n

N

n=0

             																																	  (A.1) 

 

where   r is the fixed discount rate 

             N is the total economic lifetime of the project 
 

That implies,  

# LCOEn × (En)
(1+r)n

N

n=0

= # Costsn

(1+r)n

N

n=0

                                       (A.2) 

 

where En is the total energy output in year n 
            LCOEn  is the fixed energy price paid in year n 
  Therefore, LCOE could be calculated using equation (A.3)  

      

LCOE= 
 ∑ Costsn

(1+r)	n
N
n=0

∑  (En)
(1+r)	n

N
n=0

           																																															(A.3) 

 

Assuming that the initial cost of the plant paid up-front. Then the discounting summation 

starts at n=1 and the LCOE can be re-calculated by equation (A.4)    
 

LCOE= 
 intial cost+∑ Costsn

(1+r)n
N
n=1

∑  (En)
(1+r)n

N
n=1

               										                 (A.4) 

 

Studies vary in terms of the economic and technical factors and details included in LCOE 

calculations. However, key inputs of LCOE calculations typically include overnight capital 

costs, fuel costs, fixed and variable operations and maintenance (O&M) costs and an 

assumed utilisation rate for each technology type (EIA, 2013a, EIA, 2019).  
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A.1.2 Sensitivity analysis of the PV and CCS technologies   
 
 

 
Figure 83: Levelised cost structure of the CCS technology 

 
CCS Coal Technology LCOE LCOE 
 USD/MWh % 
Capex 77.63 57% 
Opex (Fix) 21.81 16% 
Opex (Variable ) 9.51 7% 
Fuel Cost 26.28 19%    
Total 135.23 100% 

Table 19: Levelised cost structure of CCS technology 

 

 
 
 

 
Figure 84: Levelised cost structure of the PV technology 

 
PV Technology LCOE LCOE 
  USD/MWh % 
Capex  60.60 82% 
Opex (Fix) 13.42 18%    
Total 74.03 100% 

Table 20: Levelised cost structure of PV technology 
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Figure 85: Impact of variations in capacity factor on LCOE for CCS and PV technologies 

 

 

 
Figure 86: Impact of a ±50% variation in key assumptions on LCOE for CCS Technology 

 

 

 
Figure 87: Impact of a ±50% variation in key assumptions on LCOE for PV Technology 
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A.2 Supplementary Results of Chapter 5    
 

A.2.1 Supplementary results of the effect of choice of modelling 
methodology case study  
 

 
Figure 88: Optimum capacity mix results of the SC model under different penetration scenarios of CSP technology 

 

 
Figure 89: Optimum capacity mix results of the SC model under different penetration scenarios of CSP technology 
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Figure 90: Energy output results of the SC model under different penetration scenarios of CSP technology 

 

 

 
Figure 91: Energy output results of the UC model under different penetration scenarios of CSP technology 
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Figure 92: Carbon emission results of the SC model under different penetration scenarios of CSP technology 

 

 

 
Figure 93: Carbon emission results of the UC model under different penetration scenarios of CSP technology 
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Figure 94: Total system cost results of the SC model under different penetration scenarios of CSP technology 

 

 
Figure 95: Total system cost results of the UC model under different penetration scenarios of CSP technology 
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A.2.2 Supplementary results of the minimum running thermal generation 
effect case study  
 

 
Figure 96: Optimum capacity mix results of a UC model with 0.5 GW minimum thermal running load level under 

different CSP technology penetration scenarios 

 

 

 
Figure 97: Optimum capacity mix results of a UC model with 1 GW minimum thermal running load level under 

different CSP technology penetration scenarios 
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Figure 98: Energy output results of a UC model with 0.5 GW minimum thermal running load level under different 

CSP technology penetration scenarios 

 

 

 
Figure 99: Energy output results of a UC model with 0.5 GW minimum thermal running load level under different 

CSP technology penetration scenarios 
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Figure 100: Carbon emission results of a UC model with 0.5 GW minimum thermal running load level under 

different CSP technology penetration scenarios 

 

 

 
Figure 101: Carbon emission results of a UC model with 1 GW minimum thermal running load level under 

different CSP technology penetration scenarios 
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Figure 102: Total system cost results of a UC model with 0.5 GW minimum thermal running load level under 

different CSP technology penetration scenarios 

 

 

 
Figure 103: Total system cost results of a UC model with 1 GW minimum thermal running load level under 

different CSP technology penetration scenarios 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Basecase 1 GW 2 GW 3 GW 4 GW 5 GW

To
ta

l S
ys

te
m

 C
os

t [
BU

SD
]

Total System Cost Results of a UC with 0.5 GW Minimum Thermal Running Load 
Level under Different CSP Technology Penetration Scenarios 

Renewable Capacity Cost
Startup Cost
CO2 Emission Cost

Energy Cost
Capacity Cost

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Basecase 1 GW 2 GW 3 GW 4 GW 5 GW

To
ta

l S
ys

te
m

 C
os

t [
BU

SD
]

Total System Cost Results of a UC with 1.0 GW Minimum Thermal Running Load 
Level under Different CSP Technology Penetration Scenarios 

Renewable Capacity Cost
Startup Cost
CO2 Emission Cost
Energy Cost
Capacity Cost



APPENDIX A: SUPPLEMENTARY RESULTS   
 

 
208 

A.2.3 Supplementary results of the units’ dynamic constraints effect case 
study  
 

 
Figure 104: Optimum capacity mix results of a UC model that considers the minimum up and downtimes of 

thermal generators under different CSP technology penetration scenarios 

 

 

 
Figure 105: Optimum capacity mix results of a UC model that does not consider the minimum up and downtimes 

of thermal generators under different CSP technology penetration scenarios 
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Figure 106: Energy output results of a UC model that considers the minimum up and downtimes of thermal 

generators under different CSP technology penetration scenarios 

 

 

 
Figure 107: Energy output results of a UC model that does not consider the minimum up and downtimes of 

thermal generators under different CSP technology penetration scenarios 
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Figure 108: Carbon emission results of a UC model that considers the minimum up and downtimes of thermal 

generators under different CSP technology penetration scenarios 

 

 

 
Figure 109: Carbon emission results of a UC model that considers the minimum up and downtimes of thermal 

generators under different CSP technology penetration scenarios 
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Figure 110: Total system cost results of a UC model that considers the minimum up and downtimes of thermal 

generators under different CSP technology penetration scenarios 

 

 

 
Figure 111: Carbon emission results of a UC model that considers the minimum up and downtimes of thermal 

generators under different CSP technology penetration scenarios
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A.3 Supplementary Results of Chapter 5    
 

A.3.1 Supplementary results of the impacts of renewable technology characteristics on the economics of decarbonisation   

 
Figure 112: Optimum technology mix results comparison between the baseline model 

and the PV technology model under a shallow penetration scenario (1 GW) 

 
 Baseline PV   
 Capacity Mix Capacity Mix Difference Difference 
 [GW] [GW] [GW] [%] 
OCGT 0.75 0.90 0.15 20% 
CCGT 1.80 1.80 0.00 0% 
Coal 3.90 3.60 -0.30 -8% 
PV Penetration 0.00 1.00 1.00 -  

    
  

Total 6.45 6.30 -0.15 -2% 
Table 21: Optimum technology mix results comparison between the baseline model and 

the PV technology model under a shallow penetration scenario (1 GW) 

 
Figure 113: Optimum technology mix results comparison between the baseline model 

and the wind technology model under a shallow penetration scenario (1 GW) 

 

  Baseline Wind     
  Capacity Mix Capacity Mix Difference Difference 
  [GW] [GW] [GW] [%] 

OCGT 0.75 0.90 0.15 20% 
CCGT 1.80 1.80 0.00 0% 
Coal 3.90 3.60 -0.30 -8% 
Wind Penetration 0.00 1.00 1.00 - 
      

  
Total Thermal 6.45 6.30 -0.15 -2% 
Table 22: Optimum technology mix results comparison between the baseline model and 

the wind technology model under a shallow penetration scenario (1 GW)  
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Figure 114:Energy output results comparison between the baseline model and the PV 

technology model under a shallow penetration scenario (1 GW) 

 
  Baseline PV     
  Energy Output Energy Output Difference Difference 
  [TWh] [TWh] [TWh] [%] 

OCGT 0.11 0.16 0.05 44% 
CCGT 1.98 2.15 0.17 9% 
Coal 27.25 25.03 -2.22 -8% 
CCS Coal 0.00 0.00 0.00 - 
PV Penetration 0.00 2.00 2.00 - 
      

  
Total Thermal 29.34 27.34 -2.00 -7% 

Table 23: Energy output results comparison between the baseline model and the PV 
technology model under a shallow penetration scenario (1 GW) 

 
Figure 115: Energy output results comparison between the baseline model and the wind 

technology model under a shallow penetration scenario (1 GW) 

 
  Baseline Wind     
  Energy Output Energy Output Difference Difference 
  [TWh] [TWh] [TWh] [%] 

OCGT 0.11 0.13 0.01 12% 
CCGT 1.98 2.04 0.06 3% 
Coal 27.25 24.64 -2.61 -10% 
CCS Coal 0.00 0.00 0.00 - 
Wind Penetration 0.00 2.54 2.54 - 
      

  
Total Thermal 29.34 26.80 -2.54 -9% 

Table 24: Energy output results comparison between the baseline model and the wind 
technology model under a shallow penetration scenario (1 GW)  
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Figure 116: CO2 emissions results comparison between the baseline model and the PV 

technology model under a shallow penetration scenario (1 GW) 

 
  Baseline PV     
   CO2 Emissions  CO2 Emissions Difference Difference 
  [Mton CO2] [Mton CO2] [Mton CO2] [%] 

OCGT 0.07 0.10 0.03 44% 
CCGT 0.87 0.93 0.06 7% 
Coal 23.06 21.22 -1.84 -8% 
CCS Coal 0.00 0.00 0.00 - 
      

  
Total Thermal 23.99 22.24 -1.75 -7% 

Table 25: CO2 emissions results comparison between the baseline model and the PV 
technology model under a shallow penetration scenario (1 GW) 

 

 
Figure 117: CO2 emissions results comparison between the baseline model and the wind 

technology model under a shallow penetration scenario (1 GW) 

 
  Baseline Wind     
   CO2 Emissions  CO2 Emissions Difference Difference 
  [Mton CO2] [Mton CO2] [Mton CO2] [%] 

OCGT 0.07 0.08 0.01 12% 
CCGT 0.87 0.88 0.02 2% 
Coal 23.06 20.87 -2.19 -9% 
CCS Coal 0.00 0.00 0.00 - 
      

  
Total Thermal 23.99 21.83 -2.16 -9% 

Table 26: CO2 emissions results comparison between the baseline model and the wind 

technology model under a shallow penetration scenario  
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Figure 118: System cost results comparison between the baseline model and the PV 

technology model under a shallow penetration scenario (1 GW) 

 
  Baseline PV     
  Cost Cost Difference Difference 
  [MUSD] [MUSD] [MUSD] [%] 

Capacity Cost 1140.3 1073.2 -67.0 -5.9% 
Energy Cost 835.2 801.0 -34.2 -4.1% 
CO2 Emission Cost 0.0 0.0 0.0 - 
Startup Cost 10.9 12.9 1.9 17.5% 
Renewable Cost 0.0 142.4 142.4 - 
      

  
Total Cost 1986.4 2029.5 43.1 2.2% 

Table 27: System cost results comparison between the baseline model and the PV 
technology model under a shallow penetration scenario (1 GW) 

 
Figure 119: System cost results comparison between the baseline model and the wind 

technology model under a shallow penetration scenario (1 GW) 

 
  Baseline Wind     
  Cost Cost Difference Difference 
  [MUSD] [MUSD] [MUSD] [%] 

Capacity Cost 1140.3 1073.2 -67.0 -5.9% 
Energy Cost 835.2 778.6 -56.6 -6.8% 
CO2 Emission Cost 0.0 0.0 0.0 - 
Startup Cost 10.9 10.5 -0.5 -4.5% 
Renewable Cost 0.0 141.0 141.0 - 
      

  
Total Cost 1986.4 2003.3 16.9 0.9% 

Table 28: System cost results comparison between the baseline model and the wind 
technology model under a shallow penetration scenario (1 GW)  
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Figure 120: Thermal generation start-up activities results comparison between the 

baseline model and the PV technology model under a shallow penetration scenario (1 
GW) 

 
  Baseline PV     
  Startups Frequency Startups Frequency Difference Difference 
  [Counts] [Counts] [Counts] [%] 

OCGT 296 388 92 31% 
CCGT 501 592 91 18% 
Coal 4 3 -1 -25% 
CCS Coal 0 0 0 - 
        
Total  801 983 182 23% 

Table 29: Thermal generation startup activities results comparison between the baseline 
model and the PV technology model under a shallow penetration scenario (1 GW) 

 
Figure 121: Thermal generation start-up activities results comparison between the 

baseline model and the wind technology model under a shallow penetration scenario 

 

 

  Baseline Wind     
  Startups Frequency Startups Frequency Difference Difference 
  [Counts] [Counts] [Counts] [%] 

OCGT 296 330 34 11% 
CCGT 501 452 -49 -10% 
Coal 4 7 3 75% 
CCS Coal 0 0 0 - 
        
Total  801 789 -12 -1.5% 

Table 30: Thermal generation startup activities results comparison between the baseline 
model and the wind technology model under a shallow penetration scenario (1 GW)  
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Shallow & deep penetration scenarios results  
 

 
Figure 122: Optimum technology mix results comparison between shallow (1 GW) and 

deep (1 GW) penetration scenarios for the PV technology model  

 
  Shallow Deep     
  Capacity Mix Capacity Mix Difference Difference 
  [GW] [GW] [GW] [%] 

OCGT 0.90 1.20 0.30 33% 
CCGT 1.80 3.30 1.50 83% 
Coal 3.60 1.80 -1.80 -50% 
CCS Coal 0.00 0.00 0.00 - 
PV Penetration 1.00 5.00 4.00 - 
      

  
Total Thermal 6.30 6.30 0.00 0% 

Table 31: Optimum technology mix results comparison between shallow (1 GW) and 
deep (5GW) penetration scenarios for the PV technology model 

 

 

 
Figure 123: Optimum technology mix results comparison between shallow (1 GW) and 

deep (1 GW) penetration scenarios for the wind technology model 

 

  Shallow Deep     
  Capacity Mix Capacity Mix Difference Difference 
  [GW] [GW] [GW] [%] 

OCGT 0.90 1.50 0.60 67% 
CCGT 1.80 2.40 0.60 33% 
Coal 3.60 2.40 -1.20 -33% 
CCS Coal 0.00 0.00 0.00 - 
Wind Penetration 1.00 5.00 4.00 - 
      

  
Total Thermal 6.30 6.30 0.00 0% 

Table 32: Optimum technology mix results comparison between shallow (1 GW) and 
deep (1 GW) penetration scenarios for the wind technology model  
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Figure 124: Energy output results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the PV technology model 

 
  Shallow Deep     
  Energy Output Energy Output Difference Difference 
  [TWh] [TWh] [TWh] [%] 

OCGT 0.16 0.30 0.14 84% 
CCGT 2.15 8.35 6.21 289% 
Coal 25.03 12.51 -12.52 -50% 
CCS Coal 0.00 0.00 0.00 - 
PV Penetration 2.00 8.17 6.18 - 
PV Curtailment 0.00 1.81 1.81 - 
          Total  29.34 29.34     

Table 33: Energy output results comparison between shallow (1 GW) and deep (5 GW) 
penetration scenarios for the PV technology model 

 
Figure 125: Energy output results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the wind technology model 

 
  Shallow Deep     
  Energy Output Energy Output Difference Difference 
  [TWh] [TWh] [TWh] [%] 

OCGT 0.12 0.29 0.17 144% 
CCGT 2.05 5.05 3.01 147% 
Coal 24.64 13.16 -11.47 -47% 
CCS Coal 0.00 0.00 0.00 - 
Wind Penetration 2.54 10.84 8.30 - 
Wind Curtailment 0.00 1.85 1.85 - 
      

  
Total Thermal 29.34 29.34     
Table 34: Energy output results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the wind technology model  
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Figure 126: Carbon emissions results comparison between shallow (1 GW) and deep (5 

GW) penetration scenarios for the PV technology model 

 
  Shallow Deep     
   CO2 Emissions  CO2 Emissions Difference Difference 
  [Mton CO2] [Mton CO2] [Mton CO2] [%] 

OCGT 0.10 0.18 0.08 84% 
CCGT 0.93 3.28 2.36 255% 
Coal 21.22 10.56 -10.65 -50% 
CCS Coal 0.00 0.00 0.00 - 
        
Total Thermal 22.24 14.03 -8.21 -37% 

Table 35: Carbon emissions results comparison between shallow (1 GW) and deep (5 
GW) penetration scenarios for the PV technology model 

 

 
Figure 127: Carbon emissions results comparison between shallow (1 GW) and deep (5 

GW) penetration scenarios for the wind technology model 

 
  Shallow Deep     
   CO2 Emissions  CO2 Emissions Difference Difference 
  [Mton CO2] [Mton CO2] [Mton CO2] [%] 

OCGT 0.08 0.17 0.10 128% 
CCGT 0.88 1.60 0.71 80% 
Coal 20.87 12.08 -8.79 -42% 
CCS Coal 0.00 0.00 0.00 - 
      

  
Total Thermal 21.83 13.85 -7.98 -37% 
Table 36: Carbon emissions results comparison between shallow (1 GW) and deep (5 

GW) penetration scenarios for the wind technology model  
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Figure 128: System cost results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the PV technology model 

 
  Shallow Deep     
  Cost Cost Difference Difference 
  [MUSD] [MUSD] [MUSD] [%] 

Capacity Cost 1073.2 749.7 -323.6 -30% 
Energy Cost 801.0 984.9 183.9 23% 
CO2 Emission Cost 0.0 0.0 0.0 - 
Startup Cost 12.9 100.9 88.0 685% 
Renewable Cost 142.4 712.1 569.7 400% 
      

  
Total Thermal 2029.5 2547.4 518.0 25.5% 

Table 37: System cost results comparison between shallow (1 GW) and deep (5 GW) 
penetration scenarios for the PV technology model 

 
Figure 129: System cost results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the wind technology model 

 
  Shallow Deep     
  Cost Cost Difference Difference 
  [MUSD] [MUSD] [MUSD] [%] 

Capacity Cost 1073.2 848.8 -224.4 -21% 
Energy Cost 778.6 691.8 -86.7 -11% 
CO2 Emission Cost 0.0 0.0 0.0 - 
Startup Cost 10.5 46.1 35.7 341% 
Renewable Cost 141.0 705.2 564.1 400% 
      

  
Total Thermal 2003.3 2291.9 288.6 14.4% 

Table 38: System cost results comparison between shallow (1 GW) and deep (5 GW) 
penetration scenarios for the wind technology model
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Figure 130: Thermal generation startup activities results comparison between shallow (1 

GW) and deep (5 GW) penetration scenarios for the PV technology model 

 
  Shallow Deep     
  Startups Frequency Startups Frequency Difference Difference 
  [Counts] [Counts] [Counts] [%] 

OCGT 388 815 427 110% 
CCGT 592 2778 2186 369% 
Coal 3 562 559 18633% 
CCS Coal 0 0 0 - 
      

  
Total  983 4155 3172 323% 
Table 39: Thermal generation startup activities results comparison between shallow (1 

GW) and deep (5 GW) penetration scenarios for the PV technology model 

 

 
Figure 131: Thermal generation startup activities results comparison between shallow (1 

GW) and deep (5 GW) penetration scenarios for the wind technology model 

 
  Shallow Deep     
  Startups Frequency Startups Frequency Difference Difference 
  [Counts] [Counts] [Counts] [%] 

OCGT 330 807 477 145% 
CCGT 452 867 415 92% 
Coal 7 300 293 4186% 
CCS Coal 0 0 0 - 
      

  
Total  789 1974 1185 150% 
Table 40: Thermal generation startup activities results comparison between shallow (1 

GW) and deep (5 GW) penetration scenarios for the wind technology model
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A.3.2 Supplementary results of the impacts of renewable production profiles on the economics of decarbonisation 
 

 
Figure 132: Optimum technology mix results comparison between the baseline model 

and the PV (scaled) technology model under a shallow penetration scenario (1 GW) 

 

 

 Baseline PV (Scaled)   
 Capacity Mix Capacity Mix Difference Difference 
 [GW] [GW] [GW] [%] 
OCGT 0.75 0.90 0.15 20% 
CCGT 1.80 1.80 0.00 0% 
Coal 3.90 3.60 -0.30 -8% 
CCS Coal 0.00 0.00 0.00 - 
PV (Scaled) Penetration 0.00 1.27 1.27 - 
Total Thermal 6.45 6.30 -0.15 -2% 
Table 41: Optimum technology mix results comparison between the baseline model and 

the PV (scaled) technology model under a shallow penetration scenario (1 GW) 

 
Figure 133: Optimum technology mix results comparison between the baseline model 

and the wind technology model under a shallow penetration scenario (1 GW) 

 

 

  Baseline Wind     
  Capacity Mix Capacity Mix Difference Difference 
  [GW] [GW] [GW] [%] 

OCGT 0.75 0.90 0.15 20% 
CCGT 1.80 1.80 0.00 0% 
Coal 3.90 3.60 -0.30 -8% 
CCS Coal 0.00 0.00 0.00 - 
Wind Penetration 0.00 1.00 1.00 - 
      

  
Total Thermal 6.45 6.30 -0.15 -2% 

Table 42: Optimum technology mix results comparison between the baseline model and 

the wind technology model under a shallow penetration scenario (1 GW) 
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Figure 134:Energy output results comparison between the baseline model and the PV 

(scaled) technology model under a shallow penetration scenario (1 GW) 

 
 

  Baseline PV (Scaled)     
  Energy Output Energy Output Difference Difference 
  [TWh] [TWh] [TWh] [%] 

OCGT 0.11 0.15 0.04 36% 
CCGT 1.98 2.02 0.04 2% 
Coal 27.25 24.63 -2.62 -10% 
CCS Coal 0.00 0.00 0.00 - 
PV (Scaled) Penetration 0.00 2.54 2.54 - 
        Total Thermal 29.34 26.80 -2.54 -9% 

Table 43: Energy output results comparison between the baseline model and the PV 
(scaled)  technology model under a hallow penetration scenario (1 GW) 

 
Figure 135: Energy output results comparison between the baseline model and the wind 

technology model under a shallow penetration scenario (1 GW) 

 
 

  Baseline Wind     
  Energy Output Energy Output Difference Difference 
  [TWh] [TWh] [TWh] [%] 

OCGT 0.11 0.13 0.01 12% 
CCGT 1.98 2.04 0.06 3% 
Coal 27.25 24.64 -2.61 -10% 
CCS Coal 0.00 0.00 0.00 - 
Wind Penetration 0.00 2.54 2.54 - 
      

  
Total Thermal 29.34 26.80 -2.54 -9% 

Table 44: Energy output results comparison between the baseline model and the wind 
technology model under a shallow penetration scenario (1 GW)  
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Figure 136: CO2 emissions results comparison between the baseline model and the PV 

(scaled) technology model under a shallow penetration scenario (1 GW) 

 

 
  Baseline PV (Scaled)     
   CO2 Emissions  CO2 Emissions Difference Difference 
  [Mton CO2] [Mton CO2] [Mton CO2] [%] 

OCGT 0.07 0.09 0.02 36% 
CCGT 0.87 0.87 0.01 1% 
Coal 23.06 20.88 -2.18 -9% 
CCS Coal 0.00 0.00 0.00 - 
        Total Thermal 23.99 21.85 -2.15 -9% 

Table 45: CO2 emissions results comparison between the baseline model and the PV 
(scaled) technology model under a shallow penetration scenario (1 GW) 

 
Figure 137: CO2 emissions results comparison between the baseline model and the wind 

technology model under a shallow penetration scenario (1 GW) 

 

 
  Baseline Wind     
   CO2 Emissions  CO2 Emissions Difference Difference 
  [Mton CO2] [Mton CO2] [Mton CO2] [%] 

OCGT 0.07 0.08 0.01 12% 
CCGT 0.87 0.88 0.02 2% 
Coal 23.06 20.87 -2.19 -9% 
CCS Coal 0.00 0.00 0.00 - 
      

  
Total Thermal 23.99 21.83 -2.16 -9% 

Table 46: CO2 emissions results comparison between the baseline model and the wind 
technology model under a shallow penetration scenario  
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Figure 138: System cost results comparison between the baseline model and the PV 

(scaled) technology model under a shallow penetration scenario (1 GW) 

 

  Baseline PV (Scaled)     
  Cost Cost Difference Difference 
  [MUSD] [MUSD] [MUSD] [%] 

Capacity Cost 1140.3 1073.2 -67.0 -5.9% 
Energy Cost 835.2 779.9 -55.3 -6.6% 
CO2 Emission Cost 0.0 0.0 0.0 - 
Startup Cost 10.9 16.4 5.4 49.5% 
Renewable Cost 0.0 141.0 141.0 - 
        Total Cost 1986.4 2010.5 24.1 1.2% 

Table 47: System cost results comparison between the baseline model and the PV 
(scaled) technology model under a shallow penetration scenario (1 GW) 

 
Figure 139: System cost results comparison between the baseline model and the wind 

technology model under a shallow penetration scenario (1 GW) 

 

  Baseline Wind     
  Cost Cost Difference Difference 
  [MUSD] [MUSD] [MUSD] [%] 

Capacity Cost 1140.3 1073.2 -67.0 -5.9% 
Energy Cost 835.2 778.6 -56.6 -6.8% 
CO2 Emission Cost 0.0 0.0 0.0 - 
Startup Cost 10.9 10.5 -0.5 -4.5% 
Renewable Cost 0.0 141.0 141.0 - 
      

  
Total Cost 1986.4 2003.3 16.9 0.9% 

Table 48: System cost results comparison between the baseline model and the wind 
technology model under a shallow penetration scenario (1 GW)  
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Figure 140: Thermal generation start-up activities results comparison between the 
baseline model and the PV (scaled) technology model under a shallow penetration 

scenario (1 GW) 

 
  Baseline PV (Scaled)     
  Startups Frequency Startups Frequency Difference Difference 
  [Counts] [Counts] [Counts] [%] 

OCGT 296 394 98 33% 
CCGT 501 701 200 40% 
Coal 4 22 18 450% 
CCS Coal 0 0 0 - 
        
Total  801 1117 316 39% 

Table 49: Thermal generation startup activities results comparison between the baseline 
model and the PV (scaled) technology model under a shallow penetration scenario (1 

GW) 

 
Figure 141: Thermal generation start-up activities results comparison between the 

baseline model and the wind technology model under a shallow penetration scenario 

 
 

  Baseline Wind     
  Startups Frequency Startups Frequency Difference Difference 
  [Counts] [Counts] [Counts] [%] 

OCGT 296 330 34 11% 
CCGT 501 452 -49 -10% 
Coal 4 7 3 75% 
CCS Coal 0 0 0 - 
        
Total  801 789 -12 -1.5% 

Table 50: Thermal generation startup activities results comparison between the baseline 
model and the wind technology model under a shallow penetration scenario (1 GW) 
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Shallow & deep penetration scenarios results  
 

 
Figure 142: Optimum technology mix results comparison between shallow (1 GW) and 

deep (1 GW) penetration scenarios for the PV (scaled) technology model  

 
 

  Shallow Deep     
  Capacity Mix Capacity Mix Difference Difference 
  [GW] [GW] [GW] [%] 

OCGT 0.90 1.20 0.30 33% 
CCGT 1.80 3.90 2.10 117% 
Coal 3.60 1.20 -2.40 -67% 
CCS Coal 0.00 0.00 0.00 - 
PV (Scaled) Penetration 1.27 6.36 5.09 - 
        Total Thermal 6.30 6.30 0.00 0% 

Table 51: Optimum technology mix results comparison between shallow (1 GW) and 
deep (5GW) penetration scenarios for the PV (scaled) technology model 

 
 

 
Figure 143: Optimum technology mix results comparison between shallow (1 GW) and 

deep (1 GW) penetration scenarios for the wind technology model 

 
 

  Shallow Deep     
  Capacity Mix Capacity Mix Difference Difference 
  [GW] [GW] [GW] [%] 

OCGT 0.90 1.50 0.60 67% 
CCGT 1.80 2.40 0.60 33% 
Coal 3.60 2.40 -1.20 -33% 
CCS Coal 0.00 0.00 0.00 - 
Wind Penetration 1.00 5.00 4.00 - 
      

  
Total Thermal 6.30 6.30 0.00 0% 

Table 52: Optimum technology mix results comparison between shallow (1 GW) and 
deep (1 GW) penetration scenarios for the wind technology model 
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Figure 144: Energy output results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the PV (scaled) technology model 

 
  Shallow Deep     
  Energy Output Energy Output Difference Difference 
  [TWh] [TWh] [TWh] [%] 

OCGT 0.15 0.29 0.13 88% 
CCGT 2.02 11.19 9.17 454% 
Coal 24.63 8.75 -15.88 -64% 
CCS Coal 0.00 0.00 0.00 - 
PV Penetration 2.54 9.11 6.57 - 
PV Curtailment 0.00 3.58 3.58 - 
          Total  29.34 29.34     

Table 53: Energy output results comparison between shallow (1 GW) and deep (5 GW) 
penetration scenarios for the PV (scaled) technology model 

 
Figure 145: Energy output results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the wind technology model 

 
  Shallow Deep     
  Energy Output Energy Output Difference Difference 
  [TWh] [TWh] [TWh] [%] 

OCGT 0.12 0.29 0.17 144% 
CCGT 2.05 5.05 3.01 147% 
Coal 24.64 13.16 -11.47 -47% 
CCS Coal 0.00 0.00 0.00 - 
Wind Penetration 2.54 10.84 8.30 - 
Wind Curtailment 0.00 1.85 1.85 - 
      

  
Total Thermal 29.34 29.34     
Table 54: Energy output results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the wind technology model  
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Figure 146: Carbon emissions results comparison between shallow (1 GW) and deep (5 

GW) penetration scenarios for the PV (scaled) technology model 

 
 

  Shallow Deep     
   CO2 Emissions  CO2 Emissions Difference Difference 
  [Mton CO2] [Mton CO2] [Mton CO2] [%] 

OCGT 0.09 0.18 0.08 88% 
CCGT 0.87 4.34 3.47 398% 
Coal 20.88 7.41 -13.47 -65% 
CCS Coal 0.00 0.00 0.00 - 
        
Total Thermal 21.85 11.93 -9.92 -45% 

Table 55: Carbon emissions results comparison between shallow (1 GW) and deep (5 
GW) penetration scenarios for the PV (scaled)  technology model 

 
Figure 147: Carbon emissions results comparison between shallow (1 GW) and deep (5 

GW) penetration scenarios for the wind technology model 

 
 

 
  

Shallow Deep     
   CO2 Emissions  CO2 Emissions Difference Difference 
  [Mton CO2] [Mton CO2] [Mton CO2] [%] 

OCGT 0.08 0.17 0.10 128% 
CCGT 0.88 1.60 0.71 80% 
Coal 20.87 12.08 -8.79 -42% 
CCS Coal 0.00 0.00 0.00 - 
      

  
Total Thermal 21.83 13.85 -7.98 -37% 
Table 56: Carbon emissions results comparison between shallow (1 GW) and deep (5 

GW) penetration scenarios for the wind technology model  
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Figure 148: System cost results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the PV (scaled) technology model 

 
 

  Shallow Deep     
  Cost Cost Difference Difference 
  [MUSD] [MUSD] [MUSD] [%] 

Capacity Cost 1073.2 644.0 -429.3 -40% 
Energy Cost 779.9 1103.9 324.1 42% 
CO2 Emission Cost 0.0 0.0 0.0 - 
Startup Cost 16.4 61.2 44.8 274% 
Renewable Cost 141.0 705.2 564.1 400% 
        Total Thermal 2010.5 2514.3 503.8 25.1% 

Table 57: System cost results comparison between shallow (1 GW) and deep (5 GW) 
penetration scenarios for the PV (scaled) technology model 

 
Figure 149: System cost results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the wind technology model 

 
 

  Shallow Deep     
  Cost Cost Difference Difference 
  [MUSD] [MUSD] [MUSD] [%] 

Capacity Cost 1073.2 848.8 -224.4 -21% 
Energy Cost 778.6 691.8 -86.7 -11% 
CO2 Emission Cost 0.0 0.0 0.0 - 
Startup Cost 10.5 46.1 35.7 341% 
Renewable Cost 141.0 705.2 564.1 400% 
      

  
Total Thermal 2003.3 2291.9 288.6 14.4% 

Table 58: System cost results comparison between shallow (1 GW) and deep (5 GW) 
penetration scenarios for the wind technology model  
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Figure 150: Thermal generation startup activities results comparison between shallow (1 

GW) and deep (5 GW) penetration scenarios for the PV (scaled) technology model 

 
 

  Shallow Deep     
  Startups Frequency Startups Frequency Difference Difference 
  [Counts] [Counts] [Counts] [%] 

OCGT 394 785 391 99% 
CCGT 701 3510 2809 401% 
Coal 22 1 -21 -95% 
CCS Coal 0 0 0 - 
        Total  1117 4296 3179 285% 
Table 59: Thermal generation startup activities results comparison between shallow (1 

GW) and deep (5 GW) penetration scenarios for the PV (scaled)  technology model 

 
Figure 151: Thermal generation startup activities results comparison between shallow (1 

GW) and deep (5 GW) penetration scenarios for the wind technology model 

 
 

  Shallow Deep     
  Startups Frequency Startups Frequency Difference Difference 
  [Counts] [Counts] [Counts] [%] 

OCGT 330 807 477 145% 
CCGT 452 867 415 92% 
Coal 7 300 293 4186% 
CCS Coal 0 0 0 - 
      

  
Total  789 1974 1185 150% 
Table 60: Thermal generation startup activities results comparison between shallow (1 

GW) and deep (5 GW) penetration scenarios for the wind technology model
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A.3.3 Supplementary results of the impacts of renewable production profile variability on the capacity and flexibility 
requirements of an electric system  

 

 
Figure 152: Optimum technology mix results comparison between the baseline model 

and the PV technology model under a shallow penetration scenario (1 GW) 

 
 Baseline PV   
 Capacity Mix Capacity Mix Difference Difference 
 [GW] [GW] [GW] [%] 
OCGT 0.75 0.90 0.15 20% 
CCGT 1.80 1.80 0.00 0% 
Coal 3.90 3.60 -0.30 -8% 
PV Penetration 0.00 1.00 1.00 -  

    
  

Total 6.45 6.30 -0.15 -2% 
Table 61: Optimum technology mix results comparison between the baseline model and 

the PV technology model under a shallow penetration scenario (1 GW) 

 

 
Figure 153: Optimum technology mix results comparison between the baseline model 

and the CSP technology model under a shallow penetration scenario (1 GW) 

 

  Baseline CSP     
  Capacity Mix Capacity Mix Difference Difference 
  [GW] [GW] [GW] [%] 

OCGT 0.75 0.90 0.15 20% 
CCGT 1.80 1.80 0.00 0% 
Coal 3.90 3.60 -0.30 -8% 
CSP Penetration 0.00 1.00 1.00 - 
      

  
Total Thermal 6.45 6.30 -0.15 -2% 
Table 62: Optimum technology mix results comparison between the baseline model and 

the CSP technology model under a shallow penetration scenario (1 GW) 
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Figure 154:Energy output results comparison between the baseline model and the PV 

technology model under a shallow penetration scenario (1 GW) 

 
  Baseline PV     
  Energy Output Energy Output Difference Difference 
  [TWh] [TWh] [TWh] [%] 

OCGT 0.11 0.16 0.05 44% 
CCGT 1.98 2.15 0.17 9% 
Coal 27.25 25.03 -2.22 -8% 
CCS Coal 0.00 0.00 0.00 - 
PV Penetration 0.00 2.00 2.00 - 
      

  
Total Thermal 29.34 27.34 -2.00 -7% 

Table 63: Energy output results comparison between the baseline model and the PV 
technology model under a shallow penetration scenario (1 GW) 

 
Figure 155: Energy output results comparison between the baseline model and the CSP 

technology model under a shallow penetration scenario (1 GW) 

 
  Baseline CSP     
  Energy Output Energy Output Difference Difference 
  [TWh] [TWh] [TWh] [%] 

OCGT 0.11 0.15 0.03 30% 
CCGT 1.98 1.97 0.00 0% 
Coal 27.25 24.91 -2.35 -9% 
CCS Coal 0.00 0.00 0.00 - 
CSP Penetration 0.00 2.32 2.32 - 
        Total Thermal 29.34 27.02 -2.32 -8% 

Table 64: Energy output results comparison between the baseline model and the CSP 
technology model under a shallow penetration scenario (1 GW)  
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Figure 156: CO2 emissions results comparison between the baseline model and the PV 

technology model under a shallow penetration scenario (1 GW) 

 
 

  Baseline PV     
   CO2 Emissions  CO2 Emissions Difference Difference 
  [Mton CO2] [Mton CO2] [Mton CO2] [%] 

OCGT 0.07 0.10 0.03 44% 
CCGT 0.87 0.93 0.06 7% 
Coal 23.06 21.22 -1.84 -8% 
CCS Coal 0.00 0.00 0.00 - 
      

  
Total Thermal 23.99 22.24 -1.75 -7% 

Table 65: CO2 emissions results comparison between the baseline model and the PV 
technology model under a shallow penetration scenario (1 GW) 

 

 
Figure 157: CO2 emissions results comparison between the baseline model and the CSP 

technology model under a shallow penetration scenario (1 GW) 

 
 

  Baseline CSP     
   CO2 Emissions  CO2 Emissions Difference Difference 
  [Mton CO2] [Mton CO2] [Mton CO2] [%] 

OCGT 0.07 0.09 0.02 30% 
CCGT 0.87 0.86 -0.01 -1% 
Coal 23.06 21.11 -1.95 -8% 
CCS Coal 0.00 0.00 0.00 - 
        Total Thermal 23.99 22.06 -1.93 -8% 

Table 66: CO2 emissions results comparison between the baseline model and the CSP 
technology model under a shallow penetration scenario  
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Figure 158: System cost results comparison between the baseline model and the PV 

technology model under a shallow penetration scenario (1 GW) 

 
  Baseline PV     
  Cost Cost Difference Difference 
  [MUSD] [MUSD] [MUSD] [%] 

Capacity Cost 1140.3 1073.2 -67.0 -5.9% 
Energy Cost 835.2 801.0 -34.2 -4.1% 
CO2 Emission Cost 0.0 0.0 0.0 - 
Startup Cost 10.9 12.9 1.9 17.5% 
Renewable Cost 0.0 142.4 142.4 - 
      

  
Total Cost 1986.4 2029.5 43.1 2.2% 

Table 67: System cost results comparison between the baseline model and the PV 
technology model under a shallow penetration scenario (1 GW) 

 
Figure 159: System cost results comparison between the baseline model and the CSP 

technology model under a shallow penetration scenario (1 GW) 

 
  Baseline CSP     
  Cost Cost Difference Difference 
  [MUSD] [MUSD] [MUSD] [%] 

Capacity Cost 1140.3 1073.2 -67.0 -5.9% 
Energy Cost 835.2 782.9 -52.2 -6.3% 
CO2 Emission Cost 0.0 0.0 0.0 - 
Startup Cost 10.9 13.9 2.9 26.8% 
Renewable Cost 0.0 428.3 428.3 - 
        Total Cost 1986.4 2298.3 311.9 15.7% 

Table 68: System cost results comparison between the baseline model and the CSP 
technology model under a shallow penetration scenario (1 GW)  
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Figure 160: Thermal generation start-up activities results comparison between the 

baseline model and the PV technology model under a shallow penetration scenario (1 
GW) 

 
  Baseline PV     
  Startups Frequency Startups Frequency Difference Difference 
  [Counts] [Counts] [Counts] [%] 

OCGT 296 388 92 31% 
CCGT 501 592 91 18% 
Coal 4 3 -1 -25% 
CCS Coal 0 0 0 - 
        
Total  801 983 182 23% 

Table 69: Thermal generation startup activities results comparison between the baseline 
model and the PV technology model under a shallow penetration scenario (1 GW) 

 
Figure 161: Thermal generation start-up activities results comparison between the 

baseline model and the CSP technology model under a shallow penetration scenario 
 
 
 

  Baseline CSP     
  Startups Frequency Startups Frequency Difference Difference 
  [Counts] [Counts] [Counts] [%] 

OCGT 296 330 34 11% 
CCGT 501 452 -49 -10% 
Coal 4 7 3 75% 
CCS Coal 0 0 0 - 
        
Total  801 789 -12 -1.5% 

Table 70: Thermal generation startup activities results comparison between the baseline 
model and the CSP technology model under a shallow penetration scenario (1 GW)  
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Shallow & deep penetration scenarios results  
 

 
Figure 162: Optimum technology mix results comparison between shallow (1 GW) and 

deep (1 GW) penetration scenarios for the PV technology model  

 
  Shallow Deep     
  Capacity Mix Capacity Mix Difference Difference 
  [GW] [GW] [GW] [%] 

OCGT 0.90 1.20 0.30 33% 
CCGT 1.80 3.30 1.50 83% 
Coal 3.60 1.80 -1.80 -50% 
CCS Coal 0.00 0.00 0.00 - 
PV Penetration 1.00 5.00 4.00 - 
      

  
Total Thermal 6.30 6.30 0.00 0% 

Table 71: Optimum technology mix results comparison between shallow (1 GW) and 
deep (5GW) penetration scenarios for the PV technology model 

 

 

 
Figure 163: Optimum technology mix results comparison between shallow (1 GW) and 

deep (1 GW) penetration scenarios for the CSP technology model 

 

  Shallow Deep     
  Capacity Mix Capacity Mix Difference Difference 
  [GW] [GW] [GW] [%] 

OCGT 0.90 2.40 1.50 167% 
CCGT 1.80 3.60 1.80 100% 
Coal 3.60 1.20 -2.40 -67% 
CCS Coal 0.00 0.00 0.00 - 
CSP Penetration 1.00 5.00 4.00 - 
        Total Thermal 6.30 7.20 0.90 14% 

Table 72: Optimum technology mix results comparison between shallow (1 GW) and 
deep (1 GW) penetration scenarios for the CSP technology model  
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Figure 164: Energy output results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the PV technology model 

 
  Shallow Deep     
  Energy Output Energy Output Difference Difference 
  [TWh] [TWh] [TWh] [%] 

OCGT 0.16 0.30 0.14 84% 
CCGT 2.15 8.35 6.21 289% 
Coal 25.03 12.51 -12.52 -50% 
CCS Coal 0.00 0.00 0.00 - 
PV Penetration 2.00 8.17 6.18 - 
PV Curtailment 0.00 1.81 1.81 - 
          Total  29.34 29.34     

Table 73: Energy output results comparison between shallow (1 GW) and deep (5 GW) 
penetration scenarios for the PV technology model 

 
Figure 165: Energy output results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the CSP technology model 

 
  Shallow Deep     
  Energy Output Energy Output Difference Difference 
  [TWh] [TWh] [TWh] [%] 

OCGT 0.15 0.59 0.45 305% 
CCGT 1.97 11.93 9.96 505% 
Coal 24.91 8.83 -16.08 -65% 
CCS Coal 0.00 0.00 0.00 - 
CSP Penetration 2.32 7.99 5.67 - 
CSP Curtailment 0.00 1.85 1.85 - 
          Total Thermal 29.34 29.34     
Table 74: Energy output results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the CSP technology model  
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Figure 166: Carbon emissions results comparison between shallow (1 GW) and deep (5 

GW) penetration scenarios for the PV technology model 

 
 

  Shallow Deep     
   CO2 Emissions  CO2 Emissions Difference Difference 
  [Mton CO2] [Mton CO2] [Mton CO2] [%] 

OCGT 0.10 0.18 0.08 84% 
CCGT 0.93 3.28 2.36 255% 
Coal 21.22 10.56 -10.65 -50% 
CCS Coal 0.00 0.00 0.00 - 
        
Total Thermal 22.24 14.03 -8.21 -37% 

Table 75: Carbon emissions results comparison between shallow (1 GW) and deep (5 
GW) penetration scenarios for the PV technology model 

 

 
Figure 167: Carbon emissions results comparison between shallow (1 GW) and deep (5 

GW) penetration scenarios for the CSP technology model 

 
 

  Shallow Deep     
   CO2 Emissions  CO2 Emissions Difference Difference 
  [Mton CO2] [Mton CO2] [Mton CO2] [%] 

OCGT 0.09 0.36 0.27 305% 
CCGT 0.86 4.62 3.76 437% 
Coal 21.11 7.47 -13.64 -65% 
CCS Coal 0.00 0.00 0.00 - 
        Total Thermal 22.06 12.45 -9.60 -44% 
Table 76: Carbon emissions results comparison between shallow (1 GW) and deep (5 

GW) penetration scenarios for the CSP technology model  
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Figure 168: System cost results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the PV technology model 

 
  Shallow Deep     
  Cost Cost Difference Difference 
  [MUSD] [MUSD] [MUSD] [%] 

Capacity Cost 1073.2 749.7 -323.6 -30% 
Energy Cost 801.0 984.9 183.9 23% 
CO2 Emission Cost 0.0 0.0 0.0 - 
Startup Cost 12.9 100.9 88.0 685% 
Renewable Cost 142.4 712.1 569.7 400% 
      

  
Total Thermal 2029.5 2547.4 518.0 25.5% 

Table 77: System cost results comparison between shallow (1 GW) and deep (5 GW) 
penetration scenarios for the PV technology model 

 
Figure 169: System cost results comparison between shallow (1 GW) and deep (5 GW) 

penetration scenarios for the CSP technology model 

 
  Shallow Deep     
  Cost Cost Difference Difference 
  [MUSD] [MUSD] [MUSD] [%] 

Capacity Cost 1073.2 683.3 -389.9 -36% 
Energy Cost 782.9 1199.1 416.2 53% 
CO2 Emission Cost 0.0 0.0 0.0 - 
Startup Cost 13.9 60.5 46.6 336% 
Renewable Cost 428.3 2141.5 1713.2 400% 
        Total Thermal 2298.3 4084.4 1786.1 77.7% 

Table 78: System cost results comparison between shallow (1 GW) and deep (5 GW) 
penetration scenarios for the CSP technology model  
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Figure 170: Thermal generation startup activities results comparison between shallow (1 

GW) and deep (5 GW) penetration scenarios for the PV technology model 

 
 

  Shallow Deep     
  Startups Frequency Startups Frequency Difference Difference 
  [Counts] [Counts] [Counts] [%] 

OCGT 388 815 427 110% 
CCGT 592 2778 2186 369% 
Coal 3 562 559 18633% 
CCS Coal 0 0 0 - 
      

  
Total  983 4155 3172 323% 
Table 79: Thermal generation startup activities results comparison between shallow (1 

GW) and deep (5 GW) penetration scenarios for the PV technology model 

 

 
Figure 171: Thermal generation startup activities results comparison between shallow (1 

GW) and deep (5 GW) penetration scenarios for the CSP technology model 

 
 

  Shallow Deep     
  Startups Frequency Startups Frequency Difference Difference 
  [Counts] [Counts] [Counts] [%] 

OCGT 452 1340 888 196% 
CCGT 609 3240 2631 432% 
Coal 7 4 -3 -43% 
CCS Coal 0 0 0 - 
        Total  1068 4584 3516 329% 
Table 80: Thermal generation startup activities results comparison between shallow (1 

GW) and deep (5 GW) penetration scenarios for the CSP technology mode
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Appendix Overview  

 

 

In this appendix. we include selected GAMS codes and routines used to carry out the 

simulation work of the thesis. In addition, we include selected GAMS codes used to 

automate the prepressing of the input data and postprocessing of the simulation results.  
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Figure 172: Selected GAMS code used for implementing the SC and UC models   

$Ontext
==================================================================================================

The core programs and routines of the Screening Curve (SC) and Unit Commitment (UC) models

The unit commitment model is based on the clustering formualtion. The coded program is loosely

based on Palmintier BS, Webster MD. Heterogeneous Unit Clustering for Efficient Operational

Flexibility Modeling. IEEE Transactions on Power Systems. 2014

==================================================================================================

$Offtext

*=================================================================================================

* Definitions of Sets

*=================================================================================================

SETS

t                         | Time Frame (i.e. hours mins or secs)                          /1*8760/
g                         | Conventional Generation Plant or Units
r e n g                      | Renewable Generation Plants
;

*=================================================================================================

* Declaration of Parameters and Scalars

*=================================================================================================

*-------------------------------------------------------------------------------------------------

PARAMETERS

*-------------------------------------------------------------------------------------------------

Demand(t)                 | MW            | Demand level                             | Given
DemandEff(t)              | MW            | Effective demand                         | Calculated
PV(t)                     | MW            | PV AC prodcution level                   | Given
ExcessPV(t)               | MW            | Excessive PV                             | Calculated
T o t a l E x c e s s P V             | MW            | Total excessive PV                       | Calculated
CSP(t)                    | MW            | CSP production level                     | Calculated
ExcessCSP(t)              | MW            | Excessive Demand                         | Calculated
T o t a l E x c e s s C S P            | MW            | Total excessive CSP                      | Calculated
HeatRate(g)               | Btu\kWh       | Heatrate of thermal plants               | Given
ThermEfficiency(g)        | %             | Efficiency rate                          | Calculated
Capex(g)                  | USD\kW        | Capital cost                             | Given
CapexAnn(g)               | USD\kW-yr     | Annualized Capitl Cost                   | Calculated
OpexFix(g)                | USD\kW-yr     | Operation Fixed Cost                     | Given
TotalFix(g)               | USD\MWh-yr    | Total fixed cost                         | Calculated
OpexVar(g)                | USD\MWh       | Operating cost                           | Given
FuelCost(g)               | USD\MWh       | Fuel cost                                | Calculated
CarbonCost(g)             | USD\MWh       | Carbon cost                              | Calculated
TotalVar(g)               | USD\MWh       | Operting+Fuel+Carbon                     | Calculated
DiscountRate(g)           | %             | Discount rate                            | Given
LifeTime(g)               | Yrs           | Economic lifetime                        | Given
FuelPrice(g)              | USD\MMBTu     | Fuel pries                               | Given
CO2EmissionFactor(g)      | kg\kWh        | Emssions rate                            | Given
T o t a l D e m a n d               | GWh           | Total system demand                      | Calculated
M a x D e m a n d                 | MW            | Maximum system demand                    | Calculated
M i n D e m a n d                 | MW            | Maximum system demand                    | Calculated
RenCapex(reng)            | USD\kW        | Capital cost                             | Given
RenDiscountRate(reng)     | %             | Discount rate                            | Given
RenLifeTime(reng)         | Yrs           | Economic lifetime                        | Given
RenOpexFix(reng)          | USD\kW-yr     | Operation Fixed Cost                     | Given
RenCapexAnn(reng)         | USD\kW-yr     | Annualized Capitl Cost                   | Calculated
RenTotalFix(reng)         | USD\MWh-yr    | Total fixed cost                         | Calculated
RenPentPer(reng)          | %             | Penetration level                        | Given
RenInstalledCap(reng)     | MW            | Installed Capacity                       | Calculated
S u m P V                     | GWh           | Annual energy produced                   | Calculated
S u m C S P                    | GWh           | Annual energy produced                   | Calculated
Tech(g)                   | Type          | CCGT OCGT CCS_COAL                       | Given
Fuel(g)                   | Type          | Gas Coal Uranuim                         | Given
UnitSize(g)               | MW            | Unit rated capacity                      | Given
MinStableGen(g)           | %             | As % of rated power                      | Given
StartupCost(g)            | USD\MW\Start  | Unit Startup Cost                        | Given
MinUpTime(g)              | h             | Minimum Up hours                         | Given
MinDownTime(g)            | h             | Minimum Down hours                       | Given
a(g)                      | %             | Part-loading cofficient                  | Given
b(g)                      | %             | Part-loading cofficient                  | Given
c(g)                      | %             | Part-loading cofficient                  | Given

FuelCO2EmissionRate(g)    | Kg\MMBTu      | CO2 content of Fuel                      | Given
NoLoadFuel(g)             | P.U.\h        | No-load cofficient tech-specifc          | Given
IncFuel(g)                | P.U.\MWh      | Incremantal fuel cofficient tech-specifc | Given
NoLoadFuelCost(g)         | USD\hr        | No Load Fuel Cost                        | Calculated
IncrementalFuelCost(g)    | USD\MWh       | Incremental Fuel Cost                    | Calculated
NoLoadCarbonEm(g)         | Ton\hr        | No Load Fuel Cost                        | Calculated
IncrementalCarbonEm(g)    | Ton\MWh       | Incremental Fuel Cost                    | Calculated
NoLoadCarbonCost(g)       | USD\hr        | No Load Fuel Cost                        | Calculated
IncrementalCarbonCost(g)  | USD\MWh       | Incremental Fuel Cost                    | Calculated
*-------------------------------------------------------------------------------------------------

SCALARS

*-------------------------------------------------------------------------------------------------

G a s P r i c e                  | USD\MMBTu     | Assumed gas price                        | Given
C o a l P r i c e                 | USD\MMBTu     | Assumed coal price                       | Given
G a s E m i s s i o n F a c t o r         | Kg\MMBTu      | Gas CO2 emission content                 | Given
C o a l E m i s s i o n F a c t o r        | Kg\MMBTu      | Coal CO2 emission content                | Given
C a r b o n T a x                 | USD\MWh       | Assumed CO2 Tax                          | Given
P V P e n t P e r                 | %             | Penetration level as % of total laod     | Given
C S P P e n t P e r                | %             | Penetration level as % of total laod     | Given
P V P e n t A b s                 | MW            | Penetration level                        | Given
C S P P e n t A b s                | MW            | Penetration level                        | Given
M i n T h e r m a l G e n             | MW            | Minimum running thermal generation       | Given
S y s t S p i n n i n g R e s e r v e       | %             | As % of the total load                   | Given
E x t r a R e n R e s e r v e           | %             | As % of the total renewable generation   | Given
;

*=================================================================================================

* Values assigment of key parameters

*=================================================================================================

* ------------------------------------------------------------------------------------------------

* Fuel prices, tax and emissions information

* ------------------------------------------------------------------------------------------------

CarbonTax=                   0;
*------------------------------

GasPrice=                   10;
*------------------------------

CoalPrice=                2.19;
*------------------------------

SystSpinningReserve=       0.2;
*------------------------------

* ------------------------------------------------------------------------------------------------

* Renewable energy penetration and flexibility assumptions

* ------------------------------------------------------------------------------------------------

PVPentPer=                   eps;  PVPentAbs=eps;
*------------------------------

CSPPentPer=                  eps;  CSPPentAbs=eps;
*------------------------------

MinThermalGen=             500;
*------------------------------

*=================================================================================================

* Data Import Intialisation

*=================================================================================================

$ include Data_Import.gms
$ include Definition_of_Additional_Parameters.gms
*=================================================================================================
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Figure 173: Selected GAMS code used for implementing the SC model  

*=================================================================================================

*=================================================================================================

* Definition of Variables, Equations for the Screening Curve Model (SC)

*=================================================================================================

*=================================================================================================

VARIABLES

T o t a l S y s C o s t S C            | M-USD        | Total system cost                        | Variable
;

POSITIVE VARIABLES
T o t a l S y s V a r C o s t S C         | M-USD        | Total system variable cost               | Variable
T o t a l S y s F i x C o s t S C         | M-USD        | Total system fixed cost                  | Variable
PowerOutputSC(g,t)        | MW           | Generators power output                  | Variable
InstalledCapacitySC(g)    | MW           | Installed capacity                       | Variable

;
*=================================================================================================

* Definition of Screening Curve Model Equations

*=================================================================================================

EQUATIONS

E q T o t a l C o s t S C             | Total cost is the sum of all variable and fixed costs
E q T o t a l F i x e d S C            | Total investment and fixed maintenance cost
E q T o t a l V a r C o s t S C          | Total fuel variable maintance and emission costs
EqDemandSupplyBalSC(t)    | Supply must meet demand at all times
EqCapacityCheckSC(g,t)    | Generators output can not exceed installed capacity at anytime
;
*=================================================================================================

EqTotalCostSC..           TotalSysCostSC =e= (TotalSysFixCostSC + TotalSysVarCostSC);
*-------------------------------------------------------------------------------------------------

EqTotalFixedSC..          TotalSysFixCostSC =e=
                          sum[g, TotalFix(g)*InstalledCapacitySC(g)]/1000000 +
                          sum[reng, RenTotalFix(reng)*RenInstalledCap(reng)]/1000000;
*-------------------------------------------------------------------------------------------------

EqTotalVarCostSC..        TotalSysVarCostSC =e=
                          sum[(t,g), TotalVar(g)*PowerOutputSC(g,t)]/1000000;
*-------------------------------------------------------------------------------------------------

EqCapacityCheckSC(g,t)..  PowerOutputSC(g,t) =l= InstalledCapacitySC(g);
*-------------------------------------------------------------------------------------------------

EqDemandSupplyBalSC(t)..  sum[g,PowerOutputSC(g,t)] =e= DemandEff(t);
*=================================================================================================

model S c r e e i n g C u r v e M o d e l   /  EqTotalCostSC
                              EqTotalFixedSC
                              EqTotalVarCostSC
                              EqDemandSupplyBalSC
                              EqCapacityCheckSC/;
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Figure 174: Selected GAMS code used for implementing the UC model  

*=================================================================================================

* Definition of Variables for the Unit Commitment Model (NLF) Model

*=================================================================================================

VARIABLES

T o t a l S y s C o s t N L F           | M-USD        | Total system cost                        | Variable
T o t a l S y s V a r C o s t N L F        | M-USD        | Total system variable cost               | Variable
T o t a l S y s F i x C o s t N L F        | M-USD        | Total system fixed cost                  | Variable
PowerOutputNLF(g,t)       | MW           | Generators power output                  | Variable
UnitCountsNLF(g)          | #            | Number of units to be built              | Variable
;

POSITIVE VARIABLES
StartedUnitsNLF(g,t)      | #            | Number of started units                  | Variable
StoppedUnitsNLF(g,t)      | #            | Number of stopped units                  | Variable
;

INTEGER VARIABLES
OnlineUnitsNLF(g,t)       | #            | Number of units to be built              | Variable
;

*=================================================================================================

*=================================================================================================

* Definition of Unit Commitment Model Equations (No-Load Formulation NLF)

*=================================================================================================

*=================================================================================================

EQUATIONS

E q T o t a l C o s t N L F            | Total cost is the sum of all variable and fixed costs
E q T o t a l F i x e d N L F           | Total investment and fixed maintenance cost
E q T o t a l V a r C o s t N L F         | Total fuel variable maintance and emission costs
EqDemandSupplyBalNLF(t)   | Supply must be equal demand at all times
EqCapMaxCheckNLF(g,t)     | Generators output can not exceed thier maximum power limits
EqCapMinCheckNLF(g,t)     | Generators output shall exceed minimum loading limits
EqUnitsCheckNLF(g,t)      | Generators numbers can not exceed installed capacity
EqReserveCheckNLF(t)      | Generators must meet reserve requirment
EqStartStopLogicNLF(g,t)  | Generators cannot stop and start simultaneously
EqMinUpTimeNLF(g,t)       | Generators minimum up time constrain
EqMindownTimeNLF(g,t)     | Generators minimum down time constrain
;
*=================================================================================================

*-------------------------------------------------------------------------------------------------

EqTotalCostNLF..            TotalSysCostNLF =e= (TotalSysFixCostNLF + TotalSysVarCostNLF);
*-------------------------------------------------------------------------------------------------

EqTotalFixedNLF..           TotalSysFixCostNLF =e=
                            sum[g, TotalFix(g)*UnitCountsNLF(g)*UnitSize(g)]/1000000 +
                            sum[reng, RenTotalFix(reng)*RenInstalledCap(reng)]/1000000;
*-------------------------------------------------------------------------------------------------

EqTotalVarCostNLF..         TotalSysVarCostNLF =e= sum[(t,g),
                            NoLoadFuelCost(g)*OnlineUnitsNLF(g,t)+
                            IncrementalFuelCost(g)*PowerOutputNLF(g,t)+
                            NoLoadCarbonCost(g)*OnlineUnitsNLF(g,t)+
                            IncrementalCarbonCost(g)*PowerOutputNLF(g,t)+
                            OpexVar(g)*PowerOutputNLF(g,t)+
                            StartupCost(g)* UnitSize(g)* StartedUnitsNLF(g,t)]/1000000;
*-------------------------------------------------------------------------------------------------

EqCapMaxCheckNLF(g,t)..     PowerOutputNLF(g,t) =l= OnlineUnitsNLF(g,t)*UnitSize(g);
*-------------------------------------------------------------------------------------------------

EqCapMinCheckNLF(g,t)..     PowerOutputNLF(g,t) =g=
                            OnlineUnitsNLF(g,t)*MinStableGen(g)*UnitSize(g);
*-------------------------------------------------------------------------------------------------

EqDemandSupplyBalNLF(t)..   sum[g,PowerOutputNLF(g,t)] =e= DemandEff(t);
*-------------------------------------------------------------------------------------------------

EqUnitsCheckNLF(g,t)..      OnlineUnitsNLF(g,t) =l= UnitCountsNLF(g);
*-------------------------------------------------------------------------------------------------

EqReserveCheckNLF(t)..      sum[g,OnlineUnitsNLF(g,t)* UnitSize(g)] =g=
                            (1+SystSpinningReserve)*DemandEff(t) ;
*-------------------------------------------------------------------------------------------------

EqStartStopLogicNLF(g,t)..  OnlineUnitsNLF(g,t)=e=
                            OnlineUnitsNLF(g,t-1)+ StartedUnitsNLF(g,t)- StoppedUnitsNLF(g,t);

*-------------------------------------------------------------------------------------------------

EqMinUpTimeNLF(g,t)..      OnlineUnitsNLF(g,t)
                           =g=
                           StartedUnitsNLF(g,t)  +
                           StartedUnitsNLF(g,t-1)  $ (MinUpTime(g)>1) +
                           StartedUnitsNLF(g,t-2)  $ (MinUpTime(g)>2) +
                           StartedUnitsNLF(g,t-3)  $ (MinUpTime(g)>3) +
                           StartedUnitsNLF(g,t-4)  $ (MinUpTime(g)>4) +
                           StartedUnitsNLF(g,t-5)  $ (MinUpTime(g)>5) +
                           StartedUnitsNLF(g,t-6)  $ (MinUpTime(g)>6) +
                           StartedUnitsNLF(g,t-7)  $ (MinUpTime(g)>7) +
                           StartedUnitsNLF(g,t-8)  $ (MinUpTime(g)>8) +
                           StartedUnitsNLF(g,t-9)  $ (MinUpTime(g)>9) +
                           StartedUnitsNLF(g,t-10) $ (MinUpTime(g)>10)+
                           StartedUnitsNLF(g,t-11) $ (MinUpTime(g)>11);
*-------------------------------------------------------------------------------------------------

EqMindownTimeNLF(g,t)..    UnitCountsNLF(g) - OnlineUnitsNLF(g,t)
                           =g=
                           StoppedUnitsNLF(g,t)  +
                           StoppedUnitsNLF(g,t-1)  $ (MinDownTime(g)>1) +
                           StoppedUnitsNLF(g,t-2)  $ (MinDownTime(g)>2) +
                           StoppedUnitsNLF(g,t-3)  $ (MinDownTime(g)>3) +
                           StoppedUnitsNLF(g,t-4)  $ (MinDownTime(g)>4) +
                           StoppedUnitsNLF(g,t-5)  $ (MinDownTime(g)>5) +
                           StoppedUnitsNLF(g,t-6)  $ (MinDownTime(g)>6) +
                           StoppedUnitsNLF(g,t-7)  $ (MinDownTime(g)>7) +
                           StoppedUnitsNLF(g,t-8)  $ (MinDownTime(g)>8) +
                           StoppedUnitsNLF(g,t-9)  $ (MinDownTime(g)>9) +
                           StoppedUnitsNLF(g,t-10) $ (MinDownTime(g)>10)+
                           StoppedUnitsNLF(g,t-11) $ (MinDownTime(g)>11);

*=================================================================================================

model U n i t C o m m i t m e n t N o L o a d F o r m u l a t i o n  / EqTotalCostNLF
                                         EqTotalFixedNLF
                                         EqTotalVarCostNLF
                                         EqCapMaxCheckNLF
                                         EqCapMinCheckNLF
                                         EqDemandSupplyBalNLF
                                         EqUnitsCheckNLF
                                         EqReserveCheckNLF
                                         EqStartStopLogicNLF
                                         EqMinUpTimeNLF
                                         EqMindownTimeNLF
                                         / ;
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Figure 175: Selected GAMS code used in conjunction with the SC and UC models to help postprocess the main results of the model  

$Ontext
==================================================================================================

Filename    :  Post-Processing.gms

Descriptiom :  A file to be used in conjuction with Unit Commitment Model to help compile and

               present the results of the model
==================================================================================================

$Offtext

*=================================================================================================

* A) General Parameters and Stats

*=================================================================================================

Parameters

T o t a l D e m a n d E f f            | GWh           | Total net demand [residual demand]       | Calculated
T o t a l P V G e n                | GWh           | Yearly generation of 1MW PV [PV profile] | Calculated
EffPV(t)                  | GWh           | PV generation time series [scaled]       | Calculated
EffCSP(t)                 | GWh           | CSP generation time series [scaled]      | Calculated
S u m E f f P V                  | GWh           | Yearly total PV generation               | Calculated
S u m E f f C S P                 | GWh           | Yearly total CSP generation              | Calculated
S u m S e r P V                  | GWh           | Total generation injected to grid        | Calculated
S u m S e r C S P                 | GWh           | Total generation injected to grid        | Calculated
T o t a l R e n C o s t              | M-USD         | Total renewable energy cost              | Calculated
R e s i d u a l L o a d S t D e v         | MW            | Residual load votalitiy measure (SD)     | Calculated
R e s i d u a l L o a d S t A v r g        | MW            | Residual load average                    | Calculated

;
*=================================================================================================

Scalars

n                         | GWh           | Total number of demand values            | Calculated

;

*=================================================================================================

* B) Screening curve model

*=================================================================================================

PARAMETERS

E n e r g y c o s t S C              | USD\MWh       | System energy unit cost                  | Calculated
S u m I n s a t l l e d C a p a c i t y S C    | MW            | System's total installed capacity        | Calculated
EnergyServedSC(g)         | GWh           | Energy served per generator              | Calculated
T o t a l E n e r g y S e r v e d S C       | GWh           | Total energy served by all generators    | Calculated
FuelConsumptionSC(g,t)    | MMBTU         | Fuel Consumption (Instant)               | Calculated
CO2EmissionSC(g,t)        | Ton           | CO2Emission (Instant)                    | Calculated
GenFuelConsumptionSC(g)   | MMBTU         | Fuel Consumption per gen                 | Calculated
GenCO2EmissionSC(g)       | Ton           | CO2Emission per gen                      | Calculated
GenCO2EmissionPercSC(g)   | %             | CO2Emission per gen as % of total        | Calculated
S y s t e m C O 2 E m i s s i o n S C       | kg\MWh        | System Emission intensity                | Calculated
T o t a l C O 2 E m i s s i o n S C        | Ton           | Total System Emission                    | Calculated
GenCapacityCostSC(g)      | M-USD         | Total Capacity Cost                      | Calculated
GenEnergyCostSC(g)        | M-USD         | Total Energy Cost                        | Calculated
GenEmissionCostSC(g)      | M-USD         | Total Emission Cost                      | Calculated
EnergyServedPercSC(g)     | %             | Total energy served                      | Calculated
LoadFactorSC(g)           | %             | Average utilisation factor               | Calculated
InstalledCapPercSC(g)     | %             | Installed capacity as % of total         | Calculated
EnergyServedPerSC(g)      | %             | Energy served as % of total              | Calculated
;

* Scenarios related parameters

*=================================================================================================

PARAMETERS

E n e r g y c o s t c h a n g e S C        | %             | System energy unit cost change           | Calculated
T o t a l S y s C o s t C h a n g e S C      | %             | Total system cost change                 | Calculated
T o t S y s t e m C a p C o s t C h a n g e S C  | %             | Total system capacity cost change        | Calculated
T o t a l C O 2 E m i s s i o n C h a n g e S C  | %             | Total System Emission change             | Calculated

;
*=================================================================================================

*=================================================================================================

* C) Unit Commitment (No Load Formulation)

*=================================================================================================

PARAMETERS

E n e r g y c o s t N L F             | USD\MWh       | System energy unit cost                  | Calculated
InstalledCapacityNLF(g)   | MW            | Installed capacity per generator type    | Calculated
S u m I n s a t l l e d C a p a c i t y N L F   | MW            | Installed capacity per generator type    | Calculated
EnergyServedNLF(g)        | GWh           | Energy served by each generator          | Calculated
T o t a l E n e r g y S e r v e d N L F      | GWh           | Total energy served by all generators    | Calculated
InstalledCapPercNLF(g)    | %             | Installed capacity as % of total         | Calculated
EnergyServedPerNLF(g)     | %             | Energy served as % of total              | Calculated
LoadFactorNLF(g)          | %             | Average utilisation factor               | Calculated
CO2EmissionNLF(g,t)       | Ton           | CO2Emission per gen (instant)            | Calculated
GenCO2EmissionNLF(g)      | Ton           | CO2Emission per gen                      | Calculated
GenCO2EmissionPercNLF(g)  | %             | CO2Emission per gen as % of total        | Calculated
S y s t e m C O 2 E m i s s i o n N L F      | kg\MWh        | System Emission intensity                | Calculated
GenCapacityCostNLF(g)     | Ton           | Total System Emission                    | Calculated
GenEnergyCostNLF(g)       | M-USD         | Total Energy Cost                        | Calculated
GenEmissionCostNLF(g)     | M-USD         | Total Emission Cost                      | Calculated
T o t a l C O 2 E m i s s i o n N L F       | Ton           | Total System Emission                    | Calculated
GenCountsNLF(g)           | N.O.          | Number of generators built               | Calculated
GenStartupCostNLF(g)      | M-USD         | Total startup c ost                      | Calculated
GenStartupsCountsNLF(g)   | N.O.          | Total startup cost                       | Calculated
GenStopsCountsNLF(g)      | N.O.          | Total startup cost                       | Calculated
SpinningRerseveNLF(g,t)   | MW            | Spinning reserve                         | Calculated
GenSpinReserveNLF(g)      | MW            | Spinning reserve                         | Calculated
GenSpinReservePercNLF(g)  | %             | Spinning reserve as % of total           | Calculated
T o t a l S p i n n i n g R e s e r v e N L F   | MW            | Total System Spinning reserve            | Calculated
PlantOnBarNLF(t)          | MW            | Total Plant on Bar                       | Calculated
Starts(g,t)               | MW            | Starts per type                          | Calculated
;

* Scenarios related parameters

*=================================================================================================

PARAMETERS

E n e r g y c o s t c h a n g e N L F       | %             | System energy unit cost change           | Calculated
T o t a l S y s C o s t C h a n g e N L F     | %             | Total system cost change                 | Calculated
T o t S y s t e m C a p C o s t C h a n g e N L F | %             | Total system capacity cost change        | Calculated
T o t a l C O 2 E m i s s i o n C h a n g e N L F | %             | Total System Emission change             | Calculated

;
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Figure 176: Selected GAMS code used in conjunction with the SC model to help compile and present the results of the model in an excel format   

$Ontext

==================================================================================================

Filename    :  Excel_Scenario_Report.gms

Descriptiom :  A file to be used in conjuction with Unit Commitment Model to help compile and

               present the results of the model

==================================================================================================

$Offtext

*=================================================================================================

* A) Screening curve model

*=================================================================================================

$OnDotL

*=================================================================================================

* 1. Descriptve Stats

*=================================================================================================

SolutionSummartySC("System energy unit cost","USD\MWh",""           ,s)       = EnergycostSC;

SolutionSummartySC("System Emission intensity","kg\MWh",""           ,s)    = SystemCO2EmissionSC;

SolutionSummartySC("System's total installed capacity","MW",""      ,s)  = SumInsatlledCapacitySC;

SolutionSummartySC("Peak Load","MW",""      ,s)                               = MaxDemand;

SolutionSummartySC("Minimum Load","MW",""      ,s)                            = MinDemand;

SolutionSummartySC("Total Load","GWh",""      ,s)                             = TotalDemand;

SolutionSummartySC("Energy served by thermal generation","GWh",""      ,s)  = TotalEnergyServedSC;

*--------------------------------------------------------------------------------------------------»

-

SolutionSummartySC("Total System Cost","M-USD",""      ,s)                    = TotalSysCostSC;

if

((TotalSysCostSC-SolutionSummartySC("Total System Cost","M-USD","","S001"))=0,

SolutionSummartySC("Total System Cost Change","M-USD",""      ,s)= eps;

else

SolutionSummartySC("Total System Cost Change","M-USD",""      ,s)=

(TotalSysCostSC-SolutionSummartySC("Total System Cost","M-USD","","S001"))/

         SolutionSummartySC("Total System Cost","M-USD","","S001");

);

*--------------------------------------------------------------------------------------------------»

-

SolutionSummartySC("Total System Emissions","M-Ton",""      ,s)               = TotalCO2EmissionSC;

if

((TotalCO2EmissionSC-SolutionSummartySC("Total System Emissions","M-Ton","","S001"))=0,

SolutionSummartySC("Total System Emissions reduction","M-Ton",""      ,s)= eps;

else

SolutionSummartySC("Total System Emissions reduction","M-Ton",""      ,s)=

-(TotalCO2EmissionSC-SolutionSummartySC("Total System Emissions","M-Ton","","S001"))/

         SolutionSummartySC("Total System Emissions","M-Ton","","S001");

);

*=================================================================================================

* 2. Scenario Details

*=================================================================================================

SolutionSummartySC("Natural Gas Price","USD/MMBtu",""      ,s)                = GasPrice;

SolutionSummartySC("Coal Price","USD/MMBtu",""      ,s)                       = CoalPrice;

SolutionSummartySC("Carbon Floor Price","USD/Ton",""      ,s)                 = CarbonTax;

*=================================================================================================

* 3. Renewable Stats

*=================================================================================================

SolutionSummartySC("Penetration level as % of total laod ","%","PV"    ,s)    = PVPentPer;

SolutionSummartySC("Penetration level as % of total laod ","%","CSP"   ,s)    = CSPPentPer;

SolutionSummartySC("Energy generated","GWh","PV"   ,s)                        = SumEffPV;

SolutionSummartySC("Energy generated","GWh","CSP"   ,s)                       = SumEffCSP;

SolutionSummartySC("Energy served (injected to the grid)","GWh","PV"   ,s)    = SumSerPV;

SolutionSummartySC("Energy served (injected to the grid)","GWh","CSP"   ,s)   = SumSerCSP;

SolutionSummartySC("Energy spilled (curtailed)","GWh","PV"   ,s)              = TotalExcessPV;

SolutionSummartySC("Energy spilled (curtailed)","GWh","CSP"   ,s)             = TotalExcessCSP;

*=================================================================================================

* 4.Capacity, Energy and Emissions

*=================================================================================================

SolutionSummartySC("Optimum Capacity","MW",g,            s)              = InstalledCapacitySC(g);

SolutionSummartySC("Optimum Capacity","MW","Total",      s)       = sum(g,InstalledCapacitySC(g));

SolutionSummartySC("Optimum Capacity","%",g,            s)                = InstalledCapPercSC(g);

SolutionSummartySC("Energy served per generator","GWh",g,            s)       = EnergyServedSC(g);

SolutionSummartySC("Energy served per generator","GWh","Total"      ,s)= sum(g,EnergyServedSC(g));

SolutionSummartySC("Energy served per generator","%",g,              s)    = EnergyServedPerSC(g);

SolutionSummartySC("Fleet Utilization Factor","%",g,                 s)      = LoadFactorSC(g);

SolutionSummartySC("CO2 Emission Generated","Ton",g,                 s      = GenCO2EmissionSC(g);

SolutionSummartySC("CO2 Emission Generated","Ton","Total",      s)   = sum(g,GenCO2EmissionSC(g));

SolutionSummartySC("CO2 Emission Generated","%",g,            s)        = GenCO2EmissionPercSC(g);

SolutionSummartySC("Number of plants","n",g,                  s)              = eps;

SolutionSummartySC("Number of plants","n","Total",            s)              = eps;

*=================================================================================================

* 5. Conventional generation costs

*=================================================================================================

SolutionSummartySC("Capacity Cost","M-USD",g,            s)                = GenCapacityCostSC(g);

SolutionSummartySC("Capacity Cost","M-USD","Total",      s)         = sum(g,GenCapacityCostSC(g));

SolutionSummartySC("Energy Cost","M-USD",g,            s)           = max(GenEnergyCostSC(g),eps);

SolutionSummartySC("Energy Cost","M-USD","Total",      s)             = sum(g,GenEnergyCostSC(g));

SolutionSummartySC("CO2 Emission Cost","M-USD",g,                  s)      = GenEmissionCostSC(g);

SolutionSummartySC("CO2 Emission Cost","M-USD","Total",      s)     = sum(g,GenEmissionCostSC(g));

SolutionSummartySC("Startup Cost","M-USD",g,                  s)              = eps;

SolutionSummartySC("Startup Cost","M-USD","Total",      s)                    = eps;

*=================================================================================================

* 6. Renewable Energy Cost

*=================================================================================================

SolutionSummartySC("Renewable Capacity Cost","M-USD","Total",      s)         = TotalRenCost;

*=================================================================================================

* 6.  Flexibility parameters

*=================================================================================================

SolutionSummartySC("Spinning reserve as percentage of total load","%","Total",s)

         = SystSpinningReserve;

SolutionSummartySC("Startups counts","n",g,                  s)              = eps;

SolutionSummartySC("Startups counts","n","Total",            s)              = eps;

SolutionSummartySC("Stops counts","n",g,                     s)              = eps;

SolutionSummartySC("Stops counts","n","Total",               s)              = eps;

SolutionSummartySC("Minimum loading","%",g,                  s)              = eps;

SolutionSummartySC("Minimum thermal generation","MW",""      ,s)             = MinThermalGen;

SolutionSummartySC("Spinning reserve contribution","%",g,    s)              = eps;

*=================================================================================================

* 7.  Additional Calculations

*=================================================================================================

SolutionSummartySC("Penetration levels","%","PV"    ,s)    = PVPentAbs;

SolutionSummartySC("Penetration levels","%","CSP"   ,s)    = CSPPentAbs;

SolutionSummartySC("Penetration level as % of total load ","%","PV"    ,s)    =

         SumSerPV/10/TotalDemand;

SolutionSummartySC("Penetration level as % of total load ","%","CSP"   ,s)    =

         SumSerCSP/10/TotalDemand;

SolutionSummartySC("PV  Energy Generation as % of total load ","%","PV"    ,s)

         = SumEffPV/10/TotalDemand;

SolutionSummartySC("CSP Energy Generation as % of total load ","%","CSP"   ,s)

         = SumEffCSP/10/TotalDemand;

SolutionSummartySC("Residual Demand Votality Index","MW","SD"   ,s)

         = ResidualLoadStDev;

*SolutionSummarty("___________________________","______","______"  ,s)  =0.0000000000000000001;
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Figure 177: Selected GAMS code used in conjunction with the UC model to help compile and present the results of the model in an excel format 

*=================================================================================================

* 1. Descriptve Stats

*=================================================================================================

SolutionSummartyNLF("System energy unit cost","USD\MWh",""           ,s)          = EnergycostNLF;

SolutionSummartyNLF("System Emission intensity","kg\MWh",""           ,s)  = SystemCO2EmissionNLF;

SolutionSummartyNLF("System's total installed capacity","MW",""      ,s)= SumInsatlledCapacityNLF;

SolutionSummartyNLF("Peak Load","MW",""      ,s)                               = MaxDemand;

SolutionSummartyNLF("Minimum Load","MW",""      ,s)                            = MinDemand;

SolutionSummartyNLF("Total Load","GWh",""      ,s)                             = TotalDemand;

SolutionSummartyNLF("Energy served by thermal generation","GWh",""      ,s)= TotalEnergyServedNLF;

*-------------------------------------------------------------------------------------------------

SolutionSummartyNLF("Total System Cost","M-USD",""      ,s)                    = TotalSysCostNLF;

if

((TotalSysCostNLF-SolutionSummartyNLF("Total System Cost","M-USD","","S001"))=0,

SolutionSummartyNLF("Total System Cost Change","M-USD",""      ,s)= eps;

else

SolutionSummartyNLF("Total System Cost Change","M-USD",""      ,s)=

(TotalSysCostNLF-SolutionSummartyNLF("Total System Cost","M-USD","","S001"))/

SolutionSummartyNLF("Total System Cost","M-USD","","S001");

);

*-------------------------------------------------------------------------------------------------

SolutionSummartyNLF("Total System Emissions","M-Ton",""      ,s)               =

TotalCO2EmissionNLF;

if

((TotalCO2EmissionNLF-SolutionSummartyNLF("Total System Emissions","M-Ton","","S001"))=0,

SolutionSummartyNLF("Total System Emissions reduction","M-Ton",""      ,s)= eps;

else

SolutionSummartyNLF("Total System Emissions reduction","M-Ton",""      ,s)=

-(TotalCO2EmissionNLF-SolutionSummartyNLF("Total System Emissions","M-Ton","","S001"))/

SolutionSummartyNLF("Total System Emissions","M-Ton","","S001");

);

*=================================================================================================

* 2. Scenario Details

*=================================================================================================

SolutionSummartyNLF("Natural Gas Price","USD/MMBtu",""      ,s)                = GasPrice;

SolutionSummartyNLF("Coal Price","USD/MMBtu",""      ,s)                       = CoalPrice;

SolutionSummartyNLF("Carbon Floor Price","USD/Ton",""      ,s)                 = CarbonTax;

*=================================================================================================

* 3. Renewable Stats

*=================================================================================================

SolutionSummartyNLF("Penetration level as % of total laod ","%","PV"    ,s)    = PVPentPer;

SolutionSummartyNLF("Penetration level as % of total laod ","%","CSP"   ,s)    = CSPPentPer;

SolutionSummartyNLF("Energy generated","GWh","PV"   ,s)                        = SumEffPV;

SolutionSummartyNLF("Energy generated","GWh","CSP"   ,s)                       = SumEffCSP;

SolutionSummartyNLF("Energy served (injected to the grid)","GWh","PV"   ,s)    = SumSerPV;

SolutionSummartyNLF("Energy served (injected to the grid)","GWh","CSP"   ,s)   = SumSerCSP;

SolutionSummartyNLF("Energy spilled (curtailed)","GWh","PV"   ,s)              = TotalExcessPV;

SolutionSummartyNLF("Energy spilled (curtailed)","GWh","CSP"   ,s)             = TotalExcessCSP;

*=================================================================================================

* 4.Capacity, Energy and Emissions

*=================================================================================================

SolutionSummartyNLF("Optimum Capacity","MW",g,            s)            = InstalledCapacityNLF(g);

SolutionSummartyNLF("Optimum Capacity","MW","Total",      s)     = sum(g,InstalledCapacityNLF(g));

SolutionSummartyNLF("Optimum Capacity","%",g,            s)              = InstalledCapPercNLF(g);

SolutionSummartyNLF("Energy served per generator","GWh",g,            s)     = EnergyServedNLF(g);

SolutionSummartyNLF("Energy served per generator","GWh","Total"  ,s)  = sum(g,EnergyServedNLF(g));

SolutionSummartyNLF("Energy served per generator","%",g,         s)       = EnergyServedPerNLF(g);

SolutionSummartyNLF("Fleet Utilization Factor","%",g,                 s)       = LoadFactorNLF(g);

SolutionSummartyNLF("CO2 Emission Generated","Ton",g,              s)      = GenCO2EmissionNLF(g);

SolutionSummartyNLF("CO2 Emission Generated","Ton","Total",  s)     = sum(g,GenCO2EmissionNLF(g));

SolutionSummartyNLF("CO2 Emission Generated","%",g,            s)      = GenCO2EmissionPercNLF(g);

SolutionSummartyNLF("Number of plants","n",g,                  s)     = max(UnitCountsNLF(g),eps);

SolutionSummartyNLF("Number of plants","n","Total",            s)       = sum(g,UnitCountsNLF(g));

*=================================================================================================

* 5. Conventional generation costs

*=================================================================================================

SolutionSummartyNLF("Capacity Cost","M-USD",g,            s)              = GenCapacityCostNLF(g);

SolutionSummartyNLF("Capacity Cost","M-USD","Total",      s)       = sum(g,GenCapacityCostNLF(g));

SolutionSummartyNLF("Energy Cost","M-USD",g,            s)         = max(GenEnergyCostNLF(g),eps);

SolutionSummartyNLF("Energy Cost","M-USD","Total",      s)           = sum(g,GenEnergyCostNLF(g));

SolutionSummartyNLF("CO2 Emission Cost","M-USD",g,                  s)    = GenEmissionCostNLF(g);

SolutionSummartyNLF("CO2 Emission Cost","M-USD","Total",      s)   = sum(g,GenEmissionCostNLF(g));

SolutionSummartyNLF("Startup Cost","M-USD",g,                  s)          = GenStartupCostNLF(g);

SolutionSummartyNLF("Startup Cost","M-USD","Total",      s)         = sum(g,GenStartupCostNLF(g));

*=================================================================================================

* 6. Renewable Energy Cost

*=================================================================================================

SolutionSummartyNLF("Renewable Capacity Cost","M-USD","Total",      s)         = TotalRenCost;

*=================================================================================================

* 6.  Flexibility parameters

*=================================================================================================

SolutionSummartyNLF("Spinning reserve as percentage of total load","%","Total",s)

= SystSpinningReserve;

SolutionSummartyNLF("Startups counts","n",g,                  s)        = GenStartupsCountsNLF(g);

SolutionSummartyNLF("Startups counts","n","Total",            s) = sum(g,GenStartupsCountsNLF(g));

SolutionSummartyNLF("Stops counts","n",g,                     s)           = GenStopsCountsNLF(g);

SolutionSummartyNLF("Stops counts","n","Total",               s)    = sum(g,GenStopsCountsNLF(g));

SolutionSummartyNLF("Minimum loading","%",g,                  s)                = MinStableGen(g);

SolutionSummartyNLF("Minimum thermal generation","MW",""     ,s)                  = MinThermalGen;

SolutionSummartyNLF("Spinning reserve contribution","%",g,    s)       = GenSpinReservePercNLF(g);

*=================================================================================================

* 7.  Additional Calculations

*=================================================================================================

SolutionSummartyNLF("Penetration levels","%","PV"    ,s)    = PVPentAbs;

SolutionSummartyNLF("Penetration levels","%","CSP"   ,s)    = CSPPentAbs;

SolutionSummartyNLF("Penetration level as % of total load ","%","PV"    ,s) =

SumSerPV/10/TotalDemand;

SolutionSummartyNLF("Penetration level as % of total load ","%","CSP"   ,s)

=SumSerCSP/10/TotalDemand;

SolutionSummartyNLF("PV  Energy Generation as % of total load ","%","PV"    ,s)

=SumEffPV/10/TotalDemand;

SolutionSummartyNLF("CSP Energy Generation as % of total load ","%","CSP"   ,s)

=SumEffCSP/10/TotalDemand;

SolutionSummartyNLF("Residual Demand Votality Index","MW","SD"   ,s)= ResidualLoadStDev;

*=================================================================================================

*=================================================================================================

* D) Time Based

*=================================================================================================

ResidualLoad("Residual Demand","MWh",t,s)                          = DemandEff(t);

SystemLoad("Residual Demand","MWh",t,s)                            = Demand(t);

PVGenerated("PV Energy generated","GWh",t,s)                       = SumEffPV;

CSPGenerated("CSP Energy generated","GWh",t,s)                     = SumEffCSP;

PVConsumed("PV Energy served (injected to the grid)","GWh",t,s)    = SumSerPV;

CSPConsumed("CSP Energy served (injected to the grid)","GWh",t,s)  = SumSerCSP;

PVSpilled("PV Energy spilled (curtailed)","GWh",t,s)               = TotalExcessPV;

CSPSpilled("CSP Energy spilled (curtailed)","GWh",t,s)             = TotalExcessCSP;

PlantOnBar("Plant On Bar","MW",t,s)                                = PlantOnBarNLF(t);

PlantOnBarperType("Plant On Bar",g,t,s)                            = max(OnlineUnitsNLF(g,t),eps);

StartsCountsPerType("Starts",g,t,s)                                = StartedUnitsNLF(g,t)
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