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Abstract

Network science studies interactions between different entities. This thesis covers three differ-

ent topics in network science: higher-order network structures, human mobility and network

centralities. Higher-order network is an emerging field in recent years and combinatorial mod-

els use multi-body interactions to describe the structures beyond pairwise. In chapter two, I

focus on studying the evolution of the links in temporal networks using three nodes motif–

triplets. In specific, I develop a method that use a transition matrix to describe the evolution

of triplets in temporal networks. To identify the importance of higher-order interactions in the

evolution of networks, we compare both artificial and real-world network data to a model based

on pairwise interactions only. The differences between the transition matrix and the calculated

matrix from the fitted parameters demonstrate that non-pairwise interactions exist for various

real-world systems in space and time. Furthermore, this also reveals that different patterns of

higher-order interaction are involved in different real-world situations. To test my approach,

I used the transition matrix to design a link prediction method– Triplet Transition score. I

investigate the performance of the methods on four temporal networks, comparing my approach

against ten other link prediction methods. My results show that higher-order interactions in

both space and time play a crucial role in the evolution of networks as I find Triplet Transaction

method, along with two other methods based on non-local interactions, gives the best overall

performance. The results also confirm the concept that the higher-order interaction patterns,

i.e., triplet dynamics, can help us understand and predict the evolution of different real-world

systems.

In chapter three, I investigate the behaviours of human mobility in different cities using gravity

models. Due to previous technical challenges in collecting data on riding behaviours, there

have been only a few studies focusing on patterns and regularities of biking traffic. To extend

the research, I use the data from mobike and apply the gravity model to study the mobility of

dockless bicycles. I validate the effectiveness of the general gravity model on predicting biking

traffic at fine spatial resolutions of locations. I then further study the impacts of spatial scale

on the gravity model, and reveal that the distance-related parameter grows in a similar way as

population-related parameters when the spatial scale of locations increases. The result reveals

the emergence of the scaling can be explained by the gravity models.

Measuring the importance of nodes in networks via centrality measures is an important task
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in many network systems. There are many centrality measures available and it is speculated

that many encode similar information but the reason behind them is rarely studied. In chapter

four, I give an explicit non-linear relationship between two of the most popular measures of

node centrality: degree and closeness. Based on a shortest-path tree approximation, I give an

analytic derivation that shows the inverse of closeness is linearly dependent on the logarithm of

degree. I show that the hypothesis works well for a range of networks produced from stochastic

network models and for networks derived from many real-world data sets. I connect our results

with previous results for other network distance scales such as average distance. My results

imply that measuring closeness is broadly redundant unless our relationship is used to remove

the dependence on degree from closeness. The success of our relationship suggests that most

networks can be approximated by shortest-path spanning trees which are all statistically similar

two or more steps away from their root nodes.
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ER Erdős-Renyi

BA Barabási-Albert

21



∆t time resolutions of a temporal network

Symbols & acronyms for Chapter 2

M sets of triplet states

mi states of triplet

T(s) probability of triplet transition at time s

T̂(s) empirical probability of triplet transition at time s

p probability of an edge is created when no edge before

p̂ empirical probability of an edge is created when no edge before

q probability of an edge is destroyed given there is an edge before

q̂ empirical probability of an edge is destroyed given there is an edge before

Z Z-score matrix obtained from compare network with a pair-wise model

ψ(i, j; s) states vector of node pair i, j at time s

β indication of an edge

Lβ(i, j; s) probability that a pair of nodes u, v has a link/does not have a link at time s

s(i, j) similarity between node i and j

J an objective function of clustering

AUC area under curve

Symbols & acronyms for Chapter 3

ρ(r) average density of riding activities at a distance r to the city center

22



dij distance between location i and j

⟨di⟩ average distance travelled from location i

T biking flux matrix between locations

wij the ratio between traffic volume from location i to j.

Pi population of the location i

Symbols & acronyms for chapter 4

SPT shorest path tree

d(u, v) geodesic distance between nodes u and v

c(v) closeness of node v

nv(`) the number of nodes from the root node v at distance `

` distance from root node v

z̄ growth factor of the shortest path tree

T (v) shortest path tree from root node v

n`(v) number of nodes at distance ` from the root v

L cut-off distance from root node v

β intercept term in the relation between closeness and degree

z̄(fit) growth factor of the shortest path tree estimated from the data

β(fit) intercept term in the relation between closeness and degree estimated from the data

⟨`⟩ the average distance between all nodes pairs

23



Chapter 1

Introduction

1.1 Motivation and objectives

Complexity science is a study of the systems and one of the goals is to understand how collective

behaviour emerges from microscopic level interactions in different types of systems. Those

collective behaviours can be highly dynamical and non-linear [1, 2]. Traditional mathematical

approaches rely on homogeneous assumptions that may not working well on some systems.

One example would be modelling epidemiology spreading over population. The traditional

approaches, such as compartmental models, assumes that individuals in the whole population

are identical and have equal probability to infect each other or being recovered. However, the

assumption is not realistic since individuals are confined in their own social groups and more

difficult to interact with individual in other social groups. To provide a more accurate way to

model the complex system, network can be used to describe the structure in the system. If any

interactions occur between a pair of entities, then an edge connects these two nodes [3].

Network methods are widely used in many fields. In computational social science, network

methods can be used to infer topical structures from the collection of documents [4] and to

understand the emergence of a new field of science [5]. Network methods also help to better

understand biological science, from forecasting protein-protein interactions, predicting drug

combinations to drug re-purposing [6, 7, 8]. In addition, network methods can be used to
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understand human mobility and spatial scaling laws behind cities [9, 10].

There are many dynamical processes taking place on networks, for instance, disease spreading

[11] and synchronisation process in voting dynamics [12]. To predict outcomes of these systems,

determining the most influential nodes is an important goal. The node importance is also known

as node centrality and have wide applications in many fields, from social network analysis [13] to

search engines [14]. There are a vast number of centrality indices available as visualised nicely by

Schoch [15, 16]. However, many different centrality measures encode similar information, which

leads to redundancy. A variety of research found the strong correlations between centrality

indices [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. In particular, Pearson correlation coefficients

are invariably used which are most sensitive to linear correlations between centrality measures1.

However, there seems to be no clear consensus from these studies other than there are often

strong relationships between centrality measures but these vary from network to network. The

reason behind the strong correlations is not clear. There may exists some intrinsic structures

behind observed topology, for instance, in a shortest path tree structures, the inverse of closeness

will highly correlated with its degree.

In addition, the structures in networks are hidden and can be misleading in network modelling.

The edge is often used to represent pairwise interactions. However, in systems represented by

networks, there are often processes, known as higher-order interactions, where groups of more

than two participants interact. In these cases, the set of pairwise interactions does not capture

the whole picture [28]. Research has revealed that many empirical systems display higher-order

interactions, for example social systems [29, 30, 31], neuroscience [32, 33, 34], biology [35], and

ecology [36]. Examples of network structure beyond pairwise edges would be network motif and

[37]. Network motif refers to recurring and significant interconnection patterns appears in the

networks comparing to corresponding random graph null model. Network motif are also known

as sub-graphs(i.e. collection of the nodes and only connection patterns within these nodes).

It is found that network motifs act as functional units in different systems[37], thus, they can

be thought as a single unit. At the same time, graphlet focused on induced subgraphs. An

1Linear correlation between two variables means if one variable increases, another variable also grows in a
constant ratio. Otherwise, the correlation is non-linear, for instance, another variable grows exponentially faster
than its correlated variable.
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induced sub-graph means that once the nodes was selected in the large network, all the edges

between them to form the sub-graph, which helps to predict disease protein in protein-protein

interaction networks [38].

In addition, the network is not static and the edges contain temporal information, for instance,

while people sending emails, the replies will arrive later, so in network, they should not appear

at the same time. More formally, a temporal network is a network whose structure changes over

time. There are many examples of temporal networks in social systems, including conference

meeting [39], shareholder co-investing [40] and co-operative behaviours [41]. More examples in

different fields can be found in Holmes’s summary [42]. However, apart from triadic closure

[30, 31], the evolution’s of temporal network is less well explained by higher-order interactions.

Thus, we looked into details about the gap between these two topics.

The title of this thesis refers to the three topics discussed. “Yi”, or 一 is Chinese for the

number one and this refers to chapter 4 on centrality where the focus is on the importance of

each individual node. The goal of chapter 4 is to understand the relations behind centrality

measures. “Er” or 二 is the Chinese for two and here this represents chapter 3 on the spatial

network of bicycle hire used to understand human mobility patterns. “San” or三 is the Chinese

for three which exemplifies chapter 2 on node triplets used to understand the edge dynamics

in temporal networks.

1.2 Background of network theory

Network theory is developed from graph theory and many concepts are used in both studies,

since both fields concerned with pairwise relations between objects[43, 44]. However, these two

fields are commonly taken as two separate directions with little overlaps. Graph theory is closer

to pure mathematics and has focused on providing rigorous proofs for graph properties[43],

whereas, network science focused more on providing explanations to observations of real-world

data sets. Real world data sets are very complex, which includes heterogeneous interactions[45],

temporal structure[46] and thus, analytically intractable, while graph theory are more interests
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on working with analytically tractable problems, such as random graph[43], thus, this thesis

belongs to network science instead of graph theory. In addition, since network science is a very

interdisciplinary study. Therefore, multiple terminologies are used in different fields to describe

the same objects, for instance, computer science communities prefer ’node’ and ’link’ to describe

the object and their binary relations, but this would be identical to ’vertex’ and ’edge’, which

is more commonly used in mathematics communities. If any of them appears in the thesis,

they mean the same things. In the current chapter, we will introduce common definitions and

terminologies for network theory first. For those specific terminologies used in each chapter,

they are introduced in each chapter for simplicity. We begin with a general mathematical

frameworks for representing graph theory and then some classes of random models, including

Erdős-Renyi networks, Barabási-Albert networks and configuration models. We will later show

how we can measure structural importance of nodes (centrality) in networks. The chapter is a

summary of terminologies about the network, readers can find more details in [3, 46, 47, 48].

1.3 Networks, representation and structure

In complex systems, many units are interacting with one another. The interactions can be

studied via a network approach. For instance, if the interactions only occur between every pair

of units, then a dyadic2 network is used to capture the pairwise interaction. A similar logic

can be extended to take into consideration more units, for instance, triad interactions. More

details can be found in [50, 28]. In this chapter, we focus on the pairwise networks. Dyadic

networks are also called graphs G, which is a collection of sets of vertices V and edges, E as:

G = {V ,E}. (1.1)

Furthermore, an edge is defined by the pair of nodes connected, for example, if i is connected

to j, then we denote this edge by e = (i, j) ∈ E . Meanwhile, the order of the vertices in an

edge corresponds to the direction of the edge, for instance, (i, j) means i is the source node

2Dyadic means a group is consisting of two parts



28 Chapter 1. Introduction

2

3

Figure 1.1: An illustration of network and path. The left figure is the topology described via
the adjacency matrix in Eq.(1.4) and the right figure demonstrates how a path is defined in the
network. The red path is the shortest path of length 2 started from A to D and the yellow path
is the longest path of length 3 from A to D. The number corresponds to the path length. The
node E is denoted in lighter blue since it is not an immediate node in any direct path origin
from A to D.

and j is the target node. In reality, more information can be included to describe features of

networks, for instance, attributes of nodes (node type) can be used to describe the characters of

nodes, edge weight (edge importance) can be used to describe the strength or frequency of links,

etc. Neglecting these features can cause the resultant network to have different structures, for

example, treating a graph as unweighted, while many edges in the network are significantly

weaker than other links, in terms of edge weight, can be very misleading. However, while

constructing the network from the data, in many cases, the information is not fully accessible

and assumptions need to be made. There are several different types of networks based on the

characters of the links in networks. For example, a network is called a simple network if there

is no self-loop, i.e. ∀(i, j) ∈ E ∶ i ≠ j. For an undirected graph, the links are symmetrical which

means, ∀(i, j) ∈ E ,∃(j, i) ∈ E and reversely, for a directed network, ∃(i, j) ∈ E , s.t.(j, i) ∉ E . A

path is a finite or infinite sequence of edges that joins a sequence of vertices, which simulate a

walker travelling from a source node i to a target node j. The length of a path is defined as

the number of links traversed by the walker. The path from one node to another node is not

unique, for instance, there exists two paths from node A to node D (see the yellow and red

paths in Figure 1.1). The longest path of length 3 between node A to D is indicated by yellow

arrows and the shortest path of length 2 is indicated by red arrows. The shortest path length

is also known as the geodesic distance between two nodes, which plays an important role in
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many network processes, such as , in a traffic networks, people will choose the shortest path

route to minimise travelling time.

There are two major data structures to represent network: one is the edge-list representation

and another one is the adjacency matrix representation. The edge list representation stores all

connected pairs of nodes (tuples of two nodes) in an array, for instance:

E = {(i, j)},∀i, j ∈ V . (1.2)

For example shown in Figure 1.1, the corresponding edge list representations are stated as the

following:

E = {(A,B), (B,C), (B,D), (C,D), (D,E)}. (1.3)

Depending on the task, it is necessary to choose an appropriate representation of a network.

Each representation of network is amenable to mathematical operations that are more optimal

for solving certain tasks. The advantage of edge-list representation is that only connected edges

in the graph are stored as a list or vector and therefore, memories are used more efficiently,

especially for sparse networks. Further advantages include, link randomisation and numerical

simulations in sparse networks can be computed more easily [46]. The edge-list representation

is capable of storing all sorts of graphs, either dense or sparse, since the upper-bound of the

memory is N2, where N = ∣V ∣ is the number of nodes in the graph G.

In cases that involves determining the paths in the network, the edge list representation is not

the most ideal way, since it needs to repeatedly loop through the list each time, depending on

the path length l and the complexity will scale O(N l). Alternatively, the adjacency matrix A

can be used to represent a graph, where each binary entry Aij indicates whether an edge exists

between nodes i and j.
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The corresponding adjacency matrix for the graph shown in Figure 1.1 is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A B C D E

A 0 1 0 0 0

B 1 0 1 1 0

C 0 1 0 1 0

D 0 1 1 0 1

E 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (1.4)

The path in a network can be studied through the power of the associated adjacency matrix,

for instance, if we want to understand all possibilities of where the random walker can land

within path length of two, then we have A2 the following:

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A B C D E

A 1 0 1 1 0

B 0 3 1 1 1

C 1 1 2 1 1

D 1 1 1 3 0

E 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (1.5)

Each entry A2
ij counts the number of length 2 paths between node i and j. Therefore, the

adjacency matrix method is very efficient to determine all paths with a certain length and

helps to solve triadic closure problems. Notice, the diagonal term A2
ii counts the number of

paths of length 2, which go back to the original node i via node j, for instance, A → B → A.

Therefore, the diagonal term A2
ii is the same as the degree of node j. The adjacency matrix

method is very powerful in studying dynamical processes and theoretical structure in networks,

since it provides ways to apply linear algebra tools, such as eigenvectors and eigenvalue spectra

[46]. The memory cost of the adjacency approach is O(N2). In many real data sets, most

networks are sparse and therefore, a majority of entries in the network will be zeros and the

memory is not used efficiently. To tackle this problem, sparse matrices can generally be used

to provide more efficient usages of memory and faster computations, however, the numerical
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instability need to be checked [52] 3. We can use the package Scipy 1.3 to operate the sparse

matrix and Networkx 1.1 to store graphs and compute the corresponding quantities in networks.

1.4 Structures and centrality

There are many graph properties that can be used to describe the structures of different net-

works. Social Network Analysis (SNA) is one of the methods that can be used to analyse

the structure of the network in terms of nodes and links (not only in sociology but also in

many other fields, including epidemiology). In this section, we will introduce several centrality

measures that can be used to quantify the local or global importance of nodes.

1.4.1 Centrality measures

There are several centrality measures that can be used to characterise the structure importance

of nodes in networks (see more details in[15, 16]). Degree is the most simple and widely used

centrality measure, it measures the number of nodes a given node is connected to. The degree

of node i is defined as:

ki =∑
j∈V

Aij. (1.6)

Degree is a local measure, since the measure only reflects the information about the node itself

and the nearest neighbours. The clustering coefficient is a measure of how likely the nodes in a

graph tend to cluster together. Clustering coefficient, Ci, can be used to measure the fraction

of complete triangles centred on vertex i with the nearest neighbours:

Ci =
2

ki(ki − 1)∑j<k
AijAjkAik. (1.7)

If Ci = 1, all neighbours of node i will connect to each other. If Ci = 0, node i have a local tree

structure. In addition, the network clustering coefficient, C of a network is simply the average

3During the matrix decomposition, the value is approximated by product and thus, sometimes not-exact and
have some round-off errors.



32 Chapter 1. Introduction

of all clustering coefficients:

⟨C⟩ = 1

N

N

∑
i=1

Ci. (1.8)

Clustering coefficient can also be used to distinguish some specific structures, for instance,

• A fully connected graph has a cluster coefficient, C = 1.

• Square lattices have zero clustering coefficient, so do trees.

Many measures are able to detect a global structure, for instance, closeness measures average

geodesic distance to other nodes. Closeness cv for a vertex v is defined to be [3, 53, 54]:

cv =
∣Cv ∣ − 1

∑u∈Cv∖v d(u, v)
, (1.9)

where Cu is the connected components where node u belongs to, d(u, v) is the length of the

shortest path between vertex u and some distinct vertex v which is in the same component, Cu.

Note that we use a standard normalisation using ∣Cv ∣ = N − 1, the number of remaining vertices

apart from the node v in the connected components, but this is irrelevant after rescaling.

Betweenness measures the bridgeness of the node, that is, the fraction of the shortest paths pass

through a node v. Betweenness has many important real world applications, including find-

ing the target customer for advertisement and stopping the hyper-spreader in epidemiological

breakout. Betweenness bv of a vertex v is [3, 54, 55, 56]

bv = ∑
s,t∈ Cv

σ(s, t∣v)
σ(s, t) . (1.10)

Cv is the set of vertices of the component containing vertex v, σ(s, t) is the number of shortest

paths available from vertex s to t, and σ(s, t∣v) is the number of shortest paths from s to t

which pass through vertex v. The numerator σ(s, t) takes account of cases where there are

more than one shortest paths between a pair of nodes s and t, which makes the nodes more

important if less available paths exist.
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Eigenvalue centrality measures the influence score by a broadcasting process. Broadcasting

process refers to the spread of a piece of information to all the neighbours and the neighbours

replicate information again. The Eigenvector centrality for a vertex i is simply the i-th entry

of the eigenvector of A associated with the largest eigenvalue [3, 54].

PageRank simulates a random walker on network together with a hyper-jump process [14].

The process mimics the behaviour of humans browsing websites by clicking the hyperlinks on

websites, with an additional probability of suddenly moving to another set of pages. PageRank

is defined in terms of a transfer matrix, T where each entry, Tji represents the probability of a

random walker at vertex i moving to vertex j at the next time step. We have that

Tji =
1

s
(out)
i

Aji , where s
(out)
i =∑

j

Aji . (1.11)

An additional stochastic process also occurs. At each step, with probability α, the random

walker follows a link chosen at random as given by the transfer matrix T but with probability

(1 −α) the current walk is deemed to end, or equivalently, we follow a new user or a new walk

by starting at a randomly chosen vertex. The Markovian matrix G which describes this process

is given by:

Gij = αTij + (1 − α)
1

N
(1.12)

where N corresponds to the total number of vertices and α is the damping factor. The proba-

bility that a random walker is at vertex i in the long-time limit is proportional to the PageRank

for that vertex and this is given by the i-th entry of the eigenvector associated with the largest

eigenvalue of G.

In addition, node centrality can be used to predict the existence of a link. There is much liter-

ature and many applications based on node centrality (see a good survey in [57]). In chapter

2, we will discuss how centrality can be used to do the task of link prediction.
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1.4.2 Community structure and detection

Many networks are heterogeneous and vertices of a graph can be partitioned into different

clusters that have the propensity of the links [58, 59]. Within the groups, the density of links is

high, but there are fewer connections between different groups, see Figure 1.2. The communities

Figure 1.2: An example of the non-overlapping community structure in a network. There are
three communities in this network, which are represented by dashed ellipses. We can see denser
intra-community links (black links) within the group but less denser inter-community links
between communities (grey links).

may also overlap, that is, nodes are shared between various communities [60]. There are

many applications of the community structure in network analysis, for instance, discovering

unknown functional modules such as topics in information networks, cyber-communities in

social networks or functional units in the biochemical network [61, 62].

There are many community detection algorithms in the literature, for instance, divisive al-

gorithms detect inter-community links (links between communities) according to their edge

betweenness and remove them from the network [63], merging similar nodes/communities us-

ing random walks recursively [64] and maximising an objective function, such as modularity

[65]. Since networks are generated from a variety of processes and formed from very compli-

cate mechanisms, there is no single algorithm that can succeed in all detection goals [60, 66].

Furthermore, there are no clear guidelines on how to assess and compare the performance of

different community detection algorithms [67], which leaves the question of the best algorithm

detection open.
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We also see the emergence of the community structures in real networks, several papers also

suggest a scaling behaviour of the community-size distribution in networks4, including networks

of shareholder in Turkey and Netherlands [40], information networks, social networks, biological

networks and internet networks, see Figure 1.3 [69].
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(a) Communication-Email (b) Internet-AS-caida (c) Information-Amazon

Figure 1.3: Community size distributions in three different networks. All data illustrate similar
scaling behaviours in log-log plots and the distribution of community sizes detected by Infomap
from was quite broad [69].

1.5 Network models

Real networks have many interesting characteristics, for instance, power-law degree distribu-

tions [70] and small world (six-degree separation) phenomena [71]. Many networks will not

simply be the structure of a lattice, fully connected or branching like a tree. One of the key

goals in network science is to understand how a specific property is generated from a known

mechanism. In this section, we look at three cases, the simplest Erdős-Renyi random network,

Barabási-Albert networks and configuration models. There are many other processes such as

copying model, block type model and Kronecker graph but these are not discussed in this thesis

(see details in [72, 73, 74]).

4Partition result of a community detection algorithm is dependent on the choice of the algorithm, thus, the
detected scaling behaviours of communities vary so stability need to be checked.
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1.5.1 Gilbert and Erdős-Renyi random network

Gilbert random network and Erdős-Renyi random networks are essential since they can set

basic benchmarks for real networks that help us to understand the uncertainty in networks.

Originally, these simple random networks were formulated mathematically by Edgar Gilbert[75].

Two parameters are used to define the random graph, one is the number of the nodes N and

the other is the probability, p, of any two nodes are connected. The model assumes that nodes

may connect to any other node in the network with probability p. Therefore, the probability

of a node do have a degree of k follows a binomial distribution:

p(k) = (N − 1

k
)pk(1 − p)N−1−k. (1.13)

In addition, it can be shown that if k ≪ N , then the degree distribution can be approximated

as a Poisson distribution (see details in [70]):

p(k) = e−⟨k⟩ ⟨k⟩
k

k!
. (1.14)

Paul Erdős and Alfred Reyni [76] proposed another version of the random graph. The only

difference is instead of using probability of an edge will exist, ER model assumes that the total

number of edges in the network is fixed and these links are assigned equally likely to all nodes.

In the asymptotic limit N →∞, two model becomes equivalent.

Since the random graph has a low clustering coefficient, it is locally tree like.

1.5.2 Barabási-Albert model

The Barabási-Albert (BA) model uses preferential attachment mechanisms to generate scale-

free networks. Scale-free networks have degree distributions p(k) ∼ k−γ, k ≫ 1 and γ can vary

depending on different type of networks, see more details in [77]. Preferential attachment is a

process where nodes in a network gain edges using a cumulative advantages principle, where

the richer get richer. The algorithm can be summarised as follows:
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1. Create an initial graph Gt .

2. Set t→ t + 1.

3. Add a new vertex to the graph.

4. Add m edges at one end that connect to the new vertex.

5. Add the other ends of these m edges to the nodes in the existing graph with a probability

Π(k, t) = k/2NE, where NE is the total number of edges in the existing network.

6. Check whether self-loop or multi-edges exists. If so, remove the edges and repeat step 5.

7. Repeat from step 2 until ∣Gt∣ +N nodes have been added to network.

As a consequence, the final degree distribution after a long time can be derived as (see detailed

derivation at [70]):

p(k) = 2m(m + 1)
k(k + 1)(k + 2) k ≥m. (1.15)

If k ≫ 2, then p(k) ∼ k−3. There are some debates about the extension of scale-free networks

in the real world and many other mechanisms should be studied to explain networks that are

not scale-free [78].

1.5.3 Configuration model

The ER network can capture the property of variation of real networks but this is not enough to

make it the best reference model. Real networks are not regular but nor are they random. The

configuration model allows users to generate a random network with a given degree distribution,

which provides a arbitrary reference model without higher-order structures, such as degree-

degree correlations. Denoting NE = ∣E ∣ as the total number of edges in network, then the

probability of two nodes i and j being connected purely depend on the degree product as

followings:

p(Aij = 1) = kikj
2NE

. (1.16)
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Then a configuration model can be generated using a random number generator. Alternatively,

the configuration model can also be made via an edge swap process. The edge swap process

breaks two existing edges into two stubs. For high-degree nodes, the probability of self-loops

and multi-edges formed will be more often than for low degree nodes.

1.6 Organisation of the thesis

In this thesis, chapter 2-4 can be read separately since each chapter covers one specific topic

and does not overlap with other topics. We organise the thesis into the following chapters. In

chapter 2, we discuss triplets. The goal of chapter 2 is to study higher-order network evolution

mechanism in temporal networks. We treat three-nodes (triplet is 三,“San”, in the title) as a

whole unit and use triplets to explain the observed edge dynamics. In chapter 3, we discuss

data on bicycles. Here, two is 二, “Er” in the title. We use the gravity models to demonstrate

how scaling of flows can emerge from locations. In addition, we also investigate how the gravity

model performs in different spatial resolutions. In chapter 4, we discuss the centrality of single

node (一, ‘Yi’ in the title). Correlations between centrality measures always exist in many real

data set but the reasons behind them are rarely studied. In chapter 4, we derive an approximate

relationship between the inverse of closeness and logarithm of degree based on the shortest-

path tree approximation. At the end, we use our results to explain the relation between average

shortest path length and average of logarithm of degree in many real-world networks.



Chapter 2

Higher-order temporal network effect:

Triplet evolution

The following chapter is based on:

Q., Yao, B., Chen, T., Evans and K., Christensen

Higher-order temporal network effects through triplet evolution.

Scientific Reports 11, 15419 (2021) .

B. Chen contributed to all aspects of this paper.

2.1 Introduction

Higher-order structures in networks refer to non-dyadic interactions in networks. Dyadic net-

works use links to describe binary/pairwise relations between nodes. However, many phenom-

ena in network are governed by local processes which involve more than two nodes. Detecting

higher-order interactions in the network is not a simple task, since most of the data only

reveals pairwise interactions making the simple graph the appropriate representation. For in-

stance, data on phone calls are intrinsically pairwise connections, whereas, through face-to-face

meetings, the pattern of calls can reveal the existence of higher-order connections. Therefore,

inferring higher-order structures hidden in the data becomes an increasingly important question

39
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to answer.

There are three common models used to understand higher-order networks, multi-layer net-

work, combinatorial higher-order model and transitive path-based model [28]. The first type of

the models are Multi-layer networks [45] can capture different types of interactions, examples

include multi-layer financial networks [99] and so on.

The second type of models are combinatorial models, which are used to represent multi-body

interaction in networks. There are many higher-order structures, for instance, motif, graphlet,

hyper-edges and cliques. The simplest method to model local group interactions in a network

is to use small sub-graphs, motifs [29, 37] and graphlets [205, 206]. Motifs usually quantify

whether a sub-graph is under/over-represented compared to configuration networks. A example

of a group of three-node motifs can be seen in Figure 2.1. Graphlets are different from motifs,

a given set of graphlets are non-isomorphic maximal induced subgraphs which contain all the

edges between nodes, whereas, the motif is the partial subgraph which may only contain some

of the edges between the nodes. Higher-order analysis in terms of paths is important in several

contexts [100, 101] but the use of cliques are more commonly used in higher-order networks.

Cliques are fully connected subgraphs. Cliques have long played an important role in social

science, for instance, see [102], and can be used in many contexts such as community detection

[103, 104]. Cliques in networks are the basis for analysis in terms of simplicial complexes

as used in algebraic topology. In network analysis, simplicial complexes [105, 106, 107] have

been used to analyse network geometry [108], to model structure in temporal networks [109],

investigate synchronization phenomenon [110, 111, 112, 113], social contagion [114], epidemic

spreading [115], and neuroscience [33, 34]. In addition, hypergraphs [116, 117, 118] naturally

encode higher-order interactions in terms of fundamental units, their hyperedges represent the

co-incidence of many nodes.

The third type of model is a non-markovian type of model, which relies on using high-resolution

time series to forecast higher-order patterns in temporal networks, applications include temporal

patterns in trade relations [119, 120],

In the current chapter, we design a combinatorial model which uses three-node interactions, the
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Figure 2.1: In the top row are the four unlabelled triplet states ofM4, used only for illustration
in this Chapter. The four states mi ∈M3 (i = 0,1,2,3) are characterised by the number of links
i in the given three-node graph. In the bottom row, there are the eight distinct states of triplets
when nodes are distinct (labelled). Below each labelled diagram is the binary representation
of the edge set, the label n ∈M8 (i = 0,1 . . .7), and the corresponding mi triads if labels are
ignored.

triplet. The triplet is the simplest unit of an interaction mechanism beyond pairwise. Triplets

are configurations of three nodes in a network along with any edges between those nodes as

shown in Figure 2.1. One area where network analysis is less well developed is the temporal

evolution of networks. Many complex systems are not static so an important application

of networks is to analyse their behaviour over time [121, 122, 123, 124, 125, 126, 46, 42].

Using higher-order interactions in an evolving network context has been considered in a few

contexts [101, 114, 127, 128]. Most of the research on motifs in temporal networks focuses on

how the number of each type of motif changes as the network evolves. On the other hand,

the study of simplicial complexes is interested in how the fully connected triangles affect the

structures of networks. So there is a gap between understanding how three-node combinations

will evolve and how that evolution will affect the evolution of the whole network. This gap

motivates us to design a method to investigate whether any non-pairwise interactions will be

observed by measuring three-node dynamics. We will study higher-order processes in temporal

networks through the evolution of the node triplet.

This chapter is organised in the following way: We start in section 2.2 by introducing the

transition matrix that describes the Markovian evolution of the triplet. In section 2.4, we

propose a null model that can demonstrate if higher-order interactions exist in networks. We

use artificial networks with known higher-order interaction mechanisms to verify our approach

is valid and use real networks to show the existence of higher-order interactions. In section 2.5,
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based on the triplet evolution, we create an algorithm that can predict the existence of the links

in the temporal networks and compare the performance of our method with other methods in

section 2.5 & 2.6.

2.2 Quantifying non-pairwise interaction

2.2.1 Capturing dynamics of the temporal network via transition

matrix

We start with temporal graphs G(s), a sequence of graphs with one node set V but with variable

edges sets E(s), where s is a discrete time variable. The variable Ms(u, v,w), often abbreviated

to Ms, records the state of a triplet (u, v,w) at time s. The states are the subgraphs equivalent

to the three nodes and all the edges between them at time s. That is Ms ≡Ms(u, v,w) is a map

from a node triplet (u, v,w), where u, v,w ∈ V , to the induced graphlet, the maximal subgraph

in G(s) containing the nodes u, v and w. We will use M to denote the set of all the possible

three-node graphs and mi ∈M represents one of the possible graphs in M. So formally

Ms∶ V × V × V → M,

(u, v,w) ↦ Ms(u, v,w) =mi.
(2.1)

The choice ofM is not unique and it depends on the characteristics of the nodes and links used

to distinguish configurations. If we characterise the states by the number of links among the

three nodes, that is, use unlabelled graphs, there are just four distinct states in M which we

can name as m0, m1, m2 and m3 as shown in the top row of Figure 2.1. SoM4 is the state set

characterised by the number of links and here mi is the unlabelled graph of three nodes and i

edges. We will use M4 for visualisation and illustration only in our work here.

By contrast, we want to consider the labels (identities) of the nodes in our work. So for our

results we work with eight states in M since each link between the three pairs of nodes can
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either be present or absent. That means the links between different pairs of nodes are distinct.

This state set is represented by M8 as illustrated in the bottom row of Figure 2.1.

Typically one uses graphlets by counting the frequency of each graphlet m ∈M in each graph

G(s) in the temporal graph sequence. So a simple way to look at the evolution is to see how

these counts change. We wish to go beyond this and look at the way local structure controls

the local evolution. In order to do this we define a transition matrix T which describes the

likelihood that a given triplet is to be transformed into another triplet in one time step. That

is Tij(s) gives the probability that a triplet of nodes in the state mi in G(s − 1) at time s − 1

becomes the triplet mj in G(s) at the next time step, s. That is

Tij(s) = IP(Ms =mj ∣Ms−1 =mi) . (2.2)

By definition, all entries of T are non-negative, Tij(s) ≥ 0, and each row in the transition matrix

satisfies a normalisation condition

∑
j

Tij(s) = ∑
mj∈M

IP(Ms =mj ∣Ms−1 =mi) = 1, ∀mi ∈M . (2.3)

In practice we have to use an estimate T̂(s) for the transition matrix T(s). We do this by using

a subset Ts−1 of all possible distinct node triplets so Ts−1 ⊆ V3. From this subset of node triplets,

we then count how often the associated graphlet transforms from mi to mj. More formally we

define

T̂ij(s) =
1

ki
∑

(u,v,w)∈Ts−1

δ(Ms(u, v,w),mj) δ(Ms−1(u, v,w),mi) , (2.4)

and the normalisation constant is computed from:

ki =∑
j

∑
(u,v,w)∈Ts−1

δ(Ms(u, v,w),mj) δ(Ms−1(u, v,w),mi), (2.5)

where δ(G1,G2) = 1 (0) if graphlets G1 and G2 are isomorphic (not isomorphic). The best estimate

T̂ij(s) of Tij(s) is produced if Ts−1 is the set of all possible distinct node triplets. However, for

a large graph with N nodes there are (N3 ) = N ⋅ (N − 1) ⋅ (N − 2)/6 three node combinations
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making it computationally inefficient to use all triplets. For example, for N = 100,000, (N3 ) =

1.7 ⋅ 1014, Therefore, we will use random sampling of triplets of a sufficient amount to produce

our estimates for T̂(s).

To illustrate the construction of a triplet transition matrix, we use the simplerM4 = {m0,m1,m2,m3}.

Note that the subscripts of T, i, j = 0,1,2,3 correspond to subscripts of states mi inM4 shown

in Figure 2.1. An example of the evolution of a network of 5 nodes and the triplet transition

matrix is shown in Figure 2.2. Note we will use labelled subgraphs and M8 for our analysis.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 2.2: The empirical transition matrix on top centre can be computed from evolution of
the network G(s−1) shown top left, with links at time s−1, to G(s) shown top right, with links
at time s. When the states are only characterised by the number of links of the three-node
combinations,M4, for illustrative purposes, there are four possible states being denoted by mi

(i = 0,1,2,3) of Figure 2.1. The subscript i represents the number of the links i in the graphlet
mi, so m0 is the triplet with zero links, m1 is a triplet with one link and so on. There are
(5

3
) = 10 ways of choosing 3 nodes for a set of 5 nodes, and the evolution of all ten triplets

are shown in the remaining rows in the figure above. For instance, the subgraph induced by a
triplet (a) is the triplet m3. This triplet loses an link in the next graphlet, so the same node
triplet is now associated with the two link triplet m2. This change, therefore, contributes to
the T̂(s)32 entry. As this is the only induced subgraph (graphlet) in the earlier G(s − 1) graph
which is isomorphic to the m3 triad, this means T̂(s)32 = 1 while T̂(s)3j = 0 for j = 0,1,3. On
the other hand, the double link m2 triad appears twice as an induced subgraph of node triplets
in G(s− 1), namely (c) and (d). These triplets have two different triads in G(s) leading to two
non zero entries in the T̂(s)2j row, T̂(s)22 = T̂(s)23 = 1/2. Note we useM8 of Figure 2.1 in our
analysis.
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The memory needed for the calculations in our Triplet Transition (TT) method scales with the

number of combination of triplet in network, that is (N3 ) = N(N − 1)(N − 2)/6 ∼ O(N3) and

this can be seen in Figure 2.3.

Figure 2.3: Time and memory needed for generating all three node graphlet combinations
against a different number of nodes N = 2n n = 6,7,8,9,10. For each n, the time and memory
for each run are measured and the error bars are corresponding to standard deviation. The
time used scales as expected order (the slope of the fitted line is 3.09±0.02) of the system size.
The slope of the fitted line for the memory used is 1.75 ± 0.02.

To ensure the number of triplets is sufficiently large to estimate the transition matrix T̂(s),

we use all three-node combinations if the number of nodes in the system is smaller than 103;

otherwise, we sample 105 triplets chosen uniformly at random from the set of all three-node

combinations. If the calculated T̂(s) is stable, we choose this sample number for the following

analysis. Otherwise, we continue to sample a further 105 triplets until the T̂(s) is stable. Stable

means that the maximum difference between two estimated transition matrix T̂(s) is less than

0.01.

2.3 Data sets description

Before we look at the results, we briefly discuss the datasets first. We use several different

datasets to produce temporal networks with different resolutions. The resolution of a network

is the time interval used to create each snapshot G(s) of our network. This can be done in two

ways, depending on the context. In either case, the resolution can be ‘seconds’, ‘hours’, ‘days’

or ‘months’ and should be chosen to suit the context.
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In the first type of temporal data, the data capture interactions between pairs of nodes which

occur briefly on the time scale of the network resolution. A list of the times of phone calls

between members of a social network would be an example of this type of data. In this case,

each edge in a single snapshot indicates that an event linking the two nodes occurred during

the time interval.

The second approach is where the pairwise interactions recorded in the data typically last for

much longer than the resolution, but they do change slowly over time. An example of this

would be hyperlinks between webpages. In this second case, the snapshots are the network at

one instant in time, and the interval is now the time between these snapshots.

We use five different data sets which are as follows.

• Turkish Shareholder Network (Shareholder).

The nodes are shareholders in Turkish companies. The shareholders are linked if they both

hold shares in the same company during the time interval associated with the snapshot

[40].

• Wikipedia Mathematician (WikiMath). Each biographical Wikipedia page of an indi-

vidual mathematician forms a node. If a hyperlink links two biographies (in either or

both directions), a link is present in the network. The edges are edited by users and are

both added and removed over time. Each snapshot represents the state of these webpages

at one moment in time. The data is taken at one point in three different years, 2013,

2017, and 2018, so the intervals are not constant in this case. See [79] for further details

on this dataset.

• College Message (CollegeMsg). The nodes are students, and an edge in a snapshot

indicates that the students exchanged a message within the interval associated with that

snapshot. The data was collected over a seven month period in 2004, see [80, 81, 82] for

more details.

• Email (Email). This is derived from the emails at a large European research institution

sent between October 2003 and May 2005 (18 months). Each node corresponds to an
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email address. An edge in a given snapshot indicates that an email was sent between the

nodes in the time interval corresponding to that snapshot [82, 83, 84].

• Hypertext (Hypertext). This is the network of in-person face-to-face contacts of the

attendees of the Association of Computing Machinery (ACM) Hypertext 2009 conference.

In the network, a node represents a conference visitor, and an edge represents a face-to-

face contact that was active for at least 20 seconds [83, 39].

For temporal networks based on real data, the actual time interval between consecutive

graphs in our temporal network, between G(s − 1) and G(s), is given in real units as ∆t.

In some data sets we are able to look at the same data with different real time intervals

between data sets. We provide a summary of the graph statistics in Table 2.1:

Dataset (Abbreviation) Nodes Edges Time Period Resolutions Source
(N) (E) (T ) (∆t)

Turkish Shareholder (Shareholder) 39901 68017 2010,2012,2014,2016 2 years [40]

Wikipedia
Mathematician

(WikiMath) 6049 36315 2013,2017,2018 1 and 4 years [79]

College Message (CollegeMsg) 1899 20296 6 months, 2004 7 days, 1 month [80, 81, 82]

Institution Email (Email) 986 24929 1 year, 1970-1971 8 hours, 7 days,
1 month

[82, 83, 84]

Hypertext (Hypertext) 113 5246 3 days in 2009 40, 60 min [83, 39]

Table 2.1: The detailed information of graph statistics. Nodes and edges columns correspond
to number of nodes or edges in networks, where the edge number is the number of the events
occurred. The number can be different from edge numbers in a networks, since an edge (event)
may occur multiple times.

2.4 Evidence for higher-order interactions

To investigate the effectiveness of three-node interactions, we start by considering a “pairwise

model” whose dynamics is driven only by pair-wise relationships. This will act as null models

when analysing the transition matrix for artificial and real-world networks.
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2.4.1 A benchmark pairwise model

The pairwise model is a stochastic graph model for dynamic networks [208] in which the

evolution of the edge is based on comparison of the evolution of the edge between pairs of nodes,

so a two-node graphlet model. In the pairwise model, moving from one network, G(s−1) to the

next network in the sequence, G(s), any pair of nodes with no existing link gains a link with

probability p otherwise with probability (1−p) the pair of nodes remains unconnected. Similarly,

every existing link e ∈ E(s−1) is removed with probability q otherwise with probability (1− q)

the link remains. The number of links is not preserved in this model. This null model is a

lower order description of the local interactions than our full analysis in terms of triplets. It is

straightforward to write down the form of the transition matrix in our triplet based analysis

when assuming this pairwise model gives a precise description, giving us a two-parameter

transition matrix denoted as T(pw)(s). If we assume that graph evolution follows this pairwise

mechanism, we can estimate values p̂(s) and q̂(s) for the parameters p and q respectively by

looking at how links changed over one time step, i.e., from the edge set E(s − 1) in G(s − 1) to

edge set E(s) of G(s). Formally we have that

q̂(s) = 1 − ∣E(s − 1) ∩ E(s)∣
∣E(s − 1)∣ , (2.6)

p̂(s) = ∣E(s) ∖ (E(s − 1) ∩ E(s)) ∣
N(N − 1)/2 − ∣E(s − 1)∣ . (2.7)

This gives us our pairwise model prediction for the triplet transition matrix T̂(pw)(s), where we

substitute p̂(s) from Eq.(2.7) and q̂(s) from Eq.(2.6) for p and q in T(pw). That is T̂(pw)(s) =

T(pw)(p̂(s), q̂(s)) where

T(pw)(p, q)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1−p)3 3p(1−p)2 3p2(1−p) p3

q(1−p)2 (1−q)(1−p)2 + 2qp(1−p) 2p(1−p)(1−q) + qp2 (1−q)p2

q2(1−p) 2(1−q)q(1−p)+q2p (1−q)2(1−p) + 2qp(1−q) (1−q)2p

q3 3(1−q)q2 3q(1−q)2 (1−q)3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.8)
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2.4.2 Artificial networks

Apart from the pairwise model we introduced in the last section. The second stochastic model is

“edge swap model”, we swap the ends of a pair of edges so edges (u, v) and (w,x) in snapshot

s − 1 are removed and are replaced by edges (u,x) and (w, v) in the next snapshot. This

preserves the degree of every node. For each update from G(s − 1) to G(s) we update 20%

edges.

The final third model is “random walk model”. It is an edge rewiring model but it is based

on higher-order structures as we use random walks to select the new edges. The model starts

with an Erdős-Rényi graph. The initial node for a random walker, say u, is chosen uniformly at

random from the set of nodes. Then one of the edges from u, say the edge to a node y is chosen

uniformly from the set of neighbours. Finally, three non-backtracking steps are made on the

network starting from u and ending at a node x, in which edges are always chosen uniformly

from those available excluding any edge used in the previous step of the random walk. The

existing edge (u, y) is removed and replaced by a new edge (u,x). The final graph is then

created through a projection where nodes are connected if they share a common neighbour,

that is if directed edges from u to v and w to v exists, then the projected graph has an undirected

link between u and w. This rewiring and projection procedure maintains the number of edges

and nodes in the original graph but not in the projected graph.

To produce the time evolution, we rewire 20% of the edges using this rewiring procedure and

then use this new network as the next snapshot. In our context, our random walk model is used

to produce test networks with local correlations between nodes. While motivated by real-world

examples and building on existing experience with the model [40], here it is used as a toy model

to illustrate the approach.

We use these three simple models to generate artificial temporal networks to test our approach.

The results in terms of the transition matrix T̂ derived from the artificial networks are shown

in Figure 2.4. To show the deviation from the our pairwise interaction null model, we look at

the difference ∆T̂(s) between actual results for the average of T̂(s) and those predicted in the
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null model T̂(pw)(s), so

∆T̂(s) = T̂(s) − T̂(pw)(s) . (2.9)

(a) (b) (c)

Figure 2.4: The triplet transition matrix T̂ estimated from the artificial data. The three
columns of heat maps show results for the three different artificial temporal networks created
numerically using the stochastic models: (a) “pairwise model”, (b) “edge swap model”, and
(c) “random walk model”. Each of the six four-by-four heat maps shows values where the rows
represent one initial triplet graphlet mi and the columns representing the final graphlet mj

using our unlabelled graphletM4 set of triplets to make the visualisations manageable. There
are multiple snapshots of networks in each data-set, therefore, we use average to avoid statistical
insignificant event. The top three heat maps show the average value of entries ⟨T̂ij⟩, which are
calculated from all snapshots of temporal network. The bottom row of three heat maps give the
values of the difference matrix ⟨∆T̂⟩ = ⟨T̂(pw)⟩− ⟨T̂⟩, which is average of Eq.(2.9) from multiple
realisations in which the numerical data is compared to the analytical form predicted from the
simple pairwise model. The scales for the colours of the first two heat maps on the bottom row
are much smaller (a factor of twenty or more) than for the results for ⟨∆T̂⟩ = ⟨T̂(pw)⟩−⟨T̂⟩ in the
random walk model shown in the bottom right corner. Any large entries in these lower rows of
heatmaps indicate higher-order effects not present in our simple pairwise model of T̂(pw). Only
the networks formed with random walks show significant higher-order effects.

The behaviour of our simple “pairwise model” should be completely captured by the reference

transition matrix T̂(pw)(s) and, as expected, the numerical results shown in Figure 2.4(a) show

no significant difference between numerical data T̂(s) and theoretical T(pw), that is, ∆T̂(s) is

small.

For Figure 2.4(b), we use the artificial networks generated by the “edge swap model”. While

this involves two pairs of edges, so in principle is a higher-order model, in a sparse graph, the
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four nodes selected by a pair of randomly selected edges are unlikely to be linked by other edges.

So in practice, in terms of the triplet graphlets, this model behaves much like the pairwise model

and shows little difference from that model.

It is only with the networks generated using our three-step random walk that we see significant

differences between the data and the pairwise model. This is to be expected as higher-order

processes were used to create the numerical networks, see Figure 2.4(c).

2.4.3 Quantifying non pairwise interactions

We then apply this framework to analyse some real data sets. For clarity we show results for

our triplet transition matrix Eq.(2.9) when working withM4 and these are shown in Figure 2.5.

These results for real-world systems have significant non-zero entries in our measure ∆T̂(s).

These results for ∆T̂(s) are also very different from each other, reflecting distinct mechanisms

behind the evolution of these systems.

When we look for higher-order interactions, we find clear differences between the triplet tran-

sition matrix T̂ and the simple pairwise reference model of T̂(pw), especially in the Turkish

Shareholder network Figure 2.5(a). For example, compared to the corresponding probability

in the pairwise model, the real probability of any triplet state becoming disconnected in the

next snapshot (i.e., moving from mi → m0, i ∈ {0,1,2,3}, the first column of the transition

matrix) is much less, showing that this subgraph is very stable compared with the pairwise

case in the Turkish Shareholder network. Additionally, the state is much more likely to evolve

to m1 at s + 1 (the second column of the transition matrix), which demonstrates that in many

real networks, the interactions are beyond the pairwise interaction. In the Turkish shareholder

network, most shareholders generally only exist in the market for only one snapshot of network.

And many of them share similar investing behaviours with some financial institutions. Since

financial institutions invest in many companies and their shareholding behaviours are quite

long time, thus, the links between institutions and survivors are much more likely.

In our analysis of real data, we use ∆t to denote the physical time difference between snapshots
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(a) (b) (c) (d)

Figure 2.5: The Triplet transition matrix T̂ evaluated for real world networks. Each column
of heat maps is for a different data set; from left to right we have: (a) Turkish Shareholder
network (∆t = 2yr), p = 3.49×10−2, q = 0.638, (b) Wikipedia Mathematician network (∆t = 1yr),
p = 3.19 × 10−4, q = 0.068, (c) College Message network (∆t = 1mo), p = 0.067, q = 0.510, and
(d) Email network (∆t = 1mo), p = 9.43 × 10−3, q = 0.432. The actual time difference between
snapshots G(s− 1) and G(s) is ∆t. The average values ⟨T̂⟩ from Eq.(2.4) are shown on the top
row while the average of differences from the simple pairwise model, ⟨∆T̂⟩ of Eq. (2.9), are
shown on the bottom row. Each of the four-by-four heat map grids is organised in the same
way as the T̂ matrix shown in Figure 2.2. That is, the rows indicate the initial triplet state (m0

to m3 from top to bottom as indicated) and the columns indicate the final triplet state (m0 to
m3 from left to right as indicated). The values of ⟨T̂⟩ on the top row run from 0 (white) to 1.0
(dark red). For ⟨∆T̂(s)⟩ on the bottom row, values run from dark brown (-0.5) through white
(0.0) to dark blue (+0.5).
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G(s) and G(s + 1). This time interval can be varied when working with the College message

data of Figure 2.5(c) and the Email network of Figure 2.5(d). In these cases we try several

values of ∆t before choosing an appropriate value the the illustrations in Figure 2.5. We are

looking for a value that is not too short (nothing much happens) and not too long (averaging

over uncorrelated changes).

Unsurprisingly, all four real world networks show considerable higher-order effects but there are

interesting differences that reveal the processes behind the evolution are likely to have some

significant differences. The T̂ results are shown in the top row of Figure 2.5. The result for

the Turkish Shareholder network in Figure 2.5(a) and the Email network in Figure 2.5(d) look

very similar. However, when we compare them to our reference model, the pairwise model, we

see large differences, showing that these are very different types of temporal network and using

raw values of T̂ can be misleading.

In fact, the networks which are most similar, once simple pairwise processes are subtracted from

original process. In the Wikipedia Mathematician network Figure 2.5(b) and the Email network

Figure 2.5(d), both processes where an edge is added (upper triangle in the heat map) there is

little difference from the pairwise model. This might be expected for the cases where there is

at most one edge in the triplet. Only the ∆T̂23 entry for the m2 →m3 transition shows a slight

increase over what would be predicted based on the rate of edge addition in these models (the

p parameter of the pairwise model) which suggests triadic closure (m2 →m3) [30, 31, 129, 130]

does play a role here but it is very slight by these measures. On the other hand, there is a

strong sign of “triadic stability”, that is the complete graphlet m3 is much more stable than we

would expect given the rate of edge loss in the pairwise model (the q parameter). It is natural

to think that processes responsible for triadic closure would also slow the rate at which such

triangles break up (m3 → m2) but we do not see this in our result. One interpretation of our

results is that the social processes normally invoked for triadic closure [30, 31, 129, 130] can,

in some cases, be more important in preventing the breakup of triangles than in the creation

of triangles.

In some ways the similarity between the Wikipedia Mathematician network Figure 2.5(b) and
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the Email network Figure 2.5(d) is surprising as we might have expected the greatest similarity

between the two communication networks, the College Message network Figure 2.5(c) and the

Email network Figure 2.5(d) but that is not what we see in our measures. In particular, the

stability of the complete triangle in the college message is exactly as we would expect based

on pairwise measures suggesting different properties in these two communication networks, i.e.,

that many of the college messages are between actors who do not have strong ties.

However, the main message in Figure 2.5 is that in almost any data, we find the evolution has

clear signals of higher-order interactions playing an important role.

2.4.4 Significance test of the pairwise interactions

The significance of the transition of the triplet transition can be quantified by using the z-score

(standard score). The z-score has been used as a qualitative measure of statistical significance

of different motifs [37] or temporal motifs [211]. We apply similar procedures to compute z-

scores for different triplet transitions and for a transition from graphlet mi to graphlet mj we

define

Zij =
⟨T̂ij(s)⟩ − ⟨T̂(pw)

ij (s)⟩
σ
(pw)
ij

. (2.10)

Here σ
(pw)
ij is the standard deviation in the ij-th entry of the transition matrices T̂(pw)(s)

obtained from the simple pairwise model.

To calculate the z-score, we generate an ensemble of R = 1000 realisations of the null model,

the pairwise null model. The number of simulations R needed was found as follows. We start

from R = 100 realisations, increase to 200, 300 and so on. Each time we increase R we compare

the difference in the results to those found with the (R − 100) realisations; if the results of the

transition counting do not change about 0.1% from (R − 100) to R, we assume R is sufficient,

and we stop increasing R. Otherwise, we continue to increase the number of realisations until

the results do not change. The values of p and q used in the calculation of T̂
(pw)
ij (s) are those

inferred from real world networks as described in Figure 2.5. A z-score Zij with absolute value

much bigger than one shows us that the data has behaviour not accounted for in our simple

https://en.wikipedia.org/wiki/Standard_score
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pairwise model. So it quantifies how likely a specific transition from state i to j is derived

from higher-order processes not captured by simple pairwise interactions. The results for Zij

for some of our networks are shown in Figure 2.6.

(a) (b)

(c) (d)

Figure 2.6: Each of the large four squares corresponds to a Z matrix from Eq.(2.10) for
a different data source, labelled as follows: (a) Turkish Shareholder network (∆t = 2yr), (b)
Wikipedia Mathematician (∆t = 1yr), (c) College Message data (∆t = 1mo), and (d) Email
network data (∆t = 1mo). Each large square represents a four by four grid of smaller squares.
The rows (columns) are the triplets at the earlier (later) arranged in order of size from smallest
m0 to largest m3 going top to bottom (left to right). In each, the colour represents Zij on
the scale given on the right of each large square, the top blue digits represent Z-scores, and
the bottom grey digits in brackets gives (N r(m) −Npw)/Npw

, where N
r

gives the number of
triplets in the real data and N

pw
gives the number predicted in the simple pairwise model for

the same sized sample.

2.5 Link prediction

The analysis of our transition matrix of triplets reveals that non-pairwise interaction exists

in network evolution. We now ask if these higher-order interaction patterns are essential for

network evolution. We investigate this question by performing link predictions for dynamic
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networks based on the higher-order information stored in our triplet transition matrices.

2.5.1 Triplet transition score

The idea behind our algorithm is that the formation or removal of links between a node pair

is encoded in our triplet interactions. The likelihood of a link appearing (or disappearing)

between a node pair in a snapshot can be obtained by looking at the triplets containing this

node pair and using the triplet transition matrix to see what that suggests about the evolution

of any edge between our chosen node pair.

To keep our analysis simple we will assume that the interval between snapshots ∆t is about

the same size as the appropriate time scale for changes in the network. If we look at snapshots

covering an extremely short period of time, say one that covers the typical difference in time

between events, then the transition matrix contains too little information. In such a case one

could then look at larger times scales by using T̂(s), T̂(s−1),⋯, T̂(s−n) (for some n) to predict

links in the next network snapshot G(s+ 1). However, we will use the simpler assumption that

working with one snapshot by choosing ∆t appropriately (where we have that choice) captures

the essential information. This implies we have avoided the opposite problem, where ∆t is

too large so the information in the transition matrix is averaging over mostly uncorrelated and

unrelated events which means we have very little signal encoded in our transition matrices.

Our second assumption is that the transition depends only on the state of the system at the

last time step, which means we assume the process is Markovian. In some ways this need not

be completely true. Provided the snapshots G(s− 1) and G(s) are in a similar state to the one

we are trying to predict, G(s + 1), then because we are constructing our transition matrices

based on the similar states, the history of the evolution may well be encoded in this. For

instance, patterns of activity in an email network of a large institution could well change if

there is a major reorganisation with many people changing roles or locations in which case the

history of the system has an impact on the evolution. Put another way, we assume that any

non-Markovian behaviour is happening on much larger time scale than we are studying and so

we can use a Markovian approximation.
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Our link prediction algorithm assigns a score to each node pair. By looking at the distribution

of these scores we can separate them into node pairs with low scores, predicting no link in the

next snapshot, or a high score meaning this node pair will be connected. For a given snapshot

G(s), for each node pair, say (u, v), we look at all (N −2) triplet pairs and count the number of

each triplet falling in each state mi ∈M. Normalising this gives us our node-pair state vector

ψi(u, v; s) as following:

ψi(u, v; s) = 1

N − 2
∑

w∈V∖{u,v}

δ(Ms(u, v,w),mi) . (2.11)

Our estimate for the transition matrix T̂(s), based on G(s− 1) to G(s) evolution, is to be used

to tell us about the evolution of this triplet state distribution ψi(u, v; s) in Eq. (2.11). For

instance we estimate that the probability Lβ that a pair of nodes u, v has an link, β = 1, or no

link, β = 0, in the graph G(s + 1) is given by the projection from predicted ψi(u, v; s):

Lβ(u, v; s + 1) =∑
i,j

ψi(u, v; s) T̂ij(s)P (out)
jβ , (2.12)

where P
(out)
jβ is an entry of projection vector for the triplet evolution and ∑1

β=0P
(out)
jβ = 1.

With the other definition ∑j T̂ij = 1, and ∑iψi(u, v; s) = 1, then we have that Lβ is properly

normalised ∑1
β=0Lβ(u, v) = 1. It is this Lβ in Eq.(2.12) that we use as a score for link prediction.

Take the case of M4 as an example, the projection from triplet distribution onto links uses

P(out) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0

2/3 1/3

1/3 2/3

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.13)

The factors here arise for the state set M4 since the unlabelled graphlets do not distinguish

which links are occupied in the one-link triplet m1 or two-link triplet m2. In m3 states, link

will appears between all three nodes, thus, the projection vector is always equal to one. For

the state set M8 which we use in most of our work, this projection matrix is much simpler
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with entries either 0 or 1. If we choose (u, v) to be the first link, so it is the only link in the

triplet we call n1 in Figure 2.1, then we can use bitwise logical operators to represent P
(out)
jβ as

(j AND 1) XOR β.

2.5.2 Node similarity

We are using link prediction as a way to test that our triplet transition matrices T̂ capture

important higher-order interactions in the evolution of temporal networks. In order to see how

effective our approach is, we need to compare against other methods of link prediction. All

the methods we use are listed in Table 2.2. All these methods can be discussed in terms of

a node similarity score and in this section we will start our examination of these methods by

considering the node similarity scores used in each method. This will allow us to examine the

relationships between these various methods and ask if they capture higher-order interactions

to any extent. The next stage is to turn these similarity scores into a link prediction and we

will look at this step in section 2.5.3.

Abbreviation MethodReference Length Scale Code

AAI Adar-Academic Index [131] 2 nx

CN Common Neighbour [131] 2 nx

EE Edge Existence 1 -

JC Jaccard Coefficient [131] 2 nx

Katz Katz [132] ∞ own

LLHN Local Leicht-Holme-Newman[139] 2 own

LPI Local Path Index [138] 3 own

MFI Matrix Forest Index [140] ∞ own

PA Preferential Attachment [131] 2 nx

RAI Resource Allocating Index [138] 2 nx

TT Triplet Transition ∞ own

Table 2.2: The length scale given indicates the longest path length involved in the method
or equivalently the largest power of the adjacent matrix involved in the method. Under code,
nx indicates that a NetworkX [209] library routine was used, while own indicates the authors’
own code was used. The Edge Existence (EE) approach was not investigated numerically but
was included for the sake of comparison. All these methods, except for the Triplet Transition
method, have a temporal path length of 0. That is they are derived solely from the current
snapshot, G(s), when making a prediction for links in the next snapshot G(s + 1). The Triplet
Transition method has a temporal path length of 1 as it uses G(s − 1) and G(s) to predict
G(s + 1).
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The various link prediction methods can be categorised based on the type of information used

to make a prediction about each node pair. Those methods which use only local interactions

probing a fixed distance from the node pair, and those global methods which use nodes arbi-

trarily far from the node pair of interest. This is indicated by the length scale of methods in

Table 2.2 and will be clear from the power of the adjacency matrix A appearing in the similarity

scores defined in this section.

One other point can be made. In terms of the temporal network, none of these existing similarity

scores, none of the these link prediction methods from the literature, use more than one temporal

snapshot G(s). So one standout feature of our method is the use of two temporal snapshots,

G(s−1) and G(s). The evolution of a triplet from one snapshot to another records, in an indirect

way, the effects of other nodes beyond the triplet of interest as illustrated in Figure 2.7. This

is why our method is listed as probing long length scales in Table 2.2.

A

B

C

A

B

C

(s-1) (s)

Figure 2.7: An illustration of how information on long range paths between nodes plays a role in
our Triplet Transition method. This shows the evolution of one m1 triplet in snapshot G(s−1)
to become an m2 triplet in the next snapshot. The triplet nodes are shown as solid blue circles
connected by solid black edges. The network outside the triplet is shown with nodes as open
circles connected by edges shown as dashed lines. It is the network outside the triplet which
provides a long distance connection between triplet nodes A and C. Within the original ABC
triplet in snapshot G(s − 1), C appears disconnected. By using two snapshots, our transition
matrix includes the effects of such long-range links and so this approach can explain why the
edge (A,C) might appear more often than otherwise expected from the triplet subgraph alone.

In the following s(u, v) is a (similarity) score assigned to a pair of vertices u, v ∈ V where N (u)

is the set of neighbours of vertex u, i.e. N (u) = {w∣(u,w) ∈ E}. The similarity scores are then

used to decide if an edge should exist between u and v and that will be used in turn to make the

link prediction for the next snapshot in time according to the rank of scores. We will assume

a simple graph in these discussions.
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The simplest node similarity measure is the Edge Existence (EE) index sEE(u, v). After all,

if there is already an edge between two vertices u and v this is a good indication of a close

relationship between these nodes, and vice versa. We define Edge Existence index to be

sEE(u, v) =∑
e∈E

δe,(u,v) = Auv . (2.14)

Every edge between u and v adds one to this index so, for a simple graph, this is the corre-

sponding entry of the adjacency matrix, Auv. This is the simplest edge prediction method in

that it predicts no changes at all so it is not very useful and we do not use it in our work.

However, we will see this score contributes to some of the other, more sophisticated methods,

so it is useful to define this score. The Edge Existence score records no higher-order effects,

there is a path of length at most one between the nodes.

While not very useful, this Edge Existence (EE) index could produce some very good statistics.

For instance, if very few edges are changing in each time interval, then this method would

predict the behaviour of the vast majority of edges as most remain unchanged. It would only

do badly if we used statistics that specifically measured the success of node pairs changing their

connectedness from one time step to the next. A good example of when the Edge Existence

method would appear to be successful is when we break up the data into small steps in time

where few edges change. However we would learn little of interest in this case.

The Common Neighbours (CN) method [131, 132, 133] simply scores the relationship between

two nodes based on the the number of neighbours they have in common

sCN(u, v) = ∑
w∈V

AuwAvw = ∣N (u) ∩N (v)∣ . (2.15)

This will tend to give large scores if u and/or v have high degrees.

One way to compensate for the expected dependence of sCN on the degree of the nodes is

to normalise by the total number of unique neighbours. This gives us the Jaccard Coefficient

(JC) [131, 133] method based on the well known similarity measure [134] in which the likelihood

that two nodes are linked is equal to the number of neighbours they have in common relative
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to the total number of unique neighbours.

sJC(u, v) =
∣N (u) ∩N (v)∣
∣N (u) ∪N (v)∣ . (2.16)

The Preferential Attachment (PA) method for link prediction [131, 133] is based on the idea

that the probability of a link between two vertices is related to the product of their degrees of

the two vertices

sPA(u, v) = ∣N (u)∣ ⋅ ∣N (v)∣ = ku ⋅ kv . (2.17)

This is proportional to the number of common neighbours expected in the Configuration model

[135] as has been used in the context of collaboration (bipartite) graphs [131, 136, 137].

The Resource Allocating Index (RAI) [138] method and the Adamic-Adar Index (AAI) [131,

133] method are both based on the idea that if two vertices u and v share some “features” f

that is very common in the whole network then that common feature is not a strong indicator

that the two vertices should be linked. The converse is true if the common feature is rare,

that is a good indicator that the vertices u and v should be linked. So in general if W (x) is a

monotonically decreasing function of x we can use this on the frequency n(f) of the occurrence

of feature f to give a generic similarity function of the form sW(u, v) = ∑f∈u,vW (n(f)). In our

case, we will not assume any meta-data exists, but we will look for methods that use features

which are based purely upon the topology of the network.

In the Resource Allocating Index [138], the inverse of the degree of the neighbour is used as the

weighting function, so W (n(f)) ≡ 1/∣N (w)∣ giving

sRAI(u, v) = ∑
w∈N (u)∩N (v)

1

∣N (w)∣ =∑w
1

kw
. (2.18)

Note that this means that the contribution from any one node w to the total of all scores

SRAI(w) = ∑u,v sRAI(u, v) is half of the degree of w minus one, (∣N (w)∣ − 1)/2. Thus the

Resource Allocating Index still gives high degree nodes more weight.

On the other hand, the Adamic-Adar Index [131, 133] uses the inverse logarithm of the degree
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to weight the contribution of each common neighbour to the score, W (n(f)) ≡ 1/ ln(∣N (w)∣).

That is

sAAI(u, v) = ∑
w∈N (u)∩N (v)

1

ln(∣N (w)∣) . (2.19)

All the indices mentioned above have been based either on the degree of the two nodes of interest

sEE or on the properties of u, v and their common nearest neighbours w ∈ N (u) ∩N (v). This

involves paths between the two nodes u and v of length two or less. The next logical step is to

include paths of length three and the Local Path Index (LPI) sLPI [132, 138] is an example of

this where

sLPI(u, v) = [A2 + βA3]uv

= sCN(u, v) + β[A3]uv .
(2.20)

Here β is a real parameter where β = 0 reproduces the Common Neighbours score of Eq.(2.15).

The βA3 term is counting the number of walks of length three that start at u and end at v.

If there is already an edge between u and v then [A3]uv includes backtracking paths such as

the sequence u,w,u, v. This means the second term also includes a term equal to Auv(∣N (u)∣+

∣N (v)∣), i.e. there is a contribution from the Edge Existence similarity sEE(u, v) Eq.(2.14) in

this method.

The Katz Index [131, 132, 133] (Katz) counts the number of paths between each pair of vertices,

where each path of length ` contributes a factor of β` to the score. The score is simply the

appropriate entry of the matrix [I − βA]−1,

sKatz(u, v) = ([I − βA]−1)uv , (2.21)

where β is positive but must be less than the largest eigenvalue of the adjacency A. Note for

low β and for a simple graph we have that

sKatz(u, v) = βAuv + β2∑
w

AuwAwv + β3∑
w,x

AuwAwxAxv +O(β4)

= βsEE(u, v) + β2sLPI(u, v) +O(β4).
(2.22)
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The Local Leicht-Holme-Newman Index [57] (LLHN) is based on the vertex similarity index

of [139], but while this gives a specific motivation for the form, it is in the end just a specific

rescaling of the Katz index (2.21), namely

sLLHN(u, v) =
sKatz(u, v)
sPA(u, v)

= sKatz(u, v)
∣N (u)∣ ∣N (v)∣

= D−1 (I − βA)−1
D−1.

(2.23)

where D is a diagonal matrix whose entries are equal to the degrees of the nodes, Duv =

δu,v ∣N (u)∣. The motivation for using this normalisation is that ∣N (u)∣ ⋅ ∣N (v)∣ is proportional

to the number of neighbours expected in the configuration model. So the Local Leicht-Holme-

Newman Index is the Katz score relative to the Katz score expected for the same pair of nodes

in the configuration model.

The Matrix Forest Index [140] (MFI) is defined as:

sMFI(u, v) = [(I + L)−1]uv , (2.24)

where L = D−A is the Laplacian. One way to understand the Matrix Forest Index is to consider

the diffusion process described by a Laplacian. If we were to demand that at time t+1 we only

had particles at one site u, then sMFI(u, v) tells us how many of those particles were at vertex

v at the previous time step t.

2.5.3 From node similarity to link prediction

All the link prediction methods used in this Chapter, see Table 2.2, assign a similarity score

between pairs of nodes. To turn this into a link prediction, the basic conjecture is that the

higher the similarity between a pair of nodes, the more likely we are to find a link between

these two nodes.

All methods, therefore, require a precise method to turn the scores into predictions, essentially
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to define what is meant by a “high” or a “low” score by introducing a classification threshold.

Often this is done very simply by ranking the scores and using a fixed number of the most highly

ranked node pairs to predict a link. This method is typically used only for link addition in

which one is only trying to predict when an unlinked node pair gains a link, that is, Auv(s) = 0

to Auv(s + 1) = 1 process.

We are interested in the most general predictions, looking at all four possible changes for node

pairs from one snapshot in time to the next, that is, all the four possible Auv(s) = 0,1 to

Auv(s + 1) = 0,1 processes. This is link evolution rather than link addition. In order to make

these more general predictions for any method, we use k-means clustering methods to separate

the prediction scores produced by each method into two classes: A high score group and a low

score group of node pairs. Any node pair with a score in the high scoring group will be predicted

to have a link in the next snapshot; node pairs in the low scoring group will be predicted to

have no link.

To show how this works, we give some examples of how the score from our triplet transition

method produces a natural split into low and high scores which is easily discovered by an au-

tomated clustering method such as k-means, as seen in the first-row of Figure 2.8. In our final

results below for our link prediction algorithm, we use M8 and the clear separation of node

similarity scores into a low and high group is shown in the second row of Figure 2.8. For com-

parison we also show the results for our method using the less sensitive M4. In practice, both

seem to separate low and high scoring node pairs well but we get a slightly clearer separation

in some cases when using M8.

We can look at how the other nine link prediction methods perform in terms of identifying

two clear groups of low- and high-scoring node pairs. What is surprising is that most of the

algorithms fail to do this well, or in some cases at all. An example of a poor separation, the

Jaccard Coefficient method, is shown in Figure 2.9. The one exception is the Katz method,

also shown in Figure 2.9, which works well in three of the four data sets. Given this is one of

the methods probing large distances in the network, this would seem to support the idea that

higher-order interactions are important in link prediction. Since our triplet transition method
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(a.1) (b.1) (c.1) (d.1)

(a.2) (b.2) (c.2) (d.2)

Figure 2.8: The histogram of node similarity scores in our triplet transition (TT) method for
(a) Turkish Shareholder network, (b) Wikipedia Mathematician network, (c) College Message
network, and (d) Email network. The precise values are not important as the important feature
is the clear separation of the node similarity scores into two groups. One cluster c0 appears to
have a ‘low’ probability that a link will exist in the next snapshot and the other cluster has
‘high’ probability. We therefore predict that if the node pair has a score in the lower score
cluster c0, then a link will not exist in the next snapshot. Conversely, if a node pair exists in
the higher score cluster c1, then we predict a link will exist between this node pair in the next
snapshot. The first row, where the histogram is plotted in blue is the clustering results forM4

while the second row, where the histogram is plotted in green is the clustering results for M8.
It shows that M8 has higher separation between two clusters than M4. The results for each
network are based on samples which contain at least 2000 node-pairs with an initial link and
at least 2000 more node-pairs which started without a link.

splits the node similarity scores so well, any unsupervised clustering method should be able to

split the node pairs into a low scoring cluster and a high scoring cluster. As the problem is

in one dimension a version of k-means clustering is sufficient and this will always assign our

node pairs to either a low or to a high score even if a method does not have a clear threshold

visually. The objective function of our clustering is J where

J(sth) = ∑
(u,v)

[θ(sth − s(u, v)) ⋅ ∣s(u, v) − µ−∣ + θ(s(u, v) − sth) ⋅ ∣s(u, v) − µ+∣ ] , (2.25)

where θ is the Heaviside step function. The sum over (u, v) is over all distinct nodes pairs (so
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Turkish Shareholder Wikipedia Mathematician College Message Institutional Email

Figure 2.9: The histogram of node similarity scores using Jaccard Coefficient (JC) & Katz
methods on four real data sets. Each column is for one data set which are, from left to right:
Turkish Shareholder network, Wikipedia Mathematician network, College Message network,
and Email network. The first row is the similarity score used in Jaccard Coefficient method
and the second is for the Katz method. The precise values are not important here as the key
feature is the success or failure to identify two clear groups of low- and high-scoring node pairs.
We under-sampled 1000 linked node pairs and 1000 non-connected node pairs [141]. Only the
Katz method (bottom row) shows the necessary clustering of scores needed for link prediction,
except for Turkish shareholder network.

(u, v) ∈ V2∣u ≠ v). The µ+ (µ−) is the average similarity score of node pairs in the high score

(low score) cluster. The problem is reduced to finding the threshold value sth that minimises

J .

2.5.4 Evaluation metrics

To evaluate the performance of our Triplet Transition and the other link prediction methods,

we use a variety of standard metrics.The simplest metric we use is the fraction of edges that

are removed from snapshot s to the next snapshot s + 1. We denote this by fE(s),

fE(s) = 1 − ∣E(s + 1) ∩ E(s)∣
∣E(s)∣ , (2.26)
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where E(s) is the link set of the network in snapshot s.

We also use more traditional metrics such as precision and area under the curve for which

we need a binary classification. Thinking of snapshot G(s) as the current state while we

are trying to predict the state in the next snapshot G(s + 1), we consider four transitions

(Auv(s)→ Auv(s+ 1)) of node pairs: 0→ 0, 0→ 1, 1→ 0, and 1→ 1. We map these states onto

a binary set of states, namely Auv(s + 1), so what we call a positive result (negative result) is

where a link is present (is not present) in snapshot s+1 regardless of the state that pair started

in. We then consider whether the prediction for the state of the node pair in snapshot s+1 was

true or false. So a false positive is where we predict a link for a node pair when that pair did

end up with no link, while a true negative is where we correctly predict a pair of nodes will not

be connected in the next snapshot. The table of predicted classes and actual classes is shown

in Table 2.3. With this traditional binary classification, we can then evaluate the performance

Actual Classes
Auv(s + 1) = 1 Auv(s + 1) = 0

Predicted Classes
Auv(s + 1) = 1 True positive ( 01+,11+) False positive ( 01−,11−)
Auv(s + 1) = 0 False negative ( 00−,10−) True negative ( 00+,10+)

Table 2.3: The Confusion matrix for the prediction of edges between nodes u and v in the next
snapshot, G(s+1). The adjacency matrix at snapshot s in the temporal network is A(s). Each
of the four outcomes comes from two situations as this confusion matrix does not consider the
state of the edge in snapshot G(s). The two states are shown for each of outcome in brackets
with the notation that αβ± shows the value of Auv(s) as α, the predicted Auv(s+ 1) as β, and
a + symbol (a − symbol) indicates that the prediction made was correct (incorrect).

of our Triplet Transition method using standard metrics — area under curve and precision. To

express these, we define Nαβ± to be the number of node pairs satisfying the following criteria.

The node pair starts in snapshot G(s) in state α equal to 1 if the node pair is connected by an

edge, 0 otherwise. This edge pair is then in state β in snapshot G(s+ 1) with β is 1 if the node

pair is connected by an edge in snapshot G(s+1), and is 0 otherwise. Finally the sign indicates

if the prediction made for that node pair in G(s + 1) was correct (true, +) or incorrect (false,

−).

We can evaluate the methods independent of the classification threshold chosen through k-

means by using the area under the curve (AUC) where the curve is the receiver operating
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characteristic curve. For any binary classifier of the results of an algorithm, such as defined

here in Table 2.3, the curve plotted is the fraction of positive results (TPR, true positive rate)

which are correct against the fraction of negative results which are incorrect (FPR, false positive

rate) as the threshold sth is varied:

TPR = N11+ +N01+

N11+ +N01+ +N00− +N10−

, FPR = N01− +N11−

N01− +N11− +N00+ +N10+

. (2.27)

Once the threshold sth has been fixed, in our case using k-means in Eq.(2.25), the precision

score Sprec is defined as the number of times that we predict a link exists between node pairs

in the later snapshot correctly (a true positive, N11++N01+) divided by the number of times we

predict a link, correctly (true positive) or incorrectly (false positive, N11− +N01−):

Sprec =
N11+ +N01+

N11+ +N01+ +N11− +N01−

. (2.28)

A high precision score means we can trust that links predicted by the algorithm will exist.

We can set a baseline value for precision using a simple model which predicts a link in snapshot

G(s + 1) exists for any given node pair with a probability given by the fraction of node pairs

which have an link in snapshot G(s), that is the density ρ(s). In this case, the precision (see

Eq.(2.28)) is simply equal to the density in snapshot G(s), Sprec,base = ρ(s).

A very low precision score for baseline method indicates that the links existing between node

pairs are not random. Some of the local measurement algorithms give lower scores than the

baseline, suggesting that those types of local information are less likely to drive the evolution

of the networks.

2.5.5 Edge sampling

We use the whole network to evaluate the performance, which is different from the sampling

method used in Figure 2.8 to take account of the full nature of the data. In the following

analysis, we predict the node pairs for all the possible node pairs of a whole network. We
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expect predictions can capture evolving characteristics of networks and the Mathematician

network change tiny fractions which are not sufficient enough to evaluate the predictions. For

example, the algorithm can predict edges stay in the next snapshot of the network will attain at

least 99% accuracy. Therefore, we replace the Mathematician network with Hypertext network

in the following prediction analysis. Time data is sampled over different time intervals ∆t. For

Turkish Shareholder network, the smallest time separation is 2 years, and we consider four or

more years too long for the evolution, since the shareholders on average quit market after 2

years; for the Hypertext data, which records the short communications, we choose ∆t as 40 and

60 minutes; for the College Message and Email network, we consider that 8 hour to 1 month

communication frequency is reasonable.

2.6 Results

Figure 2.10 shows a comparison of AUC for the ten algorithms when we apply them to node

pairs sampled uniformly at random from all possible node pairs.
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Figure 2.10: The area under the curve (AUC) results for four temporal networks constructed
from real data sets: (a) Turkish Shareholder network, (b) Hypertext network, (c) College
Message network, (d) Email network. The results compare ten different methods of Table 2.2
including our TT algorithm denoted by the ‘triangle’ symbol. For networks (b),(c) and (d), we
show the results for different time scales (windows). See Table 2.2 for abbreviations used in
indicate link prediction methods.

The Triplet Transition (TT) approach defined here is the left-most triangular point in each fig-

ure. In the Hypertext network (b) and the College Message network (c), the Triplet Transition

method has the highest AUC though the PA, Katz, MFI and LPI algorithms perform almost
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as well (see Table 2.2 for abbreviations). For the Turkish Shareholder network (a) the AUC of

our Triplet Transition method is again the highest though with a similar AUC value for various

algorithms. Note that PA, Katz, and MFI are now weaker. Only for the Email network (d) is

our Triplet Transition outperformed, in this case by the Katz, MFI and LPI algorithms.

Type
Algorithm Shareholder Hypertext CollegeMsg Email Avg.
(Time scale) (2 years) (1 h) (1 mon) (1 mon) Rank

[fE(s)] [0.63] [0.52] [0.93] [0.50]

Global

Triplet Transition 0.71 1 0.72 (7) 1 0.77 (6) 1 0.80 (2) 4 1.8
Katz (β = 0.01) 0.65 8 0.71 (10) 1 0.69 (8) 2 0.88 (2) 1 3.0
Matrix Forest Index 0.65 8 0.71 (9) 1 0.69 (8) 2 0.88 (2) 1 3.0
Local Path Index 0.69 7 0.69 (9) 5 0.69 (6) 2 0.88 (2) 1 3.8

Local

Resource Allocating Index 0.71 1 0.63 (8) 6 0.58 (3) 6 0.78 (2) 5 4.5
Adar-Academic Index 0.71 1 0.63 (8) 6 0.58 (3) 6 0.78 (2) 5 4.5
Common Neighbour 0.71 1 0.63 (8) 6 0.58 (3) 6 0.77 (2) 8 5.3
Jaccard Coefficient 0.71 1 0.62 (8) 9 0.58 (2) 6 0.77 (2) 8 6.0
Preferential Attachment 0.63 10 0.70 (7) 4 0.69 (6) 2 0.78 (1) 5 5.3
Local Leicht-Holme-Newman 0.70 6 0.62 (7) 9 0.57 (2) 10 0.77 (2) 8 8.3
Baseline 0.5 11 0.5 11 0.5 11 0.5 11 11.0

Table 2.4: Summary of AUC-ROC performance of different algorithms. ∆t is taken by selecting
the highest AUC-ROC. The AUC scores for each network are in the left-hand column, the rank
of the score in the right-hand column. The errors quoted on the AUC scores are standard
deviations from all the computed network snapshots of the selected time scale except for Turkish
Shareholder network where only one prediction is made. We highlight the highest result and
any whose result is within the error quoted on the largest result. The baseline method for AUC
is the random clustering of node pairs into two groups, and the AUC is 0.5 which means it is
like ‘tossing a coin’. The Type column indicates if the link prediction method probes only local
scales (path length two) or global scales (infinte path lengths)

Figure 2.11 shows that there are some clear patterns in our results for precision. First, each

link prediction method has a similar performance relative to the other methods on three of the

networks: the Hypertext network (b), the College Message network (c), and the Email network

(d). On these three data sets, three algorithms are consistently better than the others though

with similar performances relative to one another: our Triplet Transition (TT) method, the

Katz method [131, 132, 133], and the Matrix Forest Index [140] (MFI) method. All of these

are probing non-local information in the networks, suggesting this is necessary to understand

the time evolution of these networks.

Overall we see some similarity in these AUC results, summarised in Table 2.4 as we saw for

precision in Table 2.5. The same three algorithms, the Triplet Transition (TT) methods,

the Katz method, and the MFI method, have a similar high performance on the same three
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Figure 2.11: Precision scores for the link prediction results for ten algorithms applied to four
temporal networks constructed from real data sets: (a) Turkish Shareholder network, (b) Hyper-
text network, (c) College Message network, (d) Email network. Results for the Triad Transition
algorithm based on transition matrix denoted by the triangle symbol △. For the networks in
(b), (c) and (d), we also show the results for different time scales (window). See Table 2.2 for
abbreviations used in indicate link prediction methods.

Type
Algorithm Shareholder Hypertext CollegeMsg Email Avg.
(Time scale) (2 years) (1h) (1 mon) (1 mon) Rank

[fE(s)] [0.63] [0.52] [0.93] [0.50]

Global

Triplet Transition 0.27 5 0.19 (9) 2 0.11 (4) 2 0.47 (6) 1 2.5
Katz (β = 0.01) 0.25 8 0.22 (8) 1 0.11 (4) 2 0.47 (6) 1 3.0
Matrix Forest Index 0.19 9 0.19 (9) 2 0.12 (3) 1 0.4 (5) 3 3.8
Local Path Index 0.36 1 0.09 (4) 5 0.009 (2) 7 0.08 (3) 7 5.0

Local

Resource Allocating Index 0.28 4 0.10 (6) 4 0.019 (4) 5.0 0.18 (7) 4 4.3
Adar-Academic Index 0.33 2 0.09 (5) 5 0.008 (2) 8 0.13 (5) 5 5.0
Common Neighbour 0.31 3 0.09 (5) 5 0.008 (2) 8 0.08 (1) 7 5.8
Jaccard Coefficient 0.25 7 0.08 (6) 8 0.0010 (9) 10 0.10 (4) 6.0 7.8
Preferential Attachment 0.27 6 0.07 (6) 9 0.03 (1) 4 0.059 (6) 9 7.0
Local Leicht-Holme-Newman 0.09 10 0.06 (5) 11 0.0001 (2) 11 0.03 (1) 10 10.5
Baseline 0.0001 11 0.067 10 0.010 6 0.014 11 9.5

Table 2.5: Summary of average precision scores of different algorithms. ∆t is taken by selecting
the highest precision based on k-means clustering. The precision score for each network are in
the left-hand column, the rank of the score in the right-hand column. The errors quoted are
standard deviations from all the computed network snapshots of the selected time scale, except
for Turkish Shareholder network which have one prediction for three snapshots.

networks, the Hypertext network, the College Message network and the Email network. For

these three networks, we might also pick out the Preferential Attachment (PA) algorithm.

However, now the AUC values for the Turkish Shareholder network show that our Triplet

Transition method continues to perform well, unlike for the precision measurements. The Katz,

Matrix Forest Index and Preferential Attachment methods are, though, in a weaker group of

algorithms as measured by their AUC performance on Turkish Shareholder network.

For three of these networks, we also measure AUC over snapshots of these networks defined

over different time scales. The comparison among methods rarely changes. However, the
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performance of most algorithms is altered by the size of the time window chosen in some cases,

reflecting inherent timescales in the different systems. The most noticeable is that for the Email

network, there is a large difference between windows of eight hours and one week but not so

much change between a week and one month. The gaps may suggest that if a person is going

to produce an email, perhaps following up an email request of bringing a third person into the

conversation, that new email is done often on the scale of a few days not always on the scale

of a few hours.

The Triplet Transition proposed here is used to predict a link between two nodes by considering

these alongside a third node which can be in any position in the network. In this way, this third

node not only captures the higher-order interactions but also enables the method to encode both

local and non-local information about the link of interest. We find that our Triplet Transition

method and the two other global methods used here, Katz Index method [131, 132, 133] and the

Matrix Forest Index [140] are generally the best for most of networks we studied, in particular

for the Hypertext network, the College Message network and the Email network. As the

most successful methods here perform better than other approaches based on local measures,

this shows that in most systems the pattern of connections depends on the broader structure

of interactions. This dependence of the behaviour of systems on structure beyond nearest

neighbours is the crucial motivation for using the language of networks rather than just looking

at the statistics of pairs [210]. For instance, the Katz method counts the number of paths

between each pair of nodes, probing all paths though giving less weight to longer paths, so

nearest neighbours contribute the most.

The results for theTurkish Shareholder network were a little different. In this case, predictions

based on local measurements (paths of length two), the semi-local Local Path Index method

(LPI), as well as our non-local triplet transition method outperformed the other global methods

in terms of AUC, see Table 2.4. The global methods also perform poorly on precision, see

Table 2.5. An algorithm with low precision and high AUC, such as Jaccard Coefficient (JC),

is predicting the disconnected pairs well.
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2.7 Discussion and conclusion

In this chapter, we demonstrated that higher-order interactions are needed to understand the

evolution of networks. For example, in the Email network, derived from the emails within an

EU Institution, if three nodes are connected in the previous temporal snapshot, they are less

likely to be disconnected in the following snapshot.

To take into consideration of the interactions of neighbours, we designed a link prediction

algorithm, Triplet Transition (TT) method, based on the transition matrix T of Eq. (2.2).

From a range of different temporal networks, we found Triplet Transition method was as good

as two methods based on non-local (global) information in the network, namely, the Katz Index

method [131, 132, 133] and the Matrix Forest Index (MFI) method [140]. While not always

the best on every network or every measure, these three global methods were usually better

than the other methods we studied, all of which used information on paths of length two in

the network. Intriguingly, the one other method that used paths of length three, Local Path

Index [132, 138] (LPI), often performed well too though rarely as well as the top three global

methods.

Since the most successful methods in our tests were those that access non-local information,

it seems that such information is essential in the evolution of most networks and therefore, it

is important to include this in network measures. However, including information from the

whole network is numerically intensive and, for any reasonably sized network, the evolution

of a link is unlikely to depend directly on what is happening a long way from that link. One

reason why our Transition Triplet method works well is that the triplet transition mechanism

appears in the vast majority of networks. Most of the information in the transition matrix

network is based on neighbours of one or other of the link of interest. For large networks, we

use sampling to add the necessary global information into the transition matrices. The Katz

index method does include information from all scales but suppresses contributions from more

distant parts of the network. The success of the transition triplet approach suggests that there

is no need to access all of the global information of a network in order to know what is going on

locally. Notably, the overall better performance of the Triplet Transition method reveals that
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the information of different higher-order interaction patterns can help understand and predict

different dynamics of networks.

There is also another reason why our Triplet Transition method may work better than the local

methods we look at, and that is because our method is also probing a longer time scale as well

as a longer spatial scale. That is we use two snapshots, G(s−1) and G(s) in order to create the

transition matrix T which in turn we use for the predictions in snapshot G(s+1). All the other

methods used here are based on information from one snapshot G(s) only. So again, the success

of the Triplet Transition method points to correlations over short but non-trivial time scales

as being important in understanding network evolution. In our case, the dependence of results

on the time intervals can be seen in the effect of ∆t used to define the transition matrices are

important. For different data sets, we found different ∆t gave optimal results which of course

reflects inherently different timescales in the processes encoded by our different data sets. So

another conclusion is that higher order effects in terms of both time and space are needed to

understand the evolution of temporal networks and to make effective predictions for links. The

inclusion of higher-order order effects in terms of time remains undeveloped relative to the work

on higher-order spatial network features.

In our approach we have focused on changes in the edges and ignored changes in the set

of nodes. Our method can include nodes which are not connected in some or even all our

snapshots provided these nodes are known. However, in many cases the data sets may only

record interactions, our edges, and our set of nodes is only inferred from that. As a result

we often have no information about such (totally isolated) nodes. Suppose we are given a

list of emails, our edges, sent at a given time between email accounts, our nodes. We cannot

distinguish accounts which are dormant from those that are deleted or added to the system

without additional information. Should we have such data on node birth and death, then in

some cases it might be an important process to include, but it is not one we address in our

approach.

Currently constructing optimal higher order models is a timely-topic [28]. Our method can be

generalised to include even higher-order interactions, such as quadruplet and so on. The method
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can be used to indicate higher-order evolutionary mechanisms in a network and suggest what is

the most likely order of interaction. Our work shows that studying the evolution of small graphs

over short time periods can reveal important information and predictions regarding network

evolution.

2.8 Summary

In this chapter, we can summarize the content as follows:

• designed a transition matrix that measures Markovian evolution of triplets (three-nodes

motifs) based on two snapshots of networks

• designed a benchmark pairwise model to detect the higher-order interactions and illus-

trated existence of higher-order interactions in both artificial networks with known mech-

anism and real world networks

• calculated a score based on Markovian triplet transition that can be used to predict link

evolution in temporal networks

• compared our methods with nine methods in four real-world data sets. Our method is

always one of the best algorithms in terms of AUC-ROC and precision, which shows a

strong evidence that the evolution of the temporal network is indeed based on three nodes

configurations.

• discussed the advantage and disadvantage of our method, with potential future work
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3.1 Introduction

Along with rapid urbanisation, we encounter many challenges including environmental degra-

dation, traffic congestion, air pollution and greenhouse gas emission. Developing a greener

and more sustainable transportation system is critical for future urban development to miti-

gate the aforementioned urban issues induced by rapid urbanisation, among which bike-sharing

systems would play an important role. In recent years, with a booming of the sharing econ-

omy [142, 143], and development of “Internet of Things”(IoT) and mobile payment technology,

dockless bike-sharing systems (including brands, such as Mobike and OFO) have been quite

76
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popular, especially in China [144]. Compared to docked station-based sharing bikes (i.e., a bike

has to be returned to a dock at certain fixed established sites), dockless ones are free from such

restrictions and give better accessibility and more flexibility to users. Basically, you can park

and “return” a dockless bike anywhere suitable for a bike near your destination. Yet there are

many challenges on maintaining the system efficient and controlling the cost, which strongly

depends on a better understanding of patterns of human mobility on biking behaviours.

The dockless bike-sharing platform would record the departure and arrival location as well as

the start and end timestamp of each order for billing purposes. In addition, different from

the station-based bike-sharing system where origins and destinations of trips are fixed, and the

number of available docks for parking bikes is also fixed and usually quite limited, dockless ones

are free from such restrictions and thus provide us a unique opportunity to investigate a more

spatially and quantitatively accurate and realistic biking patterns within cities. The origin and

destination locations can be quite accurate, and the flow between locations suffers much less

from under-supply and can be much closer to the real demand, since the number of deployed

dockless bikes are usually quite abundant or even excessive, especially in large Chinese cities

[145].

As for predicting various types of human movements, the gravity model has been a widely

applied framework with a simple form. It dates back to the early 1780s [146], and was first

suggested for use in human interaction systems by Carey in 1860s [147]. Its contemporary

form, which was proportional to populations of the origin and destination locations and the

inverse of the distance between them, is introduced by Zipf in 1940s [149]. Yet to our best

knowledge, there’s no work testing whether the gravity model on biking traffic holds or not

within cities[148], let alone newly emerged dockless sharing bikes. Most of the previous works

are about human movements on highway [149, 150], railway [149], airline [149, 151], or telecom-

munication flows [152, 153, 154], cargo shipping [155], migration [156, 157, 158], bilateral trade

[159], even scientific citation and collaboration [160], etc. Generally speaking, validating the

gravity model is important for predicting human mobility and making better urban planning

and design [161, 162, 163, 164], which are crucial for traffic engineering [165, 166, 167, 168],

predicting epidemic spreading [151, 169, 170, 171, 172], emergency management [173, 174]. In



78 Chapter 3. Modelling the spatial dynamics of dockless bicycles using gravity model

addition, in conventional studies on the gravity model, a location usually refers to a large re-

gion, such as a nation, a county with a fixed boundary or a city i.e., the spatial scale in most

works are at international [151, 155, 159, 160], inter-county level [152, 153, 151, 169, 176] or

inter-city [149, 150, 151, 175]; in comparison, fewer works are at intra-city level, such as at

inter-ward level in UK [177], inter-dong level in the subway system in Seoul [178], or even at

a finer spatial resolution [179, 180, 181]. Moreover, the effects of spatial scale of locations on

gravity model is not systematically studied.

In this chapter, we first investigate the spatial distribution of riding activities, and find their

cumulative distribution from the city centre to suburbs are in line with the spatial scaling

theory [182] in both Beijing and Shanghai. The volume of biking traffic between locations (at

a fine spatial resolution, e.g., a location might refer to a region of 500 m×500 m) manifest a

power-law with a similar magnitude of the power-law exponent in Beijing and Shanghai. We

observe that general gravity models with two population related parameters (no matter with

distance in spatial domain or dimensionless distance in topological space) on biking traffic holds

across different spatial resolutions, ranging from 500 m × 500 m to 5 km × 5 km, and discover

that with the increase of spatial scale, the accuracy of the gravity model improves as indicated

by a higher coefficient of determinant, R2 (see more details in Eq.(3.4)). Our findings indi-

cate that the gravity model can be applied to model biking behaviour at a quite fine spatial

resolution. Besides, we also reveal that the distance related parameter increases in a similar

way as population related parameters. This indicates that there might be a deeper relation-

ship between the population and distance, which would require further studies. In comparison,

conventional gravity models, where the population related parameters are all assumed to be 1,

don’t hold well especially at finer spatial scales in our project, which further confirms that the

effects of population and spatial scale are nontrivial. Furthermore, we investigate the features

and patterns of some special locations (sources and sinks) that can not be fully explained by

the gravity model but are crucial for better operation of biking systems and enhancing the user

experience.
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3.2 Data set description

The datasets on the dockless bike-sharing system are obtained from Mobike, Inc., which was

the first and largest dockless bike-sharing platform in China. The company was registered in

Beijing in 2015, and its service was first launched on April 22nd, 2016 in Shanghai. We have

two separate datasets for Shanghai and Beijing, respectively. The dataset for Shanghai has

1.02 million bill records of more than 17 thousand “users” (also referred as “riders” thereafter)

and 0.3 million dockless shared bikes over a whole month (from Aug. 1st to Sep. 1st, 2016 –

roughly 3 months after its service first got online). In Beijing, there are more than 3.2 million

records, detailing the riding behaviours of 0.35 million users and 0.485 million dockless shared

bikes over two weeks (from May 10th to 24th, 2017).

Each record has an order ID, a user ID, a bike ID, departure and arrival locations and their

corresponding timestamps. The start and arrival locations of Beijing’s data set is geohashed

which means that each unique location has a unique string (e.g., “wx4snhx”), and we convert

geohashed strings to longitudes and latitudes.

We filter the raw data in the following ways. We firstly discard the records not located within

the boundary of Beijing and Shanghai, and also discard the ones with a riding duration longer

than one day (which might be some bikes left unlocked after its initial order) or less than one

minute (which might be due to unsatisfied tryouts) or a Euclidean distance between origin and

destination longer than 100 km (which exceeds the diameter of the urban area in both Shanghai

and Beijing) or the average riding speed faster than 0.6 km/min (which is around twice of the

normal cycling speed).

To avoid possible selection bias, we didn’t pose any further filtering criterion. As a result

of these criteria, around 200 million (0.12 million) noisy records are discarded in Shanghai’s

(Beijing’s) dataset.
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3.3 Statistics on the biking patterns

3.3.1 Spatial distribution of riding activities

We first investigate the spatial distribution of departure activities, which are relatively concen-

trated at the central urban area (see Fig. 3.1(a) for Shanghai and Fig. 3.1(c) for Beijing). To

make quantitative comparison between the two cities, we exploit the idea of spatial buffering –

drawing monocentric circles with increasing radius from the city centre (indicated as a purple

dot in Fig. 3.1) to compute the activity density within each ring with a distance r to the city

centre (see Fig. 3.2(a)). The activity density is formulated as the following:

ρ(r)∝ r−η (R1+η − r1+η) , (3.1)

where r is the distance to the city centre, the power-law exponent η describes a characteristic

velocity of density decay and can vary across different cities, R is the total radius of the city

with riding activities, and ρ(r) is the average density of riding activities at a distance r to the

city centre. Notice, here a ride is defined as if a path exists.

The power-law exponent η for both arrival and departure activities were obtained by minimising

the fitting error between the data and Eq. (3.1). Equivalently, we can get the spatial scaling

relation between the cumulative quantity V (r) and the distance to the city centre r by a simple

double integration:

V (r) =∫
2π

θ=0
∫

r

x=0
ρ(x, θ)xdxdθ

∝ r2−η (R
1+η

2 − η −
r1+η

3
) ∼ r2−η,

(3.2)

Notice, the proportionality only hold at the condition r ≪ R. Otherwise, the approximation is

no longer valid and scaling relation deviates.

We observe that the riding activity density distributions are in line with the theory of spatial

scaling [182], which suggests that riding activities follow a power-law distribution inside the
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(a) (b)

(d)(c)

Figure 3.1: Spatial distribution of riding activities and spatial scaling relation between the
cumulative volume of riding activities and the corresponding distance to the city centre in
Beijing (a, b) and Shanghai (c, d). The purple dot indicates the city centre. The power-law
exponent η for Beijing and Shanghai is roughly 0.09 and 0.27, respectively, which indicates that
Shanghai has a faster decay on the density of riding activities along with the distance away
from the city centre. It’s worth noting that the spatial scale of cities and the total volume of
riding activities are quite different.

central urban area and decays very fast in suburban regions [182] (the fast density decay part

corresponds to a saturation phenomenon in Fig. 3.1(b) and Fig. 3.1(d)). As the ηd for Beijing

and Shanghai is roughly 0.09 and 0.27, respectively, it indicates that Shanghai has a faster

decay on the density of riding activities. Here, we only take the case of departure activities as
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Figure 3.2: (a) Illustration of Spatial buffering and (b) the rasterization of the whole urban
space. For (a), the purple dot indicates the city centre. All circles are monocentric with an
increasing radius. (b) The rasterization of the whole urban space, each square corresponds to a
location. In this example, the spatial resolution is 5 km, which means each location is of 5 km
× 5 km. The underlying blue shading is the population data as of 2017, which is obtained from
WorldPop dataset [183] with a 100 m spatial resolution. The population of each location is
integrated from the underlying WorldPop layer. Here we only take Beijing as an example, the
process for Shanghai’s part is exactly the same, with only changing the WorldPop population
mapping as of 2016.

an example, we find that within the same city, η for departure and arrival activity are almost

identical.

3.3.2 Distributions of biking flux

After having a glance at the whole picture of the spatial distribution of riding activities within

cities, we then investigate the flux of biking traffic between locations. For both Beijing and

Shanghai, we rasterize the whole urban area into square-grid lattices with certain spatial res-

olutions, for example, each location (i.e., a lattice) would refer to a region of 500 m × 500

m (see Fig. 3.2(b)). Then we integrate all individual trips to obtain the biking flow between

locations, and denote the volume of flow from location i to location j as Tij. The distribution

of Tij values (i.e., “link weight” in complex network terminology) manifests a power-law with

an exponent equals −2.32 ± 0.06 and −2.13 ± 0.06 at a 500 m spatial resolution of locations in

Beijing and Shanghai, respectively (see Fig. 3.3(a) and Fig. 3.3(c)). This indicates an inher-

ent heterogeneity between locations that there are few fluxes between most locations, yet a

considerable fraction of location pairs are of relatively large volume of biking traffic. We also
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relate the volume of biking traffic with the travel distance, and discover a fat tailed distribution

above 1km in both Beijing and Shanghai (see Fig. 3.3(b, d)). This means that relatively long

distance (i.e. ≥ 10 km) travel by bike are not that rare compare to many standard deviation

from normal distributions since they follow power-law distributions.

(a) (b)

(c) (d)

 -2.32

Beijing

Shanghai

 -2.13

Figure 3.3: Distribution of biking flux between locations Tij at a 500 m × 500 m resolution (a,
c), and the dependence of biking flux distribution on the distance travelled (b, d) in Beijing (a,
b) and Shanghai (c, d).The power-law exponents in (a) and (c) are −2.32±0.06 and −2.13±0.06,
respectively. The distributions in (b) and (d) also have a fat tail.

3.3.3 Average travel distance of locations

In order to better understand the dynamics of the biking flows of a location, we then further

look at the average outflow travel distance from an origin location i to all its destinations

weighted by the biking traffic volume between them, and vice versa for average inflow distance.

⟨din
i ⟩w =

N

∑
j=1

wjidji, (3.3a)

⟨dout
i ⟩w =

N

∑
j=1

wijdij, (3.3b)
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where wij = Tij/T out
i is the weight of the travel path (i, j) measured by the ratio between traffic

volume from location i to j and the total outflow of location i (similarly, wji = Tji/T in
i ), and N is

the total number of locations in the city. We observed that the weighted average outflow travel

distance ⟨dout
i ⟩w of most locations (95%) is roughly less than 4.5km in Shanghai and 6km in

Beijing, such difference might be originated from different geography and urban layout of these

two cities (see Fig. 3.4(a) and Fig. 3.4(c)). Those top 5% locations with long average travel

distance tend to have relatively low flow volume in Shanghai, but some of them in Beijing are of

high volume. We also observe that most of them are scattered at the fringe of Shanghai, which

means the riders in these locations tend to travel a long distance with bikes (see Fig. 3.4(b)),

with exceptions in Beijing that there are some locations relatively closer to the city centre. This

suggests that bikes might be quite crucial for the users in such locations, where dockless bikes

are served as more than just short distance commuting connectors. Accordingly, the locations

with a short weighted average travel distance are almost distributed everywhere. The cases for

weighted inflow travel distance of locations (see Fig. 3.4(b) and Fig. 3.4(d)) are similar to the

situations of outflow.

3.4 Gravity model at various spatial scales

The gravity model has been widely applied to predict traffic between locations, which assumes

the traffic Tij is proportional to the product of the origin population Pi and destination popula-

tion Pj, and inversely proportional to the distance between the centroids of these two locations

dij. In this work, the population of locations are obtained from aggregating the raw data from

WorldPop [183] (see Fig. 3.2(b)). The general Gravity Model can be formulated as follows

[165, 169, 170, 176, 184]:

Tij = C
Pα
i P

β
j

f(dij)
= C

Pα
i P

β
j

dγij
, (3.4)

where α, β and γ are exponents that can be fine tuned to fit the data, C is a proportionality

constant term, and f(dij) is the deterrence function that best fit data, whose common form
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Figure 3.4: The distribution of weighted average (a, c) outflow and (b, d) inflow travel distance
of locations in (a, b) Beijing and (c, d) Shanghai, where each point corresponds to a location
(500 m × 500 m). The vertical dashed lines indicate 95% percentile, and the corresponding
spatial distributions of top 5% locations with long average travel distance are shown as insets.
We can clearly see that locations with long average travel distance tend to scatter at the fringe
of Shanghai, while in Beijing, some of them are closer to the city centre. For the case in Beijing,
we also increased the distance threshold to 7.5 km, and the corresponding spatial patterns are
still similar but only sparser.

would be a power-law function with an exponent γ1. After normalisation, Tij can also be

interpreted as the probability of an individual transit from i to j.

We find that, for the biking traffic, such general Gravity Model (Eq. (3.4)) always holds at

different spatial resolutions (see Fig. 3.5) in cities – the R2 increases with the area of locations

systematically ranging from 500 m × 500 m, 1km×1km, and all the way up to 5km×5km. The

fitted values of parameters α, β ,γ, and C are shown in Table 3.1. Note that some dots on the left

and right side are omitted from linear fitting in Fig. 3.5 due to the challenge on analysis posed

by poor statistics, which might be originated from the finite-size effect. With the increasing of

spatial scale, the flat region on the left side is becoming smaller and narrower. The saturation

1Sometimes, an exponential function is also applied to the distance part, e.g., dij = exp(dij/κ) where κ is a
characteristic travel length governs the decay of flow, beyond which the resistance effect posed by the increase
of distance would be stronger
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region (see the right side of the plot in Beijing at fine spatial resolutions Fig. 3.5(a, b)) also

vanishes as the scale increases. The trend for both Beijing and Shanghai are consistent, if a

larger spatial scale, then a stronger linear relation is observed (see R2 in Table 3.1).

Figure 3.5: General Gravity Model on traffic volume between locations within (a-e) Beijing
and (a-e) Shanghai at different spatial resolutions ranging from 5 00m to 5 km (from left to
right). The fitted values of exponents are detailed in Table 3.1. The solid lines are direct
regression from all data, and the black dashed lines are diagonal (i.e., Y =X). We can observe
that solid lines and black dashed lines are almost identical, and most of data are around the
diagonal, proving the effectiveness of the general Gravity Model. It’s worth noting that at
larger spatial scales, the right side tends to be higher than prediction which might be due to
stronger nonlinear interaction effect induced by agglomeration.

Different from the commuting flow between counties in the USA where α,β are quite different

(α = 0.30, β = 0.64, γ = 3.05 reported in [169, 176]), for biking traffic, both population related

exponents are of similar magnitudes (with α only slightly larger than β), which suggest the

impacts of origin and destination population are relatively balanced, and both exponents are

smaller than 1 at various spatial resolutions, which indicates that smaller populations are

relatively more important per capita on generating biking traffic. In addition, there’s a nonlinear

increasing of α, β and γ along with the change of spatial scale in both Beijing and Shanghai,

see Fig. 3.6(a). Though the magnitudes are quite different between distance exponent γ and

population exponents α and β, the increasing trends after mean normalisation (i.e., dividing
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the data by its mean) are almost identical, especially for Shanghai, which might suggest some

universal relation behind population and distance in terms of spatial scale.

Validating the gravity model on biking traffic at varying scale within cities are important for

better urban planning towards a greener and more sustainable urban development. However,

to our best knowledge, there has been no such work focusing on the gravity model in dockless

bike-sharing systems in cities.

Shanghai Beijing
Resolutions α β γ C R2 α β γ C R2

500 m 0.18±0.01 0.17±0.01 0.99±0.01 0.35 0.38 0.26±0.02 0.22±0.02 1.25±0.02 0.2 0.35
1 km 0.37±0.02 0.38±0.02 1.69±0.03 0.03 0.51 0.40±0.02 0.33±0.03 1.99±0.04 0.07 0.45
2 km 0.67±0.04 0.65±0.03 2.54±0.07 0.0003 0.62 0.54±0.04 0.47±0.04 3.02±0.08 0.03 0.54
3 km 0.88±0.07 0.79±0.07 3.21±0.13 1.73 0.67 0.60±0.08 0.56±0.08 3.84±0.18 0.03 0.58
5 km 0.94±0.14 0.91±0.11 3.96±0.26 9.75 0.68 0.73±0.12 0.70±0.11 5.23±0.36 0.07 0.67

Table 3.1: The fitted values of parameters of the general Gravity Model and R2. The errors
quoted are 95% of confidence interval for fitting parameters.

(a) (b)

Figure 3.6: The evolution of distance and population related exponents in the (a) general
Gravity Model, and (b) Gravity Model II with dimensionless distance in both Beijing and
Shanghai. After mean normalization (i.e., dividing the data by mean), we observe that these
parameters are almost changing in a similar trend.

In addition, we also test some other variants of the aforementioned general Gravity Model.

Sometimes, the distance dij can be dimensionless by dividing by the spatial resolution d0 (the

spatial scale of locations, e.g., 500m) [181], we name it as Gravity Model II:

Tij = C
Pα
i P

β
j

(dij/d0)γ
= Cdγ0

Pα
i P

β
j

dγij
. (3.5)
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We find that such a dimensionless distance setting almost doesn’t alter the results, which are

quite comparable with the general Gravity Model (see Fig. 3.7). The intrinsic spatial scale still

plays an important role. We only observe a little bit larger fluctuations on the right sides at

larger spatial scale (3km to 5km), the values of R2 are also quite comparable with the general

Gravity Model. Moreover, the trends of evolution on distance and population related exponents

are almost identical with the general Gravity Model, though the magnitudes are not precisely

the same, see Fig. 3.6(b).

Figure 3.7: Gravity Model II with dimensionless distance on traffic volume between locations
within (a-e) Beijing and (f-j) Shanghai. All the settings of figures are the same with Fig. 3.5.
The effectiveness of Gravity Model II is also validated with most data around diagonal lines
and the regression line is collapsing with the diagonal. We only observe a little bit larger
fluctuations on the right sides at larger spatial scale (3km to 5km), the values of R2 are also
quite comparable with the general Gravity Model.

For other variations, we can fix both population exponents α,β as 1 (named as Gravity Model

III), which can be derived from entropy maximization [185]:

Tij = C
PiPj
dγij

, (3.6)

when γ = 2, it simplifies to the form of the Newton’s law of the gravity. Yet as indicated in

several datasets, γ ∈ [0.5,3] which is not necessarily equal to 2 [184]. We find the original
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Gravity Model and Gravity Model III doesn’t hold well for smaller spatial scales (from 500 m

to 1 km) with larger fluctuations and larger deviations from the diagonal lines. Besides, the flat

region on the left side is longer and wider. And it’s worth noting that the regression lines are

not overlapping with diagonal lines anymore, which further indicates a systematical deviation

between the prediction and reality (see Fig. 3.8).

Figure 3.8: Gravity Model III on traffic volume between locations within (a-e) Beijing and (f-j)
Shanghai. All the settings of figures are the same with Fig. 3.5. Gravity Model III doesn’t hold
very well, especially at finer spatial resolutions (500 m to 1 km).

A further variation of Gravity Model III with a dimensionless distance (we label it as Gravity

Model IV) has a similar bad performance (even worse in Beijing at a 500 m spatial resolution).

By comprehensive comparisons between results reported in Figs. 3.5-3.9, we find that the form

of distance (whether geometric or dimensionless) doesn’t pose a significant influence, the most

important factors are the population related exponents at finer spatial resolutions (500 m to

2 km), where a linear population related attractions are not a good approximation of the

real situations. This indicates that at smaller scale, with a less than unity population related

exponents, smaller populations are relatively more important per capita on generating biking

traffic. Only when the spatial scales are close to 3km to 5km, then the population exponents

are closer to one.
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Figure 3.9: Gravity Model IV with dimensionless distance on traffic volume between locations
within (a-e) Beijing and (f-j) Shanghai. All the settings of figures are the same with Fig. 3.5.
Gravity Model IV also doesn’t hold very well, especially at finer spatial resolutions (500 m to
1 km).

3.5 Sources and sinks

The gravity model assumes the interaction between locations is bidirectional and equivalent if

population related parameters α = β, i.e., the traffic volume from location i to j would be the

same as j to i. However, among all locations, there are two types of locations – sources and

sinks – with only unidirectional flows but worth further studies due to their challenges posed

on the operation of dockless bike-sharing systems, and on enhancing the user experience by

providing more user friendly and easier access to transport means.

Based on the flow profile of locations (i.e., whether a location has inflow, outflow and inner-flow

traffic or not), we divide them into seven distinct types of flows(see Fig. 3.10(a, f), note that

we didn’t take locations without any type of biking traffic into consideration): locations with

only inflow (sinks, see Fig. 3.10(a) and Fig. 3.10(f)), only outflow (sources), only inner-flow,

and locations with both inflow and outflow with inner-flow or without inner-flow, and locations

with inner-flow and with just either inflow or outflow. Locations with both inflow and outflow

(type D and G in Fig. 3.10(a) and Fig. 3.10(f)) are quite dominant. And inflow and outflow
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Figure 3.10: (a, f). The spatial distribution of sinks and their directional inflow (b, g); and the
spatial distribution of sources and their directional outflow (c, h). The connections between
sources and sinks (d, i), where source locations are marked as ×, and sinks as #; if there’s
biking flow between any of them, they will be connected. Travel direction and distance relative
to the city centre (e, j) in both Beijing (a-e) and Shanghai (f-j).

of locations are in a great linear relation at various spatial scales (especially in Shanghai, the

case in Beijing are of relatively larger fluctuations, see Fig. 3.11).

BJ

SH

Figure 3.11: (The inflow and outflow of locations with varying spatial resolutions ranging from
500 m to 5 km, from left to right) in both (a) Beijing and (b) Shanghai, which is in a great
linear relation.

Sources and sinks (type E and F in Fig. 3.10) are also non-negligible at a spatial resolution of
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Figure 3.12: The evolution of sources and sinks with varying spatial resolutions of locations,
ranging from 500 m × 500 m to 5 km × 5 km (from left to right). We can observe that both
source and sink locations are vanishing rapidly, mainly due to the increase of inner flows.

500 m × 500 m. By looking at the spatial distribution of the sources and sinks in both Beijing

and Shanghai, we find that most of them are distributed at the fringe of the city. If a sink

location is one of the destinations of a source location, then we connect them with a line in the

figure, yet we can see that only a few sources and sinks can be linked together (see Fig. 3.10(d,

i)).

As a source location may have several destinations, we calculate the directional flow from a

source location weighted by the biking traffic as F⃗i = ∑j wij(l⃗j−l⃗i), where l⃗i = (longitudei,latitudei)

is the position vector of location i, or vice versa for a destination location (see Fig. 3.10(b),

Fig. 3.10(c), Fig. 3.10(g) and Fig. 3.10(h)). We also looked at the average travel direction of

sources and sinks relative to the city centre, i.e., whether the riders there tend to move toward

or away from the city centre. We calculate the distance between the city centre and the origin

(destination) of each trip that starts from a source location (or ends at a sink location), denot-

ing it as dO (dD). Then dD−dO can reflect whether riders are moving farther away (dD−dO > 0)

or closer to (dD − dO < 0) the city centre. Their distributions do not show strong trends or

significant differences at small values, see Fig. 3.10(e) and Fig. 3.10(j). However, for sinks, we

can observe some long distance travel away from the city centre (indicated by positive values

of dD − dO), while the opposite for sources. This indicates that there are still some users in
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such locations are riding for long distance towards the city centre, and back home at suburbs

probably from the workplace near downtown.

It would be natural to raise following questions: Why do sources and sinks exist? Does a rider

depart from a source location never come back, or vice versa? By varying the spatial resolution

from 500m to 5km, we can observe that both source and sink locations are vanishing rapidly,

see Fig. 3.12, mainly due to the increasing of inner-flow, as can be observed in Fig. 3.10(b),

Fig. 3.10(c), Fig. 3.10(d), Fig. 3.10(g), Fig. 3.10(h) and Fig. 3.10(i), that most of ∣F⃗i∣, as

indicated by the length of the line connected to it, is not too large, and most of connected

sources and sinks are not too far away from each other. Yet a 500 m resolution is more

informative on riding behaviours, the existence of a non-negligible amount of sources and sinks

may originate from the nature of riding behaviours and sharing economy, and require a further

study on related operation strategies.

3.6 Conclusions and discussions

In this chapter, we find that the spatial distribution of biking activities is in line with spatial

scaling theory, and further investigate the distribution of biking flow in cities at a fine spatial

resolution, which manifests a power-law. The dependence of biking flow distribution on distance

are also fat tailed above 1km in both Beijing and Shanghai. Dockless sharing bikes may serve

as more than just short distance commuting connectors for users in some locations as indicated

by a long average weighted travel distance. We validate that the general Gravity Model can be

well applied for predicting biking traffic within cities at fine spatial resolutions, which indicates

that the human mobility patterns to a large extend have been preserved even the transportation

means are changed. The scale effect of location is also studied, though distance related exponent

is of larger magnitude, it grows in a similar trend as population exponents as the spatial scale of

locations increases, which suggests that there might be some underlying relation between them.

And the population related exponents are less than unity especially at finer spatial resolutions

which is further confirmed by comparing with Gravity Model 3 and Gravity Model 4 where
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population related exponents α = β = 1. This indicates that smaller population are relatively

more important per capita on generating biking traffic. The Gravity Models provide us with

a method to understand the biking behaviours in different cities, and is of great importance

to related urban practices, for instance, how to relocate number of bikes at different locations.

In addition, we also look at the directionality issue [186], as the Gravity Models predict an

equivalent mutual flow between two locations, yet in reality, this is not always the case, which

requires further studies. Taking a closer look at the source and sink locations, we notice most

of them are not connected with each other, and they don’t show a clear directional flow relative

to the city centre for short-distance travel; most of long-distance trips to sinks are away from

the city centre, while most of long-distance trips from sources are towards downtown. However,

we do not have the detailed information about the region so we can not know the destination of

each short distance ride, for instance, it is a pub or restaurant. Overall, we can see the success

of the gravity model.

3.7 Summary

In this chapter, we

• used spatial data from the mobike to study bicycle mobility pattern in Shanghai and

Beijing.

• revealed a spatial scaling relation between the cumulative volume of riding activities V (r)

and corresponding distance to the city centre r, V (r) ∼ r2−η for the region far away from

the city boundary r ≪ R.

• found a power-law distribution on the volume of biking flows between fine-grained loca-

tions in both Beijing and Shanghai.

• validated the effectiveness of the general Gravity Model on predicting biking traffic at fine

spatial resolutions, where population-related parameters were less than unity indicating
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that smaller populations are relatively more important per capita on generating biking

traffic.

• further studied the impacts of spatial scale on the Gravity Model.

• revealed that the distance-related parameter grows in a similar way as population-related

parameters when the spatial scale of locations increases. The flows between different

location is proportional to the population product across different scales, however, the

scaling exponents are not identical across different scales in terms of self-similarity.
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4.1 Introduction

Centrality measures look at the importance of nodes in a network, from social science to epi-

demiology studies to web site ranking and are used in almost every application of network (see

more descriptions in section 1.4.1 in Chapter 1). There are a vast number of centrality indices,

as Schoch’s “Periodic Table of Network Centrality” illustrates [16] or see [21, 24]. It is clear

that many different centrality indices encode similar information about node importance so

there is a great deal of redundancy as quantified by the correlation found between centrality

indices [21, 24]. Studies focus on linear correlations between centrality measures, e.g. Pearson

correlation coefficients. However, the explanations for these correlations are missing.

96
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In this chapter, we focus on two of the most popular centrality measures. Degree is a local

measure that counts the number of neighbours of a node. Closeness probes the global properties

of a network as it is the inverse of the sum of shortest path distances to other nodes. Since

closeness is a measure of shortest paths, one of the most natural structures to think about is

the tree structures. Based on the tree structure approximation, we conjecture that the inverse

of closeness of a node is linearly dependent on the logarithm of the degree of that node. Our

conjecture explains why high values of linear correlation measures are often reported between

degree and closeness centrality but at the same time our conjecture shows that linear correlation

indices have missed important non-linear features in the landscape of centrality measures.

In the current chapter, we use the construction that the shortest paths from any one node to

all other nodes can be arranged as a spanning tree. We then conjecture that the branches of

this tree are statistically similar, implying that the closeness of a node can only depend on

the number of such branches, i.e., the degree of the node. While assuming that the number of

nodes in each branch grows exponentially, we arrive at the non-linear form of our conjecture.

This allow us to derive the non-linear relationship between closeness and degree. We then test

our conjecture on many artificial and real data sets and show that our relationship works in

most real networks.

4.2 Theory

4.2.1 General definitions

For simplicity, we will assume throughout this chapter that we are analysing a simple graph G

with just one connected component. We will denote the number of nodes as N and the degree

of each node v as kv. In a network, a path length ` is a sequence of (` + 1) distinct nodes

{vi} (i = 0,1,2, . . . , `) such that each consecutive pair of nodes in the path is connected by an

edge. We will define the distance between two nodes u and v in a network to be the length of

a shortest path between two nodes, denoted here as duv.
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The closeness cv [53, 193, 194] of a vertex v is then defined to be the inverse of the average

distance from v to every other vertex in the graph, so

1

cv
= 1

(N − 1) ∑u∈V
duv, (4.1)

where V is the set of nodes, ∣V ∣ = N . Clearly the closer a vertex v is to other vertices in

the network, the larger the closeness, so this measure mimics the properties we expect when

defining the centre of a geometric shape so making closeness a natural centrality measure.

4.2.2 Estimate of closeness

We start from the idea that some of the statistical properties of real-world networks may be

captured by spanning trees [192]. Trees [193, 194] are connected networks with no loops so

the number of edges is always one less than the number of nodes. A spanning tree [192] is a

connected subgraph of the original graph G containing all the original vertices V but a subset

of N − 1 edges that are just sufficient to keep every node connected to all others. In particular,

we work with rooted trees T (r) in which we have singled out one special node, the root r of

the tree. Since we are interested in closeness which uses the lengths of shortest paths between

nodes, the most useful trees for this work are the shortest-path trees , T (r), that contain one

shortest path from a root node r to each remaining node in the network. As our networks are

unweighted, the shortest-path trees always exists and are easily defined as part of a breadth-first

search algorithm. Breadth-first search algorithm traverse each node once until all the nodes in

the network are connected from the root. Every node can act as a root node so there is at least

one shortest-path tree, T (r), for every node r. These trees are not in general unique as there

can be many shortest paths between a pair of nodes.

The picture used here, as shown in Figure 4.1, is that close to the root node the structure of

these shortest-path trees will vary. In many networks, as we move further away from the root

node the number of nodes nr(`) at some distance ` from root node r grows exponentially with

each step in most networks. This is the origin of the small-world effects seen in many networks,

https://en.wikipedia.org/wiki/Shortest-path_tree
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
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the way the distance between nodes is typically much smaller than would be found in networks

constrained by Euclidean geometry [71]. This means that regardless of the local context of

a root node, the trees quickly access a similar set of nodes in the main bulk of the network.

Thus we conjecture that the structural and statistical properties of these trees away from the

root node are likely to be similar for all possible root nodes. The contribution to closeness

of each node in the bulk is bigger as they are further from the root and more numerous. So

we might expect that the largest contributions to closeness always come from the same bulk

regions where we can expect statistical similarity.

The most important difference while comparing different root nodes is the initial value for the

exponential growth in the number of nodes at distance ` from the root. This will depend on

the local structure with the simplest effect coming from the number of immediate neighbours

the root node has, i.e., the degree of the root node kr. That is the simplest approximation for

the growth of these shortest-path trees is:

nr(`) = krz̄`, (4.2)

where z̄ is some measure of the rate of growth of the shortest-path tree. Note that our assump-

tion of statistical similarity suggests that the branching factor of these trees is, on average, the

same so we use a single parameter z̄ to represent the growth from any root node r.

One key assumption we make is that all these branches have similar statistical properties

because the vast majority of such branches are in the ‘bulk’ of the network. To start with, we

will assume that in terms of our measurements T (v`, r) ≡ T (v′`, r) for any two nodes v` and v′`

distance ` from our root. For the same reason, in most graphs we might expect these subgraphs

to be similar whatever the root node was so T (v`, r) ≡ T`.

The exponential growth in the number of nodes distance ` from any root node, as encoded in

Eq.(4.2) is our second key assumption. This will not be true for networks embedded on a plane

or other Euclidean spaces as there we expect n(`) to measure the surface area of a shape of

radius ` which would follow a power law n` ∼ `D−1 for a D-dimensional Euclidean space.
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Figure 4.1: An example of a rooted tree T (r)
defined in terms of a root node r, the blue star
at the centre. All nodes at the same network
distance from the root node, are placed at the
same distance from the root node in this visual-
isation, as indicated by the green dashed circles.
The red triangle, node v, is the root of a branch
T (v, r), a smaller tree containing all the nodes
u which lie on a path from the root through v
(which is also a shortest path from r to u in the
full graph G). These nodes u in the branch are
therefore further from the root than v, dur ≥ dvr.
The branch T (v, r) illustrated here includes v
(red triangle), the nodes indicated with purple
squares and the edges between these nodes. The
degree of a node is the number of neighbours so
here node v has degree 4.
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Figure 4.2: The Zachary Karate club net-
work [85]. The nodes of the same colour and
shape have shortest paths to node 1 of the same
length. The thick black lines are edges which
are part of one possible shortest-path tree T (1)
with node index 1 as the root node of the tree.
The dashed grey lines indicate edges not in the
tree. These shortest-path trees are not unique
as can be seen here since we can include edge
(7,17) in T (1) instead of the edge (6,17) used
here. Node labels correspond to those used in
[85].

To get a network of significant size, we need the branching factor in each layer l, z̄` > 1. However,

the total number of nodes N is given by:

N =
L

∑
`=0

n`(r), (4.3)

where L is the cut-off distance. Therefore, a model with constant branching factor for all layer

z̄` = z̄ > 1, the number of nodes grows exponentially fast with finite maximum distance. The

crudest solution, and the one we will follow here, is to assume that z̄` = z̄ for 2 ≤ ` ≤ Lr where

Lr is some long distance cutoff which may depend on the root vertex r considered with z̄` = 0

for larger `. The z̄` = z̄ assumptions implies effective branching number at the each layer are
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the same1. So we work with the following model

n`(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ` = 0 ,

z̄`−1kr if 1 ≤ ` ≤ Lr ,

0 if ` > Lr .

(4.4)

To improve clarity of the expressions, we will now drop the explicit dependence on the root

vertex r chosen and write c ≡ cr, k ≡ kr, and L ≡ Lr.

We will determine the distance cutoff L by imposing Eq.(4.3). Our model for z̄` now becomes

N = 1 +
L

∑
`=1

z̄`−1k = 1 + k (z̄
L − 1)
(z̄ − 1) . (4.5)

Inverting this we see that the distance cutoff L we need is given by, for large N ,

L(N,k) ≈ ln (N(z̄ − 1)/k)
ln z̄

. (4.6)

Even in this simplest approximation, it is clear that the distance cutoff L depends on our choice

of root vertex through the degree of the root node.

In principle L in Eq.(4.4) and Eq.(4.5) is an integer but it is clear from the form in Eq.(4.6)

that we need L to be a real number, in some sense an average over the actual distances from

the root to the leaves (nodes with degree one) of the tree. So the real number valued L given by

Eq.(4.6) sets the scale of the distance beyond which the terms in these sums become negligible

since almost all the nodes are connected. We also note as an aside that L depends on the size

of the network through a ln(N) factor, not as a power N1/D, and this is the classic “small-

world” effect seen in many network length scales such as diameter and average distance. We

will assume our network is connected so a shortest path exists between all node pairs in the

network. We can now rewrite the closeness c of a root vertex r using Eq.(4.4) and Eq.(4.10) to

1This is different from the degree number but counting how many new nodes a node connect, thus, called
effective.
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gives us:

1

c
= 1

Ω

L

∑
`=1

`n` , (4.7a)

Ω =
L

∑
`=1

n` . (4.7b)

For the normalisation Ω we have that Ω = N −1 and using Eq.(4.5) we can express this in terms

of our other variables

Ω =
L

∑
`=1

kz̄`−1 = k (z̄
L − 1)
(z̄ − 1) = N − 1 . (4.8)

The exponential branching are unrealistic in many real networks. From Eq.(4.6), we derived an

upper cutoff Lr and assume that n(`) = 0 for ` > L, which means, after all nodes are reached,

the branching process stopped.

Note this gives us a link between L, N and z̄. We will eventually use Eq.(4.8) to eliminate L

as we assume N is known. However the expressions are simpler in terms of L so here we will

use Eq.(4.8) to eliminate N and Ω.

Using Eq.(4.4) and Eq.(4.10) gives us that

1

c
= 1

Ω

L

∑
`=0

k`z̄`−1

= k
Ω

d

dz̄

L

∑
`=0

z̄`

= k
Ω

d

dz̄
( z̄

L+1 − 1

z̄ − 1
)

= k
Ω
((L + 1)z̄L

z̄ − 1
− (z̄

L+1 − 1)
(z̄ − 1)2 ) .

(4.9)
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Using Eq.(4.8) to eliminate Ω (i.e. N) in terms of L and z̄, we have that

1

c
= z̄ − 1

z̄L − 1
[(L + 1)z̄L

z̄ − 1
− (z̄

L+1 − 1)
(z̄ − 1)2 ]

= Lz̄L

(z̄L − 1) +
z̄L

(z̄L − 1) −
(z̄L+1 − 1)
(z̄L − 1)

1

(z̄ − 1)

= L(1 + 1

z̄L − 1
) + 1

(z̄ − 1)
1

(z̄L − 1) (z̄
L(z̄ − 1) − (z̄L+1 − 1))

= L(1 + 1

z̄L − 1
) − 1

z̄ − 1
.

(4.10)

Now we can use Eq.(4.10) to produce a prediction of the relationship between the closeness of

a node and its degree, also showing how closeness should vary with the size of the network and

we find that

1

c
≈ (− 1

z̄ − 1
+ ln(z̄ − 1)

ln z̄
) + 1

ln z̄
lnN − 1

ln z̄
lnk +O ( lnN

N
) . (4.11)

We now restore the dependence on the root vertex in our notation to emphasises which quanti-

ties depend on this choice and which are fixed network values. The prediction is that the inverse

of closeness cv of any node v should show a linear dependence on the logarithm of the degree kv

of that node with a slope that is the inverse of the log of the branching ratio parameter, that is

1

cv
= − 1

ln z̄
lnkv + β . (4.12)

Our calculation suggests that the parameter β is a function of other known parameters but

that it is also independent of the vertex v chosen, so that

β = β(z̄,N) = (− 1

(z̄ − 1) +
ln(z̄ − 1)

ln z̄
) + 1

ln z̄
lnN . (4.13)

In our analysis we will not assume the parameter β is given by Eq.(4.13). By adding one

additional parameter we lose a little predictive power but with many parameters needed to

characterise a network the loss is negligible. This leaves us with a conjecture based on the

number of nodes N and degree of each nodes kv which are usually known. Then in principle



104 Chapter 4. Linking centrality measures: Closeness and degree

we have two unknown global parameter values which we find from a linear fit to our data for

cv and kv giving z̄(fit) and β(fit).

One of the earliest questions asked about networks was about the typical length scale of a

network. The length duv of the shortest path between two nodes u and v provides the natural

measure of distance, as it satisfies both the mathematical criteria for a distance function and

our own intuition about the importance of short paths to minimise the costs and losses in

communication in real networks.

Characteristic length scales are important in any system and for networks the average distance

between all nodes pairs ⟨`⟩ is such a length scale where

⟨`⟩ = 1

N(N − 1) ∑
(u,v)∈E

drv . (4.14)

This is the mathematical quantity that represents Milgram’s “six-degrees of separation” [197,

198] and investigated on large scales in modern data sets, for instance [199, 200, 201]. It has

been the focus of great interest in some of the earliest theoretical papers such as [202, 203, 204].

The average distance of a network ⟨`⟩ has a simple relationship to the closeness considered

in this chapter as average distance ⟨`⟩ is simply half the average over all nodes of the inverse

closeness

⟨`⟩ = 1

2N
∑
v∈V

(cv)−1 . (4.15)

Remember that the edge (r, v) ≡ (v, r) appears once in the edge set E but the term with drv = dvr

appears twice in the sum over root nodes r in the second expression. If we insert our expression

Eq. (4.12) we have that

⟨`⟩ = − 1

N

1

ln z̄
∑
v

lnkv + β (4.16)

= 1

ln z̄
lnN − 1

ln z̄
⟨lnk⟩ − 1

z̄ − 1
+ ln z̄ − 1

ln z̄
(4.17)
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where we have used β from Eq.(4.13). This gives for large N and fixed degree distribution that

lim
N→∞
⟨`⟩ = 1

ln z̄
lnN . (4.18)

4.3 Descriptions of datasets

Before we analyse the data set, we need to describe the data set. We use a variety of net-

works for which data is openly available. In our case all but one can be found on KONECT

[83] but many can be found on other sites with network data. Our aim is to find networks

of different sizes representing contrasting types of interaction which we break down into five

broad categories: social networks (social-...), communication networks (commun-...), ci-

tation networks (citation-...), co-author networks (coauth-...), and hyperlink networks

(hyperlink-...). These networks have been used in many contexts in other publications but

we will only give a brief summary of each one.

In each case, we create a simple graph, ignoring edge directions and weights, node types, time

stamps, and any other such information. We take the largest connected component (LCC) of

the graph and performed our analysis on this. Some basic statistics on each graph is given in

Table 4.1 and then more detailed information on each data set follows.

Social networks

Social networks capture the social interactions between actors, such as friends, colleagues,

clients and students. We use six data sets, the size of networks ranged from 34 to 2539 nodes.

On average, we find the mean shortest distance are quite small compare other type of networks

(apart from social-health dataset).

The social-karate-club is the well-known and much-used Zachary karate club dataset. The

original data was collected from the members of a university karate club by Wayne Zachary in

1977 [85] and each edge represents some type of social interaction between two members of the
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Network Name Number of nodes Number of edges Mean distance
social-karate-club 34 78 2.44
social-jazz 198 2472 2.21
social-hamster 1858 12534 3.39
social-oz 217 2672 2.33
social-highschool 70 366 2.66
social-health 2539 12969 4.52
commun-email 1133 5451 3.65
commun-UC-message 1899 59835 3.07
commun-EU(core)-email 1005 25571 2.59
commun-DNC-email 2029 39264 3.37
commun-DIGG-reply 30398 87627 4.68
citation-DBLP-cite 12590 49759 4.37
citation-Cora 23166 91500 5.74
coauthor-astro-ph 16046 121251 5.10
coauthor-netscience 1461 2742 6.28
coauthor-pajek 6927 11850 3.79
hyperlink-polblog 1224 33430 2.75
hyperlink-blogs 1224 19025 2.72

Table 4.1: Summary statistics for the data sets used in Chapter 4. The mean distance is
the average length of the shortest paths between all pairs of nodes in the largest connected
components in the data.

club.

The social-highschool network represents friendships between boys in a small highschool in

Illinois, USA. Each boy was asked once in the fall of 1957 and the spring of 1958. This dataset

aggregates the results from both dates. A node represents a boy and an edge between two boys

shows that at least one boy chose the other as a friend. The original network [86] is directed,

weighted and allows multiple edges but we use a simple graph version here.

The social-hamster network comes from the Koblenz Network Collection (KONECT) [83]

where it is described as the “Hamsterster households network dataset” but no further informa-

tion is provided.

The social-jazz network is the collaboration network between Jazz musicians. Each node is

a Jazz musician and an edge denotes that two musicians have played together in a band [87].

The social-oz network is a network recording the friendships between 217 residents living at

a residence hall located on the Australian National University campus [88]. A node represents

http://www.konect.cc/networks/petster-hamster-household/
http://www.konect.cc/networks/arenas-jazz/
http://konect.cc/networks/moreno_oz/
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a person and an edge represents the friendship between them.

The social-health network is a network created from a survey of students in 1994/1995

[89]. Each student was asked to list their five best female and five best male friends. A node

represents a student and an edge between two students shows at least one chose the other as a

friend.

Communication networks

Communication networks describe the individual messages exchanged between people. Com-

munication networks are often directed and typically contain multiple edges each with distinct

time stamps so we are neglecting a lot of information when working with simple graphs repre-

sentations.

The commun-email network is based on emails sent between members of the University Rovira

i Virgili in Tarragona in the south of Catalonia in Spain [90]. Nodes are users and each edge

represents that at least one email was sent between two users.

The commun-DNC-email network is built from the emails from the Democratic National Com-

mittee, the formal governing body for the United States Democratic Party. A dump of emails

of the Democratic National Committee was leaked in 2016. Nodes in the network correspond

to persons in the dataset. An edge in the dataset denotes that at least one email has been sent

between the two linked nodes.

The commun-UC-message network represents messages sent between the users of an online

community of students from the University of California, Irvine [80]. An edge connects two

users if they exchanged at least one message.

The commun-EU(core)-email is a network representing emails sent between two members of

a large European research institution [84]. An edge represents an email sent between members

of the institution. This data was downloaded from Stanford Large Network Dataset Collection

[82].

http://konect.cc/networks/moreno_health/
http://konect.cc/networks/arenas-email/
http://konect.cc/networks/dnc-temporalGraph/
http://konect.cc/networks/opsahl-ucsocial/
https://snap.stanford.edu/data/email-Eu-core.html
https://snap.stanford.edu/data/


108 Chapter 4. Linking centrality measures: Closeness and degree

The commun-DIGG-reply data [91] gives a network of users of the social news website Digg.

Each node is a user of the site and two users are connected by an edge if one of those users

replied to another user at any point.

Citation networks

Citation networks represent documents as nodes in the network, with two nodes linked if one

document cites another. These are direct acyclic graphs in principle but here we use a simple

graph representation.

The citation-DBLP-cite is the citation network built from the DBLP database of computer

science publications [92].

The citation-Cora network uses another database of computer science papers, CORA [93, 94].

Our simple network is constructed as for the DBLP network.

Co-authorship network

Co-authorship networks are networks connecting authors who have written articles together.

Co-authorship networks are normally weighted but we ignore that here.

The coauthor-astro-ph network is the co-authorship network from the astrophysics section

(astro-ph) of arXiv preprint archive constructed in [95]. Nodes are authors and an edge

denotes a collaboration on at least one paper.

The coauthor-netscience network is a network of co-authors in the area of network science

[96]. Nodes represent authors and edges denote collaborations.

The coauthor-pajek is the co-authorship graph around Paul Erdős [97] which is used to define

the “Erdős number”.

http://konect.cc/networks/munmun_digg_reply/
http://konect.cc/networks/dblp-cite/
http://konect.cc/networks/subelj_cora/
http://konect.cc/networks/dimacs10-astro-ph/
http://konect.cc/networks/dimacs10-netscience/
http://konect.cc/networks/pajek-erdos/
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Hyperlink networks

In hyperlink networks the nodes are pages or documents. These are linked by an edge if there

is at least one hyperlink between these two documents in either direction as here we ignore the

direction inherent to hyperlinks.

We use two examples from hyperlinks between blogs about politics during the U.S. Presidential

Election of 2004 [98], hyperlinks-blogs and hyperlink-polblog.

4.4 Numerical results

4.4.1 Theoretical models

We looks at the relationship between closeness and degree using simple networks produced

from three different theoretical models: the Erdős-Réyni (ER) model [195] (also see section 12.2

[194]), the Barabási-Albert model with preferential attachment [70] (also see section 14.3 [194]),

and the configuration model [135] (also see section 13.2 [194]) network starting from a network

generated with the same Barabási-Albert model. In the ER networks and the configurational

BA networks, the edges are completely randomised so there are no vertex-vertex correlations.

The last two models both have fat-tailed degree distributions. Results are shown in Figure 4.3

and Table 4.2. Our networks built from artificial models were created using standard methods

in the networkx package [54] which is open source.

For single network, we get several nodes with the same degree and we use this variation to find

a mean and standard error in the mean shown. The fit is done using Eq.(4.12) with two free

parameters z̄(fit) and β(fit) and the goodness of fit measures in Table 4.2 show this is a good fit.

Roughly speaking we find that mean inverse closeness values for any one degree are typically

within 2% of the prediction made from the best fit. The small deviations from our best fit for

higher degree values are in a region where the data is sparse and uncertainties are large so no

firm conclusions can be drawn about higher order-corrections to our form in Eq.(4.12).

http://konect.cc/networks/moreno_blogs/
http://konect.cc/networks/dimacs10-polblogs/
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1/

1
/

(a) ER BA Config-BA

ER

BA Config-BA

(b) (c)

Figure 4.3: Numerical investigations of the conjecture relationships on artificial models. The
results are for three different sized networks: N = 1000 (red points) N = 2000 (blue points) and
N = 4000 (yellow points) where N is the number of nodes. All networks have average degree
10.0 and 100 realisations were taken for each case. The values of closeness for each value of
degree are binned, the mean is shown as the data point with error bars the standard error
of the mean. On the top row each plot shows results for networks formed from one artificial
model: the Erdős-Réyni (ER) model on the left, the Barabási-Albert (BA) model in the centre,
and the configuration model network starting from a Barabási-Albert model (Config-BA) on
the right. The dashed lines shows the best linear fit of 1/c to lnk using Eq.(4.12). The same
data from all nine artificial networks is shown in the scatter bottom left with data 1/ĉ against
predicted value c obtained from the best best fit Eq.(4.12) and the shaded region corresponds
to a 5% deviation from the theoretical prediction. On the bottom right, the fractional error, the
fitted value of closeness divided by data value, is shown. The results show that the non-linear
correlation of closeness and degree predicted in Eq.(4.12) works most of the time within a 2%
variation. There are some hints of small deviations but systematic at higher degree value but
the data is sparse and less reliable here.

We now turn to look at the actual values obtained from these fits of data on closeness and

degree from the artificial networks to Eq.(4.12). As Table 4.2 shows there is a small amount

of variation in value of z̄(fit), the fit for the shortest-path tree growth factor, with the size of

the network. What is of more interest are the differences in values between these three types

of artificial networks. All these networks had an average degree of about 10.0 and an infinite

tree with constant degree 10 (a Bethe lattice) would have a growth factor z̄ = 9, one less than
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Network type N 1/ ln z̄(fit) β(fit) z̄(fit) β(z̄(fit),N) ρ(c, k) χ2
r

ER
1000 0.46 ± 0.01 4.29 ± 0.01 8.87 ± 0.20 3.98 ± 0.03 0.94 1.02
2000 0.42 ± 0.01 4.52 ± 0.01 10.64 ± 0.18 4.07 ± 0.03 0.93 1.02
4000 0.43 ± 0.01 4.82 ± 0.01 9.99 ± 0.12 4.45 ± 0.02 0.93 1.03

BA
1000 0.30 ± 0.01 3.59 ± 0.02 28.03 ± 3.11 3.02 ± 0.13 0.75 1.16
2000 0.32 ± 0.01 3.86 ± 0.01 22.76 ± 2.22 3.37 ± 0.07 0.70 1.29
4000 0.31 ± 0.01 4.03 ± 0.01 25.17 ± 2.61 3.52 ± 0.08 0.65 1.16

Config-BA
1000 0.35 ± 0.01 3.76 ± 0.02 17.41 ± 1.42 3.34 ± 0.14 0.75 1.19
2000 0.36 ± 0.01 4.01 ± 0.02 16.08 ± 1.24 3.65 ± 0.15 0.70 1.28
4000 0.35 ± 0.01 4.19 ± 0.01 17.41 ± 1.41 3.82 ± 0.08 0.66 1.19

Table 4.2: Results for one example of a simple graph with average degree 10.0 produced using
one of three artificial models with the same average degree ⟨k⟩ = 10.0 but with a different
number of nodes, N . Each ‘ER’ network is a standard Erdős-Réyni network, a ‘BA’ network
is produced using pure preferential attachment in the Barabási-Albert model, and the ‘Config-
BA’ network is a configuration model version of a Barabási-Albert model network. The results
for 1/ ln z̄(fit) and β(fit) come from linear fits of inverse closeness, 1/cv to the logarithm of degree,
lnkv for each vertex v, i.e. 1/cv = (ln z̄)−1 lnkv + β in Eq.(4.12). The value of β derived from
z̄(fit) and N using Eq.(4.13) is also shown for comparison. The fits are very good as indicated
by the column for the reduced chi-square χ2

r .

the average degree. So the best fit values for the growth factor z̄ in the Erdős-Réyni networks

are a little higher than this while the Barabási-Albert network and its randomised version are

a lot bigger.

Another possible reference value for the shortest-path tree growth factor z̄ is the average degree

of a neighbour in a random graph with the same degree distribution which is ⟨k⟩nn = ⟨k2⟩/⟨k⟩.

This is the relevant value for diffusive processes on a random graph. For our finite Erdős-Réyni

networks we have that ⟨k⟩nn ≈ ⟨k⟩ so again the growth factor found to give the best fit, z̄(fit), in

actual Erdős-Réyni networks is still a bit higher than this estimate. For the Barabási-Albert

networks and their randomised versions, the ⟨k⟩nn is around twenty-two to twenty-five for the

networks in Figure 4.2. This value is much closer but still not in complete agreement. This

suggests our shortest-path trees are sampling nodes in a different way from diffusion but still

with a bias to higher degree nodes.

Since spanning trees have many fewer edges than the original graphs, it is perhaps somewhat

surprising that we find that the growth factors comparable with any measures of the average

degree in the original network. So the high values of z̄ are telling us that the shortest-path

trees are sampling the nodes of their networks with a large bias towards high degree nodes in
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the parts of the tree close to the root node and that is why we need such a high growth rate

z̄(fit) when we fit our data for closeness. That way when we prune the edges to produce a tree

we will still have high degrees in the tree close to the root node. The corollary is that the outer

parts of shortest-path trees are dominated by leaves (degree one nodes) and other low degree

nodes, and these also correspond to low degree nodes in the original network. What we see is

consistent with the pictures used to understand the small world nature of these models, where

the high degree nodes play a key role in acting as hubs for the shortest paths in the network,

for example see the discussion by Bollobás [196].

It is also clear that node correlations play an important role as these are present in the Barabási-

Albert model but absent in the randomised version. The large difference in z̄ values for these two

cases show such node correlations are important and yet, the non-linear relationship Eq.(4.13)

still holds remarkably well in these artificial networks, with or without these correlations.

The β parameter in Eq.(4.12) is harder to interpret but Table 4.2 shows a comparison between

the two values of β. The first is β(fit) derived from a two-parameter fit of the data to Eq.(4.12).

The second value is β(z̄(fit),N) the value predicted using Eq.(4.13) where we use the z̄ value

obtained from the same two parameter fit and the number of nodes N . What we can see is that

the values derived using Eq.(4.13), β(z̄(fit),N), are consistently poorer than the values β(fit)

derived from a two-parameter fit. It highlights that the details of our theoretical form, such

as the precise formula for β, here Eq.(4.13), can be improved. However, our simple calculation

has captured the important features of the problem so that the form Eq.(4.12) does work in

these theoretical models provided we treat both z̄ and β in Eq.(4.12) as free parameters to be

determined.

4.4.2 Real-world data

We aim for a wide range of networks both in terms of size and in terms of the type of in-

teraction encoded in these real-world networks. We have examined eighteen data sets based

on real-world data from five broad categories: social networks (social-...), communication
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networks (commun-...), citation networks (citation-...), co-author networks (coauth-...),

and hyperlink networks (hyperlink-...).

Summary statistics are given in Table 4.3. The reduced chi-square χ2
r measure is between 1.05

and 1.61 for ten networks, more than half, of our examples and another four networks have

values between 2.09 and 2.86. Given the wide range of both size and nature of these networks

and the simplicity of our theoretical derivation, this agreement is remarkable. We also give the

Pearson correlation measure between closeness and degree, ρ(c, k), and this is generally high

as has been noted before [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. The success of our non-linear

relationship between closeness and degree is not incompatible with high ρ(c, k) values.

Network N 1/ ln(z̄(fit)) β(fit) z̄(fit) β(z̄(fit),N) ρ(c, k) χ2
r

social-karate-club 34 0.460 ± 0.066 2.997 ± 0.095 8.81 ± 2.76 2.44 ± 0.25 0.77 1.09
social-jazz 198 0.367 ± 0.015 3.349 ± 0.048 15.28 ± 1.72 2.84 ± 0.08 0.86 12.16

social-hamster 1788 0.353 ± 0.009 4.129 ± 0.020 17.05 ± 1.22 3.56 ± 0.07 0.68 1.11
social-oz 217 0.403 ± 0.010 3.492 ± 0.038 11.96 ± 1.02 3.04 ± 0.08 0.89 2.86

social-highschool 70 0.561 ± 0.039 3.734 ± 0.079 5.95 ± 0.74 3.08 ± 0.17 0.87 1.17
social-health 2539 0.537 ± 0.008 5.605 ± 0.016 6.43 ± 0.17 4.94 ± 0.06 0.75 1.05
commun-email 1133 0.394 ± 0.007 4.309 ± 0.014 12.64 ± 0.54 3.65 ± 0.05 0.84 1.06

commun-UC-message 1893 0.264 ± 0.003 3.526 ± 0.008 43.92 ± 2.16 2.96 ± 0.03 0.72 2.23
commun-EU(core)-email 986 0.259 ± 0.004 3.324 ± 0.012 47.63 ± 2.67 2.76 ± 0.03 0.84 29.21

commun-DNC-email 1833 0.222 ± 0.010 3.499 ± 0.012 91.16 ± 18.84 2.65 ± 0.08 0.41 1.34
commun-DIGG-reply 29652 0.388 ± 0.002 5.078 ± 0.003 13.12 ± 0.18 4.89 ± 0.02 0.61 1.61

citation-DBLP 12494 0.361 ± 0.003 4.856 ± 0.004 15.98 ± 0.35 4.31 ± 0.03 0.54 1.31
citation-Cora 23166 0.503 ± 0.004 6.639 ± 0.008 7.31 ± 0.13 5.82 ± 0.04 0.48 1.15

coauthor-astro-ph 14845 0.441 ± 0.004 5.735 ± 0.010 9.67 ± 0.21 5.07 ± 0.04 0.61 14.30
coauthor-netsci 379 0.382 ± 0.080 6.553 ± 0.119 13.74 ± 7.51 3.16 ± 0.48 0.35 1.47
coauthor-pajek 6927 0.259 ± 0.002 3.894 ± 0.002 47.45 ± 1.33 3.26 ± 0.02 0.64 12.79

hyperlink-polblog 1222 0.240 ± 0.004 3.316 ± 0.011 64.84 ± 4.44 2.68 ± 0.03 0.72 2.12
hyperlink-blogs 1222 0.239 ± 0.004 3.316 ± 0.011 65.07 ± 4.48 2.68 ± 0.03 0.72 2.09

Table 4.3: Results for a variety of friendship networks derived from real-world data. The results
for 1/ ln z̄(fit) and β(fit) come from linear fits of inverse closeness, 1/cv to the logarithm of degree,
lnkv for each vertex v, i.e. 1/cv = (ln z̄)−1 lnkv + β in Eq.(4.12). The value of β derived from
z̄(fit) and N using Eq.(4.13) is also shown as β(z̄(fit),N) for comparison. The fits are very good
as reduced chi-square χ2

r values show.

The data for each network is shown in more detail in Figure 4.4. Again, we can see that within

the error bars the average closeness at each degree generally follows the form we predict within

5% when the best fit parameters are used. Further, the uncertainties estimated for these data

points suggest that the vast majority of average closeness values are statistically consistent

with the predicted value for that degree, something already captured by the reduced chi-square

values in Table 4.3.
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Figure 4.4: Results for eighteen real networks derived from real-world data, see Table 4.3 for
the statistics of each dataset. The yellow shaded region corresponds to 5% deviation and grey
region corresponds to a 10% deviation. The left plot shows the the inverse of the predicted
result 1/ĉ from the best fit against the inverse of the mean measured value 1/c = 1/⟨c⟩k averaged
over nodes with the same degree k. If the prediction matched data perfectly, the point will lie
on the dashed line. Both axes are essentially lnk. The error bars represent from standard error
of mean of the inverse closeness. For majority of points, we can see our prediction Eq.(4.12)
captures the relation between closeness and degree, usually with within a 5% margin.



4.5. Discussion and conclusions 115

4.5 Discussion and conclusions

Our results confirm our conjecture that the inverse of closeness depends linearly on the degree

Eq.(4.12) for most networks. This is a correlation, true on average but not an exact for every

node. This non-linear relationship has been missed in previous studies which focused on linear

correlations. Our work suggests that in the majority of networks, closeness captures little more

information on average than is contained in the degree.

An important use of our result is that it allows us to factor out this trivial dependence to extract

the information contained in closeness that is independent of degree. For instance, we could

start by examining the degree centrality of every node. This would be the primary measure

of centrality. Then we could fit our closeness values using Eq.(4.12) to produce an expected

value of closeness c
(fit)
v for each node and we would use this to find nodes which are more or

less central than expected, for instance using the normalised closeness

c
(norm)
v = cv

c
(fit)
v

. (4.19)

This would highlight the outliers which would then indicate any interesting behaviours.

The success of our conjecture also suggests that most networks satisfy the two key assumptions

built into our derivation. First we assumes that the number of nodes a distance ` from any

node grows exponentially and this must be reasonable for most networks. That exponential

growth is common is not a surprise as it is essentially the mechanism behind the concepts of

the “six degrees of separation” and the “small world” effect. More formally, length scales in

most real-world networks grow as O(lnN) and so much slower than networks embedded in

d-dimensional Euclidean space where n(`) ∼ `1/d. For instance, when we averaged the inverse

closeness Eq.(4.7b) over all vertices we found our prediction for the average path length in

(4.18), where the N dependence comes from the lnN term in the expression for β of Eq.(4.13).

Our work shows that our Euclidean intuition regarding closeness breaks down for most networks

with their small world, non-Euclidean features. If we look at the original context where closeness

was developed, Bavelas [53] only uses planar graph examples and the initial applications of
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closeness centrality measures were on very small networks. It appears the importance of the

small-world vs Euclidean properties of a network when interpreting closeness was lost when,

much later, closeness was used to analyse networks which were much larger and no longer

constrained by geography.

Our second assumption that our results support is that the branches of the shortest-path trees

are statistically similar, as illustrated in Figure 4.1. The success of our results suggests this

assumption works well whenever we are looking at measurements that depend on the bulk of the

network, rather than one special path (e.g. betweenness) or the immediate neighbourhood (e.g.

community detection). This simple approximation may therefore help analyse other network

measurements.

Though generally very successful, there are examples of networks where our form Eq.(4.12)

fails to capture the behaviour well or where we can see some clear, if small, trends in the

deviations. These cases highlight the limitations of our approach but also suggests how this

approach may be improved. At the simplest level, we could replace the sharp cutoff used for

n`(r) where n`(r) = 0 for ` > L. That may well lead to better predictions for β as we used

fitted values rather than our prediction Eq.(4.13) but fitting one rather than two parameters

while theoretically satisfying does not seem a gain in practice. More serious changes will be

needed to the calculation if other effects neglected here, such as community structure or degree

assortivity, are to be included.

However, another option might be to calculate a different network parameter, namely the second

degree k
(2)
r = n`=2(r) [223] for each node r. By finding the number of nodes two steps away we

can make a better approximation for n`(r), that is n0(r) = 1, n1(r) = k, and n`(r) = k(2)r z̄`−2

for 2 ≤ ` ≤ Lr and n`(r) = 0 for ` > Lr. This approach cannot be worse than the method used

here as the latter is included as a special case where the second degree k
(2)
r = z̄kr for all nodes

r. To leading order we get the same type of result, namely that 1/cr = (z̄)−1 lnk
(2)
r +β since the

degree kr now only contributes a small number of terms to closeness. So in this approach using

second degree we need a different set of N parameters to find. Finding second degree is slower

than degree but both scale in the same way with increasing network size. The success of our
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simpler method here points to the idea that second degree and degree may often be correlated

so using second degree may only enhance results in a few cases.

Finally, it is interesting to note that the logarithm of degree lnk has been found to play an

important role in network analysis before. A large fraction of papers on the topic will show

degree distributions where the horizontal axis is the dependent variable lnk and not simply the

degree k. A more specific example comes from [224] where the ratio of the degrees of nodes

at the two ends of each edge (largest value in the numerator) is used to assign a ‘distance’

η(u, v) to each edge (u, v). This is equivalent to defining λ(u, v) = lnη(u, v) = ∣ lnku − lnkv ∣.

In fact one can quickly see that while both η and λ are semi-distances on the set of edges in

the formal mathematical sense, only λ is also a semi-metric and so λ is in some sense the more

natural ‘distance’ measure in a qualitative sense. Our work suggests that an alternative view is

to replace the logarithm of degree by the inverse of closeness. Since (cu)−1 is the actual average

of the shortest-path distances from u to all other nodes, we can immediately see it is natural

to work with inverse closeness while considering distances. For instance in [224] we could look

at a different edge measure λ̃(u, v) = ∣(cu)−1 − (cv)−1∣. While the inverse closeness is a more

natural distance, the degree is much easier to calculate in practice. Our work allows researchers

to move between these two pictures.

4.6 Summary

In this chapter, we

• investigated correlations between closeness and degree.

• gave an analytic derivation that shows the inverse of closeness is linearly dependent on

the logarithm of degree, based on the shortest-path tree approximation.

• showed that our hypothesis works well for a range of networks produced from stochastic

network models including the Erdős-Réyni and Barabási-Albert models.
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• tested our relation on networks derived from a wide range of real-world data including

social networks, communication networks, citation networks, co-author networks, and

hyperlink networks.

• found the relationship holds true within a few percent in most, but not all, cases.

• connected the results with those on average distance and suggested some ways that this

relationship can be used to enhance network analysis.
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Conclusion and future work

Complexity science is an emerging field[2, 1] with wide applications in many fields, but there is

no universal mathematical framework to solve many questions. For each question, complexity

science provides a way to understand emergent behaviours, for instance, from earthquake,

rainfall, rice piles, atrial fibrillation [225, 226, 227, 228]. In addition, complexity science also

provides an alternative way to understand other fields, including ecology and epidemiology

[229, 230, 231]. However, challenges still exist since other fields do not widely accept the ideas

or comments from the models from complexity science, though models are mathematically

precise and rigorous.

This thesis uses complex networks to study three different questions. Two of these topics

investigate the structures of networks and one uses networks to model the flows of bicycles using

the gravity model. Firstly, we looked through popular higher-order network models in recent

years. To be specific, we designed a combinatorial model, which used three-node interactions

to analyse how temporal networks evolve. We also designed a statistical method that can verify

the significance of the triplet transitions in temporal networks. We analysed several social and

communication networks and found it is evident that the triplet transition mechanism appears

in temporal networks using our statistical test. We use our triplet transition methods to predict

evolution of edges and triplet transition methods in general outperform other nine pair-wise

methods in the goal of predicting links. The result implies the evolution of temporal network

119
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is indeed beyond pairwise in many real world networks. It is not simple to detect higher-order

mechanisms directly behind observed topology. In fact, what we observed from the triplets

may be projections from higher dimension graphlets, for instance, four nodes interactions.

Understanding optimal numbers of multi-way interaction mechanism is an important but less

well-developed question, which needs to be further investigated. In addition, temporal network

reconstruction is an emerging field and lacks models that can explain the evolution of temporal

networks. A further question is the network completion problem, where the nodes in the

network are not all observable. The state information can be used to infer the structures of

networks, one of these tasks is to construct explainable likelihood inference, instead of relying

on methods such as neural networks or embedding methods. Network completion problems

have many applications in different fields, for instance, in biological experiments, determining

protein-protein interactions usually cost a lot and only about 70% interactions can be obtained.

Inferring the hidden structures can help to suggest if critical nodes are determined, so any

further experiment is not necessary. These fields are still relatively new and need to be better

understood.

Human mobility is an important question to understand, especially during a pandemic. Un-

derstanding mobility patterns can help cities to allocate resources. We looked at the flow of

bicycles in Shanghai and Beijing. We found the gravity model can capture human mobility

behaviour. Gravity model or other recently developed mobility models [176, 180, 175], reflect

the interactions between spatially distributed populations, in which spatial attraction and spa-

tial constraints play an important role [182]. The gravity model originally was inspired by

Newton’s Law of Gravity. In Newton’s law of Gravity, the strength of attraction force between

two objects is proportional to the product of two masses and inversely proportional to distance

squared between them. In the Gravity model, it is stated that the flows between two loca-

tions are proportional to the product of populations in two locations, inversely proportional to

distances between two locations. Though each individual human being mobility behaviour is

highly complex, at a large scale the model can predict correct flow behaviours. However, if we

look at locations from different spatial scales, i.e. using 500 m × 500 m, instead of 1000 m ×

1000 m, we found the Gravity models still hold, however, the scaling exponents are no longer the



121

same. Since there exists transitions across two very near locations, if we coarse-grain these two

locations into one, these transitions across will be neglected and treated as self-loops. There-

fore, the system is no longer scale-invariant due to information loss if we choose a larger spatial

resolution. In addition, spatial models are limited since the transitions between locations in a

city have time dependence, especially at intra-city level, a more precise spatio-temporal map-

ping of population would be essential to mobility models. When the mobility is not limited to

commuting (which is the case for biking traffic), we assume that the active population, instead

of a pure residential or a working population would be a more suitable proxy for the attraction

of locations. The active population measures within a certain region how many people have

ever been there in one day and this can be more accurately estimated from cellphone data

[167, 182, 187]. Yet due to limitations on getting access to large scale cellphone data, we still

use the residential population as proxy of attraction of locations. From such an interaction

perspective, the relationship between the gravity model and other recently developed mobility

models (including the radiation model [176], population-weighted opportunities model [180])

might be better revealed [188]. Furthermore, comparing the effectiveness of the aforementioned

mobility models on biking behaviors and developing a more suitable mechanistic model would

be important future works.

Centrality has been applied widely in many different fields, from biological science, medical

science to social networks, for instance, it has been found that the road with high betweenness

is normally regarded as an optimal route, thus nodes with high betweenness should expect to

receive more traffics[232, 233]. High correlations between different centrality measures are really

common, but the reason behind it is rarely studied. We looked at closeness, which measures the

average distance of a node to all reachable nodes in the network and degree, which measures the

number of neighbours. The intuition behind the strong correlation is that if a node has a high

degree, then there are immediately more shortest paths to access rest of other nodes compared

to low degree nodes. One natural structure which captures this concept is a tree structure. The

tree is a structure that uses minimum numbers of edges to maintain connections in the network.

To answer the question why the global distance measure is related to local connectivity, we

choose the shortest-path tree as our starting point to approximate the network. We used a
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simple homogeneous assumption, that is, on average, each node in the network, apart from

the root node and leaves, connects to z̄ new nodes that have not connected to original nodes

before. The parameter z̄ is also known as the effective branching number which explains how

quick a network grows. We derived an analytical equation that relate the logarithm of degree

and inverse of the closeness and we tested the relationship on several different types networks,

including communication networks, social networks, coauthor networks, hyperlink networks and

citation networks. For most of our real networks, our relationship performs well. To understand

intuitions behind the effective branching number, we relate the average distance to an effective

branching number and find an analytical expression that describes how the length scales grows

as the size of networks grows. The small world model states that the average shortest path

length of real networks grows as O(lnN). Our model provides a more precise description, that

is, the average shortest path length is ⟨l⟩ = lnN/ ln z̄, which is different from the average degree

⟨k⟩ − 1 in the network, since it only consider average number of new nodes a node brings to.

We test our models in many networks and most agreed with our theory. The results bring

some new insights, that a higher density of connections in the networks does not imply that

shorter average path lengths, but the effective branching number do. Our analysis can enhance

network analysis. If we find there exist a good fit between inverse of closeness and logarithms of

degree(lnk). Further extension can be made to extend the study effective branching number z̄

in different networks, for instances, the effectiveness of edges should be larger in social network

compare to communication networks. This can help to detect whether there exist abnormal

structures behind observed topology in networks.
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[176] Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A universal model for mobility

and migration patterns. Nature 484, 96–100 (2012).

[177] Masucci, A. P., Serras, J., Johansson, A. & Batty, M. Gravity versus radiation models:

On the importance of scale and heterogeneity in commuting flows. Physical Review E 88,

022812 (2013).

[178] Goh, S., Lee, K., Park, J. S. & Choi, M. Modification of the gravity model and application

to the metropolitan seoul subway system. Physical Review E 86, 026102 (2012).

[179] Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A tale of many cities:

universal patterns in human urban mobility. PLoS One 7, e37027 (2012).

[180] Yan, X.-Y., Zhao, C., Fan, Y., Di, Z. & Wang, W.-X. Universal predictability of mobility

patterns in cities. Journal of The Royal Society Interface 11, 20140834 (2014).

[181] Lee, M. & Holme, P. Relating land use and human intra-city mobility. PLoS One 10,

e0140152 (2015).

[182] Li, R. et al. Simple spatial scaling rules behind complex cities. Nature Communications

8, 1–7 (2017).

[183] WorldPop. https://www.worldpop.org.uk/ (Accessed: 6th December 2019) (2017).
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