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Abstract 

 
 

 

Cellular Automata Simulations of Field-Scale Flaming 

and Smouldering Wildfires in Peatlands 
 

by 

 

Dwi Marhaendro Jati Purnomo 

 

Doctor of Philosophy in Mechanical Engineering 

 

Imperial College London, 2022 

 

Supervised by Prof. Guillermo Rein 

 

              In peatland wildfires, flaming vegetation can initiate a smouldering fire by 

igniting the peat underneath, thus, creating a positive feedback to climate change by 

releasing the carbon that cannot be reabsorbed by the ecosystem. Currently, there are 

very few models of peatland wildfires at the field-scale, hindering the development of 

effective mitigation strategies. This lack of models is mainly caused by the complexity of 

the phenomena, which involves 3-D spread and km-scale domains, and the very large 

computational resources required. This thesis aims to understand field-scale peatland 

wildfires, considering flaming and smouldering, via cellular automata, discrete models 

that use simple rules. Five multidimensional models were developed: two laboratory-scale 

models for smouldering, BARA and BARAPPY, and three field-scale models for flaming 

and smouldering, KAPAS, KAPAS II, and SUBALI. The models were validated against 

laboratory experiments and field data. BARA accurately simulates smouldering of peat 

with realistic moisture distributions and predicts the formation of unburned patches. 

BARAPPY brings physics into BARA and predicts the depth of burn profile, but needs 240 

times more computational resources. KAPAS showed that the smouldering burnt area 

decreases exponentially with higher peat moisture content. KAPAS II integrates daily 

temporal variation of moisture content, and revealed that the omission of this temporal 

variation significantly underestimates the smouldering burnt area in the long term. 

SUBALI, the ultimate model of the thesis, integrates KAPAS II with BARA and considers 
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the ground water table to predict the carbon emission of peatland wildfires. Applying 

SUBALI to Indonesia, it predicts that in El Niño years, 0.40 Gt-C in 2015 (literature said 

0.23 to 0.51 Gt-C) and 0.16 Gt-C in 2019 were released, and 75% of the emission is from 

smouldering. This thesis provides knowledge and models to understand the spread of 

flaming and smouldering wildfires in peatlands, which can contribute to efforts to 

minimise the negative impacts of peatland wildfires on people and the environment, 

through faster-than-real-time simulations, to find the optimum firefighting strategy and 

to assess the vulnerability of peatland in the event of wildfires. 
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Chapter 1 – Introduction to Peatland 

Wildfires 

1.1. Peatland Wildfires and Its Impact 

Wildfires happen all around the globe, from tropical to arctic landscapes (Quah 

and Johnston, 2001; Sullivan, 2009b; Kolden and Rogan, 2013), in various ecosystem: 

savannah, grassland, bushland, rainforest, and peatland (Urbanski, 2014). When a 

wildfire happens in a peatland ecosystem, it releases carbon that cannot be reabsorbed by 

ecosystem, facilitating a positive feedback mechanism to climate change (Johnston et al., 

2012; Rein, 2013; Turetsky et al., 2015; Rein and Huang, 2021). This positive feedback is 

facilitated because such wildfire can burn peat, the carbon-rich organic soil underneath 

the surface vegetation (Rein, 2016). Figure 1.1 shows an example of a peatland ecosystem 

in New Island, The Falkland Island, where both the surface vegetation and the peat soil 

underneath are flammable. Peat is decomposed dead vegetation, which has been 

accumulated for years (ranging from a few years to thousands of years depending on the 

depth of peat layer) under very wet conditions (Page et al., 2004; Packalen and Finkelstein, 

2014; Turetsky et al., 2015). Similar to fossil fuel, when peat burns, it releases carbon 

that cannot be reabsorbed by the ecosystem, such as from the regrowth process of 

vegetation, thus, it warms the Earth, and causes more favourable conditions (drier and 

hotter) for wildfires to happen more frequently and severely (Turetsky et al., 2015). This 

feedback mechanism has been proven by the prevalence of peatland wildfires in Southeast 

Asia, Southern Africa, Northern Europe, North America, and even in the Arctic, and the 

higher frequency and severity of the wildfires (Page et al., 2002; Rein, 2013; Grundling et 

al., 2019; Scholten et al., 2021). The fact that peatland ecosystem contains 25% of the 

world's soil carbon, although its area is only 2 – 3% of the Earth's land surface, means 

peatland wildfire is alarming for the climate change (Yu, 2012). 
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Figure 1.1. Photo of a peatland ecosystem in New Island, The Falkland Island in 2018. 

Photo was taken by Wuquan Cui. 

Peatland wildfires are the largest fires on Earth in term of fuel consumption (Hu 

et al., 2018), causing these wildfires to release enormous emission that deteriorate 

human’s health (Rein, 2013; Rein and Huang, 2021). In 1997, peatland wildfires in 

Southeast Asia emitted 0.8 – 2.56 Gt-C to the atmosphere, which is equivalent to 13 – 40% 

of the global man-made carbon emission from that year (Page et al., 2002). These incidents 

are responsible for the 110,000 premature deaths caused by diseases inflicted because of 

the wildfires, such as respiratory and cardiovascular diseases (Johnston et al., 2012). The 

disease infliction is encouraged by the behaviour of the smoke that stays in a low altitude 

and lingers as a haze often near population (Rein, 2013; Rein and Huang, 2021). 

1.2. Ignition and Spread of Peatland Wildfires 

 Peatland wildfires typically start with flaming combustion that burns the surface 

vegetation (Noble et al., 2018). The flaming vegetation can ignite the peat underneath, 

and nucleate smouldering hotspots (ignition of smouldering peat at randomly distributed 

locations). The smouldering peat remains active, and grows (due to smouldering spread), 

for weeks to months even after the flaming has been extinguished. Smouldering is a 

flameless type of combustion, which has almost half the temperature of flaming (450oC – 

700oC), and spreads two order of magnitude slower than flaming (~0.5 mm/min; Rein, 

2016; Christensen, Fernandez-Anez and Rein, 2020). However, smouldering is the most 

persistent fire on Earth and releases greater emissions than flaming in both gas and 
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particulate emissions (Rein, 2013). Smouldering also spreads in a three-dimensional (3-

D) direction, two-dimensional (2-D) horizontal spread and a one-dimensional (1-D) 

vertical spread, which is commonly known as in-depth spread (Christensen, Fernandez-

Anez and Rein, 2020). Meanwhile, flaming can be assumed to spread only in a 2-D 

horizontal direction, especially, if the canopy of vegetation is not significant (Finney, 

1998). Figure 1.2 compares flaming and smouldering wildfires at the field-scale. While 

flaming locations can be clearly seen through its naked flame signature, the locations of 

smouldering are unclear as it only shows a smoke signature. However, the smouldering 

is active, consume the peat, and continuously releases emissions. 

 

Figure 1.2. Comparison between flaming and smouldering wildfires. These photos are from a 

field-scale experiment of flaming and smouldering wildfires on peatland (Santoso, 2021). Photos 

taken by Wuquan Cui. 

Although both flaming and smouldering combustion are present, smouldering is 

the most prominent carbon emitter in peatland wildfires (Huang, Rein and Chen, 2015). 

In the 1997 South East Asia peatland wildfires, of the 0.8 – 2.56 Gt-C that was released 

to the atmosphere, only ~0.1 Gt-C was from flaming vegetation (Page et al., 2002). 

Smouldering is also always an unwanted type of combustion, since sometimes, flaming 

wildfires are intentional such as for forest management where wildfire is encouraged to 

avoid the accumulation of fuel that could initiate very large wildfires (Malamud, Morein 

and Turcotte, 1998; Block et al., 2016; Waldrop and Goodrick, 2018).  

Smouldering ignition, spread, and extinction significantly depend on the moisture 

content (MC, in this thesis referred to as gravimetric MC if not stated differently), 

inorganic content (IC), and bulk density of peat (in that order; Rein, 2016; Christensen, 

Fernandez-Anez and Rein, 2020). Of these three properties, peat MC varies significantly 

both spatially and temporally in natural peatland, apart from being the single most 

important of the properties that affect smouldering dynamics (Harris and Bryant, 2009; 
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Meingast et al., 2014; Prat-Guitart et al., 2016a, 2017; Bechtold et al., 2018; Burdun et 

al., 2020). Spatially, peat MC varies both horizontally and vertically, where vertically, 

peat has higher MC in-depth, whereas horizontally, the peat MC variation is significantly 

more complex (see Figure 1.3 of horizontal MC variation in an Ireland peatland) and 

depends on many factors such as topography and surface vegetation (Prat-Guitart et al., 

2017). The spatial variation is caused by topography and surface vegetation, whereas the 

temporal variation is due to hydrological processes, weather conditions, seasonal change 

and climate change (Dettmann and Bechtold, 2016; Prat-Guitart et al., 2016a, 2017; 

Asmuß, Bechtold and Tiemeyer, 2019; Bechtold et al., 2020). 

 

Figure 1.3. The moisture content profile of natural peatland in Ireland. This moisture content 

profile is extracted following the measurement of Prat-Guitart et al. (2017). 

Smouldering peat is unlikely to happen if the peat MC is higher than the critical 

MC (~150%, gravimetric and dry-basis), but once the peat MC is below the critical MC, 

smouldering can start although the peat is still relatively wet (Frandsen, 1987, 1997; 

Huang, Rein and Chen, 2015). When the peat is smouldering at a relatively high MC, 

subsurface smouldering can emerge, which is difficult to detect and can facilitate 

smouldering across seasons (Amin, Hu and Rein, 2020; Scholten et al., 2021). 

Smouldering that spreads underground is not significantly affected by ambient conditions, 
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thus, this fire becomes very robust and can sustain in a very unfavourable conditions such 

as in winter seasons (Scholten et al., 2021). The smouldering survives the winter season 

by lurking underground, when the surface is covered in snow, and when spring starts, it 

melts this snow cover, and smouldering resurfaces, rekindling the flaming fire and 

starting a new wildfire (Scholten et al., 2021). Therefore, without new and independent 

sources of ignition, peatland wildfires can happen every year. 

The nucleation and growth of smouldering hotspots in peatland wildfires were 

revealed by Grundling et al. (2019) and Santoso (2021) who conducted experiments on 

peatland wildfires at the field-scale.  In these works, flaming was initiated on peatland 

and the ignited smouldering hotspots were observed and monitored (Grundling et al., 

2019; Santoso, 2021). These works show that the smouldering hotspots were not created 

uniformly on the entire flaming burnt area, instead, they are created at randomly 

distributed locations (see Figure 1.4), which then spread to become bigger (Grundling et 

al., 2019; Santoso, 2021). 

 

Figure 1.4. Comparison between flaming and smouldering burnt area in the same location where 

the smouldering is initiated by flaming. The flaming burnt scar is obtained from a visual image, 

whereas the smouldering burnt scar is obtained from infrared emissions. The visual image and 

infrared emissions were obtained from field-scale experiments of flaming and smouldering fires 

on peatland on day five after the flaming was initiated (Santoso, 2021).  

In Figure 1.4, the smouldering was only initiated at the top of the plot, which has 

drier peat (48% gravimetric MC) compared to the bottom (155% gravimetric MC), which 

also confirms with the spatial nonuniformity of peat MC in natural peatlands (Prat-

Guitart et al., 2017). Although the peat at the top part has relatively similar MC, the 

ignition of smouldering is nonuniform, which also confirms the finding of Grundling et al. 

(2019). At the beginning, the smouldering burnt area is smaller than the flaming burnt 

area, whereas at the end of the smouldering lifespan, its burnt area could be smaller, 

larger, or similar to the flaming burnt area, depending on the spread rate of smouldering. 

Figure 1.4 shows several regions that contain smouldering that spreads beyond the 
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flaming burnt area perimeter, thus, indicating the possibility that the smouldering burnt 

area can exceed the flaming burnt area if the smouldering lifespan is sufficient. 

1.3. Detection and Emission of Peatland Wildfires  

The current literature on peatland wildfires (at the field-scale and considering 

both flaming and smouldering) is dominated by detection and estimation of carbon 

emission (Page et al., 2002; Elvidge et al., 2015; Huijnen et al., 2016; Sofan et al., 2020). 

Recent technologies for the detection and monitoring of wildfires are via remote sensing 

(Burke et al., 2019). In the remote sensing works for detection and monitoring purposes, 

infrared emissions that are emitted by the Earth’s surface are analysed, and the 

difference in their values is used to categorise the object (see Figure 1.5), such as 

vegetation, fire, water, cloud, etc. (Kramer, 1996; ESA, 2015; Cao et al., 2017; USGS, 2019; 

NASA, 2020). This categorisation is based on the combination of infrared emissions at 

different wavelengths (such as short wave (SWIR), mid wave (MWIR), and long wave 

(LWIR) infrared), in which different objects emit different infrared signal values for each 

wavelength (Dozier, 1981; Siegert et al., 2004; Elvidge et al., 2013, 2015; Atwood et al., 

2016; Giglio, Schroeder and Justice, 2016; Sofan et al., 2020). The differentiation between 

fire and non-fire objects, however, is performed after the masking processes to omit the 

undesirable noises such as from cloud. Therefore, the infrared signals from cloud are 

analysed and used to remove the location at which the clouds are predicted to be present, 

after which the infrared signals at the remaining locations are analysed to differentiate 

between fire and non-fire objects (Giglio, Schroeder and Justice, 2016). The detection of 

wildfires is very important, for instance, to alert the authorities the wildfires that might 

be happening in the remote area, and help in strategizing the mitigation attempts (Giglio, 

Schroeder and Justice, 2016). 

The detection of wildfires via remote sensing that use infrared emissions obtained 

by satellites, can also be used to estimate carbon emission from wildfires, since this 

method can be implemented at any time, by using the data from the past and present 

(Page et al., 2002; Huijnen et al., 2016). The remote sensing of wildfires that result in the 

estimation of burnt area (see Figure 1.5) can be combined with the emission factor to 

estimate the carbon emissions (Urbanski, 2014). The emission factor is the amount of a 

product generated per unit amount of an activity that generates the product (Urbanski, 

2014). While this method is a bottom-up approach, there are also top-down approaches 

(see Figure 1.5), where the remote sensing is dedicated to tracing the carbon emissions 

directly (Huijnen et al., 2016). By estimating the carbon emissions released by the 
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wildfires, the impact of these fires on climate change can be approximated, and better 

mitigation can be proposed.  

 

 

Figure 1.5. Remote sensing application for detection and carbon emission estimation of peatland 

wildfires. Different objects emit different infrared signals that can be used to distinguish the 

objects. The bottom-up approach for carbon emission estimation uses data of flaming and 

smouldering burnt areas and depth of burn, whereas the top-down approach uses data of 

released gas of flaming and smouldering, which all are obtained by using remote sensing devices. 
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The emissions from flaming and smouldering wildfires can be estimated based on 

the product of mass of fuel burnt and an emission factor (Hu et al., 2018). For flaming 

wildfires, the mass of fuel burnt can be estimated by using the burnt area and the amount, 

type, and density of the vegetation per unit area, which depend on the type of ecosystem 

in which the wildfire happens (Urbanski, 2014; see Figure 1.5). This differentiation stems 

from the fact that the vegetation in different ecosystem is different, thus, the carbon 

content of the vegetation is also different (Urbanski, 2014).  For smouldering wildfires, its 

burnt area and depth of burn (DOB) are required to estimate the volume of peat loss (Hu 

et al., 2018; see Figure 1.5), and then the mass of peat burnt can be estimated by the 

product of this volume with the peat bulk density. Due to the 3-D spread nature of 

smouldering, the depth of burn is potentially nonuniform, increasing the difficulty of the 

emission estimation. The approximation of emissions from smouldering, especially at the 

field-scale, however, can be performed by assuming a uniform depth of burn (see Figure 

1.5), in which the volume of peat loss is its product with the smouldering burnt area and 

the emissions are the product of this volume with the corresponding emission factor (Page 

et al., 2002). 

The detection and carbon emission estimation of peatland wildfires suffer from the 

difficulty to accurately detect smouldering (Elvidge et al., 2015). While flaming wildfires 

can be detected with a reasonable accuracy, due to the lower temperature of smouldering, 

the radiation from smouldering wildfires is significantly weaker than from flaming 

wildfires, causing the detection of smouldering to become challenging (Elvidge et al., 

2015). The weak radiation of smouldering causes its infrared signals to be similar to other 

non-fire objects, or objects which are slightly heated by the sunlight; thus, some studies 

discuss the usage of night-time infrared data to detect smouldering (Elvidge et al., 2015). 

When the subsurface smouldering emerges, the weak radiation of smouldering is 

weakened even further since it is hindered by non-burning objects above the smouldering 

peat. Therefore, while it is already challenging to detect smouldering at the surface, 

subsurface smouldering significantly increases detection difficulty. This difficulty means 

there is the possibility of false alarms in which the authorities are informed that wildfires 

have been successfully extinguished, but smouldering hotspots remain active, lurking, 

and reanimate flaming when the environment and weather are favourable (Scholten et 

al., 2021), or vice versa, which make the firefighting attempts and resources are wasted 

(the former is more important than the latter). 

In emission studies, especially the bottom-up approach, the difficulty of detecting 

smouldering means that there must be assumptions made to estimate the emissions from 
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smouldering peat which are independent of emissions from flaming vegetation. This 

separation is important since flaming vegetation releases carbon that can be directly 

reabsorbed, such as via vegetation regrowth post wildfires, whereas smouldering peat 

releases carbon that cannot be directly reabsorbed by the ecosystem (Rein, 2013; Turetsky 

et al., 2015). The commonly used assumption is by assuming that the burnt area of 

flaming and smouldering are equal; thus, the emissions from smouldering are simply the 

product of the flaming burnt area with DOB and the smouldering emission factor, which 

is different from the flaming emission factor (Page et al., 2002; Hu et al., 2018). This 

assumption can cause inaccuracy in the carbon emission estimation, since the 

smouldering burnt area is different from the flaming burnt area (Grundling et al., 2019; 

Santoso, 2021; see Figure 1.4). Therefore, models for peatland wildfires are needed to 

overcome these limitations (see Figure 1.6). 

 

Figure 1.6. Schematic of the use of the models for the studies of peatland wildfires. The red shade 

represents phenomena, blue shade represents methods, and green shade represent output. 

1.4. Aims of the Research  

The dynamics of peatland wildfires, starting from ignition, spread, and emission 

are poorly understood. Previous works, which consist of laboratory and field-scale studies, 

have not fully captured the phenomena, where the smouldering and flaming parts of 

peatland wildfires are studied separately and the integration of the two fire types are 

rarely considered (Frandsen, 1987; Perry, 1998; Finney et al., 2015; Huang, Rein and 

Chen, 2015). While the studies of flaming have considered the phenomena at the field-

scale (Perry, 1998; Sullivan, 2009c), field-scale smouldering studies are rare (Grundling 

et al., 2019; Santoso, 2021). Studies of emissions from peatland wildfires, although limited, 

are available both bottom-up (Page et al., 2002) and top-down (Huijnen et al., 2016) 
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approaches. However, in the bottom-up approach, significant assumptions on the 

smouldering part are considered, whereas in the top-down approach, the dynamics and 

the source of emissions (from flaming vegetation or from smouldering peat) are 

disregarded. Moreover, the period of time of active flaming and smouldering are 

significantly different, causing top-down approach to have uncertainty on the time 

considered for collecting data, especially for carbon emissions from smouldering. 

This thesis aims to scientifically understand peatland wildfires based on the 

dynamics of flaming and smouldering across scales and provide the tools to estimate their 

spread behaviour and carbon emissions for mitigation purposes (such as firefighting 

attempts). This thesis provides practitioners with the knowledge and tools to approximate 

the ignition and spread of flaming and smouldering in peatland wildfires, in various 

environmental conditions and fire scenario, with faster-than-real-time simulations. This 

can help the practitioners to develop optimum strategy for the mitigation of peatland 

wildfires, for instance, the deployment of the firefighters based on the fire front location 

predicted by the simulation, and the management of peatland in general, such as the 

assessment of peatland vulnerability in the event of wildfires to develop the preventive 

measures (e.g., surface vegetation type and density management and peat rewetting). 

This thesis also provides knowledge and tools to estimate the emissions from 

peatland wildfires that considers the distinction between flaming and smouldering carbon 

emissions. Therefore, the peatland management (e.g., the development of measures to 

minimise the negative impacts of peatland wildfires) can be improved since the source of 

emissions is known and the measures that have highest benefit can be explored (e.g., 

either focusing the resources on surface vegetation or peat management), resulting in 

better mitigation of climate change. 

1.5. Methodology of the Research 

1.5.1. Peatland wildfires modelling and cellular automata 

Investigating peatland wildfires means investigating field-scale phenomena 

(thousands of hectares), which involve flaming and smouldering combustion, and are 

affected by environmental factors (surface vegetation, wind, peat MC) that vary spatially 

and temporally. The smouldering part also requires understanding of its 3-D spread that 

lead to many important phenomena. While experimental studies can be conducted at the 

small scale, the investigation of peatland wildfires at their actual scale can be 

prohibitively expensive in a comprehensive manner. Computational models are, therefore, 

the most promising route to investigate field-scale peatland wildfires. 
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The current literature on the modelling of peatland wildfires is concentrated on 

field-scale flaming wildfire models and small-scale smouldering wildfire models, but 

without the integration of the two, which is the emerging phenomenon in peatland 

wildfires. Many models have been developed to simulate flaming wildfires at the field-

scale, which use different approaches (Perry, 1998; Sullivan, 2009c). By using different 

approaches, many phenomena in wildfires have been simulated, such as crown fire and 

firebrand (Finney, 1998; Pastor et al., 2003; D’Ambrosio et al., 2006). These models have 

been prevalently used by practitioners and authorities to help with wildfire mitigation 

and forest management (Finney, 1998). Flaming wildfire models are commonly based on 

Geographic Information System (GIS) data, which are used to determine the input 

parameters in the model, such as vegetation type and density (Perry, 1998; Sullivan, 

2009c). The GIS data are input into such models to estimate the spread rate of the flaming, 

which mostly follow the semi-physical approach of Rothermel (1972). The estimation of 

the spread rate also depends on the weather conditions (obtained, for example, from 

weather stations) such as rain and wind dynamics (Rothermel, 1972; Alexandridis et al., 

2011). This spread rate is only at 1-D direction, a downwind direction which is the 

direction of the maximum spread rate, thus, another approach is required to estimate the 

spread rate at over 360o direction. The spread rate of the flaming wildfire over 360o 

direction is most commonly estimated by using the elliptical model of Alexander (1985); 

Finney (1998). Once the spread rate at any direction is determined, the model can 

visualize the flaming fire front and burnt scar at any time, while considering the 

environmental (e.g., fuel type and density) and weather (e.g., wind and rain) effects (Perry, 

1998; Sullivan, 2009c). 

The current literature in smouldering computational studies is rich in 

fundamental investigation of the sustainability and spread of smouldering at different 

conditions (Huang and Rein, 2015, 2017; Huang, Rein and Chen, 2015; Huang et al., 2016; 

Yuan, Restuccia and Rein, 2021). Sustainability studies focus on the ability of 

smouldering to ignite and preserve fire when the MC and IC, the two most important 

factors in smouldering, are varied (Rein and Huang, 2021), which results in the critical 

MC and IC of self-sustained smouldering. Meanwhile, spread studies aim to understand 

the spread behaviour, such as spread rate and the fire front shape, of smouldering, and 

the factors that affect them (Huang, Rein and Chen, 2015; Huang and Rein, 2017). These 

studies also discuss the fundamental process involved in smouldering such as drying and 

pyrolysis (Huang and Rein, 2015, 2017; Huang, Rein and Chen, 2015). Most of the 

smouldering models use physics-based approaches and all of these are at the small scale 
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(cm-scale; Huang and Rein, 2015, 2017; Huang, Rein and Chen, 2015; Huang et al., 2016; 

Yuan, Restuccia and Rein, 2021). 

The behaviour of flaming and smouldering are significantly different; thus, the 

existing field-scale wildfire models, which only consider flaming, are inadequate to study 

peatland wildfires. These flaming wildfire models need to be integrated with the 

smouldering wildfire models, which should consider the field-scale phenomena prior to 

the integration. Therefore, there are two main gaps in the literatures for the modelling of 

peatland wildfires: field-scale modelling of smouldering and the integration of this model 

with the flaming wildfire models. 

Previous computational studies on flaming wildfires have used many different 

approaches including physics-based, semi-physical, and empirical approaches (Perry, 

1998; Sullivan, 2009c); however, computational studies of smouldering have only 

considered a physics-based approach (Huang and Rein, 2015, 2017; Huang, Rein and 

Chen, 2015; Huang et al., 2016; Yuan, Restuccia and Rein, 2021). While the physics-based 

approach is a powerful tool with high level of details and accuracy, this approach is 

unsuitable for modelling field-scale peatland wildfires due to the very high computational 

demand. The large scale of the phenomena presents a significant computational burden. 

Even using high performance computers, the computational time required to complete the 

model is too long, and therefore, the model cannot be used for immediate mitigation such 

as during firefighting. This argument was the consideration that drove the development 

of non-physics-based approach for flaming wildfire models. The main reason for the 

development of these alternative models is their ability to simulate the phenomena at 

near real time (Perry, 1998; Sullivan, 2009c). Other benefits of using alternative models 

are its ability to cope with incomplete understanding on the fundamental of physics and 

chemistry, in which while physics-based models will be unable to perform simulation due 

to this incomplete understanding, the alternative models can still perform the simulation 

(Perry, 1998; Sullivan, 2009c). The development of physics-based models is still very 

important to understand fundamental phenomena; however, once the practicality of the 

model for field-scale mitigation is considered, alternative models have the upper hand. 

There have been alternative models for simulating flaming wildfires: fire 

propagation in arrays (Weber, 1990), Markov chains (Catchpole, Hatton and Catchpole, 

1989), percolation model (von Niessen and Blumen, 1986), and cellular automata (Clarke, 

Brass and Riggan, 1994; Karafyllidis and Thanailakis, 1997; Hargrove et al., 2000). The 

aim of the alternatives is mainly to improve the practicability of the models, therefore, 

the models can be used to aid the mitigation more effectively, for instance, 
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computationally light models enable real time simulations to support firefighting 

attempts. Fire propagation in arrays simulates the propagation of fire based on the cells 

that are inside a certain geometry derived from the experiments (Weber, 1990). Markov 

chains determine the spread of the fire based on the time delay, which is obtained from 

the spread rate calculation (Catchpole, Hatton and Catchpole, 1989). Percolation model 

allows the spread of the fire from one cell to another with a certain probability (von 

Niessen and Blumen, 1986). Meanwhile, cellular automata (CA) do not have specific 

restrictions on the rules to be used, thus, fire propagation in arrays, Markov chains, 

percolation model, and many other concepts can be implemented in CA, while other 

alternative models do not have this flexibility. For example, fire propagation in arrays is 

similar to the CA model of Trunfio et al. (2011), Markov chains concept is similar to the 

CA model of Porterie et al. (2007), and the percolation model is similar to the CA model 

of Hargrove et al. (2000). This characteristic means that CA have all the benefits of the 

other alternative models, and their drawbacks can be minimised using the combination 

of different approaches; drawbacks from an approach can be compensated by using 

different approaches, for instance, deterministic concept that cannot simulate firebrand 

can be integrated with probabilistic concept to simulate the firebrand in CA. The other 

alternatives do not have these characteristics, thus, their benefits are limited to the 

benefits of one concept and their drawbacks cannot be resolved with the same method (i.e., 

concepts integration). Compared to other alternative models, CA do not have relative 

drawbacks (benefits that the other models have but CA do not have) since CA can 

implement other alternative models; CA have relative drawbacks when compared to 

physics-based model, i.e., lower level of detail and lack of physics consideration. CA also 

have basic limitations, e.g., non-flexible rules and neighbourhood, static structure, and 

inability to accommodate external events (Muzy et al., 2005a, 2006).  

Peatland wildfires involve many phenomena, which are affected by many factors 

that vary temporally and spatially, thus, of many different alternative approaches, this 

thesis focuses on the development of CA, discrete computational models that use simple 

rules (von Neumann, 1967; Wolfram, 1984; see detail description of CA in Chapter 3.1). 

Since the rules that can be implemented in CA are not limited to a certain approach (von 

Neumann, 1967; Wolfram, 1984), this method has limitless potential and is suitable for 

the modelling of field-scale peatland wildfires. The limitless potential stems from the 

adjustability of the implemented rules, thus, when one set of rules are unable to model 

certain phenomena, different rules can be implemented, which also means that a hybrid 
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of different set of rules are also possible, and optimum rules that are accurate and within 

a reasonable computational cost can be selected. 

Cellular automata (CA) have been extensively used for the flaming wildfire models 

(Clarke, Brass and Riggan, 1994; Karafyllidis and Thanailakis, 1997; Collin, Bernardin 

and Sero-Guillaume, 2011; Trunfio et al., 2011; Ntinas et al., 2017). Its compatibility with 

GIS data and its high computational efficiency are the main reasons for the extensive use 

(Clarke, Brass and Riggan, 1994; Karafyllidis and Thanailakis, 1997; Collin, Bernardin 

and Sero-Guillaume, 2011; Trunfio et al., 2011; Ntinas et al., 2017). The ability of CA to 

embrace many different approaches and their combinations mean CA stand out from 

other alternative models. For example, probabilistic approach is needed to model 

firebrand phenomenon, where embers are flown, carried by the wind during wildfires and 

ignite new hotspots distant from the fire front, since this phenomenon is unlikely to be 

deterministic (Pastor et al., 2003; Alexandridis et al., 2011). CA can use semiphysical 

approach to simulate the flaming wildfire spread, and also integrate a probabilistic 

approach to simulate the firebrand (Alexandridis et al., 2011). Therefore, CA offer 

limitless potential for modelling many phenomena in wildfires that cannot be modelled 

by using conventional approaches. There are several works of smouldering model that use 

CA (Belcher et al., 2010; Fernandez-Anez, Christensen and Rein, 2017; Fernandez-Anez 

et al., 2019); however, these works are all at the small scale. CA is proven to be able to 

simulate fingering, a very complex phenomenon in smouldering where the burnt scar 

shaped like fingers that the physics-based models cannot simulate (Fernandez-Anez et al., 

2019). 

Peatland wildfires modelling means integrating the flaming models with the 

smouldering models. Since all the smouldering models are still at the small-scale, an 

upscale of these models are required prior to this integration. There are only two 

pioneering works that have successfully simulated peatland wildfires at the field-scale 

(Purnomo et al., 2021; Widyastuti et al., 2021). The work of Widyastuti et al. (2021) used 

agent-based model to simulate peatland wildfires. This agent-based model stems from the 

attribution of each cell in the domain to a specific set of values (Widyastuti et al., 2021). 

Each cell in the domain is considered an agent, in which agent of different states (e.g., 

unburned, burning) has different attributes (e.g., probability of flaming spread, 

probability of smouldering ignition) which also depends on the environment (e.g., fuel) 

and weather (e.g., wind) conditions (Widyastuti et al., 2021). The determination of 

variables of the model in this work, however, is statistical; the values of the variables are 

selected based on the combination, which makes the model has a good agreement with 
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the burnt scar data of flaming wildfire (Widyastuti et al., 2021). This method leads to an 

issue of generality, in which the model is accurate only for the burnt scar data it is 

calibrated against. To improve the generality of the model, a significant number of burnt 

scar data from different wildfires is required, which consequently significantly increase 

the resources required. The work of Purnomo et al. (2021) uses CA that implement the 

semiphysical model of Rothermel (1972) to calculate the flaming spread rate and 

experiments on smouldering to estimate the smouldering spread rate; thus, the generality 

problem is minimised. However, the models in Purnomo et al. (2021) and Widyastuti et 

al. (2021) did not consider actual conditions in nature sufficiently, especially in the 

smouldering part, for instance, neither model considered the peat MC variation. Figure 

1.7 summarizes the phenomena involved in peatland wildfires and the phenomena that 

have been considered in previous models. 

 

Figure 1.7. The phenomena involved in peatland wildfires and the phenomena that have been 

addressed in the previous models. The red represents flaming models, yellow represents 

smouldering models, and magenta represents the integration of flaming and smouldering models. 

The region encapsulated by the black dashed line corresponds to field-scale models, whereas 

outside this line corresponds to small scale models. The region encapsulated by the blue line 

corresponds to the models that consider environmental factors such as vegetation type and 

density of flaming and peat moisture content for smouldering, and the green represents the 

consideration of spatial and temporal variation (STV) for the environmental factors. White 

represents the consideration of 3-D spread. The larger size of the geometry, either independent or 

intersected geometry, correspond to more models that were developed. 
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The optimum peatland wildfire model is formed when the magenta region 

(integration of flaming and smouldering at the field-scale) intersects with green 

(environmental factors that considers its spatial and temporal variation) and white (3-D 

spread of smouldering) regions, which is the ultimate model that will be developed in this 

thesis. The specific aim of this thesis is therefore to develop a 3-D CA model of field-scale 

peatland wildfires that considers flaming and smouldering, and incorporates actual 

conditions in nature with its spatial and temporal variations, while remaining 

computationally feasible. 

 

1.5.2. Upscaling and integration 

The main problem in the modelling across scale is the different domain 

configuration required, i.e., different temporal or spatial resolution. When the cm-scale is 

upscale to km-scale, the resolution of the domain needs to be significantly courser. 

Otherwise, the computer will fail to complete the simulation due to insufficient resources, 

even when using high performing computers. The coarsening process of the domain 

introduces inherent issue such as the interaction within one entity (cell) in the domain 

that is a few orders of magnitude larger in size than in the small-scale domain (see Figure 

1.8a). The small-scale model that is dedicated to the cm-scale domain, requires additional 

treatments to be implemented for the km-scale domain. Without these treatments, the 

model would be inaccurate since the process within one cell in the larger domain is the 

accumulation of the processes in many cells in the smaller domain (see Figure 1.8a). For 

example, if in the smaller domain one cell represent a 1-mm × 1-mm square and in the 

larger domain it is 1-m × 1-m square, then the process within one cell in the larger scale 

is the accumulation of the processes in 1 million cells in the smaller scale. 

The field-scale models for flaming in the literature do not consider the upscaling 

process from the small scale, but instead directly use the large scale domain (Perry, 1998; 

Sullivan, 2009c). This thesis follows this approach for the flaming model; however, for the 

smouldering, since there are no field-scale models and field-scale experimental data are 

very limited in previous studies, the model is developed from the small scale and 

continued with the upscaling process. This thesis proposes multi-scale calibration for the 

upscaling from the small to field-scale models (see Figure 1.8b). The multi-scale 

calibration stems from the introduction of a resolution variable that contains information 

on the temporal and spatial resolutions of the domain. The other variables that govern 

the models are functions of this resolution variable. In the small-scale calibration, this 

resolution variable is set constant. Once the small-scale model is calibrated, the effect of 
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the resolution variable is activated, and the models are recalibrated with different value 

of the resolution variable (thus different domain resolution). This process is repeated with 

many different values of the resolution variable (see Figure 1.8b), thus, the models are 

accurate in many different domain resolutions and can be used across scales. 

 

Figure 1.8. (a) Illustration of the upscaling from small scale domain to larger scale domain. (b) 

Schematic of the multi-scale calibration of the model. 

The integration of flaming and smouldering models is novel and an area which has 

rarely been touched on. This integration is very important to understand the behaviour 

of peatland wildfires. The complexity of each combustion type, the limited studies on how 

the two fires affect each other, the different timescale between them, and the lack of 

availability of the data to validate the models are a few of the reasons for the lack of 

studies on this topic. The complexity of each combustion type stems from the many 

phenomena that should be considered and the factors that influence them, which are 

spatially nonuniform and vary temporally. Once these phenomena and factors are 

considered, to develop the integrated model, the interaction between smouldering and 

flaming during peatland wildfires become an issue; the smouldering of peat that is 

initiated by the flaming of vegetation, with both have different environmental factors, 

need to be investigated. Once the smouldering initiation issues are solved, the 

significantly different timescale (two order of magnitude) between flaming and 

smouldering spread requires comprehensive consideration when the two fires are 
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integrated. Although if the integrated models are successfully developed, the fidelity of 

the models need to be validated. However, only a very limited validation data are 

available, especially experimental studies at the field-scale that consider flaming and 

smouldering combustion (Grundling et al., 2019; Santoso, 2021).  

This thesis proposes separated computational domain for flaming and smouldering, 

which run independently (see Figure 1.9). The two domains, however, interact when the 

initiation of smouldering from flaming happens (see Figure 1.9). By using two 

independent domains, flaming that is affected by factors such as vegetation type and wind 

dynamics and smouldering that is affected by factors such as peat MC can be modelled 

independently, and the interaction between the domains only happen when instructed 

(see details in Chapter 6.1.2). This method, however, still requires both the domains to 

have the same spatial and temporal resolutions; thus, multi-scale calibration on the model 

with different resolution variables need to be performed on both flaming and smouldering. 

The different timescales between flaming and smouldering is an important issue; however, 

this issue can be solved with a selection of the domain’s temporal and spatial resolutions 

that satisfy stability criteria. Since the model is calibration-based, the model’s variables 

(including the variables that govern the initiation of smouldering by flaming) are 

optimised against the available laboratory-controlled experiments. Once the variables are 

calibrated, the upscaling process is performed and the model is validated against field-

scale data, which is explained in Chapter 1.5.3. 

 

Figure 1.9 Illustration of multi-domain approach, where flaming and smouldering domains are 

separated. The white represents surface vegetation, brown represents peat soil, red represents 

flaming, and yellow represents smouldering. The dashed lines represent the projection across 

domains and the solid blue arrow represents the reciprocal interaction between the two domains. 
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1.5.3. Validation and extrapolation 

The experimental data on peatland wildfires at the field-scale are very limited 

(Grundling et al., 2019; Santoso, 2021); thus, validating the models against field-scale 

peatland wildfires experiments is not always possible. Due to this limitation, an 

alternative to acquire the validation data is required. Most of studies on peatland 

wildfires are done through observation of real wildfires either currently, or of historical 

fires, which is mostly via remote sensing (Page et al., 2002; Elvidge et al., 2015; Huijnen 

et al., 2016). Since the satellites record the radiation data continuously, the analysis of 

wildfires can be performed either during the incident (real time) or in the past. This 

method provides tools to analyse peatland wildfires (at any location) more thoroughly 

based on past and current events, thus, the remote sensing data can be used to validate 

the models at the field-scale. While the use of remote sensing data to validate the wildfire 

models has been commonly performed for flaming wildfire models (Alexandridis et al., 

2008), it has not been used to validate smouldering wildfire models, mainly due to the 

limited remote sensing data of smouldering wildfires (see Chapter 1.3). In this thesis, both 

the flaming and smouldering components of the field-scale models are validated against 

corresponding remote sensing data, either obtained from the raw remote sensing data or 

through algorithm implemented on the raw remote sensing data. 

A validation based on remote sensing relies heavily on the goodness of the remote 

sensing data. If the remote sensing data are insufficiently accurate, the model would not 

be valid although if it has good agreement with the validation data. Therefore, the 

assessment of the goodness of the remote sensing data is of utmost important. The 

traditional way of assessing this goodness is by comparing the generated remote sensing 

data, via algorithms, with the ground observation. This method validates the algorithm 

results on the locations of flaming and smouldering with the actual location of the fires 

that are determined from the ground observation. The accuracy of the algorithms is 

derived from this comparison, in which if accuracy is high, then the algorithm provides a 

powerful tool for wildfires detection; otherwise, the algorithm needs improvement.  

While this method is robust and straightforward, it is expensive and suffers from 

the black box problem. Collecting the data from ground observation require 

comprehensive understanding on the accessibility and the resources needed. Most of the 

peatlands are in rural area, and are hard to access, and consequently require significant 

amount of resources. Although if this issue is resolved, the scale and uncertainties of the 

data collected from the ground observations causes its comparison with algorithm results 

is difficult, especially for smouldering. The scale of the satellite data is around few 



35 

 

hundred meters per one pixel, whereas within a square of few hundred meters per one 

pixel, there are many possibilities (see Figure 1.10): entirely flaming, entirely 

smouldering, combination of flaming and smouldering, intact, partly smouldering, etc. 

(Sofan et al., 2020). While flaming wildfires are apparent and give strong radiation to the 

satellite, determining smouldering is difficult, even in ground observations, and its 

radiation is significantly weaker (Elvidge et al., 2015). The effect of atmospheric obstacles 

such as cloud make this to be more difficult (see Figure 1.10). Once this issue is resolved, 

without understanding the typical radiation from flaming and smouldering, the values 

used in the algorithm to determine the categorization of the pixel (whether it is flaming, 

smouldering, or intact) have insufficient generality. This insufficiency means that the 

algorithm has a good accuracy for the data used in the comparison but inaccurate in other 

data. The algorithm is treated like a black box, where the fundamental knowledge of 

physics in the algorithm is not present and the accuracy of the algorithm is volatile. The 

accuracy and generality of the algorithm can be improved by assessing the algorithm 

against as many ground observation data as possible, similar to those in machine learning. 

However, this approach leads to the issue of resources availability. 

This thesis proposes to use laboratory-controlled experiments to assess the 

goodness of remote sensing of flaming and smouldering. This method has been used 

repeatedly for flaming fire (Sun et al., 2006; Boulet et al., 2009, 2011); however, none of 

the studies consider smouldering peat, especially when both fire types are discussed. By 

using laboratory-controlled experiments, the resources required to conduct the 

experiments are significantly lower and the noise level in the experiments is minimal (see 

Figure 1.10). The detail of dynamics of the fire and the different conditions of the sample 

can be investigated without significant additional required resources. The main drawback 

of the laboratory-controlled experiment is the need for adjustment when the results are 

applied to a field-scale remote sensing. However, the adjustment for smouldering can 

adapt the adjustment from flaming (the noise level at the same location is similar between 

flaming and smouldering), which are more readily available (Wooster, Zhukov and Oertel, 

2003). The aim of this method is to investigate the typical value of radiation from flaming 

and smouldering, resolving the black box problem, which then can be used to assess the 

goodness of remote sensing data and assist with the improvement of remote sensing of 

peatland wildfires. The improved remote sensing of peatland wildfires can then be used 

to obtain accurate validation data for models. 
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Figure 1.10. Comparison between ground observation and laboratory-controlled experiments to 

assess the goodness of remote sensing application. 

Validated models provide practitioners with robust tools to approximate the 

behaviour of peatland wildfires, such as how they start and spread, and help strategize 

mitigation attempts. This usability means that the model can also be used to simulate 

peatland wildfires in many different scenarios, not only wildfires that are happening or 

have happened in the past, thus, the effect of variables that might influence peatland 

wildfires can be investigated and quantified. For example, by varying the peat MC, the 

effect of different peat MC in the ignition and spread of smouldering can be studied and 

the critical value at which the peatland wildfires become significant threats can be 

quantified. With this understanding, the mitigation of peatland wildfires will become 

more effective since, for instance, the information on the required resources can be 

estimated more accurately. The extrapolation use of the model provides the practitioners 

with more knowledge and data to consider when developing mitigation strategies. 

This thesis proposes extrapolation usage of the models to estimate the smouldering 

area given the same flaming conditions, by varying the peat conditions. Therefore, the 

ratio between flaming and smouldering area is investigated in different conditions of peat. 

This investigation is important for two reasons: smouldering is the always unwanted 

wildfires (Turetsky et al., 2015) and smouldering is still difficult to detect via state-of-the-
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art technologies (Elvidge et al., 2015). Flaming wildfires are sometimes intentional and 

desirable, such as for prescribed fires to avoid large wildfires by minimising the fuel 

accumulation (Malamud, Morein and Turcotte, 1998; Block et al., 2016; Waldrop and 

Goodrick, 2018), whereas smouldering is the unwanted side effect of these fires; flaming 

vegetation accidentally ignites the soil underneath when flaming occurs on peatland 

ecosystem (Turetsky et al., 2015). Therefore, in the event of prescribed fires in peatland, 

when the flaming is under control the only concern is the ignition and spread of 

smouldering (in the event of unwanted flaming wildfires on peatland, both flaming and 

smouldering are of concern). While current technologies are able to detect flaming with a 

high level of confidence, the detection of smouldering remains scientific challenge. 

Therefore, model can help in estimating the ignition and spread of smouldering which 

current technologies might fail to detect. With the help of the model, the ratio between 

flaming and smouldering area can be investigated, and many important variables such 

as carbon emissions can be estimated. 

1.6. Thesis Outline 

The outline of the thesis is as follows. 

Chapter 1: In this chapter, the impacts and phenomena present in peatland 

wildfires are discussed. The literatures studying this topic are reviewed and the gaps exist 

from the literatures are identified and used to derive the aims and methodology of this 

thesis. 

The goodness of remote sensing to provide data for validating the model is 

investigated. Chapter 2 is dedicated to this task and investigate the following. 

Chapter 2: In this chapter, the radiation of flaming and smouldering are 

investigated in laboratory-controlled experiments. This investigation aims to distinguish 

the radiation of flaming and smouldering at a detailed level, which will be used in 

subsequent chapters. A good set of validation data provide a pillar for the development of 

a high-fidelity model for peatland wildfires. 

Since there are many different approaches can be used for cellular automata, the 

existing approaches for wildfire modelling are reviewed. Chapter 3 is dedicated to this 

task. 

Chapter 3: In this chapter, the existing cellular automata models for wildfires are 

reviewed. This review aims to understand the existing approaches in the literatures, 

implemented to cellular automata for wildfires modelling and investigate their usability, 
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benefits, and drawbacks. A good understanding on the approaches used in the literatures 

provide a strong foundation to develop the model. 

Based on the knowledge from the previous chapters, the cellular automata model 

for 3-D spread of smouldering is developed at the lab-scale. Chapter 4 and 5 are dedicated 

to this task and investigate the following. 

Chapter 4: In this chapter, a 3-D cellular automata model for smouldering at the 

lab-scale is developed. This model considered the spatial non-uniformities of the sample. 

This chapter investigates the spread of smouldering in non-uniform condition, which will 

be used as the basic model for subsequent chapters of field-scale cases. 

Chapter 5: In this chapter, cellular automata and physics-based models for 

smouldering at the lab-scale are compared and combined. The comparison aims to 

investigate the benefits and drawbacks of each model and assess their suitability for field-

scale modelling. The combination aims to increase the level of detail the model in Chapter 

4 can provide. 

Cellular automata models for field-scale peatland wildfires at the field-scale are 

developed. Chapter 6 – 9 are dedicated to this task and investigate the following. 

Chapter 6: In this chapter, a 2-D field-scale model of peatland wildfires on spatially 

and temporally uniform peat soil condition is developed. This chapter aims to investigate 

the initiation of smouldering by flaming and its spread behaviour. 

Chapter 7: In this chapter, a 2-D field-scale model of peatland wildfires on 

temporally vary peat soil is developed, improving the model in chapter 6. This chapter 

aims to investigate the ignition and spread of smouldering when the peat soil condition 

change over time, which is the actual condition in the nature. 

Chapter 8: In this chapter, the existing cellular automata models for smouldering 

in the literatures are compared. This chapter aims to investigate the benefits, drawbacks, 

and usability of the models, especially when applied across scales, with significantly more 

details than in Chapter 3. This helps to determine the optimum approach to be used for 

the field-scale peatland wildfires model. 

Chapter 9: In this chapter, the knowledge from chapter 4 – 8 are used to develop 

3-D cellular automata model for field-scale peatland wildfires, which is the ultimate model 

in this thesis. This chapter aims to investigate the emission from peatland wildfires that 

also consider the source of emission, either flaming or smouldering. The emission of 

peatland wildfires in Indonesia in the recent years are estimated and their impact on 

climate change are discussed. 
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Chapter 2 – Can Infrared Emissions 

Distinguish Flaming and Smouldering 

Wildfires? A Laboratory Study to Assist Remote 

Sensing 

Summary1 

This chapter investigated the suitability of infrared-based remote sensing to 

distinguish between flaming and smouldering wildfires. The investigation is based on 

laboratory-controlled experiments of flaming pine needle and smouldering peat that are 

monitored by using infrared (IR) cameras. The infrared emissions seen from the top-view 

of the burning samples were measured at eight different wavelengths: 1.6 µm, 2.2 µm, 3.5 

µm, 4 µm, 4.5 µm, 8 µm, 10 µm, and 12 µm, which are the most commonly used 

wavelengths in satellite remote sensing. The spectral intensity of flaming and 

smouldering at different wavelengths were investigated and the detection of subsurface 

smouldering was also discussed. The spectral intensity of flaming is 2 – 7 times higher 

than smouldering at any wavelength considered. The flaming to smouldering spectral 

intensity ratio peaks at 3.5 – 4.5 µm wavelength range, and these wavelengths are 

recommended for the monitoring of peatland wildfires. The integration of spectral 

intensities within a sufficiently wide range of wavelengths (emissive power) is required 

to strengthen the emissions from subsurface smouldering, to enable its detection. These 

findings indicate that the current technology of satellite remote sensing can distinguish 

flaming from smouldering, but is unable to detect subsurface smouldering. This chapter 

provides a novel analysis on using infrared to distinguish smouldering and flaming fires 

and help improve the remote sensing of peatland wildfires.  

2.1. Introduction to Wildfire Detection 

Many methods have been developed for the detection and monitoring of wildfires, 

using both conventional or modern technologies (see Figure 2.1). The conventional method 

                                                                 
1 This chapter is based on “Dwi M J Purnomo, Hafiz M F Amin, Wuquan Cui, and Guillermo Rein, 

2022. Can Infrared Emissions Distinguish Flaming and Smouldering Wildfires? A Laboratory 

Study to Assist Remote Sensing. International Journal of Wildland Fire, (submitted).” 
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involves observing smoke plumes during the day and flame at night, either an in-situ or 

on top of a firewatch tower. Presently, wildfire detection and monitoring are mostly 

performed by using remote sensing, due to its large coverage area and near real-time 

detection (Burke et al., 2019). The use of remote sensing also allows the estimation of 

carbon emission from wildfires, either via bottom-up approach (Page et al., 2002) or top-

down approach (Huijnen et al., 2016). Many different aerial machines have been used for 

remote sensing purposes: satellites that are placed in the space and follow a certain orbit, 

aircraft that fly over the wildfires, autopiloted drones that fly over the wildfires at a lower 

altitude than aircraft, and stratospheric unmanned aerial vehicle (UAV) that fly in the 

stratosphere of the Earth and can remain on one mission for a long time (weeks). The 

satellites in wildfire detection are mostly sun-synchronous (in an orbit at which in one 

year the satellite revolve the sun) or geo-synchronous (match with the rotation of the 

Earth). 

 

Figure 2.1. The methods have been developed for wildfires detection both conventional 

(Firewatch and alarm from residents) and modern technologies (aircraft, drones, satellites). The 

phenomena to be detected in peatland wildfires are flaming, surface smouldering, and subsurface 

smouldering (overhang).  
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Most of current technologies in remote sensing of wildfires use infrared sensors 

(Elvidge et al., 2015) that are equipped in one of the aerial machines. In the detection and 

monitoring of peatland wildfires, these sensors are used to detect and distinguish the 

infrared emissions in different state of the surface of the Earth: undisturbed vegetation, 

flaming fire, exposed soil, burning vegetation, burnt out vegetation, surface smouldering 

fire, and subsurface smouldering fire. However, while these sensors can accurately detect 

and monitor flaming wildfires (flaming fire and burning vegetation) and non-active fire 

(undisturbed vegetation, exposed soil, and burnt out vegetation), the detection and 

monitoring of smouldering wildfires remain a scientific challenge, especially in subsurface 

smouldering fire (Elvidge et al., 2015; Burke et al., 2019). The detection and monitoring 

challenges are caused by the lower temperature of smouldering, which sometimes cannot 

be distinguished from the non-burning objects. 

A recent example of detection failure of smouldering wildfire was the Deurnsche 

Peel peatland wildfire in the Netherlands in 2020. In this fire event, a large wildfire 

started on 20 April 2020, in the Deurnsche Peel nature reserve (Hermans, 2021). The 

glowing region in top-left of Figure 2.2a shows flaming wildfires that were visible in the 

satellite image, which burned the surface vegetation. After five days and four nights of 

intensive firefighting, flaming wildfires were successfully extinguished (Hermans, 2021). 

However, although there were no longer any visible flames or large fires on the surface, 

the peat soil remained burning via smouldering for a very long time (Hermans, 2021). 

Smouldering peat could reappear with warm temperatures or strong winds even after 

they were confirmed to extinguish (Hermans, 2021). The smouldering peat was finally 

contained after 2 months of intensive firefighting (50 m3/h water spray) and several heavy 

rains (Hermans, 2021). 

Although it was reported that the smouldering wildfires remained active for two 

months, satellites failed to capture the smouldering (Hermans, 2021). The satellites were 

only able to capture the flaming wildfires for five days out of two months. Figure 2.2a 

shows the satellite data from the same location on different days from two different 

satellites, the Sentinel-2 and the NASA Earth Observing System Data and Information 

System (EOSDIS) that provides data from Terra and Aqua satellites (used for MODIS). 

On the day when the wildfire started, both the satellites successfully captured the flaming 

wildfires (yellow glowing area in Sentinel-2 and red dots in EOSDIS NASA). One week 

after the start of the fire, both Sentinel-2 and EOSDIS NASA did not detect any active 

fire, even though, based on the field observations, the fires remained active via 
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smouldering (Hermans, 2021). Therefore, satellite remote sensing has not been robust to 

detect smouldering wildfires, which is mainly due to the insufficiency of the data. 

 

Figure 2.2. (a) Satellite images of a peatland wildfire in Deurnsche Peel nature reserve in the 

Netherlands (51.401oN, 5.811oE) on 20 and 27 April 2020. The pictures on the left were obtained 

from the Sentinel-2 satellite, whereas the right pictures are from EOSDIS NASA. The glowing 

region in the left image and red dots in the right image represent active fires successfully 

captured by the satellite. (b) The process involved in remote sensing of wildfires. The phenomena 

are observed by the detection devices which then processed through a certain algorithm and 

results in the classification of the cells in the grid. 

The detection failure in remote sensing applications corresponds to 

misclassification of the states of the cells in the grid (see Figure 2.2b). In remote sensing, 

the phenomena observed by the sensors are transferred to the computer for data 

processing, which then result in the classification of the cells in the grid; thus, 

misclassification is either caused by either equipment issues, data processing issues, or 

both (Wooster et al., 2021). The failure in the equipment can be caused by the quality and 

capability of the sensors. For example, as infrared has a wide range of wavelengths, if the 

sensors are not sensitive to the wavelength at which the fire can be detected, the data 

that are transferred to the computer will contain false information on the active fire state. 

The resolution of the sensors is also important since with course resolution, the radiation 

of a very small fraction (below 0.01%) of fire in one cell will not be strong enough to be 

classified as active fire (Wooster, Zhukov and Oertel, 2003; Ichoku et al., 2016; Wooster 

et al., 2021). Failure in data processing is caused by the poor selection of data and 

mathematical operation in the algorithm used to classify the cells in the grid. To obtain a 

good classification, i.e., avoiding both false positive and false negative, the quality and 
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capability of the sensors and the goodness of the algorithm must be ensured (Wooster et 

al., 2021). 

2.2. Remote Sensing on Flaming and Smouldering 

In remote sensing applications, wildfires are mostly detected and monitored by 

satellites. This selection stems from the simplicity and resources required for the 

detection and monitoring of wildfires (Elvidge et al., 2015). By using satellites, the only 

resources required are satellite data and computer to process these data for classification, 

whereas using other machines such as drones and aircraft, requires sophisticated and 

expensive setup, for instance, the purchase or rental of machines and the permission to 

operate these machines. The main disadvantageous of using satellites is the inflexibility 

of using the sensors, as the sensors equipped in satellites are fixed and cannot be changed 

at will, unlike those in drones and aircrafts (Nowzad, 2019). Satellites only use band 

sensors, the sensors that capture infrared emissions within a narrow wavelength (ideally 

at one exact wavelength to capture the spectral intensity), with a limited number of 

wavelengths. Moreover, no satellite that covers the whole range of infrared wavelengths, 

i.e., from short wave (SWIR), mid wave (MWIR), to long wave (LWIR) infrareds (see 

Figure 2.3). This limitation combined with the spatial and temporal (frequency of data 

collections) resolutions of the satellites are the main reasons that have caused scientific 

community to explore alternative options (Nowzad, 2019); for instance, by using drones 

that have adjustable spatial and temporal resolutions and can be equipped with band or 

broad (capture infrared emission over a wide wavelength) wavelength sensors (Figure 

2.4c; Burke et al., 2019; Nowzad, 2019). However, satellites are still the most developed 

methods for remote sensing of wildfires and continue to be improved both in terms of 

sensors and algorithms (Dozier, 1981; Siegert et al., 2004; Elvidge et al., 2013, 2015; 

Atwood et al., 2016; Giglio, Schroeder and Justice, 2016; Sofan et al., 2019, 2020). 

Of many satellites available, those extensively used for wildfires detection are 

Landsat 8, Sentinel-2, NASA Tera & Aqua, Suomi NPP, NOAA, BIRD, and TET-1, which 

are equipped with instruments (sensors system) of OLI & TIRS, MSI, MODIS, VIIRS, 

AVHRR, HSRS, and BIROS respectively (see Table S2.1 for the acronym; Kramer, 1996; 

ESA, 2015; Cao et al., 2017; USGS, 2019; NASA, 2020). These satellites have significantly 

different spatial and temporal resolutions and have been used to detect and monitor both 

flaming and smouldering wildfires either with or without distinction between flaming and 

smouldering (see Table 2.1). In Table 2.1, the detection and monitoring of flaming and 

smouldering wildfires without distinction is referred to as hotspots, which means the 
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hotspots can be either flaming or smouldering without additional information on which 

type of combustion. 

 

Figure 2.3. Illustration of central wavelength and its width of instruments from different 

satellites. The band names in brackets correspond to the channel nomenclature of the satellite 

and are associated with Table 2.1. 

In peatland wildfires, number of phenomena are involved as shown in Figure 2.4a, 

thus, different infrared emissions are radiated. All the objects involved in peatland 

wildfires radiate infrared emissions, but with different intensities that correspond to the 

phase and temperature of the object. These differences can be quantified by using 

wavelength and spectral intensity (see Figure 2.4b). Both flaming and smouldering 

combustion radiate with spectral intensities following Planck’s curve, which represent 

solid phase radiation, however, smouldering radiation is theoretically lower than flaming 

at any wavelength due to its lower temperature. The combustion products (mainly CO2, 

CO, and H2O) also radiate infrareds, however, while solid objects have broad wavelength 

radiation, gas substances have band radiation, and their spectral intensities peak at a 

narrow wavelength, while it is near zero at other wavelengths (see Figure 2.4b; Boulet et 

al., 2011; Rein, 2016; Hu et al., 2018). Another infrared emission is radiated by the 

subsurface smouldering, which is weaker than flaming and surface smouldering; thus, 

the detection and monitoring of this fire is difficult since its radiation can be indistinctive 

from the background (undisturbed soil, unburned vegetation, and burnt out vegetation). 

In actual wildfires, although the spectral intensity profiles of the objects in Figure 2.4a 

deviate from the theoretical profiles in Figure 2.4b, their profiles are expected to be 

proportional, for instance, the spectral intensity of flaming vegetation is expected to be 

higher than smouldering peat at any wavelength, and their peaks are at different 

wavelengths. Therefore, when there are differences in spectral intensity found in the 
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actual remote sensing of peatland wildfires, the theoretical understanding presented in 

Figure 2.4b can be used to distinguish between flaming, smouldering and other objects. 

However, when flaming vegetation is active on top of active smouldering peat, their 

distinction can be elusive; this distinction is investigated in this chapter.  

In flaming wildfire detection and monitoring, MWIR is commonly used since the 

gas phase products of flaming combustion radiate the infrared in a narrow range of 

wavelengths (band) within the range of MWIR, and the flaming vegetation radiation also 

peak at the range of MWIR (Sun et al., 2006; Boulet et al., 2009, 2011). Moreover, MWIR 

radiation is less sensitive to the atmospheric noises such as cloud and atmospheric 

moisture and smoke (Giglio, Schroeder and Justice, 2016). Therefore, the flaming wildfire 

can be detected and separated from other objects. However, many satellites (e.g., Landsat 

8, Sentinel-2) are not equipped with MWIR sensors. Only satellites that have missions of 

wildfires monitoring (e.g., NASA Terra & Aqua) are equipped with MWIR sensors, most 

of which have coarser spatial and temporal resolutions, which then affect the accuracy of 

fire detection (Burke et al., 2019). Due to these issues, for the development of algorithms 

in remote sensing for wildfires detection and monitoring, researchers start using SWIR 

data that are available in most satellites (Sofan et al., 2020). However, what SWIR 

actually detects has not been confirmed, and its usability to detect smouldering wildfires 

is still unknown. 
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Table 2.1. List of satellites that have been used for monitoring wildfires. The central wavelength 

and its band width are shown in Figure 2.3. The temporal resolution represents the frequency of 

the data collection. The hotspot detection does not distinguish flaming and smouldering, whereas 

flaming & smouldering detection attempt to distinguish them. 

 

Satellite 

(Instrument) 

Spatial 

resolution (m) 

Temporal 

resolution (days) 
Monitoring application (channel name) 

Landsat 8 (OLI 

& TIRS; USGS, 

2019) 

30 16 
Flaming & smouldering (B6; Elvidge et al., 

2015; Sofan et al., 2019)  

30 16 
Flaming & smouldering (B7; Elvidge et al., 

2015; Sofan et al., 2019) 

30 16 
Flaming & smouldering (B10; Elvidge et 

al., 2015; Sofan et al., 2019) 

30 16 Smouldering (B11; Elvidge et al., 2015)  

Sentinel-2 (MSI; 

ESA, 2015)  

20 5 
Flaming & Smouldering (B11; Sofan et al., 

2020) 

20 5 
Flaming & Smouldering (B12; Sofan et al., 

2020) 

NASA Tera & 

Aqua (MODIS; 

NASA, 2020)  

500 8 
Hotspots (B21) (Giglio, Schroeder and 

Justice, 2016) 

500 8 
Hotspots (B31; Giglio, Schroeder and 

Justice, 2016) 

 

Suomi-NPP 

(VIIRS; Cao et 

al., 2017) 

750 1 Hotspots (M7; Elvidge et al., 2013)  

750 1 Hotspots (M8; Elvidge et al., 2013) 

750 1 Hotspots (M10; Elvidge et al., 2013) 

750 1 Hotspots (M11; Elvidge et al., 2013) 

750 1 Hotspots (M12; Elvidge et al., 2013) 

NOAA (AVHRR; 

Cao et al., 2017)   

1100 16 Hotspots (B3; Dozier, 1981)  

1100 16 Hotspots (B4; Dozier, 1981) 

1100 16 Hotspots (B5; Dozier, 1981) 

BIRD (HSRS; 

Kramer, 1996) 

372 15 Hotspots (MWIR; Siegert et al., 2004)  

372 15 Hotspots (LWIR; Siegert et al., 2004) 

TET-1 (BIROS; 

Kramer, 1996) 
160 3 Hotspots (Atwood et al., 2016) 
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In smouldering fire detection, LWIR is mostly used to separate the smouldering 

from flaming, since from the Planck’s law, smouldering that has lower temperature has 

infrared emissions peaking within the LWIR range (Elvidge et al., 2015). LWIR can also 

detect the subsurface smouldering; however, this detection used an infrared camera that 

has broad wavelength sensitivity (8 – 14 µm), which is mounted on a drone (Burke et al., 

2019), unlike those of satellites that have narrow wavelength sensitivity. 

Previous studies leave the following gaps in the knowledge on the detection and 

monitoring of peatland wildfires: (i) can infrared emissions distinguish between flaming 

and smouldering wildfires, and (ii) how does the infrareds respond to subsurface 

smouldering. This chapter addresses and discusses these questions by investigating the 

infrared radiation of smouldering and flaming of natural fuels in the laboratory-controlled 

experiments, and for the first time, assess the suitability of infrared to distinguish flaming 

and smouldering for remote sensing of peatland wildfires. Laboratory-controlled 

experiments were conducted on peat and pine needle samples for smouldering and 

flaming experiments respectively. Peat samples with five different MC and pine needle 

with five different fuel bed size were considered. An infrared camera was placed on top of 

the burning samples to mimic the application of remote sensing, unlike other lab-scale 

experiments that viewed the sample from the side (Sun et al., 2006; Boulet et al., 2009, 

2011). Different optical filters were mounted in front of the infrared camera to capture 

the infrared emissions at different wavelengths. 
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Figure 2.4. (a) Schematic of the phenomena that present in peatland wildfires and the infrared 

radiations they emit. The red, blue, and green twisted lines are solid, gas, and soot & PM 

radiation respectively. (b) The corresponding spectral intensities of the radiations in (a). (c) The 

detection of the radiation in (b) by remote sensing apparatus. 
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2.3. Materials and Methods 

Laboratory scale experiments were conducted on an open-top reactor made of 

insulating ceramic boards (𝑘 = 0.7 W.m-1K-1, 𝜌 = 310 kg.m-3, 𝑐𝑝  = 1090 J.kg-1K-1) with 

internal dimensions of 20 × 20 × 10 cm (Figure 2.5) for both flaming and smouldering 

experiments. Pine needles were used for the flaming experiments and commercial milled 

Irish Sphagnum peat (Shamrock Irish Moss Peat, Bord na Mona Horticulture) were used 

for the smouldering experiments, due to their batch consistent properties in the long term, 

ease of accessibility, and frequent use in scientific literatures (Valdivieso and Rivera, 2014; 

Huang et al., 2016; Huang and Rein, 2017; Wang et al., 2017; Hu et al., 2019). 

 

Figure 2.5. The schematic of the laboratory experiment on smouldering of peat and flaming of 

pine needles. The flaming experiments were initiated at the centre of the reactor, whereas the 

smouldering experiments were initiated the edge of the reactor. A visual camera (GoPro) and 

infrared cameras were used to monitor flaming and smouldering experiments. 

Before conditioning, samples were dried in an oven at 80°C for 48h (Restuccia, 

Huang and Rein, 2017; Hu et al., 2019). The selection of 80°C instead of 100°C was to 

avoid thermal degradation (pyrolysis) of the sample (Huang and Rein, 2017), whereas the 

selection of 48h drying time was to ensure that there is no longer mass change of the 

sample when the drying is longer. The fuel bed size of pine needle samples is varied: 6g, 

8g, 10g, 12g, and 15g, whereas the variation on peat samples is provided on their MC: 5%, 

25%, 35%, 45%, and 65% on dry basis. The selection of fuel bed size of pine needles was 

based on the range of mass that sustain flaming but only at a reasonable flame height for 

safety reason. The selection of peat MC was based on the time required to finish the 
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experiment where with MC higher than 65%, the experiments remained active for more 

than 8h. The pine needle samples were ignited at the centre of the reactor using a lighter 

to initiate the flaming fire. The peat samples were ignited at the edge of the reactor using 

a helical coil, 18 cm long, with a diameter of 1 cm, and made of a 0.5 mm thick nichrome 

wire. 100 W was supplied to the sample through the coil for 30 min (Hu et al., 2019). The 

use of ignition coil was because control of aspects like the power provided and the ignition 

duration are straightforward, thus, the ignition protocol can be standardized and the 

effect of its variation on the experiment can be minimised. Although in the actual peatland 

wildfires smouldering peat is initiated by flaming vegetation, the use of ignition coil still 

provides relevant data, since once the ignition period is over and smouldering is self-

sustained, the ignition protocol does not significantly affect the smouldering dynamics.  

Both the flaming and smouldering experiments were monitored by using a visual 

camera (GoPro) and two different infrared (IR) cameras: FLIR X6900sc for SWIR and 

MWIR experiments, and FLIR A655sc for LWIR experiments, which are mounted as 

shown in Figure 2.5. The technical specification of the infrared cameras that were used 

in this chapter is summarized in Table 2.2. 

Table 2.2. The technical specification of the infrared cameras used in the experiments. 

  FLIR X6900sc FLIR A655sc 

Spectral range (µm) 1.5 - 5 7.5 – 14 

Resolution 640 x 512 640 x 480 

Maximum frame rate (Hz) 1000 200 

Dynamic range (bit) 14 16 

The infrared cameras were dedicated to observe the top view of the burning 

samples to mimic the application of remote sensing, whereas the visual camera was used 

to aid the observation of infrared camera in showing phenomena involved in the 

experiments if they were observed by the naked eye. In SWIR experiments, filters with 

central wavelength of 1.6 and 2.2 µm were placed in front of the infrared camera lens. In 

MWIR experiments, filters with central wavelength of 3.5, 4, and 4.5 µm were used, 

whereas in LWIR experiments, filters with central wavelength of 8, 10, and 12 µm were 

used. These filters were selected based on the central wavelengths that are commonly 

used in satellite remote sensing for wildfire detection (see Figure 2.3). While the filters in 

SWIR and MWIR experiments were placed directly in front of the camera lens, in LWIR 

experiments, a filter wheel (Thorlab FW102C) was placed in front of the camera to carry 

and change the filters (see Figure 2.5). The usage of filter wheel speeded up the filter 
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replacement process and minimise the disturbance to the camera position through slight 

movements caused by manual filter replacement. However, due to experimental 

constraints for the FLIR X6900sc camera, using filter wheel in SWIR and MWIR 

experiments was not possible. 

In flaming experiments, each combination of fuel bed size and filter wavelength 

requires an independent experiment, thus, there were in total 40 flaming experiments. 

The reduction of number of flaming experiments was not possible due to its rapid 

progression in which an independent experiment only took averagely two minutes. 

Therefore, changing the filter during a flaming experiment created a mismatch between 

the infrared emissions from different filters, which was not encountered in smouldering 

experiments. Meanwhile, in smouldering experiments, an independent experiment was 

only required when the MC of the sample was changed, however, due to the usage of two 

different infrared cameras, the smouldering experiments were split into two stages: SWIR 

and MWIR set of experiments and LWIR set of experiments. Therefore, there were in total 

10 independent experiments of smouldering. 

Experiments not using filters were also considered, in which the radiation 

captured by the infrared camera is the broad type. This consideration added 15 

independent flaming experiments, however, no additional independent smouldering 

experiment was needed since the broad infrared measurement can be performed in the 

same independent experiment as the band infrared measurement.  Therefore, the 

experiments cover both broad and band wavelength radiation in three different spectral 

range categories (SWIR, MWIR, and LWIR) for flaming and smouldering combustion. 

Table 2.3 summarizes the channels that are used to address the camera and filters for the 

experiments. The flaming experiments were recorded at the frequency of 25 frame per 

second to avoid blurring due to the fast movement of the flame, whereas the smouldering 

experiments were recorded at the frequency of 1 frame per minute to minimise the 

memory consumption due to the slow spread of smouldering.  

 

 

 

 

 

 

 

 



52 

 

Table 2.3. Channels used in the experiments. Integrated gain is the integration of intensity gain 

in Figure 2.6 over wavelength. 

Channel Wavelength (µm) Centre ± band width (nm) Integrated gain (µm) 

S1.6 1.6 1640 ± 25 0.018 

S2.2 2.2 2192 ± 10 0.015 

M3.5 3.5 3505 ± 42 0.034 

M4 4 4080 ± 80 0.075 

M4.5 4.5 4515 ± 90 0.067 

L8 8 8224 ± 240 0.212 

L10 10 10400 ± 300 0.222 

L12 12 12290 ± 492 0.252 

SWB 1.5 – 2.6 (broad) N/A 0.833 

MWB 3 – 5 (broad) N/A 1.754 

LWB 8 – 14 (broad) N/A 4.743 

In this chapter, the spectral intensities of the smouldering and flaming at different 

wavelengths were compared. To remove the equipment effects in the experiments, the 

intensity gain from the cameras and filters responses were considered. The two main 

features of the intensity gain are centre wavelength and band width; thus, the intensity 

reading (𝐼) obtained by the camera is the integration of spectral intensity (𝐵) multiplied 

by the intensity gain (𝜌) over wavelength (𝜆) as shown in Eq. 2.1, in which, outside the 

band width, the intensity gain is 0. The average spectral intensity (𝐵̅) at each channel can 

be estimated as in Eq. 2.2, since the band width of each channel is very narrow. Figure 

2.6 shows the schematic of intensity gain as a function of wavelength of each channel both 

narrow and broad band. The integral function in Eq. 2.2 corresponds to the integration of 

the region under each curve in Figure 2.6, which in this chapter, were solved numerically, 

and its results are listed in the integrated gain column in Table 2.3. Meanwhile, the 

theoretical spectral intensity of blackbody radiation at a certain temperature and 

wavelength (𝐵(𝑇, 𝜆)) follows the Planck’s law (Eq. 2.3). In Eq. 2.3, ℎ is Planck constant 

(6.625×10-34 m2.kg/s), 𝑐 is speed of light (3×108 m/s), 𝜅 is Boltzmann constant (1.38×10-23 

m2.kg/s2.K), and 𝑇 is temperature. 

 𝐼 = ∫ 𝐵(𝜆)𝜌(𝜆)𝑑𝜆
∞

0
 (2.1) 
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 𝐵̅(𝜆) ≅ 𝐼 ∫ 𝜌(𝜆)𝑑𝜆
∞

0
⁄  (2.2) 

 𝐵(𝑇, 𝜆) = 2ℎ𝑐2 𝜆5 (𝑒𝑥𝑝 (
ℎ𝑐

𝜅𝑇𝜆
) − 1)⁄  (2.3) 

 

Figure 2.6. The intensity gain of different channels used in this work. The blue lines are for 

narrow band channels, whereas the red lines are for broad band channels. This scheme 

corresponds to Table 2.3. 

2.4. Results and Discussions 

2.4.1. Distinction of smouldering and flaming fires 

The infrared cameras with any channel (see Table 2.3) successfully detect the fire, 

either flaming or smouldering (see Figure 2.7 and Figure 2.8). Figure 2.7b and Figure 2.8b 

show that although the smouldering and flaming can be detected at any wavelength, the 

spectral intensity at different wavelengths differ significantly. In smouldering 

experiments, the highest spectral intensity was obtained with MWIR channels (0.12 – 

0.15 W.cm-2.sr-1.μm-1), followed by SWIR channels (0.05 – 0.08 W.cm-2.sr-1.μm-1), and the 

weakest was obtained with LWIR channels (0.01 – 0.02 W.cm-2.sr-1.μm-1). This pattern 

also prevailed in the flaming experiments where the spectral intensity in MWIR channels 

were 0.28 – 0.46 W.cm-2.sr-1.μm-1, SWIR were 0.19 – 0.28 W.cm-2.sr-1.μm-1, and LWIR were 

0.02 – 0.06 W.cm-2.sr-1.μm-1. These patterns followed the pattern in the Planck’s curve (see 

Figure 2.9a) of blackbody radiation (Eq. 2.3), and the values fell within the expected 

temperature of flaming and smouldering (600K – 1200K). The peak spectral intensity in 

the experiments also confirmed with the Planck’s law, where the peak shifts to the longer 

wavelength when the temperature is lower (smouldering temperature), causing the peak 

spectral intensity of smouldering were at M4.5 (0.15 W.cm-2.sr-1.μm-1) and flaming at M4 

(0.46 W.cm-2.sr-1.μm-1).  
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The MC of peat and fuel bed size of pine needle did not significantly affect the 

spectral intensity of the smouldering and flaming respectively, as shown by the negligible 

error bar in Figure 2.9a. This negligible effect indicates that the temperature (the main 

factor that affects spectral intensity) of the flaming and smouldering were not 

significantly affected by the fuel bed size and MC respectively, which confirmed with 

Huang and Rein (2017). The fuel bed size and MC had only significant effects on the time 

required to reach the temperature that corresponds to the spread rate of the fire. 

In the flaming experiments, there was another important characteristic where the 

object that is detected was different when using different channels. When using M4.5, the 

maximum spectral intensity was obtained from the naked flame (0.61 W.cm-2.sr-1.μm-1), 

instead of burning vegetation like those in M4 (see Figure 2.8a). This phenomenon was 

caused by the radiation from participating media (gas phase objects) that have the nature 

of band radiation, peak at a narrow wavelength and very weak at other wavelengths (see 

Figure 2.9b). These findings concur with the selection of the wavelength (MWIR) in 

remote sensing to monitor wildfire (Giglio, Schroeder and Justice, 2016), and comply with 

the results on the lab-scale experiments (Boulet et al., 2011). The flaming spectral 

intensity in Figure 2.9a was obtained from the burning vegetation, thus, its value in M4.5 

channel was lower than from naked flame.   



55 

 

 

Figure 2.7. (a) Signatures of smouldering peat from visual and infrared cameras with three 

different channels: S1.6, M4, and L8. (b) Spectral intensity of smouldering in 3 different channels 

(S1.6, M4, and L8) that correspond to the white lines in (a). 

The smouldering could be distinguished from flaming from its lower spectral 

intensity at any wavelength (with ratio of 1.8 – 6.5 as shown in Figure 2.9b), which is 

expected since the temperature in smouldering is almost half the flaming temperature 

(Rein, 2016). The intensity ratio was calculated as the division of flaming vegetation 

spectral intensity by smouldering peat spectral intensity. The intensity ratio peaked at 

M4.5 (ratio of 6.5), therefore, M4.5 is the best channel to distinguish between flaming and 

smouldering. The intensity ratio at M3.5 and M4 were also relatively high (6.2 and 4.4 

respectively). Therefore, the range of wavelength recommended to distinguish between 

flaming and smouldering is between 3.5 – 4.5 µm (i.e., MWIR). Moreover, since within 
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this range the effect of the atmospheric noises are minimum (Giglio, Schroeder and 

Justice, 2016), MWIR is the optimum in general cases of detection and monitoring of 

peatland wildfires. The intensity ratio within SWIR range (M1.6 and M2.2) was relatively 

high (6.3 and 3.4 respectively), thus, the usage of channels within SWIR range also makes 

it possible to distinguish between flaming and smouldering, although MWIR is still better 

than SWIR in term of both intensity ratio and spectral intensity results. LWIR was found 

to have a relatively low intensity ratio (1.8 –3.1), thus, the usage of LWIR is not 

recommended since it could reduce the accuracy of attempts to distinguish between 

flaming and smouldering, which is also coupled with its weak spectral intensity. Although 

no repeat was performed on each independent experiment, the maximum spectral 

intensity at different times, which is selected at the early stage (shortly after the ignition 

period is over), middle stage, and late stage of the experiment, were within 20% difference. 

Therefore, the experimental uncertainty when the experiment is repeated is expected to 

be of similar value, and the results presented here prevail.  
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Figure 2.8. (a) Signatures of flaming pine needles from the visual camera and infrared camera 

with three different filters (S2.2, M4, and M4.5). (b) Spectral intensity of the flaming from three 

different filters (S2.2, M4, and M4.5), which correspond to the white lines in (a). 

Based on these findings, SWIR as a replacement for MWIR in remote sensing of 

peatland wildfires due to the widely available data (Sofan et al., 2020), could be considered, 

since SWIR was able to detect both flaming and smouldering, although its spectral 

intensity and intensity ratio are lower than MWIR. The usage of LWIR to detect 

smouldering (Sofan et al., 2019), on the other hand, requires sophisticated analysis, due 

to its significantly lower spectral intensity and intensity ratio than other wavelength 

ranges and without apparent benefits. The findings in Sofan et al. (2019) also show that 

the radiation from flaming and smouldering within the LWIR range was similar, although 
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flaming radiation was slightly stronger, whereas in the SWIR range, the flaming 

radiation was significantly stronger. 

These recommendations comply with the findings for when flaming and 

smouldering fires coexist, which is a commonly observed phenomenon in actual peatland 

wildfires (Sofan et al., 2020). Figure 2.10 compares the spectral intensities of flaming 

vegetation and smouldering peat when they coexist. This figure was obtained by scaling 

the range of spectral intensity in which the range cover the minimum and maximum value 

in the smouldering and flaming radiation respectively. Therefore, the values correspond 

to the colour within one channel in Figure 2.10a are linearly proportional. However, the 

range of spectral intensity is different between different channels to ensure the clarity of 

the figures. Visually, the radiation from flaming and smouldering can be distinguished by 

using channel S1.6 and M4, where the flaming radiation (orange) was significantly 

stronger than smouldering radiation (blue). The use of L12 was ineffective to distinguish 

between flaming and smouldering since both combustion types have similar radiation 

strength (both are similarly of a magenta colour). These visual differences confirm with 

the corresponding spectral intensities, as shown in Figure 2.10b, where the smouldering 

and flaming spectral intensities in L12 (black circle) are similar, whereas the other two 

channels have significantly different spectral intensities between flaming and 

smouldering. The result from M4 channel is the optimum, since the segregation between 

background, smouldering, and flaming is significantly clearer than in S1.6. The lower 

clarity in S1.6 is caused by its weaker smouldering radiation that is almost similar to the 

background when flaming and smouldering coexist (see Figure 2.10b). 
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Figure 2.9. (a) Maximum spectral intensity of the smouldering peat and flaming pine needle at 

different wavelengths and their comparison with the spectral intensity of blackbody radiation at 

different temperatures. The error bar in (a) represents the variation of maximum spectral 

intensity from experiments with different moisture contents and fuel bed size for smouldering 

peat and flaming pine needle respectively. (b) Comparison of spectral intensity between burning 

vegetation and naked flame in the flaming experiments (left axis) and the intensity ratio between 

burning vegetation and smouldering peat (right axis) at different wavelengths. The error bar in 

(b) represent the variation in maximum spectral intensity from flaming experiments with 

different fuel bed size. 

The radiation difference between fires has been used to determine the wildfire 

hotspots in remote sensing applications (Giglio, Schroeder and Justice, 2016). These 

findings infer that there are two extreme conditions that need to be considered to 

distinguish flaming and smouldering wildfires: the radiation difference between 

smouldering and flaming radiation and the radiation difference between smouldering 
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radiation and radiation from background, in which the separation of radiation difference 

between flaming, smouldering, and background confirms with Wooster, Zhukov and 

Oertel (2003). These findings and recommendations can be used to determine the expected 

radiation differences between flaming, smouldering, and background in the real 

application of remote sensing of peatland wildfires; thus, can improve its detection and 

monitoring when both flaming and smouldering wildfires are present and coexist. 

Another important phenomenon to be considered in differentiating flaming and 

smouldering wildfires is the overlap between the two fire types (Sofan et al., 2019). 

Another post-processing of the infrared emissions was performed, where the flaming 

infrared emissions were placed on top of the smouldering infrared emissions. From this 

post-processing, the smouldering radiation was completely shut off by the flaming 

radiation. This finding indicates that when flaming and smouldering wildfires overlap, 

where flaming vegetation is always on top of the smouldering peat, the distinction 

between flaming and smouldering is not possible. Therefore, the classification of flaming-

smouldering state in the algorithm developed in Sofan et al. (2019, 2020) requires further 

investigation. This flaming-smouldering classification could stem from the flaming 

vegetation that starts cooling down (Wooster, Zhukov and Oertel, 2003). However, this 

overlapping phenomenon only happens at the beginning of the soil ignition by flaming 

vegetation. The flaming vegetation occupy a certain location, ignite the soil, and spread 

quickly while the ignited soil spreads two orders of magnitude slower via smouldering, 

and therefore, this overlapping phenomenon is only instantaneous. Moreover, when both 

smouldering and flaming wildfires are present at the same location, the most concerning 

type of wildfire is flaming due to its higher hazard (e.g., higher spread rate and power). 

Therefore, the recommendation of using MWIR infrared emissions still prevail despite its 

ineffectiveness in distinguishing in the event of overlap between flaming and smouldering.  
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Figure 2.10. (a) Visual comparison between flaming vegetation and smouldering peat when they 

coexist, using three different channels: S1.6, M4, and L12. (b) The corresponding spectral 

intensity of the infrared emissions correspond to white lines in (a). 

Fire detection in remote sensing uses different algorithms in different products, 

although the satellite and instrument are the same, for instance, MODIS has many 

different algorithms to detect wildfires such as Collection 4, Collection 5, and Collection 

6 (Giglio, Schroeder and Justice, 2016). The algorithms use different procedures and 

thresholds to determine the location of wildfires. However, these thresholds are 

determined empirically and are validated against field observation, thus, the thresholds 

between different products cannot be compared. Fire Radiative Power (FRP) provides a 
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method to compare the detection of wildfire between different algorithms, for example, 

the average FRP of active fire in MODIS Collection 6 is only 16% lower than in MODIS 

Collection 5 (Giglio, Schroeder and Justice, 2016), whereas the FRP from MODIS and 

BIRD are within 20% of each other (Wooster, Zhukov and Oertel, 2003). In the earlier 

version of the remote sensing products, FRP is a function of brightness temperature, a 

theoretical temperature if the surface were blackbody given the spectral intensity (Giglio, 

Schroeder and Justice, 2016). This brightness temperature can be calculated from 

spectral intensity, however, the calculation is sophisticated and requires an optimization 

process (Giglio, Schroeder and Justice, 2016). In recent products (e.g., MODIS Collection 

6), FRP is calculated directly based on the spectral intensity (Giglio, Schroeder and 

Justice, 2016).  

FRP method was used to translate the findings in this chapter into satellite remote 

sensing application and assess their capability to distinguish between flaming and 

smouldering wildfires. To simplify the use of FRP method, the formulation in MODIS 

Collection 6 was used, where FRP is linearly proportional to the spectral intensity (Giglio, 

Schroeder and Justice, 2016). However, this FRP value is dependent on the sensor 

characteristics (Giglio, Schroeder and Justice, 2016); thus, the comparison of FRP ratios 

between flaming and smouldering was used instead of the comparison of FRP values 

between the two combustion types. 

From 240,000 detected wildfires in MODIS, the FRP of the fire ranges from 5 MW 

to 9000 MW (Giglio, Schroeder and Justice, 2016). In this range, the most frequent value 

of FRP of active fires ranges from 20 MW to 50 MW with more than 100,000 active fires 

found within this FRP range (Giglio, Schroeder and Justice, 2016). These values are 

obtained from the 4 µm channel of MODIS instruments. By using the channel with the 

same wavelength (M4) and assuming that the flaming wildfires typically have FRPs 

within the range of 20 MW to 50 MW, smouldering wildfires would have FRPs from 4.5 

MW to 11.4 MW (ratio of 4.4). This smouldering FRP range is still within the range of 

active fires that can be detected by MODIS. This finding also confirms with Wooster, 

Zhukov and Oertel (2003), where the FRP per unit area of pixel of smouldering is 8.1 

kW/m2 and flaming is 59.7 kW/m2, a 7.4 ratio, which is similar to the result of M4.5. 

Although the smouldering in Wooster, Zhukov and Oertel (2003) was from the residual 

burning (of surface vegetation) instead of peat, the same order of magnitude of 

smouldering temperature indicates that the FRP of smouldering of peat and surface 

vegetation are expected to be similar.  
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Flaming and smouldering wildfires can potentially be differentiated by using 

current technologies in remote sensing, however, another consideration is that the lower 

FRP of smouldering could be from the flaming vegetation that has cooled down (Wooster, 

Zhukov and Oertel, 2003). The cooling down flaming vegetation has been considered by 

using lower FRP than smouldering (0.42 kW/m2), but higher than background (Wooster, 

Zhukov and Oertel, 2003). This method is powerful, however, the uncertainties in the 

remote sensing (Ichoku et al., 2016) pose difficulty to implement this method accurately. 

For instance, the cooling flaming vegetation that still has high temperature (thus, high 

FRP, even higher than smouldering) or smouldering peat that is at the ground level 

(Wooster, Zhukov and Oertel, 2003) and can spread underground (thus, low FRP, even 

lower than cooling flaming vegetation).  

The fact that smouldering peat remains active although flaming has propagated 

relatively distant, can be used to overcome these detection and monitoring limitations. 

Therefore, to determine whether an active fire pixel is smouldering or flaming, firstly, its 

FRP is checked. If its FRP is around the smouldering or cooling flaming vegetation 

threshold, then the surrounding region of this active fire pixel is checked to find other 

active fire pixels which have FRP corresponds to flaming wildfire. If both checks are 

confirmed, the active fire pixel can be considered a smouldering wildfire. This procedure 

can return a false signal when the flaming wildfire is extinguished but the smouldering 

wildfire remains, or when the flaming wildfire exist but the pixel with smouldering FRP 

is a noise such as shiny objects. To tackle these issues, time series of the FRPs are required, 

where the FRP data of the landscapes are collected on many different times. For the first 

issue of the extinguished flaming, the time series data of FRP of the landscape can help 

find the start and the end of flaming wildfire. If the start and the end of the flaming 

wildfire are far from the time of the smouldering FRP is detected, then this could be a 

false signal of smouldering. The data on burnt scar can also be used to find the start and 

the end of flaming wildfire, since the cloud and other atmospheric noises could conceal 

the flaming wildfire when it happens. Once the start and end of the flaming wildfire is 

determined, the presence of shiny objects can then be identified. If objects with 

smouldering FRP are detected prior to the start of flaming wildfire, then these objects are 

most likely not smouldering, but noises, such as shiny objects. If the smouldering FRP 

objects are detected after the start of flaming wildfire, these objects could potentially be 

smouldering hotspots. Clouds could become noises in this category, however, there are 

algorithms to minimise clouds effect in remote sensing which are found in the literatures 
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(Giglio, Schroeder and Justice, 2016). These findings and recommendations can be used 

to help distinguishing flaming and smouldering in remote sensing of peatland wildfires. 

2.4.2. Detection of subsurface smouldering 

Another commonly observed phenomenon in peatland wildfires is subsurface 

smouldering (Huang and Rein, 2017). This phenomenon happens when the smouldering 

consumes relatively wet peat, and makes the fire favours to spread subsurface (Huang 

and Rein, 2017). The subsurface spread can only be detected by using broad wavelength 

(see Figure 2.11a), since weakened smouldering radiation due to subsurface spread could 

be amplified by integrating the radiation from a wide range of wavelengths (emissive 

power). The use of band filter at any wavelength fails to detect this subsurface 

smouldering; thus, satellite remote sensing will likely fail to detect the subsurface 

smouldering since they use band wavelength. This finding complies with the work of 

Burke et al. (2019) who also use broad wavelength infrared (which is similar to LWB 

channel) to detect subsurface smouldering. In Burke et al. (2019), a drone is equipped 

with an infrared camera that has spectral range of 8 – 14 µm to detect smouldering coal 

covered by soil. The infrared camera successfully detected the buried smouldering coal 

within a certain range of drone altitude. 

However, not all spectral range categories are able to detect subsurface 

smouldering. Figure 2.11b shows that SWB fails to detect subsurface smouldering. This 

finding can be explained by the total radiation intensity received by the channels (Eq. 2.1). 

The intensity received by the channels can be considered going through two steps: at the 

surface of the sample and in front of the sensors. At the surface of the sample, the energy 

to be emitted is equal regardless of the channel, consequently the initial intensity (𝐼𝑜) is 

also equal. This initial intensity pass through the camera lens and filters, and lose some 

of its energy depending on the camera and filters used. Therefore, the final intensity (𝐼) 

received by the channel is only a fraction of the initial intensity. 

Eq. 2.1 shows the formulation of the final intensity, which can be written as 𝐼 =

𝛼𝐼𝑜 , with 𝛼  the coefficient corresponding to channels. 𝐼𝑜  is equal for all channels, but 

different between surface and subsurface smouldering. The 𝐼 of subsurface smouldering 

is the product of  𝛼 with 𝐼𝑜 at the subsurface that is lower than 𝐼𝑜 at the surface, thus, the 

ratio of 𝐼 of subsurface smouldering on different channels is equal to the ratio of 𝛼 at 

different channels, which is the same in both surface and subsurface smouldering. The 

value of 𝛼 can be estimated by the product of integrated gain in Table 2.3 with the average 

spectral intensity at the surface of each channel (see Figure 2.9a). By using this method, 
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the 𝛼 of SWB, MWB, and LWB were found to be 0.04, 0.24, and 0.08, respectively. This 

finding indicates that although the LWIR has weaker radiation at each wavelength, since 

it is integrated over wide range of wavelength (8 – 14 μm), its 𝛼 is sufficiently high and 

the channel (LWB) can detect subsurface smouldering. On the other hand, SWB that has 

𝛼 half of LWB, although it has higher spectral intensity than in LWIR at any wavelength, 

fails to detect subsurface smouldering. This finding confirms with the 𝛼 of band channels 

that peak at M4 with 𝛼 of 0.01 and cannot detect subsurface smouldering. Therefore, for 

the first time, the infrared emissions with potential to detect subsurface smouldering were 

characterised, which can explain the successful detection of subsurface smouldering in 

Burke et al. (2019), and determine the sensors and algorithms that can be used for this 

detection. 

 

Figure 2.11. (a) The visual images and broad (LWB) and band (L8) infrared emissions of 

smouldering when subsurface smouldering was observed (at t = 1h after ignition protocol) and 

the emissions after the smouldering reaches the surface (at t = 3h after ignition protocol). The 

white lines indicate the same location. (b) The visual images and broad infrared emissions (SWB 

and MWB) of smouldering when subsurface smouldering was observed (at t = 1h after ignition 

protocol) and the signatures after the smouldering reaches the surface (at t = 3h after ignition 

protocol). The white lines indicate the same location. 
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The capability of satellite remote sensing, which uses band infrared emissions, to 

detect subsurface smouldering, was further assessed by using two post processing 

methods: discrete integration and an adjustment factor. In discrete integration method, 

the spectral intensities from several different band infrareds were summed (e.g., spectral 

intensities from M3.5, M4, and M4.5 were summed), thus, this method was similar with 

using broad infrared. However, while broad infrared sums the spectral intensity of all 

wavelengths within a certain range, the discrete integration method only used finite 

number of wavelengths within the same range. In the adjustment factor method, the 

spectral intensity from a band infrared was multiplied by a factor, thus, the weakened 

radiation of subsurface smouldering is amplified. These post-processing methods are 

analogous to the use of algorithms in the remote sensing products. 

Figure 2.12 shows the infrared emissions after post-processing compared with the 

emission of LWB. The discrete integration method (labelled as A1 in Figure 2.12) sums 

the spectral intensity of L8, L10, and L12, whereas the adjustment factor method (labelled 

as A2 in Figure 2.12) was implemented on L8 with the factor of 30. The LWIR range was 

used in this post-processing analysis because the infrared camera for SWIR and MWIR 

experiments (X6900sc) split the spectral intensity range into significantly narrower range 

than the infrared camera for LWIR experiments. For example, if the LWIR camera can 

read from 0.2 to 0.8 W.cm-2.sr-1.μm-1, the camera for SWIR and MWIR splits this range 

into 0.2 – 0.4 W.cm-2.sr-1.μm-1, 0.4 – 0.6 W.cm-2.sr-1.μm-1, and 0.6 – 0.8 W.cm-2.sr-1.μm-1. 

This split means that if the maximum spectral intensity in the experiment is, for instance, 

0.5 W.cm-2.sr-1.μm-1, then the range of 0.4 – 0.6 W.cm-2.sr-1.μm-1 must be used, and the 

pixels that have spectral intensity lower than 0.4 W.cm-2.sr-1.μm-1 will be read as 0.4 

W.cm-2.sr-1.μm-1, which is incorrect. Therefore, post-processing analysis could be limited 

due to the cut-off process from the camera. Figure 2.12a shows half bottom of Figure 2.11a 

after post-processing is performed and Figure 2.12b shows corresponding spectral 

intensity of the magenta line in Figure 2.12a. The half bottom of Figure 2.11a was selected 

because this part is the region at which subsurface smouldering was observed. 
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Figure 2.12. (a) Infrared emissions of subsurface smouldering of LWB, discrete integration 

method (A1), and adjustment factor method (A2). These results only show half bottom of Figure 

2.11a where the subsurface smouldering is observed. (b) The corresponding intensity of the 

magenta line in (a). 

 Although the discrete integration method (A1) indeed strengthens the weakened 

infrared emissions of subsurface smouldering (see Figure 2.12b), this method failed to 

detect subsurface smouldering. This failure stems from the estimation of the total 𝛼 of 

this method (𝛼 = 0.02), which is still lower than 𝛼 of SWB. This finding also indicates that 

if more band channels are included, the discrete integration method can potentially detect 

subsurface smouldering. 

 This potential is strengthened by the result of adjustment factor method (A2), 

which successfully detects subsurface smouldering (see Figure 2.12a). However, this 

successful detection is accompanied by the amplified noise (see Figure 2.12b). While 

implementing the adjustment factor, the noise of non-smouldering objects is also 

amplified. Since the background noise is non-uniform, even in the controlled environment, 

the noise can be amplified and causing false signal. This noise is even more significant in 

the actual wildfires; thus, while the post-processing has the potential to enable current 

remote sensing technologies, which mostly use band channel, to detect subsurface 

smouldering, the noise reduction is of utmost importance. These findings can help in 

selecting the optimum infrared sensors and filters and the suitable algorithms (such as 

the mathematical operation and the adjustment factors in the algorithm) for the detection 

of subsurface smouldering in remote sensing. 
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2.5. Conclusions 

This chapter investigated, for the first time, the suitability of infrareds to 

distinguish flaming from smouldering fire to assist the remote sensing of peatland 

wildfires. Laboratory-controlled experiments of remote sensing were conducted on 

smouldering of peat (with five different MCs) and flaming of pine needles (with five 

different fuel bed sizes), by using infrareds with eight different wavelengths in three 

spectral range categories (short-wave, mid-wave, and long-wave). Flaming and 

smouldering can be detected by infrared in the eight wavelengths that were considered, 

and both can be distinguished by using the spectral intensity comparison where the 

intensity of smouldering is one-seventh to half of flaming regardless of the MC of peat and 

the fuel bed size of pine needles. This lower intensity of smouldering fire applies for the 

three spectral range categories where the spectral intensity of smouldering in short-wave 

is 0.05 – 0.08 W.cm-2.sr-1.μm-1, mid-wave is 0.12 – 0.15 W.cm-2.sr-1.μm-1, and long-wave is 

0.01 – 0.02 W.cm-2.sr-1.μm-1. The highest intensity ratio between flaming and smouldering 

was found at mid wave range (with a ratio between 4.4 and 6.5). Based on these findings 

– that relatively high spectral intensity at mid wave range, and the fact that within this 

range the radiation from atmospheric noises is minimal – mid-wave infrareds are argued 

to be the optimum choice in general for the monitoring of peatland wildfires. This choice 

of wavelength is also recommended when both flaming and smouldering coexist due to 

the clear separation of spectral intensity between flaming, smouldering, and background 

radiation; thus, in the real application of remote sensing, flaming, smouldering, and 

background pixels are expected to have distinct colours or intensities, for instance, yellow, 

red, and green respectively. However, none of these wavelengths could detect subsurface 

smouldering. The detection of subsurface smouldering can potentially be performed by 

integrating the spectral intensity of a sufficiently wide range of wavelengths (emissive 

power). This integration amplified the weakened radiation of subsurface smouldering and 

successfully detect the fire, which complies with Burke et al. (2019) and improves the 

understanding on the subsurface smouldering detection. These findings provide the 

knowledge to select the optimum infrared wavelength and assess the utilisation of remote 

sensing data for the development of algorithms to detect and monitor smouldering and 

flaming wildfires in peatlands, thus, can help improve the remote sensing of peatland 

wildfires. 
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Chapter 3 – Cellular Automata Models of 

Wildfires 

Summary2 

Wildfires consist of numerous physical phenomena which lead to multi-facet 

problems for modelling. Due to the low computational cost of cellular automata, these 

methods offer solution for the complexity of wildfires modelling. This chapter reviews the 

existing scientific literature on cellular automata dedicated to wildfires study, which are 

used to model a number of applications of wildfires from laboratory to field scales. Since 

many concepts have been used to obtained the rules in the cellular automata, this review 

emphasizes the discussion on the concepts that are used and how these concepts are 

improved to tackle the emerging problems in wildfire modelling. Seven main concepts 

have been found: discrete physical event, wave propagation, heat accumulation, linguistic, 

diffusion limited aggregation, bond percolation, and site percolation. Cellular automata 

have successfully modelled several emerging phenomena in wildfires, for instance, the 

transition from surface fire to crown fire. However, many physical phenomena remains 

scientific challenges for cellular automata due to a lack of available data and incomplete 

fundamental understanding. Hybrid methods compensate these issues, by combining 

other models with cellular automata. However, maintaining low computational cost 

become an emerging issue. This review provides extensive and comprehensive 

understanding of cellular automata modelling for wildfires, and identifies gaps in the 

knowledge and opportunities going forward. 

3.1. Introduction to Wildfire Spread Models 

Wildfires are natural phenomena which can kill people, damage property and 

environment, and release smoke and carbon that harms human health and affects the 

atmosphere. However, they are important for many Earth ecosystems (Block et al., 2016). 

A single event of wildfire can kill dozens of people and impose billion dollars of economical 

loss (Gibbons et al., 2012; Maranghides et al., 2013). The occurrence of wildfires are 

forecast to increase all over the world due to population changes, land use changes, and 

                                                                 
2 This chapter is based on “Dwi M J Purnomo, Nieves Fernandez-Anez, Guillermo Rein, 2022. 

Cellular Automata Models of Wildfire Spread. Progress in Energy and Combustion Science, (to be 

submitted).” 
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climate change (Gibbons et al., 2012).  Although posing threats to humankind, fires are 

needed by forest ecosystem for rejuvenation and renewal processes (Block et al., 2016; 

Waldrop and Goodrick, 2018), and also to regulate atmospheric oxygen, carbon cycles, and 

climate (Watson, Lovelock and Margulis, 1978; Bowman, 2009). Therefore, it is important 

in forest management to understand the behaviour of wildfires and how to effectively 

mitigate them if needed. 

Wildfires are affected by many factors including environment, topography, and 

weather. Figure 3.1 shows a real event of wildfire where nonuniform environment 

conditions, topography, and wind effects are present. There are several fuel types in this 

incident: grass, shrubs, and trees, while the fire could also spread to the residences and 

feed on the flammable materials in the houses (e.g., furniture). The effects of wind 

dynamics and landscape topography are also present in this wildfire, for instance, the 

flames lean in an uphill direction showing the buoyancy effect on the flames, which could 

affect its spread behaviour. 

 

 

Figure 3.1. Photo of a wildfire in Anaheim Hills, California in 2017. This wildfire shows several 

parameters need to be considered in mitigating the fire: wind dynamics, topography, and fuel 

type. This photo was taken by Aarti Kalyani and permission was granted. 
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Mitigation of wildfires relies on the understanding of the flame spread that 

consumes the fuel bed. Once ignited, the flame initiates a succession of ignitions to the 

adjacent fuel which causes the flame to spread (Finney et al., 2015). This spread is affected 

by heat transfer: convection, radiation, and flame contact, as shown in Figure 3.2, in 

which the radiation and flame contact (caused by buoyant instabilities) are the prominent 

causes of the ignition of the adjacent fuel (Finney et al., 2015). The ignition of the adjacent 

fuel could also be encouraged by the presence of firebrand, flying embers (burning solid 

fuels) that can travel further and at different direction from the flaming front (see Figure 

3.2). The dynamics of flame spread highly depend on environmental conditions (e.g., 

topography, fuel characteristic) and weather (e.g., wind, ambient air temperature, 

humidity) conditions (Perry, 1998).  

Computational modelling predicts the behaviour of the fire spread over a period of 

time. There are two main techniques for wildfires simulation: vector-based and raster-

based (Perry, 1998; Sullivan, 2009c). The vector-based technique simulates fire spread 

using spatially continuous geometry, whereas the raster-based technique uses discrete 

cells generated from the gridding of the computational domain (Perry, 1998; Sullivan, 

2009c). The vector-based technique benefits from the accuracy of the fire shape that can 

be obtained, whereas raster-based technique benefits from lower required computational 

resources than vector-based (Peterson et al., 2009; Sullivan, 2009c). Modelling of wildfires 

offers great potential to understand the spread behaviour of fire for forest management, 

which can be used, for example, to assess the vulnerability of the forest based on 

vegetation or to strategize a safe prescribed fire. In terms of mitigation of undesirable 

wildfires, computational models can give insights for firefighting strategy, therefore, the 

mitigation can be performed more effectively. For instance, faster-than-real-time 

simulations of the wildfire spread can be performed to determine the optimum 

deployment of the firefighters and the evacuation route prior to actual mitigation. 
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Figure 3.2. Illustration of flame spread in fuel bed of fine particles. The mode for heat transfer 

are convection, radiation, and flame contact which is caused by buoyant instabilities that lead to 

fuel ignition (Finney et al., 2015). Modified from Rothermel (1972). 

There are three main approaches for wildfire modelling: physical, semiphysical, 

and empirical (Perry, 1998; Pastor et al., 2003). The physical approach uses fundamental 

laws of physics and chemistry, whereas empirical approach uses experimental results or 

statistics of historical fires (Perry, 1998; Pastor et al., 2003; Sullivan, 2009c). The 

semiphysical approach lies between empirical and physical approaches (Perry, 1998; 

Pastor et al., 2003). The physical approach can be reliably used across scales, however, 

this approach is computationally expensive and unable to model certain phenomena due 

to incomplete understanding of fundamental laws, for instance, the lack of knowledge on 

how the crown fire starts and behaves (Perry, 1998; Pastor et al., 2003). The empirical 

approach is very simple and computationally cheap although not reliable outside the 

conditions of the data used. The semiphysical approach tackles the problems in physical 

approach (e.g., incomplete understanding of fundamental laws) by adopting findings from 

experiments and historical fires (Perry, 1998; Pastor et al., 2003). However, compromising 

the fundamental laws with empirical approaches limits the details of the phenomena that 

can be captured by the models. 

There have been alternatives for wildfire modelling (see Chapter 1.5.1), and of the 

alternatives, CA have been extensively used for wildfire modelling because the rules in 

CA can be developed from many different models, in which the other models do not have 

this flexibility; thus, optimum rules can be selected for specific phenomena (Wolfram, 

1984). CA are discrete computational models (raster-based) that use simple rules and 

limit the execution of its rules only within small area around the point of interest 

(Wolfram, 1984).  These models were first introduced by von Neumann (1967) and since 

then has been systematically explored by Wolfram (1984, 2002). The main features of 
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cellular automata are discreteness, neighbourhood, and governing rules (Wolfram, 1984). 

Cellular automata use discrete states in addition to discrete time (finite time-steps) and 

space (grid of cells). The discrete states correspond to finite number of states e.g., 

unburned, burning, and burnt which is different from continuous states such as 

temperatures. For example, referring to Figure 3.1, there are only three states present: 

unburned, which are the fuels in front of the fire; burning, which is the flaming vegetation; 

and burnt out, which is the burnt fuel behind the flaming front. Cellular automata use 

rules to determine the simulation behaviour and these rules can be adapted from physical, 

semiphysical, empirical, and novel non-physics (e.g., fuzzy logic) approaches. These rules, 

however, only affect a specific number of cells, which are determined based on the 

neighbourhood. For instance, the flame in Figure 3.1 only affect the grass in front of it, 

and the effects of the flame on the relatively distant houses (such as radiation) are 

neglected. 

This chapter reviews the development of cellular automata modelling for wildfires 

and find the gaps in the literatures. The development from the first cellular automata 

used for wildfires in 1971 until present are discussed. 

3.2. Introduction to Cellular Automata in Wildfire Modelling 

Cellular automata have been used to model wildfires by using different 

computational domain (cell shape and neighbourhood), environmental conditions 

(weather, topography, and fuel characteristic), and rules. Table 3.1 lists, chronologically, 

the previous works on cellular automata modelling for wildfires from 1971 until present. 

Cellular automata have been used to model both single event, unique wildfires that 

happen at a certain time, and multiple event wildfires, which means numerous different 

wildfires over long periods of time (hundreds of years). Single event wildfire modelling 

aims to predict the detail behaviour of a corresponding wildfire, whereas multiple event 

wildfire modelling aims to forecast the inherent behaviour of wildfires, e.g., patchiness of 

forest landscape post wildfires, which could be observed in any wildfires regardless the 

location and environmental conditions.   

Figure 3.3 shows various cell shape and neighbourhood which have been used in 

previous works. Triangle, square, and hexagon are the common simple cell shapes used 

in cellular automata modelling for wildfire (see Figure 3.3a). Among these three 

geometries, triangle cell have computational cost benefit, however, square cell are the 

most commonly used cell shape due to its higher accuracy. Despite this high accuracy, 

square cells suffer from spurious symmetry, as the shape of the burnt scar in the 

simulation tends to become rectangular (D’Ambrosio et al., 2006). This problem can be 
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solved by using hexagonal cells, which are equidistant to all the neighbouring cells, 

however, the spread in hexagonal cells is limited to only six directions and this type of cell 

requires higher computational resources than square cells (D’Ambrosio et al., 2006). The 

other type of cells used are irregular and Voronoi cells (see Figure 3.3b; Braun and 

Sambridge, 1995; Zhao, 2011). Irregular cells aim to resemble the fuel configuration in 

the landscape perfectly (Zhao, 2011). Meanwhile, the Voronoi cells use Voronoi 

tessellation to create a set of polygons that makes the boundary lines between each pair 

of black dots in Figure 3.3b, separate the two dots with equal distance, where each polygon 

represents a Voronoi cell (Braun and Sambridge, 1995). The black dots in Figure 3.3b are 

the representative points of each cell. These dots are irregularly distributed, depending 

on the locations that have largest difference one another (e.g., a pair of the middle of a 

lake and the middle of a crop field; Braun and Sambridge, 1995). This tessellation aims 

to improve the classification of fuel type in the landscape (Braun and Sambridge, 1995). 

Both irregular and Voronoi cells benefit from a better fuel classification in the landscape 

but suffer from higher computational cost than cells with simple geometry. 

The most common neighbourhood for cells with simple shape are the surrounding 

cells in which the number of neighbours is order dependent (see Figure 3.3a). The higher 

order neighbourhoods benefit from higher accuracy, such as in model radiative heat 

transfer (Collin, Bernardin and Sero-Guillaume, 2011), but suffer from higher 

computational cost. The other neighbourhoods are elliptical, multi-range, extended, and 

minimal time (see Figure 3.3b). Elliptical neighbourhoods benefit from better elliptical 

shape obtained which is the expected shape of wildfire spread (Green, 1989). The elliptical 

neighbourhood shown in Figure 3.3b is the 1st neighbourhood, however, similar to Figure 

3.3a, elliptical can also have more neighbours with higher order neighbourhood. Multi-

range neighbourhood consist of short- and long-range neighbours (see Figure 3.3b). Short-

range neighbourhoods adopt other neighbourhoods such as 1st order and elliptical 

(Porterie et al., 2007). Meanwhile, long-range neighbourhoods are governed by a 

characteristic length Lc, where the cells at Lc are neighbours but the cells between Lc and 

the outermost part of the short range neighbours are not. This neighbourhood is the 

modification of high order neighbourhood (Lc
th order), which allows the modelling of 

firebrand without significant increase in computational cost (Porterie et al., 2007). The 

minimal time neighbourhood covers the possible neighbouring cells with the shortest time 

to ignite that are not always the 1st order neighbours, whereas the extended 

neighbourhood increases the number of possible directions of spread in hexagon cells (L. 

H. Encinas et al., 2007; Sousa, dos Reis and Pereira, 2012). While these neighbourhoods 
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increase the accuracy of the models and enable the modelling of more phenomena, they 

suffer from higher computational cost. 

 

Figure 3.3. (a) Illustration of the simple cell shape and neighbourhood pairs used in cellular 

automata modelling for wildfires in order from simple to complex shapes and neighbourhoods 

from left to right and top to bottom respectively. (b)  Illustration of the cell shapes and 

neighbourhood pairs which are more complex than in (a) used in cellular automata modelling for 

wildfires. These pairs are in order from simple to complex pairs, from left to right. The central 

cells (red) in (a) and (b) are the burning cells which are surrounded by neighbours (white). The 

multi-range neighbourhood in (b) consists of short-range neighbours such as the eight 

surrounding white cells and long-range neighbours which are located at Lc from the central cell. 

Cells located in between Lc and short-range neighbours are not considered as neighbours. 
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 The rules on cellular automata for wildfire modelling can be categorized as 

deterministic or stochastic and the number of studies on each category are similar (see 

Figure 3.4). The main difference between deterministic and stochastic category is the 

results from deterministic models do not have uncertainty, whereas the results from 

stochastic models do. Although using stochastic is less computationally demanding than 

using deterministic, the inherent uncertainty needs to be considered. However, in large 

scale modelling, this uncertainty is needed to cope with the system variability (e.g., 

inhomogeneous fuel MC), therefore, trade-offs between desirable and undesirable 

uncertainty are also of importance. Each category has many different concepts, in which 

the pioneering work of each concept is shown by the authors in bold fonts in Figure 3.4, 

and will be discussed thoroughly in chapter 3.3 and 3.4. To simplify Figure 3.4, cyan 

groups four or more works within ten years which adopt the same model (connected by 

the blue lines). 

Following the studies on wildfire modelling, cellular automata have also been used 

in several studies on building (within one building) and urban (across buildings) fires (see 

Figure 3.4). There are significantly fewer such studies than in wildfire modelling, however, 

the concepts that are used are similar. Therefore, cellular automata can be applied on 

various types of fire hazard modelling. There are four types of fire hazard that have used 

cellular automata models: flaming wildfires (white), smouldering wildfires (grey), urban 

fires (blue), and building fires (green). The authors at the intersection between two fire 

types represent the studies that consider both phenomena, for instance, Spyratos, 

Bourgeron and Ghil (2007) and Li, Cova and Dennison (2019) consider flaming wildfires 

and urban fires and Purnomo et al. (2021) considers flaming and smouldering wildfires. 

In this review, all the works in Table 3.1 and Figure 3.4 are grouped and addressed based 

on their similarities, thus, the discussion is based on the prominent features of the model 

(e.g., the consideration of crown fire that is addressed in several models), instead of the 

detail discussion of the model one by one.  
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Figure 3.4. Diagram illustrating the development of cellular automata for modelling 

flaming wildfires (white), smouldering wildfires (grey), urban fires (blue), and building fires 

(green). Red arrows represent the modification of a previous model in more recent models. Cyan 

shaded areas are groups of more than three studies within the ten years which adopt the same 

model (connected by the blue lines). Bold fonts represent the pioneering work on each concept. 

The symbol (*) represents the work of more than one author. An author that is placed between 

two fire regimes considers these two fire regimes. 
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Table 3.1. Chronological table of details of previous studies on cellular automata for wildfires. 

Authors Principle and Case 
Domain (cell size, 

neighbourhood, domain size) 

Environmental 

parameters  
Conclusions and notes 

Kourtz and O’Regan 

(1971) 

Site percolation‡ for single event 

wildfires 

Square cell, von Neumann, 50 

× 50 cells 
Fuel type 

Model shows expected results. Need 

environmental factors consideration 

Green (1983) 
Wave propagation† for single 

event wildfires 

Square cell, vary,  max 2401 × 

2401 cells 
Wind 

Model shows different burnt scar of 

wildfires. Needs detail heat dynamic  

Albinet, Searby and 

Stauffer (1986) 

Site percolation‡ for multiple 

event wildfires 

Square/triangle cell, 1-5th 

order, max 300 × 300 cells 
Wind, slope, fuel type 

Model shows the fractal fire front in 

many different domain.  

Green (1989) 
Site percolation‡ for multiple 

event wildfires 

Square cell, elliptical, 50 × 50 

cells 

Wind, slope, fuel type, 

rain, soil effect 

Wildfire is still needed to eliminate 

less competitive vegetation  

Bak, Chen and Tang 

(1990) 

Site percolation‡ for multiple 

event wildfires 

Square cell, von Neumann, 

256 × 256 cells 
n/a 

Model demonstrates criticality in a 

“turbulent” non-equilibrium system 

Chen, Bak and Jensen 

(1990) 

Site percolation‡ for multiple 

event wildfires 

Square cell, von Neumann, 

400 × 400 cells 
n/a 

Criticality of wildfires can be 

achieved with deterministic model  

Baker, Egbert and 

Frazier (1991) 

Diffusion limited aggregation‡ 

for multiple event wildfires 

Square cell, 1st order, 200 × 

200 cells 

Slope, fuel type and 

age, weather 

Model shows effect of global 

warming on wildfires over centuries 

Drossel and Schwabl 

(1992) 

Site percolation‡ for multiple 

event wildfires 

Square cell, von Neumann, 

n/a 
n/a 

Model is critical in large range of 

parameter with lightning ignition 

Drossel and Schwabl 

(1993) 

Site & bond percolation‡ for 

multiple event wildfires 

Square cell, von Neumann, 

n/a 
n/a 

Immune trees cause wildfires 

criticality become highly conditional 

Grassberger (1993) 
Site percolation‡ for multiple 

event wildfires 

Square cell, von Neumann, 

8192 × 8192 cells 
n/a 

Wildfires are still critical on large 

lattices 

Clar, Drossel and 

Schwabl (1994) 

Site percolation‡ for multiple 

event wildfires 

Square cell, von Neumann, 

16384 × 16384 cells 
n/a 

Critical exponents of criticality in 1 

to 8 dimension are derived 

† means deterministic, ‡ means stochastic, and ‘n/a’ means no consideration of environmental parameters 

 

 

 

 



79 

 

Table 3.1. (Continued) 

Authors Principle and Case 
Domain (cell size, neighbourhood, 

domain size) 

Environmental 

parameters 
Conclusions and notes 

Clarke, Brass and Riggan 

(1994) 

Diffusion limited aggregation‡ 

for single event wildfires 
Square cell, 1st order, (3335 ha) 

Wind, slope, fuel type, 

weather 

Model shows ability for risk 

assessment 

Karafyllidis and 

Thanailakis (1997) 

Heat accumulation† for single 

event wildfires 

Square cell, 1st order, max 100 × 

100 cells 

Wind, slope, fuel 

heterogeneity 

Model has expected results. 

Need comparison with real fires 

Malamud, Morein and 

Turcotte (1998) 

Site percolation‡ for multiple 

event wildfires 
Square cell, von Neumann, n/a n/a 

Similar criticality between 

simulations and real fires 

Karafyllidis (1999) 
Heat accumulation† for single 

event wildfires 

Square cell, 1st order, 260 × 260 

cells 

Wind, slope, fuel 

heterogeneity 

Model significantly improves 

computational efficiency. 

Mraz, Zimic and Virant 

(1999) 

Fuzzy logic† for single event 

wildfires 
Square cell, 1st order, n/a 

Wind, fuel 

flammability scores 

Model enables the use of 

descriptive uncertain knowledge 

Malamud and Turcotte 

(1999) 

Site percolation‡ for multiple 

event wildfires 
Square cell, von Neumann, n/a n/a 

Criticality is found in 

earthquakes 

Hargrove et al. (2000) 
Bond percolation‡ for single 

event wildfires and fire risk 

Square cell, 1st order, 500 × 500 

cells (62500 ha) 

Wind, fuel 

characteristic 

High degree of variability found 

in wildfires 

Pastor-Satorras and 

Vespignani (2000) 

Site percolation‡ for multiple 

event wildfires 

Square cell, von Neumann, 19000 

× 19000 cells 
n/a 

Extended moment analysis 

improves model criticality 

Schenk et al. (2000) 
Site percolation‡ for multiple 

event wildfires 

Square cell, von Neumann, max 

2000 × 2000 cells 
n/a 

Finite-size effect significantly 

affects wildfire criticality 

Malamud and Turcotte 

(2000) 

Site percolation‡ for multiple 

event wildfires 
Square cell, von Neumann, n/a n/a Criticality is found in landslides 

Li and Magill (2001) 
Bond percolation‡ for single 

event wildfires 

Square cell, 1st order, max 512 × 

512 cells 

Wind, slope, fuel 

heterogeneity 

Bush density has critical value to 

sustain wildfires 

† means deterministic, ‡ means stochastic, and ‘n/a’ means no consideration of environmental parameters 
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Table 3.1. (Continued) 

Authors Principle and Case 
Domain (cell size, neighbourhood, 

domain size) 

Environmental 

parameters 
Conclusions and notes 

Berjak and Hearne 

(2002) 

Heat accumulation† for single 

event wildfires 

Square cell, 1st order, 50 × 50 

cells (25 ha) 

Wind, slope, fuel type, 

weather 

Model satisfactorily simulated 

three independent wildfires 

Muzy et al. (2002) 
Discrete physical events† for 

single event wildfires 

Square cell, von Neumann,  (1 

m2) 
n/a 

The efficiency of a physical model 

is significantly improved with CA  

Schenk, Drossel and 

Schwabl (2002) 

Site percolation‡ for multiple 

event wildfires 

Square cell, von Neumann, max 

4096 × 4096 cells 
n/a 

The critical exponents change 

with the model length scale 

Grassberger (2002) 
Site percolation‡ for multiple 

event wildfires 

Square cell, von Neumann, max 

65536 × 65536 cells 
n/a 

Tree density in criticality is >50% 

higher than state of the art model 

Pruessner and Jensen 

(2002) 

Site percolation‡ for multiple 

event wildfires 

Square cell, von Neumann, max 

32000 × 32000 cells 
n/a 

Criticality in previous models 

depends on characteristic scales 

Bendicenti et al. (2002) 
Wave propagation† for single 

event wildfires 

Square cell, 1st order, 168 × 131 

cells (880 ha) 

Wind, slope, fuel type, 

weather 

Model agree with observation. 

Square cells cause spurious shape 

Li and Magill (2003) 
Bond percolation‡ for single 

event wildfires 

Square cell, von Neumann, max 

256 × 256 cells 

Wind, slope, fuel type, 

weather 

Critical tree density ranges from 

50% to 70% based on environment   

Graham and Matthai 

(2003) 

Site percolation‡ for multiple 

event wildfires 

Square cell, von Neumann, max 

128 × 128 cells 
n/a 

Small-world network model can 

obtain scale-free criticality 

Achtemeier (2003) 
Bond percolation‡ for single 

event wildfires 
Square cell, von Neumann, n/a 

Wind, slope, fuel type, 

weather 

Agent-based CA is a baseline 

prior to more complex models  

Muzy et al. (2003) 
Discrete physical events† for 

single event wildfires 

Square cell, von Neumann,  (1 

m2) 
n/a 

Active cell rule speeds up the 

DEVs-CA simulations 

Dunn and Milne (2004) 
Interacting automata† for single 

event wildfires 
Square cell, 2nd order, n/a Wind, slope, fuel type 

Explicit communication rules 

enable the most efficient CA  

† means deterministic, ‡ means stochastic, and ‘n/a’ means no consideration of environmental parameters 
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Table 3.1. (Continued) 

Authors Principle and Case 
Domain (cell size, neighbourhood, 

domain size) 

Environmental 

parameters 
Conclusions and notes 

Karafyllidis (2004) 
Heat accumulation† for single 

event wildfires 

Square cell, 1st order, 260 × 260 

cells 

Wind, slope, fuel 

heterogeneity 

Specific purpose computer 

speeds up simulation 105 times 

Yongzhong et al. (2004) 
Heat accumulation† for single 

event wildfires 

Hexagonal cell, 1st order, 60 × 60 

cells (36 ha) 

Wind, slope, fuel 

characteristic 

Hexagonal cells reduce the 

spurious shape of burnt scar 

Trunfio (2004) 
Wave propagation† for single 

event wildfires 

Hexagonal cell, 2nd order, 60 × 60 

cells (36 ha) 

Wind, slope, fuel type, 

weather 

Model can be used for wildfire 

prevention and risk assessment  

Sullivan and Knight 

(2004) 

Bond percolation‡ for single 

event wildfires 

Square cell, 1st order, max 160 × 

160 cells (2.56 ha) 
Wind, fuel type 

Fire-wind rules improve the 

agreement with experiments 

Favier (2004) 
Bond percolation‡ for single 

event wildfires 

Square cell, von Neumann, 400 × 

400 cells 
n/a 

Model catches dynamic and 

static properties of wildfires  

Yongzhong et al. (2005) 
Heat accumulation† for single 

event wildfires 
Square cell, 1st order, (45318 ha) Wind, slope, fuel type 

Wind reduction factor improves 

the accuracy of the model 

Ito (2005) 
Bond percolation‡ for multiple 

event wildfires 

Square cell, 1st order, 200 × 200 

cells (40000 ha) 

Wind, fuel type, 

weather 

Carbon-fire model estimated 

carbon budget in Siberia 

Muzy et al. (2005a) 
Discrete physical events† for 

single event wildfires 

Square cell, von Neumann,  (1 

m2) 
n/a 

Object-oriented framework 

improves the usability of CA  

Muzy et al. (2005b) 
Discrete physical events† for 

single event wildfires 

Square cell, von Neumann,  (1 

m2) 
n/a 

Trade-off  between efficiency 

and accuracy is important 

Muzy et al. (2006) 
Discrete physical events† for 

single event wildfires 

Square cell, von Neumann,  (1 

m2) 
n/a 

Basic CA limitations are 

reduced in the improved model 

Carvalho, Carola and 

Tomé (2006) 

Fuzzy logic† for single event 

wildfires 
Voronoi cell, 1st order (258 ha) 

Wind, slope, fuel type, 

weather 

Voronoi tessellation improves 

the accuracy of fuzzy based CA 

† means deterministic, ‡ means stochastic, and ‘n/a’ means no consideration of environmental parameters 
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Table 3.1. (Continued) 

Authors Principle and Case 
Domain (cell size, 

neighbourhood, domain size) 

Environmental 

parameters 
Conclusions and notes 

D’Ambrosio et al. (2006) 
Wave propagation† for single 

event wildfires 

Hexagonal cell, 2nd order, 170 × 

130 cells (884 ha) 

Wind, slope, fuel type, 

weather, suppression 

Hexagonal cells and suppression 

rules improve model accuracy 

A. H. Encinas et al. 

(2007) 

Heat accumulation† for single 

event wildfires 

Square cell, 1st order, 1024 × 

1024 cells 

Wind, slope, fuel 

heterogeneity 

New diagonal spread rules 

improve model accuracy 

L. H. Encinas et al. 

(2007) 

Heat accumulation† for single 

event wildfires 

Hexagonal cell, 1st order 

extended, 100 × 100 cells 

Wind, slope, fuel 

heterogeneity 

Improved rules for hexagonal 

CA improve model accuracy 

Porterie et al. (2007) 
Heat accumulation† for single 

event wildfires 

Square cell, multi range, 300 × 

300 cells (1 m2) 

Wind, slope, fuel 

heterogeneity 

Long-range neighbour enables 

deterministic firebrand model  

Spyratos, Bourgeron and 

Ghil (2007) 

Bond percolation‡ for single 

event WUI fires 

Square cell, 1st order, 48 × 48 

cells (576 ha) 
Fuel type 

WUI fire is affected by density 

and flammability of buildings  

Yassemi, Dragićević and 

Schmidt (2008) 

Heat accumulation† for single 

event wildfires 

Square cell, 1st order, (24000 

ha) 

Wind, slope, fuel type, 

weather 

The use of GIS improve the 

accuracy and usability of model 

Johnston, Kelso and 

Milne (2008) 

Wave propagation† for single 

event wildfires 
Voronoi cell, 1st order (30 ha) 

Wind, slope, fuel type, 

weather 

Shape distortion of CA is solved 

with Voronoi tessellation 

Alexandridis et al. (2008) 
Bond percolation‡ for single 

event wildfires 

Square cell, 1st order, (600 ha 

burnt area) 

Wind, slope, spotting, 

fuel type & density 

Simulation with simple rules 

agree with a real wildfire 

Peterson et al. (2009) 
Wave propagation† for 

single/multiple wildfires 

Square cell, 1st order, (max 

65871 ha) 

Wind, slope, fuel type, 

weather 

Model can simulate single and 

multiple fire events  

Innocenti et al. (2009) 
Discrete physical events† for 

single event wildfires 

Square cell, von Neumann,  (1 

m2) 
n/a 

Parallelization of algorithm 

speeds up the simulation 

Couce and Knorr (2010) 
Bond percolation‡ for single 

event wildfires 

Square cell, 1st order, (2.88 × 

10^8 ha) 

Wind, slope, fuel type, 

weather 

CA model is calibrated against 

750,000 wildfires in Africa 

† means deterministic, ‡ means stochastic, and ‘n/a’ means no consideration of environmental parameters. WUI and GIS stand for Wildland Urban 

Interface and Geographic Information System respectively 
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Table 3.1. (Continued) 

Authors Principle and Case 
Domain (cell size, neighbourhood, 

domain size) 

Environmental 

parameters 
Conclusions and notes 

Belcher et al. (2010) 
Bond percolation‡ for single 

event wildfires 

Square cell, 1st order, 50 × 50 

cells (100cm2) 
Oxygen concentration 

Oxygen variation determined 

fire activity in Earth’s history 

Quartieri et al. (2010) 
Bond percolation‡ for single 

event wildfires 
Square cell, 1st order, n/a Wind, slope, fuel type 

CA model agrees with other 

models and experimental data 

Adou et al. (2010) 
Heat accumulation† for single 

event wildfires 
Square cell, elliptical, (2333 ha) Wind, slope, fuel type 

Detailed radiation and flame 

size and shape are introduced 

Trunfio et al. (2011) 
Wave propagation† for single 

event wildfires 

Square cell, 1st/2nd, 382 × 266 

cells (4064 ha) 
Wind, slope, fuel type 

Model agrees with FARSITE 

but runs faster 

Collin, Bernardin and 

Sero-Guillaume (2011) 

Discrete physical events† for 

single event wildfires 

Square cell, high order, 201 × 201 

cells (4 ha) 
Fuel type, humidity 

Advanced physics of wildfires 

are introduced to the CA model 

Alexandridis et al. (2011) 
Bond percolation‡ for single 

event wildfires 
Square cell, 1st order, (30000 ha) 

Wind, slope, fuel type, 

weather, suppression 

Airborne firefighting strategy is 

optimised using improved CA 

Almeida and Macau 

(2011) 

Bond percolation‡ for single 

event wildfires 

Square cell, 1st order, 201 × 201 

cells 
Fuel heterogeneity 

Burning risk of a landscape is 

quantified using Monte Carlo 

Pak and Hayakawa 

(2011) 

Bond percolation‡ for single 

event wildfires 

Square cell, von Neumann, 100 × 

100 cells 
n/a 

Wildfires size are finite when 

using probability below critical 

Sousa, dos Reis and 

Pereira (2012) 

Wave propagation† for single 

event wildfires 

Square cell, minimal time, 2048 

× 2048 cells 

Wind, slope, fuel type, 

weather 

Using GPU is 200 times faster 

than using CPU 

Avolio et al. (2012) 
Wave propagation† for single 

event wildfires 

Square cell, 2nd order, 450 × 450 

cells (32400 ha) 

Wind, slope, fuel type, 

weather 

Local randomization rule enable 

deterministic CA to create BPM  

Di Gregorio et al. (2013) 
Wave propagation† for BPM of 

wildfires 

Square cell, 2nd order, 461 × 445 

cells (32823 ha) 

Wind, slope, fuel type, 

weather 

GPU showed potential to speed 

up the creation of BPM 

† means deterministic, ‡ means stochastic, and ‘n/a’ means no consideration of environmental parameters. BPM, GPU, and CPU stand for Burning 

Probability Map, Graphic Processing Unit, and Central Processing Unit 
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Table 3.1. (Continued) 

Authors Principle and Case 
Domain (cell size, neighbourhood, 

domain size) 

Environmental 

parameters 
Conclusions and notes 

Progias and Sirakoulis 

(2013) 

Wave propagation† for single 

event wildfires 

Hexagonal cell, 1st order 

extended, 30 × 30 cells 
Wind, slope 

Specific purpose computer 

speeds up simulation 106 times 

Sun et al. (2013) 
Heat accumulation† for single 

event wildfires 
Square cell, 1st order, (45 ha) 

Wind, slope, fuel type, 

weather 

Modified rules improve accuracy 

of CA for mountain fires 

Bogdos and Manolakos 

(2013) 

Wave propagation† for BPM of 

wildfires 

Square cell, 1st order, 450 × 450 

cells (4556 ha) 

Wind, slope, fuel type, 

weather 

BPM is created based on 

satellite and web-based CA  

Gazmeh et al. (2013) 
Bond percolation‡ for single 

event wildfires 
Square cell, 1st order, (471 ha) 

Wind, slope, fuel type, 

weather 

The use of optimisation 

algorithm improves CA accuracy 

Achtemeier (2013) 
Bond percolation‡ for single 

event wildfires 

Square cell, von Neumann, (63 

ha) 

Wind, slope, fuel type, 

weather 

Agent-based CA agrees with a 

field-scale experiment 

Russo, Vakalis and 

Siettos (2013) 

Bond percolation‡ for single 

event wildfires 
Square cell, 1st order, 13240 ha) 

Wind, slope, fuel type, 

weather 

Model agrees with real fire and 

can run real time simulations 

Russo et al. (2014) 
Bond percolation‡ for single 

event wildfires 

Square cell, 1st order, 1400 × 

1000 cells (3500 ha) 

Wind, slope, fuel type, 

weather 

Ignition points significantly 

affect burnt area. 

Ghisu et al. (2015) 
Wave propagation† for single 

event wildfires 

Square cell, 1st order, 1200 × 

1200 cells  (14400 ha) 
Wind, slope 

Improved CA agrees with 

FARSITE but runs faster 

Xuehua et al. (2016) 
Heat accumulation† for single 

event wildfires 
Square cell, 1st order, n/a 

Wind, slope, fuel type, 

weather 

Modified terrain factors improve 

accuracy of CA for mountain fire 

Ntinas et al. (2017) 
Fuzzy logic† for single event 

wildfires 

Square cell, 1st order,  230 × 159 

cells  (1462 ha) 
Wind, slope 

Specific purpose computer 

speeds up simulation 104 times 

Zheng et al. (2017) 
Bond percolation‡ for single 

event wildfires 

Square cell, 1st order, (max 10000 

ha burnt area) 

Wind, slope, fuel type, 

weather, rain 

The use of machine learning 

algorithm improves CA accuracy 

† means deterministic, ‡ means stochastic, and ‘n/a’ means no consideration of environmental parameters. BPM stands for Burning Probability Map 
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Table 3.1. (Continued) 

Authors Principle and Case 
Domain (cell size, neighbourhood, 

domain size) 

Environmental 

parameters 
Conclusions and notes 

Giannino et al. (2017) 
Bond percolation‡ for single 

event wildfires 

Square cell, 1st order, (max 123 

ha) 
Wind, slope, fuel type 

Model accurately simulated 2 

real wildfires in Italy 

Fernandez-Anez, 

Christensen and Rein 

(2017) 

Bond percolation‡ for single 

event wildfires 

Square cell, von Neumann, 100 × 

100 cells 
n/a 

Multi-layer rules introduce 

more physics to CA model for 

smouldering fires  

Rui et al. (2018) 
Heat accumulation† for single 

event wildfires 

Square cell, 1st order,  230 × 159 

cells  (1462 ha) 

Wind, slope, fuel type, 

weather 

Fuel classification and 

correction factor improve model 

Fernandez-Anez et al. 

(2019) 

Bond percolation‡ for single 

event wildfires 

Square cell, von Neumann, 100 × 

100 cells 
n/a 

Simulated complex fingering 

phenomenon in smouldering 

Freire and Dacamara 

(2019) 

Bond percolation‡ for single 

event wildfires 
Square cell, 1st order, (90000 ha) Wind, slope, fuel type 

Model satisfactorily simulated a 

severe Portugal fire 

Purnomo et al. (2021) 
Bond percolation‡ for single 

event wildfires 
Square cell, 1st order, (573 ha) 

Wind, fuel type, 

flaming & smouldering 

Simulated smouldering initiated 

by flaming in Borneo peatland 

† means deterministic, ‡ means stochastic, and ‘n/a’ means no consideration of environmental parameters 
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Table 3.2. The previous works on cellular automata for urban and building fire modelling. 

Authors Principle and Case 
Domain (cell size, 

neighbourhood, domain size) 

Environmental 

parameters 
Conclusions and notes 

Takizawa et al. (2000) 
Bond percolation‡ for single 

event urban fires 

Square cell, von Neumann, 50 × 

50 cells (6.25 ha) 
Fuel type 

Model accurately simulated 

urban fire post-earthquake 

Cousins, Heron and 

Mazzoni (2002) 

Bond percolation‡ for single 

event urban fires 
Square cell, 1st order, (8 ha) Wind, spotting, fuel type 

Wind and ignition location define 

the post-earthquake fire severity 

Ohgai et al. (2004) 
Bond percolation‡ for single 

event urban fires 

Square cell, elliptical, 152 × 76 

cells (10.4 ha) 
Wind, fuel type 

Model agrees with real fires and 

firefighting strategy is optimised 

Gohnai et al. (2005) 
Bond percolation‡ for single 

event urban fires 
Square cell, elliptical, n/a Wind, fuel type 

Web-based mitigation planning 

support of urban fire is developed 

Curiac et al. (2010) 
Bond percolation‡ for single 

event building fires 
Square cell, 1st order, n/a Air flows, fuel type 

Interconnected CA for fire/smoke 

in building is developed 

Zhao (2011) 
Bond percolation‡ for single 

event urban fires 
Irregular cell, elliptical, n/a Wind, fuel type 

Model agrees with real fires, life 

and economic loss are estimated 

Wang and Zhou 

(2014) 

Bond percolation‡ for single 

event urban fires 
Square cell, 1st order, n/a Wind, fuel type 

Model agrees with real fires and 

evacuation strategy is optimised 

Nahom (2016) 
Heat accumulation† for 

single event building fires 

Square cell, 1st order, 32 × 26 

cells (3276 m2) 
Air flows 

Model accurately estimates 

arrival time of fire and smoke 

Tambunan, Salamah 

and Asriana (2017) 

Bond percolation‡ for single 

event urban fires 
Square cell, 1st order, (25 ha) Wind, fuel type 

Building material and open 

space are key factors   

Li, Cova and 

Dennison (2019) 

Heat accumulation† for 

single event urban fires 
Square cell, 1st order, (18 km2) Wind, fuel type 

Evacuation during WUI fire is 

optimised 

† means deterministic, ‡ means stochastic, and ‘n/a’ means no consideration of environmental parameters 
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3.3. Deterministic Cellular Automata for Wildfires 

There are four applied concepts in deterministic cellular automata for wildfire 

modelling: discrete physical event (Muzy et al., 2002), wave propagation (Green, 1983), 

heat accumulation (Karafyllidis and Thanailakis, 1997), and linguistic (Mraz, Zimic and 

Virant, 1999; Dunn and Milne, 2004). These concepts are in order of decreasing physical 

and chemical compliance, which is inversely proportional to the computational efficiency. 

The first three concepts have been used more extensively than linguistic concept. Here, 

the fundamental rules and the development of these concepts are discussed. 

3.3.1. Discrete physical events 

Discrete physical event is a cellular automata model closest to physical model; 

however, the states involved are discretised and the computation is only performed on the 

neighbourhood of the burning cells (see Figure 3.5a). In this concept, physics and 

chemistry phenomena such as chemical reaction and heat transfer are considered (Collin, 

Bernardin and Sero-Guillaume, 2011). Despite considering the same phenomena as in the 

physical model, the number of phenomena considered in cells with different states is 

different. For example, discrete physical event CA consider reaction rate only in oxidizing 

cells, whereas in physical model the reaction rate (e.g., using Arrhenius law) is considered 

regardless the state of the cells. 

Discrete physical event CA (DEVs-CA) uses 2-D reaction diffusion expression 

comprising conduction, convection, radiation and heat generation (Muzy et al., 2002; 

Collin, Bernardin and Sero-Guillaume, 2011). The states in the model are discretized 

based on thresholds, e.g., evaporation and ignition temperatures (Collin, Bernardin and 

Sero-Guillaume, 2011). Once this threshold is reached, the cell’s state changes, for 

instance, from unburned to burning. The physical variables and thresholds are translated 

to non-dimensional parameters and thresholds respectively, where the change of state 

corresponds to the value of the non-dimensional parameters that exceed non-dimensional 

thresholds. The values of these parameters change based on the average of the initial and 

final values. For example, within one state, the change in the non-dimensional 

parameters are only based on the initial and final temperature which are averaged over 

the time-steps, while the other physical variables such as density and heat generation are 

kept constant (in physical models the density and heat generation continuously change 

based on temperature and time). DEVs-CA have been validated against lab-scale 

experiments (Muzy et al., 2002) and compared to other deterministic concepts, and Muzy 

et al. (2005b) reported that DEVs-CA performed more accurately and efficiently than 

other deterministic concepts. 
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The claim of higher accuracy is reasonable since DEVs-CA consider number of 

physical phenomena, whereas the claim of higher efficiency, despite involving 

sophisticated mathematical expressions of those in physical model, was achieved by 

implementing active cells principle (Muzy et al., 2003). Active cell principle limits the 

number of cells undergoing computation based on the significance of the change (Muzy et 

al., 2003). The cells considered in this category are the cells which have significant change 

on its non-dimensional parameters such as those changing states or those encounter other 

cells with different states (Muzy et al., 2003). For instance, in Figure 3.5a, the 

computations are only executed on the red and orange cells. Therefore, the number of 

computations executed is significantly fewer when using the active cells principle. 

However, the claim of higher computational efficiency than other CA models is not 

strongly justified because there is no study that systematically compares CA models.  

The traditional DEVs-CA models suffer from basic CA limitations, e.g., non-

flexible rules and neighbourhood, static structure, and inability to accommodate external 

events (Muzy et al., 2005a, 2006). Muzy et al. (2005a, 2006) introduced an object-oriented 

framework which successfully enables the model to avoid the basic limitations of CA. In 

conventional frameworks (procedural and functional programming), the attributes (e.g., 

vegetation type and density), rules, and neighbourhood of a cell are typically uniform. The 

non-uniformity of the cell attributes can be implemented by using additional matrix to 

store the information on the non-uniform attributes. For instance, if there are two non-

uniform attributes, such as vegetation type and density, of the matrix of cells in the 

domain, three matrices of data are required, consisting matrix that store the cell state, 

cell’s vegetation type, and cell’s vegetation density. Therefore, although non-uniformity 

can be implemented in conventional frameworks, the additional computational cost 

needed is significant. Moreover, if the rules and neighbourhoods are non-uniform, then 

the additional matrix method is insufficient to implement non-uniformity and higher 

additional computational cost is required, causing an inefficient cellular automata model. 

In object oriented programming, each cell in the matrix of the domain is treated as an 

object (Muzy et al., 2005a). This object contains information of attributes, rules, and 

neighbourhood. The domain is constructed from a matrix of objects which can have 

different attributes, rules, and neighbourhood. Therefore, the non-uniformity of attributes, 

rules, and neighbourhood can be implemented in the model without significant increase 

in computational cost.   
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Figure 3.5. (a) Illustration of discrete physical event CA. The red (burning) and the orange 

(neighbourhood) cells are the active cells which undergo computation, whereas the white cells are 

the cells outside the neighbourhood where no computations are performed. (b) Illustration of 

wave propagation CA. The red cell is the ignited centre cell and the blue dashed ellipse is the 

velocity vector (Bendicenti et al., 2002). R(θ) is the spread rate along angle θ. 

In earlier models of DEVs-CA (Muzy et al., 2002, 2003, 2005a, 2005b, 2006; 

Innocenti et al., 2009), ignition temperature was the only threshold, thus, the states are 

discretized between unburned and burning cells. Other phenomena have been introduced 

in the more recent models such as evaporation, radiative heat transfer, and pyrolysis 

degradation, by considering additional temperature thresholds to the model, i.e., 

evaporation and pyrolysis temperature thresholds (Collin, Bernardin and Sero-Guillaume, 

2011). Consequently, high order neighbourhood was used to model the radiative heat 

transfer, since it is not limited to immediate neighbours of burning cell (Collin, Bernardin 

and Sero-Guillaume, 2011). Despite the increase of phenomena covered, which indirectly 

improve the accuracy, the computational efficiency of this improved model is to be 

concerned, especially when the model is implemented on a field-scale wildfire. 

3.3.2. Wave propagation 

A wave propagation concept executes change of states on cells which are bounded 

by a certain geometry, such as circle and ellipse (see Figure 3.5b). The shape and size of 

the geometry are determined based on maximum spread rate and spread rate in every 

direction from the centre cell which are calculated, for instance, by using the semiphysical 

approach of Rothermel (1972) and the Huygens principle respectively (Trunfio et al., 2011). 

The spread rate in every direction defines the time-step required by fire to spread from 
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burning cell to its neighbours (see Figure 3.5b). The spread rate depends on the fuel 

characteristics (e.g., vegetation types, MC, density) and environmental conditions (e.g., 

topography and wind). Therefore, the spread rate distribution is anisotropic which then 

is visualised as ellipse by using the Huygens principle. The integration of the semiphysical 

spread rate formulation and the Huygens principle is argued to be the simplification of 

the reaction-diffusion model which is used in DEVs-CA model (Chapter 3.3.1; Séro-

Guillaume et al., 2008). 

The wave propagation concept has been extensively used to simulate field-scale 

wildfires. Green first introduced this concept on CA for wildfire modelling and explored 

the shape of the fire front produced by the model with different mathematical expressions 

of time-step needed to spread the fire to neighbours (Green, 1983). He reported that the 

ellipse-shaped fire front produced by the “toy” model resembled historical wildfires. A 

more realistic approach was introduced to this model by implementing a semiphysical 

approach, which mostly used the mathematical model of Rothermel (1972), to determine 

the maximum spread rate of the fire (Bendicenti et al., 2002). This improved model 

considered wind, slope, weather (e.g., ambient temperature and humidity), and fuel 

properties, and successfully simulated many real wildfires (Bendicenti et al., 2002; 

D’Ambrosio et al., 2006; Johnston, Kelso and Milne, 2008; Peterson et al., 2009; Avolio et 

al., 2012; Bogdos and Manolakos, 2013). D’Ambrosio et al. (2006) further improved the 

model by considering crown fire phenomena, which have different behaviours to surface 

fire and are very difficult to suppress (Pastor et al., 2003).  They used a specific fire 

intensity threshold which allows a transition from surface to crown fire following the work 

of van Wagner (1977, 1993). Once this threshold is exceeded, the spread rate to every 

direction are modified adopting the mathematical expressions in van Wagner (1977, 1993). 

Their model also implemented the effect of fire intervention, e.g., firefighting attempts 

(D’Ambrosio et al., 2006). 

The evolution of fire front at every time-step in wave propagation CA can be seen 

as a growing ellipse (which is referred to as global ellipse). The rules for this fire front 

evolution have been improved in an attempt to increase the accuracy of the model. The 

first improvement was by the creation of local ellipses on new ignited cells (see Figure 

3.6a), which depends on the intersection between the global ellipse and the edge of the 

cell (Trunfio et al., 2011; Di Gregorio et al., 2013; Ghisu et al., 2015). Once the global 

ellipse intersects the cell’s edge and ignite the corresponding cell, this ignited cell creates 

a new local ellipse that grows over time-steps and affects the global ellipse shape (Trunfio 
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et al., 2011). This modification improved the accuracy of the model significantly with 

slight increase in computational time (Trunfio et al., 2011). 

 

Figure 3.6. Illustrations of (a) the creation of local ellipse and (b) local randomization. The red 

cell is a burning cell, the white cells are unburned cells, and the patterned cells are the unburned 

cells that transition to burning cells. In (b), the centre of weight of a cell (black dot) in locally 

randomized domain slightly deviates from the centre of the cell. 

The second improvement was made by introducing correction factors to the 

mathematical expressions in the model (Peterson et al., 2009; Ghisu et al., 2015). 

Although both Peterson et al. (2009) and Ghisu et al. (2015) implemented correction 

factors in the model, their correction factors were not used for the same mathematical 

expression. Peterson et al. (2009) applied the correction factor for the length to width ratio 

of the ellipse, which depends on wind, whereas Ghisu et al. (2015) applied the factor for 

the wildfire spread rate. These correction factors improved the accuracy of the model. The 

third improvement was by using adaptive time-step, i.e., time-step are not constant 

during simulation (Peterson et al., 2009; Sousa, dos Reis and Pereira, 2012; Ghisu et al., 

2015). This adaptive time-step was implemented mainly to avoid the spread beyond the 

neighbourhood in one time-step (Peterson et al., 2009; Ghisu et al., 2015). On the other 

hand, Sousa, dos Reis and Pereira (2012) determined the time-step based on the minimum 

time needed to ignite unburned cell. To accommodate this rule, Sousa, dos Reis and 

Pereira (2012) employed minimal time neighbourhood (see Table 3.1) in which a 

neighbourhood that covers several cells in the second layer of the surrounding cells allow 

the fire to jump over the first layer of surrounding cells (see Figure 3.3b). This jump rule 

is executed if the time to ignition in a cell within the second layer is shorter than within 

the first layer. The last significant improvement was by introducing local randomization 

(see Table 3.1; Avolio et al., 2012; Di Gregorio et al., 2013). This local randomization 
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changes the centre weight of each cell in the grid to be slightly randomly deviate from the 

centre of cell (see Figure 3.6b). Therefore, the unburned cells transition to burning cells 

only after the ellipse reach the centre of weight of the cells, which are not at the centre of 

the cells (Avolio et al., 2012). This additional rule provides preliminary consideration of 

heterogeneity within one cell in the landscape.  

Square cell is the typical cell used for wave propagation CA, however, this cell 

suffer from an erroneous shape (polygon shape instead of ellipse) due to the square 

symmetry (Progias and Sirakoulis, 2013), which consequently lowers the model accuracy. 

Hexagonal cells have been proposed to address this problem (see Table 3.1; Trunfio, 2004; 

D’Ambrosio et al., 2006; Progias and Sirakoulis, 2013). By using hexagonal cells, the 

burning cell has equidistant to its neighbours, unlike those of square cells which has 

diagonal neighbours, therefore, the erroneous shape of the square cells can be avoided. In 

wave propagation CA, the neighbourhood of this hexagonal cell is either 1st order (Progias 

and Sirakoulis, 2013) or 2nd order (Trunfio, 2004; D’Ambrosio et al., 2006) neighbourhood 

(see Table 3.1). Both square and hexagonal cells, however, still face the problem of pre-

fixed and limited number of spread direction (Johnston, Kelso and Milne, 2008). To avoid 

this limitation, Voronoi tessellation (see Chapter 3.2) was implemented, which made the 

spread more flexible and fire shape distortion was reduced (Johnston, Kelso and Milne, 

2008). By using Voronoi tessellation, the number of spread directions depend on the shape 

of the polygon of each cell. Therefore, the number of spread directions can be as few as 

three (triangle cell shape) or as many as possible. The implementation of Voronoi 

tessellation, however, induced higher computational burden. 

Bogdos and Manolakos (2013) extended the application of wave propagation CA by 

integrating satellite data to simulate wildfires across Europe. Their model also utilised 

random sampling on weather condition and Monte Carlo simulation to create burning 

probability map of the wildfires (see Table 3.1; Bogdos and Manolakos, 2013). Therefore, 

wildfire event and risk at arbitrary locations in Europe can be predicted based on the 

estimated weather conditions. The creation of a burning probability map was also studied 

by Di Gregorio et al. (2013); however, instead of using random sampling, Di Gregorio et 

al. (2013) implemented local randomization of Avolio et al. (2012) to provide uncertainty 

in the model. On the other hand, Progias and Sirakoulis (2013) successfully implemented 

wave propagation CA to a specific purpose computer, which led to a six order of magnitude 

faster simulation. By using a specific purpose computer, the number of hardware 

components are limited to only those required to run the model, therefore, dramatic 

increases on computational efficiency can be achieved. 
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3.3.3. Heat accumulation 

In the CA model with heat accumulation concept, the transition of state depends on 

the intrinsic value of a cell which increases due to the difference of intrinsic values 

between cells within neighbourhood, resembling the accumulation of heat (Karafyllidis 

and Thanailakis, 1997). Once the intrinsic value (𝑈) of a cell exceeds a certain threshold, 

the cell changes its state (see Figure 3.7a). The rate of change of intrinsic value in heat 

accumulation CA (∆𝑈) is mostly formulated based on spread rate, which generally varies 

at each direction from the centre cell and depends on fuel characteristics and 

environmental conditions (see Figure 3.7a). This concept is similar to DEVs-CA; however, 

while DEVs-CA use simplified physics and chemistry laws to determine the rate of change 

of the intrinsic value, heat accumulation utilises simpler approaches such as empirical 

and semiphysical approaches. Therefore, comparing DEVs-CA and heat accumulation CA 

is similar to comparing physical and semiphysical or empirical models.  

Heat accumulation CA has been used to simulate many real historical wildfires 

(Berjak and Hearne, 2002; Yongzhong et al., 2004, 2005; Yassemi, Dragićević and Schmidt, 

2008; Sun et al., 2013; Rui et al., 2018) by also considering environmental and weather 

effects such as wind, topography, ambient temperature, and fuel properties (Sun et al., 

2013; Xuehua et al., 2016; Rui et al., 2018) which directly affect the spread rate of wildfires 

(see Table 3.1). The spread rate was firstly modelled based on empirical approach from 

(McRae, 1990), which then is used to determine the increment of intrinsic values. This 

increment is calculated by dividing the distance travelled at one time-step, given the 

spread rate, with the cell size (Karafyllidis and Thanailakis, 1997; Karafyllidis, 1999, 

2004; A. H. Encinas et al., 2007; L. H. Encinas et al., 2007). Heat accumulation CA has 

also adopted the most commonly used spread rate calculator in wildfire modelling (Perry, 

1998), a semiphysical approach of Rothermel (1972), into the model to improve the 

determination of the spread rate (Berjak and Hearne, 2002; Yongzhong et al., 2004, 2005). 

However, Sun et al. (2013) argued that the model of Rothermel (1972) is less accurate in 

mountainous regions such as China due to the steep slopes on the landscape, and 

therefore, another empirical approach of Wang (1992) was implemented into heat 

accumulation CA (Sun et al., 2013; Xuehua et al., 2016; Rui et al., 2018). Meanwhile, Rui 

et al. (2018) improved the spread rate in Sun et al. (2013) by multiplying the formulation 

of Wang (1992) with an additional adjustment factor which is calibrated against a real 

wildfire. This additional factor increased the accuracy of the model, however, the model 

accuracy cannot be generally validated because the model accuracy could plummet when 

the model simulates different wildfires due to an overfitting from the calibration process.  
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Figure 3.7. (a) Illustration of heat accumulation CA. The red cell is the burning cell. 𝑈 is the 

intrinsic value and ∆𝑈 is the rate of change in intrinsic value which depends on the fire spread 

rate. The fire could spread, with different spread rates, to 8 neighbours i.e., N, S, W, E, NW, NE, 

SW, SE which represent North, South, West, East, North West, North East, South West, and 

South East. The state changes if the intrinsic value is higher than a threshold. (b) Illustration of 

membership values in fuzzy logic CA and comparison of state transition between CA without 

fuzzy logic (top) and CA with fuzzy logic (bottom). Membership values represent the fraction of 

cell belonging to a certain state. In CA without fuzzy logic (top) the membership value of a cell is 

either 0 or 1 which means the cell’s intrinsic value corresponds to one state only. In CA with 

fuzzy logic (bottom) the membership value of a cell (μ) is ranging from 0 to 1 for each state, i.e., 

the cell’s intrinsic value may correspond to more than one state. 

Small world network concept, another form of heat accumulation CA has been 

proposed to simulate firebrand in deterministic CA (Porterie et al., 2007). In small world 

network, the neighbourhood used in the model is multi-range (see Table 3.1), which 

consist of short-range (von Neumann or elliptical neighbourhood) to simulate fire 

propagation via heat transfer (predominated by radiation) and flame contact and long-

range to simulate firebrand ignition (see Figure 3.3b). The transition of state in short-

range neighbourhood follows the heat accumulation concept where a cell changes state 

when its intrinsic value exceed a certain threshold. However, the model of Porterie et al. 

(2007) reformed this rule into time-step delay. Therefore, the unburned cells within the 
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short-range neighbourhood of a burning cell, ignite after a certain time-step depending on 

their distances from the burning cell. This time-step delay is determined based on the 

energy balance and simplified radiative heat transfer principles. Meanwhile, the 

transition of state in long-range neighbourhoods is determined probabilistically, where 

the number of firebrands generated by a burning cell and their trajectories are 

probabilistically determined based on fuel characteristic and wind conditions (Porterie et 

al., 2007). This small world network has been improved by Adou et al. (2010) to include 

more detail in the radiative heat transfer part, where the size and shape of the flame is 

considered. However, in this model, firebrand is not considered and high order elliptical 

neighbourhood is used instead of a multi-range neighbourhood. Both models have been 

validated against lab-scale experiment and the model of Adou et al. (2010) has been used 

to simulate a real historical wildfire. 

To improve the accuracy of heat accumulation CA, similar attempts to wave 

propagation CA have been implemented. The first attempt is adaptive time-step; however, 

in heat accumulation CA, the time-step is limited to the minimum time required to burn 

one neighbouring cell instead of within a growing area such as the global ellipse area in 

wave propagation CA (see Table 3.1; L. H. Encinas et al., 2007; Rui et al., 2018). The 

second attempt is a correction factor, which in heat accumulation CA was implemented 

on wind effect (Yongzhong et al., 2005). Wind effect was corrected because wind speed 

varies with altitude, whereas weather station records wind speed at only a single altitude 

(Yongzhong et al., 2005). This correction factor was calibrated, based on real wildfires, to 

minimize the discrepancies between the model and real wildfires. The last non-trivial 

improvement, which has not been applied to wave propagation CA, is the rule for 

overlapping burnt areas (Yassemi, Dragićević and Schmidt, 2008). With this rule, the 

shape and location of burnt areas within one cell are considered. For instance, when the 

left and top neighbours of an unburned cell are burning, the top-left corner of the centre 

cell is burnt because of both the neighbours. The overlapping burnt area rule forbids the 

burnt contribution from more than one cell. Therefore, the increase of the intrinsic value 

of the centre cell is the summation of the intrinsic value transferred from the two 

neighbours but subtracted with the value that represent the overlapping burnt area. This 

rule aims to avoid the overestimation of burnt areas.  

A spurious shape (polygon instead of ellipse) of fire front due to square cell symmetry 

was also found in heat accumulation CA (A. H. Encinas et al., 2007; L. H. Encinas et al., 

2007). The first attempt to tackle this issue was by modifying the rule on diagonal spread 

(A. H. Encinas et al., 2007; Xuehua et al., 2016), which is the source of fire shape distortion. 
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The spread to diagonal cells, which was previously linear, was changed to be circular (A. 

H. Encinas et al., 2007). Therefore, instead of creating a triangular slice of burning area, 

in the improved model the slice of burning area has a circular wedge shape (A. H. Encinas 

et al., 2007). The second attempt, which is similar to those in wave propagation CA, was 

to use hexagonal cell (see Table 3.1; Yongzhong et al., 2004; L. H. Encinas et al., 2007). 

However, L. H. Encinas et al. (2007) introduced 6 additional distant neighbours (see Table 

3.1), therefore, the fire can spread to 12 directions (see Figure 3.3b of hexagonal – 1st order 

extended), instead of a 6 directional spread of those using 1st order neighbourhood 

(Yongzhong et al., 2004), and reduce erroneous shape. 

The intrinsic values in heat accumulation CA is typically continuous (Karafyllidis and 

Thanailakis, 1997), e.g., from 0 to 1 which represent unburned and burning cell 

respectively; however, this continuous CA is computationally demanding. This continuous 

CA has been discretized (e.g., instead of 0 to 1, there are only three values: 0, 0.5, and 1) 

to increase computational efficiency (Karafyllidis, 1999, 2004; L. H. Encinas et al., 2007). 

In the discretized model, the number of states are finite and selected based on the results 

from optimization of number of states and their values to obtain minimum number of 

finite values which still have sufficiently high accuracy (Karafyllidis, 1999). Therefore, 

while increasing the efficiency, the model does not significantly lose accuracy. To improve 

the efficiency even more, Karafyllidis (2004) implemented this discretised model into 

specific-purpose computers. This implementation accelerated the execution time of the 

model up to five orders of magnitude. On the other hand, Berjak and Hearne (2002) and 

Yassemi, Dragićević and Schmidt (2008) successfully integrated GIS to the heat 

accumulation CA which made the model more realistic and consequently improved its 

accuracy. 

3.3.4. Linguistic 

Cellular automata models that use linguistic rules govern the behaviour of the models 

using explicit rules, which are represented in the state diagram (Dunn and Milne, 2004). 

The state diagram define the transition of state of cells over certain triggers, for instance, 

“at north wind condition, an unburned cell will become moderately burning if its south 

neighbour is a strongly burning cell”. This rule is implemented linguistically with if-then 

premise instead of mathematical expression. Each cell is connected to its neighbours and 

their state diagram are synchronized. Therefore, the discrepancies of the state transition 

between each cell do not exist. This model was used solely to maximise the computational 

efficiency of the wildfire model, which is the main benefit of using cellular automata. This 
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model has also been used to simulate real fires and produced reasonable results (Dunn 

and Milne, 2004).  

Fuzzy logic has been applied in linguistic cellular automata to reduce the stiffness of 

the model due to the finite number of states of a cell (Mraz, Zimic and Virant, 1999). The 

state of a cell is no longer a discrete value, but a continuous intrinsic value, similar to 

heat accumulation CA, which is translated (fuzzification) to membership values of either 

one or more than one states (see Figure 3.7b). These membership values represent the 

fraction of cell which belong to a certain state. For example, as shown in Figure 3.7b 

(bottom), cell 1 has a fraction of μ1 which belongs to state 1 and a fraction of μ2 which 

belongs to state 2, whereas cell 2 has a fraction of μ3 which belongs to state 3 and a fraction 

of μ4 which belongs to state 4. Without fuzzy logic (as shown by Figure 3.7b, top), the cell 

only has one state regardless the intrinsic value. However, the intrinsic and membership 

values are only a representation of a state and the spread behaviour in fuzzy logic CA (i.e., 

the effect of intrinsic and membership values of neighbour cells) is still governed 

linguistically without arithmetical operation. For instance, with the same premise as 

linguistic CA in the previous discussion, a moderately burning cell corresponds to a 

certain membership value. The cell’s intrinsic value was updated by translating this 

membership value (defuzzification) by a certain rule such as fuzzy mean method (Ntinas 

et al., 2017). The updated intrinsic value then was used to determine the state of the cell. 

The behaviour of the fuzzy logic CA is determined based on pre-defined linguistic rules 

similar to linguistic CA; however, the determination of intrinsic and membership values 

is calibrated based on real physical variable such as fire spread rate. This calibration can 

be done manually (Mraz, Zimic and Virant, 1999) or using an optimization algorithm that 

could increase the accuracy of the model (Ntinas et al., 2017). Another attempt had been 

made to increase the accuracy of the model by implementing Voronoi tessellation to avoid 

fire shape distortion (see Table 3.1; Carvalho, Carola and Tomé, 2006). Moreover, GIS has 

been integrated to fuzzy logic CA (Carvalho, Carola and Tomé, 2006). Therefore, fuzzy 

logic CA bridges the linguistic CA with real phenomena of wildfires. Meanwhile, Ntinas 

et al. (2017) proved the feasibility of this concept to be implemented in specific-purpose 

computers. This implementation increased the computational efficiency of the model to 

be fourth order faster. 

3.4. Stochastic Cellular Automata for Wildfires 

There are two stochastic concepts that have been explored in cellular automata 

modelling for wildfires: diffusion limited aggregation (Baker, Egbert and Frazier, 1991) 

and percolation theory (bond and site percolations; Kourtz and O’Regan, 1971; Hargrove 
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et al., 2000). Differing from the concepts in deterministic cellular automata, these 

concepts have various applications for wildfires modelling, which capture different 

phenomena in wildfires. Here, the implementation and development of stochastic 

concepts for wildfires modelling with cellular automata are discussed. 

3.4.1. Diffusion limited aggregation 

In cellular automata with the diffusion limited aggregation (DLA) concept, the spread 

of fire is restricted to a specific number of directions at every time-step (see white arrow 

in Figure 3.8a). The directions in which the fire is allowed to spread depend on the weight 

and probability of movement to those directions (Clarke, Brass and Riggan, 1994). The 

weight is a function of the fuel characteristics and environment, which is used to update 

the probability value. The updated probability value determines the movement of the fire 

to the direction with the highest probability. 

Baker, Egbert and Frazier (1991) used DLA concept to study the effect of global 

warming on wildfire within century timeframe. They used GIS to define the topography 

and used probabilistic approach based on climate regime to estimate the weather over 

centuries. Fuel characteristics, which affect the probability of each cell and consequently 

the direction of fire spread, depend solely on vegetation type in their model. Their model 

revealed fluctuations in landscape structure (e.g., vegetation configuration) despite a 

constant ignition with specific frequency. 

On the other hand, Clarke, Brass and Riggan (1994) used DLA concept to simulate a 

field-scale test wildfire, which has an irregular shape of burnt area (not a simple geometry 

such as ellipse), and created a burning probability map using Monte Carlo simulation. 

Their model improved the model by Baker, Egbert and Frazier (1991) by introducing 

firelet rules and considering firebrand which is highly probabilistic (Sullivan, 2009a), thus 

cannot be modelled by using deterministic rules. The spotting phenomenon (firebrand) 

creates new hotspots that are relatively distant from the fire front and could trap 

firefighters between two fire fronts (Pastor et al., 2003; Rein and Huang, 2021). In their 

model, they defined two different types of burning cells: fire source and firelet. The fire 

source is the type of burning cells that can facilitate the spread of the fire by producing 

firelets, whereas firelets are unable to directly produce another firelets, but do have the 

ability to become fire source. The transition of firelets to become fire source is determined 

probabilistically, therefore, not all firelets can become fire source. Once a firelet becomes 

a fire source, it can produce new firelets and spread the fire. Therefore, firelets are 

analogous to low intensity fires that cannot spread the fire to surroundings, whereas a 

fire source is analogous to a high intensity fire that can spread the fire to surroundings. 



 

99 

 

The low intensity fire can either become high intensity fire or extinct, in which in the 

model of Clarke, Brass and Riggan (1994) are probabilistically determined. They reported 

that the model provide high accuracy simulation when compared with the test fires. 

 

Figure 3.8. (a) Illustration of diffusion limited aggregation CA. The white arrows are the 

direction of fire spread, which only spreads in the direction with highest spread probability. The 

burning cells (red) become burnt out (grey) after several time-steps. (b) Illustration of site 

percolation CA. The cell type is probabilistically determined either become flammable (green) or 

non-flammable (white) with a probability of PV and 1-PV respectively. Each flammable cell could 

ignite at every time-step with a probability of PL. Once ignited burning cells spread the fire to all 

flammable neighbouring cells deterministically (white arrow). The burning cells become burnt 

out (grey) after several time-steps and the burnt out cells reset to become flammable or non-

flammable cells. 

3.4.2. Bond percolation 

Percolation is a transport phenomenon of fluid through porous media, which 

consequently leads to irregular movement of the fluid since the existence of connecting 

channels between pairs of entities in the medium are randomly distributed (Sullivan, 

2009c). In cellular automata with bond percolation concept, fire spreads from the burning 

centre cell to its neighbours with a specific probability. This probability depend on fuel 

characteristics and environment conditions, and dictates the spread rate of the fire 

(Alexandridis et al., 2008). The grid and the fuel configurations in the computational 

domain of bond percolation CA are predefined and constant. This concept is similar to 

DLA; however, the direction of the fire spread is not limited to a certain number of 

directions, thus, at the subsequent time-step the fire could spread to all direction of the 

neighbouring cells. 

The spread probability in bond percolation CA is typically selected based on 

calibration either against spread rate models or historical fires (Hargrove et al., 2000; 
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Alexandridis et al., 2008; Freire and Dacamara, 2019). The calibration against spread 

rate models mostly employs mathematical models based on empirical approaches 

(Hargrove et al., 2000; Achtemeier, 2013; Russo et al., 2014), such as from Albini and 

Brown, (1996) and Andrews (2008). The calibration against historical wildfires involves 

many incidents, e.g., 750 thousands wildfires in Africa (Couce and Knorr, 2010), resulting 

in the ability of bond percolation CA to simulate real wildfires (Hargrove et al., 2000; 

Alexandridis et al., 2008; Couce and Knorr, 2010; Gazmeh et al., 2013; Russo, Vakalis and 

Siettos, 2013; Giannino et al., 2017; Zheng et al., 2017). The calibration process can be 

done manually (Achtemeier, 2013), using optimization algorithms (Alexandridis et al., 

2008; Gazmeh et al., 2013; Giannino et al., 2017), and using machine learnings (Zheng et 

al., 2017) (see Table 3.1). The calibration process ensures the CA models to accurately 

simulate wildfires, for instance, based on the comparison of burnt area between 

simulation and field observations. However, the high accuracy of the models due to 

calibration process means that they may be unreliable when used to simulate other 

wildfires that are not involved in the calibration process. This drawback becomes 

prominent when the calibration is performed against historical wildfires, because the 

overfitting between simulation and the calibration data can occur, especially when 

historical wildfires data are limited. 

Bond percolation CA has considered many affecting factors in wildfires, including 

wind, weather (rain, ambient temperature, and humidity), topography, and fuel 

characteristics (see Table 3.1; Li and Magill, 2001, 2003; Alexandridis et al., 2008; Couce 

and Knorr, 2010; Quartieri et al., 2010; Almeida and Macau, 2011; Gazmeh et al., 2013; 

Russo, Vakalis and Siettos, 2013; Zheng et al., 2017; Giannino et al., 2017; Freire and 

Dacamara, 2019). The information on these factors is obtained mostly from GIS that have 

been extensively integrated in bond percolation CA by storing information from GIS into 

the cells in the model (see Table 3.1; Alexandridis et al., 2008; Quartieri et al., 2010; Russo, 

Vakalis and Siettos, 2013; Giannino et al., 2017; Freire and Dacamara, 2019).  However, 

each of these factors were treated separately and provide distinct effects on the spread 

probability, unlike those in deterministic CA that mostly used semiphysical approach and 

integrated these factors into a single value, e.g., spread rate. 

Gazmeh et al. (2013) considered fire suppression by nature (rain), whereas 

Alexandridis et al. (2011) considered fire suppression by human activity, i.e., firefighting 

attempts. The firefighting attempts in the model of Alexandridis et al. (2011) resembled 

airborne firefighting (water bombing) where the effectiveness of the firefighting activity 



 

101 

 

can be assessed based on the air tanker capacity and schedulling. This consideration 

provided insights into the management of firefighting activities for wildfires. 

When fires reach and ignite the canopy of vegetation (crown fire), the hazard of 

wildfires increases significantly Bond percolation CA has modelled this phenomenon by 

introducing a probability threshold (Ito, 2005), which is similar to the approach in wave 

propagation CA. However, since the threshold is probabilistic, the occurrence of crown 

fire in this model has uncertainty unlike those in wave propagation CA.  

The wind dynamic around the fire heavily depend on the fire dynamics (Sullivan and 

Knight, 2004; Achtemeier, 2013), which could lead to pressure anomalies, and should be 

treated differently from undisturbed wind (Sullivan, 2009a, 2009c; Achtemeier, 2013). 

One method used to simulate this fire-atmosphere interaction was the dynamic bubble 

concept (Sullivan and Knight, 2004). This dynamic bubble concept employs an imaginary 

bubble that absorbs part of the energy from the fire and moves depending on the energy 

absorbed, which then affect the local wind dynamics (Sullivan and Knight, 2004). Each 

cell in the domain has this bubble, which moves upward with certain rate, proportional 

to the fire intensity of the corresponding cell. The upward movement of the bubbles are 

coupled with the wind velocity to obtain the fire-affected wind vector, which then is used 

as the wind effect for the fire spread direction, instead of using the undisturbed wind 

(Achtemeier, 2013). Therefore, this bubble concept resembles the effect of buoyancy to the 

wind dynamics, which also have a feedbacks effect on fire dynamics.  

The interaction between wildfires and other fire hazards has also been modelled with 

bond percolation CA. Spyratos, Bourgeron and Ghil (2007) and Li, Cova and Dennison 

(2019) used bond percolation CA to simulate wildland urban interface (WUI) fires, where 

the fire from wildland can initiate fire in urban areas. This modelling mainly aims to 

provide a risk-based assessment for the development of fire-safe WUI regions (although 

WUI fire models have not been validated with real WUI fires). WUI fires have been 

investigated by considering vegetation and houses as fuel, and also spotting phenomenon, 

where ember can fly to the rooftop and initiate urban fires. Spotting is also an important 

phenomenon in wildfires, as it can provide new sources of ignition at a relatively distant 

location from the fire front, causing firefighting attemps become more difficult and 

dangereous. Since the dynamics of the flying embers are unlikely to be deterministic, bond 

percolation CA is the most commonly used concept to simulate spotting (see Table 3.1; 

Alexandridis et al., 2008; Couce and Knorr, 2010; Freire and Dacamara, 2019). However, 

the details of the spotting phenomena such as the trajectory and the distance travelled by 

the firebrand have not been sufficiently discussed. 
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Bond percolation CA have also been used to model smouldering fires (Belcher et al., 

2010; Fernandez-Anez, Christensen and Rein, 2017; Fernandez-Anez et al., 2019), which 

is the dominant type of combustion in peatland wildfires, involving flaming wildfires 

igniting the peat underneath. All the CA models of smouldering fires are still at the small-

scale (Belcher et al., 2010; Fernandez-Anez, Christensen and Rein, 2017; Fernandez-Anez 

et al., 2019), and its development mainly focuses on the introduction of more physical 

considerations. For instance, the pioneering work of Belcher et al. (2010) only considered 

ignition and extinction of smouldering, whereas Fernandez-Anez, Christensen and Rein 

(2017) and Fernandez-Anez et al. (2019) improved this model by considering drying, 

pyrolysis, oxidation, and extinction of smouldering. 

There are many extended uses of bond percolation CA. Li and Magill (2001, 2003); 

Favier (2004); Almeida and Macau (2011) and Pak and Hayakawa (2011) explored the 

probability values in the models to find the critical probability values that facilitate the 

sustainability of the wildfires, whereas Ito (2005) used the model to simulate carbon 

budget in boreal forest, the results of which could reduce the uncertainties of global carbon 

cycle estimation. Due to the inherent uncertainty of bond percolation CA, Almeida and 

Macau (2011) used the model to create a burning probability map (BPM) for risk-

assessment. Meanwhile, Achtemeier (2003, 2013) modified the bond percolation CA 

concept by implementing an agent based concept, which mimics rabbit behaviour to 

simulate wildfires. In this concept, fire and landscape are different entities. The fire is 

represented by the agent, i.e., the rabbit, and the cells represent the landscape which 

contains the information on wind, topography, fuel characteristics, and weather. Their 

model considered the fire behaviour: fire consumes fuel, fire jumps between adjacent fuel 

elements, fire spreads, and fire extinct, analogous to the way rabbits eat food, rabbits 

jump, rabbits reproduce, and rabbit dies, and these behaviours are affected by the 

environment, fuel properties, and weather (Achtemeier, 2003, 2013). 

Since there are numerous methods and applications of bond percolation CA, the 

method that should be used depend on the case to be simulated. For instance, to simulate 

crown and surface fires, threshold rules can be implemented, and if fire-atmosphere 

interaction need to be considered, these threshold rules can be integrated with the bubble 

concept. Therefore, the additional phenomena considerations, means additional rules, and 

the rules to be used can be chosen from previous works presented here (developing new 

rules is also possible). This feature means that the modelling using bond percolation CA 

is modular, which increases the flexibility of the model. 
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3.4.3. Site percolation 

Although also stems from the randomly distributed medium and its internal channels, 

site percolation CA has different approach to in bond percolation CA. In site percolation 

CA, the fuel configuration is probabilistic and changes over time (Malamud, Morein and 

Turcotte, 1998), and bond percolation makes this constant. On the other hand, in site 

percolation CA, the fire spread from a burning cell to adjacent flammable cells is executed 

deterministically (Kourtz and O’Regan, 1971; Green, 1989), and bond percolation executes 

this rule probabilistically. Therefore, in site percolation, once a burning cell encounters 

adjacent flammable cells, the fire always spreads to the flammable cells at the subsequent 

time-step. However, each cell in site percolation can either become flammable cell or 

inflammable cell with a specific probability (see Figure 3.8b). Each flammable cell has a 

probability of igniting, e.g., caused by lightning, at every time-step (see Figure 3.8b). The 

ignited cell spread the fire to its neighbours deterministically (see Figure 3.8b) and once 

the burning cell is burnt out, this cell can become either flammable or nonflammable cell 

probabilistically at the subsequent time-step. This reset of cell state corresponds to 

vegetation regrowth process after wildfires. 

Site percolation CA was initially used to simulate the Euclidean shape (such as circle 

and ellipse) of wildfire spread and aid mitigation strategy, the same as in other CA models 

(Kourtz and O’Regan, 1971; Green, 1989). However, its function shifts to the simulation 

of the fractal shape of the forest ecosystem caused by wildfires and vegetation regrowth 

over many years (hundreds of years; Sullivan, 2009c). In most of the wildfire models, the 

fire spread is assumed to have Euclidean geometry (see Figure 3.9a); however, in the real 

event of wildfires, the burnt scar caused by the fire spread has fractal geometry (see 

Figure 3.9b as example of fractal geometry; Ball, 2001). Figure 3.9c shows an example of 

fractal geometry of forest ecosystem caused by wildfires and different regrowth phases of 

the vegetation in Borneo in 2018; region 1 is burnt, region 2 is early stage regrowth, region 

3 is late stage regrowth, and region 4 is fully regrown and undisturbed vegetation. 

Fractal geometry is irregular geometry which involve loop and seed for its construction; 

thus, while fractal geometry cannot be formulated the same way as in Euclidean geometry 

(e.g., parabola, hyperbola), with the help of computers fractal can be constructed with only 

limited number of instructions (Mandelbrot, 1974). For example, the fractal shape of a 

snowflake can be constructed from loop of seed of triangles (see Figure 3.10; Mandelbrot, 

1974). The triangle seeds are shrunk, rotated, and repeatedly drawn at the apexes of the 

geometry on the previous loop. Fractal geometry is argued to be the geometry of nature, 

seen in non-spherical clouds, non-conical mountains, and non-straight path of lightning 
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strikes (Mandelbrot, 1974). In the spread pattern of a fire, Zik and Moses (1999) observed 

the fractal shape of a fingering phenomenon in smouldering fire of solid fuel due to the 

scarcity of oxygen. Figure 3.9b shows an example of fractal geometry of a fingering 

phenomenon in smouldering fire. This figure is the result from the model of Fernandez-

Anez et al. (2019) who successfully simulated fingering phenomena in smouldering fire of 

Zik and Moses (1999) using bond percolation CA. 

The fractal shape of the forest ecosystem caused by wildfires can be simulated when 

the system is in the critical state (Bak, Chen and Tang, 1990). The criticality theory 

generalizes the phenomena which experience criticality as the system that result in 

fractal (irregular) energy dissipation when given uniform energy input (Bak, Chen and 

Tang, 1990). An example of this system is found in fluid flow, where once a critical point 

such as critical Reynold number is reached, uniform inputs of energy (e.g., higher pump 

power than in laminar flow) result in turbulent flow which has high irregularities and 

consequently dissipate the energy irregularly (Mandelbrot, 1974). This fractal energy 

dissipation is not only found in turbulent fluid but also many other phenomena 

(Mandelbrot, 1974). Many studies attempted to prove the critical behaviour of nature, for 

instance, the criticality found in earthquakes and landslides (Malamud and Turcotte, 

1999, 2000). 

A critical system satisfies scaling law, where a physical variable scales another 

variable over a significant range (Clar, Drossel and Schwabl, 1994). This scaling law 

mostly use a power law relationship, 𝑦 = 𝑥𝛼 , to correlate two variables (𝑥 and 𝑦) in a 

phenomenon (Bak, Chen and Tang, 1990). Therefore, when the fractal shape of the forest 

ecosystem is successfully simulated, there are pairs of variables in the system which can 

be correlated using the power law relationship with a corresponding critical exponent (𝛼; 

Bak, Chen and Tang, 1990). These pairs of variables are important in translating the 

theoretical system for the mitigation of wildfires (Malamud, Morein and Turcotte, 1998). 

For example, Malamud, Morein and Turcotte (1998) used site percolation CA model to 

simulate the fractal geometry of forest ecosystem and found that the frequency and the 

size of wildfires have a power law relationship. This study has been used for the campaign 

of prescribed fires (Malamud, Morein and Turcotte, 1998; Waldrop and Goodrick, 2018).  
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Figure 3.9. (a) Typical Euclidean burnt scar in modelling of wildfires (modified from Purnomo et 

al., 2021). (b) An example of a fractal burnt scar of fingering phenomenon in smouldering fire 

spread (modified from Fernandez-Anez et al., 2019). (c) Satellite image of fractal geometry of 

forest structure caused by wildfires and vegetation regrowth. Region 1 is burnt, region 2 is early 

stage regrowth, region 3 is late stage regrowth, and region 4 is fully regrown and undisturbed 

vegetation. 
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Studies on the criticality of wildfires aim to estimate the critical exponents that 

correlate pairs of variables in wildfires. These attempts are executed by using 

computational models where uniform inputs such as constant tree regrowth rate are 

introduced, and irregular outputs such as fractal shape of the burnt scar are expected 

(Bak, Chen and Tang, 1990). Although different studies find different critical exponents 

for different pairs of variables (not limited to a pair of frequency and size of wildfires), 

these behaviours are key in enabling the criticality of wildfires (Bak, Chen and Tang, 

1990). The development and improvement in the CA models that study criticality of 

wildfires focus on implementing different rules to approximate real wildfires by 

introducing more realistic variables, but still satisfy the core behaviours of critical 

wildfires. 

Albinet, Searby and Stauffer (1986) pioneered the study of criticality in wildfires using 

a forest fire model (implementing site percolation CA) which considered wind, slope, and 

fuel type and used both triangular and square cells domain (see Table 3.1). Although the 

forest fire model by Bak, Chen and Tang (1990) did not consider environmental and 

climatic factors, it is the base model for other works on criticality of wildfires instead of 

the pioneering model by Albinet, Searby and Stauffer (1986). Bak, Chen and Tang (1990) 

studied critical behaviour of nature by combining the forest fire model with Monte Carlo 

simulation, where the first ignition was at random location and the model was simulated 

repeatedly. The trees grew uniformly, with a specific probability (see Figure 3.8b), and if 

the trees are ignited then the fire spreads deterministically to the neighbouring cells (Bak, 

Chen and Tang, 1990). By using these simple rules, criticality was obtained (when the 

tree growth probability is very small) where the uniform input, i.e., uniformly growing 

trees results in fractal dissipation, i.e., irregular shape of burnt areas (Bak, Chen and 

Tang, 1990). 

 

Figure 3.10. An example of the construction of the fractal geometry of a snowflake (Mandelbrot, 

1974). The snowflake is constructed from the loop of seed of triangles (left to right) which are 

shrunk and rotated in every loop. The seed of triangles are placed at the apexes of the geometry 

obtained from the previous loop. 
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The forest fire model was slightly modified by Chen, Bak and Jensen (1990), by 

implementing deterministic and continuous ignition, instead of single ignition, which is 

combined with the Monte Carlo simulation, as in Bak, Chen and Tang (1990). Once the 

density of trees exceed a certain threshold, the fire starts and spreads following the same 

rules as in Bak, Chen and Tang (1990). This model successfully showed criticality of 

system when the tree density increment is adequately small (Chen, Bak and Jensen, 

1990). This deterministic ignition approach was then replaced with the stochastic ignition 

approach by introducing “lightning ignition” with a specific frequency of occurrence 

(Drossel and Schwabl, 1992, 1993; Grassberger, 1993; Clar, Drossel and Schwabl, 1994), 

and this model become the new generation base model (see Figure 3.4). This model 

captured the criticality behaviour for a certain conditions of parameters (i.e., very small 

lightning frequency per tree growth probability). The forest fire model was generalised by 

introducing immune trees (Drossel and Schwabl, 1993; Pruessner and Jensen, 2002). 

These immune trees resemble the concept of bond percolation in which flammable cells 

do not burn deterministically when making contact with burning cells, and instead they 

burn with a specific probability. However, Pruessner and Jensen (2002) investigated the 

behaviour of the cluster size distribution in this generalised model and revealed that the 

model is not critical in the sense that there is no pair of variables in the system correlate 

with power law relationship. Therefore, the immune trees concept was not used 

extensively in criticality studies. 

There have been many attempts to improve the forest fire model for finding more 

reasonable critical exponents. The first improvement was by simulating the forest fire 

model with high statistics of domain variation (e.g., grid size) and very close to the critical 

point (Grassberger, 1993, 2002). The critical exponents found were significantly different 

from the base models (Bak, Chen and Tang, 1990; Drossel and Schwabl, 1992), and the 

implementation of these new exponents improved the critical behaviour of the model 

(Grassberger, 1993, 2002). The second improvement involved simulating the forest fire 

model in square and triangular cell from one to eight dimension domain (see Table 3.1; 

Clar, Drossel and Schwabl, 1994). This model, which found different critical exponents, 

was reported to perform better than the base models (Bak, Chen and Tang, 1990; Drossel 

and Schwabl, 1992), near the critical points (Clar, Drossel and Schwabl, 1994). The third 

improvement involved introducing corrections factor to the critical exponents (Pastor-

Satorras and Vespignani, 2000). These correction factors were derived based on the 

extended version of moment analysis technique (see detail in Pastor-Satorras and 

Vespignani, 2000). The last non-marginal improvement was by considering the finite size 
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effect on the criticality of the model (Schenk et al., 2000; Schenk, Drossel and Schwabl, 

2002). The finite size effect was implemented by reducing the grid size. From tree density 

and fire size distributions evaluation it was revealed that the critical exponents change 

when the grid size decreases, if the other input parameters are kept constant (Schenk et 

al., 2000; Schenk, Drossel and Schwabl, 2002). 

Although forest fire model is a “toy” model, this model has been compared with real 

historical wildfires (Malamud, Morein and Turcotte, 1998). This study found a good 

agreement between the correlation of fire size and frequency in the simulations with the 

same correlation obtained from the data in around 5000 wildfires in the United States 

and Alaska, thus, this study bridges the theoretical behaviour of criticality in wildfires 

with real historical wildfires.  They used thousands of historical wildfires to compare with 

the forest fire model and found that the power law correlation between occurrence 

frequency and size of wildfires in the model has good agreement with real historical 

wildfires (Malamud, Morein and Turcotte, 1998). 

The criticality in traditional forest fire model could be achieved when certain 

conditions are met, for example, very small lightning frequency per tree growth 

probability. However, Graham and Matthai (2003) argued that by using small world 

network, the criticality of forest fire model can be achieved without fine tuning of the 

parameters. This result was achieved by using multi-range neighbourhood (see Table 3.1), 

where the neighbourhood is not limited to immediate adjacent cells but randomly selected 

cells, which mostly are distant (see Figure 3.3b; Graham and Matthai, 2003). 

3.5. Cellular Automata for Urban and Building Fires 

When wildfires occur in wildland urban interface (WUI) regions, they can spread 

to urban areas and cause urban fires (Spyratos, Bourgeron and Ghil, 2007). Urban fires 

are fire hazards that occur in the populated areas, which spread from one building to 

another building and feed on flammable materials in the buildings and houses (e.g., 

furniture). This fire has different behaviour to wildfire because urban areas have different 

fuel configurations and structures from the vegetation in the forest.  

Bond percolation was the main concept used to simulate urban fires, which has 

been validated using real historical fires (see Table 3.2; Takizawa et al., 2000; Cousins, 

Heron and Mazzoni, 2002; Ohgai et al., 2004; Gohnai et al., 2005; Wang and Zhou, 2014). 

The spread probability in the CA model for simulating urban fires mainly depends on 

wind effect and fuel properties (see Table 3.2; Ohgai et al., 2004; Gohnai et al., 2005; Zhao, 

2011; Wang and Zhou, 2014; Tambunan, Salamah and Asriana, 2017). The wind affects 

the probability through both wind speed and direction (Wang and Zhou, 2014), whereas 
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fuel properties accommodate the effect of building structure and materials into the 

probability (Tambunan, Salamah and Asriana, 2017). The factors that affect the spread 

probability were extended to cover stages of the fire (Ohgai et al., 2004; Gohnai et al., 

2005; Wang and Zhou, 2014). The ability of fire to spread to the neighbours depends on 

the stage of fire, for instance, a cell which has just been ignited has lower ability to spread 

the fire than a cell which has been burning longer. The stage of fire was typically defined 

based on the burning time (Ohgai et al., 2004; Gohnai et al., 2005; Wang and Zhou, 2014). 

The fact that fire in urban areas spreads in many ways have been addressed by 

distinguishing the mode of fire spread: direct spread, radiation spread, and spotting 

spread (Cousins, Heron and Mazzoni, 2002).  Direct spread is a deterministic spread to 

unburned adjacent cells, radiation spread happened when the heat received by the 

building exceeds a certain threshold, and spotting spread was initiated if there are embers 

thrown off, probabilistically, from burning cells (Cousins, Heron and Mazzoni, 2002). 

Firefighting activity (Ohgai et al., 2004; Gohnai et al., 2005) and evacuation attempts 

(Wang and Zhou, 2014) have also been considered in the urban fire model (see Table 3.2). 

The model for firefighting activity and evacuation aims to provide planning support for 

fire mitigation (Ohgai et al., 2004; Gohnai et al., 2005; Wang and Zhou, 2014). 

The accuracy improvement for the model of urban fire mainly focused on using 

different cell shape and neighbourhoods (see Table 3.2). Instead of using regular cell 

shapes, Zhao (2011) implemented irregular cells in which each cell perfectly matches with 

the shape of each building in the landscape, thus, there was no cell that combined both 

building and open spaces such as road. Because of the irregular structure of the grid while 

using these irregular cells, the neighbourhood of this model was represented by cells 

covered by an ellipse (Zhao, 2011). The size and shape of this ellipse, depend on the wind 

speed and direction, thus, the neighbourhood changed during simulation (Zhao, 2011). 

This wind-constrained neighbourhood was also used in the model of cells with simple 

geometry (Ohgai et al., 2004; Gohnai et al., 2005). However, the wind-constrained 

neighbourhood in cells with simple geometry did not have an elliptical shape, although 

the neighbourhood also did change during simulation according to wind speed and 

direction (Ohgai et al., 2004; Gohnai et al., 2005). Another improvement for the urban fire 

model was performed by integrating GIS (Gohnai et al., 2005; Zhao, 2011; Wang and Zhou, 

2014), which made the landscape of the urban landscape more realistic.  

The main application of the urban fire model was to simulate real urban fire, 

however, there have been attempt to extend the application of this urban fire model. The 

first extended application was for loss assessment post urban fire (see Table 2; Cousins, 
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Heron and Mazzoni, 2002; Zhao, 2011). The assessments considered were economy and 

loss of life (Cousins, Heron and Mazzoni, 2002; Zhao, 2011).  The second extended 

application was to provide fire risk assessment in urban regions where urban fires have 

not started (Gohnai et al., 2005; Tambunan, Salamah and Asriana, 2017). This fire risk 

assessment aims to provide fire safety insights to developers and residents of urban areas 

(Gohnai et al., 2005; Tambunan, Salamah and Asriana, 2017).   

On the other hand, Curiac et al. (2010) adopted the urban fire model to simulate 

fire spread inside a building, while considering fire and smoke interaction. Their model 

also considered air flows, based on real measurement, in the building. Although aiming 

for the same goal, Nahom (2016) utilised heat accumulation CA to simulate the spread of 

fire and smoke inside a building. Both of these works on building fires have reasonable 

results compared to the real fires. These building fire models are extensions of the urban 

fire model, since the conventional models of urban fires do not consider the details of fire 

behaviour inside a building. 

3.6. Qualitative Comparisons between Concepts 

Each concept used in cellular automata modelling for wildfires has different 

prominent behaviours that can be visually observed and distinguished. Figure 3.11 

presents a qualitative comparison of the expected burnt scar shape when using different 

concepts for the CA rules. This comparison is based on a simplified case of wildfire, where 

fuel is homogeneous, terrain is flat, and wind speed and direction are constant. This 

simplified case is used, rather than the actual case that consider more environmental 

factors and their spatial and temporal variations, to isolate the effect of using different 

concepts and minimise the effect of the selection of the parameters in the model. If more 

environmental factors and their variations are considered, the comparison would be 

biased, since the difference between the concepts are influenced more significantly by the 

parameters in the model. 

When wind effect is considered, there are three main basic shapes created in 

deterministic CA, ellipse, ovoid, and deviated ovoid, which correspond to wave 

propagation, heat accumulation, and linguistic respectively. Wave propagation CA has a 

basic shape of ellipse because it forces the burnt scar in the simulation to become an 

ellipse by using a growing ellipse as the rule for state transition. The ellipse is calculated 

and updated every time-step where cells inside the ellipse change state, therefore, the 

shape of burnt scar is ellipsoid. Although heat accumulation CA involves ellipse 

calculation to determine the spread rate at every direction, the limited number of spread 

directions in this model (i.e., only to North, South, West, East, Northeast, Northwest, 



 

111 

 

Southeast, and Southwest neighbouring cells) causes the burnt scar in heat accumulation 

CA become ovoid. This ovoid shape complies with the rules implemented in heat 

accumulation CA where the downwind spread is the fastest, and upwind is the slowest 

similar to those of the ellipse shape. However, the 1st order neighbourhood of a square cell 

is insufficient to shape the burnt scar into an ellipse. Linguistic CA also have ovoid shape 

of burnt scar, however, this ovoid shape slightly deviates from the ovoid in heat 

accumulation CA. This deviation stems from the rule of a cell with multi-states which is 

the main idea of fuzzy logic that is used in linguistic CA. Without fuzzy logic, the burnt 

scar in linguistic CA will have lower deviation from ovoid, however, the shape becomes 

stiffer, for example, having many sharp corners. When the wind effect is not considered, 

all deterministic CA produce a circle shape of burnt scar (see discrete physical events in 

Figure 3.11 as an example). However, wind effect has never been considered in discrete 

physical events CA, therefore, a circle shape of burnt scar is the only shape has been 

produced by this concept in previous works.  

The main difference between the results from deterministic and stochastic CA is 

the shape of the fire front. The fire front shape of a deterministic CA model is relatively 

smooth, whereas a stochastic CA model results in a non-smooth front (see Figure 3.11). 

The probabilities involved in stochastic CA models cause uncertainty of propagation of 

the fire which leads to this non-smoothness feature. Non-smoothness can be treated as 

either inaccuracy or nature variability consideration depending on the aims of the 

modelling. In stochastic CA, different concepts are used for different purposes, therefore, 

causing significantly different results. The results of bond percolation CA are the closest 

to the deterministic CA models. Although fractal geometry can be observed at the fire 

front (non-smooth fire front), the shape of the results from bond percolation CA resemble 

an Euclidean shape such as circle, ellipse, and ovoid, which are also found in deterministic 

CA. On the other hand, the fractal geometry in diffusion limited aggregation and site 

percolation CA become very dominant and the Euclidean shape in these concepts is 

untraceable (see Figure 3.11). This result stems from the limited movement in the models 

because of the spread direction restriction for diffusion limited aggregation, and the 

presence of randomly distributed non-flammable cells for site percolation. Therefore, 

while the non-smoothness also present in the fire front of these models, the shape of burnt 

scar in these models do not resemble an Euclidean shape. Meanwhile, compared to 

diffusion limited aggregation, site percolation also has fractal structure in addition to a 

fractal shape. The fractal structure corresponds to the multiple geometry present in the 

domain without a traceable pattern. This fractal structure stems from the multiple 
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ignition involved in site percolation CA, which are also executed at random locations and 

times. Therefore, the models in stochastic CA category can be divided based on the level 

of fractal involved: bond percolation with only fractal fire front but non-fractal shape and 

structure; diffusion limited aggregation with fractal fire front and shape but non-fractal 

structure; and site percolation with fractal fire front, shape, and structure. The stochastic 

part in Figure 3.11 is ordered based on this distinction. 

Most of CA models for wildfires only consider two states: unburned and burnt out, 

which means the other states are neglected and the burning state is instantaneous (it 

changes to burnt state after one time-step). However, discrete physical events and 

linguistic CA models have considered more states. Discrete physical events CA consider 

more states to comply with physical phenomena, therefore, the additional states represent 

physical states such as drying, pyrolysis, and oxidation (burning). Each state has 

recursive behaviour where it remain in the same state for more than one time-step. 

Linguistic CA also considers this recursive behaviour of the states. However, in contrast 

to discrete physical events, linguistic CA considers additional states which represent the 

strength of the fire. Within burning states, the fire is categorised as either weak, moderate, 

or strong, which are determined using if-then premise. 

 

 

 



 

113 

 

 

Figure 3.11. Examples of simulation results from cellular automata models with different 

concepts. The case simulated in this figure is the same between different concepts, a flat and 

homogenous landscape. Wind condition is considered in most concepts except discrete physical 

events and site percolation which have no previous works that consider wind. A single ignition is 

used in most concepts except site percolation which has simultaneous multiple ignitions to study 

criticality. The fire front at different time-steps in diffusion limited aggregation is distinguished 

with a fire front splitter to increase clarity of figure. In site percolation, fire front is not drawn 

due to the complexity of the pattern caused by the multiple ignitions. Different number of regions 

in different concepts follow regions declared in previous works. 
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3.7. Gaps in the Literatures 

Cellular automata modelling for wildfire has had over 50 years of development, 

however, there is still incomplete understanding of the phenomena involved, and its 

development has become marginal in recent years. Three main areas remain 

insufficiently covered in state-of-the-art of cellular automata modelling for wildfires: 

emerging phenomena during wildfire, multi regime wildfires, and comparison between 

models for wildfires. A summary of gaps in these three areas is shown in Figure 3.12. This 

section discusses the most recent development of each area, the gaps exist, and the 

direction of future research. 

 

Figure 3.12. Schematic of gaps in cellular automata modelling for wildfires. 

3.7.1. Modelling of emerging phenomena during wildfire 

During wildfire, numerous physical phenomena can emerge and interact with each 

other. This interaction can happen across entities, for example, fire-atmosphere and 

smoke-fire interaction (Clarke, Brass and Riggan, 1994). Fire-atmosphere interaction 

represents the local wind field which is affected by the fire, and consequently, this local 

wind affects the fire, e.g., the vortices of the wind which are caused by fire dynamics 

(Alexandridis et al., 2008; Sullivan, 2009a, 2009c) which then can lead to fire whirl of the 

fire. These vortices can also be caused by the topography of the landscape (Russo, Vakalis 

and Siettos, 2013). Meanwhile, smoke that contributes to preheating the fuel can also 

affect the fire dynamics during wildfires (Clarke, Brass and Riggan, 1994). Despite these 

important aspects, there is no cellular automata modelling for wildfires that address them.  

Available models have indeed addressed many phenomena such as environmental 

effects (e.g., wind, topography, fuel characteristic), spotting, crown fire (Ito, 2005; 
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D’Ambrosio et al., 2006; Alexandridis et al., 2008), and fire-atmosphere interaction 

(Sullivan and Knight, 2004; Achtemeier, 2013). However, these consideration were 

insufficient, especially when interaction between phenomena are involved.  This 

insufficiency lies in the variability, such as wind field variability and gusty wind 

(Alexandridis et al., 2008), and insufficient knowledge, for example, of the crown fire 

behaviour which in Ito (2005) and D’Ambrosio et al. (2006) was modelled based on 

threshold, and therefore, was insufficiently understood (Perry, 1998). Complete 

understanding of these phenomena could improve the accuracy and ability of the model 

significantly. 

Introducing more physical phenomena to the model needs to adopt physical 

approach even more. This issue could be tackled by integrating physical model to cellular 

automata, for instance to model the wind dynamics (Alexandridis et al., 2008). However, 

implementing physical model to the CA introduces two issues: the selection of the values 

of additional physical parameters and the significant increase of the computational 

burden, which need further efficiency improvement such as using parallel computing 

(Russo, Vakalis and Siettos, 2013). For the parametrisation issue, to avoid the 

compensation effect, high accuracy achieved since the error of different criteria are 

cancelling each other, sufficient experiments are required for selecting the optimum 

values of few additional physical parameters. Once the values of these parameters are 

sufficiently analysed based on the experiments, the other additional parameters can be 

determined with a lower level of uncertainty. For the computational cost issue, discrete 

physical events can become alternative, however, the models using this concept have not 

advanced to that level of complexity (Muzy et al., 2002, 2003, 2005a; Collin, Bernardin 

and Sero-Guillaume, 2011). Therefore, the remaining challenges are to consider more 

physical phenomena as well as their interaction in cellular automata modelling, while 

ensuring a reasonable uncertainty due to parametrisation and computational feasibility. 

3.7.2. Modelling of multi regime wildfires 

Wildfires cause other fire hazards when these fires emerge at certain regions: WUI 

fires and smouldering peatland wildfires. At the interface of wildland and urban areas 

(see Figure 3.1), the embers that are created by the wildfires (firebrand) could be sent into 

the urban areas and initiate urban fires (see Chapter 3.5). Urban fires could also be 

initiated when there is no firebreak between wildland and urban regions, and the flame 

from wildfires make a direct contact with houses and burn them. On the other hand, if 

wildfires occur in peatlands, the fire from surface vegetation can ignite organic soil (peat) 

and cause smouldering wildfires. 
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Only two CA models (Spyratos, Bourgeron and Ghil, 2007; Li, Cova and Dennison, 

2019) have considered WUI fires and no CA model has considered peatland wildfires, 

other those developed in this thesis (see Chapter 1). The WUI fires are very complex 

phenomena since an understanding of fire behaviour in both wildland and residence are 

required (see Figure 3.1). While the environmental and weather factors are still present 

for wildfire modelling, additional considerations of fuel characteristics (e.g., houses) in 

urban areas and spread within urban areas where there are many fuel discontinuities 

(e.g., open spaces) significantly increase the modelling complexity. The initiation of urban 

fires from wildland fires either via firebrand or flame contact also leads to additional 

complexity. Firebrand dynamics, although discussed in some works, remains a scientific 

challenge to date (Rein and Huang, 2021).  Spyratos, Bourgeron and Ghil (2007) developed 

a “toy” model to characterise the fire risk on WUI development, whereas Li, Cova and 

Dennison (2019) utilised GIS and considered the evacuation in a WUI fire event; however, 

neither compared these with real fires in either forest or urban sites. Independently, 

cellular automata models for both wildland fires, e.g., Alexandridis et al. (2008) and Freire 

and Dacamara (2019), and urban fires, e.g., Ohgai et al. (2004) and Zhao (2011), have 

considered a comparison with real historical fires, however, the integration of both 

validated models that represent fires in WUI regions have not been developed. Neither 

works considered the dynamics of the firebrand that initiate urban fires, and the fuel 

configuration and the involved phenomena were insufficiently considered. This gap is 

becoming more urgent as there have been increasing WUI incidents over the years, for 

example, WUI fire in California (Bump, 2018). Sufficient knowledge from filling this gap 

could improve land management an urban planning to make the WUI regions safer from 

fire. 

3.7.3. Generalization of suitable case-dependent model 

In cellular automata modelling for wildfires, seven concepts have been developed, 

however, apart from site percolation which is suitable for simulating criticality of wildfires 

(Malamud, Morein and Turcotte, 1998), there is no generalization of which concept should 

be used for a specific case. For example, a suitable concept to simulate lab-scale 

experiments might be different from a suitable concept to simulate field-scale wildfires. 

This suitability can be focused on the accuracy of simulation and the computational 

efficiency of the model (Pastor et al., 2003). A concept which peaks in both accuracy and 

efficiency for a certain case should be selected instead of other concepts. By wisely 

selecting the concept, the model can accurately simulate fires with adequate level of 

details, however, this model will not suffer from a high computational cost. For instance, 
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when comparing DEVs-CA and wave propagation which are both deterministic, DEVs-

CA is more suitable for simulating lab-scale experiment where more detailed phenomena 

can be captured with a high level of accuracy, whereas the more efficient wave 

propagation is more suitable for field-scale wildfires where marginal phenomena can be 

neglected.  

Expanding the comparison of cellular automata model for wildfires, another 

comparison can also be performed to include physical models and vector techniques. The 

physical models which have the highest level of detail can lie in the other end of cellular 

automata where the DEVs-CA is the closest. Between DEVs-CA and physical models 

there are significant gaps that can be considered as gradual simplifications of physical 

models. Once the comparison include physical models, more choices of the model, thus the 

level of detail of phenomena can be captured, are available. On the other hand, including 

the vector techniques in the comparison expands the usage over discrete and continuous 

models. The selection then can be made between continuous vector-based models and 

discrete raster-based models, which currently are still competing over one another 

without systematic performance comparison and generalisation.  

Of the gaps presented in this chapter, the modelling of WUI fires has the highest 

priority to be considered. As communities continue to expand into rural, fire-prone areas, 

wildfires are responsible for an increasing amount of damage and destruction to property 

and life. For instance, over the last decade, wildfires in California have been responsible 

for damaging or destroying thousands of structures and killing hundreds of people, and 

the frequency of such WUI fire is expected to increase (Bump, 2018). This exacerbates a 

growing housing crisis and continues to threaten the health and safety of residents. Study 

on crown fires are the second most important gap to consider, due to their significant 

hazards, such as their high power and spread rate (Ito, 2005). Other gaps to consider after 

these two gaps are peatland wildfire, which has significant negative effect on the climate 

change, the detail phenomena in the event of wildfires such as firebrand, fire-whirl, and 

gust wind, and the generalization of the models, in that order. 

3.8. Conclusions 

This chapter reviewed the development of cellular automata modelling for 

wildfires and elaborated on the seven different concepts used. The developments which 

are emphasized in this review focus on the phenomena covered in the model, methods to 

improve the accuracy, and the extended applications of the model. Each concept has 

different characteristics and inherent benefits and shortcomings which have been 

implemented in a range of applications and across scales. However, the use of each 
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concept has not been generalised to draw its optimum potential. This generalisation could 

specify the most suitable concept for a particular case, and create optimal results, for 

example, by balancing accuracy and computational efficiency. Emphasizing the role of 

cellular automata modelling among physical models and vector-based models is also of 

importance to fit cellular automata into the bigger picture of wildfire modelling. 

Cellular automata have modelled many phenomena occurring in wildfires such as 

crown fire and rain. The consideration of environment, fuel, and weather conditions have 

also become common practices in the modelling. However, the number of phenomena that 

have been considered are limited compared to the number of phenomena emerging in real 

wildfires. This gap is due to the significant number of emerging phenomena during 

wildfires which needs to consider the interaction between entities, e.g., fire and 

atmosphere interaction, which then lead to a complex behaviour such as fire whirl. The 

fact that wildfires are not always isolated incidents means such fires becomes multi-

regime wildfires (WUI fires and peatland wildfires). Therefore, the interactions between 

wildfire and other fire hazards are important fields to explore. Of these gaps, the models 

for WUI fires are of utmost importance, due to the casualties it causes and the increase 

in such fires over the years.  These gaps lead to the requirement of greater computational 

resources. However, the computational efficiency of these models should be maintained 

because this benefit is one of the main benefit of using cellular automata. Therefore, the 

challenge of increasing the complexity of the model without significantly compensating 

with computational efficiency remains for future studies. The discussion and 

recommendation on the potential solutions for the existing gaps in cellular automata 

modelling for wildfires in this review, provide fundamental and practical knowledge and 

direction of research in cellular automata modelling for wildfires. 
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Chapter 4 – BARA: Cellular Automata 

Simulation of the Three Dimensional Spread of 

Smouldering Peat with Horizontally 

Heterogeneous Moisture 

Summary3 

In this chapter, a cellular automata model was developed (BARA) to simulate 3-D 

smouldering spread in peat with horizontally heterogeneous MC in both laboratory and 

large scale domains. BARA was developed based on heat accumulation and bond 

percolation approaches (see Chapter 3). In BARA, a novel method was implemented to 

introduce the third spread component, in-depth spread, in addition to the 2-D horizontal 

spread in previous works. BARA was calibrated (within 10% error), and blind predicted 

complex phenomena such as encirclement of wet peat and fire front merging in the 

laboratory scale simulation, due to the changes of fire front shape and spread direction 

that depend on the peat moisture profile. In the large scale simulation, BARA showed 

how smouldering burns the dry peat while avoids the wet one, creating unburnt patches. 

The model also showed that a horizontal layer of wet peat with sufficient width and 

moisture can discontinue the smouldering spread, minimising the burnt area. This 

chapter provides the knowledge on the smouldering behaviour in realistic conditions, 

knowledge that can be used to locate smouldering front and assess the vulnerability of 

peatlands based on its peat moisture distribution, to help mitigating peatland wildfires. 

4.1. The Development of BARA 

4.1.1. Introduction to BARA 

In this chapter, a cellular automata model was developed to simulate 3-D 

smouldering spread in peat with horizontally heterogeneous MC for the first time. 

Although the model is not a 3-D model in its full essence, the model can capture the 3-D 

spread of smouldering peat: 2-D horizontal spread and 1-D in-depth spread. The 

                                                                 
3 This chapter is based on “Dwi M J Purnomo, Eirik G Christensen, Nieves Fernandez-Anez, 

Guillermo Rein, 2022. BARA: Three Dimensional Simulation of Smouldering Fire of Peat with 

Horizontally Heterogeneous Moisture. International Journal of Wildland Fire, (submitted).” 
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advancement of the model to be a true 3-D model is possible, however, its computational 

cost will increase significantly, especially at the field-scale, which is not the aim of this 

thesis. The model developed here integrates a heat accumulation approach to model heat 

transfer and a bond percolation approach to introduce the uncertainty (see Chapter 3), 

adapting Fernandez-Anez et al. (2019). The heat accumulation approach mimics heat 

transfer from burning fuel to unburned fuel, which governs the fire spread, whereas bond 

percolation introduces uncertainty in the model that is related to the variability of nature, 

for example, caused by landscape heterogeneity. In the model, the intrinsic values (see 

Chapter 3) of the cells are updated every time-step based on the intrinsic values of their 

neighbours, and the state of the cells are updated stochastically (with a probability less 

than one), when their intrinsic values exceed predetermined thresholds. The simplest 

neighbourhood for CA, a von Neumann neighbourhood, was used, which includes the four 

adjacent cells: North (N), South (S), West (W), and East (E); of the centre cell (see Figure 

3.3a). From here on, the model in this chapter is referred as BARA, which originates from 

‘smouldering’ in Indonesian language. 

4.1.2. States and rules of BARA 

BARA considers 3 states: peat (P), smouldering (S), and burnt out (B). These states 

represent the simplified structure of smouldering fires. In physical terms, the peat state 

represents undisturbed peat that can transition to the smouldering state where the peat 

is burning. Once the full depth of the peat is consumed, the smouldering extinguishes and 

the cell transitions to burnt out state. Each cell in BARA has an intrinsic value, which in 

this work will be referred to as a heat value (𝑈), analogous to temperature in physical 

terms. The information of states and heat values of cells are stored in two different 

computational layers: the fuel layer and the heat layer, adapting Fernandez-Anez et al., 

(2019). This multi-layer approach enables BARA to replicate the physics of combustion. 

The fuel layer mimics the evolution of fuel during the combustion process (e.g., unburned 

fuel, oxidation), whereas the heat layer accommodates the heat dynamics of combustion 

processes that are commonly observed based on temperature distribution. 

The transition from peat to smouldering state depends on the 𝑈 of the cell: when 

the  𝑈  of a peat cell exceeds a burning threshold ( Θ ), the peat cell transitions to 

smouldering with a probability of 𝑃s  (smouldering probability). The 𝑈  of each cell is 

affected by the sum of 𝑈 transferred (𝑈t) to or from its neighbouring cells (𝑛). If 𝑈t is 

greater than zero, then the heat is transferred to the neighbours, otherwise, the heat is 

transferred from the neighbours to the centre cell. The value of 𝑈t  depends on the 

difference of 𝑈 between centre (𝑖) and neighbouring cells, the number of cells separating 
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the two cells (𝑙), and heat transfer coefficient (𝜑) as shown in Eq. 4.1 (see detail in 

Appendix Chapter 4B). 𝑙  was used in the formulation of 𝑈t , instead of the physical 

distance between two cells (in mm), since this refer to the discretized domain of BARA, 

where the smallest length quantity in BARA is one cell (i.e., 𝑙 is integer). 𝜑 determines 

the fraction of Δ𝑈 transferred to or from neighbour cells that imitates the heat transfer 

coefficient in physical terms, however, its value was simplified and translated to BARA 

domain. These heat transfer dynamics depend on the neighbouring cells involved in the 

process, therefore, Δ𝑈 , 𝑙 , and 𝜑  differ between neighbours. However, since the 

neighbourhood selected was von Neumann that only contains the four adjacent cells, 𝑙i−n 

in the model is constant i.e., one cell. 

 𝑈t = 𝜑n ∙
Δ𝑈i−n

𝑙i−n
 (4.1) 

Heat loss to the surroundings (top boundary condition) is also considered in BARA, 

which depends on the difference between the 𝑈 of a cell with 𝑈 of the ambient (𝑈o) and 

heat loss coefficient (𝜇). 𝑈o  is held constant at zero, for simplification purposes, as in 

nature, ambient condition varies daily and seasonally. At every time-step, some amount 

of heat value (𝜇𝑈) from each cell is lost to the surroundings, representing the heat loss 

due to convection and radiation. Although 𝜇 depends on many variables (e.g., convective 

and radiative heat transfer coefficient, peat temperature), 𝜇  is set to be constant for 

simplicity. Meanwhile, at the bottom of cell 𝑖, it is assumed to be without interaction, 

which is analogous to adiabatic in physical term.  These heat dynamics rules are 

summarized in Figure 4.1a. BARA adapts the concepts used in Fernandez-Anez et al. 

(2019) with reduction of the number of states to increase the computational efficiency. 
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Figure 4.1. (a) The schematic of the rules in BARA. The subscripts (𝑛) represent the neighbours 

position relative to the centre cell (𝑖), i.e., North (N), South (S), East (E), and West (W). The 

double-edge arrows represent that the flow could be reciprocal. The red arrows represent the 

heat loss to surrounding. (b) The schematic of the state change in BARA from peat (P) to 

smouldering (S) to burnt out (B). The state change from peat to smouldering occur when 𝑈 

exceeds 𝛩 with a probability of 𝑃𝑠. Smouldering cells remain in that state until 𝑡𝑠 when they 

become burnt out. 

In BARA, a novel method was implemented to introduce the in-depth spread, in 

addition to the 2-D horizontal spread in previous works (Fernandez-Anez et al., 2019). In 

Figure 4.1a, the thickness of the peat (𝑑) decreases with time during fire due to the in-

depth spread that consumes the peat vertically. One cell of peat contains inorganic and 

organic matter, water, and air (see Figure 4.2). Every time-step, when a cell is 

smouldering, the organic fraction of the cell with a thickness of 𝛿 is consumed by the fire. 

The fire completely consumes one cell of peat when the total of 𝛿  is equal to 𝑑. This 

phenomenon is modelled by using a smouldering time variable (𝑡s). Once the peat cells 

become smouldering, the cells remain burning for a certain 𝑡s (i.e., 𝑑 = 𝛿𝑡s). This recursive 

behaviour of the smouldering state mimics the in-depth spread of smouldering peat where 

in the top view of the landscape the area is still smouldering although the leading edge 

(smouldering front) has become relatively distant from the trailing edge.  



 

123 

 

 

Figure 4.2. The details of the components present in one cell in BARA. Each cell in the model 

contains inorganic, organic, water, and air components. In every time-step in the smouldering 

cells, peat with a thickness of 𝛿 is consumed by the fire. 

During 𝑡s, the smouldering cells generate heat of 𝑄R (heat release rate) in every 

time-step, increasing their 𝑈 , reproducing the heat generation phenomenon of a 

combustion process. In physical terms, heat generation depends on the time after ignition, 

which follows the Arrhenius law. However, for simplicity, 𝑄R is set to be constant at any 

time (i.e., constant from the ignition until 𝑡s), only depending on peat properties (e.g., 

organic density). The smouldering cells become burnt out after 𝑡s is reached. This burnt-

out state represents that the peat is completely consumed by the fire (see Figure 4.1b). In 

the borders of the domain (edge regions), the cells are treated as non-flammable cells, 

thus, it can be considered as heat sinks, where the heat is transferred to the borders but 

the borders do not ignite 

4.1.3. Sensitivity analysis 

The variables used in BARA were selected based on calibration against 

experiments. However, prior to this calibration, sensitivity analysis was performed on 

BARA to determine the range of values of the model’s variables. The sensitivity analysis 

was performed by exploring different combination of values of the variables in the model 

(𝑃s , 𝜑 ,  𝑄R , 𝑡s , Θ, and 𝜇 ), which make BARA prediction concur with the experimental 

results.  The results from the experiments of Christensen, Fernandez-Anez and Rein 

(2020) showed that the smouldering spread have circular ring pattern when the fire is 

ignited at the centre of a shallow reactor and spread radially, thus, the expected results 

from the sensitivity analysis are the predictions that have circular ring patterns. An 

exclusion is considered to the values of variables that make BARA predictions have 

significantly deviated shapes from circular ring, e.g., polygon as shown in Figure S4.1. 
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Therefore, from this exclusion, the range of values of variables in BARA are narrowed, 

leading to targeted and quicker calibration processes, and the calibration process becomes 

quicker since the search space becomes narrower. 

Both the sensitivity analysis and calibration were undertaken in a 400 × 400 cells 

grid, where the cell size (Δ𝑥) is 1 mm and 𝑑 is 1.6 cm (see Figure 4.1a). This domain follows 

the reactor size of the experiments used for calibration (40 cm × 40 cm × 1.6 cm; 

Christensen, Fernandez-Anez and Rein, 2020), whereas the cell size was selected because 

the results converged when the domain resolution is higher (see Figure 4.3). One time-

step (Δ𝑡) in BARA resembles 20 s in real time, which is selected to satisfy the stability 

criteria given the spatial resolution (Δ𝑥 ). The stability criteria in this thesis follow 

Courant–Friedrichs–Lewy conditions, which limits the cell size and time-step to avoid the 

diffusion of an entity exceeding one cell at one time-step. By using this domain, BARA is 

tested to simulate smouldering experiments with ignition in the centre of the domain and 

the smouldering spreads radially. 

 

Figure 4.3. Results from the BARA sensitivity analysis at different cell sizes. The model with 

different cell sizes was run by using different combination of model’s variables. Within one 

combination of model’s variables, the variation of horizontal spread rate (𝑆𝐻) is insignificant, once 

the cell size is less than 2 mm. From this analysis cell size (𝛥𝑥) of 1 mm is used in BARA. 

Since there are six variables in the model (𝑃s , 𝜑 ,  𝑄R , 𝑡s , Θ , and 𝜇 ), the ideal 

sensitivity analysis can be conducted by using many different combinations of the six 

variables. However, to speed up the sensitivity analysis, the variables were split into four 

groups of combinations of three variables. Therefore, the sensitivity analysis was done 

only with the combination of only three variables (instead of six), setting the other three 

variables as constant, and this approach was performed four times (for the other three 

variables one by one). The variables were grouped as follows: group 1 (𝑃s, 𝜑, and Θ); group 
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2 (𝑄R, 𝜑, and Θ); group 3 (𝑡s, 𝜑, and Θ); and group 4 (𝜇, 𝜑, and Θ); in which within each 

group, different combinations of values of the three variables were explored, while 

keeping the other three variables outside the group constant. The members of each group 

were selected based on initial sensitivity analysis where the combinations of the six 

variables in BARA (𝑃s, 𝜑, 𝑄R, 𝑡s, Θ, and 𝜇) were explored, but with significantly rougher 

intervals. From this initial sensitivity analysis, 𝑃s, 𝑄R, 𝑡s, and 𝜇 have little dependency to 

one another, but these variables highly depend on 𝜑 and Θ. This dependency corresponds 

to the compliance of the simulation results with experiments, when the value of a variable 

changes. For instance, to maintain the spread rate accuracy of BARA against the 

experiment, when 𝑡s changes, 𝑄R does not significantly change, but when 𝜑 or Θ changes, 

𝑄R changes significantly. 

From the sensitivity analysis of group 1 (see Figure S4.2), increasing 𝑃s could make 

BARA fails to produce similar shape with the experiments, whereas decreasing 𝑃s could 

make the smouldering fails to be self-sustained, thus, the range of which 𝑃s is plausible, 

is narrow. 𝑃s was then selected to be 0.1, and set to be a control variable, i.e., constant 

throughout this chapter. 

From the sensitivity analysis of group 2 (see Figure 4.4), the range of 𝜑  that 

enables BARA to give expected results are from 0.05 to 0.2. With 𝜑 lower than this range 

caused the smouldering to be non self-sustained, whereas higher value of 𝜑 caused the 

shape to be inaccurate. This reasoning was also adopted to determine the range of Θ, 

which was found to be 0.01 to 0.2. With constant 𝜑 and Θ, the increase of 𝑄R increases the 

horizontal spread rate (𝑆H) without violating the ‘expected result’ criteria, thus, wide 

range of different values of horizontal spread rate can be simulated by BARA. This 

capability is required by the model to be able simulate all the horizontal spread rate in 

Christensen, Fernandez-Anez and Rein (2020) in the calibration process. As shown in 

Figure 4.4, to fully capture the range of horizontal spread rate in the experiments, 𝑄R was 

varied with the minimum value of one. Therefore, during calibration process, the 

minimum value of 𝑄R was set to be one while the upper limit of 𝑄R was not specified. 
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Figure 4.4. Sensitivity analysis of 𝑄𝑅 on different 𝛩 and 𝜑 based on (a) horizontal spread rate and 

(b) smouldering width. The magenta lines represent the boundary between the circular (non-

transparent) and non-circular (transparent) shapes from the simulation results. 

However, none of the combinations of variables in group 2 successfully simulate 

all the smouldering width (𝑊S) in the experiments of Christensen, Fernandez-Anez and 

Rein, (2020). Only after 𝑡s , which belong to group 3, was explored, could all the 

smouldering widths in the experiments be successfully simulated (see Figure 4.5). From 

these sensitivity analysis, BARA can be used to fit all the experiments conducted in 

Christensen, Fernandez-Anez and Rein (2020). 
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From the sensitivity analysis of group 4, 𝜇 does not affect the horizontal spread 

rate or the smouldering width significantly when other variables are constant (within 20% 

variations), but 𝜇 determines the sustainability of the smouldering spread. With a very 

high 𝜇, the smouldering spread was not self-sustained. However, with 𝜇 = 0, there was no 

significant change to the BARA predictions. Therefore, the range of 𝜇 was set to be 0.01 

to 0.9. The upper limit of this range was selected based on the value at which the 

smouldering spread was not self-sustained with a minimum value of Θ and a maximum 

value of 𝜑, whereas the lower limit was selected to be 0.01 since the distribution of 𝑈 

during simulation with lower 𝜇 did not significantly differ. 

 

Figure 4.5. Sensitivity analysis of 𝑡𝑠 on different 𝛩 and 𝜑 based on smouldering width. The 

magenta lines represent the boundary between the circular (non-transparent) and non-circular 

(transparent) shapes from the simulation results. 

The change of values of variables used in BARA (𝑃s, 𝜑, 𝑄R, 𝑡s, Θ, and 𝜇) can be 

related with the change of physical parameters. In the simulation, with higher 𝜑, the 

increase of 𝑈  of cells become faster, which corresponds to the faster increase of 

temperature when thermal conductivity is higher in physical term. Meanwhile, with 

higher 𝜇, the net change of 𝑈 can become negative, thus, the value of 𝑈 was decreasing 

instead of increasing, which corresponds to the decrease of temperature when the heat 

loss is very strong (imagine igniting a sample inside a fridge with initial condition of 

sample is at room temperature). A higher value of 𝑄R also causes the acceleration of the 

increase of 𝑈 of cells. Although the effect of 𝜑 and 𝑄R is similar, from the rules of BARA 
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(see Chapter 4.1.2), 𝑄R corresponds to the heat of combustion in physical term, which also 

has an effect of accelerating the temperature increase when its value is higher. When Θ 

is higher, the 𝑈 of cells cannot reach Θ and smouldering in the simulation does not ignite, 

thus, this variable corresponds to the temperature of ignition, in which if its value is too 

high, ignition never happen. A higher value of 𝑡s simply makes the smouldering in the 

simulation sustain longer, thus, higher 𝑡s means thicker sample. 𝑃s is used to introduce 

uncertainty and it has no physical interpretation, but 𝑃s is important to simulate the 

variability in nature. 

The ranges of variable values found in this sensitivity analysis are not unique. 

Significantly different value of one variable can be compensated with different values of 

other variables to maintain the goodness of the simulation (e.g., maintain the circular 

ring shape). For instance, if the range of value of Θ or 𝜇 is few times higher, the model can 

prevail its goodness with 𝜑 or 𝑄R that has a range of values few times higher, since in 

BARA these variables are interconnected, and this has been tested in the initial 

sensitivity analysis with larger interval. However, once a variable is set, the other 

variables have certain ranges to maintain the goodness of the model. Therefore, the 

possibility of ranges of variable values that can be used in BARA become unique and the 

possibility of values outside these ranges to can be used when a variable has been set is 

very small. 

4.1.4. Calibration of BARA 

The variables used in BARA (𝑃s, 𝜑, 𝑄R, 𝑡s, Θ, and 𝜇) were calibrated against lab-

scale experiments (Frandsen, 1987, 1997; Christensen, Fernandez-Anez and Rein, 2020). 

Of these variables, 𝑃s is a control variable (𝑃s = 0.1, see Chapter 4.1.3); 𝜑, 𝑄R, and 𝑡s are 

variables that depend on peat properties; and Θ and 𝜇 are independent variables. This 

categorization was performed to further simplify the calibration process, i.e., only 

independent variables are systematically explored within their usable ranges, to make 

BARA predictions concur with the experiments. 

𝑡s is the time required by the fire, with in-depth spread rate of 𝑆d, to consume the 

peat vertically in an area equal to the area of one cell, from the surface throughout its 

thickness (𝑑). Therefore, 𝑡s was formulated as shown in Eq. 4.3 in Table 4.1. In-depth 

spread rate (𝑆d) was formulated as shown in Eq. 4.2, based on the relationship established 

in Christensen (2021), which found a strong correlation between in-depth spread and the 

inverse of the organic density. Therefore, BARA only requires peat properties as its input 

variables. Since BARA only needs peat properties data: MC, inorganic content (IC), and 

bulk density (𝜌b); it can be used to simulate smouldering spread with any peat conditions 



 

129 

 

(any MC, IC, and 𝜌b). In Eq. 4.2, 𝜌o is organic density, whereas 𝑎1 (-0.31 mm/min) and 𝑎2 

(110.7 kg.mm/m3.min) are constants in which their values follow Christensen (2021). 

 𝑆d = 𝑎1 +
𝑎2

𝜌o
  (4.2) 

The formulation of 𝑄R was derived based on the heat generated from combustion 

of a consumed peat at one time-step with a constant heat generation per unit volume (see 

Appendix Chapter 4B). 𝑄R  depended on 𝜌o  and 𝑆d  as shown in Eq. 4.4 in Table 4.1, 

however, 𝑄R was non-dimensionalized by using a constant (𝑎3) to translate a physical 

variable in BARA domain. 𝑎3 was selected to be 0.39 m2s/kg that make the minimum 

value of 𝑄R during calibration process is equal to one (see Chapter 4.1.3).  

The formulation of 𝜑 was derived based on 1-D transient conduction heat transfer, 

which considers effective thermal conductivity ( 𝑘e ) that includes the radiative heat 

transfer across pores, adapting Huang, Rein and Chen (2015) (see Appendix Chapter 4B). 

𝜑 depended on 𝜌b and effective specific heat of inorganic, moisture, and organic content 

(𝑐) as shown in Eq. 4.5 in Table 4.1. The effective specific heat was formulated as the sum 

of individual specific heat multiplied by its mass fraction (e.g., for organic content its mass 

fraction is organic mass per total mass). 𝜑 was normalized within the range of 0.05 to 0.2 

(see Chapter 4.1.3) by using constants (𝑎4 = 0.05 and 𝑎5 = 78,912 K/m3J).  

Table 4.1. List of variables in BARA with their values and units. 

 

Θ was calibrated by systematically explore the value between 0.01 and 0.2 (see 

Chapter 4.1.3) that enables BARA to replicate the experiments (Christensen, Fernandez-

Anez and Rein, 2020) in different conditions, i.e., different MC, IC, and 𝜌𝑏. The objective 

of the calibration of Θ is finding Θ that enables BARA to produce horizontal spread rate 

and smouldering width that agree with the experiments in Christensen, Fernandez-Anez 

and Rein (2020) given the dependent variables (𝜑, 𝑄R, and 𝑡s). 

𝜇 was calibrated by exploring the value between 0.01 and 0.9 (see Chapter 4.1.3) 

that enables BARA to have critical conditions close to the experiments (Frandsen, 1987, 

1997). These critical conditions are conditions (MC and IC) where a slight increase in MC 

Variable Value Unit 

Smouldering time (𝑡s) 𝑡s =  𝑑/𝑆d (4.3) s 

Heat release rate (𝑄R) 𝑄R =  𝑎3 ∙ 𝜌o ∙ 𝑆d (4.4) Non-dimensional 

Heat transfer coefficient (𝜑) 𝜑 =  𝑎4 +
𝑎5

𝑐𝜌b
⁄  (4.5) Non-dimensional 

Burning threshold (Θ) 0.01 – 0.2 Non-dimensional 

Heat loss coefficient (𝜇) 0.01 – 0.9 Non-dimensional 

Smouldering probability (𝑃s) 0.1 Non-dimensional 
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or IC could lead to non-self-sustained smouldering (Frandsen, 1987, 1997). The summary 

of the variables in BARA are listed in Table 4.1. Of these variables, only 𝑡s that has 

dimension because BARA considered the spatial and temporal units, but not the energy 

unit (due to its complexity). 

4.2. Results and Discussions 

4.2.1. Calibration results 

BARA accurately simulated the experiments of Christensen, Fernandez-Anez and 

Rein (2020) in all MC, IC, and 𝜌b conditions (examples of the comparison are shown in 

Figure 4.6). Figure 4.7 summarizes the comparison between BARA predictions and 

experiments based on horizontal spread rate and smouldering width, in which in both 

results, BARA predictions have good fit against experiments with less than 10% difference. 

These predictions were obtained by varying the value of Θ , therefore, Figure 4.7 

represents the deviation of the calibration of Θ  from the experiments. During the 

calibration of Θ, the value of dependent variables, 𝑄R,  𝜑, and 𝑡s, were determined by 

adopting the physical variables, whereas 𝜇 was set to be constant, as explained in Chapter 

4.1.4. In Figure 4.7, each blue circle represents the comparison of prediction and 

experiment at one peat condition, whereas the black line represents the predictions which 

would perfectly match with experiments. Therefore, if the horizontal spread rate or 

smouldering width from BARA predictions are equal to the values in experiments, the 

blue circles overlap with the black line. The error bars represent uncertainties in both 

experiments (x-axis error bar) and predictions (y-axis error bar). The uncertainty in the 

experiments were obtained by conducting two additional experiments with identical 

conditions for each condition (Christensen, Fernandez-Anez and Rein, 2020). The 

uncertainty in the predictions were obtained by repeating the identical simulations ten 

times, and this uncertainty was insignificant. In term of computational efficiency, BARA 

can finish one simulation in averagely 3 min for 1 h of smouldering peat simulation, a 20 

times faster-than-real-time. 

The main sources of errors that make BARA predictions deviated from 

experimental results are ignition regime, boundary conditions, and environment factors. 

The ignition protocol of experiment (ignition coil with a certain shape and provide a 

certain amount of power with a certain distribution along the coil length) could not be 

modelled in BARA perfectly (BARA used square region of ignition at the centre of reactor 

with a uniform power distribution), thus, the ignition regime became the largest source 

of error, especially due to the non-uniform power distribution. The boundary conditions 

in the experiment were also not perfectly modelled in BARA, for instance, at the four sides 
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BARA assumed the boundary to be non-flammable cells but these cells could receive heat 

value from the burning cells, thus, acting as heat sink, whereas at the bottom, BARA 

assumed that there is no interaction of heat value, thus, similar to adiabatic. These 

boundaries could not be considered as the actual boundary in the experiments, in fact 

these boundaries were the very simplified version of the real boundary conditions. 

Meanwhile, source of error from environment factors could be because of many external 

factors such as the effect of hot smoke of the combustion process and the effect of changing 

temperature and humidity near the reactor, which were not considered in the model. 

Although BARA predictions have good fit with experiments, there are possibility 

that the error in each part of the model and variable are cancelling each other, instead of 

accumulating, which make the total error become relatively small, a compensation effect 

(Bal and Rein, 2013). This issue is an emerging issue in the physics-based model, such as 

the modelling of pyrolysis (Bal and Rein, 2013). The main idea to tackle this issue is by 

limiting the complexity of the model, which means limiting the number of variables that 

are used (Bal and Rein, 2013). BARA used small number of variables (only six) and each 

variable has its own role in the model. In term of the rules in the model itself, BARA 

considered the very basic physics without additional complexity, which have been widely 

known, such as heat transfer from one cell to another when their heat value (correspond 

to temperature) are different, heat loss to the surrounding when the heat value of a cell 

is higher than the surroundings, and heat value that is generated when combustion 

process is taking place. 

Compensation effect might still happen, in fact in Chapter 4.1.3 it has been 

explained that the range of values of variables in BARA were not unique and different 

range of values could also maintain the goodness of the model, unless the value of a 

variable was set. However, the variables in BARA were non-dimensional variables, unlike 

the variables in physics-based models that have exact units and physical meaning, thus, 

how good the variables in BARA work together is more important than how accurate the 

value of each variable is. For instance, the value of 𝑄R that was equal 1 does not literally 

mean that the heat of combustion has a certain value that correspond to 1, although in 

the model, 𝑄R was the variable that represents heat of combustion in BARA. Therefore, 

with a certain value of heat of combustion, the 𝑄R could be of any value, but to limit the 

volatility of BARA variables, the value of a variable in BARA was set, which depends on 

the user.  
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Figure 4.6. Comparison examples between BARA prediction and experiment of Christensen, 

Fernandez-Anez and Rein (2020) in the calibration process at two different conditions: (a) 2.5% 

IC and 110% MC; (b) 20% IC and 0% MC. 

The calibration shows that Θ have strong linear correlation (R = 0.91) with thermal 

inertia (𝐼T) in log-log axes as shown in Figure 4.8. Therefore, Θ was formulated as shown 

in Eq. 4.6, where 𝐼T is a function of 𝑘 (thermal conductivity), 𝜌b, and 𝑐 as shown in Eq. 4.7. 

While thermal inertia represents the ability of a material to conduct and store heat, the 
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correlation of Θ with thermal inertia does not have a strong physical interpretation, in 

which higher thermal inertia does not mean lower ignition temperature (the physical 

variable that is represented by Θ). The correlation in Eq. 4.6 was the correlation in 

computational term to increase the usability of the model, in which by using this 

correlation, BARA can be used to simulate peat smouldering at any conditions apart from 

the ones of the experiments that were used for calibration, given the peat properties data 

are available. 

 Θ = exp(−1.1938ln(𝐼T) − 16.599) (4.6) 

 𝐼T = 𝑘𝜌b𝑐 (4.7) 

 

Figure 4.7. The calibration results of 𝛩 in BARA against experiments (Christensen, Fernandez-

Anez and Rein, 2020) on horizontal spread rate (left) and smouldering width (right). The solid 

black line represents the target, at which the prediction perfectly matches with the experiments. 

The blue circles are the simulation results from BARA with their uncertainty (10 repetitions). 

𝜇 was calibrated separately based on the experiment at critical conditions (critical 

MC and IC; Frandsen, 1987, 1997). Figure 4.9 shows the critical conditions of BARA for 

different 𝜇 compared with experiments. When using low 𝜇, the critical conditions of BARA 

were significantly higher than the experiments, meaning the smouldering spread could 

be self-sustained in more adverse conditions. When using high 𝜇, the critical conditions of 

BARA were significantly lower than the experiments. When 𝜇 = 0.1 , the critical 

conditions of BARA have good agreement with the experiments. From this calibration, 

𝜇 = 0.1 was selected and set constant. The calibration of 𝜇 has insignificant effect on the 

calibration of Θ  ( 𝜇  does not affect horizontal spread rate and smouldering width 
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significantly), thus, although they were calibrated separately, the results obtained are 

still valid. 

 

Figure 4.8. The correlation between 𝛩 in BARA and thermal inertia. The black circles are the 

data point of 𝛩 obtained from the calibration results at corresponding thermal inertia. The solid 

red line represents the optimum regression line of 𝛩 that gives a low error from the calibration 

results. 

Although with 𝜇 = 0.1  BARA predictions have a reasonable fit against the 

experiments of (Frandsen, 1987, 1997), there are sources of errors that can be addressed 

in future work to improve the fit. The main sources of errors are ignition regime, boundary 

conditions, and the variability of peat properties. The line ignition (5 cm of ignition coil) 

in the experiments, became the largest source of error due to the non-uniformity of power 

distribution along the ignition coil, which could not be modelled in BARA, and due to the 

use of line ignition, the power distribution non-uniformity became stronger (since it is 

longer) than the non-uniformity of radial ignition in Christensen, Fernandez-Anez and 

Rein (2020). The difference of boundary conditions between BARA and experiments, such 

as at the four sides and at the bottom (as previously explained), could also become 

significant source of error. While the peat sample in Frandsen (1997) was pre-treated 

prior to the experiment, the peat sample in Frandsen (1987) was used without pre-

treatment (natural sample), thus, the variability of peat properties in Frandsen (1987) 

was significant, although this properties variability also presented in Frandsen (1997) 

but weaker. This variability can be seen in Figure 4.9 where the critical MC and IC in 

Frandsen (1987) has strong deviation from a straight line, whereas in Frandsen (1997), 

the critical MC and IC almost fall into one straight line. The peat properties variability, 
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is therefore, also an important source of error in the model since this variability was not 

considered in BARA. 

 

 

Figure 4.9. The calibration of 𝜇 in BARA against experiments (Frandsen, 1987, 1997) of critical 

conditions of self-sustained spread. The region at top-right of the figure is the region of non-self-

sustained spread, whereas the bottom-left region is the region of self-sustained spread. The solid 

black lines represent the simulation results of BARA. The symbols show the experiment results 

on previous works (Frandsen, 1987, 1997). 

4.2.2. Blind predictions of controlled experiments 

 Once calibrated, BARA was used to blind predict (without fitting of parameters) 

lab-scale experiments of smouldering fire in dry (0% MC) and wet (60% MC) peat variation. 

Three different peat MC configurations were studied: halftone, stripes, and checkerboard, 

as shown in Figure 4.10a, which are selected due to the availability of the experimental 

data for validation. The terminologies that are used to explain the results of these 

simulations are depicted in Figure 4.10b. In the halftone configuration, region 1 is wet 

and 2 is dry, whereas the edge region is the region in the proximity of the reactor sides. 

The edge region also has the same meaning for stripes and checkerboard configuration. 

In the stripes configuration, region 1 is wet, 2 is dry, and 3 is wet again (see Figure 4.10a). 
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In the checkerboard, the configuration is represented in column and row indexes, which 

are arranged according to Figure 4.10a. For instance, in column 2 and row 3, the peat is 

dry. Different regions in these three configurations are separated by MC boundary 

(magenta line). At this MC boundary, the region with high MC meets the region with low 

MC creating an abrupt change of MC.  

 

Figure 4.10. (a) The configuration of MC distribution of the lab-scale experiments. The wet peat 

is 60% MC, whereas the dry peat is 0% MC. The experiments were conducted in a 20cm × 20cm × 

6cm reactor with line ignition at the bottom edge of the pictures. (b) Schematic of region 

terminologies for the simulation results of BARA in lab-scale experiments with halftone, stripes, 

and checkerboard configurations. In each configuration, there are edge regions, regions near the 

reactor sides; middle part, the regions relatively distant from the reactor sides; and MC 

boundary, the location at which peat with high MC and low MC meet. 
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Simulation results from BARA were qualitatively compared to the lab-scale 

experiments since the conditions and reactor dimension between the calibration data and 

the varied MC experiments are different. The reactor used in the calibration data was a 

shallow reactor (40cm × 40cm × 1.6cm) with a centre ignition that causes the fire to spread 

radially, whereas the varied MC experiments used 20cm × 20cm × 6cm reactor with a line 

ignition at one side on the reactor and the fire spreads linearly. The depth of the reactor 

influences the behaviour of the smouldering fire, for instance, the horizontal and in-depth 

spread rate at equal MC and IC are slightly different between two reactors with different 

depth (compare Christensen, Fernandez-Anez and Rein, 2020 with Huang and Rein, 

2017). Due to this small difference, the goodness of the model is expected to prevail, 

although it has discrepancy, when the model is used to simulate experiments with a 

deeper reactor. 

Figure S4.3 compares BARA against the experiment in halftone configuration, and 

shows that the smouldering front in BARA fuel layer has a good agreement with the 

experiment. The slower spread on the wetter part (region 1), followed by the inclined front 

at the MC boundary, which indicates a transition from wet to dry peat which has faster 

spread rate on region 2, can be observed in both the experiment and BARA. The arc shape 

on the edge region in BARA prediction matches with the arc shape in the experiment. 

This arc shape indicates the retardation of the spread on edge region since the ignition 

does not cover the whole width of the reactor (see Figure 4.10a). 

The colour distribution in the heat layer of BARA also has a good agreement with 

the infrared footage of the experiment to some extent, which indicates that the heat 

radiation distribution in the model was comparable with the experiment. However, the 

smouldering width in BARA was significantly different from the experiment. This 

difference was caused by the difference on the reactor depth, where BARA assumed a 

shallow reactor (1.6cm depth), whereas the experiment used a reactor with a several times 

greater depth (6cm depth). Using a greater depth in BARA was avoided since the model 

has not been calibrated with depth due to the unavailability of data of experiments on 

smouldering with depth variation. The use of a deeper reactor in the simulation caused 

the trailing edge of the smouldering has sharp edges, which significantly deviate from the 

experiments (and unrealistic), although these sharp edges did not present in the 

simulation of smouldering peat with uniform MC at a deeper reactor. This discrepancy is 

one limitation of BARA that is directly related to the rule for 𝑡𝑠, thus, in future work, the 

improvement of the rule for 𝑡𝑠 , and its validation with corresponding experiments, is 

expected to solve this issue. Once this issue is resolved, the results from BARA can be 
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used and compared with the experiments quantitatively. However, since the leading edge 

of the smouldering peat in the simulation has a good agreement with the experiment, 

BARA can give an estimation on the leading edge of smouldering peat with varied MC, 

the estimation that can be used to assist firefighting attempts, for example, for the 

consideration of firefighters deployment from its multiple faster (~20 times faster) than 

real time simulations.  

Applied to a more complex stripes configuration, BARA accurately simulated the 

lab-scale experiment as shown in Figure S4.4. In region 1 (t1), the smouldering fire 

spreads slowly since this region has a higher MC. Arc shapes on the edge regions are also 

observed in this configuration in both the experiment and BARA prediction, indicating 

that the ignition protocol used is the same with the halftone configuration. The 

smouldering front then enters region 2 (drier peat), and the smouldering spread 

accelerates (t2). However, since there are arc shapes in edge region, the acceleration of 

the spread in the middle part precedes the acceleration in the edge region. This delay 

causes the gap between fire front at the middle part and the edge region to become larger, 

and the arc shapes are stretched to become linear. This linear shape is similar to the 

shape in the halftone configuration, which indicates that there is MC difference between 

middle part and edge region, meaning that the smouldering front in the middle part has 

reached region 2, whereas the smouldering front in the edge regions are still in region 1. 

In region 3, where the MC is high again, the smouldering spread in the middle part 

decelerates. This deceleration, in addition to the fire front mismatch between the middle 

part and the edge region due to the ignition protocol, causes the smouldering front in the 

edge region to overtake the smouldering front in the middle part. The smouldering front 

in the middle part enters region 3 before the smouldering front in the edge region, thus, 

the smouldering front in the middle part starts decelerating, whereas the smouldering 

front in the edge region is still spreading relatively quickly since the front is still in the 

low MC region (region 2). These phenomena cause the smouldering front to flatten as 

shown in Figure S4.4 (t3). From these results, BARA has been proven robust simulating 

a more complex MC configuration where sequence of complex phenomena are involved 

(arc shape, arc stretching, and flattening). 

Finally, the comparison between BARA prediction and a lab-scale experiment in 

the checkerboard configuration is shown in Figure 4.11. In the checkerboard configuration, 

there are nine regions with alternate MC between dry and wet peat. The spread behaviour 

of this configuration changes depending on the position of the smouldering front. In row 

1 (t1), the smouldering in column 2 precedes the spread of the smouldering in column 1 
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and 3 which are wetter. Arc shapes in the edge region are also observed since the ignition 

protocol is the same with the halftone and stripes configurations. Once the smouldering 

front reaches row 2 (t2), the spread in column 2 decelerates since the peat is wet in that 

quadrant. The smouldering front in columns 1 and 3 is still in row 1 where the MC is 

higher, thus, the smouldering still spreads slowly. However, at the boundary (MC 

boundary) between column 2 with columns 1 and 3 in row 2, the smouldering changes 

direction to spread diagonally towards the lower MC quadrant (column 1 and 3 in row 2). 

This diagonal spread causes the creation of ear shapes at the MC boundary as shown in 

Figure 4.11 in both the experiment and the simulation (t2). These ear shapes continue to 

spread diagonally until the peat is fully consumed in columns 1 and 3 in row 2. During 

the diagonal spread, the smouldering front in column 1 and 3 in row 1 overtakes the 

smouldering front in column 2 and merge with the ear shapes. This merging phenomenon 

causes the smouldering front in columns 1 and 3 to flatten. During this flattening 

phenomenon, the smouldering in columns 1 and 3 spreads faster (they spread in a low 

MC region) than in column 2, which make the smouldering front in columns 1 and 3 

precedes the smouldering front in column 2. However, once the smouldering front reaches 

row 3, the smouldering in columns 1 and 3 decelerate since the MC at those two quadrants 

is high. The smouldering spread at the MC boundary (between column 2 with columns 1 

and 3 in row 3) changes direction, again, to move diagonally towards column 2. This 

diagonal spread merges with the smouldering front in column 2 that has just entered row 

3. Therefore, at the end of the simulation (and experiment), the smouldering front is flat 

in column 1 and 3 and has a step profile in column 2 as shown in Figure 4.11 (t3). These 

sequences of complex phenomena have been captured by the blind predictions of BARA. 

Although BARA was only compared qualitatively, BARA accurately simulated the 

complex progression of the smouldering front (leading edge) in checkerboard 

configuration. Therefore, BARA is a powerful tool to simulate smouldering peat at varied 

MC. The main limitation of BARA is the simulation of the trailing edge, which deviated 

significantly from the experiments of smouldering spread at varied MC, and subject for 

future works, apart from the ignition regime, boundary conditions, and environmental 

factors that could not be perfectly modelled in BARA, which are similar with the 

limitations explained in Chapter 4.2.1. The full comparison of BARA with the lab-scale 

experiments of peat smouldering at varied MC can be found in supplementary material. 
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Figure 4.11. Comparison of smouldering profile between BARA simulations and the experiments 

of smouldering peat with heterogeneous MC in the checkerboard configuration. The comparison 

is focused on three different times after ignition that show significant differences. The full 

comparison can be found in supplementary material. 

Complex progression of smouldering peat at varied MC indicates the difficulty of 

predicting the smouldering spread in peatland wildfires upon firefighting attempts. The 

failure of locating the smouldering front in firefighting attempts significantly reduces fire 

suppression effectiveness, since it means that the suppression water (or agent e.g., foam) 

is sprayed at a location distant from the smouldering front. This location mismatch means 

the suppression water must travel some distance before reaching the smouldering front. 

The water travels while also receives heat and disperses through the pores of the peat, 

meaning the suppression water significantly loss its heat-absorbing ability (due to the 

higher temperature and lesser amount of water) when reaching the smouldering front 

(Santoso et al., 2021). By performing this smouldering front estimation, combined with 
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multiple faster-than-real-time simulations that can be performed to capture the 

uncertainty in nature (e.g., weather uncertainty), optimum firefighting strategy can be 

developed, for instance, for determining the number and deployment of firefighters, thus, 

the effectiveness of firefighting attempts could improve. 

4.2.3. Predicting smouldering behaviour in a natural peatland 

The use of BARA was extrapolated to predict (forecasting without fitting of 

parameters) how the smouldering would have behaved, given the MC variation provided 

in Prat-Guitart et al. (2017) (see Figure 1.3). The MC variation data of Prat-Guitart et al. 

(2017) were obtained from the measurement and modelling of the MC of peat in boreal 

peatland in Ireland within 150cm × 150cm area. Their model was calibrated against 

detailed measurement of MC in different combination of surface vegetation and micro-

topography. The result of this larger scale simulation is shown in Figure 4.12 (left) and 

BARA required 2h of computational time (for simulating 43h of smouldering peat) to 

finish one simulation. The smouldering spreads following the contour of the MC profile 

and can spread at MC slightly higher than the critical condition (~120% MC) when the 

ignition sustains. However, the spread across critical condition only partially burns the 

peat (i.e., only few peat cells at critical conditions are consumed), which agrees with the 

lab-scale experiments (Prat-Guitart et al., 2016a). This finding indicates that the heat has 

been accumulated prior to reaching the critical region, therefore, there is enough heat to 

partially burn the peat, even at critical condition. Once the accumulated heat is depleted 

for igniting the peat at critical conditions, the smouldering extinguishes. This depletion 

process is accelerated when the smouldering encounters region with a higher MC, leading 

to a smaller burnt area. 

Since BARA was calibrated with many experimental data (22 independent 

experiments) and accurately blind predicted the leading edge of smouldering peat in other 

independent experiments that have more realistic condition (non-uniform MC), these 

results can give insight on how the smouldering spreads in a real peatland. The faster-

than-real-time simulation of BARA can be used to assist the development of firefighting 

strategy, for instance, its multiple simulations to find the optimum allocation of resources. 

While in laboratory-controlled experiments there are sources of errors, the simulations of 

BARA in real peatland have even more sources of errors. Apart from ignition regime, 

boundary conditions, variability of peat properties, and environmental factors, the 

simulations in real peatland can also have sources of errors from the weather, temporal 

variation of peat properties, environmental factors, and weather, surface vegetation, and 

many others. Therefore, while BARA can give insights on the smouldering spread in real 
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peatland, it must be used with care and experts should be the one to make the final 

decision. 

 

Figure 4.12. Simulation result of BARA in natural peatland with varied MC (left) and simulation 

result of BARA in hypothetical landscape (right). The ignition location is represented by yellow-

glowing blue circle. The grey contour lines represent the constant MC and red lines represent the 

critical MC. The grey area represents burnt peat (B), whereas the green area represents 

undisturbed peat (P). Inside region is the region encircled by firebreak, whereas outside region is 

region across the firebreak. 

BARA also captured the formation of patches of unburned peat during the 

smouldering spread. These patches are formed because the MC in the patches is 

significantly above the critical condition, but surrounded by peat with a lower MC. 

Therefore, while the surrounding area of the patches are burnt, the peat inside the 

patches remains intact, as shown in Figure 4.12 (left). The patches of unburned peat 

surrounded by burnt peat are commonly observed in real peatland wildfires (Prat-Guitart 

et al., 2016a, 2017). BARA has successfully simulated this phenomenon which translates 

lab-scale experiments into the context of peatland wildfires. 

The simulation result shown in Figure 4.12 (left) was ignited at the location with 

50% MC, however, even if the ignitions were at different locations with different MC (50%, 

75%, and 100%, where the ignition sustain), the burnt scars are not significantly different. 
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This finding implies that once the ignition sustains, the extinction of smouldering spread 

mainly depends on the contour of the MC profile. The smouldering consumes the peat that 

has MC lower than the critical MC, continues to spread following the contour of the peat 

with low MC, and stops spreading after reaching peat with critical MC or higher. The 

horizontal layers of peat with high MC, therefore, discontinue the smouldering spread, 

i.e., acting as smouldering firebreak, which can minimise the total burnt area caused by 

the fire. However, if the smouldering firebreak is thin or formed by layers with peat MC 

close to the critical condition, the smouldering can penetrate the firebreak, causing the 

fire to reach the other side of the firebreak (Huang and Rein, 2015; Lin, Liu and Huang, 

2021). If the peat across the firebreak is dry, and the penetration of smouldering against 

the firebreak reaches the other side, the firebreak fails its purpose, and the burnt area 

caused by the fire becomes significantly larger. Therefore, sufficiently wide and moist 

firebreak, i.e., layers of wet peat, are required to discontinue the smouldering fire spread 

and minimise the burnt area caused by peatland wildfires. 

These mechanisms were analysed by using BARA to simulate smouldering in a 

hypothetical landscape. In this hypothetical landscape, the peat MC profile in Figure 4.12 

(left) was modified: the peat MC across the smouldering firebreak, the outside region (see 

Figure 4.12, right), was set to be 50%. The thickness and the MC of the firebreak were 

varied. The failure of smouldering firebreak (see Figure 4.12, right) highly depended on 

both firebreak width and MC. The smouldering could penetrate firebreak with MC of 160% 

if the firebreak width was less than 3mm, however, when the MC of firebreak was 135%, 

the smouldering fire could penetrate the firebreak even with width of 20mm (see details 

in Figure S4.5). These findings indicate the effectiveness of the wet peat layers acting as 

firebreak are affected by its MC and width, where the width has a higher influence than 

the MC (see Figure S4.5). These findings confirm with Huang and Rein (2015), however, 

with different critical width and MC. Part of the reason of these differences is due to the 

different reactor (domain) used in the model. While BARA used shallow reactor, Huang 

and Rein (2015) used vertical reactor, and unlike physical model, BARA require further 

calibration based on reactor depth to be able to simulate the smouldering spread in reactor 

with different depth (which cannot be done due to the unavailability of the experimental 

data). However, qualitatively, the findings in BARA regarding firebreak concur with the 

findings in Huang and Rein (2015) and BARA has more dimension (3-D spread compared 

to 1-D spread) and applied to a more realistic scenario. The firebreak failure causes the 

significant increase of total burnt area (compare Figure 4.12 left and right). This increase 

of burnt area could become more dramatic in real peatland wildfires, since in the 
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simulation the area of domain is limited, whereas the area in real peatlands are 

significantly larger, in order of thousands of hectares.  

These model predictions indicate that the peat MC profile (which can be estimated, 

e.g., by using remote sensing) is highly related to the vulnerability and risk of smouldering 

peatland wildfires. BARA provides a tool to quantify the risk, e.g., based on burnt area, 

which make the mitigation efforts become more efficient. For instance, instead of 

maintaining peat with high MC in the entire peatland, such as by performing rewetting 

on the peatland, by using the prediction from BARA, this rewetting treatment can only 

be performed on the locations with high risk. 

4.3. Conclusions 

A cellular automata model was developed to simulate the three-dimensional (3-D) 

spread of smouldering fire in peat with heterogeneous MC profile. The model (BARA) was 

calibrated against lab-scale experiments in various conditions, with a relative absolute 

error of less than 10%. BARA was applied to blind predict lab-scale experiments of 

smouldering fire in peat with heterogeneous MC and accurately reproduced various 

phenomena observed in the experiments: tilting, flattening, and merging. Tilting is a 

phenomenon when the flat leading edges in dry peat (faster spread rate) and wet peat 

(slower spread rate) regions are connected by an inclined leading edge instead of a step 

(90o angle). Flattening is a phenomenon when the dry and wet peat regions are reversed, 

causing the leading edges in both regions become relatively flat since the spread rates in 

the two regions are reversed. Merging is a phenomenon when the leading edges from 

different regions collide due to a diagonal propagation. These results prove the capability 

of BARA for simulating smouldering fire in peat with heterogeneous MC. 

BARA was used to predict the smouldering spread at the large-scale on a boreal 

peatland in Ireland. BARA simulated the creation of patches of unburned peat, which is 

a common phenomenon observed in peatland wildfires. In this large-scale simulation, the 

model predicted that the smouldering could penetrate and partially burn wet peat, up to 

135% MC, which confirm with the experiments (Prat-Guitart et al., 2016a). This 

penetration phenomenon implies that horizontal layers of wet peat which discontinue 

smouldering spread, might fail if their width or MC are insufficient. These findings agree 

with physics-based model (Huang and Rein, 2015), qualitatively, however, BARA 

considers more spread direction (3-D spread compared to 1-D spread) and was applied to 

a more realistic scenario (heterogeneous MC). The peat MC profile significantly affects 

the vulnerability of peatlands to fire. With the prediction from the model, the 

vulnerability of peatlands can be quantified and better management strategies can be 
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performed, for instance, by performing multiple faster-than-real-time simulations to 

determine the optimum locations for the rewetting treatment of the dry peat. The findings 

and model provide knowledge on the behaviour of smouldering fire in peat with realistic 

conditions and a tool that can help, for instance, locating the smouldering front for 

suppression purposes and determining the optimum rewetting strategy, thus, can 

improve the effectiveness of peatland wildfires mitigation.
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Chapter 5 – BARAPPY: Hybrid model of 

Cellular Automata and Physics-Based 

Equations to Simulate Three Dimensional 

Smouldering Fire 

Summary4 

In this chapter, a novel 3-D smouldering model (BARAPPY) was developed by 

combining cellular automata (CA) and physics-based models. A physics-based model was 

used to solve the in-depth smouldering profile, which the 3-D smouldering CA model 

(BARA) fail to accurately simulate due to the unavailability of the experimental data for 

the calibration (see Chapter 4). Both BARA and physics-based model were validated, 

independently, against experiments on peat with 12 combinations of moisture and 

inorganic contents, with average errors (relative absolute error) on spread rate of less 

than 20%, which is reasonable since this error is within the experimental uncertainty. 

Comparing the two models, the main benefits of physics-based model are the level of 

generality and detail that can be acquired such as temperature, species, and reaction 

profiles, whereas BARA benefits from two order of magnitude higher computational 

efficiency, which is of utmost important for field-scale modelling. BARAPPY accurately 

reproduced the 3-D spread of smouldering peat on non-uniform MC, a half wet-half dry 

configuration, and predicted the non-uniform DOB of smouldering peat. The selection of 

this simple peat MC configuration was based on two reasons: the availability of validation 

data and to avoid the additional complexity. BARAPPY also predicted the initiation of 

overhang formation when the moisture gradient is significant (greater than 20%), which 

was confirmed by physics-based models and experiments. This work provides 

fundamental knowledge of the 3-D smouldering which can help mitigating peatland 

wildfires and reducing their negative environmental impact. 

                                                                 
4 This chapter is based on “Dwi M J Purnomo, Han Yuan, Muhammad A Santoso, Guillermo Rein, 

2022. BARAPPY: Hybrid model of Cellular Automata and Physics-Based Equations to Simulate 

Three Dimensional Smouldering Fire. (to be submitted).” 
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5.1. The Development of BARAPPY 

5.1.1. Introduction to BARAPPY 

In Chapter 4, the potential of cellular automata (CA) to simulate 3-D spread of 

smouldering is proved. However, the model in Chapter 4, BARA, suffers from the 

inaccuracy of the smouldering trailing edge simulation, which directly corresponds to in-

depth spread. This inaccuracy stems from the unavailability of the experimental data for 

calibration (see Chapter 4). This in-depth spread governs the DOB, which can be used to 

estimate the amount of peat loss during wildfires (Rein et al., 2008). Smouldering peat 

fire is often untraceable and can be detected only after the fire widely spread, due to the 

flameless nature and the tendency of smouldering to spread subsurface (Huang et al., 

2016). Therefore, the monitoring of the volume of peat that is burnt during wildfires (peat 

loss) can facilitate early detection, and this volume can be estimated based on burnt area 

and DOB. Beside early detection, the monitoring of this volume also enables estimation 

of the climate change impacts and the severity of peatland wildfires, such as the total 

carbon emission and microorganism loss, respectively (Rein et al., 2008). Through a better 

understanding of 3-D smouldering behaviour, the DOB estimation will improve, thus, 

aiding the estimation of volume of burnt peat for the mitigation purposes. 

This chapter aims to overcome the inaccuracy of the in-depth profile from BARA 

simulation by integrating a physics-based model to BARA. While BARA simulates the 2-

D horizontal spread, the physics-based model simulates the in-depth spread. The 

development of the physics-based model is by simulating lab-scale experiments of 

smouldering peat with 12 different combinations of MC and IC (see Table 5.1), the same 

experiments that are used for calibrating BARA (Christensen, Fernandez-Anez and Rein, 

2020), which were selected due to the availability of the experimental data. Although 

these peat conditions are mostly different from the peat conditions in nature (i.e., peat 

MC in nature is most likely above 60% even in drained peatland in a dry season; 

Nusantara, Hazriani and Suryadi, 2018), the results of the model can be considered as 

conservative since the model focuses on the extreme peat conditions (e.g., a very dry peat). 

However, while BARA consider the top view of the reactor, the physics-based model 

considers the side view of the reactor (see Figure 5.1a). For simplicity, the physics-based 

model will be referred to as GPyro (the solver). Once combined, the hybrid model will be 

referred to as BARAPPY which stems from BARA and GPyro and means “burning” in 

Indonesian. 
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Table 5.1. Pairs of MC and IC used for the validation of the models. These pairs are adopted from 

Christensen, Fernandez-Anez and Rein (2020). 

 

 

 

 

 

Figure 5.1. (a) Schematic of the experiments in Christensen, Fernandez-Anez and Rein (2020) 

used for validation of the cellular automata (BARA) and physics-based model (GPyro). (b) The 

computational domain used for GPyro. (c) The computational domain used for BARA. 

5.1.2. Physics-based model 

The domain of the physics-based model (GPyro) is shown in Figure 5.1b, which is 

half of the 2-D side view of the reactor (see Figure 5.1a). The side-view domain was 

selected since top-view domain in physics-based model requires the top and bottom 

boundaries to be equal (which is not the case). The experiments in Christensen, 

Fernandez-Anez and Rein (2020) resulted in uniform radial spread, thus, half 2-D 

computational domain was used to minimise computational cost, with symmetry 

boundary condition at the left side, as shown in Figure 5.1b, adapted from Yuan, Restuccia 

and Rein (2021). 

The physics-based model is built on GPYRO (thus, named GPyro) which solves 2-

D conservation equations for both solid and gas phases (Lautenberger and Fernandez-

MC [%] 0 0 0 0 0 20 40 60 80 20 40 60 

IC [%] 0 20 40 60 70 0 0 0 0 40 40 40 
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Pello, 2009). The gas-phase temperature is assumed to be in thermal equilibrium with the 

condensed-phase temperature (Huang, Rein and Chen, 2015). The equations are shown 

in Eq. 5.1 to Eq. 5.6 (see details of formulation and assumption in Lautenberger and 

Fernandez-Pello, 2009) which are condensed-phase mass, condensed-phase species, 

condensed-phase energy, gas-phase mass, gas-phase species, and gas-phase momentum 

(Darcy's law), consecutively. These equations are solved implicitly by a using tri–diagonal 

matrix (Thomas) algorithm, which is discussed with more detail in Lautenberger and 

Fernandez-Pello (2009). Thomas algorithm was used because of its computational 

efficiency to solve recursive matrix operation (in the governing equations of GPYRO; 

Lautenberger and Fernandez-Pello, 2009).  

In these equations, 𝜌̅ is bulk density, 𝑡 is time, 𝜔̇′′′ is volumetric reaction rate, 𝑌 is 

mass fraction, 𝑋 is volume fraction, ℎ̅ is specific enthalpy, 𝑘 is thermal conductivity, 𝑇 is 

temperature, Δ𝐻 is change in enthalpy, 𝜓̅ is porosity, 𝑚̇′′ is mass flux, 𝐷 is diffusivity, 𝜅 

is permeability, 𝜈  is viscosity, and 𝑝  is pressure (see nomenclature for their units). 

Subscripts f is formation, d is destruction, g is gas, and eff is effective, whereas i and j 

refer to the condensed-phase species (water, peat, or sand) and gas-phase species (oxygen, 

nitrogen, or gaseous products), respectively. The physical variables in Eq. 5.1 to Eq. 5.6 

are time and space dependent (their value differ at different position or time). 

 
𝜕𝜌̅

𝜕𝑡
= −𝜔̇fg

′′′ (5.1) 

 
𝜕(𝜌̅𝑌i)

𝜕𝑡
= 𝜔̇fi

′′′ − 𝜔̇di
′′′ (5.2) 

 
𝜕(𝜌̅ℎ̅)

𝜕𝑡
= 𝑘

𝜕

𝜕𝑥
(

𝜕𝑇

𝜕𝑥
) + 𝑘

𝜕

𝜕𝑧
(

𝜕𝑇

𝜕𝑧
) + 𝜔̇di

′′′(−Δ𝐻i) (5.3) 

 
𝜕

𝜕𝑡
(𝜌g𝜓̅) +

𝜕𝑚x
′′

𝜕𝑥
+

𝜕𝑚z
′′

𝜕𝑧
= 𝜔̇fg

′′′ (5.4) 

𝜕

𝜕𝑡
(𝜌g𝜓̅𝑌j) +

𝜕

𝜕𝑥
(𝑚x

′′𝑌j) +
𝜕

𝜕𝑧
(𝑚z

′′𝑌j) = −
𝜕

𝜕𝑥
(𝜓̅𝜌g𝐷eff

𝜕𝑌j

𝜕𝑥
) −

𝜕

𝜕𝑧
(𝜓̅𝜌g𝐷eff

𝜕𝑌j

𝜕𝑧
) + 𝜔̇fj

′′′ − 𝜔̇dj
′′′ (5.5)  

 𝑚̇′′ = −
𝜅

𝜈

𝜕𝑝

𝜕𝑥
−

𝜅

𝜈

𝜕𝑝

𝜕𝑧
           (𝜌𝑔 =

𝑝𝑀̅

𝑅𝑇
) (5.6) 

The properties of the condensed-phase species (e.g., bulk density, specific heat, and 

porosity) are assumed to be constant, whereas all gaseous species have unit Schmidt 

number and equal diffusion coefficient and specific heat. The averaged properties in each 

cell are calculated by weighting with the appropriate mass or volume fractions (see Eq. 

5.7). 

 𝑐̅ = ∑ 𝑌i𝑐i,   𝑘̅ = ∑ 𝑋i𝑘i,   𝜌̅ = ∑ 𝑋i𝜌i  (5.7) 

At the top surface (𝑧 = 0), the convective, radiative, and mass transfer boundary 

conditions are considered (Eq. 5.8 and Eq. 5.9, with ℎc =10
W

m2 · K, 𝜀 = 0.95, and ℎm =

0.02 kg/m2. s, Couette flow approximation), which were found empirically (Huang, Rein 
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and Chen, 2015; Yuan, Restuccia and Rein, 2021). The ambient pressure and temperature 

are assumed to be atmospheric and 300 K, respectively. At the symmetrical plane (𝑥 = 0), 

the thermal and diffusion boundary conditions are assumed to be adiabatic (Eq. 5.10) and 

impermeable (Eq. 5.11). At the right (𝑥 = 𝐿 ), the boundary conditions are thermally 

insulated with no re-radiation (Eq. 5.12, with ℎc =3 W/m2 · K) and impermeable (Eq. 5.11), 

following Huang, Rein and Chen (2015), who estimated the properties of the reactor used 

that was made of ceramic board. These boundary conditions are also implemented at the 

bottom (𝑧 = −𝑑). During the first 30 min, a heat flux of 50 kW/m2 is applied on 𝑥 = 0 cm 

to 𝑥 = 1 cm of the top surface (𝑧 = 0), to simulate the ignition protocol of the experiments, 

which was selected based on the size of the ignition coil, the power provided in the coil 

and the ignition duration (Christensen, Fernandez-Anez and Rein, 2020). Although the 

boundary conditions used here were not perfectly match with the experiments, the 

assumptions taken for these conditions resemble the experiments to great extent, for 

instance, the thermally insulated boundary conditions that are not adiabatic but with a 

reduced heat transfer coefficient. The simulations were sufficiently resolved with cell 

sizes of Δx = 2 mm and Δz = 0.25 mm, and an initial time step of 0.01 s. Reducing the cell 

sizes and initial time-step further do not significantly affect the results. On the other hand, 

increasing the size of cell or the time-step, which is of utmost importance for the field-

scale modelling practicality, caused convergence problems, thus this coarsening stage 

needs additional treatment and is a subject to future works. 

 −𝑘
𝜕𝑇

𝜕𝑧
|

z=0
= −ℎc(𝑇|z=0 − 𝑇a) − 𝜀𝜎(𝑇4|z=0 − 𝑇a

4);    (5.8) 

 −𝜓̅𝜌g𝐷eff
𝜕𝑌j

𝜕𝑧
|

z=0
= ℎm (𝑌j

∞ − 𝑌j|z=0
) ;   (5.9) 

 −𝑘
𝜕𝑇

𝜕𝑥
|

x=0
= 0 (5.10) 

 −𝜓̅𝜌g𝐷eff
𝜕𝑌j

𝜕𝑥
|

x=0,L
= 0 (5.11) 

 −𝑘
𝜕𝑇

𝜕𝑥
|

x=L
= −ℎc(𝑇|x=L − 𝑇a) (5.12) 

For heterogeneous reaction, a mass basis is more commonly used than molar basis, 

which is written as in Eq. 5.13, where 𝜈B,k = 1 + (𝜌B/𝜌A − 1)𝜒k , and 𝜒k  quantifies the 

shrinkage or intumescence of the cell size. The destruction rate of condensed species A in 

reaction k  satisfy Arrhenius law (see Eq. 5.14), and the formation rate of condensed 

species B and all gases from reaction k are the product of this destruction rate and the 

corresponding stoichiometry coefficient (𝜈). These processes affect the cumulative mass of 

each condensed species (see Eq. 5.15). The details of formulation, derivation, and 
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assumptions for these equations can be found in Lautenberger and Fernandez-Pello 

(2009). 

 

 𝐴k + ∑ 𝜈j,k
′ gas 𝑗N

j=1 → 𝜈B,k𝐵k + ∑ 𝜈j,k
′′ gas 𝑗N

j=1  (5.13) 

 𝜔̇dAk

′′′ =
(𝜌̅𝑌AΔz)Σ

Δz
𝑍ke−𝐸𝑘/𝑅𝑇 [

𝜌̅𝑌AΔz

(𝜌̅𝑌AΔz)Σ
]

nk
𝑌O

nO2,k
 (5.14) 

 (𝜌̅𝑌AΔz)𝛴 = (𝜌̅𝑌AΔz)|t=0 + ∫ 𝜔̇fi
′′′Δz(𝜏)𝑑𝜏

t

0
 (5.15) 

A five-step reaction scheme (see Eq. 5.16 to Eq. 5.20) was considered, which has 

been reported to be the best scheme to simulate smouldering peat, due to its accuracy 

when compared with the experiments (Huang, Rein and Chen, 2015). This scheme 

includes five condensed-phase species (H2O, peat, α-char β-char, and ash) and two gas-

phase species (O2 and Gas), and considers drying (dr), peat pyrolysis (pp), peat oxidation 

(po), α-char oxidation (αo) and β-char oxidation (βo). 

 Peat ∙ 𝜈w,drH2O → Peat + 𝜈w,drH2O (dr)  (5.16) 

 Peat → 𝜈α,pp𝛼-char + 𝜈g,ppGas (pp) (5.17) 

 Peat + 𝜈O2,poO2 → 𝜈β,po𝛽-char + 𝜈g,poGas (po) (5.18) 

 𝛼-char + 𝜈O2,αoO2 → 𝜈a,αoAsh + 𝜈g,αoGas (αo) (5.19) 

 𝛽-char + 𝜈O2,βoO2 → 𝜈a,βoAsh + 𝜈g,βoGas (βo) (5.20) 

5.1.3. Thermo-physical properties and kinetics parameters 

The thermo-physical properties of the condensed-phase species used in GPyro, 

taken from Huang, Rein and Chen (2015); Yuan, Restuccia and Rein (2021), which have 

optimised these values based on the accuracy of the models against experiments (see 

Table 5.2). The effective thermal conductivity is estimated by considering radiation heat 

transfer across pores (see Eq. 5.21), following Huang, Rein and Chen (2015), with 𝛾 =

10−4~10−3 m depending on the pore size (𝛾~𝑑p = 1/𝑆ρ) with the soil particle surface area 

𝑆ρ~0.05 m2/g (de Jonge and Mittelmeijer-Hazeleger, 1996). The permeability in GPyro 

(𝜅~𝑑p
2) varies from 10-12 to 10-9 m2. The 𝛼-char and 𝛽-char are assumed to have the same 

physical properties, and the ash is a homogenous mixture of natural minerals and sand. 

GPyro also considers tortuosity (𝜏), which is a ratio of actual average length (𝐿a) of the 

channel of fluid flow to straight-line length (𝐿s) across the medium in the porous material, 

which significantly influences the mass diffusion of gas species (Yuan, Restuccia and Rein, 

2021). The effective diffusivity (𝐷eff ), for instance, in Eq. (5.5), is the product of the 

diffusivity (𝐷f) of gas species in the free space and 1/𝜏2. 

 𝑘i = 𝑘s,i(1 − 𝜓i) + 𝛾𝜎𝑇3 (5.21) 
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Table 5.2. Physics-based properties of the condensed-phase species for the physics-based model. 

The values here follow Huang, Rein and Chen (2015; Yuan, Restuccia and Rein (2021). 

 

The kinetics and stoichiometric parameters are taken from Huang, Rein and Chen 

(2015) (see Table 5.3), which have been optimised against thermogravimetric analysis of 

Scotland peat sample that is a similar type of boreal peat used in BARA (Christensen, 

Fernandez-Anez and Rein, 2020). This Scotland peat sample contains 60% sphagnum 

magellanicum, 25% oxycoccus palustris, 10% scheuchzeria palustris, 5% sphagnum 

rubellum, and trace of carex rostara and pine and birch woods (Cancellieri et al., 2012). 

This peat was also expected to be non-homogeneous, for instance, in term of particle and 

pore sizes, since even for the commercial peat used in Christensen, Fernandez-Anez and 

Rein (2020), the peat sample was considerably non-homogeneous (Mooney et al., 2001), 

thus, the natural peat sample in Huang, Rein and Chen (2015) most likely has greater 

degree of heterogeneity. This heterogeneity, also causes the values of parameters listed 

in Table 5.2 have uncertainty. Its direct influence can be seen from the heterogeneity of 

particle and pore sizes that control the particle density and porosity, and consequently 

determine the bulk density. For example, the bulk density in natural peatland can range 

from 10 kg/m3 to 261 kg/m3 (Boelter, 1968), thus, the value selected here (110 kg/m3) can 

be considered the average value, which is a reasonable representative peat bulk density. 

The heat of oxidation was calculated as Δ𝐻k = 𝐶k(1 − 𝜈k), a function of the fraction 

of oxidized organic matter. The oxygen consumption was related to the heat of oxidation 

by assuming a constant heat of combustion per unit of oxygen consumption as 𝜈O2,k =

Δ𝐻k/(13.1MJ/kg-O2) (Huggett, 1980). 

 

 

Species (𝑖) 𝜌i (kg/m3) 𝜓i (−) 𝑘s,i (W/m·K) 𝑐i (J/kg·K) 𝜏i (-) 

Water 1000 – 0.6 4186 n/a 

Peat 110 0.927 1.0 1840 3.3 

α-char 135 0.896 0.26 1260 n/a 

β-char 135 0.896 0.26 1260 n/a 

Ash 19.5 0.992 0.8 880 3.3 

Sand 1477 0.2 0.4 920 100 
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Table 5.3. Kinetic and stoichiometric parameters of 5-step reactions for the physics-based model. 

The values here follow Huang, Rein and Chen (2015). 

Parameter dr pp po αo βo 

lg 𝑍k (lg(s-1)) 8.12 5.92 6.51 1.65 7.04 

𝐸k (kJ/mol) 67.8 93.3 89.8 54.4 112 

𝑛k (−) 2.37 1.01 1.03 0.54 1.85 

𝜈B,k (kg/kg) 0 0.75 0.65 0.03 0.02 

Δ𝐻k (MJ/kg) 2.26 0.5 −3.54 −19.5 −19.5 

𝜈O2,k (kg/kg) 0 0 0.27 1.48 1.49 

 

5.1.4. The hybrid model (BARAPPY) 

BARAPPY was developed based on a smouldering peat with heterogeneous MC 

experiment, a halftone configuration (see Figure 4.10a) in a deeper fuel bed (20 cm × 20 

cm × 6 cm). The schematic of the BARAPPY is shown in Figure 5.2 where the leading edge 

in BARA is integrated with the in-depth profile of the peat decomposition from GPyro. 

While BARA is powerful to simulate top view of the smouldering fire, this model cannot 

adequately simulate the in-depth profile of the peat decomposition since there is no 

experiment which adequately shows this profile for the calibration (see Chapter 4). GPyro 

is unable to simulate the top view of the experiment unless the model use a 3-D domain 

that would exponentially increase the computational cost. By combining the two models, 

the benefits from each model can be retained and the drawbacks can be compensated. 
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Figure 5.2. The combination of BARA and GPyro for 3-D smouldering model. The leading edge in 

BARA is combined with the surface of the peat from Gpyro which is represented as the interface 

between regions with zero fraction of peat and non-zero fraction of peat. 

While the leading edge from BARA is directly obtained from the interface line 

between smouldering and peat states (see Figure 5.2), the in-depth profile of the peat 

decomposition from GPyro is obtained with several steps. To determine the in-depth 

profile from GPyro, the simulation results of peat mass fraction were used, which show 

the percentage of peat (among the other components: sand, water, gas) at certain locations. 

The region with 0% peat mass fraction (blue region in Figure 5.2) is assumed to be entirely 

filled with gas phase species since the experiments of smouldering peat with 

heterogeneous MC use peat with a very low IC (2.5%). The leading edge on the in-depth 

profile is selected as the interface line between regions with zero fraction of peat and non-

zero fraction of peat (black dashed line). The region with non-zero fraction of peat 

correspond to the region that still has solid component, whereas the region with zero 

fraction of peat corresponds to the region without solid component, thus, their intersection 

is the surface of the peat during smouldering.  This line is attached to the leading edge 

from BARA (black solid line) based on peat MC and the distance of the leading edge (see 

Figure 5.2). The in-depth profile of the peat decomposition is attached to each unit length 

of the leading edge, creating a surface which shows the DOB from the smouldering fire 

(see Figure 5.2). Since BARA and GPyro use different platform and governing rules, the 

hybrid model is initiated by solving GPyro, independently, and its results on the in-depth 

profile of the peat decomposition are stored. Once the in-depth profile data are available, 
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BARA is run to obtain the leading edge data. The leading edge results of BARA are 

combined with the corresponding in-depth profile of GPyro to create the 3-D profile of peat 

decomposition. While the results from GPyro are pre-stored, the results of BARAPPY are 

generated in real-time, matching with BARA simulation time. 

5.2. Results and Discussions 

5.2.1. Validation and comparison between the models 

The models were validated based on the horizontal spread rate and smouldering 

width, which is the distance between the leading and trailing edges of the smouldering. 

Figure 5.3 shows the comparison between the CA (BARA), the physics-based model 

(GPyro), and the experiments with dry basis MC (IC) of 20% (0%) and 40% (40%). Since 

the GPyro used symmetry, the results shown in Figure 5.3 are the results of GPyro after 

being mirrored on the symmetrical plane. The smouldering region in GPyro is determined 

based on the region with temperature exceeding 600oC (Huang, Rein and Chen, 2015). 

The results of BARA show the top view of the experiments, where the smouldering region 

is represented as the maroon colour. Figure 5.3 shows that BARA and GPyro accurately 

simulate the smouldering peat experiments at different MC and IC combinations. Both 

the models have good agreement with experiments in term of horizontal spread rate and 

smouldering width. 

Figure 5.4 compares the predictions of GPyro and BARA to the experiments in 

term of horizontal spread rate and smouldering width. The black dashed line in Figure 

5.4 represents the average of the experimental results, if the predictions of GPyro or 

BARA overlap with this line, then they have 0% error. For horizontal spread rate, all of 

the BARA predictions are within the experimental uncertainty (grey shade), while one-

thirds of the GPyro predictions are outside the experimental uncertainty. For 

smouldering width, while all BARA predictions are within the experimental uncertainty, 

only one-quarters of the GPyro predictions are within the experimental uncertainty. 

However, for both horizontal spread rate and smouldering width, the predictions of GPyro 

are within 30% deviation from the experiments; and its average errors are within 

experimental uncertainty. Therefore, both BARA and GPyro provide powerful tools to 

simulate smouldering fire with a reasonable accuracy. 

The higher accuracy of BARA compared to GPyro stems from the different level of 

generality between the two models. While GPyro includes kinetics parameters which are 

the results of optimisation against thermogravimetric experiments, the rest of the 

predictions (heat and mass transports) are the solutions of conservation equations (Eq. 

5.1 to Eq. 5.6). On the other hand, BARA is optimised to a particularly detailed level to 
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the experiments in Christensen, Fernandez-Anez and Rein (2020), up to the level of heat 

transport and smouldering dynamics. GPyro would have the same level of accuracy 

(higher than 70%) when it is used to simulate different smouldering experiments. 

Meanwhile, BARA would have lower accuracy than 90%, possibly even lower than GPyro, 

when it is simulating different smouldering experiments (blind predictions), if no 

optimisation or calibration process is involved. 

 

Figure 5.3. The validation and comparison of BARA (top view) with GPyro (side view). Two peat 

conditions, 20% MC – 0% IC and 40% MC – 40% IC are shown here, with both models accurately 

simulate 10 other conditions. P, S, and B are Peat, Smouldering, and Burnt respectively. 

Another benefit of GPyro is the level of detail that can be obtained from the model 

results. While BARA only provides the smouldering region, GPyro provides results such 

as the distribution of temperature and distribution of species in the condensed-phase fuel 

bed. Therefore, by using GPyro, many phenomena can be studied, for instance, the region 

of dry peat, pyrolysis, and oxidation. However, BARA is significantly more 

computationally efficient than GPyro. BARA completed the calculation of one simulation, 

such as the ones shown in Figure 5.3, within 1h, whereas GPyro completed the calculation 

of the same experiment in 237h on the same computer. Therefore, physics-based models 

benefit from the accuracy of blind prediction and the level of detail of the phenomena to 

be captured, whereas cellular automata benefit from higher computational efficiency 

which is of utmost importance for large computational domain applications, such as field-

scale. Since both BARA and GPyro are validated and both have good agreement with the 
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experiments in Christensen, Fernandez-Anez and Rein (2020), the hybrid of the two 

models (BARAPPY) are expected to have reasonable accuracy. 

 

Figure 5.4. The prediction comparison between BARA (blue circle) and GPyro (red diamond) on 

horizontal spread rate (top) and smouldering width (bottom). The black dashed line is the 

average results of experiment, the grey shade is the experiment uncertainty, and the green shade 

is the region within 30% error from experiments and their uncertainty. 

5.2.2. 3-D Simulation of smouldering depth of burn 

BARAPPY was used to simulate an experiment of smouldering peat with 60% MC 

(wet) on the left side and 0% MC (dry) on the right side (see Figure 5.5). Since BARAPPY 

is a 3-D model, apart from the smouldering region, the model also shows the structure of 

the smouldering peat caused by DOB. Figure 5.5 shows the simulation result of 

BARAPPY and its comparison with the experiment at two different times (t1 and t2). 

BARAPPY accurately simulated the experiment of smouldering peat with heterogeneous 

MC at both times. In the top view of the simulation, wet and dry peat have different 

distance of leading edge which is connected by an inclined line. This inclined line is part 

of the wet peat, where its tip is connected to the dry peat that has a relatively flat edge. 
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Figure 5.5. The results of the hybrid model (BARAPPY) and its validation against experiment at 

two different time-steps. The white dashed lines separate wet and dry peat. The smouldering 

region is quantified based on depth of burn, where black represent 0% burnt, white represents 

100% of the reactor thickness has burnt, and grey represent the DOB between 0% to 100% of the 

reactor thickness. From the 3-D view overhang (red ellipses) are observed. 

In Figure 5.5, the DOB of BARAPPY is represented as percentage of the reactor 

thickness, thus, 100% DOB corresponds to the smouldering having reached the bottom of 

the reactor. The DOB in the experiment is predicted to be non-uniform, especially in the 

wet peat. This finding stems from the leading edge in the wet peat which is stretched to 

create the inclined edge connected to the leading edge in the dry peat. Thus, inclined edge 

means that near the wet and dry peat interface, the wet peat has been smouldering 

approximately as long as the dry peat. Since the parts with the shorter leading edge in 

the wet peat are smouldering for a shorter time, the DOB near the wet-dry peat interface 

is greater than the other part. This pattern remains similar over time, which leads to the 

non-linear increment of the volume of soil loss. By using BARAPPY, therefore, the effect 

of smouldering on the degradation of peat can be estimated. 

BARAPPY simulates an overhang phenomenon, a commonly observed 

phenomenon in peatland wildfire (Huang et al., 2016), where smouldering creates a 

burrow when spreading, instead of spreading at the surface (see Figure 5.5). This 
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phenomenon is a very important phenomenon, especially for the detection of smouldering 

wildfire. The overhang can be caused by the non-uniformity of DOB which in BARAPPY 

is significant in the wet peat. The non-uniformity of DOB is caused by the inclined line 

that connects the leading edge of wet and dry peat. Therefore, overhang can be found near 

the interface between wet and dry peat, where the wet peat has been smouldering 

similarly long as the dry peat. This finding conforms to Christensen, Fernandez-Anez and 

Rein (2020), where smouldering spreads faster vertically in wetter peat, which can be 

explained by a decrease in organic density with MC. While horizontal spread rate is 

governed by the rate of drying and pyrolysis during the smouldering, in-depth spread rate 

is also affected by the amount of peat to burn, which is controlled by the organic density 

(Christensen, Fernandez-Anez and Rein, 2020). The limiting factor that control in-depth 

spread rate are the slower rate between the consumption of organic component in peat 

and drying and pyrolysis rate, thus, if the rate of consumption of organic component is 

slower than drying and pyrolysis rate, in-depth spread rate is a function of this 

consumption rate, i.e., organic density (Christensen, Fernandez-Anez and Rein, 2020). 

However, the consumption rate of the organic component should be slower than the drying 

and pyrolysis rate, otherwise, all the organic component would have burnt (e.g., in a very 

high MC) but the drying or pyrolysis process has not finished, thus, there is no longer 

energy provided to facilitate the drying and pyrolysis and the smouldering does not 

sustain (Christensen, Fernandez-Anez and Rein, 2020).  

Overhang is formed when the convective cooling at the surface is significantly 

stronger than the heat generation of smouldering at the surface (Huang et al., 2016). 

Therefore, overhang tends to occur in wet peat which generates relatively low net heat 

due to the required process of moisture evaporation, causing the effect of heat loss at the 

surface (aided with convective cooling) to be prevalent. This is also reported in Amin, Hu 

and Rein (2020) that the overhang phenomenon only happens in wet peat sample (50% 

MC or wetter). 

BARAPPY successfully visualises the role of wet peat in the overhang formation 

in a more detailed manner than previously reported in literatures. Overhang is initiated 

with the non-uniformity of DOB, which is supported by the direction of the smouldering 

spread. From BARAPPY simulation, it is argued that the step of DOB is required to 

initiate overhang, which agrees with Huang et al. (2016). With this step profile, the 

airflow near the step is almost stagnant, thus, the convective cooling is significantly 

weaker. Due to this weaker cooling, the smouldering favour the spread near the step (see 

Figure 5.6a), forming overhang. Without a step of DOB, the convective cooling and oxygen 
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supply in the entire fuel bed is not significantly different. An example of this condition 

was observed in experiments by Huang and Rein (2017) on smouldering peat in a column 

reactor which spread downward. Although ranges of peat MC were considered, overhang 

phenomenon was not reported, meaning that in a column reactor, the downward spread 

across the cross section is relatively uniform which does not accommodate the step of DOB. 

The height of the step of DOB increase linearly with the increase of MC difference 

(see Figure 5.7). By using 5% threshold of the ratio of step height and reactor thickness, 

the critical MC difference at which overhang can be potentially initiated is 20%. This 

finding indicates that BARAPPY, with the help of peat MC data which are readily 

available, can help finding the location at which subsurface smouldering could happen in 

natural peatland, which have spatially non-uniform peat MC (Bechtold et al., 2018). 

 

 

Figure 5.6. (a) Schematic of the formation of overhang which is initiated by step of DOB. (b) 

Steps of DOB of peat (top) in the GPyro simulation (on peat with 60% MC) which correspond to 

steps of the peat MC distribution (bottom). 

While in BARAPPY the step of DOB is formed clearly because of the MC difference 

between wet and dry peat, in Amin, Hu and Rein (2020) which used peat with uniform 

MC, the step is potentially formed because of the MC profile post drying process. GPyro 

simulation on smouldering peat with uniform MC in a deeper reactor shows that there 
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are steps of DOB formed near the leading edge, the location at which overhang is reported 

in Amin, Hu and Rein (2020) (Figure 5.6b top), which correspond to the step profile of MC 

(Figure 5.6b bottom). By using GPyro on wetter and drier peat, the steps of DOB and MC 

profile were found to be more significant in wetter peat. This finding confirm with the 

report of Amin, Hu and Rein (2020) on the formation of overhang. Therefore, this chapter 

improves the understanding of overhang phenomenon, in which overhang is initiated by 

step of DOB which is formed due to MC gradient either from the non-uniformity of peat 

condition (the real situation in natural peatland) or from the hydrological process inside 

the peat during smouldering (moisture diffusion and drying process). 

 

Figure 5.7. Height of the step of DOB with respect to the MC difference between wet and dry 

peat. 

5.3. Conclusions 

In this chapter, a hybrid computational tool of cellular automata (BARA) and 

physics-based model (GPyro) is developed, for the first time, to investigate smouldering 

combustion in a 3-D domain. BARA and GPyro were independently validated against 

laboratory-controlled experiments and was found to have accuracy on spread rate and 

smouldering width to be higher than 90% for BARA and higher than 70% for GPyro; the 

average error of both the models are within experimental uncertainty. The main benefit 

of BARA is its computational efficiency, which is 240 times higher than GPyro. The main 

benefit of GPyro is the level of generality and detail that can be acquired such as 

temperature, species, and reaction profiles. The hybrid model (BARAPPY) of BARA and 

GPyro was used to simulate an experiment of smouldering peat with non-uniform MC, a 

half wet-half dry MC configuration. The predictions from BARAPPY have good agreement 

with the experiment (the profiles of leading and trailing edges and spread rate) and the 

3-D structure of the smouldering peat surface are obtained and investigated. 
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In wet peat, the depth of burn (DOB) is non-uniform, caused by the step profile of 

the leading edge. This profile also formed a step of DOB at the interface between wet and 

dry peat, and enabled BARAPPY to simulate overhang phenomenon. The DOB step height 

increases linearly with the MC gradient between wet and dry peat, and overhang is 

initiated when the MC gradient is higher than 20%. The initiation of overhang by the step 

of DOB conforms to Huang et al. (2016), thus, this chapter provides analysis on the 

creation of the step of DOB, improving the understanding of overhang in Huang et al. 

(2016); Amin, Hu and Rein (2020). The findings and model contribute to the better 

understanding on the depth of burn of smouldering peat and provide the tool to estimate 

it, thus, can help estimate the peat loss due to smouldering wildfires, an estimation that 

can be used to strategize the restoration and management of peatlands. 
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Chapter 6 – KAPAS: Cellular Automata 

Model to Simulate Field-Scale Flaming and 

Smouldering Wildfires in Tropical Peatlands 

Summary5 

This chapter investigated both flaming and smouldering in peatland wildfires at 

the field-scale by using a 2-D cellular automata model (KAPAS). KAPAS was calibrated 

against existing experiments in the literatures and used to predict the effect of peat MC 

on the behaviour of peatland wildfires. The model simulated how flaming initiates 

smouldering hotspots and how these hotspots merge – flaming spreads rapidly, 

consuming surface vegetation, leaving behind hotspots of smouldering peat which 

consumes most of the peat. KAPAS was then applied to study a prescribed fire that was 

performed in a 573 ha of peatland in Borneo in 2015, observed by drone footage. KAPAS 

was validated based on the number of smouldering hotspots against drone footage 

(flaming burned the entire plot in both field observation and simulation), with ~80% 

accuracy, and predicted that 2.9 ha of peatland burnt after 3 months with 70% peat MC 

(dry-based). By performing faster-than-real-time simulations, the model showed that the 

smouldering burnt area has an inverse exponential correlation with the peat MC, thus, 

the 2.9 ha burnt area could have been reduced to 0.02 ha if the peat MC had been above 

100%, for instance, by performing prescribed fire in wet seasons or performing rewetting 

treatment to the peatland. This chapter improves the fundamental understanding of how 

peatland wildfires spread at the field-scale which has received little attention until now, 

and provide a tool to perform faster-than-real-time simulations, which can help with 

mitigating peatland wildfires. 

6.1. The Development of KAPAS 

6.1.1. Introduction to KAPAS 

This chapter aims to create the simplest 2-D CA model that could still adequately 

capture the behaviour seen in peatland wildfires involving flaming and smouldering 

                                                                 
5 This chapter is based on “Dwi M J Purnomo, Matthew Bonner, Samaneh Moafi, Guillermo Rein, 

2021. Using cellular automata to simulate field-scale flaming and smouldering wildfires in tropical 

peatlands. Proceeding of Combustion Institute, 38(3), pp. 5119–5127.” 
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combustion. Inspired by previous CA studies (see Chapter 3), bond percolation approach 

was selected, for both flaming and smouldering. Bond percolation can be applied to 

wildfires, where the connections in bond percolation represent the flammability of the 

surrounding fuels when they are consumed by the fire (see details in Chapter 3). 

BARA (see Chapter 4) was not used in this early stage of field-scale peatland 

wildfires modelling, because of two reasons: BARA is significantly more complex than 

bond percolation, and BARA has not considered field-scale domain, thus, the upscale of 

BARA is required prior to the integration with the flaming model. Since BARA is more 

complex than bond percolation, although BARA provide more detail results such as the 

3D spread of smouldering, the computational cost of the model could increase significantly 

(see Chapter 8), especially when it is applied for field-scale modelling and consider an 

integration with flaming model. This chapter offers option for the users to decide which 

model is suitable for the emerging cases, for instance, the detail results from upscale 

version of BARA might not be necessary when the aim is to develop optimum strategy to 

mitigate peatland wildfires such as the allocation of resources based on faster-than-real-

time simulations. Instead, faster simulation is more important, thus, more scenario can 

be tested and better strategy can be developed. For comparison, BARA simulates with 20 

times faster-than-real-time speed (see Chapter 4), and from the comparative study in 

Chapter 8, bond percolation is 10 times faster than BARA, thus, by using bond percolation 

instead of BARA, 10 times more scenario can be tested when developing mitigation 

strategy. 

In the model, an unburned cell will update itself to a burning cell with a probability 

𝑃 if there are other burning cells in its neighbourhood. The most used neighbourhood in 

the literature was chosen, known as a Moore neighbourhood – the eight cells directly 

surrounding the considered cell in a 3 × 3 square grid (see details in Chapter 3). From 

here on, the model in this chapter will be referred to as KAPAS, which stems from the 

abbreviation of “Cellular Automata for Flaming and Smouldering” and “cotton” in 

Indonesian language, a material that can facilitate both flaming and smouldering. 

6.1.2. States and rules of KAPAS  

KAPAS considers 5 possible states for each cell: surface vegetation (SV), flaming 

vegetation (FV), exposed peat (EP), smouldering peat (SP), and burned peat (BP) (see 

Figure 6.1). EP represents a cell which has lost its surface vegetation, due to flaming, but 

the peat underneath it remains intact since the smouldering has not started. These states 

represent the smallest number of states that can still capture the interaction between 

flaming and smouldering of two fuel types in peatlands. For simplicity, KAPAS did not 



 

165 

 

consider the possibility of flaming peat, because it happens rarely (Huang and Rein, 2015). 

KAPAS is initiated at 𝑡 = 0 by igniting particular cells (i.e., changing from SV to FV). 

These FV cells will update their states after each time-step to either EP or SP, based on 

the probability of transition between flaming and smouldering 𝑃t. Surface vegetation is 

limited compared to peat deposits and burn much faster with flaming (Huang and Rein, 

2015), thus, FV has a 100% chance to transition to EP or SP. SV cells nearby any FV cell 

may become FV cells with probability 𝑃f. EP cells nearby any SP cell may become SP cells 

with probability 𝑃s. Finally, SP cells have a probability of extinguishing to become BP cells, 

with probability 𝑃e. 

KAPAS considers the surface vegetation and soil as 2 separate layers of cellular 

automata (multi-domain approach, see Chapter 1), meaning that smouldering can spread 

to nearby peat even if there is still surface vegetation above (see Figure 6.1). This multi-

layer approach was inspired by Fernandez-Anez, Christensen and Rein (2017); 

Fernandez-Anez et al. (2019), which firstly (and most likely the only ones, based on the 

literature review of CA for wildfire modelling) introduced the concept of multi-layer 

approach in CA for fire modelling. Without using separate layers, the smouldering spread 

which reach unburned surface vegetation or firebreaks cannot be simulated, since it 

means that intact surface vegetation or firebreaks have to change to become smouldering 

peat. The change from surface vegetation directly to smouldering peat is not considered 

in the model since this transition involve significant additional phenomena such as 

transition from smouldering to flaming (Santoso et al., 2019). The change from firebreaks 

to smouldering peat is also not possible since firebreaks are non-flammable cells. However, 

smouldering can spread underneath both intact surface vegetation and firebreaks. By 

using two separate layers, the intact surface vegetation and firebreaks do not change state 

in the surface layer, however, the cells in the soil layer change to smouldering peat. 
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Figure 6.1. The states and rules of the model. SV is surface vegetation, FV is flaming vegetation, 

EP is exposed peat, SP is smouldering peat, BP is burned peat, and 𝑃𝑥 are probabilities of state 

change. Solid arrows represent state change, whereas dotted arrows represent the influence from 

neighbouring cells. 

The ability of KAPAS to represent coupling between flaming and smouldering 

combustion in peatlands is dependent on the choice of the four parameters 𝑃f, 𝑃t, 𝑃s, and 𝑃e. 

Such parameters are often found by fitting to a particular fire, however, in KAPAS, they 

were chosen based on many different sources and experimental studies, allowing the 

model to be more general in principle. 

6.1.3. Selecting parameter values 

The flame spread probability 𝑃f  was chosen by finding a base probability  𝑃R  of 

flaming spread rate based on the Rothermel model for surface fire spread (Rothermel, 

1972), augmented by a parameter representing the effect of wind 𝛼w. The spread rate (𝑅) 

was estimated by using Rothermel semi-physical model (Rothermel, 1972), with a 0 m/s 

wind speed. 𝑃R depends on both the cell size and time-step duration, as it is found by 

optimising a probability that enable KAPAS to produce 𝑅 as its spread rate when applied 

to a cell of ∆𝑥 m in size and time-step ∆𝑡 seconds over many time-steps. In this chapter, 

with a cell size of 4.5m and a time-step of 300s,  𝑃R = 0.03. These cell size and time-step 

were selected based on the highest resolution can be run with the available computing 

power.  

𝑃R is then augmented by a wind parameter (𝛼w), following on from Alexandridis et 

al. (2008), which depends on the wind speed 𝑉 , at around 6 m height above ground 

(weather station), and the angle between the fire propagation and the wind direction 𝜃 as 

shown in Eq. 6.1, where 𝑐1 = 0.045 and 𝑐2 = 0.131, following the work of Alexandridis et 
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al. (2008). The final probability of flame spread is then shown in Eq. 6.2, which means 

that each cell in the neighbourhood will have a different 𝑃f  depending on their 

relationship to the wind direction. 

 𝛼w = exp (𝑈(𝑐1 − 𝑐2(1 − cos 𝜃))) (6.1) 

 𝑃f = 𝑃R ∙ 𝛼w (6.2) 

Standard Rothermel model account for the wind effect, however, implementing 

this directly into KAPAS would significantly increase its computational cost, since 𝑃R 

would need to be re-optimised every time the wind condition changed. For this reason, 

this method has never been used for bond percolation CA. By decoupling the wind effect 

as a separate parameter (𝑃f  depends on 𝑃R  and 𝛼w ), KAPAS can simulate fires with 

different wind conditions in a computationally efficient way. 

The probability of transition from flaming to smouldering 𝑃t  was found by 

adapting the work in Frandsen (1997), which investigated the smouldering ignition 

probability of peat based on its MC, inorganic content (IC), and bulk density (𝜌). For 

simplicity, only MC was varied in this chapter, as this is the most important property of 

peat for fire (Rein, 2013). IC and 𝜌 were set to 3.7% and 222 kg/m3 respectively (Frandsen, 

1997; Nusantara, Hazriani and Suryadi, 2018). This left 𝑃t with a sigmoid relationship 

with respect to MC, shown in Figure 6.2a. The sigmoid relationship between 𝑃t and MC 

has been observed in laboratory-controlled experiments (Frandsen, 1997), but there is no 

work that is found to confirm this relationship in a natural peatland. However, since the 

work of Frandsen, (1997) considers the three most important factors that control 

smouldering behaviour: MC, IC, and bulk density (Rein, 2016; Christensen, Fernandez-

Anez and Rein, 2020); the sigmoid relationship between 𝑃t and MC is expected to prevail 

in natural peatlands. 

 

Figure 6.2. Dependency on moisture content for (a) 𝑃𝑡 and (b) 𝑃𝑠. The shape of these relationships 

are extracted from literature (Frandsen, 1997; Huang et al., 2016; Prat-Guitart et al., 2016b). 

Prediction 1 uses 𝑐3 = 9.58 and 𝑐4 = 0.057, whereas prediction 2 uses 𝑐3 = 11.2 and 𝑐4 = 0.006. 
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The smouldering spread probability 𝑃s  was found by comparing smouldering 

spread rates taken from experiments on peat at different MC (Huang et al., 2016; Prat-

Guitart et al., 2016b). These spread rates are also given in cm/min, therefore, 𝑃s  is 

dependent on cell size and time-step duration, similar to 𝑃R . These experiments used 

boreal peat, as studies on tropical peat are limited (Usup et al., 2004). When MC, IC, and 

𝜌 have been considered, the resulting probabilities are expected to vary relatively little 

between tropical and boreal peats. Assuming 𝑃s also has a sigmoid relationship (Eq. 6.3) 

with respect to MC (similar to  𝑃t) a variety of different curves could be fitted to the 

experiments considered, by changing 𝑐3 and 𝑐4, as shown in Figure 6.2b. The grey lines in 

Figure 6.2b represent predictions which have good agreement with experiments. These 

plausible predictions are bounded by two polar opposite predictions, prediction 1 and 2. 

Prediction 1 has high accuracy for lower MC and low accuracy for higher MC, whereas 

prediction 2 is the opposite. Among the plausible predictions, prediction 1 (𝑐3 = 9.58 

and 𝑐4 = 0.057) was selected to determine 𝑃s on a specific MC for KAPAS, because this 

prediction has the highest accuracy for peat with lower MC, which poses a greater hazard 

in fire. 

 𝑃s =
1

1+exp(𝑐3+𝑐4MC)
 (6.3) 

The smouldering extinction probability 𝑃e was chosen based on the persistency of 

smouldering fire, i.e., once ignited, smouldering fires are very difficult to extinguish and 

will continue to burn for a long time (Rein, 2013). These fires extinguish when they 

encounter a ground water table (GWT) or mineral layer. In Indonesian peatlands, the 

peat layer is deep and the GWT is low in dry season (Hayasaka, Usup and Naito, 2020).  

These typical conditions were considered (deep peat layer and low GWT) in the model. 

Therefore, to make the smouldering fire remain active for a long time in KAPAS, 𝑃e is set 

to be much lower than 𝑃s. Setting 𝑃e to be much lower than  𝑃s means the smouldering fire 

remain active after the smouldering fire front has propagated relatively distant, which 

shows that the fire also has in-depth spread. Unfortunately, no previous work was found 

that could be used to derive 𝑃e directly. Therefore, in KAPAS, the value was chosen to be 

5 × 10−7 to represent this persistency, three order of magnitude lower than the minimum 

value of 𝑃s. 

6.2. Results and Discussions 

6.2.1. Effect of moisture content in uniform fuel grid 

KAPAS was used to investigate the effect of MC on both smouldering spread and 

the transition from flaming to smouldering. This investigation began by considering a 



 

169 

 

uniform fuel grid (simplest case), completely filled with surface vegetation, and ignited in 

the centre (see Figure 6.3a). The flaming spread and ignite the peat underneath (see 

Figure 6.3b), which then grow bigger over time (see Figure 6.3c). In the model, MC was 

varied from 0 to 150% in increments of 10%. KAPAS was run for a total duration of 10,000 

time-steps (35 days in real time) in this first case. This total duration is selected since 

smouldering wildfires spread slowly and sustain for weeks (Rein, 2013). The wind effect 

was ignored (𝛼w = 1) in this first case, to isolate the effect from varying MC. 

 

Figure 6.3. The visualization of the model for one specified moisture content (50%) which shows: 

(a) the ignition of flaming, (b) flaming spread and smouldering ignition, and (c) smouldering 

spread. The surface flaming is initiated at the centre of the domain which then ignite the soil. 

A grid of 400 x 400 cells (representing 324 ha) was used in this uniform fuel grid. 

This large grid size was used to avoid the finite size effect and minimize the uncertainty. 

Based on a sensitivity analysis, shown in Figure 6.4, the burnt ratio (𝜑b ) and their 

standard deviation (from 10 simulation repetitions) do not differ significantly once the 

grid size is larger than 400 x 400 cells. 𝜑b is calculated as the sum of smouldering peat 

(SP) and burned peat (BP) cells in the peat layer, divided by the total number of cells in 

the grid (i.e., area of the grid burned / total area of the grid). A sensitivity analysis was 

also performed on 𝑃f  as shown in Figure 6.5. This analysis shows that 𝑃f  does not 

significantly affect 𝜑b and their uncertainty. 
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Figure 6.4. Sensitivity analysis of the simplified grid model based on different domain size. The 

analysis focus on: (a) 𝜑𝑏, and (b) their standard deviation of 10 repetition. Smaller domain size 

has higher uncertainty and result in higher 𝜑𝑏. Higher domain size converge both 𝜑𝑏 and their 

standard deviation. 

Figure 6.6 shows 𝜑b at every 3.5 day (1,000 time-steps) after flaming ignition with 

increasing peat MC for IC of 3.7%. The line fitted through the blue circles represents 𝜑b 

immediately after all surface vegetation has been consumed, which only considers cells 

ignited from the transition from flaming to smouldering (𝑃t), which is referred to as the 

transition ratio. The line fitted through the red diamonds represents the final 𝜑b after 35 

days. This is the final burnt ratio. The error bar in both transition and final burnt ratio 

represent the uncertainties of the simulation which are repeated 50 times for each MC. 

 

Figure 6.5. Sensitivity analysis of the uniform fuel grid model based on different flame spread 

probability (𝑃𝑓). The analysis focus on: (a) 𝜑𝑏, and (b) their standard deviation of 10 repetition. 

Different 𝑃𝑓 does not significantly affect 𝜑𝑏 and their uncertainty. 
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The transition ratio follows a sigmoid relationship with MC, as would be expected 

from its dependence on 𝑃t. This curve deviates from the ignition probability in Frandsen 

(1997) on average by 5.3%. KAPAS, therefore, demonstrates a novel way to augment the 

findings for ignition of smouldering of Frandsen (1997) (igniting peat with a metal coil) in 

the context of real wildfires. The final burnt ratio also follows a sigmoid relationship with 

respect to MC, which might be expected from the relationship of 𝑃s. However, the shape 

of this sigmoid is significantly different from the sigmoid of the relationship between 𝑃s 

and MC (see Figure 6.2b). Therefore, there are important interactions between the 

smouldering and flaming layers of the model, demonstrating the value of considering both 

layers. 

At high MC, the uncertainty of final burnt ratio become significantly higher. This 

finding implies that near the critical MC, KAPAS becomes a volatile model. A plausible 

explanation for this behaviour is due to the nucleation of smouldering hotspots that have 

high uncertainty near the critical MC. When the peat MC is near critical and identical 

simulations were run repeatedly, there are cases where no smouldering hotspots were 

nucleated and there are cases where several smouldering hotspots were nucleated. At 

critical MC, it is expected that no smouldering hotspots are nucleated, thus, when due to 

the probabilistic approach after numbers of identical simulations smouldering hotspots 

are nucleated, it causes significant increase on the final burnt ratio. Referring to Figure 

6.6, although the upper limit of the final burnt ratio is relatively high, the average final 

burnt ratio is close to zero. Therefore, although sometimes smouldering hotspots are 

nucleated at critical MC, most of the times these hotspots are not nucleated, which is the 

expected results. 

 

Figure 6.6. Predicted 𝜑𝑏 for different moisture contents. The colour gradation represents 𝜑𝑏 

every 3.5 days (1000 time steps). Each simulation is repeated 50 times to report uncertainty 

(error bars) and the averages are shown (symbols and colour bar). 
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Figure 6.7. Predicted ∆𝜑𝑏 with time and snapshots of the domain (400 x 400 cells) at different 

times and MC. ∆𝜑𝑏 is relative to the previous 3.5 day. 

Figure 6.7 shows the evolution of burnt ratio with time for 3 different MC values. 

The burnt ratio change (∆𝜑b) is equal to the current value of 𝜑b minus the value of 𝜑b 3.5 

day earlier. If the peat was ignited at the centre and allowed to spread with no interaction 

with the flaming vegetation, then ∆𝜑b  would increase linearly with time as the 

smouldering fire grew simply from one single hotspot. However, Figure 6.7 demonstrates 

that in the multi-layer model this linear growth only happens at high MC. At lower MC, 

∆𝜑b decreases with time after an initial increase. This decrease is caused by separate 

areas of smouldering peat (hotspots) merging. If the simulation at 10% and 30% MC was 

allowed to run indefinitely in an infinite grid, then eventually ∆𝜑b would again start to 

increase linearly once all the hotspots had merged. In a real wildfire, this merging 

behaviour represents the point at which the fire is much harder to fight, as this 

phenomenon disables the safe routes for firefighting, whereas water bombing 

effectiveness against smouldering peat is questionable. Figure 6.8 shows an example of a 

merging phenomenon in real peatland wildfires in Sumatra, Indonesia in 2019. 
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Figure 6.8. Satellite imageries of a peatland wildfire in Sumatra (Latitude: 1.301S, Longitude: 

104.611E) in September, 2019. Hotspots (red circles) were separated on 18th September 2019 and 

began to merge on 19th September 2019 and eventually spread as larger hotspots afterwards. 

These imageries are obtained from satellite imaging of NASA Earth Observing System Data and 

Information System (EOSDIS). 

KAPAS shows that a wildfire on peatlands with MC above 120% has transition 

and final burnt ratio converge to zero. Therefore, this peatland condition would be 

relatively safe for performing prescribed fires. KAPAS also demonstrates hotspots 

initiation by flaming vegetation and how complex behaviour (hotspots merging) can 

emerge from a simple rule-based model. 

The MC threshold for a safe prescribed fire according to the model conforms to the 

experiments in Frandsen (1997) and Huang and Rein (2015). In these experiments, the 

critical MC to sustain smouldering was 110% for IC of 3.7%, which is only 10% lower than 

the threshold in the model. Therefore, the model also successfully captures observed 

trends. 

6.2.2. Simulating field-scale wildfire in Borneo 

KAPAS was also used to study a real prescribed wildfire that took place on 

peatlands in Borneo, Indonesia in 2015. This fire was chosen because a fuel map and 

airborne footage of the fire from Eyal et al. (2017) was obtained (see Figure 6.9). The field 
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where the fire took place was 573 ha in size, which was represented by a 416 x 620 cell 

grid in KAPAS, using the same cell size and time-step as mentioned in Chapter 6.2.3. 

 

Figure 6.9. The map for the model and the location of the smouldering hotspots (red circles). This 

map illustrates the landscape of real prescribed fire in Borneo adopted from Forensic 

Architecture airborne footage which cover 573 ha of peatland. Flaming are initiated at region 1 to 

4. 

To simulate the Borneo wildfire, it was necessary to add 2 additional states to the 

model, representing 2 additional surface fuel types. These states were dead surface 

vegetation (DV) and firebreak (FB). These were both similar to the regular SV state, but 

modified the base flame spread probability 𝑃R. For the case of DV cells, 𝑃R was multiplied 

by 1.12 following Rothermel (1972) for dead fuel, which increases the spread rate, and for 

the case of FB cells, 𝑃R was multiplied by 0 because firebreak are created to stop the 

spread of flaming wildfire by removing all surface vegetation on its area. These firebreak 

were only on the surface, therefore, smouldering fires could still spread. 

The wind was taken from local measurements during the wildfire. The data was 

only available for the first day, therefore, the wind speed and direction was assumed to 

repeat the first day data over the following days. MC was varied from 0-150% in 

increments of 10%, which is representative of the change in MC between dry and rainy 

seasons in Indonesia and demonstrates a range of possible conditions during the fire. 

However, it is assumed that a typical value of MC in Indonesian peatlands is around 70% 

(Nusantara, Hazriani and Suryadi, 2018). KAPAS was run for a total of 30,000 time-steps 
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in this second case, which corresponds to a duration of 105 days in real time. This total 

duration is selected based on typical smouldering peatland wildfire duration in Indonesia 

which is around 2-3 months (Hayasaka, Usup and Naito, 2020).  

Figure 6.10 shows snapshots from the model with 70% MC at 4 different times for 

IC of 3.7%. The wind strength and direction are labelled in each snapshot, and the time 

presented in the figure is the real time since ignition. In Figure 6.10a, the surface 

vegetation has just been ignited (day 0). In Figure 6.10b, at day 1 since ignition, the 

flaming front is halfway sweeping the surface layer and hotspots have formed. However, 

hotspots are not visible because they are too small for the figure resolution. In Figure 

6.10c, at 73 days since ignition, all of the peat has been exposed and hotspots are visible. 

There were a total of 57 smouldering hotspots initiated in the simulation, which has a 

good agreement with the footage (21% error). This comparison is without adjustment of 

parameters in KAPAS, thus, it can be considered as blind prediction. In Figure 6.10d, at 

105 days since ignition, the hotspots are merging. By the end of the simulation, 2.9 ha of 

peat has burnt. The model captures the qualitative behaviour seen during the wildfire of 

multiple hotspots igniting and then merging over time. The merging behaviour from 

KAPAS simulation is similar to the merging in the real peatland wildfire shown in Figure 

6.8. This result demonstrates the potential of cellular automata for modelling field-scale 

peatland wildfires. 
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Figure 6.10. Snapshots of a simulation of the prescribed fire in 573 ha (416 x 620 cells) of 

peatland in Borneo taken at different times. (a) The start of the surface flaming, (b) the spread of 

surface flaming and the formation of smouldering hotspots, (c) the growth of smouldering, and (d) 

the merging of the smouldering hotspots. 

In the simulation at 70% MC, the flaming spread rapidly and reached the firebreak 

within less than 48h. The peat that was ignited from this flaming took much longer to 

spread, and hotspots only became visible after 20 days. The hotspots continued to grow, 

spreading across firebreak, until 3 months when they began to merge. At this point, the 

burnt area became so large that suppressing the fire would be very difficult. Peatland 

wildfires which remain active for months are disaster of an unsafe prescribed fire on 

peatlands. 

Figure 6.11 shows predicted burnt area (𝐴b) at different time after flaming ignition 

with increasing peat MC for IC of 3.7%. The line fitted through the blue circles represents 

𝐴b immediately after all surface vegetation has been consumed, which is referred to as 

the transition area. The line fitted through the red diamonds represents the final 𝐴b after 

105 days. This is the final burnt area. 

Figure 6.11 shows that the prescribed fire would have resulted in a smaller wildfire 

at higher MC, with less than 200 m2 of peatland being burnt after 3 months if peat were 
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above 100% MC. These results agree that prescribed fires should only take place when 

the MC of the peat is sufficiently high, in order to minimize the risk of smouldering. 

Cellular automata predictions stem from the selection of the transition probability 

of each state, therefore, calibration against further experiments could improve the model 

significantly. The stochastic nature of the model makes the experiments of Frandsen 

(1997) suitable to calibrate the probabilities. Therefore, KAPAS could be improved when 

experiments similar to Frandsen (1997) are available for other phenomena in peatland 

wildfires (e.g., extinction probability instead of ignition probability of those in; Frandsen, 

1997). 

 

Figure 6.11. Predicted 𝐴𝑏 of the Borneo prescribed fire for different moisture content. The colour 

gradation represents change of 𝐴𝑏 every 10 days. Each simulation is repeated 10 times to report 

uncertainty. 

6.3. Conclusions 

Cellular automata was used for the first time to model field-scale peatland 

wildfires where both smouldering and flaming combustion are present. Considering 

simpler domains, the model, KAPAS, showed complex emergent behaviour that 

influenced the fire behaviour. In wildfires with multiple smouldering ignition points, 

smouldering hotspots merged over time, meaning the evolution of burnt area was non-

linear. Both the transition ratio and final burnt ratio of smouldering peat followed a 

sigmoid relationship with MC, demonstrating the ability of the model to translate 

experimental data into the context of field-scale peatland wildfires by only using the 

simple rules of the cellular automata. 

The model was also applied to a real peatland wildfire that took place in Borneo in 

2015, and managed to capture qualitative behaviour. At a realistic MC of 70%, 2.9 ha of 

peatland was burnt after 3 months. This burnt area could be reduced to a 150 times 

smaller area (0.02 ha) by increasing the MC above 100%, suggesting that prescribed fires 
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should take place in conditions with high MC, such as during the wet season. The 

limitation of this quantitative results is the unavailability of the field-scale data to 

validate the effect of changing peat MC on smouldering burnt area, however, the 

exponential decrease of smouldering burnt area if the peat MC were wetter is expected to 

prevail (although there are variation and uncertainty of the exact values) since this 

correlation follows the results of laboratory-controlled experiments that consider the key 

factors that control smouldering behaviour. These findings and model can be used to 

assist and improve peatland wildfire mitigation, by performing faster-than-real-time 

simulations to find the optimum firefighting strategy, and to improve the procedure of 

prescribed fires on peatlands, which is one way to help prevent the widespread occurrence 

of peatland wildfires.



 

179 

 

Chapter 7 – KAPAS II: Simulation of 

Peatland Wildfires with Temporally Varying 

Peat Moisture Contents 

Summary6 

This chapter aims improve the model in Chapter 6 (KAPAS), by considering the 

temporal peat MC variations. The 2-D cellular automata model in this chapter, KAPAS 

II, also improves KAPAS by enabling the simulation at any spatial and temporal 

resolution. KAPAS II was used to simulate 90 days of a peatland wildfire in Borneo 

(3.087oS, 113.991oE) in 2018. The input parameters of KAPAS II were derived from 

remote sensing data of vegetation type and density, and the temporal variation in peat 

MC was estimated using a peat-specific land surface model. KAPAS II reflects good 

agreement with satellite observations on flaming burnt scars (79% accuracy) and in the 

number of smouldering hotspots (85% accuracy). The model revealed that 0.55 km2 of peat 

smouldered when considering temporally varying peat MC, but only 0.12 km2 smouldered 

under constant moisture conditions with the same flaming burnt scar (111.43 km2), 

emphasising the importance of considering MC variations. Simulations conducted in the 

same location in different months and years between 2000 and 2019, corresponding to 

contrasting Oceanic Niño Indices (El Niño), predicted smouldering areas ranging from 0 

km2 to 0.93 km2. Seasonal variations in peat moisture, which are strongly influenced by 

climate, determine the severity of smouldering wildfires. This chapter provide knowledge 

and faster-than-real-time simulation tool that improve our understanding of wildfire 

spread in peatlands and can contribute to the mitigation of carbon emissions and haze 

from peatland wildfires. 

                                                                 
6 This chapter is based on “Dwi M J Purnomo, Sebastian Apers, Michel Bechtold, Parwati Sofan, 

and Guillermo Rein, 2022. Integrating Cellular Automata and Remote Sensing to Model Field-

Scale Peatland Wildfires with Temporally Vary Peat Moisture Content. International Journal of 

Wildland Fire, (to be submitted).” 
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7.1. The Development of KAPAS II 

7.1.1. Introduction to KAPAS II 

In this chapter, KAPAS (see Chapter 6) was improved by integrating temporally 

varying peat MC, which is the more realistic conditions in natural peatlands (see Chapter 

1), and allowing simulations at any spatial or temporal resolution. This improvement 

increases the applicability of the model, in which the improved model can be used in any 

computational domain without significant additional recalibration processes. The states 

and rules of the model in this chapter are the same as KAPAS, for instance, it uses bond 

percolation approach and considers 5 different states (see Chapter 6).  Since the model in 

this chapter is the direct improvement of KAPAS, which uses the same approach and is 

used for the same purposes (modelling of flaming and smouldering in peatland wildfires), 

for simplicity, it is named KAPAS II. The differences between KAPAS and KAPAS II are 

in the formulation and calibration of the model’s variables (𝑃f, 𝑃t, 𝑃s, and 𝑃e), where in 

KAPAS II, the effect of spatial and temporal resolution were embedded, and the method 

to obtain input parameters, where in KAPAS II, it was derived from GIS and remote 

sensing data. 

7.1.2. Input parameters and validation datasets 

KAPAS II was used to simulate a peatland wildfire in Borneo (3.087oS, 113.991oE) 

that started on 21 September 2018 and was fully extinguished on 10 October 2018. Figure 

7.1a shows the progression of the flaming wildfire captured by the Sentinel-2 satellite 

(Copernicus, 2022). These satellite images were obtained by using false-colour urban 

composites that clearly distinguish among surface vegetation, burnt scars, and active fires 

(the colour depends on the fire intensity; Stavrakoudis et al., 2020). The brown colour in 

Figure 7.1a represents the burnt area, whereas yellow and red areas represent regions of 

active fire. The brown colour at the bottom left of Figure 7.1a also represents a burnt area; 

however, this burnt area resulted from previous wildfires that were not considered in this 

chapter. 

The data obtained from Sentinel-2 were used to estimate the flaming burnt scar 

in the validation process. In the model, the shape formed by EP cells corresponded to the 

flaming burnt scar. The seed-fill algorithm (Khayal et al., 2011) was used to detect the 

burnt scar pixels (brown colour) from the satellite images shown in Figure 7.1a. Figure 

7.1b shows the flaming burnt scar obtained by implementing the seed-fill algorithm with 

the satellite images shown in Figure 7.1a. The flaming burnt scar also shows the locations 

of firebreaks, which serve to stop flames from spreading. Firebreaks are indicated by the 

abrupt stop of a flaming wildfire, thus causing the burnt scar to exhibit smooth edges (see 
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day 20 in Figure 7.1a). Figure 7.2a shows the landscape distribution, including the 

estimated locations of firebreaks. The landscape in Figure 7.2a, however, reflects a 

satellite image taken of the location before the flames began (on 8 September 2018). 

 

Figure 7.1. Satellite image of a landscape in Borneo (3.087oS, 113.991oE) in September 2018 

obtained from Sentinel-2 (Copernicus, 2022). (a) The progression of a flaming wildfire in the 

Borneo landscape detected by Sentinel-2 (Copernicus, 2022). (b) Estimated flaming burnt scar in 

the Borneo landscape. 

KAPAS II considers three different surface vegetation types, dry shrubs, wet 

shrubs, and trees (shown in Figure 7.2b); following Ferraz et al. (2019), who used field 

sampling and satellite observations to estimate vegetation types. KAPAS II also considers 

the rain and wind conditions to simulate flaming wildfires. Meteorogical data derived 
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from the observations of a local weather station (BMKG, 2018) were used to obtain daily 

precipitation, wind speed and wind direction data. 

 

Figure 7.2. (a) Satellite image of a landscape in Borneo (3.087oS, 113.991oE) in September 2018 

before the flames began; this image was obtained from Sentinel-2 (Copernicus, 2022). The white 

lines highlight firebreaks. (b) Remote sensing-based vegetation types identified in the peatlands 

in the Borneo landscape (3.087oS, 113.991oE), as obtained from Ferraz et al. (2019). Three 

vegetation types were considered: dry shrubs (red), wet shrubs (grey), and trees (blue). The 

yellow lines show the firebreaks, corresponding to the white lines in panel (a). 

The vegetation density in KAPAS II was classified based on Normalised Difference 

Vegetation Index data (NDVI, a surface vegetation greenness index), which are commonly 

used to estimate vegetation density (Camps-Valls et al., 2021), obtained from Sentinel-2 

(Copernicus, 2022), as shown in Figure 7.3a. However, only three categories of vegetation 

density were considered, recently burnt, regrown, or intact vegetation, corresponding to 

the methods of Alexandridis et al. (2008). Therefore, the values shown in Figure 7.3a were 

reclassified into three classes: values ranging from 0 to 0.2 corresponded to recently burnt 

vegetation, 0.2 to 0.4 indicated regrown vegetation, and 0.4 to 0.65 indicated intact 

vegetation (as shown in Figure 7.3b). Recently burnt vegetation corresponds to vegetation 

that was burnt in recent previous wildfires; regrown vegetation corresponds to previously 

burnt vegetation that has started to regrow; and intact vegetation refers to vegetation 

that has not been affected by recent wildfires (see Figure 7.2a, in which the green colour 

in the landscape is not uniform; in Figure 7.2b the landscape is fully covered with 
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vegetation). Figure 7.3c shows the final vegetation density classification data used in the 

model. The black region in Figure 7.3c was not considered in the model, as this region and 

the study area were separated by firebreak (see Figure 7.2a); therefore, the flames could 

not spread to the black region. The data of NDVI were selected at the start of wildfire (on 

21 September 2018), therefore, the data represented the actual ground conditions.  

 

Figure 7.3. (a) The NDVI data of a landscape in Borneo (3.087oS, 113.991oE) on 21 September 

2018; these data were used to estimate the vegetation density and were obtained from Sentinel-2 

(Copernicus, 2022). (b) Reclassified NDVI data in the Borneo landscape (3.087oS, 113.991oE) on 

21 September 2018; these data were used to simplify the vegetation density classification scheme 

and were adapted from Alexandridis et al. (2008). (c) The vegetation density data characterizing 

the Borneo landscape (3.087oS, 113.991oE) on 21 September 2018 used in the model; these data 

were based on the NDVI data and classified as recently burnt (rec. burnt), regrown, or intact. 

The black region was not considered because it was separated by a firebreak. 

The peat MC data were obtained from simulations conducted with a peat-specific 

land surface model in Apers et al. (2020), using the tropical version of the peat-specific 

land surface model developed by Bechtold et al. (2019); this model was specifically 

developed and extensively evaluated for tropical lowland peatland conditions and was 

shown to perform best over Southeast Asia peatlands. This model is based on the 

Catchment Land Surface Model (CLSM) of the NASA GEOS Earth System Modelling 

framework and has two modules, one for drained tropical peatlands (PEATCLSMTrop,Drain) 

and one for natural tropical peatlands (PEATCLSMTrop,Nat); these different peatland types 

have distinct hydrological conditions and thus have different peat MC characteristics 
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(Apers et al., 2020). Because canal projects had been underway in Central Kalimantan 

since the 1990s (Ritzema et al., 2014), and from the canal map produced by (Dadap, 2020), 

number of canals in the study area were found, the peatland under the study area was 

assumed to be drained. The soil surface MC data were used in this chapter, as the ignition 

of smouldering wildfire occurs most of the times at the surface. 

The MC information obtained from PEATCLSMTrop,Drain was volumetric, whereas 

that used in KAPAS II is gravimetric. Thus, to obtain gravimetric MC data, the volumetric 

MC from PEATCLSMTrop,Drain was divided by the peat bulk density (in g/cm3). Peat bulk 

density is a function of the peat solid density and the peat porosity. In this chapter, the 

peat solid density was assumed to be 1.5 g/cm3, adopting the value reporting by Huang 

and Rein (2017). The porosity of peat in natural peatlands varies significantly with depth; 

at the surface, the porosity can exceed 0.8, while at deeper points (~50 cm), it can be less 

than 0.5 (Rezanezhad et al., 2016). Although the peat porosity described in Rezanezhad 

et al. (2016) corresponds to nontropical peatlands, a study of peat in Indonesian tropical 

peatlands revealed that the peat porosity at a 50-cm depth was estimated to be 0.41 

(Islami et al., 2018), thus confirming the values obtained by Rezanezhad et al. (2016). In 

this chapter, the average of surface (0.80) and deep (0.41) peat porosity values was 

selected; thus, a porosity of 0.61 was used for modelling with KAPAS II. This value was 

lower than the porosity values commonly used in smouldering models (higher than 0.9), 

as the values used in previous models were assumed to reflect the porosity of surface peat. 

However, the peat porosity used in KAPAS II was similar to that used in 

PEATCLSMTrop,Drain (0.68). From these selected values, the representative peat bulk 

density in KAPAS II was 0.585 g/cm3; thus, the volumetric MC derived from 

PEATCLSMTrop,Drain was divided by 0.585 prior to being input to the model. 

While flaming burnt scar data were used to validate the flaming component in the 

KAPAS II model, the smouldering model component was validated by using the data of 

smouldering hotspots, detected by a remote sensing algorithm developed by Sofan et al. 

(2020), called TOPECAL. TOPECAL performs arithmetic and logic operations on SWIR 

data from Sentinel-2 to detect the smouldering wildfires that are separated from flaming 

wildfires. Figure 7.4 shows the smouldering hotspots that were detected using TOPECAL 

and used to validate the smouldering component of the KAPAS II model. However, only 

the number of the smouldering hotspots were considered, rather than the shape of the 

smouldering burnt scar (which is the output of TOPECAL), when validating the 

smouldering component of the model. This consideration indicates that the validation was 

based only on the ignition of smouldering wildfires without considering wildfire spread. 
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The smouldering spread was not validated because the smouldering wildfires in natural 

peatlands can spread in the subsurface, thus invalidating detection results via remote 

sensing (see Chapter 2).  

 

Figure 7.4. The smouldering hotspots (yellow circles) in a landscape in Borneo (3.087oS, 

113.991oE) in 2018, detected by the algorithm developed by Sofan et al. (2020) and implemented 

in the remote sensing data of Sentinel-2 (Copernicus, 2022). The increases in the number of 

hotspots correspond to the progression of the flaming wildfire (see Figure 7.1a). 

7.1.3. Calibration of KAPAS II 

KAPAS II predictions are dependent on the values of the main probabilities (𝑃f, 𝑃t, 

 𝑃s , and  𝑃e ). In the model, 𝑃f  (Eq. 7.1) is a function of the flaming spread rate (𝑅 ), 

spatiotemporal resolution (𝜆), vegetation density factor (𝛼d) and wind factor (𝛼w). The 𝜆 

term contains the information of the cell size (Δ𝑥) and time-step (Δ𝑡) and is formulated as 

Δ𝑥

Δ𝑡
. 𝑅 is formulated based on the Rothermel model for surface-spreading fires (Rothermel, 

1972) under 0-m/s wind conditions. 𝑅 is translated into a probability value, depending on 

𝜆, which then becomes the base value of  𝑃f (i.e., if 𝛼d and 𝛼w are equal to 1). Figure 7.5a 

clearly shows that 𝑅 and the base 𝑃f value have a linear relationship in the log-log axis 

with slopes independent of 𝜆. With this method, any cell size and time step can be used in 

the model, thus significantly improving KAPAS (see Chapter 6). 
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Figure 7.5. The calibration of variables in KAPAS II at different spatiotemporal resolutions (cell 

size per time step) of the computational domain (𝜆). (a) The translation of the flame spread rate, 

based on the Rothermel model calculation, into a probability value, 𝑃𝑓, at different 𝜆values. (b) 

The correlation between the wind speed (𝑉) and the correction factor of the wind effect (𝜚) at 

different 𝜆 values. 

KAPAS II considers the effect of wind (𝛼w) as formulated in Eq. 7.2 The 𝛼w value 

is based on the wind factor formulation in the Rothermel model (for maximum downwind 

spread rate) and on the wave propagation behaviour (regarding the two-dimensional 

velocity gain distribution; Rothermel, 1972; Alexander, 1985; Finney, 1998). The 𝛼w term 

is a function of the wind coefficient (Φw), the direction of fire spread relative to the wind 

direction (𝜃), the ellipse parameters (semiminor axis (𝑎), semimajor axis (𝑏), and linear 

eccentricity (𝑐)), and the correction factor (𝜚). Φw is determined based on the Rothermel 

model, whereas the ellipse parameters are formulated using Eq. 7.3 to Eq. 7.5 and depend 

on the wind speed ( 𝑉 ), following the methods described by Finney (1998). These 

formulation methods represent and improved version of the wind effect formulation 

process in KAPAS (Chapter 6), as the wind effect formulation in KAPAS did not maintain 

an elliptical shape under high speed winds. 

The correction factor of wind effect (𝜚) is required to maintain agreement in the 

downwind fire spread rate between the simulations and the Rothermel model calculations. 

Without this correction factor, the fire spread rate in the downwind direction differs 

significantly from that calculated using the Rothermel model (up to 90%). From the 

calibration, 𝜚 was found to be linearly correlated with 𝑉, as shown in Eq. 7.6, and the 

variations that arise due to different 𝜆 values remain within 10% (see Figure 7.5b).  
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 𝑃f = 0.016𝛼w𝛼d (
𝑅

𝜆
)

1.02
 (7.1) 

 𝛼w = 𝜚 (
𝑎2

𝑏−𝑐 cos 𝜃
) Φw (7.2) 

 𝑎 = (
𝑟H+1

2𝑟L𝑟H
) ;  𝑏 = (

𝑟H+1

2𝑟H
) ;  𝑐 = (𝑏 −

1

𝑟H
) (7.3) 

 𝑟L = 0.936 exp(0.2566𝑉) + 0.461 exp(−0.1548𝑉) − 0.397 (7.4) 

 𝑟H =
𝑟L+(𝑟L

2−1)
0.5

𝑟L−(𝑟L
2−1)0.5 (7.5) 

 𝜚 = 0.41𝑉 + 0.94 (7.6) 

The effect of vegetation density (𝛼d), which was not considered in KAPAS (Chapter 

6), is determined herein by calibrating the model against satellite-derived flaming burnt 

scar data. Because KAPAS II considers only three different density classes, the intact, 

regrown, and recently burnt classes only the 𝛼𝑑  value for regrown vegetation was 

calibrated herein. The 𝛼d value for intact vegetation was set to 0, and that for recently 

burnt vegetation was set to 1 to ensure the simplicity of the model. From the calibration, 

at an 𝛼d value of 0.01, the simulations exhibit good agreement with the satellite-derived 

flaming burnt scar data (21% error).  

The cells with FV states, transition to become either EP or SP after several time-

steps. If the transition undergoes after a too few time-steps, the spread of the flaming 

wildfire does not sustain, whereas if the transition undergoes after too many time-steps, 

the flaming wildfires sustain for too long which violates the observed phenomena. By 

using a probability of FV cells to change its state between 5𝑃f and 25𝑃f , the flaming 

wildfires sustain but without sustaining for too long. The long sustaining flaming 

wildfires is indicated by the wide flaming vegetation front, which in this chapter, this 

width was determined to be less than 10 cells. This value was selected based on the width 

that facilitate continuous flaming vegetation layer. With less than 10 cells flaming 

vegetation width, the perimeter of the flaming vegetation is disconnected at several 

locations, which correspond to the unburned vegetation. Therefore, once the width of 

flaming vegetation layer exceeds 10 cells, the flaming wildfire can be considered has 

sustained for too long. Between 5𝑃f and 25𝑃f, the value of 𝜚 to maintain the accuracy of 

the model against Rothermel model calculation does not significantly change. Therefore, 

the middle value was selected, in which the FV cells transition to either EP or SP at the 

subsequent time-step with a probability of 15𝑃f. However, this value changes to become 

15𝑃f exp(0.2𝜎) when there are rains, where 𝜎 is precipitation, adapting from Alexandridis 

et al. (2011). 
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The 𝑃t and 𝑃e values applied in KAPAS II were formulated following the methods 

described in Chapter 6, in which 𝑃t is a function of peat MC, as shown in Eq. 7.7, utilizing 

the ignition probability derived by Frandsen, (1997); 𝑃e is selected to be 5 × 10−10, thus 

sustaining a smouldering fire in the simulation for approximately three months (the 

typical duration of the wildfire season in Indonesia; Huijnen et al. 2016). 𝑃e should be 

dependent on GWT; however, KAPAS II did not consider this variable. The formulation 

of 𝑃s in KAPAS II was also adapted from KAPAS (see Chapter 6), however, different 𝜆 

values were input to KAPAS II to enable modelling at any spatial and temporal resolution 

in the computational domain (thus improving the KAPAS model). 𝑃s  was found to be 

linearly correlated along the log-log axis with MC (𝑅2 = 0.89) and has a slope independent 

of 𝜆 (see Figure 7.6); 𝑃s can be formulated as shown in Eq. 7.8. The MC values used in Eq. 

7.7 and Eq. 7.8 change daily (date-based) based on the PEATCLSMTrop,Drain estimation; 

thus, 𝑃t and 𝑃s also change daily. The effects of the burning cells (i.e., FV and SP) in the 

soil layer are based on 𝑃t and 𝑃s at the corresponding time. Although KAPAS II considers 

temporal variation in peat MC, the MC on each day was assumed to be uniform across 

the entire landscape. 

 𝑃t =
1

1+exp(−1.78+0.12𝑀𝐶)
 (7.7) 

 𝑃s = 0.01MC−0.71𝜆−1.02 (7.8) 

In this chapter, a domain with a 45-m cell size and a 1200-s time-step (𝜆 = 135 m/h) 

were used. This cell size selection stemmed from the resolution of the utilized remote 

sensing data, whereas the time step was determined based on the stability criteria 

(Courant–Friedrichs–Lewy conditions), given the derived cell size. However, any other 

domain configuration could be used in the model, given that stability criteria are met. 

 

Figure 7.6. The relationship between smouldering spread probability (𝑃𝑠) and the peat MC at 

different spatiotemporal resolution (𝜆), calibrated against experimental data (Huang et al., 2016; 

Prat-Guitart et al., 2016b). 
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7.2. Results and Discussions 

Figure 7.7 shows snapshots of the KAPAS II simulations obtained at four different 

times from day 3 to day 90. Figure 7.7a – Figure 7.7c correspond to the spread of flames, 

whereas Figure 7.7d corresponds to the spread of smouldering. On day 3 after the start of 

the wildfire (Figure 7.7a), flames had burnt a relatively small area of surface vegetation, 

and the shape of the burnt scar was relatively circular, with nonsmoothness at the 

perimeter caused by the probabilistic approach of the KAPAS II model. The south-eastern 

wind, which had a speed of 7 km/h, had only a slight effect on the flaming burnt scar. The 

wind direction was considered to be the direction of the origin of the wind (azimuth); thus, 

for instance, south-eastern wind describes wind coming from the southeast and moving 

northwest. On day 8 (Figure 7.7b), the effects of the western wind conditions and 

vegetation density (see Figure 7.3) caused the westward spread of the flames to be 

minimised. The vegetation density effect also caused the formation of an unburned patch 

in the northern region of the flaming burnt scar. Smouldering hotspots (yellow colour) 

began to form at this stage; however, these hotspots were still not visible due to the 

domain resolution. On day 20 (Figure 7.7c), the flames had been fully extinguished, and 

the nucleation of smouldering hotspots had stopped. In the simulation, the flames were 

extinguish on day 15 following the start of the wildfire; however, Figure 7.7c shows a 

snapshot of day 20, a day for which a satellite image was also available (on other days, 

satellite images were either unavailable or significantly cloud-covered), for comparison 

purposes. The extinction of the flaming wildfire corresponded to the precipitation on day 

15 (14.7 mm of water); this precipitation event continued for three days. Therefore, it is 

argued that the flaming wildfire and smouldering hotspot nucleation lasted for 16 days. 

From day 20, smouldering hotspots start to spread and grow larger, and at the end of the 

simulation (day 90), the hotspots had significantly enlarged, and some of them had 

merged (Figure 7.7d). 
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Figure 7.7. Snapshots of the peatland wildfire simulation in the Borneo landscape (3.087oS, 

113.991oE) in 2018 at different stages: (a) the early stage of surface flames on day 3; (b) the 

spread of surface flames and the nucleation of smouldering hotspots on day 8; (c) the extinction of 

surface flames and the cessation of smouldering hotspot nucleation on day 20; and (d) the end of 

the simulation on day 90, at which time the smouldering hotspots had spread and enlarged. The 

surface vegetation (white) corresponds to the three different vegetation types shown in Figure 

7.2b. The blue arrows show the wind speed and direction. Firebreaks (grey) stopped the spread of 

flames but could not stop the spread of smouldering. 

Figure 7.8 shows the comparison between the satellite-detected flaming burnt 

scars (Figure 7.1b) and those predicted using the KAPAS II model (Figure 7.7a – Figure 
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7.7c) at three different times (on day 3, day 8, and day 20). In the figure, the red lines 

represent the perimeter of the actual flaming burnt scar detected by the satellite. The 

true positive and true negative terms represent accurate predictions in which the burnt 

scars identified from the satellite images and predictions both indicated burnt or unburnt 

conditions, respectively. False positives correspond to an area that was the predicted to 

be burnt but was not burnt in the satellite image, and false negatives indicate regions 

that were not predicted to be burnt but were observed to be burnt in the satellite image; 

both of these conditions were considered inaccurate predictions. In the analysed wildfire, 

the flames burned approximately 87.34 km2 of surface vegetation among the 257-km2 

study area (based on the satellite observations). KAPAS II simulated this flaming wildfire 

with a 29.8% share of true positives, 49.2% true negatives, 16.9% false positives, and 4.1% 

false negatives compared to the observed flaming burnt scar detected by the satellite at 

the end of the flaming wildfire (on day 20). Therefore, a Cohen's kappa value of 0.57 was 

achieved, corresponding to reasonable agreement between the KAPAS II predictions and 

the observed flaming burnt scar. The main reason of these deviation is the effect of the 

wind. This finding can clearly be seen in Figure 7.8 on day 3 and day 8, at which times 

the flaming burnt scars identified from the satellite observations were elongated, whereas 

in the simulations, the elongation characteristics of the burnt scars were weaker. This 

discrepancy was potentially resulted from KAPAS II considering the daily average wind 

speed and direction, whereas in reality, both the wind speed and direction vary over the 

course of a day, especially when gusty winds (sudden increase in wind speed, at times 

accompanied by changes in direction) occur. 

KAPAS II predictions overestimated the flaming burnt area (the area of the 

flaming burnt scar); in the model, 111.43 km2 of surface vegetation was burnt by flames 

(see Figure 7.9a), but the predictions were reasonably accurate (above 70% accuracy). 

After 16 days, the burnt area by flames did not change, and no change is shown in Figure 

7.9a. During the 16 days over which flames spread, the smouldering hotspots nucleated, 

as shown in Figure 7.9b. The smouldering component of KAPAS II was validated by 

comparing the number of smouldering hotspots simulated at different times against the 

hotspots observed by the satellite (see Figure 7.4). The number of smouldering hotspots 

predicted (0.51 hotspots per km2 of landscape) agreed well with the observations (0.44 

hotspots per km2 of landscape), with an error of 15%. These validation results show the 

robustness of the KAPAS II model when simulating peatland wildfires. 
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Figure 7.8. Comparisons between the flaming burnt scars (exposed peat) derived from the 

satellite detection (Figure 7.1b) and from the KAPAS II predictions at three different times 

(Figure 7.7a – Figure 7.7c) in the Borneo landscape (3.087oS, 113.991oE) in 2018. The red lines 

represent the perimeter of the actual satellite-detected burnt scar. True negatives and true 

positives denote accurate predictions, indicating that the predicted and satellite-detected results 

both suggested not burned or burned regions, respectively. A false positive corresponds to a 

predicted burn region that was not burn in the satellite detection results, whereas a false 

negative indicate that an area was predicted to be a nonburn region but was found to be burn in 

the satellite detection results. 

The discrepancies in the location of smouldering hotspots between the predictions 

and observations may have stemmed from the spatial nonuniformity of peat MC in reality, 

as this feature was not considered in KAPAS II. This claim is supported by the number of 

smouldering hotspots observed on day 8 (0.35 hotspots per km2), which dropped 

significantly on day 16 (0.09 hotspots per km2), as shown in Figure 7.4, although the area 

burnt by flames was similar, indicating that the region covered by the flaming burnt scar 

on day 8 had potentially relatively dry compared to the other region within the burnt scar 

on day 16. Moreover, KAPAS II predicted that the numbers of smouldering hotspots 

nucleated on day 8 (0.23 hotspots per km2) and day 16 (0.29 hotspots per km2) were similar. 

While the flaming burnt area stopped growing after 16 days, smouldering continued to 

spread, and the hotspots became larger (indicating smouldering growth) and merged. 
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Figure 7.9. (a) Comparisons between the flaming burnt areas (area of the exposed peat) derived 

from the satellite observations (based on Sentinel-2; Copernicus, 2022) and from the KAPAS II 

predictions at different times. (b) Comparisons between the numbers of smouldering hotspots 

derived from the satellite observation (based on Sentinel-2; Copernicus, 2022) and from the 

KAPAS II predictions at different times. The error bars represent the uncertainty of KAPAS II 

results after 10 repetitions. 

Figure 7.10a shows the evolution of the smouldering burnt area; in the figure, the 

magenta shade indicates the area under the smouldering nucleation regime (during the 

flame-spreading process), whereas the cyan shade indicates the area under the 

smouldering growth regime (after the flames were extinguished). Under both the 

nucleation and growth regimes, the smouldering burnt area increased exponentially with 

time, but this increase occur at a slower rate under the growth regime than under the 

nucleation regime. Smouldering had burnt a total of 0.55 km2 of peat 90 days after the 

start of the wildfire. 

This pattern prevailed in both the actual case in which temporal peat MC 

variations were implemented (transient MC) and in the simplified scenario in which the 

peat MC was assumed to be constant (constant MC) at 83% kg-water/kg-dry peat (the 

average peat MC calculated over 90 days; see Figure 7.10b). However, the total 

smouldering area (the sum of the smouldering burnt areas identified under the nucleation 

and growth regimes) was significantly smaller in the constant MC scenario (0.12 km2) 

than under the transient MC scenario. This finding emphasised the importance of 

implementing temporal peat MC variations in the model. The omission of these variations 

could significantly underestimate the resulting total smouldering area predictions, which 
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could in turn cause ineffective mitigation strategies for peatland wildfires, such as those 

resulting from the incorrect allocation of resources. 

 

Figure 7.10. (a) The predicted evolution of the smouldering burnt area in the  Borneo landscape 

(3.087oS, 113.991oE) over 90 days under the assumption of a constant peat MC (constant MC 

scenario, blue square) or temporally varying peat MC (transient MC scenario, red circle). Under 

the nucleation regime (magenta) smouldering hotspot nucleation was found to be dominant over 

growth, whereas in the growth regime (cyan), smouldering spread (growth) was dominant. The 

error bars represent the uncertainty of the model results after 10 repetitions. (b) The MC under 

the transient MC scenario averaged over one week and its range (error bars). The blue line 

denotes the MC averaged over 90 days, as used in the constant MC scenario. 

KAPAS II (specifically, the transient MC scenario) was further used to predict the 

smouldering burnt area at the onset times of flames in different months and years 

between 2000 and 2019; each individual case lasted for 90 days. A total of 240 independent 

cases were considered; the first case began in January 2000 and ended in March 2000, 

whereas the last case began in December 2019 and ended in February 2020.  Each of the 

cases reflect different temporal peat MC variations, and these variations were obtained 

by using the Apers et al. (2020) model (see Figure S7.2 for examples).  

Figure 7.11a shows that the smouldering burnt area identified under the growth 

regime was linearly proportional to the smouldering burnt area obtained under the 

nucleation regime (R2 = 0.98). This finding indicates that the smouldering burnt area 

derived under the growth regime was more significantly affected by the nucleation-regime 

peat MC (which controls the smouldering burnt area under the nucleation regime) than 
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by the growth-regime peat MC. Figure 7.11b proves this claim; the smouldering burnt 

area identified under the growth regime exhibited a strong inverse exponential 

correlation with the monthly average peat MC (averaged over one month) under the 

nucleation regime (R2 = 0.93) but a weak correlation with the monthly averaged peat MC 

under the growth regime (R2 = 0.05). Therefore, the peat MC under the nucleation regime 

is the crucial factor determining the total smouldering area, and its effects are more 

significant than those of the peat MC under the growth regime. When fewer smouldering 

hotspots are nucleated, the spread of these hotspots is less likely to overtake smouldering 

burnt area in cases in which more smouldering hotspots are nucleated, even when these 

hotspots spread more slowly. However, the peat MC differences identified between the 

nucleation and growth regimes shown in Figure 7.11a and Figure 7.11b are less than 20% 

in all cases; thus, these findings might not prevail when extreme peat MC differences 

occur between the nucleation and growth regimes. For instance, if the peat MC under the 

growth regime is extremely dry and the smouldering burnt area is affected by the spread 

of smouldering more significantly than by nucleation or if the peat MC under the growth 

regime is extremely wet and smouldering cannot be sustained under the growth regime, 

the smouldering burnt area under the growth regime will be zero regardless of the peat 

MC under the nucleation regime. 

Figure 7.11c shows the temporal evolution patterns of the total smouldering areas 

obtained in different months and years; the smouldering area varied significantly and 

ranged from 0 to 0.93 km2. The total smouldering area was minimal if the flames began 

during the wet season (i.e., resulting in wet peat); in Indonesia, the wet season typically 

spans between November and May. The total smouldering area the rose significantly in 

the dry season (i.e., with dry peat). In the wet season, due to the relatively high peat MC, 

smouldering hotspots were less likely to be nucleated; thus, some cases exhibited a total 

smouldering area of 0 km2, whereas in the dry season, the peat became drier and more 

vulnerable to facilitating the nucleation of smouldering hotspots. This temporal pattern 

was mainly controlled by the peat MC, thus indicating the importance of temporal MC 

variations in affected peatland wildfires. 
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Figure 7.11. Predicted smouldering burnt areas in Borneo landscape (3.087oS, 113.991oE), when 

flames began in different months and years between 2000 and 2019 under continuous simulation 

runs (even after the flames were extinguished) lasting 90 days (time in the simulation). (a) The 

correlation between the smouldering burnt areas identified under the nucleation and growth 

regimes. (b) The correlation of the smouldering burnt area in the growth regime with the 

monthly average MC under the nucleation (blue circles) and growth (red diamonds) regimes. (c) 

The evolution patterns of the smouldering burnt areas in different months and years. The total 

smouldering burnt areas (red diamonds) represent the sum of the smouldering burnt area under 

the nucleation (blue circles) and growth (green gradient) regimes. The Oceanic Niño Index (ONI) 

determines the occurrence of El Niño and its counterpart La Niña (Null, 2021). 

When a strong La Niña event occurred, the total smouldering area was found to 

be relatively constant throughout the year, i.e., less than 0.10 km2 were found to be 

smouldering (see 2008 in Figure 7.11c), whereas when an El Niño event occurred, the 

total smouldering area significantly increased during the dry season, although the 

smouldering areas were similar during the wet seasons in these years, as El Niño mainly 
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affects the dry season (see 2015 in Figure 7.11c). The maximum total smouldering area 

identified during the dry season in a strong El Niño year (2015) was 0.93 km2, whereas in 

a year without El Niño (2001), the maximum total smouldering area was 0.49 km2 (see 

Figure 7.11c). These unique findings show that seasonal peat MC variations, which are 

strongly influenced by climate conditions, determine the severity of smouldering wildfires 

in peatlands. KAPAS II provides a tool for predicting the wildfire spread in peatlands, 

allows faster-than-real-time simulations, enables the improvement of peatland 

management, and thus can contribute to the mitigation of carbon emissions and haze-

related adversities resulting from peatland wildfires. 

7.3. Conclusions 

In this chapter, KAPAS (see Chapter 6) was improved by considering the temporal 

variation of peat MC. The improved model in this chapter, KAPAS II, was validated 

against satellite observation based on flaming burnt scar (79% accuracy) and number of 

smouldering hotspots (85% accuracy). KAPAS II was used to simulate a peatland wildfire 

that occurred in Borneo in September 2018, and it was found that within 90 days, 0.55 

km2 of peat was affected by combustion losses due to smouldering. When considering a 

constant peat MC (KAPAS), the smouldering burnt area was significantly underestimated 

(with a 0.12-km2 smouldering burnt area), with the same flaming burnt scar (111.43 km2). 

This finding emphasises the importance of considering temporal peat MC variations. 

The peat MC in the period of the formation of smouldering hotspots (nucleation 

regime) is the crucial factor that determine the overall severity of smouldering wildfire, 

and its influence is more significant than the peat MC in the growth regime, the period 

after flaming wildfire extinguish and the smouldering hotspots begin to spread. Wet peat 

condition within the nucleation regime could prevent the formation of smouldering 

hotspots, and minimise the smouldering burnt area of peat. This finding was supported 

when KAPAS II was extended to predict smouldering burnt area when flames began in 

different months and years between 2000 and 2019 (240 cases); each case lasted for 90 

days. The smouldering burnt area in growth regime was found to have a strong correlation 

(R2 = 0.93) with peat MC under the nucleation regime, but a weak correlation (R2 = 0.05) 

with the MC under the growth regime. Therefore, the smouldering burnt area under both 

the nucleation and growth regimes are determined by the peat MC in nucleation regime. 

The extended predictions also show that the smouldering burnt area varied 

significantly and ranged from 0 to 0.93 km2; the area was below 0.1 km2 if the flames 

began during the wet season and above 0.4 km2 if the flames began during the dry season, 

except in La Niña years, when the burnt area remained steady throughout the year. In 
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strong El Niño years, while the wet-season smouldering burnt area was similar to other 

years, the dry-season smouldering burnt area could be doubled compared to years without 

El Niño; for instance, in 2015 (a strong El Niño year), the smouldering burnt area was 

0.93 km2, whereas in 2001 (a year in which no El Niño event occurred), the smouldering 

burnt area only 0.49 km2. These findings show that seasonal peat MC variations, which 

are strongly affected by climate conditions, determine the extent of smouldering wildfires. 

The findings and model provide knowledge and a tool to improve the management of 

peatland, through faster-than-real-time simulations that can be used to predict the 

wildfire spread in peatlands in different scenarios, thus, can contribute to efforts in 

minimising the negative impact of peatland wildfires on people and the environment. 
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Chapter 8 – The Relevant Rules and 

Complexity in Cellular Automata for 

Smouldering Fire Modelling 

Summary7 

This chapter aims to investigate the rules that have been used in CA for 

smouldering fire modelling and assess the benefits and drawbacks of each rule. The 

goodness of the rules are compared based on accuracy, uncertainty, complexity, and 

capacity (the range of conditions that can be simulated by the models). From the 

comparison, the models with recursive burning rules, the burning state which remain 

burning for some time, either deterministic or stochastic, have better accuracy (15% - 20% 

higher), uncertainty (500% smaller), and capacity (300% - 500% larger) than other models. 

The deterministic recursive burning rule, however, outperforms the stochastic rule in 

term of accuracy (5% higher accuracy) and capacity (100% larger capacity). The models 

that attempt to mimic the physics of smouldering combustion have slightly higher 

accuracy than the models that use probabilistic approach, but with the consequence of 

increasing the complexity by 1000%, quantified by computational time,. However, the 

models that mimic the physics of smouldering benefit from its ability to be directly related 

with physical variables and phenomena. Therefore, the best model investigated in this 

chapter is the model which uses deterministic recursive burning rule and mimic the 

physics of smouldering fire, such as BARA (see Chapter 4). These findings can guide the 

selection of rules and provide direction for further development of cellular automata for 

smouldering fire modelling. 

8.1. Methods 

8.1.1. The CA models studied 

This chapter aims to investigate the existing CA models for smouldering fire. Five 

CA models that have different set of rules, as shown in Figure 8.1, were compared, 

starting from the simplest model (M1) to the most complex model (M5). The simplest 

                                                                 
7 This chapter is based on “Dwi M J Purnomo and Guillermo Rein, 2022. The Relevant Rules and 

Complexity in Cellular Automata for Smouldering Fire Modelling. (to be submitted).” 
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model for modelling smouldering fire, adapting the model for flaming fire, is one order 

bond percolation (M1; Hargrove et al., 2000). This model is the simplest form of bond 

percolation where the behaviour of the fire spread is governed by only one variable, i.e., 

probability of ignition, and becomes the basic for developing more complex CA model for 

smouldering fire. Belcher et al. (2010) introduced recursive behaviour of the smouldering 

fire to M1, aiming to simulate the persistent smouldering fire, by implementing second 

variable, i.e., extinction probability (M2), therefore, the burning cell extinguish in the 

subsequent time step with a probability less than one. This approach is referred to as two 

order bond percolation. Heat accumulation concept (see Chapter 3.3.1) is augmented to 

the bond percolation concept of M1 with threshold as the criterion to change the state (M3) 

as an attempt to mimic the physics of smouldering fire spread (Fernandez-Anez, 

Christensen and Rein, 2017; Fernandez-Anez et al., 2019). M3 is further developed in two 

directions: (i) implementing recursive behaviour to capture three dimensional spread 

(M4), where the burning cells remain active until a specified time-step (burning time), 

such as in BARA (see Chapter 4), (ii) increasing the number of physics behaviour 

incorporated, i.e., adding more discrete states (M5; Fernandez-Anez et al., 2019). 

 

Figure 8.1. Scheme of the models (blue circle) considered in this work ranging from simplest 

model (M1) to the most complex model (M5). Arrows represent the connection between base 

model (origin of the arrow) and modified model (tip of the arrow). The modification is obtained by 

implementing concepts, which are shown in the green square (A to D), to the base model. 
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8.1.2. Rules of the models 

The CA models for smouldering fire have several overlapping set of rules, thus, the 

set of rules for all the models can be put together as shown in Figure 8.2. For simplicity, 

the nomenclature of the states for all the models are generalised, which might be different 

from the nomenclature in the works that develop the models. For M1 to M4, the models 

only have three states, peat (P), smouldering (S), and burnt out (B), whereas for M5, two 

more states, dry peat (D) and char (C), are added. The neighbourhood in this chapter was 

selected to be von Neumann neighbourhood (North, South, East, and West neighbours), 

which is the simplest neighbourhood, for all the models. In Figure 8.2, the set of rules to 

update the states of cells for the models are represented by the different paths (black 

arrows) which connect peat to burnt out states. Each model has different path, in which 

the path for each model is indicated by the coloured circle. Each circle with unique colour 

defines the path to update the states of cells from peat to burnt out. 

 

Figure 8.2. Scheme of the state change in model 1 to 5 from peat (P) to burnt out (B). Each model 

has different set of rules, which are distinguished using different coloured circles (M1 to M5). The 

coloured circles connect peat with burnt out via different paths that represent different rules to 

change the state. Model 1 to 4 have three states: peat (P), smouldering (S), and burnt out (B), 

whereas model 5 employs two additional states: dry peat (D) and char (C). 
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The peat cells in M1 (cyan circle) transition to smouldering when the peat cells 

encounter smouldering cells in their neighbourhood with a probability of 𝑃s (smouldering 

probability; Hargrove et al., 2000). The smouldering cells become burnt out at the 

subsequent time-step. The rule to transition from peat to smouldering in M1 is adopted 

in M2 (magenta circle), however, the transition from smouldering to burnt out in M2 at 

the subsequent time-step happen with a probability of 𝑃e (extinction probability; Belcher 

et al., 2010). M3 (green circle) and M4 (blue circle) add a criterion for the transition from 

peat to smouldering, i.e., the state of a cell changes if the cell’s intrinsic value (𝑈) exceeds 

smouldering threshold ( Θs ) with a probability of 𝑃s . This intrinsic value is the 

representation of the heat accumulation concept (see Chapter 3), thus, it is referred to as 

heat value to give context in the physics of combustion process. M3 and M4 differs in the 

rule for transition from smouldering to burnt out. While M3 follows M1 where 

smouldering cells become burnt out at the subsequent time-step, M4 follows the concept 

of recursive behaviour in M2. However, the recursive behaviour in M4 is deterministic, in 

which the smouldering cells become burnt out after a specified time-step (𝑡s), which is 

referred to as burning time (see BARA in Chapter 4). The transition from peat to 

smouldering in M5 (red circle) follows a diversion path. Prior to the transition to 

smouldering, peat cells transition to dry peat when their 𝑈 exceed drying threshold (Θd) 

with a probability of 𝑃d (drying probability). The dry peat cells further transition to char 

when their 𝑈 exceed charring threshold (Θc) with a probability of 𝑃c (charring probability), 

after which the char cells transition to smouldering with a probability of 𝑃o (oxidation 

probability; Fernandez-Anez, Christensen and Rein, 2017; Fernandez-Anez et al., 2019). 

The smouldering cells in M5 then become burnt out at the subsequent time-step, following 

the rule in M1. These sequence of rules follow the process in smouldering combustion, i.e., 

drying – charring – oxidation – burnt out (Huang, Rein and Chen, 2015).  

In M3 to M5, the states of cells change depend on the 𝑈  of the cells. The 𝑈 

information are stored in heat layer, a different computational layer from the state layer 

which stores the information of states of cells, therefore, M3 to M5 employ multi-layer 

approach (Fernandez-Anez et al., 2019). The rules which change the 𝑈 of cells in M3, M4, 

and M5 are depicted in Figure 4.1a (see Chapter 4.1.2). The 𝑈 of cells (𝑖) are affected by 

the 𝑈 transferred from or to the neighborhood (North, South, East, and West neighbors) 

and 𝑈 transferred to the surrounding. The 𝑈 transferred from or to the neighborhood 

depend on the difference in 𝑈 between cell 𝑖 and its each neighbour (Δ𝑈). Fraction of Δ𝑈 

will be transferred from or to the neighbours, which is quantified by heat transfer 

coefficient (𝜑 ). Fraction of 𝑈  of cell 𝑖  is also transferred to the surrounding (loss to 
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surrounding), which is quantified by heat loss coefficient (𝜇). The details of these rules 

can be found in Chapter 4. 

8.1.3. Comparison criteria 

The performance of the models (M1 to M5) were compared based on four criteria: 

accuracy, uncertainty, complexity, and capacity. The accuracy comparison represents the 

agreement between the models with real phenomena of smouldering fire. The uncertainty 

comparison represents the robustness of the models to produce same results when the 

simulation is repeated. The complexity represents the computational resource required 

by the models to run the simulations. The capacity represents the range of different 

conditions at which the smouldering fire occur can be simulated by the models. Therefore, 

the best model can be defined as the model which has the highest accuracy and capacity 

but has smallest uncertainty and complexity. 

For accuracy and uncertainty, the models were compared against smouldering fire 

spread experiments of Christensen, Fernandez-Anez and Rein (2020). In their work, the 

smouldering fire experiments are conducted on different conditions of MC and IC, 

resulting in the smouldering fire with different horizontal spread rate and smouldering 

width. The experiments were conducted on 40cm × 40cm × 1.6cm reactor framed by 

insulated wall and ignited at the centre of the reactor, causing the smouldering fire to 

spread radially (see Figure 5.1a). This experiment setup is used as the domain for the 

models where the size of each cell in the models represent the resolution of the simulations. 

Higher resolution simulations have smaller cell size, resulting in greater number of cells 

in the domain to maintain the domain size to be equal the reactor size (40cm × 40cm). 

This domain is used for all the comparison criteria in this chapter. The accuracies of the 

models are determined based on the difference between the prediction of the models and 

the results from the experiments at various conditions. Three variables were compared, 

horizontal spread rate, smouldering width and burnt area, to investigate and compare the 

behaviour of the three direction of smouldering spread from the predictions. Horizontal 

spread rate represents the two dimensional lateral spread, whereas the smouldering 

width represents in-depth spread, which is the third direction of the smouldering spread. 

The comparison of burnt area was considered to investigate the pattern resulted from the 

predictions. The values of variables in the models (𝑃s, 𝑃e, Θs, 𝑡s, Θd, 𝑃d, Θc, 𝑃c, 𝑃o, 𝜑, 𝜇) 

were explored, which make the predictions of the models have good agreement with the 

experiments. The simulation at one unique condition of experiment was repeated ten 

times, and the standard deviation of the results were calculated, to compare the 

uncertainties of the models.  
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The complexity of the models were quantified by using computational time 

required by the models to simulate the smouldering fire at the same condition. The 

resolution of the domain were varied, by changing the cell size and consequently the 

number of cells in the domain, to avoid resolution-dependent comparison results. For 

capacity, the variables of the models (𝑃s, 𝑃e, Θs, 𝑡s, Θd, 𝑃d, Θc, 𝑃c, 𝑃o, 𝜑, 𝜇) were explored 

further to find all possible horizontal spread rate and smouldering width that can be 

simulated by the models. This capacity comparison is important to investigate the ability 

of the models to simulate many different cases and scales in addition to the experiments 

that are used in this chapter. 

8.2. Results and Discussions 

Figure 8.3 shows that only model 4 (BARA) that accurately simulated both leading 

edge and trailing edge in the experiments of Christensen, Fernandez-Anez and Rein 

(2020). The other models accurately simulated the leading edge of the experiments, 

however, they failed to simulate the trailing edge. Model 2 could simulate both leading 

and trailing edges only if the distance between them, i.e., smouldering width, is short, 

resulting in thin smouldering width. Otherwise, the simulation of model 2 resulted in 

randomly distributed smouldering cells as shown in Figure 8.3. The leading edge is the 

fire front at the surface of the sample that consume the peat at the surface layer, whereas 

the trailing edge is the fire front that consume the peat at the bottom of the reactor. The 

smouldering fire consumes the peat at different depth, from the surface to the bottom of 

the reactor, which is visualized by the burning region between the two edges. If the 

thickness of this region (smouldering width) is small, then the rate of in-depth spread is 

high, relative to the horizontal spread rate. Therefore, the leading edge represents the 

two dimensional horizontal spread of the smouldering fire, whereas the trailing edge 

represents in-depth spread of the fire.  

These qualitative comparisons are confirmed with accuracy comparisons on the 

average horizontal spread rate and average smouldering width as shown in Figure 8.4. 

The horizontal spread rates are obtained by dividing the half of reactor size with the time 

required by the leading edge to reach the edge of the reactor. The smouldering widths are 

measured from the experiments and simulations, i.e., the distance between leading and 

trailing edges. Figure 8.4 shows that all the models have good agreement with 

experiments in term of horizontal spread rate, with error around 10% in various MC and 

IC conditions. However, model 1, 3, and 5 have significant error (more than 50%) in term 

of smouldering width. Model 2 has good agreement with experiments in term of 

smouldering width (within 10% error) when the smouldering width is less than 60mm. 
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This value is the largest value of smouldering width can be simulated by using model 2, 

larger value causes the randomly distributed smouldering cells as shown in Figure 8.3, 

thus, the error of smouldering width for values higher than 60mm are high in model 2. 

From these results, model 4 is the best model in term of the accuracy of horizontal spread 

rate and smouldering width, with error less than 10% for both the variables.  

 

Figure 8.3. The comparison of experiment and predictions of model 1 to 5. Model 1 to 4 only have 

three states: peat (P), smouldering (S), and burnt out (B), whereas model 5 has two additional 

states, dry peat (D) and char (C). 



 

206 

 

Figure 8.5 shows that the burnt area at different times of the simulations from all 

the models have good agreement with experiments. This finding indicates that the shape 

of the simulation results are similar to those in experiments at different times after 

ignition. Model 1 has the largest deviation compared to other models since in model 1, 

there are patches of unburned peat that make the burnt area are under predicted. These 

accurate results for all the models despite large error on smouldering width, except for 

model 4, indicate that the burnt area is only affected by the horizontal spread. Therefore, 

since the errors on horizontal spread rate are low for all the models, low error on burnt 

area confirm the accuracy of the models in term of the shape produced by the models, 

which negates the possibility of compensation effect (Bal and Rein, 2013).  

The errors of burnt area at different times after ignition for each model varies (see 

Figure 8.6a and Figure 8.6c), however, the time-averaged error for the models are similar 

(10-15%) and only model 1 which has considerably larger error (~25%) due to the patches 

of unburned peat. This finding infers that both recursive behaviour and heat 

accumulation concept increase the accuracy of the model by avoiding the creation of 

patches of unburned peat. These patches are commonly observed in real peatland wildfire, 

however, these patches are created due to the variability of conditions in natural peatland, 

for instance, non-uniform MC (see Figure 1.3). Therefore, for simulating smouldering fire 

in uniform condition, the patches of unburned peat are considered as inaccuracy.  

The set of rules implemented in the models also affect the uncertainty of the 

models when the simulation is run repeatedly (see Figure 8.6b and Figure 8.6d). The 

standard deviation of the burnt area are different between models, however, the standard 

deviation of model 2, 4, and 5 are similar and both model 1 and 3 have significantly larger 

standard deviation than other models. The models were categorised in only two groups: a 

precise group (model 2, 4, and 5) that has small standard deviation and an imprecise 

group (model 1 and 3) that has large standard deviation. 

There are two rules present in the precise group while absent in the imprecise 

group: recursive behaviour and additional states. The models in precise group either have 

the rules for recursive behaviour (model 2 and 4) or consider more states (model 5). 

Therefore, these two rules improve the precision of the models, i.e., lower the uncertainty.  
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Figure 8.4. The comparison of predictions of model 1 to 5 against experiments on horizontal 

spread rate (top) and smouldering width (bottom). The solid black line represent the target at 

which the prediction perfectly match with the experiments. The symbols are the predictions from 

models with their uncertainties (10 repetitions). 

Of the five models compared in this chapter, model 4 is the best in term of both 

accuracy and uncertainty, however, these good performances are accompanied with high 

complexity. Model 4 has error less than 10% for horizontal spread rate, smouldering width, 
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and burnt area and also has a relatively low standard deviation. However, the 

computational time required by model 4 to finish the simulation is the longest compared 

to other models (see Figure 8.7), and these computational times increase in quadratic 

manner when the resolution of the domain increases (meaning the increase of the number 

of cells). Although the difference in computational time between model 4 and model 3 and 

5 are within 10%, the computational time required by model 4 to simulate the same 

scenario is more than 10 times longer than the time required by model 1 and 2. Therefore, 

heat accumulation concept significantly increases the complexity of the models, whereas 

additional rules to the heat accumulation concept, such as burning time and additional 

states, slightly increase the complexity. These findings indicate that model 2 provides 

alternative to model 4. For comparison, model 1 lacks both accuracy and uncertainty, 

whereas model 3 and 5 require similar computational time with model 4 despite having 

lower accuracy.  

From the previous discussion, the only disadvantage of using model 2 instead of 

model 4 is the range of conditions can be simulated. This criterion is quantified by using 

capacity, the range of valid results. The valid results are defined as the simulations of 

self-sustained smouldering that have pattern similar to the shape found in the 

experiments of Christensen, Fernandez-Anez and Rein (2020), a circular ring pattern. 

With particular combination of variables in the models, the pattern resulted from the 

simulation could deviate from the circular pattern, for instance, a polygon as shown in 

Figure S4.1. The variables in the models were explored, all the variables that make the 

models do not give valid results were excluded, and the range of possible horizontal spread 

rate and smouldering width can be simulated by the models were compared. Both 

horizontal spread rate and smouldering width were normalised to avoid size effect of the 

domain. The normalised horizontal spread rate (RS) is the ratio between horizontal spread 

rate and minimum horizontal spread rate that can be simulated by the models, whereas 

normalised smouldering width (RW) is the ratio between smouldering width and half the 

size of the reactor (20cm). 

From the comparisons, only model 1 which has a finite range of valid results in 

term of RS (see Figure 8.8). Model 1 could only simulate with maximum RS of 1.6, whereas 

the other models could simulate infinite range of RS, therefore, more number of variables 

in the models increase the range of RS can be simulated by the models. This finding 

indicates that the range of conditions of which model 1 can be used are very limited, 

especially when the phenomena involve both flaming and smouldering, where flaming 

could spread two orders of magnitude faster than smouldering (Rein, 2013). Model 1 also 
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has the narrowest range for RW, however, this range is similar in model 3 and 5 in term 

of RW. 

 

Figure 8.5. The comparison of predictions of model 1 to 5 against experiments on burnt area at 

two different conditions (MC and IC). The solid black line with triangle symbol represents the 

burnt area of experiments, with their uncertainties are indicated as grey shade. The dotted lines 

with symbols are the predictions from models with their uncertainties (10 repetitions). 

Model 4 has the widest range of RW among the other models. Model 4 could 

simulate smouldering fire with any smouldering width, which is five times wider range 

than model 1, 3, and 5 and more than twice the range of model 2. These findings indicate 

that recursive behaviour increase the range of RW can be simulated by the models and the 

burning time rule, a deterministic recursive behaviour, is better than stochastic recursive 

behaviour, e.g., extinction probability. Therefore, model 4 is the best option to simulate 
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smouldering fire despite its complexity since model 4 has high accuracy, low uncertainty, 

and large capacity.  

 

Figure 8.6. The error and standard deviation of model 1 to 5 compared to experiments at two 

different conditions. a and b are the results from smouldering peat with 80% MC and 2.5% IC, 

whereas c and d are the results from smouldering peat with 40% MC and 40% IC. 

These results imply that each rule has different effect on the accuracy and 

uncertainty of the simulation results. The heat accumulation concept improves the 

accuracy, the additional states improve the uncertainty, and the recursive behaviour 

improves accuracy, uncertainty, and capacity. Although both deterministic and stochastic 

recursive behaviours enlarge the capacity of the models, the deterministic rule, such as 

burning time, increases the capacity larger than the stochastic rule. 
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Figure 8.7. Required computational time of the models at different resolution (i.e., different 

number of cells for same reactor size). Despite having different computational time, the 

relationship between number of cells and required computational time of the models are the 

same, i.e., quadratic. 

In term of the combination of the rules, the replacement of extinction probability 

rule in model 2 with burning time rule could become the best possible model since this 

hypothetical model could have similar accuracy, uncertainty, and capacity as model 4 but 

with significantly lower complexity. However, this hypothetical model is less compliant 

when compared with physical term. In the calibration of model 4, the variables in the 

model can be related to the variables in physical term, whereas the hypothetical model 

that only has two variables cannot be related with physical term. Therefore, the 

hypothetical model will be lack in the ability to forecast new phenomena.  
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Figure 8.8. Range of normalized horizontal spread rate (RS) and normalized smouldering width 

(RW) of which the models have valid results (circular ring pattern). RS is formulated as horizontal 

spread rate divided by the minimum horizontal spread rate obtained by the model, whereas RW is 

formulated as smouldering width divided by the reactor width. The symbols represent the 

simulation results of each model, whereas the coloured lines represent the range of RS and RW 

which can be simulated using each model. The infinity symbols (∞) in the range of RS indicate 

that the model could simulate smouldering fire with any horizontal spread rate. 

 

8.3. Conclusions 

In this chapter, the set of rules in cellular automata for smouldering fire modelling 

were investigated. Five different cellular automata models that have been developed in 

the literatures were compared based on their accuracy, uncertainty, complexity, and 

capacity and the rules which become the determining rule for the performance on each 

comparison criterion were analysed. From the comparison, BARA (see Chapter 4) is the 

best performer compared with other models in the literatures (Hargrove et al., 2000; 

Belcher et al., 2010; Fernandez-Anez et al., 2019). BARA has high accuracy (within 10% 

error) and low uncertainty when compared to experiments (Christensen, Fernandez-Anez 

and Rein, 2020). This model also has the largest capacity, possible scenario can be 
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simulated by the model, compared to other models although the model requires longest 

computational to finish the simulation. BARA has two prominent rules, heat 

accumulation concept and deterministic recursive behaviour, which make this model 

performs the best. The recursive behaviour, both deterministic and probabilistic 

(developed by Belcher et al., 2010), improve accuracy, uncertainty and capacity of the 

models. However, the capacity improved by using deterministic recursive behaviour is 

significantly greater than by using probabilistic recursive behaviour. Compared to bond 

percolation (e.g., in KAPAS and KAPAS II, see Chapter 6 and Chapter 7), heat 

accumulation concept has higher accuracy. Although the complexity of heat accumulation 

concept is significantly higher than bond percolation, heat accumulation concept can be 

related to the physical terms more easily, which is beneficial, for example, in the 

calibration process. Therefore, the combination of heat accumulation and deterministic 

recursive behaviour rules are the best for simulating smouldering fire. These findings can 

guide the selection of appropriate rules in cellular automata for modelling smouldering 

fire and provide direction on the further development of the model. 
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Chapter 9 – SUBALI: Three-Dimensional 

Cellular Automata Model to Estimate Burnt 

Area and Carbon Emission of Field-Scale 

Peatland Wildfires 

Summary8 

This chapter aims to upscale the 3-D CA model for smouldering in Chapter 4 

(BARA) and integrate it with the model in Chapter 7 (KAPAS II), to develop the first 3-D 

model for field-scale peatland wildfires, SUBALI. SUBALI was used to estimate the 

smouldering burnt area based on peat MC and GWT that vary daily, derived from a peat-

specific land surface model. The GWT was also used to estimate the depth of burn of 

smouldering wildfires. The predictions of SUBALI show that the peat MC within the 

lifespan of flaming wildfires has an inverse exponential correlation with the ratio between 

smouldering and flaming burnt area. From this correlation, GWT data, and flaming burnt 

area data, 0.33 Gt-C was estimated to be released to the atmosphere due to smouldering 

wildfires in Indonesia in 2015. The importance of peat conditions and GWT for the 

estimation of carbon emissions was revealed, in addition to the smouldering burnt area. 

The further estimation of carbon emission of peatland wildfires in Indonesia from 2016 to 

2019 shows that the emissions from smouldering wildfires significantly predominates the 

emissions from flaming wildfires (only) in El Niño years. In 2019, a moderately strong El 

Niño year, the carbon emissions from smouldering wildfires were approximately 0.11 Gt-

C. Although this value was only one-third of emissions in 2015, in the dry season, the 

carbon release rate from smouldering wildfires was 1.67 Mt-C/day, which is a similar rate 

to fossil fuel emissions in the European Union (2.42 Mt-C/day). The findings and models 

improve the understanding of smouldering wildfires and carbon emission estimation and 

provide a faster-than real-time simulation tool, which can be used to optimise the 

                                                                 
8 This chapter is based on “Dwi M J Purnomo, Sebastian Apers, Michel Bechtold, Parwati Sofan, 

Guillermo Rein, 2022. Estimation of Burnt Area and Carbon Emission of Indonesian Smouldering 

Wildfires from 2015 to 2019. (to be submitted).” 
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strategies for peatland management through multi-scenario simulations, thus can 

contribute to climate change mitigation. 

9.1. The Development of SUBALI 

9.1.1. Introduction to SUBALI 

From the analysis in Chapter 8, BARA (Chapter 4) was found to be the optimum 

CA model to simulate the 3-D spread of smouldering. Although BARAPPY (Chapter 5) 

has a higher accuracy for in-depth smouldering, its two order of magnitude higher 

computational cost causes this model to be unsuitable for field-scale modelling. This 

chapter aims to upscale BARA (Chapter 4) and integrate it with KAPAS II (Chapter 7), 

to enable a CA model for field-scale peatland wildfires that consider 3-D spread of the 

smouldering component. Therefore, the model in this chapter uses bond percolation 

concept for the flaming component, and heat accumulation concept for the smouldering 

component (see Chapter 3). From here on, the model in this chapter will be referred to as 

SUBALI, originated from a warrior in Indonesian legend that can rise from the death, 

similar to peatland wildfires that are commonly known as ‘zombie fires’. 

SUBALI was used to correlate the smouldering burnt area with flaming burnt area, 

given the peat MC and GWT, which are derived from a peat-specific land surface model. 

From this correlation, the smouldering burnt area can be estimated from the flaming 

burnt area data, which are more readily available. The level of carbon emissions was 

estimated based on these burnt areas and the DOB that is derived from the GWT data.  

This approach was used to estimate the carbon emissions from Indonesian peatland 

wildfires from 2015 to 2019. The first part of this chapter discusses the estimation of 

smouldering burnt area based on the flaming burnt area and peat conditions, which is 

followed by a discussion on the estimation of carbon emissions from Indonesian peatland 

wildfires within five years period. 

9.1.2. States and rules of SUBALI 

SUBALI considers 5 possible states for each cell: surface vegetation (SV), flaming 

vegetation (FV), exposed peat (EP), smouldering peat (SP), and burned peat (BP), as in 

KAPAS (Chapter 6) and KAPAS II (Chapter 7), as shown in Figure 9.1. To enable the 

simulation to involve both flaming and smouldering wildfires, SUBALI employs a multi-

layer approach, following KAPAS (Chapter 6) and KAPAS II (Chapter 7), in which there 

are two interconnected layers: surface and soil (see Figure 9.1a). The soil layer only 

accommodates smouldering wildfires, whereas the surface layer mainly accommodates 

flaming wildfires, since the smouldering spread in the soil layer is also projected onto the 
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surface layer to provide better visual representation in the simulation, unless the surface 

vegetation in the surface layer has not become exposed peat (smouldering peat 

underneath intact surface vegetation). The surface layer considers a 2-D spread, whereas 

the soil layer considers a 3-D spread. This distinction aims to provide sufficient complexity 

in the soil layer where the vertical spread of smouldering peat is important, while 

simplifying the surface layer since the vertical spread of flaming vegetation is two order 

of magnitude faster than in smouldering peat.  

 

 

Figure 9.1. (a) Schematic of the multi-layer approach of SUBALI. (b) The states and rules of 

SUBALI. SV is surface vegetation, FV is flaming vegetation, EP is exposed peat, SP is 

smouldering peat, BP is burnt peat, Pf is the probability of the flames spreading, Pt is the 

probability of transition from flaming to smouldering occurring, and Ps is the probability of 

smouldering spreading. Solid arrows represent possible state changes, whereas dotted arrows 
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represent potential influences from neighbouring cells. U is intrinsic value, Θ is smouldering 

threshold, and ts is smouldering time. 

 

The rules used in SUBALI for flaming spread and smouldering hotspot nucleation 

in the surface layer are the same as the rules used in KAPAS II (Chapter 7). The flaming 

vegetation cells spread its fire to the neighbouring surface vegetation cells with a 

probability of  𝑃f , and the flaming vegetation cells can ignite the peat underneath, 

creating smouldering hotspots, with a probability of  𝑃t (see Figure 9.1b). The smouldering 

peat cells that are ignited by the flaming vegetation in the surface layer are projected onto 

the corresponding locations in the soil layer. 

In the soil layer, the rules that are used follow the rules in BARA (Chapter 4). Each 

cell in the soil layer has an intrinsic value (𝑈), which determines the change of states in 

the soil layer. The undisturbed peat cells (exposed peat and peat in soil layer underneath 

surface vegetation) change their state to become smouldering peat cells, when their 𝑈 

exceeds a smouldering threshold (Θ) due to the 𝑈 transfer, with a probability of  𝑃s (see 

Figure 9.1b). This 𝑈 transfer happens when there is a difference in 𝑈 value regardless of 

the state of the cells, and the fraction of the 𝑈 that is transferred from cells with higher 𝑈 

to the cells with lower 𝑈  is formulated as 𝜑∆𝑈 , where 𝜑  denotes the heat transfer 

coefficient. The heat loss to the surroundings is also considered, and quantified as 𝜇𝑈; 𝜇 

denotes the heat loss coefficient. 

All the smouldering peat cells generate value of  𝑄R, which is added to its 𝑈 value, 

every time-step while they remain smouldering. The smouldering peat cells then become 

burnt peat after a certain time-step, 𝑡s, and stop the generation of 𝑄R. The time delay (𝑡s) 

before smouldering peat becomes burnt peat represents the vertical spread, and its value 

depends on the in-depth spread rate. 

9.1.3. Datasets for input parameters and validation 

SUBALI was validated against two peatland wildfires that happened in Indonesia: 

in Central Kalimantan (3.087oS, 113.991oE) and in Jambi (1.305oS, 103.945oE). The 

wildfire in Central Kalimantan started on 21 September 2018 and was fully extinguished 

on 10 October 2018, and the one in Jambi started on 21 August 2019 and was fully 

extinguished on 30 September 2019 (see Figure 7.1a and Figure 9.2a). These wildfires 

were selected because of the availability of the data, the location of the sites on different 

islands (Central Kalimantan is on Borneo and Jambi on Sumatera), and because they 

happened in different years, to ensure the generality of the model. Figure 7.1a (for Central 

Kalimantan) and Figure 9.2a (for Jambi) show the progression of the flaming wildfires, 
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which can be detected by remote sensing via Sentinel-2 (Copernicus, 2022), by using false-

colour urban composites that emphasize fires and burnt scars from other objects 

(Stavrakoudis et al., 2020). The brown colour in these figures represents the flaming burnt 

scar, whereas yellow and red represent the fire. The white, green, and blue represent 

cloud, surface vegetation, and water bodies respectively. 

 

Figure 9.2. Satellite image of a landscape in Jambi (1.305oS, 103.945oE) in August 2019 obtained 

from Sentinel-2 (Copernicus, 2022) (a) The progression of a flaming wildfire in the Jambi 

landscape detected by Sentinel-2 (Copernicus, 2022). (b) Estimated flaming burnt scar in the 

Jambi landscape. 

The burnt scar caused by flaming wildfire was estimated by using a seed-fill 

algorithm (Khayal et al., 2011) that detects the burnt scar pixels (brown colour) from the 

false-colour urban composite images (Figure 7.1b and Figure 9.2b). These data were used 

to validate the flaming component of SUBALI. The firebreaks that stop the flames from 
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spreading were considered by observing the progression of burnt scar. Firebreaks were 

indicated by the abrupt stop of the flames, causing the burnt scar to have a relatively 

smooth edge (see day 20 in Figure 7.1a). The water bodies were also considered as 

firebreaks since they stop the spread of flames; however, their determination were 

significantly simpler. Figure 7.2a and Figure 9.3a show the landscape, including 

estimated firebreaks for Central Kalimantan and Jambi, respectively. The images in 

these figures were obtained from the data when the wildfires have not started to avoid 

misclassification. 

 

Figure 9.3. (a) Satellite image of a landscape in Jambi (1.305oS, 103.945oE) in August 2019 before 

the flames began; this image was obtained from Sentinel-2 (Copernicus, 2022). The white lines 

highlight firebreaks. (b) Remote sensing-based vegetation types identified in the peatlands in the 

Jambi landscape (1.305oS, 103.945oE), as obtained from Buchhorn et al. (2020). Four vegetation 

types were considered: dry shrubs (yellow), wet shrubs (cyan), crops (purple) and trees (green). 

SUBALI considered three types of flammable surface vegetation for the Central 

Kalimantan wildfire: dry shrub, wet shrub, and trees; and four types of flammable 

vegetation for the Jambi wildfire: dry shrub, wet shrub, crop, and trees (see Figure 7.2b 

and Figure 9.3b), following Ferraz et al. (2019); Buchhorn et al. (2020). Rain and wind 

condition were also considered in SUBALI, using daily data from a local weather station 

(BMKG, 2018) on precipitation, wind speed and wind direction. 
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Figure 9.4. (a) The NDVI data of a landscape in Jambi (1.305oS, 103.945oE) on 6 August 2019; 

these data were used to estimate the vegetation density and were obtained from Sentinel-2 

(Copernicus, 2022). (b) Reclassified NDVI data in the Jambi landscape (1.305oS, 103.945oE) on 6 

August 2019; these data were used to simplify the vegetation density classification scheme 
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and were adapted from Alexandridis et al., (2008) (c) The vegetation density data characterizing 

the Jambi landscape (1.305oS, 103.945oE) on 6 August 2019 used in the model; these data were 

based on the NDVI data and classified as recently burnt and water (rec. burnt/water), regrown, 

or intact. 

SUBALI considered the vegetation density, which is classified based on the 

Normalised Difference Vegetation Index (NDVI) data, the most commonly used data to 

estimate vegetation density (Camps-Valls et al., 2021), obtained from Sentinel-2. Figure 

7.3a and Figure 9.4a show the NDVI of the Central Kalimantan and Jambi sites, 

respectively. However, only three categories of vegetation density were considered: 

recently burnt and water, regrown, or intact (adapted from Alexandridis et al., 2008); thus, 

the NDVI were reclassified into three classes: 0 – 0.2, 0.2 – 0.4, and above 0.4, respectively 

(see Figure 7.3b and Figure 9.4b). Recently burnt vegetation corresponds to vegetation 

that is burnt by previous wildfires, regrown vegetation corresponds to the previously 

burnt vegetation that has started to regrow, and intact vegetation is vegetation that is 

not affected by previous wildfires. Figure 7.3c and Figure 9.4c show the final data of the 

vegetation density classification for SUBALI. The NDVI data that were used were those 

from few days before the start of wildfires, thus, the data were actual. 

SUBALI considered peat MC and GWT data that were derived from 

PEATCLSMTrop,Drain (Apers et al., 2020), with the assumption of drained type and MC is 

at the surface, following KAPAS II (see Chapter 7). The gravimetric MC data required by 

SUBALI were derived from the division of volumetric MC of PEATCLSMTrop,Drain by 0.585, 

i.e., peat bulk density (in g/cm3), which also follow KAPAS II (see Chapter 7). The data on 

smouldering hotspots were used to validate the smouldering component of SUBALI. 

These data were obtained from the remote sensing detection by using TOPECAL (Sofan 

et al., 2020; see details in Chapter 7). Figure 7.4 and Figure 9.5 show the smouldering 

hotspots that were detected by using TOPECAL, for Central Kalimantan and Jambi sites, 

respectively. 
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Figure 9.5. The smouldering hotspots (yellow circles) in a landscape in Borneo (1.305oS, 

103.945oE) in 2019, detected by the algorithm developed by Sofan et al. (2020) and implemented 

in the remote sensing data of Sentinel-2 (Copernicus, 2022). The increases in the number of 

hotspots correspond to the progression of the flaming wildfire (see Figure 9.2a). 

 

9.1.4. Calibration of SUBALI 

The behaviour of SUBALI depends on the value of its variables both in surface 

layer ( 𝑃f and 𝑃t) and in the soil layer (Θ,  𝑃s, 𝜑,  𝑄R, 𝜇, and  𝑡s). The values of  𝑃f and 𝑃t 
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follow KAPAS II (see Chapter 7), which were formulated in Eq. 7.1 – Eq. 7.7. The values 

of Θ, 𝜑, and  𝑄R were formulated in Eq. 4.2 – Eq. 4.7, whereas 𝜇 was set constant to be 0.1, 

following BARA (Chapter 4). To enable the domain independent model in the soil layer, 

the value of 𝑃s was re-calibrated with different 𝜆, following the method in Chapter 7. In 

BARA (Chapter 4), 𝑃s was set constant to 0.1 because if 𝑃s was too large, the shape of the 

smouldering fire front became spurious (polygon instead of circular), whereas when 𝑃s 

was too small, the smouldering was not self-sustained. In SUBALI, 𝑃s was defined as 0.1η, 

where η is the smouldering probability correction factor that depends on the 𝜆. Figure 

9.6a shows the calibration results of η, where the value of η was explored to make the 

spread rate in the simulation at different 𝜆 (different spatial and temporal resolution) 

concur with the spread rate in the experiments of Christensen, Fernandez-Anez and Rein 

(2020). The correlation of η  and 𝜆  can be formulated as η = 0.16𝜆−1.03  with 𝑅 = 0.98 . 

Therefore, in SUBALI, 𝑃s = 0.016𝜆−1.03 , which makes SUBALI a domain independent 

model. Figure 9.6b shows the comparison of spread rate from the experiments with the 

spread rate from simulations with the new formulation of 𝑃s with a cell size of 45 m and 

a time-step of 1200 s. Without adjusting the formulation of other variables, the usage of 

the new formulation of 𝑃s could simulate all the experiments in Christensen, Fernandez-

Anez and Rein (2020) in a large scale case reasonably accurately.  

 

Figure 9.6. (a) Relationship between smouldering probability correction factor (𝜂) and 

spatiotemporal factor (𝜆). (b) Comparison between the spread rate from experiments of 

Christensen, Fernandez-Anez and Rein (2020) and large scale simulations. 

The restriction of a non-self-sustained smouldering when 𝑃s is too low still prevail. 

In SUBALI, the formulation of 𝑡s  in BARA (Eq. 4.3) was modified to compensate the 
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restriction as shown in Eq. 9.1. BARA only uses the second term in Eq. 9.1, where 𝑡s (in 

number of time-step) is a function of the peat thickness (𝑑), in-depth spread rate (𝑆d), and 

time-step (∆𝑡). This term represents the time required to consume the peat from the 

surface until the total depth of the peat. In BARA, it is assumed that once a cell is 

smouldering, the entire area ( ∆𝑥 × ∆𝑥 ) of the cell is uniformly smouldering. This 

assumption is acceptable when ∆𝑥  is relatively small (e.g., BARA uses ∆𝑥 = 1 mm ); 

however, when the cell size is in m order, the assumption is not justified. When the cell 

size is relatively large, apart from the in-depth spread within one cell, there is a horizontal 

spread inside a cell. Therefore, although the smouldering has consumed the entire 

thickness of the peat, the smouldering in one cell remains active due to the internal 

horizontal spread. However, since one cell is the smallest entity in the model, the internal 

horizontal spread cannot be modelled. To overcome these limitations, a new variable, 𝛽, 

was introduced, which provides additional time delay to transition from smouldering peat 

to burnt peat. This new variable represents the time delay that is caused by the internal 

horizontal spread without significant additional complexity. Therefore, in Eq. 9.1, the first 

term on the right hand side of the equation represent the time delay caused by the 

internal horizontal spread, and the second term represent the time delay caused by in-

depth spread within one cell. Smouldering wildfires stop its vertical spread upon reaching 

mineral soil or peat with MC higher than critical. In SUBALI, the 𝑑 in the second term of 

Eq. 9.1 is assumed to be equal to GWT, which has the highest MC vertically, as a 

conservative approach (smouldering can stop before reaching GWT), since the organic soil 

layer in Indonesian peatland is considerably thick (Rein, 2013; Turetsky et al., 2015). 

 𝑡s = 𝛽 +  𝑑/(∆𝑡. 𝑆d) (9.1) 

 𝛽 = 𝜆/𝑆H (9.2) 

 𝑆H = (2.478 × 109/∆𝐻s − 3.601) 100⁄  (9.3) 

 ∆𝐻s = 𝜌w(𝑐w∆𝑇d + 𝐿w) + 𝜌o(𝑐o∆𝑇h + ∆𝐻P) + 𝜌i𝑐i∆𝑇h (9.4) 

 The value of 𝛽 is formulated in Eq. 9.2 where 𝑆H is horizontal spread rate, which 

is based on the time required by smouldering to spread horizontally from one edge to the 

other edge of a cell (∆𝑥), but in a time-step unit. 𝑆H is formulated in Eq. 9.3, following the 

correlation of horizontal spread rate with heat sink density (∆𝐻s) in Christensen (2021). 

∆𝐻s (Eq. 9.4) is a function of density of water (𝜌w), peat (𝜌o), and inorganic matter (𝜌i), 

specific heat of water (𝑐w ), peat (𝑐o ), and inorganic matter (𝑐i ), latent heat of water 

vaporisation ( 𝐿w ), temperature increase to 100°C (water drying, ∆𝑇d ), temperature 
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increase to peak value in smouldering (∆𝑇h), and heat of pyrolysis (∆𝐻P). The units of 

variables and parameters in Eq. 9.1 to Eq. 9.4 can be found in the nomenclature. By 

introducing these modifications, SUBALI, for the first time, provide a tool for the 

modelling of field-scale peatland wildfires that simulate the 3-D spread of smouldering 

and can be used in any domain configuration. 

9.2. Results and Discussions 

9.2.1. Estimation of smouldering burnt area 

Figure 9.7 and Figure S9.1 show snapshots of the SUBALI simulations at four 

different times, and the corresponding number of pixels of different states (EP, FV, SP, 

and BP), on Jambi and Central Kalimantan sites, respectively. The selection of the first 

three times of snapshots, which correspond to the spread of flames, were based on the 

availability of remote sensing data; in Jambi it is day 5 (Figure 9.7a), day 20 (Figure 9.7b), 

and day 40 (Figure 9.7c), following (Figure 9.2), whereas in Central Kalimantan it is day 

3 (Figure S9.1a), day 8 (Figure S9.1b), and day 20 (Figure S9.1c), following Figure 7.1. 

Figure 9.7d and Figure S9.1d show snapshots of the prediction at the end of simulation, 

which is defined as six months, since smouldering can sustain for a long time and across 

seasons (Scholten et al., 2021). The start of the simulation is considered as day 0 (21 

August 2019 for Jambi and 21 September 2018 for Central Kalimantan), and the six-

month period of simulation time is calendar-based (20 February 2020 for Jambi and 20 

March 2019 for Central Kalimantan). 

The progression of peatland wildfires in Jambi and Central Kalimantan was found 

to be similar. These wildfires started with flames that burned a relatively small area of 

the surface vegetation at an early stage (Figure 9.7a and Figure S9.1a), followed by the 

spread of flames (Figure 9.7b and Figure S9.1b) that burned a larger area and initiated 

the nucleation of smouldering hotspots. The flaming wildfires were extinguished 

relatively quickly (Figure 9.7c and Figure S9.1c), which also stopped the nucleation of 

smouldering hotspots; however, the smouldering hotspots remained active and started 

growing. The stops of flaming wildfires in both sites corresponded to the relatively high 

precipitation, in which it was 11.3 mm (on 29th September 2019) for Jambi and 14.7 mm 

(on 6th October 2018) for Central Kalimantan. At the end of the simulation (Figure 9.7d 

and Figure S9.1d), the smouldering hotspots that were not visible in previous days due to 

the resolution of the domain, became visible since their size grew significantly. 

At the end of the simulation, there are two distinctive phenomena that were 

simulated by SUBALI: smouldering that spreads beyond the flaming burn scar perimeter 
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and the extinction of smouldering upon reaching the GWT. In the top-left of Figure 9.7d, 

a region that covers the smouldering that spread beyond the flaming burn scar perimeter 

is zoomed. Although in the nucleation period of the smouldering hotspots the smouldering 

cells are all within the flaming perimeter, due to its growth, the smouldering can exceed 

the perimeter. Therefore, when the smouldering lifespan is sufficiently long, its burnt 

area can exceed the flaming burnt area. In the bottom-right of Figure 9.7d, a region that 

contains burnt peat cells is zoomed. In this region, a few of SP cells have reached the GWT, 

thus, it was extinguished, and SUBALI is able to simulate it for the first time. 

The main difference between the SUBALI simulations on Jambi and Central 

Kalimantan sites are the multiple flaming ignitions in Jambi. While in Central 

Kalimantan there was only one flaming ignition at the beginning of the wildfire, in Jambi, 

there were three independent ignitions at different times: day 0, day 3, and day 10, which 

are estimated from the satellite images (see Figure 9.7a and Figure 9.7b). This multiple 

ignition caused the phenomenon of merging, when two or more flaming wildfires coalesce 

and form a larger wildfire that is more difficult and dangerous to mitigate. Another 

difference in the SUBALI simulations on the two sites is the spatial and temporal 

resolutions; the Jambi site has a 111-m × 111-m cell size and a 3600-s time-step, whereas 

Central Kalimantan has a 44-m × 44-m cell size and a 1200-s time-step. These cell sizes 

were selected to make the number of cells in the domain were less than 500,000, given 

the landscape size, for computational efficiency purposes; the time-steps were selected 

based on the coarsest temporal resolution that still satisfy the stability criteria (Courant–

Friedrichs–Lewy condition), given the cell size. 
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Figure 9.7. Snapshots of the peatland wildfire simulation in the Jambi landscape (1.305oS, 

103.945oE) in 2019 at different stages and the corresponding number of pixels of different states 

(EP, FV, SP, and BP). ((a) the early stage of surface flames on day 5; (b) the spread of surface 

flames and the nucleation of smouldering hotspots on day 20; (c) the extinction of surface flames 

and the cessation of smouldering hotspot nucleation on day 40; and (d) the end of the simulation 

on day 184, at which time the smouldering hotspots had spread, enlarged, merged, and few were 

extinguished. The surface vegetation (white) corresponds to the four different vegetation types 

shown in Figure 9.3b. The blue arrows show the wind speed and direction. Firebreaks (shown in 

grey) stopped the spread of flames but could not stop the spread of smouldering. In (d), the top-

left zoomed region represents the smouldering that grows beyond flaming perimeter, and bottom-

right zoomed region represents the smouldering hotspots that reach GWT and were 

extinguished. 
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SUBALI accurately predicted the flaming burnt scar (see Figure 9.8 and Figure 

S9.2), with 86% (a Cohen’s kappa value of 0.63) and 79% (a Cohen’s kappa value of 0.57) 

accuracy for Jambi and Central Kalimantan, respectively. The accuracy in this validation 

was represented by the true predictions, both true negative and true positive, which 

means that the satellite detection and the prediction are both burnt or both unburned. 

Meanwhile, the false positive corresponds to the predicted burnt region which is unburned 

in the satellite detection, and false negative is the predicted unburned region which is 

burnt in the satellite detection, which are considered as the inaccurate predictions. The 

main reason of the deviation is the effect of the wind dynamic that cannot be fully 

simulated in the model, for instance, due to gusty wind and the difference between wind 

speed and direction at the weather station versus the actual location of the wildfire. 

 

Figure 9.8. Comparisons between the flaming burn scars (exposed peat) derived from the satellite 

detection (Figure 9.2b) and from the SUBALI predictions at three different times (Figure 9.7a – 

Figure 9.7c) in the Jambi landscape (1.305oS, 103.945oE) in 2019. The red lines represent the 

perimeter of the actual satellite-detected burn scar. True negatives and true positives denote 

accurate predictions, indicating that the predicted and satellite-detected results both suggested 
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not burned or burned regions, respectively. A false positive corresponds to a predicted burn 

region that was not burned in the satellite detection results, whereas a false negative indicates 

that an area was predicted to be a nonburn region but was found to be burned in the satellite 

detection results. 

SUBALI predicted that 111.43 km2 and 350.88 km2 of surface vegetation would be 

burnt by flames in Central Kalimantan and Jambi, respectively (see Figure 9.9a and 

Figure 9.9b). These predictions overestimated the actual burnt area, which were 89.86 

km2 and 290.64 km2 in Central Kalimantan and Jambi, respectively. Although there is 

deviation between the actual burnt areas with the predicted burnt area, the predictions 

were reasonably accurate (higher than 70% accuracy). The number of the smouldering 

hotspots nucleated during these flaming wildfires was also validated. The model predicted 

that 0.51 and 0.36 smouldering hotspots would be nucleated per km2 of landscape in the 

Central Kalimantan and Jambi wildfires, respectively (see Figure 9.9c and Figure 9.9d). 

These values have good agreement with the detection from the satellite (Figure 7.4 and 

Figure 9.5), in which there were 0.44 and 0.45 smouldering hotspots nucleated per km2 of 

landscape in the Central Kalimantan and Jambi wildfires, respectively. The discrepancies 

in these numbers stem from the spatial non-uniformity of peat MC, which was not 

considered in SUBALI due to the lack of the data. From the validation on both flaming 

and smouldering components and the ability of the model to be used with significantly 

different domain spatial and temporal resolution, SUBALI was proved to be robust to 

simulate field-scale peatland wildfires at any domain. 
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Figure 9.9. Comparison between the flaming burnt areas (areas of the exposed peat) derived from 

the satellite observations (based on Sentinel-2; Copernicus, 2022) and from the SUBALI 

predictions at different times in the (a) Central Kalimantan and (b) Jambi landscapes. 

Comparisons between the numbers of smouldering hotspots derived from the satellite 

observations (based on Sentinel-2; Copernicus, 2022) and the SUBALI predictions at different 

times in the (c) Central Kalimantan and (d) Jambi landscapes. The error bars represent the 

uncertainty of SUBALI results after 10 repetitions. 

Figure 9.10 shows the evolution of burnt area of flaming and smouldering wildfires 

in the Central Kalimantan (a) and Jambi (b) landscapes. This figure corresponds to the 

simulation of SUBALI that was continued after the flames stopped, for six months of 

simulation time. The evolution of the burnt area of flaming and smouldering wildfires 

have similar pattern in the two sites. In the nucleation regime (blue symbols), both the 

flaming and smouldering burnt areas grow over time, which corresponds to flaming 

spread and smouldering hotspot nucleation (which dominates its spread), during the 

flaming lifespan (16 days for Central Kalimantan and 40 days for Jambi). In the growth 

regime (red symbols), the burnt area of flaming is plateau due to the extinction of the 

flames, whereas the smouldering burnt area continues to increase due to the growth of 

the smouldering hotspots. This phenomenon means that the smouldering was still active, 
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for a very long time, even after the flames were extinguished. At the end of the simulation 

time, 3.57 km2 and 10.62 km2 of peat were burnt via smouldering in Central Kalimantan 

and Jambi, respectively.  

 

 

Figure 9.10. Predicted evolution of burnt area of flaming and smouldering wildfires in the (a) 

Central Kalimantan site and (b) Jambi landscapes. The blue symbols correspond to the 

smouldering hotspot nucleation regime (dominated by nucleation), whereas the red symbols 

correspond to the smouldering hotspot growth regime (dominated by growth). The error bar 

represent the uncertainty of SUBALI after 10 repetition. 

The total smouldering burnt area after six months period in both sites correspond 

to a ratio of approximately 0.02 – 0.03 with the flaming burnt area. Here, for the first 

time, this ratio is quantified to enable the estimation of smouldering bunt area, given the 

flaming burnt area. The quantification of this ratio was performed based on the peat MC, 

the single most important properties of the fuel that affects smouldering. With different 

peat MC, the smouldering dynamics change, which causes the difference in burnt area. 

However, since the most important peat MC are within the nucleation regime (see 

Chapter 7), the peat MC that was used to quantify the ratio is the average peat MC within 

the nucleation regime (16 days for Central Kalimantan and 40 days for Jambi). SUBALI 

was further used to predict the smouldering burnt area when the flames began in different 

months and years from 2000 to 2019, and each individual case has a six-month simulation 

period. Therefore, there were a total of 480 independent cases (240 for each site), in which 

the first case began in January, 2000 and ended in June, 2000, whereas the last case 

began in December, 2019 and ended in May 2020. The ratio between the predicted 

smouldering and flaming burnt area of the 480 cases were collected and correlated with 
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the corresponding average peat MC within the nucleation regime on each case (see Figure 

9.11). The ratio between smouldering and flaming burnt area has an inverse exponential 

correlation with the average peat MC within the nucleation regime (see Figure 9.11). 

Although there is deviation in this correlation, the correlation coefficient of this 

estimation is reasonably high (R = 0.86); thus, the correlation can be used to estimate the 

smouldering burnt area from the flaming burnt area. This quantification can help 

improve the accuracy of the smouldering burnt area estimation using data on the flaming 

burnt area, which are more readily available.  

 

Figure 9.11. Correlation of the ratio between burnt area from flaming and smouldering with the 

average peat MC within the nucleation regime. The green circles represent the SUBALI 

predictions, and the black line represents the curve fitting of the correlation. 

 

9.2.2. Estimation of carbon emission  

With the quantification of the smouldering burnt area given the flaming burnt 

area (Figure 9.11), the total burnt area caused by smouldering wildfires, such as the entire 

country, can be estimated without significant effort, since data on flaming burnt area are 

usually available. Once these data are obtained, smouldering burnt area can be estimated 

with a simple calculation. This approach was used to estimate the smouldering burnt area 

from Indonesian wildfires in peatlands in each month from 2015 to 2019. The data on 

flaming burnt area that burned peatland regions in Indonesia were obtained from 

Endrawati and Yusnita (2015); Endrawati (2016, 2017, 2018, 2019). The data were 



 

233 

 

collected based on remote sensing detection (from NOAA, MODIS, VIIRS), burnt area 

analysis (Landsat 8 OLI/TIRS), and validation against field observations from local 

firefighters (Endrawati and Yusnita, 2015; Endrawati, 2016, 2017, 2018, 2019). From the 

data on flaming burnt area that were obtained, and on smouldering burnt areas that were 

calculated, the carbon emissions were estimated using a similar approach to the bottom-

up approach. 

The bottom-up approach estimates carbon emissions based on the product of dry 

matter (DM) consumed and the emission factor (EF). For flaming, the DM is the 

aboveground biomass that covers the flaming burnt area. While the data for flaming burnt 

areas were obtained from Endrawati and Yusnita (2015); Endrawati (2016, 2017, 2018, 

2019), the average aboveground biomass per unit area over peatland region (based on 

SIPONGI, 2021) in Borneo Island in 2014 were used, which is estimated by using the 

remote sensing data of Ferraz et al. (2019). From this estimation, every km2 of peatland 

in Borneo Island has approximately 22,675 tonnes of DM. By following Lohberger et al. 

(2018), one kg of DM burnt can release 0.5 kg of carbon. Therefore, in every km2 of 

peatland in Indonesia burnt, 11,340 tonnes of carbon is released to the atmosphere via 

flaming wildfire. Since a similar value for average aboveground biomass per unit area on 

peatland region in one province on Sumatra Island was found (Thapa et al., 2015), the 

aboveground biomass in other Islands is expected to be similar to Borneo. 

For smouldering, the mass of DM was estimated based on the product of the 

volume of peat loss with its bulk density. The volume of peat loss is the product of the 

smouldering burnt area with DOB. From the field observations of Page et al. (2002), the 

DOB of smouldering wildfires range from 0.25 m to 0.85 m during the 1997 peatland 

wildfires in Borneo Island in Indonesia. Further research on 2015 peatland wildfires in 

Sumatera Island in Indonesia, revealed that the DOB ranges from 0 m to 1.3 m (Simpson 

et al., 2016). This DOB range was obtained by measuring the pre burnt and post burnt 

peat elevation in flaming burnt areas. A DOB close to 0 m corresponds to the location 

where smouldering hotspots were not nucleated. This DOB range confirms with Konecny 

et al. (2016), who found the DOB range to be between close to 0 m and 1.19 m in 2011 

peatland wildfires in Borneo Island, Indonesia. 

Smouldering wildfire stops its vertical spread when the fire encounter mineral soil 

or reach a sufficiently wet peat (above the critical MC). Since the peat layer in Indonesia 

is relatively thick (2 m – 7 m; SIPONGI, 2021), it is assumed that the in-depth spread of 

smouldering stops when it reaches a sufficiently wet peat. The peat MC is higher at a 

deeper location, i.e., closer to GWT, thus, the DOB is highly influenced by the GWT. 
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Although the in-depth spread of smouldering peat can stop before reaching the GWT if 

the peat at a corresponding depth is higher than critical MC, in this chapter, the DOB of 

the smouldering wildfire was assumed to be the minimum GWT of the corresponding 

month in which the wildfire begins, which is a simplification of the case and can be 

considered a conservative approach. However, the deepest DOB is limited to be 0.85 m to 

avoid overestimation of the carbon emissions. The 0.85-m DOB is assumed to be the 

maximum DOB that the smouldering can sustain before it extinguishes due to the change 

of season (from dry to wet), which is the main reason for the extinction of both flaming 

and smouldering wildfires (Huijnen et al., 2016). Therefore, smouldering can have a 

deeper DOB than 85 cm, but when the wet season arrives, smouldering encounters 

premature extinction prior reaching the GWT. A higher DOB, such as above 1 m might 

be possible, but it will be rarely observed and sensitive to the spatial heterogeneity, thus, 

this value was not considered as the limit. 

The peat bulk density was estimated based on a function of peat solid density and 

porosity. The peat solid density was considered to be 1500 kg/m3, following Huang and 

Rein (2017), whereas for the peat porosity, a varied value was used instead of constant 

value (such as 0.61 that was used in the validation of SUBALI and KAPAS II), since the 

representative porosity depends on the DOB. The representative porosity corresponds to 

the value of peat porosity that is used in SUBALI to estimate the smouldering burnt area 

and carbon emissions, in which this value was assumed to be constant in one case (e.g., 

in one province within one month time). The deeper the DOB, the denser the peat that is 

burnt, meaning the lower the representative porosity. Deep DOB corresponds to deep 

GWT, and deep GWT causes low peat MC; thus, peat MC was used to estimate the 

variation of the porosity. The minimum possible value of peat porosity is equal to the 

volumetric MC of the peat, meaning that the entire porosity is occupied by water instead 

of air, whereas the maximum porosity was assumed to be 0.68, following the value used 

in PEATCLSMTrop,Drain (Apers et al., 2020). The average of these minimum and maximum 

porosities was used to estimate the peat porosity; thus, its value corresponded to the 

porosity at a depth of 0.25 m and below (peat porosity exceeds 0.8 at the surface and less 

than 0.5 at 0.5 m; Rezanezhad et al., 2016), which is the minimum DOB reported in Page 

et al. (2002). This porosity was also used to calculate the gravimetric MC that is required 

for the estimation of smouldering burnt area, given the flaming burnt area.  

The EF of smouldering is different from flaming, and the values reviewed in Hu et 

al. (2018) were used to estimate the EF for the smouldering. In Hu et al. (2018), for one 

kg of DM burnt, it is estimated that 1,615 g of CO2, 248 g of CO, 12.3 g of CH4, and a small 
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amount of other carbon-based gasses are released. From these values, an EF of 0.556 kg-

C/kg-DM was used for smouldering, and this value was considered in the estimation of 

carbon emissions.  

To estimate the carbon emissions from Indonesian peatland wildfires, the peat MC 

and GWT data were estimated, using PEATCLSMTrop,Drain, from each province in 

Indonesia that has a peatland ecosystem. It is almost impossible to spatially vary the peat 

MC and GWT data within one province, which associate to every single wildfire; uniform 

values of peat MC and GWT within one province were used, and these data were selected 

from the middle of the peatland region in each corresponding province. Table 9.1 lists the 

provinces in Indonesia, and their corresponding longitude and latitude, which have 

peatland ecosystems, as reported by Endrawati and Yusnita (2015); Endrawati (2016, 

2017, 2018, 2019); SIPONGI (2021). Figure 9.12 illustrates the locations in each province 

from which the data of peat MC and GWT were derived. The validation locations in this 

figure correspond to the exact locations of Central Kalimantan and Jambi sites used for 

validating SUBALI. 

Table 9.1 also summarizes the total flaming burnt area of peatland in each 

province over one year, reported by Endrawati and Yusnita (2015); Endrawati, (2016, 

2017, 2018, 2019). However, here the monthly value of the flaming burnt area was used, 

instead of yearly, to estimate the smouldering burnt area, since the peat MC and GWT 

change significantly over the months, especially when the seasons change. The exact date 

on which each wildfire began was not considered; thus, all wildfires within one month 

were assumed to begin at the beginning of each month. This method was used to estimate 

the average peat MC and minimum GWT for each month. The average peat MC that was 

used to estimate the smouldering burnt area was obtained from averaging the peat MC 

within one calendar month (from 1st to 28th 29th, 30th, or 31st day), which is the same as for 

the minimum GWT. Since the peat MC that is required to estimate the smouldering burnt 

area is the peat MC in the nucleation regime, which is relatively short (e.g., 16 days for 

Central Kalimantan and 41 days for Jambi), the assumption of the average peat MC 

within one month is well justified. From the estimation of peat MC and GWT in the 

locations listed in Table 9.1, the average porosity used in SUBALI was 0.57, which is 

similar to the value used for validation (0.61), and the DOB to be used ranged from 0.26 

m to 0.85 m, which has a good agreement with the field observations of Page et al. (2002). 

The average of the porosity used in SUBALI has a good agreement with the field 

measurements of peat properties in Indonesian peatland, where porosity (with 0% MC 

and <5% IC) was 0.67 near the surface (Cui, 2022). 
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Table 9.1. Longitude and latitude of provinces in Indonesia that have peatland ecosystems and 

where peat MC and GWT data were obtained, and the corresponding flaming burnt area within a 

one year time from 2015 to 2019. 

No Province Longitude Latitude 
Flaming burnt area (km2) 

2015 2016 2017 2018 2019 

1 Aceh 97.758 2.528 3.58 19.73 25.21 4.48 2.02 

2 North Sumatera 100.03 2.326 6.89 35.24 1.31 20.61 7.14 

3 West Sumatera 100.1703 -0.2209 14.41 9.30 4.30 14.83 8.58 

4 Riau 102.433 0.339 1,204.33 584.16 56.62 338.67 632.82 

5 Riau Islands 103.457 0.702 0.02 0.00 0.00 0.00 1.32 

6 Bengkulu 101.161 -2.585 0.23 0.00 0.31 0.00 0.00 

7 Jambi 103.945 -1.305 719.76 66.38 0.00 8.01 240.45 

8 Lampung 105.574 -4.146 67.86 0.62 0.00 14.10 26.95 

9 South Sumatera 105.467 -3.111 4,393.82 50.64 0.00 25.86 1,368.75 

10 Bangka Belitung 105.907 -2.433 21.39 0.00 0.00 2.48 5.48 

11 West Kalimantan 109.4735 -0.3534 309.92 53.69 39.88 396.84 604.87 

12 Central Kalimantan 113.991 -3.087 3,915.53 22.57 6.23 324.22 1,838.36 

13 South Kalimantan 115.0466 -2.9161 536.08 8.42 0.40 99.02 119.50 

14 East Kalimantan 116.621 0.008 82.04 84.13 0.00 39.74 56.73 

15 North Kalimantan 117.061 3.768 13.50 12.19 0.00 0.00 0.05 

16 West Papua 132.759 -2.081 17.98 0.54 0.81 1.48 9.51 

17 Papua 139.226 -6.335 1,184.87 30.27 0.46 23.95 21.99 

  Indonesia     12,492.21 977.88 135.53 1,314.29 4,944.52 

 

In the bottom-up approach in previous works, such as in Page et al. (2002); 

Konecny et al. (2016); Lohberger et al. (2018), the smouldering burnt area is considered 

to be equal to the flaming burnt area, which is not the case (see Figure 1.4). The DOB 

used in these works varied, Page et al. (2002) used the average DOB of 0.51 m, whereas 

Konecny et al. (2016) and Lohberger et al. (2018) considered different DOB based on the 

distance from canals, and ranged from 0.19 m to 0.38 m. The lower value of DOB in 

Konecny et al. (2016) and Lohberger et al. (2018) corresponds to the general use of this 

DOB, since the DOB in Page et al. (2002) corresponds to the value in an El Niño year. The 

porosity considered in Page et al. (2002); Konecny et al. (2016); Lohberger et al. (2018) 

exceeded 0.9 (~ 0.92), thus, this porosity corresponds to the porosity at the surface; 

however, Page et al. (2002); Konecny et al. (2016); Lohberger et al. (2018) considered the 
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EF of smouldering peat to be 0.57 kg-C/kg-DM, which is similar to the value used in 

SUBALI.  

 

Figure 9.12. Locations (red dots) from which the data for peat MC and GWT were derived. The 

orange regions are peatland, and the validation locations are the Central Kalimantan and Jambi 

sites used for validating SUBALI. 

While SUBALI used varied DOB and EF of 0.556 kg-C/kg-DM, the uncertainty of 

the emission estimation due to the EF and DOB uncertainties was also considered. For 

EF uncertainty (SUBALI EF), the range of EF of tropical peat reviewed by Hu et al. (2018) 

was considered, ranging from 0.522 and 0.604. For DOB uncertainty (SUBALI DOB), the 

average DOB used in Page et al. (2002) and Konecny et al. (2016), of 0.51 m and 0.27 m 

DOB, were considered. The use of a high representative peat porosity (above 0.8; 

Rezanezhad et al., 2016) was not considered, since the porosity that is used in the land-

surface model to simulate the peat MC is 0.68 (Apers et al., 2020), and a higher porosity 

results in the estimation of gravimetric MC being above 300%, which is higher than 

critical gravimetric MC to ignite smouldering (Frandsen, 1987, 1997); thus, the 

smouldering burnt area could become zero and violate the observed phenomena. 

Figure 9.13a shows the monthly estimation of carbon emissions from Indonesian 

smouldering wildfires in 2015 using different bottom-up methods: SUBALI EF, SUBALI 

DOB, and previous studies (Page et al., 2002; Konecny et al., 2016). In these estimations, 

the method of Page et al. (2002) and Konecny et al. (2016) considered the smouldering 

burnt area to be 4,700 km2 and 4,800 km2 in September and October, respectively, 

following the flaming burnt area reported in Endrawati and Yusnita (2015); Endrawati 

(2016, 2017, 2018, 2019). The total of 9,500 km2 flaming burnt area in September and 

October 2015 reported in Endrawati and Yusnita (2015); Endrawati (2016, 2017, 2018, 
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2019) has a good agreement with Huijnen et al. (2016), who estimated 8,000 km2 area of 

peatland was burnt via flaming. Prior to dry season, the emission estimate by Page et al. 

(2002) was the highest, however, during dry season, the emission estimation by SUBALI 

EF was the highest. This pattern is similar to the comparison between the emission 

estimation by Konecny et al. (2016) and SUBALI DOB, however, with a lower estimation 

than Page et al. (2002) and SUBALI EF, respectively. This finding shows that SUBALI 

emphasizes the influence of peat MC and GWT on the emission prediction, where in the 

wet season, smouldering hotspots are unlikely to be nucleated and the DOB is relatively 

shallow, whereas in the dry season, more smouldering hotspots can be nucleated and the 

DOB is relatively deep.  

The average total emissions in Indonesian smouldering wildfires in 2015 as 

predicted by SUBALI EF, SUBALI DOB, and Page et al. (2002); Konecny et al. (2016) 

were 0.33 Gt-C, 0.22 Gt-C, 0.36 Gt-C, and 0.23 Gt-C respectively. The prediction by 

SUBALI EF has a good agreement with Page et al. (2002), although the smouldering 

burnt area of SUBALI EF was two order of magnitude smaller than the area used in the 

method of Page et al. (2002) (equal to flaming burnt area). This finding indicates the 

importance of the consideration of varied DOB and denser peat. Since smouldering burnt 

area is unlikely to be equal to flaming burnt area (see Figure 1.4), this finding shows the 

importance of the peat porosity and varied DOB, which are controlled by peat MC and 

GWT, for the estimation of carbon emissions. While Page et al. (2002) (and Konecny et 

al., 2016), by averaging the DOB over the entire flaming burnt area, did not consider the 

locations with non-self-sustained smouldering (locations with DOB close to zero), SUBALI 

explicitly considered these locations, and considered the DOB of locations with self-

sustained smouldering to be a function of GWT. With these considerations and the peat 

density at a deeper location, the carbon emission estimation by SUBALI was similar to 

the estimate made by using the method of Page et al. (2002). By using the same 

assumption of average DOB, estimates using the method of Konecny et al. (2016) were 

significantly lower than Page et al. (2002), since the DOB considered in Konecny et al. 

(2016) corresponds to the DOB in years without El Niño. However, 2015 was a strong El 

Niño year (with ONI of 2.5), similar to 1997; thus, the estimation using the DOB of Page 

et al. (2002) is argued to be more accurate, and SUBALI EF, is therefore also reasonably 

accurate. 
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Figure 9.13. (a) Estimation of carbon emissions from Indonesian smouldering wildfires for each 

month in 2015 using different bottom-up methods: SUBALI with EF uncertainty (SUBALI EF), 

SUBALI with DOB uncertainty (SUBALI DOB), and previous studies (Page et al., 2002; Konecny 

et al., 2016). (b) Estimation of carbon emissions from Indonesian peatland wildfires in 2015 by 

using different methods: SUBALI, bottom-up, and top-down. The bar graph represents 

smouldering emissions, the error bar represents smouldering emission uncertainty, and the 

distance between the top of the bar graph and the black square represents flaming emissions. 

Zero flaming emissions means that the distinction between smouldering and flaming emissions 

was not considered in the methods. 

The uncertainty because of EF (SUBALI EF) is insignificant (see Figure 9.13a), 

since the uncertainty of EF in smouldering is also low; the uncertainty because of DOB 

(SUBALI DOB) is relatively high, since there are significant difference between DOB 

estimation in different methods, which are also affected by various factors such as the 

present of El Niño. The average estimation of SUBALI DOB was similar to the estimation 

by Konecny et al. (2016), which is an underestimation; it strengthens the importance of 

varied DOB for carbon emission estimations of smouldering wildfires. This finding 

indicates that carbon emissions are not linearly correlated to the DOB, which is caused 

by the interconnection between DOB, GWT, and peat MC, where deeper DOB corresponds 

to deeper GWT and lower peat MC, and thus a larger smouldering burnt area. Here, this 

combined effect was quantified into a single value of carbon emission that is reasonably 

accurate when compared with the estimation using the method in the previous works, but 
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with a more realistic consideration of different burnt area between flaming and 

smouldering. 

The method of Page et al. (2002) is a powerful way to estimate the carbon 

emissions, however, the omission of additional key factors of the smouldering dynamics 

(nucleation and growth), could lead to the underestimation of carbon emissions, when the 

smouldering goes on longer (hundreds of years; Rein and Huang, 2021) and DOB becomes 

deeper, which is not impossible (see Figure 1.4 and Figure 9.7d where smouldering 

exceeds flaming perimeter). Moreover, SUBALI can be used for different cases of peatland 

wildfires without additional significant efforts (only peat MC and GWT data from the 

PEATCLSMTrop,Drain model), whereas the use of the method in Page et al. (2002) and 

Konecny et al. (2016) requires new measurement of DOB for different cases of peatland 

wildfires, since the DOB varies significantly especially when El Niño is involved (0.51 m 

DOB in Page et al. (2002) and 0.27 m DOB in Konecny et al. (2016)). 

Figure 9.13b shows the estimates of carbon emissions from flaming and 

smouldering wildfires by using different methods, covering both bottom-up (SUBALI EF, 

SUBALI DOB, and Page et al., 2002; Konecny et al., 2016; Lohberger et al., 2018) and 

top-down (GFED 4.1s (Global Fire Emissions Database), GFAS 1.3 (Global Fire 

Assimilation Systems), and Huijnen et al., 2016; Yin et al., 2016; Heymann et al., 2017; 

Nechita-Banda et al., 2018) approaches. In the top-down approach, the estimation of 

carbon emissions was based on the remote sensing detection of the released gasses, such 

as CO and CO2 (Huijnen et al., 2016). Since the top-down approach is unable to 

distinguish between the emissions from flaming and smouldering, the estimation by the 

top-down approach in Figure 9.13b corresponds to the total emissions from flaming and 

smouldering wildfires. The prediction of SUBALI EF has a good agreement with that of 

the top-down approach from GFAS 1.3 and Nechita-Banda et al. (2018), underestimates 

Yin et al. (2016), and overestimates GFED 4.1s and Huijnen et al. (2016); Heymann et al. 

(2017); Lohberger et al. (2018). The prediction by GFED 4.1s and Huijnen et al. (2016); 

Heymann et al. (2017); Lohberger et al. (2018) are similar to Konecny et al. (2016) and 

SUBALI DOB, which are the prediction that correspond to non El Niño year, thus, these 

predictions potentially underestimate the actual carbon emissions. This underestimation 

could stem from the different input parameters and optimization techniques in the model 

(Nechita-Banda et al., 2018). Different input parameters and optimization techniques 

could also cause the prediction from Yin et al. (2016) to overestimate the actual carbon 

emissions, however, due to high uncertainty of the prediction from Yin et al. (2016), the 

prediction from SUBALI EF (and the method of Page et al., 2002) is within this 
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uncertainty, strengthening the robustness of SUBALI predictions. Therefore, SUBALI 

provides a tool to estimate carbon emissions from peatland wildfires with high accuracy 

(compared to others, both bottom-up and top-down approaches), can be used for different 

cases of peatland wildfires, can distinguish the sources of emissions, either flaming or 

smouldering wildfires, and consider the smouldering dynamics (nucleation and growth) 

for the estimation. 

SUBALI was used to estimate the cumulative carbon emissions from Indonesian 

peatland wildfires in 2015, both due to flaming and smouldering wildfires. Figure 9.14a 

shows this estimation, where the total carbon emission from smouldering within one year 

period was approximately 0.33 Gt-C, whereas from flaming, it was only 0.07 Gt-C. 

Although the flaming burnt areas are constantly larger than smouldering burnt areas 

(Figure 9.14b), in wet season, the most prominent carbon emitter was flaming wildfires, 

whereas in dry season, it was smouldering wildfires (Figure 9.14a). While in wet season 

the smouldering emissions were insignificant, once the dry season arrived, the additional 

emissions from smouldering wildfires were dramatic and quadruple the cumulative 

emissions from flaming wildfires at the end of the year. 

The 0.07 Gt-C emissions from flaming wildfires can be reabsorbed by the 

ecosystem via vegetation regrowth (Le Quéré et al., 2015), whereas the 0.33 Gt-C 

emissions from smouldering wildfires could remain in the atmosphere and creates a 

positive feedback mechanism to climate change. The carbon sink does not consider the 

sources of the emission, however, from the estimation in Le Quéré et al. (2015), the carbon 

sink via vegetation regrowth is only ~0.5 t/ha per year, thus, with approximately 12,000 

km2 surface vegetation was burnt in Indonesian peatland wildfires in 2015 (Endrawati 

and Yusnita, 2015), the carbon sink via vegetation regrowth is only able to absorbs 6 × 

10-4 Gt-C in one year, which is insufficient even for the flaming wildfires emission alone. 

The carbon neutral can still be achieved by considering the carbon sink from other sink 

mechanisms such as terrestrial and ocean sinks; however, since the carbon sink from the 

entire Earth was only ~5.6 ± 0.8 Gt-C/yr (Le Quéré et al., 2015), the carbon sink near 

Indonesian region is significantly smaller than the carbon emitted by smouldering 

wildfires, unless, the carbon emission source was only from Indonesian peatland wildfires, 

which is impossible.  
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Figure 9.14. Cumulative carbon emissions from flaming and smouldering wildfires (a) and its 

corresponding burnt area (b) in Indonesia in 2015. The carbon emissions from smouldering 

wildfires correspond to carbon stored in peat and carbon emissions from flaming wildfires 

correspond to carbon stored in surface vegetation. 

Another important finding in this chapter is the burnt area of smouldering that is 

around ten times smaller than flaming but emits almost five times more carbon than 

flaming (see Figure 9.14). This finding indicates the significant negative impact of 

smouldering wildfires that cannot be overlooked to maintain the inhabitability of planet 

Earth. Without adequate countermeasures, the carbon emitted by smouldering wildfires 

that has been released to the atmosphere could encourage more frequent and more severe 

wildfires due to the warmer and drier conditions. Since the peat becomes drier due to 

climate change (this already happened in Arctic that promote the overwintering 

smouldering wildfires; Scholten et al., 2021), the smouldering burnt area becomes larger 

when peatland wildfires happen, even though the total of flaming burnt area is similar. 

The larger smouldering burnt area, coupled with the deeper DOB that is likely to happen 

with drier peat, could exponentially increase the carbon emissions, which again, remain 

in the atmosphere and cannot be reabsorbed by the ecosystem.  

SUBALI was further used to estimate the cumulative carbon emissions from 2016 

to 2019 to investigate the effect of El Niño to the carbon emissions (see Figure 9.15). The 

ONI from 2016 to 2019 are approximately -0.6 (weak La Niña), -0.7 (moderate La Niña), 

0.1 (weak El Niño), and 0.7 (moderate El Niño), respectively (Null, 2021), in which 

negative values of ONI represent La Niña, and the greater value represent stronger El 

Niño. The carbon emissions from smouldering wildfires are lower than from flaming 

wildfires in La Niña years (2016 and 2017). The total carbon emission from both flaming 
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and smouldering in 2016 and 2017 are expected to be carbon neutral since their value are 

only 6.9 × 10-3 Gt-C and 7.6 × 10-4 Gt-C respectively (see Figure 9.15a). The low 

smouldering carbon emissions stems from the small smouldering area due to wetter peat, 

which prevents the nucleation of smouldering hotspots. In 2018, although with similar 

flaming burnt area as in 2016 (similar emissions from flaming wildfires), the carbon 

emissions from smouldering was approximately 0.008 Gt-C, which is higher than the 

emissions from flaming in 2018 and ten times higher than smouldering emissions in 2016 

(see Figure 9.15a), The total of 0.015 Gt-C emissions from flaming and smouldering in 

2018, can give a weak positive feedback to climate change since not all of these emissions 

can be reabsorbed by the ecosystem to create carbon neutral mechanism. This finding 

indicates that the peat was drier in 2018 than in 2016, which enable larger area and 

deeper peat to be burnt via smouldering. Therefore, in El Niño years (even in weak El 

Niño years), the dryness of the peat could facilitate stronger smouldering wildfires and 

promote carbon positive cycles. 

In 2019, which was a moderately strong El Niño year, the flaming wildfires were 

more frequent and more severe, which is indicated by the burnt area of flaming being 

significantly larger than the other years in Figure 9.15b. This significant increase in 

flaming burnt area was accompanied with the increase of smouldering burnt area, and 

consequently, a significant increase in the its carbon emission. In 2019, a total of 0.11 Gt-

C was released to the atmosphere via smouldering wildfires. The 0.03 Gt-C that was 

released via flaming wildfires can be expected to be reabsorbed by the ecosystem and 

create carbon neutral; however, the 0.11 Gt-C from smouldering wildfires can be assumed 

to remain in the atmosphere. These emissions are almost two order of magnitude greater 

than those in 2018, which indicates the strong influence of El Niño to the carbon emission 

from peatland wildfires. The carbon emissions in 2019 were concentrated in the dry 

season (90% of total emissions) and in this season, the carbon release rate of the 

smouldering wildfires was ~1.67 Mt-C/day, which is similar to the fossil fuel carbon 

release rate of the European Union (2.42 Mt-C/day; Huijnen et al., 2016). Therefore, the 

carbon emissions from 2019 are alarming, although their value is only one third of those 

in 2015. 

From 2016 to 2019, a total of 0.04 Gt-C and 0.12 Gt-C were released via flaming 

and smouldering wildfires, respectively. Within the first three years (2016 – 2018), the 

emissions from flaming wildfires were higher than emissions from smouldering wildfires. 

During the short time span of dry season in 2019, the emissions from smouldering 

wildfires overtook the emissions from flaming wildfires and become three times higher. 
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This finding shows the significant effect of the drier and more vulnerable peat condition 

in El Niño years. Combined with the carbon emissions from 2015, a total of 0.56 Gt-C has 

been released to the atmosphere due to Indonesian peatland wildfires, and part of these 

emissions are still in the atmosphere and contribute to the self-acceleration of climate 

change. 

 

 

Figure 9.15. Cumulative carbon emissions from flaming and smouldering wildfires (a) and their 

corresponding burnt areas (b) in Indonesia in 2016 - 2019. The carbon emissions from 

smouldering wildfires correspond to carbon stored in peat and carbon emissions from flaming 

wildfires correspond to carbon stored in surface vegetation. 



 

245 

 

9.3. Conclusions 

 

In this chapter, a cellular automata model, SUBALI, was developed based on 

KAPAS II (Chapter 7) and BARA (Chapter 4) to simulate 3-D peatland wildfires at the 

field-scale, and was used to estimate the smouldering burnt area based on the flaming 

burnt area and peat conditions. SUBALI was validated against two independent peatland 

wildfires in two different islands in Indonesia, Central Kalimantan in Borneo and Jambi 

in Sumatera, and was found to have a good agreement with the validation data on flaming 

burnt scar (79% and 86% accuracy, for Central Kalimantan and Jambi, respectively) and 

number of smouldering hotspots (85% and 82% accuracy, for Central Kalimantan and 

Jambi, respectively). SUBALI showed, from simulations over the same locations but 

began in different months and years from 2000 to 2019 (480 cases), that the ratio between 

smouldering and flaming burnt area has an inverse exponential correlation with the 

average peat MC within the nucleation regime. 

A peat-specific land surface model was used to estimate peat MC and GWT that 

vary daily, and embedded these data and the data on flaming burnt area from peatland 

wildfires in 17 provinces in Indonesia into the flaming-smouldering burnt area correlation 

to estimate the smouldering burnt area and carbon emissions of Indonesian peatland 

wildfires from 2015 to 2019. Using this method, in 2015, a total of 0.33 Gt-C was released 

to the atmosphere, and this prediction was comparable with other estimations, both 

bottom-up and top-down approaches (GFAS 1.3 and Page et al., 2002; Nechita-Banda et 

al., 2018). The discrepancy between SUBALI estimation and some other estimations 

(GFED 4.1s and Huijnen et al., 2016; Heymann et al., 2017; Lohberger et al., 2018) stems 

from the possible underestimation due to different input parameters and optimization 

techniques in the top-down approaches and the insufficient consideration of El Niño effect 

in the bottom-up approach. A field-scale experiment showed that the smouldering burnt 

area was different from the flaming burnt area (Santoso, 2021), thus, the good agreement 

between SUBALI estimation with the bottom-up estimation of Page et al. (2002) (that 

considers equal burnt area between flaming and smouldering), emphasizes the 

importance on the consideration of accurate peat MC and GWT for the estimation of 

carbon emissions. 

In El Niño years, the carbon emissions from smouldering wildfires become 

significantly higher than the emission from flaming wildfires, and potentially cannot be 

reabsorbed by the ecosystem, thus, promoting carbon positive cycles. In 2019, a 

moderately strong El Niño year, the carbon emissions from smouldering wildfires were 
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approximately 0.11 Gt-C, whereas the emissions from flaming wildfires was only 0.03 Gt-

C. Although this value is only one third of the smouldering wildfires emissions in 2015, 

in the dry season of 2019, the carbon release rate was approximately 1.67 Mt-C/day, which 

was similar to the rate of fossil fuel emissions of the European Union (2.42 Mt-C/day). 

From 2015 to 2019, a total of 0.56 Gt-C was released by peatland wildfires in Indonesia, 

and a significant fraction of this remains in the atmosphere and encourages positive 

feedback mechanisms to climate change. The findings and model provide knowledge and 

tools to predict the spread of flaming and smouldering wildfires in peatlands and its 

carbon emission. This can contribute to mitigating peatland wildfires and their impact on 

climate change, through faster-than-real-time simulations, to find the optimum 

firefighting strategy, and to develop better peatland management based on the 

vulnerability of peatland in the event of wildfires and the carbon emission estimation. 
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Chapter 10 – Conclusions 

Peatland wildfires, wildfires that happen on peatland ecosystems, release carbon 

stored in peat, and can create positive feedback mechanisms to climate change. These 

wildfires happen all around the world: Southeast Asia, Southern Africa, Northern Europe, 

North America, and even in the Arctic, and could release significant amount of carbon 

emissions that cannot be reabsorbed by the ecosystem. However, studies on peatland 

wildfires are limited, since investigating peatland wildfires means investigating field-

scale phenomena (thousands of hectares), which involve flaming and smouldering types 

of combustion, and both are affected by environmental factors that vary spatially and 

temporally. Moreover, understanding smouldering requires an understanding of its 3-D 

spread, which includes many important phenomena, such as subsurface spread. While 

experimental studies can be conducted at the small scale, the investigation of peatland 

wildfires at their actual scale can be prohibitively expensive to do in a comprehensive 

manner. Computational models are, therefore, the most promising route to investigate 

field-scale peatland wildfires. This thesis aims to computationally study field-scale 

peatland wildfires using cellular automata, discrete computational models that use 

simple rules. Figure 10.1 shows the connection between chapters in this thesis, which 

consist of supporting chapters (grey shade), the development of the models (green and 

blue shades), and the main outputs (red shade). 

From the literature review in Chapter 1, field-scale studies on peatland wildfires 

were shown to revolve around remote sensing research, via infrared emissions, for its 

detection and for the estimation of its carbon emissions. However, while flaming wildfires 

can be detected with a reasonable level of accuracy, due to the lower temperature of 

smouldering, the radiation from smouldering wildfires is significantly weaker than 

flaming wildfires, causing the detection of smouldering become challenging, especially 

when subsurface spread of smouldering happens. 
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Figure 10.1 Diagram illustrating the connections between chapters in this thesis. Grey shade 

represents supporting chapters, green and blue shades represent chapters for the development of 

the models, and red shade represents main outputs and outcomes. The main outputs of this 

thesis are the fundamental understanding of ignition, spread, structure, and emissions (carbon 

and infrared) of field-scale peatland wildfires and the 3-D field-scale peatland wildfire model 

with faster-than-real-time simulations, which can contribute to the development of firefighting 

strategy, peatland management, and climate change mitigation. 
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From the laboratory-controlled experiments in Chapter 2, it was found that the 

spectral intensity of smouldering is one-sixth to half of flaming, depending on the infrared 

wavelength that is considered, where this ratio peaks at mid-wave range of wavelength 

(3 – 5 μm, with ratio between 4.4 and 6.5). While both flaming and smouldering in these 

experiments can be detected and distinguished, the significantly higher noise level in the 

actual landscape, than in the laboratory, could pose problems for detection. Moreover, 

none of these wavelengths could detect subsurface smouldering that are prevalent in real 

peatland wildfires. The detection of subsurface smouldering can be potentially performed 

by integrating the radiation of a wide range of wavelengths, which are not available 

through current satellite instruments, the most widely used method for wildfire detection. 

Due to these limitations, most of carbon emission estimation of peatland wildfires assume 

the smouldering burnt area to be equal to the flaming burnt area (Page et al., 2002; 

Huijnen et al., 2016), which is unlikely to be the case, as revealed by the field-scale 

observations of Grundling et al. (2019) and Santoso (2021). Therefore, models for peatland 

wildfires are needed to overcome these limitations. 

In Chapter 3, cellular automata models for wildfires were reviewed, and from this 

review, there are seven concepts were found to be used for its rules: discrete physical 

event, wave propagation, heat accumulation, linguistic, diffusion limited aggregation, 

bond percolation, and site percolation. Each concept has different characteristics and 

inherent benefits and shortcomings, and have been implemented in range of applications 

across scales. Although cellular automata have modelled many phenomena occurring in 

wildfires such as crown fire and firebrand, the number of phenomena considered is limited 

compared to the number of phenomena emerging in real wildfires, especially in 

smouldering wildfires. Therefore, while the cellular automata models developed in this 

thesis consider flaming, the main focus of the model development is smouldering. 

The aims of Chapter 4 and Chapter 5 were to develop three-dimensional (3-D) 

cellular automata models for smouldering at the small-scale (cm-scale). In Chapter 4, the 

BARA model used heat accumulation concept for its rules (Figure 10.1). BARA was 

calibrated against lab-scale experiments in 22 different conditions, with an error of less 

than 10%, then applied to blind predict different set of lab-scale experiments of 

smouldering fire in peat with spatially non-uniform MC. BARA accurately reproduced 

various phenomena observed in the experiments such as encirclement of wet peat and fire 

front merging, due to the changes of fire front shape and spread direction that depend on 

the peat moisture profile. Applied to a larger scale case (m-scale), BARA simulates the 

creation of patches of unburned peat for the first time, which is a common phenomenon 
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observed in peatland wildfires. In this large-scale simulation, the smouldering spread was 

found to be able to penetrate and partially burn wet peat, which implies that the 

horizontal layers of wet peat that discontinue smouldering spread might fail if their width 

or MC are insufficient, indicating the importance of peat moisture profile on the 

vulnerability of peatlands to fire. 

Although BARA accurately simulated 3-D smouldering spread on peat with 

spatially non-uniform MC, the in-depth profile predicted by BARA was inadequate, due 

to the absence of experimental data for the calibration of the in-depth profile. In Chapter 

5, BARAPPY was developed to solve this issue (Figure 10.1), by integrating BARA with a 

physics-based model (GPyro). BARA and GPyro were independently validated against 

laboratory-controlled experiments (with 12 different conditions) and found to have 

accuracy of spread rate higher than 90% and 70% respectively, and the average error of 

both models was within experimental uncertainty. The main benefit of BARA is its 

computational efficiency, which is 240 times higher than GPyro, whereas the main benefit 

of GPyro is the level of generality and detail that can be acquired such as temperature, 

species, and reaction profiles. The hybrid model (BARAPPY) blind predicts an experiment 

of smouldering peat with non-uniform MC, a half wet-half dry MC configuration, and 

accurately simulates the 3-D structure of the smouldering peat surface. In wet peat, the 

DOB is non-uniform, caused by the step profile of the leading edge. This profile also forms 

a step of DOB at the interface between wet and dry peat, and BARAPPY simulate the 

initiation of overhang phenomenon in 3-D, which conforms to Huang et al. (2016). The 

DOB step height increases linearly with the MC gradient between wet and dry peat, and 

overhang is initiated when the MC gradient is higher than 20%.  

While BARAPPY was able to simulate the initiation overhang phenomenon, the 

continuation of this phenomenon to become subsurface smouldering was not considered, 

especially at the field-scale, and can be the direction of future works. This consideration 

facilitates the understanding of deep layer peat smouldering, which is the main driver of 

the wildfires across season, such as overwintering smouldering (Scholten et al., 2021). 

This consideration requires understanding on natural pipe system, which facilitate the 

oxygen supply to sustain smouldering (Rein, 2013), thus, the integrated understanding 

on deep peat smouldering, natural pipe system, and oxygen supply through the pipe 

system, are important. 

The aims of Chapter 6 and Chapter 7 are to develop 2-D cellular automata models 

for peatland wildfires that involve flaming and smouldering at the field-scale (km-scale). 

Due to its simplicity, bond percolation was used for the rules in the models in Chapter 6 
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(KAPAS) and Chapter 7 (KAPAS II). KAPAS II is the successor of KAPAS, in which 

KAPAS considers temporally constant peat MC, whereas KAPAS II considers the daily 

temporal variation of peat MC (Figure 10.1). Both KAPAS and KAPAS II were validated 

against remote sensing data on flaming burnt scar and smouldering hotspots, and were 

found to have high accuracy (above 80%). However, since from Chapter 2 the subsurface 

spread of smouldering cannot be accurately detected with the current remote sensing 

method, only the numbers of smouldering hotpots were considered for validation (Figure 

10.1), which means considering its initiation (at the surface) but ignoring its spread 

(potentially subsurface). KAPAS showed how smouldering hotspots are initiated by 

flaming wildfires on peatland, and how these hotspots merged over time when they grow 

sufficiently large. KAPAS also showed the sigmoid relationship between smouldering 

burnt area and peat MC when flaming wildfires occur on peatland. This sigmoid 

relationship causes the smouldering burnt area to be reduced or increased, exponentially, 

by the same flaming wildfire, depending on the peat MC. 

Considering peat MC temporal variation, obtained from a peat-specific land 

surface model, KAPAS II showed that the prediction of KAPAS could significantly 

underestimate the smouldering burnt area (four times smaller). Although peat MC 

determines the smouldering burnt area, the peat MC during the flaming lifespan 

(smouldering nucleation regime) governs the overall severity of smouldering wildfire, and 

its influence is more significant than the peat MC after the flaming wildfire are 

extinguished (smouldering growth regime). Due to the strong influence of peat MC 

temporal variation on smouldering wildfires, the peatland wildfires that start in dry 

season could have significantly larger smouldering burnt area than the wildfires that 

start in wet season (a comparison of zero with hundreds of hectares), although with equal 

flaming burnt area. 

KAPAS and KAPAS II have considered the transition from flaming vegetation to 

smouldering peat, but not the reverse transition. The consideration of the transition from 

smouldering peat to flaming vegetation in the model is an important topic to explore in 

future works, since the deep layer peat smouldering could initiate new flaming wildfires 

at relatively distant locations from the initial flaming wildfire location, and cause new 

peatland wildfires without a new source of ignition (Rein, 2013; Scholten et al., 2021). The 

relationship between smouldering to flaming transition with the vegetation root system 

is also an important consideration, since the interaction between flaming and 

smouldering wildfires are mostly through the root system (Rein et al., 2008). 
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 In Chapter 8, BARA (Chapter 4) was compared with other CA models that have 

been used for smouldering modelling, including bond percolation of KAPAS (Chapter 6) 

and KAPAS II (Chapter 7), to find the best 3-D CA model for smouldering at the field-

scale. BARAPPY (Chapter 5) was not included in this comparison, since BARAPPY is 

unsuitable for field-scale modelling due to its two order of magnitude higher 

computational cost than BARA. From the comparison, it was found that BARA (see 

Chapter 4) is the best performer out of the CA models in the literature (Hargrove et al., 

2000; Belcher et al., 2010; Fernandez-Anez et al., 2019) to simulate 3-D smouldering. 

BARA has high accuracy (within 10% error) and low uncertainty when compared to 

experiments. This model also has the largest capacity, possible scenario can be simulated 

by the model, compared to other models although the model requires longest 

computational time to finish the simulation. Although the complexity of BARA is 

significantly higher than other models, it can be related to the physical terms more easily, 

which is beneficial to ensure the high level of generality. From this analysis, the 

integration of bond percolation (KAPAS II) for flaming wildfire and heat accumulation 

(BARA) for smouldering wildfire is the optimum model for simulating 3-D peatland 

wildfires at the field-scale (Figure 10.1). 

 Chapter 9 aims to develop the 3-D model for field-scale peatland wildfires, SUBALI, 

by integrating BARA and KAPAS II (Figure 10.1), which is the ultimate model in this 

thesis. Through this integration, SUBALI considered the temporal and horizontal 

variation in peat moisture content. More realistic conditions can be considered in future 

works, for instance, the vertical variation of peat moisture content, the spatial variation 

of inorganic content, and the consideration of vegetation type for the nucleation of 

smouldering hotspots. The considerations of these variables could significantly improve 

the fidelity of the peatland wildfires model. 

SUBALI showed that the ratio between smouldering and flaming burnt area has 

an inverse exponential correlation with the average peat MC within the smouldering 

nucleation regime. By using this correlation, the data for the flaming burnt area, and the 

data of peat MC and GWT, carbon emissions from peatland wildfires can be estimated. 

By considering these data on 17 provinces in Indonesia, a total of 0.33 Gt-C was predicted 

to be released to the atmosphere in 2015 via smouldering wildfires, and this prediction 

was comparable with other estimations, both bottom-up and top-down approaches (GFAS 

1.3 and Page et al., 2002; Nechita-Banda et al., 2018). Some other estimations (GFED 4.1s 

and Huijnen et al., 2016; Heymann et al., 2017; Lohberger et al., 2018) potentially 

underestimate these emissions due to different input parameters and optimization 
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techniques in the top-down approaches and the inadequate consideration of the El Niño 

effect in the bottom-up approach. Since the smouldering burnt area is different from the 

flaming burnt area (Grundling et al., 2019; Santoso, 2021), the good agreement between 

SUBALI estimation with a bottom-up estimation of Page et al. (2002) (that considers 

equal burnt area between flaming and smouldering), reveals the importance of peat MC 

and GWT for the carbon emission estimations. 

Further estimation of carbon emissions in Indonesia from 2016 to 2019 reveals 

that in El Niño years, carbon emissions from smouldering wildfires are significantly 

higher than from flaming wildfires, and potentially cannot be reabsorbed by the 

ecosystem, thus, promote a carbon positive cycle. In 2019, a moderately strong El Niño 

year, carbon emissions from smouldering wildfires were approximately 0.11 Gt-C, 

whereas emissions from flaming wildfires were only 0.03 Gt-C, and in the dry season, the 

carbon release rate was approximately 1.67 Mt-C/day, which was similar to the rate of 

fossil fuel emissions of the European Union (2.42 Mt-C/day). From these estimations, a 

total of 0.45 Gt-C and 0.11 Gt-C were released from 2015 to 2019 by smouldering and 

flaming wildfires respectively, which are concentrated in 2015 and 2019 (El Niño years). 

Of the potential topics for future works that are identified in this chapter 

(subsurface smouldering modelling, modelling of the transition from smouldering to 

flaming, and models with more realistic conditions such as spatially varying IC), the 

modelling of transition from smouldering to flaming is of utmost importance. This 

transition creates a significant increase of hazard, due to the significantly higher fire 

intensity of flaming when compared to smouldering (Santoso et al., 2019), thus, this 

transition increase the danger level of wildfire for people and the environment. Due to the 

significant increase in negative impact once this transition occurs, the mitigation of 

smouldering wildfires becomes secondary (including the subsurface smouldering), 

overtaken by the urgency of the containment of flaming wildfires (Santoso et al., 2019). 

The transition from smouldering to flaming also has a key role to understand the 

occurrence of new flaming wildfires without independent sources of ignition (i.e., ignited 

by the smouldering peat). A model with more realistic conditions, such as spatially 

varying IC, is also important, however, this consideration mainly affects the accuracy of 

the model, and has little effect on the impact on people or the environment, unlike the 

modelling of transition from smouldering to flaming. Meanwhile, the modelling of 

subsurface smouldering, while it has significant impact to the environment (by 

continuously releasing carbon to the atmosphere without being detected), its impact to 

the people is relatively low (the released smoke from smouldering is significantly reduced 
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when it spreads at the subsurface due to the hindrance of unburned peat above the 

burning peat). Only after the subsurface smouldering has resurfaced, especially when it 

successfully initiates new flaming wildfires, does  its effect on people dramatically 

increase. Therefore, immediate consideration of transition from smouldering to flaming 

in the model is recommended. 

Figure 10.2 shows the comparison between models developed in this thesis (black 

symbols) and the models in the previous works (blue symbols; Huang and Rein, 2015, 

2017; Huang, Rein and Chen, 2015; Huang et al., 2016; Widyastuti et al., 2021; Yuan, 

Restuccia and Rein, 2021). The comparison is based on the level of detail, domain size, 

and computational efficiency. The level of detail comparison covers the physics and 

phenomena considered in the model, and is based on score. The physics consists of energy 

transfer, momentum transfer, mass transfer, heat transfer, and kinetics, whereas the 

phenomena consist of spatial non-uniformity and temporal variation of the peat physical 

properties (such as MC) and the consideration of flaming. The score for each physics 

consideration is 2 if it is from the first principle, 1 if it is from a calibration, and 1.5 if it 

is from calibration but based on the physical properties of peat. For each phenomenon, it 

is 2 if the model considers the particular phenomenon, and 0 otherwise. The domain size 

comparison is based on the volume of the domain considered in the model, which is the 

product of area and depth. If a dimension is not considered, such as 1-D or 2-D model, the 

corresponding dimension is assumed to be 1 mm, which is the minimum length considers 

in the CA models in this thesis, whereas if the model considers field-scale, the 

corresponding dimension is assumed to be 1 km, to ensure the comparability between 

models since the field-scale models can simulate a very large domain. The computational 

efficiency comparison is based on the inverse of computational time required by the 

models to finish a simulation for a certain simulation time, by using the same computer. 

The models of Huang and Rein (2015, 2017); Huang, Rein and Chen (2015) have a 

high level of detail since these models are physics-based models and consider the first 

principle, but with low volume and computational efficiency, since these models are 1-D 

small scale models and require a relatively long time to finish a simulation. The 

computational efficiency of these models are, however, higher than BARAPPY (Chapter 

5) and Huang et al. (2016); Yuan, Restuccia and Rein (2021), since BARAPPY and Huang 

et al. (2016); Yuan, Restuccia and Rein (2021) consider 2-D physics-based equation. 

BARAPPY and Huang et al. (2016); Yuan, Restuccia and Rein (2021) require 120 times 

more computational resources to finish a simulation, to enable the 2-D modelling. The 

level of detail of BARAPPY and Huang et al. (2016); Yuan, Restuccia and Rein (2021) are 



 

255 

 

equal, which is also equal to Huang and Rein (2015, 2017); Huang, Rein and Chen (2015), 

however, these models have different domain size. The difference in domain size between 

Huang et al. (2016) and Yuan, Restuccia and Rein (2021) is because of the different in size 

of the reactor considered, whereas the difference between BARAPPY and Huang et al. 

(2016); Yuan, Restuccia and Rein (2021) is because of the 3-D consideration of BARAPPY, 

but this consideration is via CA, thus, does not affect the computational efficiency. BARA 

has higher computational efficiency than BARAPPY and Huang and Rein (2015, 2017); 

Huang, Rein and Chen (2015); Huang et al. (2016); Yuan, Restuccia and Rein (2021) since 

it uses CA, but without the consideration of physics-based equation, unlike BARAPPY. 

This model, consequently, has a lower level of detail than BARAPPY and Huang and Rein, 

(2015, 2017); Huang, Rein and Chen (2015); Huang et al. (2016); Yuan, Restuccia and 

Rein (2021). The domain size of BARA is similar to BARAPPY since BARA is also a 3-D 

small-scale model.  

KAPAS, KAPAS II, and Widyastuti et al. (2021) have an even higher domain size 

than BARA, BARAPPY, and Huang and Rein (2015, 2017); Huang, Rein and Chen (2015); 

Huang et al. (2016); Yuan, Restuccia and Rein (2021) since these models are field-scale 

models. However, the level of detail of KAPAS, KAPAS II, and Widyastuti et al. (2021) 

are very low since these models are based on calibration that do not consider peat physical 

properties, although they consider flaming combustion. This low level of detail is 

accompanied with a high computational efficiency since there are very few computational 

operation executed during a simulation. The higher level of detail of KAPAS II than 

KAPAS and Widyastuti et al. (2021) is because of the consideration of temporal variation 

in peat MC on top of considerations of flaming, whereas the lower computational efficiency 

of Widyastuti et al. (2021) than KAPAS and KAPAS II is because of the required 

optimisation process of input parameters in Widyastuti et al. (2021), unlike KAPAS and 

KAPAS II that are based on Rothermel model of flaming spread rate (Rothermel, 1972) 

and experiments on smouldering spread rate (Frandsen, 1997; Huang et al., 2016; Prat-

Guitart et al., 2016b). SUBALI has the highest domain size since SUBALI is a 3-D field-

scale model. This model is also a relatively high level of detail since SUBALI is based on 

BARA (same computational efficiency as BARA) that considers the physical properties of 

peat and considers the flaming wildfires and temporal variation in peat MC (based on 

KAPAS II). 
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Figure 10.2 Comparison between the models developed in this thesis (black symbols) and models 

in the previous works (blue symbols). The comparison is based on the computational time, 

volume of the domain (area × depth), and the level of detail (phenomena and physics details) 

considered in the models. The ideal model (brown star) is the ultimate target of the modelling. 

From this comparison, the main uses for each model developed in this thesis are 

different. The main use of BARAPPY is to simulate the 3-D smouldering spread with high 

detail (although it is less detail than physics-based model), where it can simulate the 3-D 

structure of peat during smouldering, however, BARAPPY cannot be used to aid with the 

development of firefighting strategy since it is significantly slower than real-time. The 

main use of BARA is to simulate the 3-D spread of smouldering but with limited accuracy 

in the in-depth profile; however, it can perform faster-than-real-time simulations, thus, 

this model can be used to aid with the firefighting attempts, although the insights from 

BARA cannot be directly used since BARA is a small-scale model. KAPAS and KAPAS II 

can be considered to have the same uses, since KAPAS II is developed based on KAPAS 

(with several modifications), but it is integrated with peat-specific land surface model to 



 

257 

 

estimate the temporally varying peat MC. The main use of KAPAS (and KAPAS II) is to 

simulate peatland wildfires at the field-scale that involve flaming and smouldering 

multiple times (due to its faster-than-real-time simulations, even faster than BARA), 

which can be used to optimise the firefighting strategy of peatland wildfire based on the 

predictions of the wildfire spread in different fire (e.g., weather and ignition location) and 

firefighting (by improving things such as resources allocation and evacuation routes) 

scenarios. KAPAS and KAPAS II can also be used to assist peatland management, for 

instance, by developing a strategy for rewetting treatment (e.g., which location and how 

wet) of peatland based on the wildfire impacts on the peatland (e.g., smouldering burnt 

area) in different wildfire scenarios, which are simulated using the model. SUBALI has 

similar use to KAPAS and KAPAS II, i.e., to optimise the firefighting strategy and to 

assist peatland management, although with slower simulations, thus, fewer scenarios can 

be considered. However, SUBALI considers the 3-D spread of smouldering peat, thus, this 

model also has the ability to estimate the carbon emission from the wildfires, unlike 

KAPAS and KAPAS II. This additional ability has main uses to assist the peatland 

restoration, i.e., by estimating the peat loss and optimising the peat condition (based on 

faster-than-real-time simulations) to minimise the peat loss in the event of wildfires, and 

to provide carbon emission estimation that can contribute to the climate change 

mitigation, for instance, based on the carbon emission estimation from SUBALI, the 

amount of carbon sink that is required to minimize the climate change can be 

approximated. 

In summary, this thesis provides results to fundamentally understand peatland 

wildfires and phenomena that are involved. Both small and field-scale models in this 

thesis reveal the 3-D smouldering spread and its 3-D structure, the initiation and 

progression of field-scale smouldering wildfires and the factors that influence it, and the 

importance of these factors for the carbon emission estimation (Figure 10.1). The models 

and methodology presented here, represent a significant advancement on the 

understanding of peatland wildfires, from its initiation, spread, structure, and carbon 

emission. By using the models developed in this thesis, the spread of flaming and 

smouldering wildfires in peatland can be predicted in a faster-than-real-time simulation 

and its emission can be estimated, allowing for the better mitigation of peatland wildfires 

through multiple simulations to find the optimum firefighting strategy and to assess the 

vulnerability of peatlands in the event of wildfires. Through understandings and models 

presented in this thesis, improved firefighting strategy and management in the peat-rich 
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landscapes can be developed, which can contribute to mitigating climate change and 

adversities of haze from smouldering peatlands.
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Appendix 

Appendix Chapter 2  

Table S2.1. The abbreviations and its meaning that are used in the satellite and its instruments 

naming. 

 

Appendix Chapter 4 

A. Supplementary figures 

 

 

Figure S4.1. Results from BARA simulation of smouldering peat, with 20%MC and 20%IC, both 

the expected circular ring result (left) and the unexpected polygon result (right). 

Satellite 

abbreviation 
Meaning 

Instrument 

abbreviation 
Meaning 

Landsat 8 
N/A OLI Operational Land Imager 

N/A TIRS Thermal Infrared Sensor 

Sentinel-2 30 MSI Multispectral Instrument 

NASA Terra 

& Aqua 
N/A MODIS 

Moderate Resolution 

Imaging Spectroradiometer 

Suomi NPP 
Suomi National Polar-orbiting 

Partnership 
VIIRS 

Visible Infrared Imaging 

Radiometer Suite 

NOAA 
National Oceanic and 

Atmospheric Administration 
AVHRR 

Advanced Very High 

Resolution Radiometer 

BIRD 
Bispectral and Infrared 

Remote Detection 
HSRS Hot Spot Recognition Sensor 

TET-1 
Technologie Erprobungs 

Träger-1 
BIROS 

Bispectral Infrared Optical 

System 
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Figure S4.2. Sensitivity analysis of 𝑃𝑠 on different 𝛩 and 𝜑 based on (a) horizontal spread rate 

(𝑆𝐻) and (b) smouldering width (𝑊𝑆). The magenta lines represent the boundary between 

simulation results with circular and non-circular (transparent) shapes. 
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Figure S4.3. Comparison between BARA predictions with experiments of smouldering fire in peat 

with heterogeneous MC with halftone configuration. The comparison is focused at two different 

times after ignition which show significant differences. The full comparison can be found in 

supplementary material. 
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Figure S4.4. Comparison between BARA simulations with experiments smouldering fire in peat 

with heterogeneous MC with stripes configuration. The comparison is focused at three different 

times after ignition which show significant differences. The full comparison can be found in 

supplementary material. 
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Figure S4.5. The thickness and MC of firebreak (layers of wet peat) that lead to failure of the 

firebreak in different MC of outside region (see Figure 4.12 (right)). The region above the lines 

are the safe region where the firebreak successfully discontinue the smouldering spread. 

 

B. Derivation from first principle 

Heat release rate 

Figure 4.2 illustrates consumed peat at one time-step and its components. In 

consumed peat with the volume of (𝛿𝑉 = ∆𝑥2𝛿), it contains water with a volume of 𝛿𝑉w, 

inorganic content with a volume of 𝛿𝑉i, air with a volume of 𝛿𝑉a, and organic content with 

a volume of 𝛿𝑉o. The heat release rate (𝑄R) depends on the heat generation per 𝑚3 (∆𝐻c) 

and 𝛿𝑉o as shown in Eq. S4.1. By using mathematical operations, 𝛿𝑉o can be formulated 

as a function of organic density (𝜌o), particle density of the peat (𝜌o
, ), and 𝛿𝑉. The thickness 

of the consumed peat is a function of in-depth spread rate (𝑆d), therefore, 𝑄R  can be 

formulated as shown in Eq. S4.6 where 𝑏1 is a constant. By assuming constant ∆𝐻c, 𝜌o
,  

and ∆𝑥, Eq. S4.6 can be simplified to become Eq. 4.3. 

 𝑄R = ∆𝐻c𝛿𝑉o (S4.1) 

 
𝛿𝑉o
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𝜌b
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, ∙
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, ∙
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 (S4.2) 
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 𝑄R = ∆𝐻c
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 𝑄R = (𝑏1∆𝑥2 ∆𝐻c

𝜌o
, ) 𝜌o𝑆d (S4.6) 

 

Heat transfer coefficient 

Figure S4.6 shows the physical analogy of heat transfer in BARA and heat transfer 

in physical realm. If two adjacent cells have different heat value (𝑈), this condition is 

analogous to have different temperature (𝑇) in physical meaning. Due to the temperature 

difference (∆𝑇), there is heat transfer (𝑄) from the cell with higher temperature (red) to 

the cell with lower temperature (blue). By assuming a 1-D transient conduction heat 

transfer (Eq. S4.7) with effective thermal conductivity, 𝑘e (see Eq. S4.8) for porous media 

following (Huang, Rein and Chen, 2015), a finite difference method is applied to the Eq. 

S4.7 which resulting in Eq. S4.9. In these equations, 𝑇 is temperature, 𝑡 is time, 𝜌b is bulk 

density, 𝑐 is specific heat, 𝑥 is distance, 𝑘 is material thermal conductivity, 𝛷 is porosity, 

𝛾 is radiative conductivity coefficient, and 𝜎 is Stefan–Boltzmann constant. Meanwhile, 

∆𝑇1−2 is temperature difference between cell 1 (west neighbour) and cell 2 (centre cell) and 

∆𝑇3−2 is temperature difference between cell 2 and cell 3 (east neighbour). These equation 

are implemented in BARA where the heat transfer is discretized to one time step and to 

one neighbour (the other three sides of the cell are assumed to be insulated). Therefore, 

in Eq. S4.9, ∆𝑡 = 1  and ∆𝑇3−2 = 0 , resulting in Eq. S4.10 when the temperature is 

translated to heat value. These processes are repeated independently for the other three 

neighbours (in this example North, East, South), therefore, although the heat transfer 

between a centre cell with each neighbour is not directly connected, eventually they are 

affecting one another. This neighbourhood concept is one of the reason CA become 

computationally efficient. To further simplify the model, 𝑘𝑒 is set to be constant resulting 

in Eq. S4.11 where 𝑏2 is a constant. In BARA, the heat value transferred to the neighbour 

(𝑄 ) is 𝛿𝑈
∆𝑙⁄ , where ∆𝑙  is the number of cells that separate the two cells which are 

interacting. Therefore, Eq. S4.11 can be further modified to be Eq. S4.12 where 𝜑 is heat 

transfer coefficient in BARA which depends on the 𝜌𝑏 and 𝑐 of the sample. 
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Figure S4.6. Schematic of analogy of heat transfer in BARA and physical analogy. 
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=
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 𝑘e = 𝑘(1 − 𝛷) + 𝛾𝜎𝑇 
3
 (S4.8) 
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Figure S7.1. The correction factor (𝜚) for the simulation with different flaming extinction 

probability (𝑃𝑥) which is formulated as a function of flaming spread probability (𝑃𝑓). The variation 

of 𝜚 in one wind speed (𝑉) is due to the variation of spatiotemporal resolution (𝜆). 
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Figure S7.2. Gravimetric MC of the peat in the peatland in Borneo over many years, simulated 

by using the model of (Apers et al., 2020). Each bar represents the average peat MC in one 

month. The El Niño year in 2015 is clearly shown in the low MC during the dry season of the 

green bars. 
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Appendix Chapter 9 

 

Figure S9.1. Snapshots of a simulation of the peatland wildfire in Central Kalimantan site taken 

at different times and its corresponding number of pixels of different states (EP, FV, SP, and BP). 

(a) The early stage of the surface flaming (day 3), (b) the spread of surface flaming and the 

nucleation of smouldering hotspots (day 8), (c) surface flaming extinguish and the smouldering 

hotspots nucleation stops (day 20), and (d) the end of simulation (day 182) where the smouldering 

hotspots have spread and grown bigger. The surface vegetation (white) corresponds to the three 

different vegetation type in Figure 7.2. The blue arrows show the wind direction and their values 

(km/h) correspond to wind speed. Firebreak (grey) stops the spread of flaming. 
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Figure S9.2. The comparison of burnt scar between satellite detection and SUBALI prediction of 

Central Kalimantan site at three different times. This compares the burnt scar in Figure 7.1b 

and Figure S9.1a – Figure S9.1c. The red lines represent the perimeter of the actual burnt scar 

detected by satellite. True negative and true positive are the accurate predictions which mean 

that the prediction and the satellite detection are both not burn and both are burn respectively. 

False positive corresponds to the predicted burn region which is not burn in the satellite 

detection, whereas false negative is the predicted not burn region which is burn in the satellite 

detection. 

 

  


