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Abstract 
Lung Cancer (LC) is one of the most common malignancies and is the leading cause of cancer 

death worldwide among both men and women. Current LC classifications are based on 

histopathological features which poorly reflect the molecular diversity of these tumours. 

Consequently, primary and secondary drug resistance are very frequent, and a high mortality 

is usual in LC patients. Despite the fact that LC has been intensively studied, there is a lack of 

effective biomarkers for early detection, stratification and prognosis. Integration of omics data 

is a powerful approach that can be used to identify molecular subgroups relevant in the 

clinical setting. This thesis addresses this challenge by characterising the molecular alterations 

accompanying LC at the genetic and DNA methylation level, using a combination of Whole-

Exome Sequencing (WES), Targeted Capture Sequencing (TCS), Single Nucleotide 

Polymorphism (SNP) genotyping, Whole-Genome Bisulfite Sequencing and RNA-

sequencing. The integration of different types of omics data first validated previous molecular 

alterations in frequently diagnosed LC tumours. This allowed comparison of the genomic and 

epigenomic landscapes between these common and rarer LC subtypes. Next, novel molecular 

subgroups of Non-Small Cell Lung Cancer (NSCLC) tumours with bad prognostic, as well as 

subgroups of Lung Carcinoids (L-CDs, an understudied LC subtype) have been identified and 

their molecular alterations and signatures characterised. Significant associations with 

histological features and gene expression programmes have been found by using several 

bioinformatic tools. These results show the value of multi-omics approaches to better 

understand the molecular mechanisms underlying LC and to identify new biomarkers. 

Importantly, some of these findings may be translatable and are likely to improve the 

detection, monitoring and stratification for targeted therapies in LC patients.  
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Chapter 1: General Introduction 

1.1 Lung Cancer 

1.1.1 Introduction: Lung Cancer 

Lung cancer (LC) is one of the most common malignancies and the leading cause of cancer 

death worldwide with an estimated 1.8 million deaths3. Although people who have never 

smoked can develop lung cancer, smoking is the major risk factor of this disease accounting 

for over 85% of cases. In 2015, the World Health Organization (WHO) published a new 

histological classification of tumours of the lung4,5 maintaining three major histological types6: 

Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC) and Lung 

Neuroendocrine Tumours (LNETs). LNETs comprise Small Cell Lung Carcinoma (SCLC), 

Large Cell Neuroendocrine Carcinoma (LCNEC), and Atypical and Typical Lung Carcinoid 

(L-CD). 

 

1.1.2 Lung Cancer Causes and Risk Factors 

Smoking is by far the main aetiological factor for developing LC and directly accounts for 82% 

of the cases7. Variation of LC rates and trends largely reflects the maturity of the tobacco 

epidemic8, and a stable decrease has been observed in men. Nevertheless, this decline in LC 

incidence is two times slower in woman compared to men, and the majority of countries are 

continuing to observe a rising incidence of LC9 among women. For instance, Denmark, 

Iceland, and Sweden show even higher incidence rates in females (ages 35-64 years) than in 

males. Smoking behaviours reflecting historical differences in tobacco uptake however do not 

seem to fully explain the higher incidence observed in women born since 196010.  

Increased LC risk has also been reported after consumption of cigar, bidi and hookah 

in India, khii yoo in Thailand, water pipe in China and other tobacco products11. Roll-your-

own cigarettes and de-nicotinized cigarettes have been shown to still be toxic despite 

manipulation of tobacco composition. People who have never smoked or consumed tobacco 

in other forms can, however, also develop LC. Factors such as genetic susceptibility, poor diet, 

alcohol consumption, occupational exposures and air pollution can act independently or in 
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concert and may predispose to LC. In particular, the identification of molecular alterations 

has started to bring light into the aetiology of LC in never smokers with several Single-

Nucleotide Polymorphisms (SNPs) and mutations being linked to LC development12,13. 

Further, the exposure to second-hand tobacco smoke – this is a stream of smoke 

released from the burning cone mixed with the exhaled mainstream smoke in combination 

with the air in an indoor environment to which both smokers and non-smokers are exposed - 

is also well known to be involved in LC. This complex mixture leads to voluntary (passive) 

smoking. Low ventilation together with second-hand smoke can result in concentrations of 

toxic and carcinogenic agents above those found in urban areas14. 

Outdoor ambient air pollution, also known as fine particulate matter, is also a major 

risk factor with 3.4 million deaths being attributed to it in 201715. Other inhalable agents, such 

as household burning of solid fuels for heating and cooking, have been suggested as further 

risk factors16,17, as well as volatile organic compounds and Nitrogen Dioxide (NO2) released 

from cooking, cleaning and other indoor air contaminants (candles, incense, shower gels and 

fragrances, glues, inks and air fresheners). 

 Additional risk factors include asbestos, radon and other ionizing radiation, as well as 

arsenic, nickel, silica and chloromethyl ethers. Infectious agents are also emerging as players 

in the development of LC18 with lung microbiota dysbiosis being shown to correlate with LC19. 

Exposure to microbial oncogenes, toxins and/or Reactive Oxygen Species (ROS) from 

microbial activities can lead to mutations and dysregulation of important biological processes, 

such as cell cycle, proliferation or apoptosis, that can also contribute to carcinogenesis. A 

summary of several risk factors is shown in Fig. 1.1. 
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Figure 1. 1| Risk Factors associated with lung cancer. [Adapted from Akhtar, N. & Bansal, J. G. 
Risk factors of Lung Cancer in nonsmoker. Curr. Probl. Cancer 41, 328–339 (2017)]20. 

 
1.1.3 Lung Cancer Detection and Diagnosis 

Prognosis of LC patients is reliant upon detection at the initial stages of the disease. Several 

detection methods are currently being used in the clinic including Chest Radiographies 

(CXRs), Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI), Positron 

Emission Tomography (PET), and cytology sputum and breath analyses.  

 The fact that LC is typically diagnosed when at an advanced stage, when survival is 

poor, makes it an ideal candidate for screening methods. Mass screening of individuals at high 

risk from LC could potentially be of benefit but have not as yet appeared to reduce mortality21. 

Advances in CT imaging techniques have allowed its application to become the most effective 

method for early LC detection22 as it provides more detailed information regarding tumour 

physical location and nodule size than chest radiography. Compared to traditional 

radiography techniques, CT scans have been shown to reduce mortality from LC by 20%23.  

Additionally, molecular markers in sputum, bronchial brushings and blood have been 

investigated but are not currently being used in the clinic. Moreover, there is a lot of research 
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investment (both time and money) into the growing field of circulating tumour DNA (ctDNA) 

and Circulating Tumour Cells (CTCs). Although not yet successful, specifically for early 

detection of LC, a combination of different cancer biomarkers is in ongoing research and could 

further improve early diagnosis as well as being used to assess response to treatment, the 

monitoring of tumour burden and detection of relapse. 

 

1.1.4 Lung Cancer Treatment 

The type of treatment for LC patients depends on the histological subtype and staging, and 

includes surgery, stereotactic body radiation, thoracic radiotherapy and conventional 

cisplatin-based chemotherapy24,25. Currently, chemotherapy remains as the standard 

treatment for LC patients.  

Emerging technology platforms are however allowing the molecular alterations that 

each cancer subtype undergo to be identified, highlighting the importance of genetic profiling 

of patient tumours. For example, the discovery of EGFR mutations26 and ALK, ROS1 and cMET 

rearrangements27,28,29 as effective targets for patients with advanced NSCLC have changed 

clinical practice and therapeutics. In addition, the accumulation of molecular knowledge has 

allowed the rapid development of new drugs that specifically target less common molecular 

abnormalities, such as HER2, RET, NTRK, as well as the KRAS G12C mutation. Since very 

frequently tumours become resistant, and second and third-line treatments are often required, 

of relevant importance are new studies looking at resistance mechanisms and the newer 

generation of targeted therapies. 

Furthermore, cancer cells often use “checkpoint” proteins or immune cells to avoid 

being attacked by the Immune System (IS). Drugs that target these checkpoints (checkpoint 

inhibitors), are being researched in numerous clinical trials for use alone or in combination 

with chemotherapy. Hence, immunotherapy can help an individual’s own IS to recognise and 

destroy cancerous cells more effectively and have revolutionized LC therapy (Fig. 1.2). For 

example, immunotherapy with anti-PD1/PD-L1 drugs have become the gold standard for 

patients with no driver mutations.  
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Figure 1. 2| Mechanism of action of immune checkpoint inhibitors in advanced NSCLC. The 
activity of several proteins on T cells (CTLA-4, PD-1, and PD-L1) function as immune 
checkpoints since they help in downregulating immune responses. Ipilimumab and 
tremelimumab are monoclonal antibodies that inhibit CTLA-4, while nivolumab, pembrolizumab, 
atezolizumab, and durvalumab inhibit PD-1 and PD-L1 as indicated. These drugs act by reducing 
immune checkpoint activity, thus diminishing tumour evasion. Abbreviations: TCR, T-cell 
receptor; MHC, major histocompatibility complex. [Taken from: Wakelee, H. Evaluating the Role 
of Targeted Therapy in Lung Cancer. Oncology (Williston Park, N.Y.) vol. 33 (2019)]30. 

 

The current immunotherapy treatments  however are effective in only 15%-20% of 

NSCLC patients31 and, similar to what is happening for targeted therapies, a lot of ongoing 

research aims to understand and identify therapies for when an immune therapy does not 

work for a patient, or when it initially was effective and then stopped having efficacy. 

Deciding which patients are eligible for immunotherapy with or without chemotherapy still 

depends on PD-L1 expression levels: immunotherapy is being given to LC patients with PD-

L1 high levels, and a combination of both chemo and immunotherapy is being given for those 

with medium PD-L1 expression levels. If known druggable mutations are detected, then 

checkpoint inhibitors are not normally given since resistance is very likely. Finally, for LCs 

with no driver mutations PD-L1 levels are used to decide the use of a single-agent 

immunotherapy, for patients that are not very symptomatic, or a combination for 

symptomatic patients because the response rates are higher. 
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1.1.5 Lung Cancer Challenges 

Current key trends in LC research are directed by the major challenges in the management of 

LCs. Fundamentally, research is being focused on prevention and early detection, improving 

cure rates in early stages, and management and treatment of advanced and metastatic LC 

disease.  

Although significant advancements have been made in recent years for most other 

cancer types, there have only been small improvements in the 5-year survival rate among LC 

patients. The high mortality observed in LCs is associated with diagnosis at advanced stages 

when symptoms start to appear, which are heterogenous and often mistaken for other 

problems. The 5-year relative survival rate for all LCs (NSCLC and SCLC combined) is 19%, 

with the 5-year survival being higher for NSCLC (23%) than for SCLC patients (6%)32,33. 

In addition, lung tumours are characterised by a high degree of molecular 

heterogeneity because of the multistage carcinogenesis with a combination of genetic and 

epigenetic processes happening alone or in combination. Different levels of heterogeneity 

have been recognised in all cancer types: heterogeneity at the genetic level, since mutations 

are located at different genomic locations and with different timings; heterogeneity at the 

cellular level within a patient’s tumour (intra-tumour heterogeneity) or tumour by tumour 

(inter-tumour heterogeneity); and finally, at the histological level with spatial heterogeneity, 

referring to the different regions where tumours are detected (Fig. 1.3). 
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Figure 1. 3| Cancer heterogeneity levels in Lung Cancer (LC). Multiple types of heterogeneity 
can be found in LC. At the genetic level, with mutations occurring at different genomic locations 
and rates during tumour evolution; at the cellular level, between patient tumours (inter-tumour 
heterogeneity) or between different cells within the same tumour (intra-tumour heterogeneity); 
and at the histological level, when microenvironmental factors shape cancer cell phenotypes and 
cancer progression.  

 

The genetic background within each individual has been shown to be highly 

heterogeneous34,35. For instance, Campbell et al. showed that individuals carry several different 

clones in healthy skin with two or three driver mutations36. It is presumed that environmental 

exposures together with ageing-related processes and the individual’s genetic background 

could have a combined impact sufficient to initiate tumorigenesis. Thus, the most 

advantageous genetic and/or epigenetic modifications within a gene can differ between 

individuals as well as within the same individual when different clones arise simultaneously. 

Consequently, distinct cellular populations within a tumour can show a diverse spectrum of 

features: from the expression of cell markers, to the genetic and/or epigenetic alterations, as 

well as from various non-genetic mechanisms, including stem cell populations and the 

immune microenvironment of the tumour37.  

Furthermore, primary and metastatic tumours invariably show different molecular 

lesions and the treatment given can determine the course of future molecular alterations that 

would favour cancer cells to proliferate. This fact makes primary and secondary drug 

resistance very frequent among LC patients and, for example, resistance to Tyrosine Kinase 

Inhibitors (TKIs) in patients with EGFR-mutant LC remains a big concern.  



 32 

As highlighted above, LC heterogeneity remains a major challenge in relation to the 

detection and treatment of LC patients. Future studies therefore should ideally include 

comprehensive genomic characterisation of tumour specimens at the time of disease 

progression to better understand the clonal evolution of tumours under treatment-induced 

selection pressure. 

 

1.1.6 Lung Cancer Molecular Landscapes 

The current LC classification reflects the distinct histopathological features of the disease but 

has also incorporated, as evidence has emerged, molecular profiles since the latter have 

changed the way these diseases are treated with specific drugs. Importantly, LC has become 

a group of histologically and molecularly heterogeneous diseases even within the same 

histological subtype.  

Tumour Mutational Burden (TMB) is defined as the number of somatic, coding, base 

substitution, and InDel mutations per Mega base (Mb) of a tumour genome examined. 

Cancers associated to DNA damage frequently appear highly mutated whilst paediatric and 

well differentiated tumours have usually low TMB38. By far, poorly differentiated tumours 

show the highest mutation rate when considering all changes or when considering only 

protein-altering changes, with mutation rates of 5.79 and 4.55 mutations per Mb respectively. 

Still NSCLC appeared as one of the tumours with the highest mutation rate of protein-altering 

mutations, with LUADs showing mutation rates of 3.5 per Mb and LUSCs 3.9 per Mb, in 

comparison with an average rate of 1.8 per Mb across all tumour types39. Similarly, TMB has 

been reported to be higher for LNETs with median TMB ranging from 9.9-12.2 mutations per 

Mb, followed by LUSCs (TMB=9) and LUADs (TMB=6.3). Finally, lung atypical carcinoids 

alone have been found to have a median of 1.8 mutations per Mb. These large-scale 

observations are summarised below in Tables 1.1a-b, and highlight the genomic burden 

variability in LC histotypes38. Of relevance, for the clinic, TMB has been shown to correlate 

with the number of neoantigens and hence identified as a predictive biomarker of 

immunotherapy response for NSCLC40 and other tumours.
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Disease type Specimen  
count 

Median  
TMB 

Maximum  
TMB 

Percent cases with >20 
mutations/Mb 95% CI 

Lung atypical carcinoid 83 1.8 180.2 1.2 0.1 - 6.5 
Lung adenosquamous carcinoma 154 5.4 73.0 12.3 8 - 18.5 

Lung adenocarcinoma 11855 6.3 755.0 12.3 11.8 - 12.9 
Lung sarcomatoid carcinoma 130 7.2 165.2 19.2 13.4 - 26.8 

Lung non-small cell lung carcinoma (nos) 2636 8.1 173.9 17.0 15.6 - 18.5 
Lung squamous cell carcinoma (scc) 2102 9.0 521.6 11.3 10 - 12.7 

Lung small cell undifferentiated carcinoma 913 9.9 227.9 9.0 7.3 - 11 
Lung large cell neuroendocrine carcinoma 288 9.9 98.2 19.8 15.6 - 24.8 

Lung large cell carcinoma 74 12.2 56.8 24.3 14.9 - 33.7 

 
Table 1. 1| A) Mutation rates in different human cancers. [Taken from: Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in 
human cancers. Nature 466, 869–873 (2010)]39. B) Tumour Mutational Burden (TMB) across LC histotypes. [Adapted from: Chalmers, Z. R. et al. Analysis 
of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 1–14 (2017)]38.

a 

b 
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1.1.6.1 Genetic Alterations in Lung Cancer 

1.1.6.1.1 LUADs 

LUAD is characterised by a high TMB, frequent cytosine to adenine mutations (C>A) 

(explained by carcinogen exposures) and regional heterogeneity, where mutation rates are 

lower in highly expressed genes due to transcription-coupled repair mechanisms. 

Significantly mutated oncogenes include TP53, KRAS, STK11 (also referred to as LKB1), EGFR, 

BRAF, MET and NF1, although the mutations seen in these genes vary depending on smoking 

status and gender. For instance, mutations in EGFR are more prevalent in women and in non-

smokers. Additionally, KRAS mutations are frequently seen in smokers. Rearrangements are 

commonly found in ALK, ROS1, RET and NTRK1.  

 Copy Number Alterations (CNAs) include gains in chromosome 5p15, suggested to 

be targeting the Telomerase Reverse Transcriptase (TERT), and amplifications in 14q13.3 

(NKX2-1) and MYC are also often observed. Other recurrent amplifications involve EGFR, 

MET, KRAS, ERBB2, and MDM2 genes, and other deletions are in the genes encoding LRP1B, 

PTPRD and CDKN2A41. 

 

1.1.6.1.2 LUSCs 

LUSCs begin in the top layer of the cells (squamous cells) that line the bronchi of the lung.  

LUSCs represent around 30% of all LCs. Recurrent mutations have been detected in genes 

associated with the cell cycle and apoptosis (TP53, CDKN2A and RB1), antioxidant pathways 

(NFE2L2 and KEAP1), phosphatidylinositide 3-kinase signalling (PIK3CA and PTEN), 

epigenetic signalling (MLL2) and proliferation, apoptosis and squamous cell differentiation 

(NOTCH1). Additionally, inactivating mutations in the HLA-A locus have been suggested to 

predict response to immunotherapy. Furthermore, CNAs have been widely reported in 

LUSCs and include amplifications in SOX2, NFE2L2, PDGFRA, FGFR1 and CCND1 with 

deletions in CDKN2A42,43 also observed. Other new amplifications have been recently found 

in MYC, CDK6, MDM2, BCL2L1 and EYS with new deletions of FOXP1, PTEN and NF143 being 

found. 
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In LUSCs, 5'-C-phosphate-G-3' (CpG) transitions and transversions resulting in C>T 

and C>A mutation types are the most commonly observed type of mutation reported, whereas 

in non-CpG sites, C>A transversions have been found to be more common43. 

 

1.1.6.1.3 LNETs 

Among neuroendocrine tumours of the lung, SCLC and LCNEC represent high-grade 

malignancies. Both present frequent aneuploidy as well as chromosomal alterations of greater 

than 10/Mb with means of 18.8 and 13.7 aberrations per tumour type respectively44. 

 Compared with other neuroendocrine tumour types, LNETs are characterised by 

relatively few mutations and chromosomal aberrations. In pulmonary NETs, mutations have 

been found typically in genes encoding for proteins directly involved in the maintenance of 

epigenetic status, including members of the SWI/SNF complex, sister chromatid cohesion 

pathway related genes and histone covalent modifiers (Fig. 1.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. 4| Mutated genes and affected signalling pathways in LNETs. [Taken from: Di 
Domenico, A., et al. Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr. 
Relat. Cancer 24, R315–R334 (2017)]45. 
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The top most frequently altered gene in LNETs is also TP53, followed by LRP1B46. TP53 (90%) 

and RB1 (65%) are hallmark mutations of SCLCs, although mutations in RB1 have also been 

found in LCNECs46,47. Other significantly mutated genes that have been identified in SCLC 

are KIAA1211 and COL22A1 as well as RGS7and FPR1 - both of which are involved in G-

protein-coupled receptor signalling. 

Furthermore, genomic losses within 3p pointing to focal events on 3p14.3–3p14.2 

(harbouring FHIT) and 3p12.3–3p12.2 (harbouring ROBO1) have been reported. Loss of the 

CDKN2A locus, together with amplification of the MYC family genes (MYCL1, 

MYCN and MYC), as well as of the tyrosine kinase gene FGFR1, and IRS2 were recently 

identified48. 

On the other hand, LCNECs harbour very frequent TP53 mutations (92%) followed by 

RB1 mutations (42%). Other genes mutated in LCNECs include STK11, KEAP1, ADAM, 

MYCL1, NKX2-1, RAS, BRAF and NFE2L2. CNAs include MYCL1, FGFR1, NKX2-1 and MYC. 

Statistically significant deletions have been found in CDKN2A (9p21, 8%) and a putative 

fragile site at PTPRD (9p24, 7%)47. Other genes identified mutated in both SCLCs and LCNECs 

include FAT3, SMARCA4, NOTCH3, PIK3CG, PIK3CA, and KMT2D46.  

 

1.1.6.1.4 L-CDs 

Finally, molecular profiling of lung carcinoids (L-CDs) have previously shown chromatin 

remodelling genes, such as MEN1, ARID1A, PSIP1, KMT2C and KMT2A to be recurrently 

mutated, while TP53, RB1 and STK11 mutations have been found frequently altered in non-

carcinoid LNETs49.  

Studies have emphasized the distinction between TCs and ACs as the most important 

prognostic factor. Molecular events distinguishing these subtypes include common MEN1 

and TP53 mutations or deletions; KMT2C mutations; and TERT, SDHA and RICTOR 

amplifications in ACs; whereas TCs are not characterised by recurrent mutations but RB1 

deletions MEN1 deletions at frequencies of maximum 15%.  
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1.1.6.1.5 Smoking and the Cancer Genomic Landscape 

It is important to mention the different genomic landscapes of lung cancer between never 

smokers and smokers with the latter containing a significantly higher mutation frequency, 

predominantly cytosine to adenine (C>A) nucleotide transversions and non-actionable 

mutations such as those in KRAS and TP53. By contrast, never smokers usually have a 

predominant transition of cytosine to thymine (C>T, and a higher prevalence of actionable 

driving gene alterations including activating EGFR mutations, and ROS1 and ALK 

translocations14,17. In addition to the differences at the molecular level, epidemiological and 

clinical differences have been observed between LCs arising in never smokers and smokers. 

For instance, never smokers that develop LC seem to do it at younger ages, although not in 

the United States and Europe where LC is diagnosed at the same or older age50,51. Moreover, 

women are more frequently affected than men and adenocarcinoma is the most common 

histological subtype in never smokers. 

 

1.1.6.2 Epigenetic Alterations in Lung Cancer 

Epigenetic mechanisms, mainly DNA methylation, histone modification, and noncoding 

RNAs (ncRNAs), are dynamic and reversible modifications that are involved in some 

important biological processes and together with genetic events affect cancer hallmarks.  

 DNA methylation is the most studied epigenetic modification in cancer responsible 

for the silencing of genes and chromatin structure. Promoter hypermethylation has been 

observed in several genes in LC as detailed in Table 1.2.  

Table 1. 2| Abnormally methylated genes in Lung Cancer. For each gene their functional role is 
given as well as the type of epigenetic modification that has been reported. Abbreviations: EMT, 
Epithelial-to-Mesenchymal Transition. [Taken from: Shi, Y. et al. Current Landscape of Epigenetics 
in Lung Cancer: Focus on the Mechanism and Application. J. Oncol.  2019, 8107318, (2019)]52. 
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1.1.6.2.1 LUADs 

In LUADs, RUNX3 is involved in differentiation of the lung epithelial-lineage and also 

functions as a Tumour Suppressor Gene (TSG) that has been found inactivated often by DNA 

hypermethylation53. CDKN2A, the cyclin-dependent kinase inhibitor 2A gene encoding for the 

tumour suppressor proteins p16/p14-ARF with roles in regulating cell cycle, and the DNA 

repair gene MGMT have also both been found to be inactivated via promoter 

hypermethylation although the MGMT more frequently in never-smokers and advanced 

stages54. Inactivation of the TSG RASSF1A via promoter hypermethylation has been observed 

in 34% of NSCLCs, allowing tumour invasion and metastasis55. Finally, DAPK encoding for 

the death-associated protein kinase (a serine/threonine kinase) has been found to be 

methylated on average in 40.5% of NSCLCs56. 

 

1.1.6.2.2 LUSCs 

LUSCs were recently profiled at the whole-genome level and revealed novel epigenetic 

signatures, with 44 genes identified for which DNA methylation level correlated with 

expression level. Aberrant methylation events were promoter hypermethylation of SOX17 

and WIF1, as well as other novel genes including SFTA3, TCF21, with hypomethylation of 

AKR1B10, the aldo-keto reductase family 1-member B10; B-assrestin-1 (ARRB1), the gap 

junction protein gene GJB5 and SEPINB5, among others57. 

 

1.1.6.2.3 LNETs 

As previously mentioned, (Section 1.1.6.1.3), LNETs display frequent mutations in genes 

encoding for epigenetic regulators influencing DNA methylation patterns. As a result, SCLC 

tumours for instance have been found to show significant hypomethylation compared to 

normal lung together with significant representation of DNA methylation peaks in 

neuroendocrine-specifying Transcription Factor (TF) genes including BCL2, NEUROD1, 

ASCL1, HAND1, ZNF423, REST, TCF21 and RB1. Similarly the same observations have been 

made for several genes encoding for the polycomb repressive complex (PRC)58,59, as well as 
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CASP8, FAS and TRAIL-R1 gene hypermethylation-promoter silencing. Additionally, a 

molecular group of SCLC tumours showed high expression of EZH2, a member of the PRC2 

complex that promotes trimethylation of histone H3 lysine 27 (H3K27me3) related to cell self-

renewal and stemness, concomitant with increased methylation in CpG island-containing 

promoters. 

Not many studies have focused on the DNA methylation profiles of LCNECs with 

large sample sizes but instead LCNECs have been studied together with NSCLCs and SCLCs. 

For instance, a study including 9 LCNECs together with LUADs, LUSCs and SCLCs found 

hypermethylated genes enriched in regulation of transcription, neural development and cell 

morphogenesis57. Unsupervised clustering performed in the study resulted in LCNECs 

grouped together with SCLCs suggesting similar genome-wide DNA methylation landscapes 

in neuroendocrine carcinomas. Furthermore, the TSG RASSF1A was found hypermethylated 

and downregulated in most pulmonary NETs including LCNECs, SCLCs, and L-CDs60, and 

other cancer types61, with its loss associated with cell proliferation. 

Finally, given the observed role of epigenetic alterations in pulmonary tumours recent 

studies have integrated DNA methylation data with genetic and transcriptomic data. For 

instance in a study of L-CDs, three different clusters were found by Laddha et al.62 which were 

characterised by the expression of ASCL1, HNF1A and FOXA3. Subsequently Alcala et al.63 

found, using a multi-omics integrative analysis, that DLL3 and SLIT1 also helped to 

differentiate L-CDs by. In the Laddha et al. study, HNF1A and FOXA3 genes were 

hypermethylated and showed low expression in one group; FEV, GATA2 and PROCR were 

hypomethylated and highly expressed in a second group; whilst in a third group SOX1 was 

hypermethylated and highly expressed, and SIX2, ONECUT2 and IL1RL2 hypomethylated 

and highly expressed. The observations from these studies however need further 

investigation including mechanistic studies but this is not straightforward due to the current 

lack of appropriate L-CD cell lines and/or animal models. Additionally, most of the 

epigenetics studies are carried out in small data sets (L-CDs: n<3062; n=6363) due to the lower 

incidence of this type of cancer, thus larger collaborative as well as validation studies are still 

needed to confirm the findings of Laddha et al. and Alcala et al. 

 

1.2 Cancer Genomic Landscapes 



 40 

Carcinogenesis is a multistep process that involves four stages: initiation, promotion, 

progression, and malignant conversion. Exposure to carcinogens can lead to DNA damage, 

which if not repaired, results in mutation. In this context, an efficient DNA machinery may be 

sufficient to avoid cancer initiation. Otherwise a selective growth advantage acquired with a 

permanent mutation of a vital gene may be sufficient to initiate cancer in a cell if unrepaired. 

The promoters influence the efficiency of the carcinogenic process by allowing clonal 

expansion of initiated cells. These are normally non-mutagenic and non-carcinogenic, and 

generally this is an epigenetic event as the manifestation is seen at the gene expression level 

rather than in the genetic sequence. After that, the progression stage sees an increase in the 

number of defective cells with a permanent genetic growth advantage. This stage, which is 

irreversible, will eventually lead to malignant conversion. There may be between these four 

stages long gaps, and several cellular, genetic and epigenetic changes can take place to support 

the process. 

During the process the cancer cells also exhibit different distinctive features, such as 

changes in the size and shape of the nucleus, and hampered tissue organization (Fig. 1.5). 

These new features are usually useful in the clinic for classification purposes, as different cell 

types and phenotypes can be used to recognise specific tumours. 

Normal cells are controlled by growth suppressors. The latter mainly instruct cells to 

stop division, to undergo apoptosis or fix changes in damaged cells. Mutations can alter these 

control checks and alter the sequences of protein-coding genes of key genetic pathways. 

Genes, or the proteins transcribed by them, are organized in complex pathways and feedback 

mechanisms to control the levels of expression of genes that participate in cellular processes 

for the normal control of cells and tissues. Thus, some of these mutations may be “driver 

mutations” which drive the normal cell to be transformed into a cancerous one. Others may 

be passenger mutations having no impact on the cell. 
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Figure 1. 5| Differences between normal and cancer cells. [Taken from: Epigenetics, Energy 
Balance, and Cancer. in Energy Balance and Cancer (ed. Berger, N. A.) 167–189 (Springer US, 2016). 
doi:10.1007/978-3-319-41610-6_7]64. 

 

1.2.1 Driver and Passenger Mutations 

Technological advances in molecular biology and Next-Generation Sequencing (NGS) 

platforms, along with microarray-based technologies, have enabled the obtention of large 

amounts of data. The latter, together with new bioinformatic tools, are enabling the molecular 

landscapes of human cancers to be deciphered.  

Of particular interest is the identification of alterations in oncogenes, which generally 

encode proteins that regulate processes with potential to cause cancer. A “driver” mutation 

refers to somatic mutations that are able to improve the fitness of the cell, whereas 

“passenger” includes incidental mutations that do not confer any growth advantage and are 

neutral for the cell65. Nonetheless, single nucleotide changes within genes together with small 
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Insertions and Deletions (InDels) of <50 bases, are only a subset of the different abnormalities 

underlying cancer. Copy Number Alterations (CNAs), including amplifications and deletions; 

inactivation of genes through epigenetic silencing; and chromosomal translocations are also 

known to contribute to cancer development and progression.  

As for driver genes they have been historically classified into two types of cancer genes 

based on whether they functioned to promote, termed as oncogenes (OCGs), or inhibit 

tumorigenesis, termed as Tumour Suppressor Genes (TSGs). Several studies have focused on 

cancer genes of these two categories. Nevertheless there is now increasing evidence that 

cancer genes may exhibit multiple and often contrasting functions, and the switch between 

OCG and TSG can be regulated at the DNA, RNA or protein level66. For instance, the dual role 

of RASSF1 in neuroendocrine tumours of the lung was already reported in 2021. In this case, 

two different promoters control the expression of different isoforms of the RAS-association 

domain family 1 (RASSF1) gene at 3p21.360,67. Hypermethylation of one promoter was detected 

in tumour LNETs, as compared to the non-neoplastic lung and NSCLCs, and found 

responsible for the silencing of the RASSF1A/E isoform with TSG roles. The other promoter, 

responsible for the expression of RASSF1C, was never found hypermethylated in LNET, 

NSCLCs and paired lung tissue samples, and was detected at increased expression in all types 

of LCs. This was in line with its previously suggested OCG role of inducing cell proliferation 

and migration68,69. 

 

1.2.2 Important Pathways in Cancer 

Different hallmarks have been widely associated with cancer and the different stages of 

carcinogenesis. Specifically, ten characteristic features were presented initially in the year 

2000, updated by Hanahan and Weinberg in 201170, and include sustaining proliferative 

signalling, evading growth suppressors, resisting cell death, enabling replicative immortality, 

inducing angiogenesis, activating invasion and metastasis, reprogramming energy 

metabolism, and evading the immune system. Two other traits that can also contribute to 

cancer development are genetic instability and mutations71, and tumour-promoting 

inflammation72,70. To reach conclusions about the presence or absence of a hallmark process, 

these hallmarks have been associated with genes, biological pathways, or functional 
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properties (functional annotation). The use of well-annotated resources, such as Gene 

Ontology or biological pathways, allow data to be organised and classified for integrative 

approaches73,74, as well as enabling the systematic association of hallmark concepts that are 

relevant for the description and interpretation of cancer research results. 

 Tumorigenesis is a result of the accumulation of many alterations in many genes, 

which are, in turn, under finely coordinated regulatory expression programmes. For example, 

overexpression or under-expression of a TF may result in overexpression or under-expression 

of other downstream genes. Several key genetic pathways have been implicated for 

progression of cancer and a brief review of these findings will be given next. 

 

1.2.2.1 Genomic Instability 

Genomic instability is a characteristic of almost all human cancers, however the stage at which 

it occurs during cancer development and its molecular basis are still unknown. Several 

pathways are involved in genomic stability maintenance, such as DNA damage check point, 

DNA repair pathways, mitotic checkpoints and telomere maintenance75. If these fail, shorter 

cell cycles and/or an advantage to bypass control systems can allow defective cells to keep 

proliferating resulting in cancerous tumour formation. 

Genomic instability can be manifested through high frequencies of base pair 

mutations, Microsatellite Instability (MSI) and Chromosome Instability (CIN), all of which can 

happen alone or in combination in cancer:-  

a. Increased frequencies of base pair mutations happen when DNA damage repair genes 

are lost and in combination with environmental or intrinsic factors. This can result in 

increased mutation rates and clonal evolution, referred to as “a mutator phenotype”76. 

b. Microsatellites are simple tandem nucleotide repeats scattered across the genome which 

as a consequence of their repetitive nature mismatches as well as insertion-deletion 

loops from replication slippage can occur naturally77,78.  

c. Chromosomal instability refers to incorrect number of chromosomes and/or abnormal 

chromosome structures resulting from the aberrant chromosome mis-segregation 

during cell division. Several linked but different mechanisms enable mitotic fidelity and 

have been intensely studied since aneuploidy was discovered in human tumour cells79. 
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Additionally, many proteins have also been related to chromosomal instability 

examples being APC, BRCA1 and BRCA2, p53, Rb and Aurora. 

These manifestations are normally overcome by sophisticated mechanisms in normal 

cells, mainly the Mismatch Repair (MMR) system, the transcription-coupled Nucleotide 

Excision Repair (NER) and the Base Excision Repair (BER) pathway80. Failure of repairing 

however can lead to mutational signatures, as marks made of specific mutational 

combinations and distributions resulting from the interplay between the damage created by 

mutagens, DNA repair systems, and the replication machinery (Fig. 1.6)81. Thus, the 

aetiologies can be inferred from the mutational signatures if the interplay between these errors 

and the repair machinery is known 82.  

 

Figure 1. 6| Mutations result from the interplay between DNA lesions generated by damaging 
agents and DNA repair mechanisms. There are several DNA damaging agents/processes that lead 
to DNA lesions and mismatches. These lesions or mismatches are recognised and subsequently 
repaired by different machineries that can successfully repair and return to the original DNA 
sequence or leave uncorrected. In the latter case, lesions can lead to mutations after DNA 
replication if high-fidelity polymerases do not ultimately introduce the correct nucleotide. [Taken 
from: Gonzalez-Perez, A., Sabarinathan, R. & Lopez-Bigas, N. Local Determinants of the 
Mutational Landscape of the Human Genome. Cell 177, 101–114 (2019)]81. 



 45 

 
 

For instance, bulky lesions of the DNA or adducts can be generated by tobacco 

carcinogens, normally at guanines. These adducts are subsequently recognised and repaired 

by several mechanisms, including the NER system. Such lesions, if unrepaired, can promote 

the collapse of the replication fork through DNA polymerase stalling. Factors such as the local 

DNA structures and the sequence context adjacent to an adducted nucleotide determine 

repair specificity and efficiency83, as well as the resulting mutation, which primarily involve 

G>T (C>A) for tobacco carcinogens84. Mutational signature 482 is characterised by prevalent 

C>A mutations on transcribed strands, consistent with the propensity that many tobacco 

carcinogens have to form adducts on guanine. The causal relationship of this signature with 

tobacco smoking has been supported by a strong positive association between smoking 

history and the contribution of signature 4 to individual cancers, being mostly LC, head and 

neck squamous, and liver cancers85. As a result, signature 4 is widely recognised to be 

associated to tobacco smoking.  

 

1.2.2.2 Apoptosis or Programmed Cell Death 

Cancer cells overcome the mechanisms implicated in apoptosis to destroy homeostatic 

balance. Apoptosis can be triggered by both extrinsic and intrinsic pathways, both of which 

finally induce cell death by the activation of different procaspases in a cascading manner86. 

In the extrinsic pathway, receptors transcribed form the Tumour Necrosis Factor 

(TNF) superfamily of genes, and together with its ligands and adapter proteins activate a 

Death-Inducing Signalling Complex (DISC) by the binding of procaspase-8. Relevant proteins 

include FasL/FasR that pair with the FADD adapter, or TNF-α /TNFR1 that pair with 

TRADD/FADD/RIP adapters. 

In the intrinsic pathway, mitochondrial events are controlled by the Bcl-2 family of 

proteins and cause the opening of the Mitochondrial Permeability Transition (MPT) pores 

resulting in the release of pro-apoptotic proteins into the cytosol. For example, cytochrome c 

among others ultimately activates the procaspase-9, and Smac/DIABLO abd HtrA2/Omi 

inhibits the “inhibitors of apoptosis” or IAP proteins. A second group of proteins includes 
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AIF, endonuclease G, CAD and caspase-3, which participate in the condensation of chromatin 

and its cleavage. 

 

1.2.2.3 TFG-β Signalling Pathway 

TFG-β is an extracellular signalling ligand that induces the expression of certain TFs that in 

turn affect transcription of hundreds of genes. The main agents in signalling the canonical 

TFG-β pathway include the Smad family of proteins. TFG-β acts as a tumour suppressive 

signalling mechanism in normal cells by controlling cell cycle for preventing proliferation, 

promote apoptosis or induce cell differentiation87. It however can switch to a OCG role once 

the TSG role of TFG-β signalling has been overcome by cancer cells and can then induce 

Epithelial to Mesenchymal Transition (EMT) and angiogenesis88. 

 

1.2.2.4 Nf-κB Signalling Pathway 

Whilst extracellular signals activate the TFG-β pathway, the Nuclear Factor Kappa-light-

chain-enhancer of activated B cells (Nf-κB) is rapidly induced intracellularly and controls 

several processes such as DNA transcription, cytokine production, inflammatory responses, 

cell adhesion, migration and survival89,90. Main signals include stress, heavy metals, ROS, 

ultraviolet radiation, and antigens coming from viruses and bacteria. 

The nuclear TF represents a family composed of five structurally related members 

including NF-κB1 (also named p50), NF-κB2 (also named p52), RelA (also named p65), RelB 

and c-Rel. The NF-κB proteins are present in the cytoplasm in their inactive form sequestrated 

by the Inhibitor of κB (iκB) proteins. Different internal stimuli can then activate the 

degradation of these inhibitors by the iκB kinase, which will allow the release and the 

transcription of specific genes when the nuclear factor binds to regulatory DNA motifs. This 

way, the activation of Nf-κB pathway has been normally associated with oncogenic processes 

and overexpression of iκB showed to reduce tumour growth91. 
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1.2.2.5 Wnt Signalling Pathway 

Understanding of the Wnt pathway continues to evolve since the discovery of its first member, 

the proto-oncogene int-1 gene, which was then renamed as Wnt or “wingless/integrated”. 

Recognition of the importance of this pathway in cancer started when the human tumour 

suppressor Adenomatous Polyposis Coli (APC) protein was found to downregulate β-catenin, 

with Wnt-1 found to upregulate it92. 

The canonical Wnt pathway involves the β-catenin protein as the transcription co-

activator. When Wnt is released and binds the Frizzled (Fz) family of receptor proteins found 

in the cell surface, helped by other co-receptors such has LRP5/6, a signal is transmitted by 

direct contact to the Dishevelled (Dsh) protein which inhibits the elimination of β-catenin by 

the destruction complex formed by Axin, APC and PP2A. Hence, after Wnt binding, this 

complex is inactivated liberating the β-catenin which then translocates to the nucleus. There 

it acts as a TF, together with LEF and TCF TFs, enhancing the transcription of several target 

genes such as MYC, VEGF, FGF4, FGF18, the cyclin D1 gene, the E-cadherin gene and 

NRCAM93, and many other genes of the same signalling pathways 

(https://web.stanford.edu/~rnusse/wntwindow.html).  

 

1.2.2.6 MAPK/ERK Signalling Pathway 

The MAP/ERK pathway is also initiated by external stimuli and its main function is to transmit 

this signal from outside the cell to its nucleus. This pathway is also called the RAS-RAF-MEK-

ERK pathway due to the proteins involved (RTK and RAS), and the three protein kinases 

(RAF, MEK and ERK). The external molecule is often a mitogen, for example the Epidermal 

growth Factor (EGF), that signals cell division and proliferation which in turn activates the 

tyrosine kinase receptor (EGF Receptor [EGFR], or others such as Trk A/B and the Fibroblast 

Growth Factor Receptor [FGFR]). Then, the receptor is phosphorylated and a complex (GRB2 

and SOS) binds and induces the binding of Ras to Guanosine Triphosphate (GTP) which 

becomes active and starts a cascade of activation by phosphorylation of the RAF kinase and 

followed by MEK, MAPK, and the target TFs. It is the latter that then regulate the transcription 

of genes that control cell cycle39. 

https://web.stanford.edu/%7Ernusse/wntwindow.html
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The RAS family of proteins, including HRAS, KRAS, and NRAS, and the RAF family 

protein BRAF, are often mutated in cancer. For instance, KRAS mutations at codons 12 and 13 

are the most frequent hotspot mutations in NSCLC that cause the hyperactivation of many 

downstream effector pathways94. 

 

1.2.2.7 PI3K/AKT/mTOR Signalling Pathway 

The PI3K/AKT/mTOR signalling pathway includes a family of intracellular lipid kinases that 

phosphorylate phosphatidylinositides or PIP2 that are activated intracellularly. The 

Phosphatase and Tensin homolog (PTEN) and PI3K inhibit or activate the activity of this 

pathway by dephosphorylation (PIP3 to PIP2) and phosphorylation (PIP2 to PIP3). PIP3 then 

can bind to the PDK1 protein that phosphorylates and activates AKT, also named as Protein 

Kinase B (PKB), which plays a role in multiple cellular processes such as protein synthesis and 

cell growth (via GSK3, mTORC1, mTROC2 and 4E-BP1), proliferation and inhibition of cell 

apoptosis (P21/Waf1/Cip1), motility, adhesion, neovascularization, and cell death95. 

 

1.2.2.8 Other Relevant Pathways in Cancer 

Hippo, Myc and Notch and Nrf2 are other common pathways dysregulated in cancer. Hippo 

signalling controls organ size by regulating cell proliferation, apoptosis and stem cell renewal, 

and a kinase cascade involving Mst1/2, SAV1 and LATS1/2 kinases that end up with the 

inhibition of YAP and TAZ effectors96. 

The MYC signalling pathway lies at the crossroads of many growth promoting 

signalling pathways and is an intermediate molecule of many ligand-membrane receptor 

complexes97. For instance, MYC expression is transactivated upon nuclear translocation of B-

catenin98.  

The NOTCH pathway involves the activation of the Notch receptor by its ligands, 

Delta and Serrate (known as Jagged in mammals), which function during diverse 

developmental and physiological processes including self-renewal and differentiation99. Its 

activation results in turn in the activation of the canonical Notch target genes: Myc, p21 and 

the HES-family members., Its oncogenic or tumour-suppressor like activity however are 

highly context dependent100.  
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Finally, Nrf2 is a cellular protector that is dissociated from its inhibitor KEAP-1 (when 

ROS levels rise) and translocates to the nucleus where it can control an estimated 250 genes 

the latter mainly involved in endogenous antioxidant protection and detoxification101–103. 

 

1.3 Epigenetics and Cancer 

Signalling pathways involve cascades of signals that generally result in the activation or 

repression of downstream genes when specific TFs bind their regulatory sequences and the 

transcription machinery is recruited. The specific recognition of Response Elements (REs) by 

TFs at promoters and enhancer regions enables gene-specific transcription initiation. For gene 

transcription to occur, however, the gene regulatory regions need to be accessible to TFs and 

other regulatory units. In this context, epigenetics refers to heritable changes that do not affect 

the genetic sequence but control gene expression. Different epigenetic mechanisms are 

involved in gene regulation, including DNA methylation, histone modifications, nucleosome 

positioning and aberrant expression of non-coding RNAs, specifically microRNAs.  

Altered DNA methylation patterns is considered a cancer hallmark and it is the most 

studied epigenetic modification and is the type therefore focused on within this thesis.  

 

1.3.1 DNA Methylation 

DNA methylation refers to the addition of a methyl group covalently to the base cytosine. In 

vertebrates, DNA methylation mainly occurs at cytosines in a CpG dinucleotide context. Most 

CpG dinucleotides in the human genome are methylated. CpGs, however, are not normally 

distributed as they have been severely depleted in the vertebrate genome to about 20% of the 

predicted frequency. The only exception of this so-called global CpG depletion is the specific 

category of GC- and CpG-rich sequences termed CpG Islands (CGIs) that are frequently 

located at the promoter regions of coding genes, where they are generally unmethylated. 

DNA methylation can directly prevent TF binding and lead to changes in chromatin structure 

that restrict access of TFs to the gene promoter104. As a result, aberrant DNA methylation can 

play a role in silencing of TSGs and activation of OCGs. In addition, methylation of CpG sites 

outside of islands is  associated with transcriptional regulation; for example, methylation 
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within gene bodies is positively correlated with expression, while CpGs are often 

unmethylated at active enhancers105,106.  

According to the initial studies in the field, gene silencing seemed to be the principal 

function of DNA methylation., Accumulated evidence, however, has proven that it is also 

involved in multiple physiologic processes such as development and cell differentiation, 

genomic imprinting, X-chromosome inactivation, suppression of repetitive elements and 

genomic instability. 

DNA methylation is a dynamic and reversible modification influenced by both 

environmental and intrinsic factors107 as well as the DNA sequence and nongenetic trans-

acting factors, all contributing to interindividual variability of individual landscapes108,109. 

Each cell type has the same genetic sequence but there can be different epigenomes that define 

cell fate and differentiation status110. 

 DNA modifications are controlled by several epigenetic regulators, named “writers”, 

“readers”, “erasers” and “regulators”. In mammals, writers include three canonical DNA 

Methyltransferases (DNMTs), DNMT1, DNMT3A and DNMT3B, that catalyse the addition of 

methylation marks to genomic DNA. DNAMT3A and DNMT3B are involved in the de novo 

methylation of DNA while DNMT1 is primarily responsible for the methylation of newly 

replicated DNA i.e. for the maintenance of specific patterns of methylation of a cell’s genome 

through cell division111.  

The demethylation of 5mC can occur passively during the replication process or 

actively and involves the Ten-Eleven Translocation (TET) family of proteins or the Activation-

Induced cytidine Deaminase (AID) system followed by BER that introduces an unmethylated 

cytosine. 

 Methylated CpG islands can also attract “readers” that bind to methylated DNA 

through a Methyl CpG binding Domain (MBD). These include MECP1 and MECP2, which 

can attract other histone deacetylases and chromatin remodelling subunits that normally 

reduce transcription of methylated gene promoters112. 

 Other epigenetic modifiers include histone acetyltransferases (HATs), histone 

deacetylases (HDACs), histone methyltransferases (HMTs), histone demethylases (HDMs), 

and chromatin remodelling factors. In addition, remodelling complexes can alter the position 

of nucleosomes along the chromatin fibre and/or modify the association of histone octamers 
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with the DNA on major regulatory elements of transcription - promoters and enhancers 

nucleosomes - to activate transcription when the transcription machinery has been 

assembled113. Some examples of remodelling complexes include NURF, the SWI/SNF (BAF in 

mammals) and chaperone complexes. 

 

1.3.2 Histone Modifications 

In addition to DNA methylation, histone proteins play a critical role in the epigenetic 

regulation of gene expression. Histones control the packaging of DNA in the nuclei in 

structures called “nucleosomes” and, together with DNA methylation and other 

modifications, regulate the expression of genes. Cells have evolved elaborated mechanisms to 

dynamically modify the level of chromatin compaction to modulate gene function, as well as 

to allow the enormous DNA sequence to fit in the nucleus of cells facilitating distribution of 

the genetic material to daughter cells after replication and to regulate DNA accessibility for 

DNA damage repair. As such, chromatin can be highly compacted as heterochromatin or 

accessible as euchromatin. These regions contain specific combinations of epigenetic marks that 

play crucial roles for genetic stability. For instance, a key function of heterochromatin is to 

prevent the activity of transposable elements present in more than half of the genome. 

 Moreover, histones are subject to Post-Translational Modifications (PTMs) such as 

covalent modifications that are mostly concentrated towards more accessible N-terminal tails 

that protrude out of the nucleosome. This way histone modifications can exert several 

genomic functions by recruiting specific effectors, from altering the compaction degree of the 

chromatin fibber; serve as targets for other factors related with transcriptional activity; or 

mark the silencing and expression of target genes. Histones and their PTMs create a specific 

“histone code” that relate to particular chromatin states and functions. An example is 

H3K4me3, which marks active gene transcription and is normally enriched at the promoters 

of active genes114,115. 

 

1.3.3 Non-coding RNAs (ncRNAs) 

Modern sequencing technologies have revealed that most of the genome is transcribed into 

non-coding transcripts that by far surpass the number of coding genes. These ncRNA species 
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comprise another layer of epigenetic regulation although their full functional repertoire has 

just started to be elucidated. Nevertheless they have been shown already to play crucial roles 

in nuclear functions such as transcription, RNA splicing, translation and chromatin 

remodelling, as well as being key regulators of proliferation, differentiation, apoptosis and 

cell development116. Historically they have been classified based on their length into 

microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs) 

and long non-coding RNAs (lncRNAs). 

 Additionally, Transposable Elements (TEs) can be included in this category of 

ncRNAs. Their existence was first reported during the 1940s by the American scientist Barbara 

McClintock who discovered that transposition was causing maize to change colour from 

yellow to brown on individual kernels117. Genomic sequencing has revealed that the genomes 

of prokaryotes and eukaryotes contain a variety of TEs because of insertional events that 

occurred during evolution. In humans, these elements make up almost half of the nuclear 

DNA and can be classified into two major classes: DNA transposons which are flanked by 

terminal inverted repeats, encode a transposase, and mobilize by a 'cut and paste' mechanism; 

and retrotransposons which mobilize by replicative mechanisms that require the reverse 

transcription of an RNA intermediate and use the cell’s RNAPII for their transcription. The 

integration of these sequences into new sites create target site duplications and double-strand 

breaks, leading to the activation of DNA repair mechanisms of the host cells to repair and fill 

gaps. 

TE activity is well known to be under epigenetic control and wide-spread TE 

expression has been found in cancers with particularly extensive epigenetic dysregulation. A 

striking enrichment of demethylation at CpGs within TEs, as compared with the background 

demethylation level, was detected across ten TCGA cancer types suggesting that a greater loss 

of DNA methylation at TE regions may be a common tumour process. In addition, aberrant 

expression of TEs has been associated with the expression of host immune genes and 

activation of DDR pathways, rendering TE activation as a marker for DNA Methyltransferase 

1 (DNMT1) inhibition118.  
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1.3.4 The DNA Methylomes of Cancer 

Until recently, most cancer studies have focused on DNA methylation gains at promoter 

regions which is a common mechanism for the inactivation of TSGs in all cancer types119,120. 

However, recent genome-wide DNA methylation studies, mostly in the context of the 

International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), 

have brought to light another major and common phenomenon in cancer which is a global 

decrease of CpG methylation. This observation was made already in 1973 by Feinberg and 

Vogelstein121, and later by Gama-Sosa et al., who described a global reduction of 5mC content 

in tumour samples122.  

From these initial studies, further research has shown that DNA methylation changes 

are more complex than initially thought and are often related to genomic instability, 

particularly by demethylation of repetitive genomic elements and TEs and, less frequently, to 

activation of silenced OCGs123. Nevertheless, global hypomethylation has also been detected 

in cancers with rather stable genomes such as chronic lymphocytic leukemia124. Hence, 

extensive hypomethylation does not lead to genomic instability per se. Furthermore, the loss 

of DNA methylation resembles to what has been observed in aging processes where 

embryonic stem cells have the highest level of DNA methylation followed by primary cells in 

contrast to cancer cells, where a sharp decrease in DNA methylation was observed globally125. 

Secondly, although DNA methylation at CGIs seems to ensure a repressive chromatin 

environment its absence is not necessarily associated with activation of gene expression126 and 

other mechanisms such as trimethylation of H3K27 (H3K27me3) by the polycomb-repressive 

complex seems sufficient to repress expression in the absence of DNA methylation127. 

Additionally, DNA methylation has been shown to play a role in the expression of alternative 

transcripts by methylating alternative promoter sequences128. Thirdly, other studies have 

revealed that DNA methylation frequently occurs at genes that were already silenced in 

normal cells129,130, for example via H3K27me3131–133. Thus, it has been suggested that DNA 

methylation at CGIs could enable stable gene inactivation but more a consequence rather than 

a cause of gene repression. 

Importantly DNA methylation at low CpG density regions outside promoters, 

specifically at gene bodies and intergenic regions, is another major finding in cancer. DNA 
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methylation at these regions has been associated with both activation and repression of 

transcription. For instance, at intragenic regions it can regulate the expression of both an 

alternative transcript and the regular transcript simultaneously with opposing 

(activating/repressive) effects124. Furthermore, DNA methylation has been associated with 

alternative splicing and polyadenylation134, for which DNA methylation at specific sites can 

lead to exon skipping or incorporation, the usage of different polyadenylation sites and the 

production of transcripts of different lengths. 

 Nevertheless, many CpGs are not associated with alternative promoters, exons, 

polyadenylation sites, ncRNAs or TEs135, suggesting that DNA methylation might influence 

transcription via other mechanisms. Several studies have highlighted the important role that 

DNA methylation may play at both intragenic and intergenic enhancer regions. For instance, 

a stronger correlation between expression was observed for enhancer regions as compared 

with promoters124. Regulatory elements outside promoters enriched for cell-type-specific TF 

binding sites are differentially methylated during development and between normal and 

tumour samples. Other regions outside promoters that are differentially methylated in cancer 

include polycomb-repressed regions, which normally affect already silenced genes but may 

favour malignant transformation by blocking the ability to reactivate genes. Heterochromatin 

is also prone to lose DNA methylation in cancer probably as a result of passive DNA 

methylation loss upon replication136,137. 

  

1.3.5 Somatic Cancer Mutations to Chromatin-related Proteins 

A unified model of cancer has been proposed based on mechanisms involving both genetic 

mutations and epigenetic modifications, for which both can disrupt the function of genes 

involved in the regulation of the epigenome itself138–142. Supporting this idea, several 

epigenetic modifier genes have been found mutated in human cancers and provide a 

mechanism linking mutations to epigenetic alterations. The classes of genes include histone 

variants (direct substitution of a mutant histone isoform); DNMTs, HATs, HDACs, HDMs; 

and chromatin remodelling factors previously mentioned. A few examples of epigenetic genes 

that have been found altered in LC include CREBBP, which encodes the CREB Binding Protein 

(CBP) and was found mutated in 5.3% of the cases143; covalent histone modifiers and subunits 
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of the SWI/SNF complex that were found mutated in 40 and 22.2% in pulmonary carcinoids, 

recurrently affecting MEN1, PSIP1, and ARID1A, as well as EIF1AZ, BREBBP, EP300, MLL, 

CHD7 and MYCL with varying prevalence among LNETs47,48,144–148. 

 

1.4 Translational Research in Cancer 

1.4.1 Onco-omics Applications 

The word “omics” refers to several molecular disciplines that use high-throughput 

technologies to characterise and quantify very large sets of biological molecules such as DNA 

(genomics), mRNAs (transcriptomics), proteins (proteomics), and metabolites 

(metabolomics). These different omics provide tools that have been rapidly exploited, 

especially in the field of oncology, and have revolutionized our understanding of human 

biological systems. Not only have they facilitated the study of multiple samples at once at 

high resolution, but they also have added layers of molecular complexity. Thus, cancers have 

evolved as highly heterogeneous diseases in which different layers of regulation are strongly 

interconnected. In addition, these omics technologies have opened a new era of “personalised 

medicine”, in which patients are treated based on specific molecular alterations leading to a 

paradigm shift in patient care. 

 Importantly, omics have allowed the identification of biological markers or 

biomarkers as measurable and objective indicators of normal biological processes, pathogenic 

processes, or pharmacologic responses to therapeutic intervention at a given moment. These 

biomarkers can have molecular, histologic, radiographic, or physiological characteristics, and 

can be used for many applications in health care. For instance, biomarkers can be used for the 

detection, prevention, determination of individual disease risk, disease monitoring and 

therapeutic stratification, and thus have emerged as useful tools in clinical trials thereby 

enabling a more personalised healthcare system and improved disease outcomes. 
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1.4.2 Genomics and Epigenomics: On the Road of Translation into 

Clinical Practice 

Since the completion of the Human Genome Project in 2003, much of the research in oncology 

has focused on the sequencing of cancer genomes with the aim to identify actionable 

alterations at the base of oncogenesis (Fig. 1.7). This is because of the feasibility of being able 

to compare tumour sequences against a reference human genome. Furthermore, the 

development of NGS techniques and its commercialization since 2006 have led to a “genomic 

era” of cancer research that has facilitated the detection of somatic and germline mutations, 

TMB and resistance mechanisms. Following these discoveries, cancer treatment has parallelly 

evolved from generic cytotoxic compounds, classically used to target every proliferating cell, 

to targeted therapies directed towards particular genetic alterations that have been found to 

be driving tumorigenesis. Importantly, LC patients’ outcomes have been improved with the 

development of the EGFR inhibitors (erlotinib, gefitinib), the PI3K/AKT/mTOR inhibitors 

everolimus, and the NTRK/ROS1 inhibitors entrectinib. In addition several drugs are being 

investigated in clinical trials to overcome drug resistance, such as third-generation EGFR-TKIs 

(Osimertinib) targeting the frequent T790M resistant mutation149.  

 Thanks to the development of sequencing technologies, new NGS techniques enable 

all the coding sequences of the genome (Whole Exome Sequencing, WES) and even the full 

genome (Whole Genome Sequencing, WGS) to be sequenced in a fairly quick and affordable 

way. Hence, the challenge now lies in the data analysis step, gradually up to an ever-

challenging framework. 
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Figure 1. 7| Chronology of DNA sequencing development in relation to cancer. [Taken from: 
Flores-Pérez, J. A., De La, F., Oliva, R., Argenes, Y. & Meneses-Garcia, A. Translational Research 
and Onco-Omics Applications in the Era of Cancer Personal Genomics. Advances in Experimental 
Medicine and Biology vol. 1168 (2019)]150. 

 

Adding another layer of complexity, biological pathways and cellular processes are 

under the impact of the epigenome status and recent findings have shown that drug responses 

could be largely impacted by the presence of aberrant epigenetic marks. Therefore, the 

discovery of several epigenetic alterations affecting key genes and cellular pathways involved 

in several tumour types has opened the “epigenomics era”, in which novel therapeutic 

strategies are now also aimed at reversing epigenetic marks in cancer cells. This layer of gene 

regulation that directly influences phenotype provides an alternative therapeutic approach 

especially for individuals with “high risk” genotypes.  

Epigenetic modifications are also attractive targets for the development of new 

therapies against cancer, mostly due to their reversible character. Current approved Food and 

Drug Administration (FDA) treatments involve inhibitors of epigenetic enzymes, and the 

most extensively studied group include DNMT inhibitors (DNMTi)151,152. In addition, small 

interfering RNAs (siRNAs) are considered as the new generation of biodrugs due to their 

specific and efficient response in RNA interference (RNAi)153 and because they can be used to 

target specific epigenetic regulators. 
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1.5 Hypotheses 

Further research is imperatively needed for a better understanding of molecular events of 

onset and progression of lung cancer as these are likely to be key and important for optimizing 

treatment strategies. To date there are only a few examples of studies for common and rarer 

types of lung cancer where an integrative analysis to investigate the relationship of genome 

to epigenome has been performed. The hypotheses of this thesis therefore are that: 

• Genetic alterations and changes in DNA methylation will distinguish different LC 

subtypes and tumours from healthy tissue. 

• The integration of genetic and DNA methylation data with clinical and gene 

expression data will enable improvement in the molecular classification and therapy 

selection for LC patients. 

 

1.6 Thesis Objectives 

This PhD project aimed to investigate the alterations in the genome and methylome in 

different lung cancer subtypes.  To achieve this, the objectives of the study were:  

(1) to identify the molecular alterations using WES, TCS and SNP genotyping  

(2) to identify differentially methylated regions by using WGBS  

(3) to relate the relevant genetic and methylation alterations with clinical parameters and 

gene expression data in different lung cancer subtypes.  

The ultimate objective was to gain a more complete understanding of how genetic and 

epigenetic alterations may interact to drive tumorigenesis in different LC histotypes to 

improve patient stratification and identify novel potential targets. 
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Chapter 2: Methodology 

2.1 Patients and Clinical Samples 

Clinical research samples for the study were provided by the Biomedical Research Unit (BRU) 

biobank of the Royal Brompton and Harefield NHS Trust. All samples had been collected 

under the appropriate ethical approvals (RBH NIHR BRU Advanced Lung Disease Biobank 

[NRES reference 10/H0504/9] and Brompton and Harefield NHS Trust Diagnostic Tissue Bank 

[NRES reference 10/H0504/29]). Clinical samples consisted of fresh-frozen human lung 

tumour specimens and normal paired lung tissue obtained during lung resection. The tissue 

samples were collected prior to therapy.  

Samples for genomics (DNA) were snap frozen and stored at -80oC whilst those for 

transcriptomics (RNA) were stored at -80oC in RNAlater within two hours of surgical excision. 

Nucleic acid extraction of the samples had been performed by Dr. E. Starren (former member 

of the Genomic Medicine Group, NHLI) prior to commencement of this present study. Briefly, 

genomic DNA was extracted using a phenol chloroform method plus a TissueRuptor to 

ensure tissue disruption. Tissue stored in RNAlater underwent extraction for total RNA using 

a Qiagen RNEasy Fibrous Midi Kit154. Tumour histology and cell abundance was determined 

through pathology review (Professor Andrew Nicholson) of haematoxylin and eosin staining. 

Clinical metadata associated with the research samples was collated by Dr. E. Starren.  

 

2.2 Copy Number Aberration Peaks from SNP Genotyping  

2.2.1 SNP Genotyping  

Illumina Infinium OmniExpressExome (ver. 1.6) genotyping arrays (also referred to as single-

nucleotide polymorphism [SNP] arrays) were used for genotyping 958,497 SNP markers in 

the genomic DNA extracted from tumour and normal matched lung samples. The Illumina 

SNP arrays (chips) combine DNA hybridization, fluorescence microscopy and a solid surface 

DNA capture (array) to allow comparison of thousands of genomic locations simultaneously. 

SNP data was generated by Eurofins. 
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The Illumina SNP array platform targets biallelic SNPs with two hybridization probes 

to specifically capture each of the two alleles, latter referred to as alleles A and B. DNA to be 

interrogated is taken, labelled using a fluorescent dye and subsequently hybridised to the 

probes arrayed on the chip. Only the target sequences created from the tested samples that 

are complementary to the probes bind. SNP genotypes are therefore determined based on the 

ratios of the hybridization intensities for A and B probes. Because SNP alleles only differ in 

one nucleotide and due to the technical challenge to achieve optimal hybridization conditions 

for all probes on the array, several redundant probes are used to interrogate each SNP to 

improve accuracy of genotype calls. After hybridisation, a scanner is used to measure 

fluorescence intensity of hybridized A and B probes for each SNP on the array, thus 

representing the signal strength for each allele. These output data are referred to as the raw 

intensities of the A and B alleles (RA and RB, respectively). Each SNP has an expected raw 

intensity (R) for a given cluster (sum of red and green signal intensities), thus SNP genotypes 

are determined by comparing A and B intensities to the reference. As a result, a heterozygous 

locus (AB) shows the same intensity for both alleles, whereas a homozygous locus (AA or BB) 

intensity is only seen for the one type of allele present (A or B).  

The intensity data received from Eurofins was processed by downstream software to 

enable calling of Copy Number Alterations (CNAs), as explained in the following sections. 

 

2.2.2 Summary of SNP Genotyping Data Analysis 

In outline, SNP genotyping data analysis consisted of SNP clustering, SNP data Quality 

Control (QC), GC bias correction, Copy Number (CN) segmentation and calling of significant 

Copy Number Alterations (CNAs). Since SNP genotyping data was generated for both 

tumour and normal matched samples, calling of CNAs was first performed on the unaffected 

samples and significant copy number gains or losses were subsequently subtracted from the 

tumour segmented data before calling of somatic CNAs on the remaining tumour segments. 

A summary flowchart for the SNP genotyping data analysis is shown in Figure 2.1
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Figure 2. 1| Flowchart of SNP genotyping data analysis. SNP genotyping data analysis consisted of SNP clustering, SNP data Quality Control (QC), 
GC bias correction, Segmentation and selection of segments with> 10 markers and calling of significant Copy Number Alterations (CNAs). Since SNP 
genotyping data was generated for both tumour and normal matched samples, calling of CNAs was first performed on the unaffected samples and 
significant copy number gains or losses were subsequently subtracted from the tumour segmented data before calling of somatic CNAs on the remaining 
tumour segments. 

792,040 
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2.2.3 GenomeStudio Data Pre-processing  

The processing of Illumina genotyping arrays was performed with the GenomeStudio 

software (ver. 2.0.4). This software enabled conversion of raw intensities into genotype calls, 

as well as optimizing call rates, generating SNP statistics and confirming gender of the 

samples.  

Loading of sample intensities was performed by selecting directories with intensity 

files. In addition, two additional files for annotation purposes were downloaded from the 

support Illumina website (https://support.illumina.com), specifically the Infinium 

OmniExpressExome-8 v1.6 Cluster File and the manifest file in Bitmap Image File (BMP) format 

(GRCh37/ hg19). Next clustering of intensities for all SNPs was performed by applying a 

cluster algorithm to the fluorescent levels to form clusters that distinguished samples into AA, 

AB and AB clusters. After this sample and SNP quality was evaluated.  

Assessment of sample quality was performed using the GenomeStudio software and 

was based on three different scores: 

• Call rate, as the percentage of SNPs with genotype calls for a sample. A call rate of 95-

98% was used, and any sample below the call rate was excluded from further analysis.  

• GenCall (GC) score cut-off or no-call threshold, a quality metric calculated for each 

genotype ranging from 0 to 1 to filter poor quality SNPs or samples. Genotypes with GC 

score less than a given threshold were declared as missing due to being considered too 

far from the cluster to make reliable genotype calls.  

No-call rate, indicating the proportion of missing values, or 'no calls' in each sample. A 0.15 

no-call threshold as the standard for Infinium data. 

Two different files were obtained from GenomeStudio that were then used for further 

analysis: 

• SNP table: contained chromosome, position, AB frequency, SNP name, number of no 

calls, minor frequency, call frequency, GenTrain and cluster separation scores. The call 

frequency or call rate, was calculated as Calls/(No calls + Calls); the GenTrain score, as 

the quality score for samples clustered for a locus, and the Cluster separation score, 

measuring how well-separated a cluster was from other clusters. 

https://support.illumina.com/
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• Final Report: containing sample ID, SNP name, chromosome, position, allele1 forward, 

allele2 forward, and two derived measures that allowed estimation of copy number 

status: (1) the Log R ratio (LRR) is the log2-transformed value of the intensity of the SNP, 

(RA+RB)/Rexpected, where Rexpected is an interpolation generated by GenomeStudio. Hence 

the LRR was the metric used to normalize signal intensities. (2) The B allele frequency 

(BAF), reflecting the proportion of hybridized sample that carried the B allele. This 

metric is an adjusted value generated by GenomeStudio that normalized genotyping 

calls assuming three canonical clusters (A/A: 0.0, A/B: 0.5, B/B: 1). 

 

2.2.4 QC of SNP Array Data 

Quality Control155 of SNP genotyping data was performed in R Studio (ver. 3.6.1) using 

tidyverse156 R package (ver. 1.3.0). SNPs were filtered out if they met any of the following 

criteria:  

- Were classified as InDel markers [I/D] 

- Chromosome XY SNPs or SNPs in pseudoautosomic regions 

- Obtained a GenTrain score of <0.8 

- Obtained a Cluster Separation of <0.8 

- Obtained a Call Frequency of <0.8 

- Obtained -0.5 < Heterozygosity Excess> 0.5  

After that, a Perl script was used to keep only one SNP for those that shared genomic 

coordinates. As a result, only SNPs with unique genomic locations were retained for further 

processing. 

 

2.2.5 GC Correction  

Several high-density SNP genotyping arrays exhibit a spatial correlation or waviness in the 

intensity signal detected that can prevent the accurate detection of copy number variation. 

This waviness in the signal has been recently confirmed to be associated with the amount of 

input DNA and GC content of the probes. For instance, probes with high GC content bind 

better to their target sequence hence they will show higher signal intensity and LRR metrics, 
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leading to biased copy number detection. Moreover, this waviness has been detected 

independently of the platform used to determine DNA copy number status157. 

Therefore, SNP genotyping data was adjusted for genomic waves with the 

ascat.GCcorrect function implemented by the Allele-Specific Copy number Analysis of 

Tumours (ASCAT)158 R package (ver. 2.5.1). The function requires a GC content file specific to 

the platform used for genotyping. For GC wave correction of the lung SNP dataset, a custom 

GC content file was therefore created based on the location of the genomic probes and 

chromosome size based on the hg19 human reference genome.  

LRR values were thus corrected for biases in GC percentage around each SNP marker 

across tumour and non-tumour samples separately. In addition, ASCAT plots for LRR and 

BAF values were generated and were used to visualize noisy samples that needed to be 

excluded from further analysis.  

 

2.2.6 Data Segmentation 

The next step involved partition of the genome into genomic regions of equal copy number 

with the DNAcopy159 R package (ver. 1.56.0). The segmentation process employed the Circular 

Binary Segmentation (CBS) algorithm to segment DNA copy number data and involved the 

following steps: 

I. The creation of a CNA object from the GC corrected LRR values with the CNA 

function. 

II. Smoothing outlier LRR values with the smooth.cna function. 

III. Segmentation of the smoothed GC corrected LRR data with the segment function. 

 

Two arguments were used to refine the segmentation process. First, a minimum 

number of 2 and 3 SNP markers were chosen for a segment to be a valid segment for the 

tumour and normal CN data respectively. Since tumour samples were expected to present 

more genomic instability, a lesser number of markers would represent a valid segment 

whereas normal samples are expected a more stable genome hence, a higher number of 

markers was chosen. Taking into account the size of the hg19 genome of 3,095,677,412 base 

pairs160,161 (including X and Y chromosomes) and that the input CN data at this stage contained 
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751,546 markers, it was estimated that an average of ~4.1Kb of the genome was represented 

by each SNP. In addition, the average size of a human gene is 10-15Kb162; therefore a threshold 

in tumour samples of 2 markers minimum would cover a stretch of ~8.2Kb and account for 

sub-genic/ exon-level CN variation expected in tumour genomes. While in non-tumour 

samples, where less CN variation is expected, a threshold of 3 markers minimum (~12.3Kb; 

approximated gene size) would be suitable. 

Furthermore, assuming that CN data showed a normal distribution, segments were 

selected by establishing standard deviation thresholds (specified by the “sdundo” argument 

in the undo.splits option). In this way the difference in signal intensity between a segment and 

the neighbouring region was restricted by specifying the number of Standard Deviations (SD) 

to be qualified as a valid segment for the tumour and normal CN data respectively. Or in other 

words, how different a segment’s signal intensity had to be from the mean signal intensity 

from neighbouring regions in each sample. Following the quantile function, a segment LRR 

had to be different by 80% (or 1.28 SD) of the segment LRR values in tumours because more 

segments with variable LRR values were expected in tumours. In the case of non-tumour 

samples, a segment LRR had to be different by 95% (or 1.96 SD) of the LRR values. The 

parameters used for CN segmentation for the tumour and normal samples therefore were: 

- Tumour CN segmentation: undo.splits = "sdundo", undo.SD = 1.28, min.width = 2 

- Normal CN segmentation: undo.splits = "sdundo", undo.SD = 1.96, min.width = 3 

Finally, only segments that obtained a minimum support of 10 markers were selected for 

calling CNAs (see Section 2.2.7 below).  

 DoAbsolute (ver.2.1.0) was used to infer tumour purity and ploidy with default 

parameters163,164. Mutational data was used as recommended for estimation of tumour purity 

by serving as an alternative point of reference regarding tumour progression (sub-clonal 

events) that allow a more comprehensive modelling of tumour heterogeneity. In addition, 

computation of tumour purity and ploidy was performed separately using each histotype as 

primary disease for specific tumour karyotype matching. 
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2.2.7 Focal Copy-Number Alteration Calling with Gistic2 

Calling of Copy Number Alterations was performed with the Genomic Identification of 

Significant Targets In Cancer (Gistic2)165 software (ver.2.0). The Gistic2 module identified 

genomic regions that were recurrently amplified or deleted in a group of samples. Similar to 

the segmentation step (Section 2.2.6 above), calling of CNAs was run separately for tumour 

and normal samples due to biological reasons. Gistic2 was run with a Copy Number Variant 

(CNV) file specifying germ line CNVs for these to be excluded from the analysis. The CNV 

file specified the genomic location on the reference hg19 genome. The Gistic2 software was 

run with the below options: 

- geneGistic2 1 \ Flag indicating that the gene Gistic2 algorithm should be used to 

calculate the significance of deletions at a gene level instead of a marker level.  

- broad 1 \ Flag indicating that an additional broad-level analysis should be performed. 

- brlen 0.5 \ Threshold used to distinguish broad from focal events, given in units of 

fraction of chromosome arm. 

- conf 0.90 \ Confidence level used to calculate the region containing a driver. 

- armpeel 1 \ Flag to assign all events in the same chromosome arm of the same sample 

to a single peak when peaks are split by noise of chromothripsis. 

- savegene 1 \ Flag indicating to save gene tables. 

- rx 0 \ Flag to not remove X and Y chromosomes. 

- gcm extreme # Method for reducing marker-level copy number data to whichever of 

min or max is furthest from diploid. 

 

The output from Gistic2 consists of a list of aberrant regions at the CN level or “peaks” with 

an assigned G-score that considers the amplitude and the frequency of occurrence across 

samples. In addition, False Discovery Rate (FDR) q-values were calculated for each peak. 

Regions with q-values below 0.25 were considered significant. After running Gistic2, the 

genomic regions with CN variation, a genomic descriptor of each significant region, q-values 

and residual q-values were obtained. Concretely, three different genomic regions were 

obtained: 

• Wide peak limits: consist in boundaries most likely to contain the target genes. 
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• Peak limits: delimited part of the aberrant region with greatest amplitude and frequency 

of alteration. 

• Region limits: boundaries of the entire significant region harbouring CNA. 

Two significance measures were also obtained: 

• Q-values: the q-value of the peak region. 

• Residual q-values: adjusted q-value of the peak region after removing adjacent 

amplifications or deletions that overlap other significant peak regions in the same 

chromosome. 

 

2.2.8 Subtraction of Recurrent CN Segments from Germline 

Samples  

Next segments with a sharp signal in control samples were subtracted prior to running Gistic2 

on the tumour data to select putative somatic CNAs. For this, the wide peak limits that 

obtained a residual q-value of ≤ 10-5 from the normal samples were subtracted from the 

tumour segmented data employing the coverageBed function from bedtools (ver.2.29.0). 

Tumour segments that overlapped by 50% with the normal wide peak limits were excluded 

and were used for calling of CNAs as detailed in Section 2.2.9.  

 

2.2.9 Calling of Somatic Focal Copy-Number Alteration (CNA) with 

Gistic2 

After germline CN subtraction, the remaining segments considered “somatic” segments were 

subsequently used to identify significant CNAs. Gistic2 software (ver.2.0.23) was run with the 

beforementioned options used to identify recurrent CNAs in non-tumour samples. 

 

2.2.10  Maftools and Downstream Interpretation of Somatic CNAs 

Output files generated by the Gistic2 programme were used as input for Maftools (ver. 2.2.10) 

for summarising CN data and for visualization purposes. For instance, Maftools allowed the 

type of CNA (amplification or deletion) per sample to be retrieved as well as the cytoband, 
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wide peak limit and associated q-value. The genes contained or located nearby the significant 

peaks are also detected. 

 

2.2.11 Copy Number Burden (CNB) Calculation 

Copy Number Burden was calculated per sample based on the segment size of amplifications 

and deletions per autosome size. Calculation was performed with RStudio software.  

 

2.3 Targeted Gene Panel Sequencing  

2.3.1 Agilent Gene Panel Design 

For NSCLC, an Agilent Gene Panel was designed based on published literature166–168 and 

findings from prior in-house whole exome sequencing of a set of 70 paired tumour and normal 

tissue NSCLC samples. This set included cases of adenocarcinoma, squamous as well as 

carcinoids. The panel was designed using the Agilent software SureSelect DNA Advanced 

Design Wizard based on the Human Genome version from February 2009 assembly (GRCh37/ 

hg19). The gene panel focused on the exonic regions of 52 genes (Table 2.1) that have been 

found recurrently mutated in NSCLC, such as TP53, EGFR, PIK3CA.  

 

Table 2. 1| Genes contained in the Agilent Gene Panel for targeted capture sequencing. The 
gene panel consists of 12,129 probes with a total size of 266,937 Kb. 
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2.3.2 SureSelect NGS Target Enrichment for Illumina Multiplexed 

Sequencing 

Library preparation was done according to the Sure Select QXT target enrichment system 

(Agilent Technologies) for the Illumina Multiplexed Sequencing platform (Illumina) 

following manufacturer’s instructions (Fig. 2.2). 

Genomic DNA samples were adjusted to 25 ng/μl for enzymatic fragmentation and 

adaptor-tagging (process called tagmentation). The adaptor-tagged DNA libraries were PCR-

amplified, AMPure beads purified and adjusted to 750 ng in 12 μl using nuclease-free water. 

Prepared libraries were hybridized to the Capture Library and selected using streptavidin-

coated beads.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. 2| SureSelect NGS Target Enrichment sample preparation workflow for the Illumina 
Multiplexed Sequencing platform protocol. [Taken from: Version, D. SureSelectXT Target 
Enrichment System for the Illumina Platform Protocol. 1–102 
https://www.agilent.com/cs/library/usermanuals/Public/G7530-90000.pdf (2021)]169.  

 

The targeted captured libraries were PCR amplified using the appropriate distinct pair 

of dual indexing primers to allow further multiplexing. Amplified captured libraries were 
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purified with AMPure XP beads (Agilent) and combined in equimolar amounts. Target-

enriched libraries were diluted to the optimal seeding concentration of 1.8 pM together with 

PhiX control that was used as a sequencing quality control.  

Both pre and post cleaned-up libraries were analysed with Agilent 2100 Bioanalyzer 

and High Sensitivity DNA assays, following the manufacturer’s instructions, to determine the 

DNA fragment size and concentration of each prepared library. Pre-capture libraries had a 

DNA fragment size between 245 to 325 bp, while post-capture libraries had a DNA fragment 

size between 325-450 bp. 

 

2.3.3 Illumina NextSeq Sequencing 

Libraries were sequenced with paired-end chemistry on the Illumina NextSeq 550 (Illumina) 

Next Generation Sequencing (NGS) automated sequencer at the Clinical Genetics & Genomics 

Laboratory, Royal Brompton Hospital. The Illumina sequencing instrument uses a sequencing 

by synthesis technology that allows to measure the intensity of each base in each sequencing 

run. Binary Base Call (BCL) files are the raw data generated by the Illumina sequences that 

store the base and the quality score of each called base. These BCL files were converted to 

FASTQ files and simultaneously demultiplexed with the Bcl2fastq2 Conversion Software 

(v2.19). Fastq data thus obtained were quality controlled and processed for alignment, 

mutation calling and variant annotation, according to an established pipeline within the 

Genomic Medicine group detailed in the sections below. 

 

2.3.4 Summary of DNA Sequencing Data Analysis  

Analysis of DNA sequencing data generated from Targeted Capture Sequencing (TCS) 

involved QC of raw reads, trimming of low-quality ends, alignment or mapping against the 

human reference genome, recalibration/refinement of the reads, somatic mutation calling. 

Calling of somatic SNPs and Indels was performed by the analysis of matched tumour-normal 

samples, and high confidence calls were subsequently used for variant annotation (Fig. 2.3). 
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Figure 2. 3| Flowchart of the mutational analysis for the Lung Cancer cohort. Mutational data analysis involved Bcl2fastq conversions, QC of raw reads, 
trimming of low-quality ends, alignment against the human reference genome, local realignment and recalibration/refinement of the reads and somatic 
mutation calling by analysis of paired tumour and normal samples. Finally somatic high confidence calls were used for variant annotation and 
downstream analyses.
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2.3.5 QC of Fastq Reads 

Paired-end Illumina NextSeq data consists of the sequencing of both ends of the same 

fragment. Therefore, the sequences (or reads) come in two data files corresponding to the 

forward paired-end sequence (R1) and the reverse paired-end sequence (R2). The FastQC 

software provides assessment of the quality of the sequenced bases for both reads in each 

sample. FastQC was therefore run before and after adapter trimming of paired-end reads with 

Trimmomatic (ver. 0.36). FastQC reports were examined and Phred scores were used to 

exclude low quality reads.  

 

2.3.6 Mapping and Somatic Variant Calling 

The Human Genome December 2013 assembly (GRCh37/hg19) was downloaded from the 

University of California Santa Cruz (UCSC) genome database. Alignment of the trimmed 

Fastq sequences against the human reference genome was performed using BWA mem (ver. 

0.7.15) to obtain Sequence Alignment Mapping (SAM) files. SAM files thus obtained per 

sample were sorted by chromosomal location and read alignments deemed to be PCR 

duplicates were removed with Picard (ver. 2.17.11) to obtain BAM files (the binary version of 

a SAM file). Then, Genome Analysis Tool Kit (GATK) (ver. 3.7) allowed local realignment 

around known Insertions and Deletions (InDels), from 1000 Genomes Project 

(https://www.internationalgenome.org), to correct mapping errors that could have been 

generated by the genome aligner. Further, DepthOfCoverage from GATK was used to obtain 

main coverage across the total regions covered by the Gene Panel.  

Next, somatic mutation calling was performed, employing VarScan (ver. 2.4.2), 

through comparison of matched tumour and normal samples. The VarsCan tool expects both 

a normal and tumour file in SAMtools pileup format and position sorted. Samtools (ver. 1.4) 

mpileup command was used for summarising the base calls of the BAM aligned reads to the 

reference sequence. Then, the output mpileup files for the tumour and normal samples were 

used to run VarScan Somatic. Specifically, a statistical comparison for changes in variant allele 

frequency is made at every genomic position where both normal and tumour meet the 

following criteria:  

• a minimum of 10 supporting reads [--min-reads2] 
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• a minimum base quality of 20 for Phred-scaled base qualities [--min-avg-qual] 

• a minimum depth of coverage of 30X [--min-coverage] 

• a minimum allele frequency of 0.01 [--min-var-freq] 

• Fisher’s Exact Test P-value of <0.05 [--p-value] 

 

Furthermore, if a difference in variant allele frequency between tumour and normal 

was significant and the base observed in the tumour did not match the normal, a somatic 

variant was called. In contrast, if the difference was significant but the base observed in the 

normal pairing did not match the reference, a germline variant was called. Variant Calling 

with VarScan allowed the Variant Call Format (VCF) files for both SNPs and InDels to be 

obtained that were next used as input for gene annotation. 

 

2.3.7 Variant Annotation  

Gene annotation aims to gather data around the raw DNA sequence in order to determine the 

functional effect of the called variants based on different types of genetic and genomic 

information. Gene annotation was performed with the Ensembl Variant Effect Predictor (VEP) 

(ver. 92) which provided additional information on genes affected by each variant (gene level 

annotation); location information at genomic, mRNA and protein level; and the consequence 

of the variant on the protein sequence (functional annotation). Moreover, custom Plugins 

were used to add functionalities and retrieve additional annotation data, for example 

pathogenicity and splicing predictions, or population frequency data. The plugins were the 

VEP plugin that reports Clinical Sequencing Nomenclature (CSN) for variants, the ExAC 

plugin to obtain allele frequencies, the database of splice-site consensus Single-Nucleotide 

Variants dbscSNV plugin for reporting splicing variants, and the Combined Annotation 

Dependent Depletion (CADD) plugin to obtain CADD scores for both Single-Nucleotide 

Variants (SNVs) and InDels. 

 For functional annotation, known impact predictions were obtained from sequence 

ontology analysis. This analysis classified variants into High (when leading to gain/ loss of 

stop-codon, frameshift variant or alteration at the splice acceptor/ donor site), Moderate 

(when leading to missense variant), Low (when leading to silent variant, or variant affecting 
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un-translated region of the mRNA, or those affecting non-coding genes) or Modifier (when 

they are intragenic or intronic) depending on the consequence of the variant on the protein 

sequence. Moreover, protein impact predictions from SIFT, polyPhen and CADD algorithms, 

and dbscSNV scores for functional predictions of SNVs within splicing consensus regions 

(scSNVs) were obtained. These scores indicated whether a variant was deleterious or benign. 

CADD scores compile information from 63 different annotation databases, including 

PhastCons, GERP, PhyloP, SIFT and PolyPhen, and range from 1 to 99, with a higher score 

indicating greater deleteriousness.  

 VEP also searched the Ensembl Variation database to retrieve known variants that 

overlapped with the input variants and their allele frequency (AF) from dbSNP, 1000 

Genomes, NHBLI ESP, ExAC (Exome Aggregation Consortium) and gnomAD (Genome 

Aggregation Database) databases. Finally, the Catalogue of Somatic Mutations in Cancer 

(COSMIC) identifiers (IDs) from variants reported in various cancer genomes were also 

obtained with VEP. 

 

2.3.8 Filtering Based on Impact and Population Frequency 

After variant annotation, variants were filtered and prioritised to identify variants most likely 

to impact function. Filtering of the VEP annotated variants was performed taking into account 

population-level frequency, clinical impact and functional impact. Specifically, variants were 

selected through the following filtering process: 

- Variant allele observed at ≥1% frequency in tumour 

- Variant had no associated frequencies in dbSNP, 1000 Genomes, NHBLI ESP, ExAC and 

gnomAD databases or when, if the variant was known already in population-level 

databases, its observed incidence was <0.001 

- At the functional impact level, only high and moderate impact variants were selected, 

or, the dbscSNV predicted score was >0.6 for variants in splicing regions. 

In addition to the above, CADD score>=15 was used and correlated with SIFT and polyPhen 

prediction scores to predict potential protein-damaging effects of missense variants. Variants 

suspected to be artefacts were manually examined with the Integrated Genome Viewer (IGV) 

to discard potential false positives. Variants were filtered out if strand-bias was observed in 
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the distribution of the supporting reads for the variant allele, or if additional mismatches were 

observed, with respect to the reference in close proximity, to distinguish from sequencing 

noise. In addition, any SNV present +/- 3 bases from an Indel was presumed to be a mis-

alignment.  

 

2.3.9 Downstream Interpretation 

Finally, all the variants (including high-allele fraction variants) were checked manually on 

Mutation Taster, COSMIC 3D, cBioPortal and in the literature to discard polymorphic or 

known benign variants. The COSMIC data portal was used to visualize if a detected variant 

had been previously reported in other cancers or mapped near cancer hotspots or in important 

functional protein domain following the rationale that variants with no additional reports in 

COSMIC or mapping into unknown domains have a lesser chance of being biologically 

relevant. Literature was also checked to identify mistakenly annotated genes i.e., a loss of 

function variant that was reported in the literature with an opposite oncogenic role. Lastly, 

expression data in tissue panels at NCBI Entrez and Gene Cards websites were reviewed in 

order to discard variants that were not known to be expressed in the lungs, as indicative that 

such variant may not be passing the RNA-protein bridge. 

 

2.4 Somatic Mutations from WES 

2.4.1 WES Sequencing 

WES and mutation calling was performed in collaboration with Prof. Mark Lathrop, Dr. 

Markus Munter and the Canadian Centre for Computational Genomics (C3G) team at the 

McGill Genome Centre, Montreal, Canada. Sequencing libraries were prepared with the 

SureSelectXT Target Enrichment System (Agilent SureSelect Human All Exon V4) and 

sequenced with 100 bp Paired-End Illumina HiSeq2000 Sequencer. 
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2.4.2 Callset Generation from McGill WES Data  

This analysis was carried out by Dr. R. Eveleigh (McGill Genome Centre, Montreal, Canada) 

as follows: 

Briefly, Fastq files were trimmed and aligned against the Human Genome December 

2013 assembly (GRCh37/hg19) with BWA mem. SAM files thus obtained per sample were 

sorted by chromosomal location with GATK (ver.3.7) and read alignments deemed to be PCR 

duplicates were removed with Picard (ver. 2.9.0) to obtain BAM files. Samtools Fixmate was 

used to ensure that paired-end reads contained the correct information about the mate read, 

and the resulting BAM files were further processed to remove biases in the data through InDel 

realignment and Base Quality Score Recalibration (BQSR) from GATK. Finally, somatic 

mutations and InDels were identified with MuTect (ver. 1.16) and Scalpel (ver. 0.4.1) software, 

respectively. Somatic calls were then combined, and further steps involved decomposing 

multiallelic variants from VFC files, genetic variant annotation and functional effect 

prediction with SnpEff (ver. 4.3), and addition of metadata with Genome MINIng (GEMINI) 

(ver. 0.14-0.20) software. 

 

2.4.3 Filtering of the Gemini Annotated Variants 

Taking the annotated variants provided by McGill filtering based on known impact 

predictions and CADD scores was performed. Only variants with predicted high or medium 

impact, with CADD score>=15, and not flagged as polymorphic were selected for integration 

with TCS data. 

 

2.5 Downstream Analysis of Merged Somatic Mutational 

Data from WES and TCS 

2.5.1 Integration of WES and TCS Data 

The selected somatic variants from WES and TCS experiments were merged using the 

command line and RStudio and were then used to generate Mutation Annotation Format 
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(MAF) files as input for Maftools. Maftools allowed the generation of several plots to 

summarise mutational data: 

- Oncoplots or waterfall plots to summarise annotated variants per sample. 

- MAF summary plots to display the number of variants and variant types as stacked 

bar plots and boxplot respectively.  

- Boxplots showing overall distribution of substitution types, as well as stacked bar plots 

showing fraction of conversions in each sample. 

- Lollipop plots for visual exploration and localisation of variants in different amino 

acid motifs and amino acid changes. 

- Rainfall plots for visualisation of inter variant distance on a linear genomic scale to 

enable genomic co-localisation of variants to be detected. 

- Comparison of Tumour Mutational Burden (TMB) against TCGA cohorts. 

- Boxplots of Variant Allele Frequency (VAF) to examine clonal status of genes of 

interest. 

 

Additionally, Maftools allowed several analyses to be conducted including: 

- Pair-wise Fisher’s Exact test to detect significant pairs of genes with mutual exclusivity 

or co-occurrence. 

- Calculate log odds ratio for genes of interest and generation of forest plots. 

- Identification of enriched mutations in categories or groups of interest. 

- Identification of mutated genes that are druggable. 

- Identification of genes enriched in main oncogenic signalling pathways. 

- Identification of de novo Mutational Signatures. 

- Estimation of APOBEC enriched mutations and samples. 

 

2.5.2 Tumour Mutational Burden (TMB) Calculation 

TMB was defined as the total number of somatic, coding, base substitution and InDel 

mutations detected per Mega base (Mb) of genome examined. CallableLoci from GATK (ver. 

3.7) was used to obtain callable bases applying the following criteria: a minimum read depth 

of 10 before a locus was considered callable, a minimum base quality of 20 (based on Phred 
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scores) and a minimum mapping quality of 30 reads to count towards depth. TMB was 

calculated as:  

𝑇𝑇𝑇𝑇𝑇𝑇 (𝑚𝑚𝑚𝑚𝑚𝑚/𝑇𝑇𝑀𝑀)  =
𝑇𝑇𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚
𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑇𝑇𝐶𝐶 𝐿𝐿𝑇𝑇𝑐𝑐𝐿𝐿

𝑥𝑥 106 

 

2.5.3 Mutational Signature Analysis 

2.5.3.1 Identification of COSMIC Catalogued Mutational Signatures with 

deconstructSigs  

The DeconstructSigs R package (ver. 1.8.0) was used to determine the contribution of known 

mutational processes in lung samples. Input data consisted of a data frame containing total 

mutational data for each sample. Then, the number of times a mutation was observed in each 

trinucleotide context was calculated for each sample. To determine the signatures 

characterising lung cancer tumours, signature matrices were calculated based on the fraction 

of times a mutation was seen in each of the 96-trinucleotide context for each COSMIC 

catalogued signature (provided by the package). The software then computed weights for 

each signature using an iterative approach after selecting an initial signature that most closely 

reflected the mutational profile of a sample by minimising the Sum-Squared Error (SSE) 

between a tumour sample and the signature. The “exome2genome” normalisation method 

was used as recommended for exome data to reflect the absolute frequency of each nucleotide 

context as it would across the whole genome. As a result, a reconstructed mutational profile 

was obtained based on the final weights. Signature visualisation employed the plotsignatures 

and makePie commands. 

 

2.5.3.2 Identification of de novo Mutational Signatures with Maftools 

To gain insights into the biological mechanisms involved in tumorigenesis, the most frequent 

combinations of somatic mutations were identified and related to catalogued COSMIC 

signatures. The workflow of the functions implemented in the Maftools package is shown in 

Figure 2.4. 
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Figure 2. 4| Maftools R workflow used for de novo Mutational Signature identification. A 
trinucleotide matrix was extracted by scanning immediate 5’ and 3’ bases flanking the mutated 
sites, then number of signatures (n) was decided based on the Cophenetic correlation plot and 
through non-negative matrix factorization decomposed the matrix into n signatures that were in 
the end compared to known signatures from the Catalogue Of Somatic Mutations In Cancer 
(COSMIC) signature (ver.2) database. [Taken from: Mayakonda, A., Lin, D., Assenov, Y., Plass, C. 
& Koeffler, H. P. Maftools: efficient and comprehensive analysis of somatic variants in cancer. 1–
10 (2018) doi:10.1101/gr.239244.118]170. 

 
Specifically, signatures were first estimated using the Non-negative Matrix 

Factorization (NMF) method82 by inputting the selected putative pathogenic variants. Then, 

the number of signatures to be extracted was decided upon based on the Cophenetic 

correlation value, and finally the identified signatures were related to the Catalogue Of 

Somatic Mutations In Cancer (COSMIC)171,172 Legacy signature (ver. 2) database based on 

cosine similarity values. 

 

2.6 Analysis of DNA Methylation Data 

2.6.1 Preparation of libraries for Whole-

Genome Bisulfite Sequencing (WGBS) 

WGBS libraries were constructed by the McGill Genome Centre (Montreal, Canada) using the 

KAPA High Throughput Library Preparation Kit (Roche/KAPA Biosystems) with template 

input being 1 μg of genomic DNA spiked with 0.1% (w/w) unmethylated lambda and pUC19 
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DNA (Promega). DNA was sonicated (Covaris) and fragments sizes of 300-400 bp were 

confirmed on a Bioanalyzer DNA 1000 Chip (Agilent). Following fragmentation, DNA end 

repair of double stranded DNA breaks, 3’-end adenylation, adaptor ligation and clean-up 

steps were conducted according to the KAPA Biosystems’ protocols. The sample was then 

bisulfite converted using the Epitect Fast DNA bisulfte kit (Qiagen) following the 

manufacturer’s protocol. The resulting bisulfite DNA was quantified with OliGreen (Life 

Technology) and amplified with 9-12 PCR cycles using the KAPA HiFi HotStart Uracil+ DNA 

Polymerase (Roche/KAPA Biosystems) according to the recommended protocols. The final 

WGBS libraries were purified using Ampure Beads, validated on Bioanalyzer High Sensitivity 

DNA Chips (Agilent) and quantified by PicoGreen (ThermoFisher). 

 

2.6.2 Whole-Genome Bisulfite Sequencing 

Sequencing of WGBS prepared libraries was carried out with the paired-end Illumina HiSeq X 

Next Generation Sequencing at the McGill Genome Centre, Montreal, Canada. 

 

2.6.3 Summary of WGBS-seq Data Analysis 

Pre-processing of WGBS-seq data was performed with GenPipes173, a python-based 

framework created at McGill Genome Centre. Specifically, the standard Methyl-Seq pipeline 

adapted from Bismark174 was used for read alignment and processing of WGBS-seq data. Data 

analysis was performed in UNIX programming language. After pre-processing of the data, 

the next steps involved assessment of sequencing performance and estimation of CpG DNA 

methylation parameters for calling of Differentially Methylated Regions (DMRs). 

Downstream analyses included motif and pathway analyses, as well as analysis of cis-

regulatory regions. A summary flowchart of the steps carried out for WGBS-Seq data analysis 

is given in Figure 2.5, and details for the individual steps are explained further in this chapter.
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Figure 2. 5| Flowchart of the WGBS-Seq data analysis. Sequencing of WGBS was carried out with the paired-end Illumina HiSeq X Next Generation 
Sequencing at the McGill Genome Centre (Canada). Then, pre-processing of WGBS-seq data was performed with GenPipes, and involved alignment 
against the bisulfite converted Human Genome and generation of CpG DNA methylation profiles. Assessment of sequencing performance ensured that 
methylation differences were not caused by samples with different depths of coverage. Finally, CpG DNA methylation parameters were estimated for 
calling of Differentially Methylated Regions (DMRs). Downstream analyses included motif and pathway analyses with the annotated DMRs, as well as 
analysis of cis-regulatory regions.
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2.6.4 QC of Fastq Reads 

Similar to the DNA sequencing analysis (Section 2.4), the first step of analysis of the WGBS 

sequencing data involved assessment of the quality of the sequenced bases for both reads in 

each sample with the FastQC software. FastQC reports were examined before and after 

adapter trimming and Phred scores were used to exclude low quality reads.  

 

2.6.5 Read Alignment 

Alignment of paired-end reads to bisulfite converted Human Genome (GRCh37/hg19) was 

performed with bismark (v 0.18.1) and bowtie2 (ver. 2.3.1) according to the bismark user guide 

manual with default options to obtain SAM files (Sequence Alignment Mapping) files. Non-

directional option instructs Bismark to use all four strands (OT, CTOT, CTOB and OB) for 

alignment. SAM files per sample obtained were sorted by chromosomal location with GATK 

(ver.3.7) and read alignments deemed to be PCR duplicates were removed with Picard 

(ver.2.9.0) to obtain BAM files (binary form of SAM).  

DepthOfCoverage from GATK was used to obtain coverage tracks per sample together 

with other metrics generated with Samtools (ver.1.4). SAM files were also processed with the 

bismark methylation extractor command from bismark with default options to extract 

methylation in CpG, CHG and CHH contexts. Output of bismark methylation extractor was 

processed to generate a CpG methylation profile by combining cytosines from both forward 

and reverse strands.  

Identification of SNPs is important for accurate quantification of methylation levels, 

especially given the fact that C>T is the most common substitution in the human population 

(65% of all SNPs in dbSNP) and these usually occur in the CpG context. Bis-SNP175 allowed 

the identification of SNPs and InDels to produce the standard SNP and InDel variants files in 

Variant Call Format (VCF). The output VCF files were used to filter SNPs and Bedops (ver. 

2.4.35) applied to obtain the resulting Browser Extensible Data (BED) files.  
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2.6.6 Assessment of WGBS Data Read Coverage 

To prove that any detected methylation difference between samples (i.e., tumour vs normal) 

was not influenced by sequencing performance, genome-wide sequencing coverage was 

assessed with Mosdepth176. Mosdepth is a command-line tool that measures sequencing depth 

from BAM files across the genome. Specifically, the cumulative distribution indicating the 

proportion of total bases covered for at least a given coverage value was obtained and 

subsequently used to visualize whole-genome sequencing performance for all the samples. 

This served as a QC before using methylKit which uses data from individual cytosines in CpG 

context to obtain coverage and percent methylation by ensuring that methylation differences 

are not caused by samples with different depths of coverage.  

 

2.6.7 Pre-processing of WGBS Data  

Output BED files were the input into the methylKit R package allowing descriptive statistics 

on samples to be obtained, and filtering performed based on read coverage and hierarchical 

clustering, using correlation distance and Principal Component Analysis based on samples’ 

methylation profiles. 

Basic statistics about the methylation data generated included sample coverage and 

percent methylation per sample, as well as histogram plots for CpG coverage and percent 

methylation distribution. Furthermore, filterByCoverage command allowed filtering samples 

based on sequencing coverage. Bases that obtained a coverage below 10X were discarded, to 

increase statistical power, as were bases with more than 99.9th percentile of coverage for 

samples suffering from PCR bias. The normalizeCoverage command was then used to 

normalize coverage between samples using a scaling factor derived from differences between 

median of coverage distributions.  

Finally, methylKit allowed the merging of base-pair locations that are covered in all 

samples for comparative analysis with the unite command. The output objects from methylKit 

were then used for the following analyses: 

i. Exploratory data analysis with unsupervised methods: 

a. Hierarchical Clustering Analysis (HCA)  

b. Principal Component Analysis (PCA) 
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ii. Genomic-context based binning  

iii. Differential Methylation (DM) Analysis  

 

2.6.8 Exploratory Data Analysis with Unsupervised Methods for 

Hypothesis Generation 

Both HCA and PCA analysis are methods that allow graphical representations of high-

dimensional biological data. WGBS was used to explore the similarity of the DNA 

methylation profiles of all the samples for hypothesis generation.  

Since tumour and non-tumour samples from different lung cancer subtypes (L-CD, 

LUAD and LUSC) were investigated in this study, this exploratory analysis allowed 

preliminary information regarding the similarity of their methylomes, such as to what extent 

DNA methylation was different between cancer subtypes, between tumour and normal 

samples to be obtained. 

i. Agglomerative HCA built a tree-like structure, named a dendrogram, in which the 

leaves represent individual objects which are successively allocated together for 

those showing a high degree of similarity. These objects are then collapsed into a 

higher object or a cluster and processed as a single object in subsequent steps. For 

WGBS data, each of the samples was represented by the leaves, and enabled the 

identification of groups of samples with similar DNA methylomes.  

ii. Similarly, PCA also enabled dimensionality reduction by projecting data from the 

two variables that do not correlate and that explain most of the variance. Thus, the 

complexity of high dimensionality data, such as in this case WGBS data, is reduced 

into Principal Components (PCs) that concentrate much of the information. 

Therefore, HCA and PCA allowed the allocation of samples into homogeneous groups based 

on their DNA methylation profiles to establish groups for comparison for Differential 

Methylation analysis. 
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2.6.9 Genomic Context Based Binning  

WGBS is the most comprehensive technique to study DNA methylation covering more than 

90% of the cytosines in the human genome. Besides the importance of the coding genome and 

its regulation, another goal of this study was to investigate to what extent the non-coding 

genome was aberrantly methylated. To do so, the genome was first binned into genic and non-

genic categories to explore and find whether, and to what extent, the different genomic 

regions contributed to distinguish tumour from non-tumour samples and between tumour 

subtypes. For this purpose, the Table Browser from the UCSC Genome Browser website was 

used to retrieve the genomic coordinates of different genomic regions, including promoter 

regions (by considering 1Kb upstream genes), vista enhancers, repeat regions (considering 

only four main classes of repeat elements: SINE, LINE, LTR and DNA), intronic regions and 

exons.  

Additionally, regions mapping to different histone marks in lung-tissue were 

downloaded from the Encyclopedia of DNA Elements (ENCODE). BED narrow peaks for 

histone marks, obtained from ChiP-Seq experiments on normal left lung tissue of a 54-year-

old male adult, were retrieved from the ENCODE database177.  

The makeGRangesFromDataFrame from the GenomicRanges (ver.1.38.0) was used to 

convert input data frames to “GRanges” objects which were then used as input into for 

regionCounts of the methylKit package to extract methylation levels on the regions of interest, 

as well as perform PCA analysis with the DNA methylation data from these regions. 

 

2.6.10  Calling of Differentially Methylated Regions (DMRs) 

The final step in the DNA methylation analysis involved calling of DMRs between groups 

with the Dispersion Shrinkage for Sequencing data with single replicates (DSS-single) R 

package (ver.2.34.0). DSS-single is a statistical method for analysing WGBS data that accounts 

for spatial correlation of methylation levels, sequence depth and biological variation.  

The differential methylation analysis involved several steps as follows:  

i. Text files containing DNA methylation data per CpG were read and converted to 

“BSseq” objects. 
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ii. Mean DNA methylation levels were then estimated for all CpG sites considering 

information from neighbouring CpG sites in windows of 500 bp.  

iii. Sample variance was estimated within defined groups of samples through an 

empirical Bayes procedure178 . This is termed the “shrinkage approach” and involves 

using groups of samples with similar biology (test vs control) as a surrogate for 

technical replicates, in order to provide more accurate estimates of dispersion.  

iv. A statistical hypothesis test for the equality of mean DNA methylation levels (µ) at 

each CpG site (i) between the two groups was performed based on the following 

hypotheses: 

• Null-hypothesis  𝐻𝐻0: 𝜇𝜇𝐼𝐼1 =  𝜇𝜇𝐼𝐼2 

• Alternative-hypothesis 𝐻𝐻1: 𝜇𝜇𝐼𝐼1 ≠  𝜇𝜇𝐼𝐼2 

Only CpGs that showed a mean methylation difference greater than delta between the 

two groups were used for statistical analysis. Statistical analysis was performed using a Wald 

test and P<1x10-6 was considered statistically significant, and if achieved a Differentially 

Methylated Cytosine (DMC) was called. Then, a DMR was called when 3 DMCs where found 

in a region of at least 50 bp.  

The above steps were executed using the following commands implemented by the 

DSS-single R package: 

• makeBSseqData 

• DMLtest with a smoothing span of 500 bp 

• callDMR 

Finally, DMRs were manually curated and only DMRs with a methylation difference 

of > 20% between the two comparison groups were considered for annotation.  

 

2.6.11  Annotation of DMRs 

DMRs consisted of genomic coordinates which showed higher or lower DNA methylation 

levels as compared to another set of samples. DMRs were annotated into different categories 

with the annotatr R package (ver. 1.12.1). Specifically, annotatr allowed retrieval of 

information on (I) how far from a CpG site the DMR was located and (II) where in a gene or 

outside a gene a DMR was located. The different genomic categories are explained below: 
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I. CpG annotations (Fig. 2.6):  

• CpG island (CGI): regions rich in CpG sites frequently located at the promoter 

regions of coding genes where they modulate gene transcription. 

• CpG shore: regions immediately flanking and up to 2Kb away from CGIs. They 

appear variably methylated in cancer and development. 

• CpG shelf: regions flanking CpG shores 2Kb upstream/downstream. 

• InterCGI: remaining genomic regions that are not considered CGI, CpG shore or 

CpG shelf.  

 

 

 

 

 

 
Figure 2. 6| CpG annotations that were retrieved with the annotatr R package based on how far 
from a CpG site the DMR was located. 

 

II. Genic annotations (Fig. 2.7): 

• 1-5Kb: 1 to 5Kb upstream of the TSS. 

• Promoter: <1Kb upstream of the TSS. 

• The five prime Untranslated Region (5’UTR): region immediately upstream of the 

coding sequence that is transcribed into mRNA and recognised by the ribosome 

to initiate translation. However, these regions are usually not translated into 

proteins. 

• Exon: part of a gene sequence that is transcribed and translated into protein. 

• Intron: part of a gene sequence that is transcribed but not translated into protein.  

• The three prime Untranslated Region (3’UTR): region downstream of the coding 

sequence that is transcribed into mRNA and follows the termination codon and 

precedes the poly(A) tail. Similar, to the 5’UTR, this region is neither translated 

into protein.  

• Intergenic regions: exclude the previous annotations. 
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Figure 2. 7| Genic annotations that were retrieved with the annotatr R package based on where 
in a gene or outside a gene a DMR was located. 

 

The annotatr R package also allowed the number of regions in each annotation type, 

as well as allowed visualization of CpG annotation counts based on user specified classes - 

such as hypomethylated and hypomethylated DMRs to be obtained.  

 

2.6.12  Assessment of DNA Methylation in Transposable Elements  

Transposable elements (TEs) are patterns of nucleic acids dispersed throughout the genome 

that account for more than half of the human genome. Most of these do not encode for RNA 

or proteins but have been historically argued to play important functional and structural roles 

and have been found aberrantly methylated in many diseases, including cancer.  

To assess the level of DNA methylation in these TEs, the four main classes of TEs were 

focused upon: 

• Short interspersed nuclear elements (SINE), which include ALU elements. 

• Long interspersed nuclear elements (LINE). 

• Long terminal repeat elements (LTR), which include retrotransposons. 

• DNA repeat elements (DNA). 

 

Since TEs make up almost half of the nuclear DNA, further assessment was conducted 

to establish whether and to what extent TEs overlapped with the DMRs identified. To do so, 

bedtools coverage was used to obtain the DMRs that overlapped with TEs at least on a 30% 

fraction of 30% of the TE size. DMRs were then classified into two groups based on their repeat 

content: repeat-rich (rrDMR), for DMRs with a repeat content of ≥ 30%, or repeat-free (rfDMR) 

DMRs, for those with a repeat content of <30%.  
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2.6.13  Identification of DNA-binding Motifs in DMRs  

To identify enriched Transcription Factor (TF) binding motifs in the genomic regions of 

interest, the HOMER findMotifsGenome command from the HOMER (ver. 4.9.1) tool was 

employed. CpG normalization was used to normalize CpG% content and repeat masked 

sequences were not considered for this analysis.  

 

2.6.14  Analysis of Cis-regulatory Regions  

Cis functions of non-coding genomic regions were studied with the Genomic Regions for 

Enrichment of Annotations Tool (GREAT) (ver. 4.0.4). Gene regulatory domains were defined 

as 5Kb upstream and 1Kb downstream of the nearest genes, up to 1Mb extension in each 

direction, as specified by the “basal plus extension” association rule. The t-test metric was 

used for ranking genes and Gene Ontology (GO) results and only those that obtained a 

normalised enrichment score of >2, and multiple hypothesis testing corrected P values of <0.01 

for both the binomial and the hypergeometric distribution-based tests, were considered 

significant.  

 

2.7 RNA sequencing 

2.7.1 Preparation of RNA Sequencing Libraries 

RNA sequencing libraries were prepared using the extracted total RNA by Dr. S. Dwyer 

within the Genomic Medicine Group. Briefly quality and concentrations of samples were 

analysed with the 2100 Bioanalyser and total RNA Nano Kit (Agilent Technologies, California, 

United States) following the manufacturer’s instructions. The Illumina TruSeq stranded total 

RNA Gold sample preparation protocol (RS-122-2301) was used to prepare libraries for each 

of the samples. Samples were pooled and then RNA sequencing was performed at the 

Imperial BRC Genomics Facility using the Illumina HiSeq4000 system with Sequencing by 

Synthesis (SBS) chemistry for 75 and 100 paired ends.  
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2.7.2 Summary of RNA Sequencing Data Analysis 

In outline, analysis of RNA sequencing data involved pre-processing and QC of the raw reads, 

read alignment, processing of the aligned reads to filter out low expressed genes and 

normalization. Downstream analyses carried out with the normalised RNA-seq data included 

differential expression and gene set enrichment analyses, as well as data integration with 

other types of data (Fig. 2.8).  
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Figure 2. 8| Flowchart of the RNA Sequencing data analysis. RNA sequencing data was generated on a HiSeq4000 system. Analysis of RNA sequencing 
data involved pre-processing and QC of the raw reads, read alignment, processing of the aligned reads to filter out low expressed genes and 
normalization. Downstream analyses carried out with the normalised RNA-seq data included differential expression and gene set enrichment analyses, 
as well as data integration with other types of data.
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2.7.3 Pre-processing and QC of Fastq Reads 

The FastQC software was used to provide an overview of the quality of the raw RNA 

sequencing data. Following FastQC, reads were adapter trimmed using cutadapt (ver.1.9.1) 

in Trim Galore with at least 5 bases match between adapter and read, discarding reads shorter 

than 50 bp. A second FastQC was run to ensure that adaptors were trimmed and that a low 

percentage of reads (<10%) were filtered out. 

 

2.7.4 Mapping and Gene Expression Quantification  

Read alignment or mapping was performed with the Spliced Transcripts Alignment to a 

Reference (STAR) (ver.2.7.3a) against the Human Genome December 2013 assembly (GRCh38/ 

hg38). STAR alignment uses a two-step process to achieve efficient mapping of the reads by 

accounting for spliced alignments. This means that STAR first finds the longest matching 

sequence for a read (“Maximal Mappable Prefixes”) and the different parts of the read that 

are left unmapped are subsequently matched against the next longest sequence matching the 

reference genome as separate alignments. The separate aligned reads that are not multi-

mapping are first stitched together to create a complete read, followed by those that obtained 

the best alignment based on gaps produced by any mismatches and/or InDels. 

Aligning reads using STAR involved the creation of a genome index and mapping 

reads to the genome or read alignment. Both steps were performed in the UNIX programming 

language. The creation of a genome index was performed with the genomeGenerate option 

using the Ensembl GTF (General Transfer Format) and Ensemble DNA fasta files for the hg38 

human genome. The –sjdbOverhang option was used to define the number of bases to 

concatenate from donor and acceptor sides of the junctions, taking into account the length of 

the trimmed reads. Ideally this would be the length of the donor/acceptor sequence on each 

side of the junctions (mate_length – 1). Since reads were 75 and 100 bp, separated STAR 

indexes were generated for each insert size RNA sequencing libraries.  

Next STAR alignment of the trimmed Fastq sequences was performed with the 

alignReads command against the indexed genomes. Aligned SAM files were thus obtained as 

output containing alignment, summary mapping statistics and detailed information about the 
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run. In addition, the read counts per gene were obtained as tab delimited files by specifying 

the --quantMode GeneCounts option. Additional parameters for STAR alignment included a 

minimum mapped length of 15 bp for the chimeric segments (--chimSegmentMin), length of 

the donor/acceptor sequence on each side of the junctions (--sjdbOverhang), a maximum gap 

in the read sequence between chimeric segments of 3 bp (-- chimSegmentReadGapMax) and --

BySHout was used to reduce the number of spurious junctions. Finally, read counts for all the 

samples were combined in a matrix of m genes and n samples to be used for differential 

expression (DE) analysis. 

 

2.7.5 Transposable Element (TE) Expression Analysis  

The majority of RNA-seq data analysis software are not designed to map reads coming from 

Transposable Elements. Measurement of TE expression was therefore performed with 

TEcounts (ver. 2.2.1) using input BAM files generated with Picard SortSam command (ver. 

2.25.0). TEcounts was specified to be run on input BAM files sorted by chromosome position 

and for first-strand cDNA library. 

Since reads originating from TE could align to multiple loci with equal quality in the 

genome, TEcounts was run as multi mode ensuring counting of all reads. TEcounts first 

perform read assignment by using an iterative algorithm to optimally distribute ambiguously 

mapped reads. For TE-associated reads, the multi-mode counted all available alignments of a 

read, where every alignment was assigned a weight of 1/n, n being the number of alignments. 

Consequently, the total contribution of a multi-read to the library size was the same as a 

unique-read, allowing normalisation not to be influenced by library size of the samples. After 

read assignment, TE transcript estimation using an Expectation-Maximization (EM) algorithm 

to determine the maximum-likelihood estimates for all multi-read transcripts was performed. 

Then, the estimated relative abundance of TE transcripts from multi-reads was integrated 

with unique-read counts to compute the total relative abundance. Similar to gene expression 

analysis, the output was merged into a single count matrix of m TEs and n samples to be used 

for differential expression (DE) analysis.  
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2.7.6 Differential Expression (DE) Analysis 

Differential Expression analysis involved two main steps: 

1. Data pre-processing and normalisation (with edgeR and limma). 

2. Differential expression analysis with linear modelling.  

Processing of the gene and TE count data involved first filtering and removal of lowly 

expressed genes. For the detection of DE genes, genes that were not expressed at a meaningful 

level should be discarded for several reasons. First, transcripts with a read count within the 

0-10 range could be considered as artefacts or not biologically meaningful. Secondly, these can 

increase the number of DE genes after multiple testing correction. And finally, from a 

statistical point of view, removing low count genes allows a more reliable estimation of the 

mean-variance relationship. Thus, genes with less than ~5 counts in 20% of the samples were 

assumed as lowly expressed genes and were filtered out prior to downstream analysis. 

Finally, raw counts were transformed onto Counts Per Million (CPM), taking into account 

library size of samples as they can vary due to the sample quality or the sequencing. 

Transformation from the raw-scale and filtering of lowly expressed genes, as well as 

unsupervised clustering of samples in an unsupervised manner was carried out with edgeR R 

package (ver. 3.28.1).  

Normalisation was then carried out to account for external factors or variables that 

were not of biological interest but could have an effect on gene expression. This variability is 

reflected in the variance or statistical dispersion of the data which is expected to not be 

homogeneous for RNA-seq experiments, where each sample and sequencing run results in 

individual blocks of data which have been aggregated for comparison purposes. Thus, this 

heteroscedasticity in gene expression data must be adjusted before fitting it onto a linear 

model. For this, the Voom function in the limma package (ver. 3.42.2) was implemented to fit 

a linear model for each gene and taking into account the sequencing depths (library sizes) by 

applying weights to each log-count observation based on its predicted variance. Additionally, 

the voom plot provided a visual representation of the level of filtering based on graphical 

representation of the variance as well as ensuring effective removal of lowly expressed genes. 

Counts were transformed to log 2 counts per million reads (log2 CPM), where “per million 

reads” were defined based on the normalization factors. 
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After voom normalisation, differential analysis was performed using linear models with 

limma R package (ver. 3.42.2). Specifically, lmFit and contrasts.fit functions were used to 

perform linear modelling where the first function fits a linear model using weighted least 

squares for each gene. Subsequently comparison between groups were obtained as contrasts 

of these fitted linear models with the contrasts.fit command. Next, empirical Bayes moderation 

was carried out to smooth standard errors that were larger or smaller to the average standard 

error from other genes. Finally, topTable was used to extract a table of the top-ranked genes 

from the linear model fit with 95% confidence interval. Finally P-values were adjusted for 

multiple testing by using the Benjamini, Hochberg, and Yekutieli method179 using a FDR 

threshold of ≤ 0.01.  

 

2.7.7 Gene Set Enrichment Analysis (GSEA) 

GSEA allows biological insights from gene expression data based on groups of genes that 

shared common biological functions or signalling pathways to be extracted. GSEA is a 

computational method that determines whether an a priori defined set of genes shows 

concordant statistically significant differences between two biological states or phenotypes.  

In order to perform this analysis, three files were provided to the GSEA software, 

including a normalised expression dataset in Gene Cluster Text (GCT) format, a phenotype 

annotation file and a gene set from the Molecular Signatures Database (MSigDB)180,181.  

The GSEA algorithm provides an Enrichment Score (ES) reflecting how over or under 

expressed a gene is from the provided expression GCT file with respect to a ranked list of 

genes, and a ranking metric measuring a gene’s correlation with a phenotype. GSEA calculates 

the ES as the maximum deviation from zero encountered by walking down the ranked list of 

genes, where a positive ES indicates gene set enrichment at the top of the ranked list, and a 

negative ES indicates that a gene set is enriched at the bottom of the ranked list. Similarly, a 

positive ranking metric value indicates correlation with the first phenotype, and a negative 

value indicates correlation with the second phenotype.  

GSEA was run with 1,000 permutations. In the setting of exploratory discovery, a FDR 

of ≤0.25 and a nominal P-value of <0.01 was used in order to identify candidate hypothesis 

and not overlook potentially significant results. 
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2.7.8 Cluster Validation Analysis for RNA-seq Data 

Clustering is an unsupervised technique used to group together objects which are close to 

each other to identify inherent structure within the data. For this study, gene expression data 

from RNA-seq experiments was used for clustering with the aim to find groups of samples 

that shared similar expression patterns, and thus shared signalling pathways.  

Since analysis of RNA-seq data from 15 carcinoids revealed two differentiated groups 

of samples (Chapter 6), the clValid R package was used for validation of the results from the 

clustering analysis. The clValid command was used to retrieve statistical measures for different 

number of clusters. The statistical measures fall into three categories: 

- Internal validation, for measures that rely on information in the data only, such as 

compactness and separation between data objects in the clusters. Internal validation 

can be assessed based on three measures: 

o Connectivity: degree of connectedness of the clusters. Ranges between zero and 

infinite and should be minimised.  

o Silhouette Width: is the average of each observation’s Silhouette value, which 

defines the degree of confidence in the clustering assignment of a particular 

observation. Silhouette values range from -1 to 1, where poor clustering will show 

values near -1 and well-clustered observations will have values closer to +1. 

o Dunn Index: is the ratio of the smallest distance between observations not in the 

same cluster to the largest intra-cluster distance. Ranges between zero and infinite 

and should be maximised.  

- Stability validation, referring to measurement of the sensitivity of the clustering 

algorithm by removing each column one at a time and rerunning the clustering. It is 

represented in several measures such as average proportion of non-overlap (APN), 

the average distance (AD), the average distance between means (ADM), and the figure of 

merit (FOM), all of which should be minimised. 

- Biological measures: evaluates the ability of the clustering to produce biologically 

meaningful clusters. It can be only applied to biological data such RNA-seq data. This 

is implemented by providing a biological class for each gene imputed.  
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Thus, clValid enabled the optimal number of clusters for a particular algorithm used to be 

determined. The summary statement provided the validation measures in a table for the 

different clustering methods as well as plots for these measures.  
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Chapter 3: Genomic Landscape of Lung Tumours 

3.1 Introduction 

Lung cancer (LC) is a world-wide challenge due to its high incidence and associated low 

survival rate. The latter has not improved, in contrast to other tumour types, with 5-year 

survival remaining below 20%. Major advancements in sequencing technologies and 

screening efforts are however insufficient as these are not available for most countries and 

tumours evolve with new alterations driving their heterogeneous nature. As a result, drug 

resistance is very frequent among advanced and metastatic LC patients and remains a focus 

of many preclinical and clinical studies.  

In depth understanding of the molecular events during disease treatment, as well as 

detection of the alterations that determine LC onset, are major challenges. Nonetheless, 

molecular defined non-small cell lung cancer (NSCLC) subgroups have already shown 

responses to targeted therapies resulting in improved clinical outcomes. This highlights the 

importance of maintaining the continuation of investigations of the genetic and epigenetic 

alterations to identify effective genetically defined subtypes of lung tumours optimizing them 

for biologically informed patient stratification for personalized therapeutic approaches.  

To date there have been very few studies that have systematically explored the genetic 

and epigenetic alterations in common and rare lung cancers integrating expression and 

genome-wide DNA methylation data. Thus, the key aim of this chapter is to identify and 

describe the relevant molecular alterations in different lung cancer subtypes.  

 

3.1 Research Samples Summary 

A total of 322 samples, lung cancer tumour and matched normal samples, from 159 patients 

were used for the genomic study. Eighty-nine patients had lung adenocarcinoma (LUAD), 35 

had lung squamous carcinoma (LUSC), 22 had lung carcinoids (L-CD) and 13 had lung 

neuroendocrine tumours (LNET) (Table 3.1). The patients’ ages ranged between 50 and 82 

years old. 

Specifically, DNA sequencing data was generated for a total of 86 paired tumour-

normal samples by using Targeted Capture Sequencing (TCS) of the exonic regions of 52 genes 
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(Chapter 2, Table 2.1). Furthermore, a total of 73 pairs of tumour and normal samples 

underwent Whole Exome Sequencing (WES) (Chapter 2, Section 2.4.1). A summary of the 

number of samples that underwent TCS and WES is provided in Table 3.1. 

 

Table 3. 1| Number of Lung Cancer samples that were analysed by either WES or TCS across 
the different histological subtypes. Fractions are given to indicate out of the total number of 
patients per histology type that underwent the analysis how many in which at least one somatic 
mutation and/or InDel was detected. Abbreviations: WES, Whole Exome Sequencing; TCS, 
Targeted Capture Sequencing; LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous Carcinoma; 
L-CD, Lung Carcinoids; LNET, Lung Neuroendocrine Tumours. 

 

3.2 Targeted NGS of Lung Cancer 

3.2.1 Sequencing Library Preparation and Quality Control 

Prior to next generation sequencing, prepared sequencing libraries (Chapter 2, Section 2.3.2) 

were checked (pre and post capture) with an Agilent 2100 Bioanalyzer to confirm that an 

appropriate DNA fragment size between 325-450 bp was achieved. Figures 3.1 a and b show 

representative bioanalyzer results that were obtained for all samples sequenced in this project. 

  

 

 

 

 

Figure 3. 1| DNA bioanalyzer traces pre and post capture for the paired tumour and normal 
NSCLC samples obtained using the Agilent 2100 Bioanalyzer and High Sensitivity DNA assays. 
DNA fragment size of the pre-capture (a) and the post-capture library (b) was verified, DNA 
fragment size between 245-325 bp and 325-450 bp respectively.  

 

 

 LUAD LUSC L-CD LNET ALL 

WES 26/26 13/13 22/22 12/12 73/73 

TCS 59/63 20/22  0/1 77/86 

Total 85/89 (+ 1 unpaired) 33/35 22 0/13 150/159 

a b 
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3.2.2 Quality Control of Illumina NextSeq Raw Data 

The Illumina NextSeq generated per-cycle base call (BCL) files. The FastQC software provided 

assessment of the quality of the sequenced bases based on the Phred quality score, which is– 

−10 𝑇𝑇𝑇𝑇𝑙𝑙10 𝑃𝑃 

where P is the probability of error of the nucleobases generated by automated DNA 

sequencing. A score of 20 (meaning 1 in 100 chance of error) is generally accepted as the 

minimum acceptable score. The FastQC report for all the FastQ files obtained a high Phred 

score and only required trimming of low-quality bases at the 3’end of the reads (Fig. 3.2). 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. 2| Representative Phred quality scores of the raw data before (a) and after (b) 
trimming. Distribution of Phred quality scores across the length of fastq reads. X-axis is the base 
position and Y-axis is the Phred score. Except for the last few bases, where the sequencing 
platform’s sensitivity drops, the distribution is well within high-quality range. This is remedied 
by trimming of low-quality bases towards the 3’ end of the reads. 

a 

b 

https://en.wikipedia.org/wiki/Nucleobase
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Furthermore, pre-processing of the output raw files from the NextSeq prevented low-quality 

reads from entering the variant evaluation. In addition, local InDel realignments were 

performed to correct potential mapping errors around regions that are known to contain 

InDels. Properly paired reads (i.e., those alignments where the R1 and R2 are in opposite 

orientation to each other and the genomic gap between them is within the accepted range) for 

each sample were at 90% or above, meaning that sequences were correctly aligned. PCR 

duplication percentage was below 1%, meaning that when the duplicates were removed there 

was minimal data loss. 

 

3.2.3 Validation of NGS of Exome Sequenced NSCLC Samples  

To validate the NGS panel, it was initially run on a set of 10 patient samples - paired NSCLC 

tumour and normal tissue - that were already whole exome sequenced. Four pairings were 

from the LUAD subtype and one from the LUSC subtype. Mean on-target coverage was 

obtained from Illumina next generation data analysis as previously described (Chapter 2, 

Section 2.3.6). Coverages for all the samples ranged between 500-970X (Table 3.2). The results 

confirmed successful gene panel design and sequence alignment of the samples. 

Annotated variants for NSCLC patients were obtained from somatic mutation calling 

and subsequent manual curation within the Integrative Genome Viewer (IGV). The ten 

patients were known to collectively have somatic variants in 24 of the genes within the 52 

gene panel. Mutation in the TP53 gene was the most frequent somatic alteration being present 

in 4 out of the 5 patients. The tumour suppressor gene CREBBP and SF3B1 gene involved in 

RNA splicing were the second most frequent somatic variants with each being present in 40% 

of the patients (or 2/5 patients). In addition, alterations in oncogenes PIK3CA, EGFR, NRAS 

and KRAS were found, among others. Importantly, WES missed two deletions in TP53 in 

sample 345 and CDKN2A in sample S2 which were confidently identified by using the 

targeted capture sequencing probably due to low read depth associated with WES compared 

with high read depth associated with the TCS. In addition, a germline deletion in NTRK1 

affecting gene splicing was identified for patient S1, as 276 reads matched the alternative allele 

in the normal sample out of 568 total reads (49% associated variant allele frequency). 
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      Normal sample Tumour sample 

Sample 

Genomic 
position     

(GRCh37/ 
hg19) 

Gene 
Variant 

class 
Consequence Impact 

Ref. 
allele 

Alt. 
allele 

Ref. 
allele 

Alt. 
allele 

VAF 

S1  

17:7579511 TP53 deletion 
frameshift 

variant 
High 502 0 499 65 11.52% 

7:55259515 EGFR SNV missense variant Moderate 618 1 604 80 11.70% 

3:78666910 ROBO1 SNV missense variant Moderate 913 0 852 26 2.96% 

1:156848908-
156848910 

NTRK1 deletion 
splice region 

variant 
Low 292 276 342 291 45.97% 

S2  

9:21971084 CDKN2A deletion 
frameshift 

variant 
High 808 2 651 142 17.91% 

1:115256529 NRAS SNV missense variant Moderate 518 1 411 80 16.29% 

2:198281581 SF3B1 SNV missense variant Moderate 765 0 695 82 10.55% 

17:7577081 TP53 SNV missense variant Moderate 1009 0 844 156 15.60% 

S3  

2:198267468 SF3B1 SNV missense variant Moderate 705 0 580 20 3.33% 

16:3827617 CREBBP SNV stop gained High 438 0 510 14 2.67% 

1:27057793 ARID1A SNV stop gained High 1263 0 1054 35 3.21% 

2:29498331 ALK SNV missense variant Moderate 1333 1 773 235 23.31% 

6:117679114 ROS1 SNV missense variant Moderate 668 3 549 125 18.55% 

9:139399245 NOTCH1 SNV missense variant Moderate 1324 0 1154 51 4.23% 

12:25380275 KRAS SNV missense variant Moderate 806 1 636 177 21.77% 

S4 

17:7578384-
7578427 

TP53 deletion 
frameshift 

variant 
High 695 0 283 112 28.35% 

3:178936082 PIK3CA SNV missense variant Moderate 322 0 153 52 25.37% 

S5 

17:7577548 TP53 SNV missense variant Moderate 606 2 198 39 16.46% 

12:46246527 ARID2 SNV missense variant Moderate 726 0 305 37 10.82% 

2:212248538 ERBB4 SNV missense variant Moderate 774 1 321 14 4.18% 

16:3827662 CREBBP SNV 
splice region 

variant 
Low 317 0 42 2 4.55% 

 
Table 3. 2| Annotated variants from VEP and manual curation from IGV. Two deletions in TP53 
and CDKN2A (in red) were not identified with WES. Manual curation from IGV of the validation 
set from host group (Amit Mandal, NHLI, Personal communication). 

 
3.2.4 Targeted NGS of NSCLC – Additional Samples (that were not 

whole exome sequenced)  

After validation of the TCS panel, 172 paired fresh frozen human NSCLC normal and tumour 

samples, and one unpaired sample, were successfully sequenced using the Illumina NextSeq 

550 platform (Chapter 2, Section 2.3.3). The analysed samples had a tumour content varying 

from 10 to 100%. After processing and verification of appropriate DNA fragment size as 
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previously described (Chapter 2, Section 2.3.2), samples were 24-plexed on each NextSeq run. 

On average for each sample the yield of the sequencing was 2.32 Mb with a coverage of 860.7X 

after removing PCR duplicates.  

Calling of somatic SNPs and Indels were performed by the analysis of matched 

tumour-normal samples using VarScan (Chapter 2, Section 2.3.6). The LUADs analysed in this 

study displayed a large number of DNA alterations, with an average of 2.57 somatic SNPs 

and 0.54 InDel per tumour analysed. LUSCs displayed a total of 3.27 somatic SNPs and 0.5 

InDel per tumour. TCS data was not available for LNET and L-CD histologies (Table 3.1). To 

refine variant calls, high-confidence somatic alterations were obtained by further filtering on 

the basis of coverage, Variant Allele Frequency (VAF), strand presentation and associated P-

value. High-confidence calls were used for gene annotation with VEP. Variants were selected 

as previously explained (Chapter 2, Section 2.3.8) based on VAF (Appendix 2) and clinical 

impact.  

 

3.3 Whole Exome Sequencing  

A total of 73 paired fresh frozen human LC normal and tumour samples were successfully 

sequenced using the Illumina HiSeq2000 platform.  

A total of 19,197 Single Nucleotide Variants (SNVs) and 942 InDels were detected in 

the 73 LC paired samples. After filtering based on known impact predictions and CADD 

scores (Chapter 2, Section 2.4.3), a total of 7,681 somatic genetic alterations (7,362 mutations 

and 319 InDels) in 4,995 different genes were retained and underwent further analysis. 

 Somatic mutations were detected in all 73 tumour samples, whilst somatic InDels 

were detected in only 60 samples (82%). Of the 13 tumours with no detected InDels, 85% were 

of the L-CD histology.  

C>A and C>T substitutions were the most frequent class of base substitution across the 

73 tumours, with a median of 76 variants detected per sample (Fig.3.3). The top recurrently 

mutated genes were TP53 (30%), CSMD3 (27%), RYR2 (25%), TTN (23%), LRP1B (22%), 

USH2A (15%), COL11A1 (15%), ANK2 (14%), NAV3 (12%) and C1orf173 (12%).  
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Figure 3. 3| Summary of the somatic variants detected by WES in 73 Lung Cancer tumours. Bar 
plots show proportion of variant classifications of base substitution and InDels; variant types; 
Single Nucleotide Variant (SNV) class; number variants per sample; box plot of variant 
classification summary; and top 10 mutated genes. 

 

A summary of the types of the SNV substitution class, number of variants per sample, 

TMB and top mutated genes at the whole-exome level and amongst the genes that were 

included in the gene panel (n=52) is given in Table 3.3 below.  

 

Missense mutation 

Nonsense mutation 

Splice site mutation 

Frame shift deletion 

Frame shift insertion 

In frame deletion 

In frame insertion 
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Table 3. 3| Summary of the mutational data obtained through WES in four different Lung Cancer subtypes. Specifically, types of the SNV substitution class, number 
of variants per sample, TMB and top mutated genes at the whole-exome level and amongst the genes (n=52) that were included in the gene panel is detailed. 
Abbreviations: LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous Carcinoma; LNET, Lung Neuroendocrine Tumour; L-CD, Lung Carcinoid; SNV, Single 
Nucleotide Variant; TMB, Tumour Mutational Burden; SD, standard deviation. 
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3.3.1 Known COSMIC Mutational Signatures from WES Data 

Mutational signatures define specific profiles of trinucleotide changes that are likely to be 

related to a mutational process active in a tumour sample. To gain insights into the biological 

mechanisms involved in LC carcinogenesis, mutational signatures were identified and related 

to those collated in the COSMIC database (https://cancer.sanger.ac.uk/signatures/) using 

deconstructSigs (Chapter 2, Section 2.5.3.2). Only SNVs were used for this analysis. 

COSMIC mutational signature (CMS) 4 was the most prevalent mutational signature 

and was detected in nearly all LC histotypes (57.7% in LUADs, 69.2% in LUSCs and 83.3% in 

LNETs), the exception being  L-CDs where prevalence was low (4.5%). CMS 4 is characterised 

by C>A and T>A mutations, consistent with the most frequent types of base substitutions 

identified in the tumours (Table 3.3). CMS 4 exhibits a strong transcriptional bias compatible 

with purine nucleotides being repaired by the transcription-coupled nucleotide excision 

repair machinery. This signature has also been attributed to environmental mutagens and has 

been found especially enriched in lung cancer genomes of tobacco smokers82.  

In LUADs, CMS 2 and CMS 29 were both identified in 57.7% of tumours. CMS 2 has 

been associated with the activity of AID/APOBEC family of cytidine deaminases. CMS 29 

exhibits transcriptional bias for C>A mutations associated to guanine damage (similar to CMS 

4) and has been associated with CC>>AA double nucleotide substitutions. The CMS 29 

signature has been found exclusively in gingiva-buccal oral squamous cell carcinoma of 

tobacco chewers182,183 and is related to smokeless tobacco. This however was not always the 

case and a need to re-examine this signature has been recently suggested184.  

CMS 3 and 13 were each identified in 53.8% of LUSC tumours. CMS 3 has been found 

associated with failure of DNA Double-Strand Break (DSB) repair by Homologous 

Recombination (HR), whilst CMS 13 was found associated with AID/APOBEC activity 

causing predominantly C>G mutations185–189.  

For LNETs, in addition to the very frequent CMS 4 (83.3%), CMS 16 and CMS 29 were 

identified in 66.7% and 50% of tumours respectively. CMS 16 has been found in liver cancers 

although its aetiology remains unknown, but has been recently found significantly associated 

with male gender and alcohol consumption190. Consistently, 62.5% of LNETs and 61.5% of LC 

tumours harbouring CMS 16 were males. 

https://cancer.sanger.ac.uk/signatures/
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The signatures more frequently identified in L-CDs were CMS 3, present in 45.5% of 

the tumours, associated with failure to repair DSBs. Also, CMS 29 associated with tobacco 

chewing habit; and CMS 16 and 8 both of unknown aetiologies (each in 36.4% of the tumour 

samples). Two other recurrent mutational signatures (CMS 20 and CMS 24), associated with 

defective DNA mismatch repair (MMR) and exposure to aflatoxin, were also identified in L-

CDs (Supplementary Table 3.1). 

In addition to the percentage of samples showing specific CMSs, the contribution of 

known mutational processes to an individual tumour mutational profile was determined 

based on the weights assigned by deconstructSigs. The normalized weights of each signature 

across the different LC tumours is shown in Figure 3.4.  
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Figure 3. 4| COSMIC Mutational signatures identified with deconstructSigs from total SNVs 
detected by WES in the four LC histotypes. Box plots and whiskers show the median, first 
quartile and third quartiles. Individual values representing individual tumours of each histotype 
are shown superimposed on the graph. Abbreviations: LUAD (Lung Adenocarcinoma); LUSC 
(Lung Squamous Carcinoma); LNET (Lung Neuroendocrine Tumour); L-CD (Lung Carcinoid). 
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CMS 4 was not only the most frequent mutational signature across the four different LC 

subtypes but also contributed the highest to the mutational profiles of LUADs (inter-sample 

range 9.18%-80.55%), LUSCs (inter-sample range 15.89%-49.96%) and LNETs (inter-sample 

range 10.41%-66.95%), but only showed a 10.86% contribution in one L-CD tumour sample. 

Other signatures also contributed highly to the mutational profiles across all four LC 

histotypes. These signatures were CMS 3 (inter-sample range LUAD: 8.78%-46.17%; inter-

sample range LUSC: 13.17%-56.69%; inter-sample range: 13.98%-27.25%; L-CD: 6.85%-

52.28%); CMS 8 (inter-sample range LUAD: 8.77%-41.73%; inter-sample range LUSC: 8.97%-

22.51%; inter-sample range LNET: 8.99%-21.31%; inter-sample range L-CD: 8.06%-43.63%) 

and CMS 29 (inter-sample range LUAD: 6.84%-40.96%; inter-sample range LUSC: 10.59%-

45.92%; inter-sample range LNET: 7.14%-20.59%; inter-sample range L-CD: 13.47%-23.54%). 

Interestingly, unknown mutational signatures were found in all LUAD, LUSC and 

LNET tumours, and 81.8% of L-CD tumours. Thus, the next step of the analysis was the 

identification of de novo mutational signatures (dnCMS) (Chapter 2, Section 2.5.3.2). 

 

3.3.2 De Novo Mutational Signatures  

A total of 3 dnCMSs were extracted for LUADs and were related to exposure to tobacco 

smoking (CMS 13; cosine similarity of 0.791); spontaneous deamination of 5-methylcytosine 

(CMS 1; cosine similarity of 0.844) and exposure to tobacco (smoking) mutagens (CMS 4; 

cosine similarity of 0.933) (Fig. 3.5).  

LUSCs showed two dnCMSs, both associated with exposure to tobacco smoking 

mutagens (CMS 4; cosine similarities of 0.892 and 0.883) and to APOBEC cytidine deaminase 

(C>G) (CMS 13; cosine similarity of 0.868). 

Similarly, LNETs showed the same spectrum of mutational signatures as compared to 

LUSCs (CMS 4; cosine similarities of 0.895 and 0.753 and CMS 13; cosine similarity of 0.726).  

For L-CDs 6 dnCMSs were detected, one related to spontaneous deamination of 5-

methylcytosine (CMS 1; cosine similarity of 0.801), two associated with exposure to aflatoxin 

(CMS 24; cosine similarities of 0.499 and 0.577), one to UV exposure (CMS 7; cosine similarity 

of 0.6); one to defective DNA mismatch repair (CMS 6; cosine similarity of 0.625) and one 
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equally related to exposure to tobacco chewing mutagens and unknown aetiology (CMS 18 

and CMS 29, respectively; cosine similarities of 0.535 for both).  

Heatmaps of the cosine similarities of dnCMS extracted to known COSMIC signatures 

are shown below in Figure 3.5 for each LC histotype. 
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Figure 3. 5| De novo Mutational signatures identified in lung cancer histotypes using matrix 
factorization and compared to known mutagenic processes identified by Alexandrov and 
colleagues. Abbreviations: dnCMS, de novo (COSMIC) Mutational signatures; 
Lung Adenocarcinoma (LUAD); Lung Squamous Carcinoma (LUSC); Lung Neuroendocrine 
Tumours (LNETs) and Lung Carcinoids (L-CDs). 

 

3.4 Integration of TCS and WES DNA Sequencing Data 

To get further insights into the common and different genetic alterations between the four 

different LC subtypes, mutational data obtained by WES and TCS were merged, with a focus 

on the 52 genes that were included in the gene panel. A summary of the most frequent somatic 

mutations and InDels in the 52 genes across all lung tumours from the four different 

histologies is shown in Figure 3.6.  

TP53 was the topmost frequently altered gene across nearly all subtypes (LUADs 

45.88%; LUSCs 87.88%, LNETs 66.67%) with the exception of the L-CD subtype that showed 

no mutations. Other recurrently mutated genes in LUADs were KRAS (30.58%), STK11 

(22.35%), EGFR (15.29%) and RBM10 (14.11%). In LUSCs frequent mutations were identified 

in PTEN (27.27%), CDKN2A (21.21%), KEAP1 (18.18%), NF1 and RB1 (15.15% each). LNETs 

top mutated genes included RB1 (25%), STK11 and ERBB4 (16.67% each). Finally, L-CDs 

harboured ARID1A mutations (18.18%), SF3B1 and BRAF mutations (4.55% each) and 

distinctively had no other genetic alterations within the most frequently altered genes seen 

for NSCLCs and LNETs. Out of the 159 tumours, only 4 LUADs, 2 LUSCs and 1 LNET of 

LCNEC sub-histology were found to have no mutations, representing ~4% of the whole LC 

data set.  
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Co-occurrence or mutual exclusivity of mutations across the 52 genes of the panel was 

investigated next. In LUADs, mutations in EGFR and KRAS appeared as mutually exclusive 

(P = 0.007), while gene pairs KRAS-SMARCA4 (P = 0.035) and SETD2-CREBBP (P = 0.046) were 

co-mutated in LUADs.  

Overall, median Variant Allele Frequencies (VAFs) of >20% were obtained for the top 

10 mutated genes across LC subtypes, with RB1 showing the highest median VAF of 27.78%. 

In LUADs, STK11 (27.65%), ROS1 (27.27%) and CDKNA (25.51%) were the genes with highest 

VAFs. In LUSCs, higher median VAFs were detected for MET, EGFR and NF1, with VAFs of 

34.92%, 32.15% and 31.46%, respectively. Although clonal genes usually show VAFs of around 

~50% assuming pure samples, these findings suggest potential distinct genes driving 

tumorigenesis within NSCLC tumours. Genes mutated in LNETs showed the highest median 

VAF across the four different histotypes with VAFs of 77.27% for CDKN2A, 66.04% for PTEN, 

62.69% for ARID1A, 50% for TP53, 49.18% for ALK and 46.49% for KRAS. In contrast, one L-

CD showed a median VAF of 36.59% for SF3B1.  
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Figure 3. 6| Oncoplot of the genomic alterations identified by WES and TCS in 159 Lung Cancer Patients. Columns represent each patient and in rows are listed the 
52 genes from the gene panel. Genomic alterations are coloured by type of mutation or InDel. Left bar plot represents median Variant Allele Frequencies for each gene. 
Bars on the right represent percentage of patients with genetic alteration for the four different histologies. Bottom bar indicates clinical feature membership. 
Abbreviations: VAF, Variant Allele Frequency; TNM, tumour, nodes and metastasis; TCS, Target Capture Sequencing; WES, Whole-Exome Sequencing; PYH, Pack-
year history. Pack-year history categories: heavy smoker (>=80 cigarretes); smoker (<20,<80); light smoker (=<20); never smoker; LUAD, Lung Adenocarcinoma; LUSC, 
Lung Squamous Carcinoma; LNET, Lung Neuroendocrine Tumour; L-CD, Lung Carcinoid; SCLC, Small Cell Lung Cancer; LCNEC, Large Cell Neuroendocrine 
Carcinoma; LNET-Combined, combined Small Cell Lung Cancer and Large Cell Neuroendocrine Carcinoma. 
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3.4.1 Association of Genetic Alterations with Clinical Parameters 

Several genes detected altered by WES and TCS were found to be associated with particular 

LC histotypes (Fig. 3.7). TP53 appeared associated with LUSC histology (P = 4.26x10-7; FDR = 

1.1x10-4) followed by PTEN (P = 5.52x10-5; FDR= 7.29X10-3); whilst KRAS (P = 8.87x10-5; FDR= 

7.29X10-3), STK11(P = 1.32x10-3; FDR= 5.97X10-2), EGFR (P = 2.45x10-3; FDR= 9.52X10-2), RBM10 

(P = 1.58x10-2; FDR= 0.289) and SETD2 (P = 3.88x10-2; FDR= 0.542) were associated with 

LUADs. In LNETs, CSMD3 (P = 1.26x10-4; FDR= 7.29X10-3), MYH4 (P = 1.33x10-4; FDR= 7.29X10-

3), USH2A (P = 5.59x10-3; FDR= 0.181), RYR2 (P = 6.24x10-3; FDR= 0.181), as well as PKHD1, 

C5orf42, OTOF, NEB, PTPRD, C1orf173 and RB1 (P < 0.04; FDR= 0.181 for each of these seven 

genes) showed significant associations. L-CDs did not show any association with genetic 

alterations because of the lack of recurrent mutations (Section 3.1 above).  

 
Figure 3. 7| Association of the genetic alterations detected by both WES and TCS with Lung 
Cancer histological subtypes. Bar plots show the fraction of samples with a genetic alteration in 
a gene out of the total of samples with detected mutations on the same gene in a LC histotype (top 
bar) compared with the rest of LC histotypes (bottom grey bar). Abbreviations: LUAD (Lung 
Adenocarcinoma); LUSC (Lung Squamous Carcinoma); LNET (Lung Neuroendocrine Tumour). 

 

The different number of exonic regions scanned with WES and TCS could however 

have biased these results. Associations between genetic alterations and histological subtypes 

were therefore assessed separately for samples sequenced by WES and TCS. In tumours that 
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underwent WES, TP53 was enriched in both LNETs (P = 4.95x10-3; FDR= 0.37) and LUSCs (P 

= 1.03x10-2; FDR= 0.58). TTN (P =1.19x10-3; FDR= 0.26) was enriched in LUSCs; whilst MYH4 

(P = 4.62x10-3; FDR= 0.37) and CSMD3 (P = 1.43x10-2; FDR= 0.64) were enriched in LNETs, and 

EYS (P = 1.95x10-2; FDR= 0.72) in LUADs. 

Similarly, for tumours that underwent TCS, TP53 (P = 5.15x10-5; FDR= 1.23X10-3) but 

also PTEN (P = 9.11x10-4); FDR= 1.11X10-2) were enriched in LUSCs, with KRAS (P = 1.89x10-2; 

FDR= 0.15) and STK11 (P = 4.81x10-2; FDR= 0.28) were enriched in LUADs. 

In the case of biological sex, TP53 (two-sided Fisher’s exact test: odds ratio 2.48 [95% 

CI 1.23, 5.06], P = 9.06x10-3) and TTN (two-sided Fisher’s exact test: odds ratio 7.75 [95% CI 1.7, 

72.35], P = 1.89x10-3) mutations appeared significantly enriched in men consistent with recent 

findings showing X-linked genes engaged in p53 networks191, whilst no mutations showed 

any enrichment in females. In the case of tobacco smoking, assessed by the number of 

cigarettes smoked per year (PYH: pack-year history), mutations in SF3B1 (P = 3.96x10-3; FDR= 

0.54), DST (P = 2.25x10-2; FDR= 1), DSPP (P = 2.25x10-2; FDR= 1), NF1 (P = 2.51x10-2; FDR= 1) 

and SMARCA4 (P = 3.64 x10-2; FDR= 1) were associated with heavy smokers whilst STK11 (P 

= 1.16x10-3; FDR= 0.31) and TP53 (P = 2.51x10-2; FDR= 1) mutations were significantly 

associated with medium smokers.  

Considering survival, LUAD tumours harbouring EGFR mutations and small 

deletions in exons 19 and 20 correlated with longer survival time compared to patients with 

wild-type EGFR although this was not statistically significant (P = 0.0871). 

 

3.4.2 APOBEC enrichment 

The activity of several cytidine deaminases, which convert cytosine bases (C) to uracil (U), has 

been associated with DNA damage and the cause for mutations and genetic alterations in 

many cancers. In addition to their mRNA editing function, cytidine deaminases can also bind 

to ssDNA substrates, thereby affecting several cellular functions (positively or negatively). 

The latter include immune editing, retroelement restriction, DNA damage responses, gene 

expression and DNA demethylation amongst others. These enzymes, when mis-regulated, 

can become a major source of genetic alterations. Specifically, clusters of mutations have been 

found in tumour genomes associated to an increased APOBEC expression.  
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The enzymes target limited areas of ssDNA in order to deaminate C, mainly TCW 

motifs, where “W” corresponds to either adenine (A) or thymine (T). Therefore, APOBEC-

signature mutations have been defined as C>T and C>G substitutions in TCW context, as well 

as the complements (WGA with G>A and G>C substitutions). So in this chapter the base 

substitutions were scanned for in the +/-20 nucleotide context surrounding the specific motifs 

by using maftools (Chapter 2, Section 2.5.1).  

For LC samples with mutations in these specific trinucleotide contexts, 24.8% were 

found to be associated to APOBEC activity. Looking at individual histotypes, LUSC tumours 

were the subtype with the highest APOBEC enrichment with 28.6% of tumours being 

associated to its activity, followed by LUADs (26.15%), LNETs (25%) and L-CDs (15%). 

Furthermore, ssDNA substrates can be produced by the activity of the DNA 

mismatch-repair (MMR) pathway. MMR genes obtained from the Human DNA repair 

genes192 table were therefore examined for mutations and found to be mutated in 6.45% of 

APOBEC-enriched tumours and similarly in 5.32% of non APOBEC-enriched tumours, 

suggesting other potential sources contributing to APOBEC activity. 

 

3.5 SNP Genotyping of Lung Cancer Tumours 

SNP genotyping data (Chapter 2, Section 2.2.1) was available for 155 patients out of the total 

157 patients for which DNA sequencing data (WES or TCS) was available, with only two 

LUADs that were DNA sequenced but not SNP genotyped. 

 

3.5.1 GenomeStudio Data Pre-processing  

The first step of analysing Illumina SNP genotyping data involved uploading the raw 

intensity data into GenomeStudio together with two additional files (Chapter 2, Section 2.2.3) 

that enable better clustering to be performed. Since the level of intensity represents the 

strength for one of the two alleles (A or B) of the targeted sequences to bind one of the two 

probes for a particular SNP, the SNP cluster algorithm allows formation of clusters that 

distinguish samples into AA, AB and BB and allows identification of problematic samples. 
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The best parameter to measure sample quality is the call rate, which measures the percentage 

of SNPs with genotype calls for a sample. The call rate standard generally used is 95-98%.  

Most of the samples (84%) obtained a call rate of >98% with the lowest call rate value 

being 79.74%. Among the samples that obtained a relatively low call rate, 83% were tumour 

samples (Supplementary Fig. 3.1) that were of good DNA quality and anticipated to have 

large amounts of copy number alterations. In addition, the GenCall score quality metric, that 

indicates the reliability of the genotypes called, was assessed and found to positively correlate 

with call rate (Supplementary Fig. 3.2).  

Both metrics allowed evaluation of the quality and performance of DNA samples in 

the experiment, and no sample was discarded or considered for pre-processing due to 

biological reasons at this stage. 

 

3.5.2 QC of SNP Array Data 

As mentioned in Chapter 2, Section 2.2.4, QC of SNP array data involved filtering SNPs that 

were classified as InDel markers, that mapped into pseudoautosomal regions or chromosome 

“0”, as well as considering important scores representing quality metrics such as GenTrain 

score, cluster separation score and call frequency. From a total number of 962,215 initial SNPs, 

a final set of 777,193 QCed SNPs was retained and used for downstream analysis. 

 

3.5.3 GC Bias Correction 

Next the QCed SNP genotyping data was adjusted for genomic waves with ASCAT (Chapter 

2, Section 2.2.5). A total of 12 samples were discarded at this stage due to noisy ASCAT plots 

(Fig. 3.8) based on Log R Ratio (LRR) and B-allele frequency (BAF) metrics that were used for 

estimation of copy number status.  
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Figure 3. 8| Log R ratio (LRR) and B allele frequency (BAF) plots of four different LC samples. 
On the top (a-b), “good” ASCAT plots and on the bottom (c-d), two noisy samples.  

 

3.5.4 Purity and Ploidy 

Tumour purity refers to the proportion of cancer cells in the sample biopsy, whilst tumour 

ploidy refers to the number of sets of chromosomes in a cancer cell. There are many new 

computational methods that can be used to infer tumour purity. Purity variation has been 

observed between cancer types and can depend on both intrinsic (clinical variability) and 

extrinsic factors, such as how samples have been collected. In this present study ABSOLUTE 

was used to infer LC tumour purity and ploidy in silico (Chapter 2, Section 2.2.6, Fig. 3.9). 

Samples had a minimum of 16% and maximum of 69% tumour purity overall across 

LC histotypes, with a median tumour purity of 23%. More specifically, L-CDs showed the 

lowest level of tumour purity with an average of 21.50%, followed by LUADs (23%), LUSCs 

(24.50%), and LNETs (25%). This is consistent with different patterns observed from a pan-

cancer genomic study193 in which cancers resulting from mutagenic exposures, such as LUADs 

and LUSCs, showed low purity levels probably due to the role of the microenvironment or 

the difficulty to distinguish cancer cells from the microenvironment in relation to tumour 

spread. 
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The median ploidy of the whole set of LC samples was 2.2, with L-CDs showing the lowest 

ploidy (2.12) followed by LUADs (2.16), LUSCs (2,47) and LNETs (3.14). Both SCLC and 

LCNEC have been characterised by frequent aneuploidy44. Indeed, the ploidy level was not 

significantly different between the subtypes studied here (P = 0.3743). Ploidy levels could also 

reflect a higher number of CNAs in LNETs due to an increased cell tolerance to segregation 

errors194,195. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3. 9| Sample purity (top) and ploidy (bottom) across LC histological subtypes. Violin 
plots show the median, first quartile and third quartile of purity in each subtype. Scatter plot 
shows the median and ploidy category for each tumour sample across subtypes. Abbreviations: 
LUAD (Lung Adenocarcinoma); LUSC (Lung Squamous Carcinoma); LNET (Lung 
Neuroendocrine Tumour); L-CD (Lung Carcinoid). 

 

The inferred tumour purity was tested for correlation with tumour content as 

determined through pathology review (Prof. A.G. Nicholson) of haematoxylin and eosin 

staining in samples for which data was available (n = 87) (Supplementary Fig. 3.3). A positive 

trend was observed for the L-CD histological subtype (R=0.4, P = 0.16), whereas a linear or 

negative trend was observed for LUSCs (R= -0.28, P = 0.34) and LNETs (R= -0.13, P = 0.76); 

with no detectable relationship observed for LUADs (R= -0.0057, P = 0.97). None of these 

trends, however, achieved significance. 

 



 120 

3.5.5 Data Segmentation 

After the GC bias correction step, data was subsequently segmented into regions of estimated 

equal copy number with DNAcopy (Chapter 2, Section 2.2.6) that allowed genomic regions 

with abnormal copy number levels to be discriminated. A total of 31,148 non-tumour 

segments were generated and only segments with marker support of >10 segments were 

considered for Copy Number calling, leaving 20,800 segments for further analysis with 

Gistic2. For tumour data, from a starting number of 43,553 initial segments, 30,956 segments 

remained after marker support-based filtering. 

After obtaining segments supported by 10 markers in both tumour and normal data, 

focal CNA calling with Gistic2 (Chapter 2, Section 2.2.9) was performed first to identify 

significant CNAs in the normal samples. A total of 21 peaks were identified as significantly 

altered at the copy number level in the normal data (Supplementary Table 3.2). These peaks 

were subsequently filtered out from the tumour data to keep somatic events. After this 

filtering a total of 30,223 tumour segments were left for somatic calling of CNAs, with many 

mapping to autosomal chromosomes (92.4%). 

Exploring these segments those with negative LRR values were deemed as deletions 

whilst those with positive LRR values were potential amplifications. Overall, more deletions 

(n=6,817) than amplifications (n=2,462) were identified across all subtypes (Fig. 3.10), although 

median sizes were larger for amplification events (Supplementary Fig. 3.4). 

 

 

 

 

 

 

 

 

Figure 3. 10| Distribution of segment mean LRR values in putative deletions (LRR<0; in blue) 
and amplifications (LRR>0; in red). Segments were obtained after GC wave correction, 
segmentation and subtraction of significant peaks from LC normal samples. Abbreviation: Log R 
Ratio (LRR). 
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3.5.6 Copy Number Alterations (CNAs) 

Known and novel somatic CNAs at genome-wide significance were identified in 96.8% 

(n=152/157) of lung tumours (Fig. 3.11). Significant EGFR amplifications (cytoband 7p11.2) 

were found in 19% of LC patients (FDR = 9.71x10-5) and regions encompassing the 

CDKN2A/CDKN2B/MTAP locus were deleted in ~20% of LC patients. In addition, recurrent 

significant deletions were identified in ZNF180 (34%, FDR = 1.66x10-40) and ZNF404 (29%, FDR 

= 5.03x10-7) both located in the same cytoband (19q13.31). Furthermore, KIF20B located at 

cytoband 10q23.31 was deleted in 30% of lung tumours (FDR = 1.51x10-36) and KIAA1456 

located in cytoband 8p22 in 25% (FDR = 9.17x10-14). Significant amplifications were identified 

in cytoband 8q24.2 encompassing MYC (amongst other genes) in 28% of LC patients (FDR = 

3.52x10-8) and in cytoband 20q13.33 encompassing solely SYCP2 (16%). A listing of the 

significantly altered genes at the copy number level can be found in Supplementary Data 3.1 

in the Appendix. 

Intergroup differences were examined at the CN level. LUADs showed frequent 

deletions in ZNF180 (47.13%), ZNF404 (41.38%), KIF20B (37.93%) and in a genomic stretch 

containing INSL4, INSL6 and JAK2 (37.78%). LUSCs showed a high number of BCHE 

amplifications (60%), ZNF180 deletions (47.13%), MYC amplifications (42.85%) and RAD50 

deletions. In contrast, EGFR amplifications were more frequent in LUADs (30%) than in 

LUSCs (11.42%). For instance, BCHE amplifications (Fisher’s exact test: P = 2.029x10-10) and 

RAD50 deletions (Fisher’s exact test: P = 8.175x10-4) were significantly enriched in LUSCs, 

whereas EGFR amplifications were highly frequent in LUADs although this did not achieve 

statistical significance (Fisher’s exact test: P = 0.091). 
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Figure 3. 11| Amplifications and deletions in significant cytobands identified with Gistic22 in 157 LC tumours. Columns represent each lung cancer (LC) patient 
following the same order as in Figure 3.1 and in rows are listed the 46 significant cytobands. Significance was considered when residual q-values after removing 
segments shared with higher peaks were <0.05. Only cytobands in autosomal chromosomes are shown. Bottom bar indicates clinical feature membership. Abbreviations: 
TNM, tumour, nodes and metastasis; TCS, Target Capture Sequencing; WES, Whole-Exome Sequencing; PYH, Pack-year history. Pack-year history categories: heavy smoker (>=80 cigarretes); smoker (<20,<80); light 
smoker (=<20); never smoker; LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous Carcinoma; LNET, Lung Neuroendocrine Tumour; L-CD, Lung Carcinoid; SCLC, Small Cell Lung Cancer.
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Common events shared between LUADs and LUSCs included KIF20B deletions, with 

frequencies of 37.93% in LUADs and 37.14% in LUSCs.  

LNETS were the histotype with the highest number of CNAs. MIR4310 and SPTBN5 

located in the same genomic cytoband were detected as being deleted in 53.85% of LNET 

tumours, followed by MYC amplifications (46.15%), KIF20B deletions (46.15%), PDLIM2 

deletions (46.15%) and TGIF amplifications (46.15%). Opposite to NSCLCs, ANKRD12 was not 

deleted in any LNET patient. 

Finally, L-CDs showed recurrent ZNF180 and KIFPB deletions (31.82% for each), 

followed by ZNF404 and ROCK1 deletions (22.73% each) and EGFR amplifications (22.73%). 

Despite the very low number of somatic mutations and InDels, L-CDs harboured a high 

number of CNAs. 

 

3.6 Cancer Genome Burden and Mutational Signatures 

3.6.1 Tumour Mutational Burden and Copy Number Burden 

Tumour Mutational Burden (TMB) and Copy Number Burden (CNB) was calculated (Chapter 

2, Section 2.5.2 and 2.2.11, respectively) separately for TCS and WES samples. LNETs showed 

the highest TMB (with a median of 25.34 Mutations/Mb [30.54-18.82]) and CNB (18.32% of the 

genome under CN aberrations [35.58-2.091]). Conversely L-CD showed the lowest TMB (with 

4.08 Mutations/Mb [10.18-3.67]) and CNB (4.1% of the genome under CNB [7.49-0.94]). 

For NSCLCs, LUSCs show higher TMB as compared to LUADs, with 22.58 [29.80-

11.97] and 17.37 Muts/Mb [25.41-11.05], respectively. Whereas CNB showed an opposite trend 

with LUADs showing a median of 4.26% of the genome under CNB [12.49-0.78]] and LUSCs 

a median of 2.96% of the genome under CNB [11.76-0.5]. 
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Figure 3. 12| Tumour Mutational Burden (TMB) and Copy Number Burden (CNB) detected in 
the four different Lung Cancer subtypes. Tumour Mutational Burden (TMB) was calculated as 
the total number of somatic Single Nucleotide Variants (SNVs) per Mb captured by the sequencing 
technology. Copy Number Burden (CNB) was calculated as percentage of genome harbouring 
copy number alterations. Median and quartiles are shown for each histology. Abbreviations: 
LUAD (Lung Adenocarcinoma); LUSC (Lung Squamous Carcinoma); LNET (Lung 
Neuroendocrine Tumour); L-CD (Lung Carcinoid). 

 

3.6.2 TMB/CNB Relationship 

Overall, no relationship was observed between TMB and CNB in LC samples that underwent 

either WES or TCS (R=0.11; P = 0.17). Since the number of exonic regions between the two 

sequencing technologies could represent an important bias, correlations between TMB and 

CNB were also calculated for each histology and sequencing category (Fig. 3.13). Once more 

no relationship was observed between TMB and CNB when examining tumour samples that 

were TCS (R=0.08; P = 0.47) or WES (R=0.17; P = 0.15). 

Next considering the different histotypes, LUSCs showed a trend towards a positive 

correlation between TMB and CNB in tumour samples that underwent WES (R=0.28; P = 0.35) 

and TCS (R=0.25; P = 0.27), although neither of these correlations achieved statistical 

significance. In contrast, LUADs showed no correlation in WES tumour samples (R= -0.2; P = 

0.34) and, to a lesser extent, TCS (R= -0.02; P = 0.88) again neither being statistically significant.  

L-CDs and LNETs (for which only WES data was available) showed (although not 

statistically significant) trends towards negative and positive correlations between TMB and 

CNB respectively (L-CDs: R= -0.18; P = 0.43 and LNETs: R=0.079; P = 0.82).
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Figure 3. 13| TMB/CNB correlations of Lung Cancer tumour samples. a) All Lung Cancer samples by WES and TCS. b) Samples sequenced by WES; 
c) samples sequenced by TCS; d) LUAD samples sequenced by WES; e) LUSC samples sequenced by WES; f) L-CD samples sequenced by WES; g) 
LNET samples sequenced by WES; h) LUAD samples sequenced by TCS; i) LUSC samples sequenced by TCS. Abbreviations: TMB, Tumour Mutational 
Burden; CNB, Copy Number Burden; WES, Whole Exome Sequencing; TCS, Targeted Capture Sequencing; LUAD, Lung Adenocarcinoma; LUSC, Lung 
Squamous Carcinoma; LNET, Lung Neuroendocrine Tumour; L-CD, Lung Carcinoid.
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3.6.3 Hallmark Signalling Pathways 

As mentioned previously (Chapter 1, Section 1.2.2) several cancer hallmarks have been 

associated with genes and biological pathways. The similarities and differences in ten 

canonical oncogenic signalling pathways genetically altered in cancer were therefore explored 

for the set of 157 LC tumours that mutational and copy number data were available for (Fig. 

3.14). 

 For the ten pathways, most LC histological subtypes showed a high number of 

recurrent mutations and CNAs, the exception being L-CDs which did not show alterations in 

four of hallmark pathways. The latter were the PI3K pathway, TGF-beta, WNT and NRF2 

signalling pathways and this finding suggests there may be alternative carcinogenic 

mechanisms leading to tumorigenesis in this rarer cancer subtype.  

Genes of the TP53 pathway and cell cycle pathways were recurrently altered across 

almost all LC subtypes except for L-CDs, which only appeared altered in 4.5% of tumours at 

the CN level (and not by somatic mutation or InDel) for the CDKN2A gene located on 

chromosome 9. The same gene was altered at high frequencies by both mutations and CNAs 

in LUSCs and LUADs and LNETs with frequencies of 60%, 39.3% and 15.4%, respectively. 

CDKN1A on the other hand was similarly altered in LUADs (34.6%) and LUSCs (38.5%). ATM 

was mutated only in the LUAD histotype at a frequency of 15.4%, whereas FBXW7 appeared 

mutated in 23.1% of LUADs and 8.3% of LNETs. 

Another gene of the cell cycle pathway, MYC, was recurrently altered gene in all LC 

subtypes with LNETs being the histological subtype with the highest number of alterations 

(42.9%), followed by LUSCs (42.9%), LUADs (34.8%), and L-CDs (18.2%). NSCLC tumours 

also harboured alterations in MGA and MXI1 genes of the same pathway but at lower 

frequencies (15.4% and 7.7% for LUSCs and 7.7% and 3.8% in LUADs, respectively). MYC 

amplification and overexpression in lung cancer patients represents a potential opportunity 

for inhibiting a key player in tumour progression, since in lung tissue it specifically acts as a 

transcriptional coordinator for proliferation and tissue regeneration196. 

The RTK-RAS pathway was also substantially altered at the genetic level across all 

four LC subtypes with mutations and CNAs in EGFR and FGFR1 genes, with EGFR being 

more prevalent in LUADs (36%) whilst FGFR1 appeared highly altered in LUSCs (61.5%). The 
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KRAS member of the same pathway was altered in 29.2% of LUADs. Other altered genes were 

ROS1, ERBB4 and ALK that, in addition to being altered in NSCLCs, were also altered in 

LNETs with frequencies of 15.4%, 7.7% and 7.7% respectively. LNETs also showed mutations 

in MAP2K2 (8.3%). 

 NOTCH2 was the gene most frequently altered amongst the Notch pathway with 

frequencies of 46.2% in LUADs, 33.3% in LNETs and 4.5% of L-CDs. Interestingly, NOTCH2 

was not found to be mutated or amplified in LUSCs. This is consistent with recent studies 

showing the prognostic value of this gene in LUADs rather than in LUSCs, with the former 

showing more positive staining196. The relevance of NOTCH2, however, has been suggested 

to be masked due to its concomitant activation of NOTCH1197. Nevertheless, NOTCH1 showed 

a higher number of mutations in LUSCs (11.4%) as compared to LUADs (4.5%), suggesting 

different carcinogenic roles between the two different NSCLC histotypes. 

 The WNT pathway showed alterations in five different genes of the Frizzled Class 

Receptor (FZDs) family, namely FZD4, FZD10, FZD5 and FZD9. FZDs showed mutations in 

25% of LNETs, whilst they had low mutation rates in LUADs (3.8%) and LUSCs (7.7%). 

Moreover, APC, another member of the WNT pathway, was equally mutated in LUADs and 

LUSCs with a frequency of 7.7% for both LC subtypes. 

 The NRF2 signalling pathway associated with oxidative stress responses was only 

altered in NSCLC, with mutations in KEAP1 in 17.1% of LUSCs and 13.5% of LUADs. In 

addition, NFE2L2 (also known as NRF2) was more frequently mutated in LUSCs (11.4%) than 

in LUADs (1.1%). KEAP1 negatively regulates NFE2L2 under unstressed conditions but when 

stress occurs it promotes the transcriptional activation of several genes involved in a broad of 

cytoprotective mechanisms. Consequently, developing drugs that promote its activation 

could be a potential treatment specially for chronic diseases where different aetiologies are 

involved. Thus, the role of NRF2 in cancer is a matter of current intense research103. 

 Finally, several genes of the Hippo pathway were found mutated in LC subtypes at 

varying frequencies. FAT4 was the only gene of this pathway being altered in all four 

histotypes: 16.7% of LNETs, 7.7% in both LUADs and LUSCs and 4.5% of L-CDs. Other 

tumours carried mutations in FAT3, with frequencies of 16.7% of LNETs, 15.4% of LUSCs and 

11.5% of LUADs, with no mutations present in any L-CD tumour. FAT1 and FAT2 also were 

identified as mutated in LUSCs only each by 15.4%. Other recurrently mutated genes were 
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DCHS1, altered in 16.7% of LNETs, encoding a transmembrane cell adhesion molecule; and 

CRB1, altered in 15.4% of LUADs, which has recently been suggested to play an important 

role in tumour progression in a cancer-type specific manner198. 
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Figure 3. 14| Genes in ten hallmark cancer pathways altered in Lung Cancer histotypes. Red colour intensities indicate the average frequency of alteration by 
mutations, InDels and significant copy number alterations (CNAs) within the entire dataset. Genes within blue dotted boxes show genes altered by both mutations and 
significant CNAs. Abbreviations: LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous Carcinoma; LNET, Lung Neuroendocrine Tumour; L-CD, Lung Carcinoid. 

LUAD LUSC L-CD LNET 
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3.7 Discussion 

The identification of somatic genetic alterations, including point mutations and CNAs, has 

greatly accelerated the understanding of cancer biology and is key for the identification of 

novel therapeutic targets.  

In contrast to WES, TCS focused on a panel of genes known to be frequently altered in 

lung cancer. First, WES data was validated by using targeted sequencing on the NextSeq 550 

platform in 10 NSCLC tumour and normal paired samples. This initial validation ensured that 

the gene panel could be successful used for the identification of somatic mutations, and that 

high coverage could be achieved by TCS. Moreover, the detection of two additional mutations 

through the gene-panel based targeted sequencing emphasised the accuracy of this study 

design. A possible explanation for this is the low coverage associated with WES compared to 

TCS approaches. Indeed, both WES and TCS showed similar frequently altered genes in 

NSCLCs. In addition, human lung cancers are characterized by a high number of somatic gene 

alterations, including mutations, copy number changes, and translocations. Consistent with 

this, in this study both LUAD and LUSC subtypes have shown a high tumour mutational 

burden, and specifically LUSCs showed more mutations per mega base than LUADs.  

The WES data in this present study allowed the patterns of single base substitutions 

associated with particular mutational processes to be identified. Both known and de novo 

mutational signatures were identified in both the common and rare LC subtypes. In line with 

the different genetic alterations found in the L-CD histotype, the spectrum of mutational 

signatures also appeared different for this subtype with CMS 3 (signature associated with 

failure of DNA Double-Strand Break (DSB) repair by Homologous Recombination [HR]) 

being identified more frequently in these tumours. Failure of DNA double-strand break repair 

by homologous recombination has been found in breast, ovarian and pancreatic tumours. 

DNA mismatch repair deficiency generally leads to hypermutation but here a lack of recurrent 

mutations was found for this LC histotype. DNA damage and DNA repair jointly shape 

mutagenesis and alter mutation rates. 

Missense mutations in the TP53 gene were the most recurrent genetic alteration across 

LC subtypes and the gene appeared as one of the topmost mutated genes detected by both 

WES and TCS. TP53 was consistently associated with LUSC histology in WES and TCS data, 
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highlighting the potential of targeted NGS for accurate detection of cancer-related genes. 

Different genes of the PI3K/AKT/mTOR signalling pathway were identified and significantly 

associated with NSCLCs histotypes with STK11 appearing highly mutated and associated 

with LUAD histology, and PTEN for LUSC.  

Additionally, the CUB and Sushi Multiple Domain 3 gene (CSMD3) appeared 

associated with LNET histology. In line with this observation, CSMD3 has been reported as 

frequently mutated in lung cancers and loss in its functionality has been found to be associated 

with proliferation of airway epithelial cells199. Furthermore the gene has been found enriched 

in poorly differentiated neuroendocrine carcinomas compared to the more differentiated 

neuroendocrine tumours200, strengthening the need for further investigation for CSMD3 role 

and its therapeutic inhibition. 

A key finding is the lack of recurrent mutations in L-CDs, a histotype that shows 

significantly longer survival time compared with patients with tumours of other histologies 

(P=0.0148; Ratio =2.457; 95% CI 1.192-5.062). Studies have historically focused on the 

identification of somatic mutations that are altered at high frequencies in oncogenes and TSGs, 

as these mutations could be potential drivers of cancer. In this present study, both mutations 

and CNAs were identified in the four different lung cancer subtypes (histotypes) and have 

enabled the identification of recurrent genes altered at the copy number level in L-CDs. 

Importantly, in the latter, recurrent ROCK1 deletions and EGFR and MYC amplifications were 

found. Existing therapeutic agents for these three alterations have been identified in other 

cancers and the data from this study suggest that the agents could have potential therapeutic 

benefit for L-CD patients. 

 In this present study, different spectrums of mutational signatures between the 

different LC subtypes were also observed. Specifically, tumours of LUAD, LUSC and LNET 

histology all showed dnCMSs associated to tobacco smoking (CMS 4) and the activity of 

AID/APOBEC enzymes (CMS 13), causing C>T and C>A substitutions respectively. 

Importantly these signatures showed low weights in the L-CD histological subtype 

suggesting distinct mutational processes underlying the development of cancer, with 

potential implications for L-CD prevention and treatment. Concomitantly, the identification 

of CSM 3 in these rarer tumours (a signature associated with failure of DSB repair by HR) 

suggests an imbalance between DNA damage and repair in this LC subtype. DSBs can arise 
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from endogenous sources including reactive oxygen species generated during cell 

metabolism, collapsed replication forks and nucleases, as well as from exogenous sources like 

Ionizing Radiation (IR), chemical agents and Ultraviolet (UV) light that cause replication 

blocking lesions. These lesions are sensed by different proteins that trigger cell cycle arrest 

and activation of DNA repair pathways. Not all genotoxins or DNA repair deficiencies lead 

to unique mutational signatures201, hence the importance of recognising the variable nature of 

mutagenesis. The results of this study suggest that DSB repair proteins and its regulators202 

could be used for the development of more effective chemo- and radiotherapeutic strategies 

for L-CD patients. 

Mutational signature CMS 29 (associated with tobacco chewing) was also observed at 

high frequencies in nearly all LC subtypes, the exception being LUSC, suggesting different 

lifestyle exposures for tobacco-smoke associated damage (C>A). 

 Furthermore, unknown mutational signatures were detected with high weights hence 

de novo mutational signatures (dnCMSs) investigation was performed. Tumours of LUAD, 

LUSC and LNET histology all showed dnCMSs that were similar to tobacco smoking (CMS 4) 

and the activity of AID/APOBEC enzymes (CMS 13) both causing C>A and C>T substitutions, 

although the latter type of substitution is more typically caused by APOBEC deamination. 

Interestingly, LUADs and L-CD commonly showed dnCMSs associated with spontaneous 

deamination of 5-methylcytosine in CG motifs. The latter has been found in most cancer types 

and has been correlated with age203. This finding however is surprising in the case of L-CD, as 

the L-CD patients were the youngest in the present study. Nevertheless, the low TMB 

associated with this L-CD histotype may be an indication that non-clock-like mutational 

processes do not prevail in front of the natural acquisition of mutations during a lifetime. 

Moreover, this signature is also in line with the observed CMS 20 associated to MMR in these 

tumours, as different rates of mismatch repair could explain the observed mutational process 

because DNA replication without previous repair will convert T•G mismatches into C>T 

mutations. This has been suggested to be an indication of the number of cell divisions 

experienced serving as a “clock”. This is consistent with the fact that L-CDs are well 

differentiated tumours and that some carcinogens contribute to cancer development by 

stimulating cell proliferation with a tumour promoter to stimulate proliferation of altered 

cells, rather than by inducing mutations204. Chemicals, radiation, and viral infections are 
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carcinogens that can be stimulated by tumour promoters, do not necessarily cause mutations, 

but at stable and prolonged rates can induce malignant transformation. Further research with 

a bigger sample size may be needed to confirm with more confidence the mutational processes 

underlying this L-CD histotype.  

 Using the SNP genotyping data in this study, ploidy levels were found to be the 

highest for the LNET histotype consistent with prior literatiure205. SPTBN5 deletions were the 

most frequent CNA in LNETs and significantly enriched when compared to the other 

histotypes (P= 0.044). The gene encodes spectrin protein, levels of which have been shown to 

have cytoplasmatic positivity in carcinoids206. In the present study, SPTBN5 deletions were 

detected in only 4.55% of L-CDs indicating a potential marker for the differential diagnosis of 

L-CDs. 

 BCHE amplifications (Fisher’s exact test: P= 2.029x10-10) and RAD50 deletions (Fisher’s 

exact test: P = 0.0025) were significantly enriched in LUSCs (Section 3.5.6) in line with previous 

findings207. EGFR amplifications were highly frequent in LUADs although this enrichment 

was not statistically significant relative to other histotypes (Fisher’s exact test: P = 0.091). BCHE 

amplifications have already been frequently observed in lung squamous carcinoma207, as well 

as in leukaemia208 and ovarian carcinomas209.  

With the data generated in this chapter, genetic alterations in ten hallmark signalling 

pathways associated with genes that control critical biological processes were explored for the 

different LC subtypes by integrating mutational and CN data thereby allowing interpretation 

of the identified alterations. As for many other cancer types, pathways regulating cell cycle 

progression, survival, proliferation and apoptosis were found to be recurrently altered across 

LC subtypes especially in LUADs, LUSCs and LNETs, whereas L-CDs showed a lack of 

mutations in these important pathways. This is in line with the observed overall longer 

survival in L-CD patients as compared to the other histotypes (P = 0.0148). Furthermore, no 

genetic alteration was observed for the L-CD histotype in the PI3K, TFG-beta, WNT and NRF2 

signalling pathways. This suggests the existence of alternative carcinogenic mechanisms 

leading to tumorigenesis in this rarer cancer subtype. In contrast, MYC was recurrently altered 

gene in all LC subtypes and thus represents a potential therapeutic opportunity for inhibiting 

a key player in both NSCLC and neuroendocrine lung tumours. Thus, further research may 

be beneficial for treat LC patients with Myc overexpression. 
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 Consistent with previous research (Chapter 1, Section 1.2.2), all the hallmark 

oncogenic signalling pathways were found in the present study to be highly altered in LUAD, 

LUSC and LNET tumours but interestingly not in L-CDs. Here the integration of both 

mutations and larger amplifications and deletions have allowed increased accuracy in 

identifying different mechanisms leading to tumorigenesis and the key genes affecting these 

molecular processes in common and rarer LC subtypes. These findings provide novel insights 

into the genetic alterations and the cellular pathways commonly and differentially affected 

between LC histotypes. This potentially opens up new avenues for both biomarker selection 

and treatment. 
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Chapter 4: Epigenomic Landscape of Lung Tumours 

4.1 Introduction: The DNA Methylomes of Cancer 

Few clinical phenomena can be explained by a single, fully penetrant genetic lesion alone210. 

In 1942 Waddington 211 first proposed that acquired phenotypic changes could become 

heritable under certain conditions. He observed that fly wing phenotypes induced by a heat-

shock treatment during development were passed through generations in the absence of any 

further treatment. This observation led him to coin the concept of epigenesis. 

 Nowadays, we also know that every cell type in unicellular and multicellular 

organisms relies on different gene expression programmes. This differential activation and 

repression of specific genes is interposed between the genotype and the environment, the 

latter exerting an influence through epigenetic regulation107. This fine control is facilitated by 

the organization of the genetic material212, which is malleable and depends on intrinsic and 

external factors that define cell differentiation, development, physiology and ultimately 

phenotype and behaviour213. To add another layer of complexity, every cell type has its own 

epigenome. Thus it can be said that humans as multicellular organisms display a single, 

unique genome but many epigenomes110. 

The accumulation of somatic mutations214–216 and the progressive alteration of the 

epigenetic landscape and nuclear organisation217,218 are at the basis of health and disease. 

Epigenetic changes can cause activation or silencing of TSGs, potentially leading to cancer. 

Understanding the epigenetic changes that occur in cancer offers a new layer of information 

that must be integrated with genetic alterations to provide a full picture of the molecular 

alterations that drive the cancer phenotype.  

One of the most studied epigenetic alterations is DNA methylation219. In vertebrates, 

DNA methylation mainly occurs at cytosines in a CpG dinucleotide context. With the advent 

of NGS technologies, genome-wide DNA methylation maps have been obtained at a high 

resolution, allowing comprehensive accurate and quantitative estimates of DNA methylation 

levels across the genome to be obtained220.  

Lung Cancer (LC) is a set of heterogeneous diseases, where both genetic and epigenetic 

alterations have been implicated in their development and progression119,221. Nevertheless, a 

genome-wide comparison of the DNA methylation changes that typify Non-Small Cell Lung 
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Cancers (NSCLC) and Lung Carcinoids (L-CDs) is missing and might further elucidate the 

cancer biology behind LCs, ultimately improving stratification and therapy for these patients. 

 

4.2 Research Samples Demographics 

Out of the 159 LC samples that were DNA sequenced (Table 3.1), a subset of 79 LC tumours 

underwent Whole-Genome Bisulfite Sequencing (WGBS) to generate a snapshot of the DNA 

methylation profiles in tumour and matched unaffected tissue (Chapter 2, Section 2.6.2). 

Specifically, all L-CD pairs (Chapter 3, Section 3.1), 23 NSCLCs pairs, and a NSCLC and LNET 

unpaired samples were bisulfite sequenced.  

Specifically, WGBS was performed for tumour samples from 40 patients (Chapter 2, 

Section 2.6.2). Out of these patients, 18 had Lung Adenocarcinoma (LUAD), 15 patients had 

Lung Carcinoid (LC), 6 patients had Lung Squamous (LUSC) and 1 patient had combined 

Small Cell and Large Cell Carcinoma (LNET). A set of 17 male NSCLCs who had showed a 

loss of Y chromosome expression1 will be discussed in detail later in Chapter 5. 

The analysed samples had a tumour content varying between 25 and 95%. Patients’ 

age ranged between 28 and 82 years (mean 65.68 years-old; standard deviation (SD) 12.14), 

with L-CD patients being the youngest (mean 60.73 years-old; SD 16.74). Whilst L-CD patients 

were significantly younger than NSCLC (P = 0.0437), this difference appeared to be driven by 

a minority of patients (Fig. 4.1). 

 

 

 

 

 

 

 

 

Figure 4. 1| Age of Lung Cancer (LC) patients whose samples underwent Whole Genome 
Bisulfite Sequencing (WGBS). Graph shows age (in years) distributions for all patients (n=40). 
Median and interquartile range (IQR) of age are shown for each LC histotype. Abbreviations: 
NSCLC, Non-Small Cell Lung Cancer (includes Lung Squamous Carcinoma [LUSC] and Lung 
Adenocarcinoma [LUAD]); L-CD, Lung Carcinoids; LNET, Lung Neuroendocrine Tumours. 
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Gender proportion was also significantly different (Fisher’s exact test, P = 4.774x10-5) between 

NSCLC and L-CD patients. Almost three quarters (73%) of L-CD patients were female, 

compared with only 8.3% of NSCLC patients. Those patients with LUSCs and NETs were all 

male. 

 

4.3 Assessment of WGBS Sequencing Depth and Coverage 

A key consideration in genomic analyses are sequencing depth and coverage (Fig. 4.2). 

Assuming that reads are randomly distributed across the genome, sequencing depth is the 

average number of times that a nucleotide is covered by a high-quality aligned read from a 

sequencing experiment. Sequencing breadth or coverage denotes the percentage of target 

bases that are sequenced at a given depth. 

 

 

 

 

 

 

 

 

 

Figure 4. 2| Sequencing read coverage or breadth and sequencing read depth. Sequencing 
breadth or coverage (on the X axis) denotes the percentage of target bases (%) that have been 
sequenced at a given depth; while sequencing read depth (on the Y axis) is defined as the average 
number of times that a nucleotide is covered by a high-quality aligned read (X coverage) from a 
sequencing experiment. 

 

To exclude sequencing performance as an explanation for between-sample 

methylation differences genome-wide coverage differences amongst the full 79 samples were 

looked for. This served as a QC before calling Differentially Methylated Regions (DMRs). For 

this purpose, mosdepth (Chapter 2, Section 2.6.6) allowed read sequencing depth from WGBS 

BAM files to be assessed. Specifically, the proportion of total bases that were covered for at 
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least a given coverage value (cumulative distribution) was obtained for each sample and 

genomic coordinate. 

 As evident in Figure 4.3, tumour and normal matched samples showed similar 

coverage, of ~30X on average for at least 40% of the genome. Thus, it could be concluded that 

sequencing performance was good and most importantly not different between tumour and 

matched normal lung tissue samples. Under this assumption, differences in DNA methylation 

could then be investigated confidently without any findings being attributable to technical 

confounders. 

 

Figure 4. 3| Cumulative distribution of covered bases of whole genome bisulfite sequenced 
(WGBS) samples. a) All 79 WGBS samples; b) Tumour samples; c) Normal samples. Tumour and 
normal matched samples show similar coverage of >27X on average for most of the genome.  
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4.4 Pre-processing of WGBS Data  

A median per-base coverage of ~27X was obtained for all 79 WGBS samples after 

normalization and filtering by read coverage (>10X and <99.9th percentile). The next step 

involved merging of CpG DNA methylation data for all the samples to enable different 

comparative analyses to be performed.  

 

4.5 Graphical Representations of High-dimensional 

Methylation Data  

For the purpose of exploratory analysis, and to determine groups for differential methylation 

comparisons, a Principal Component Analysis (PCA) analysis was performed based on per 

base CpG DNA methylation. As can be seen in Figure 4.4, PCA of the WGBS data 

distinguished the different lung cancer histological subtypes as well as tumour from healthy 

tissue. The normal tissues had similar DNA methylation patterns irrespective of the cancer 

patient subtype.  

Notably the combined small cell and large cell neuroendocrine sample (LNET) clearly 

separated from the L-CDs and showed more similarity to NSCLCs based on their DNA 

methylation profiles. 
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Figure 4. 4|Principal Component Analysis of whole genome CpG DNA methylation data 
differentiated L-CD and NSCLC tumours and tumour samples from healthy matched tissue. L-
CD tumours are shown in yellow; NSCLC tumours are shown in red for LUAD and blue for LUSC; 
and LNET is shown in khaki. Tumour or normal matched tissue are shown as dots and crosses, 
respectively. Abbreviations: L-CD, Lung Carcinoids; NSCLC, Non-Small Cell Lung Cancer 
(includes Lung Squamous Carcinoma [LUSC] and Lung Adenocarcinoma [LUAD]); LNET, Lung 
Neuroendocrine Tumours. 

 

4.6 Genomic Binning of DNA Methylation Data by 

Annotations and Chromatin States 

PCA was able to simplify the complexity of the WGBS data, while retaining trends and 

patterns, and alone distinguished the different LC histological subtypes as well as tumour 

from healthy tissue. The human genome, however, is extensive and complex. The next aim 

therefore was to investigate which genomic regions and chromatin states carried most of the 

DNA methylation variance.  
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To achieve this the genome was binned into functional classes and the first two principal 

components (PC1 and PC2) examined to infer the regions in which most of the between-group 

variance was concentrated. 

Specifically, the PCs obtained by analysing four different subsets of samples were 

compared: 1) all 79 samples with tumour and normal WGBS data from NSCLC, L-CD and 1 

LNET; 2) a subset containing all tumours except the LNET, 3) a subset containing NSCLC 

tumour and normal data, and 4) a subset containing L-CD tumours and normal WGBS data. 

The results of the analyses are summarised in Table 4.1. 

In the first subset, most of the variance was explained by the epigenetic mark 

H3K36me3 (27.63%), repeat elements (26.58%) and H3K9me3 (26.54%). In the second subset 

containing both NSCLC and L-CD tumours, H3K36me3 similarly accounted for most of the 

variance (34.06%), followed by H3K9me3 (30.3%). Between NSCLC tumours and healthy 

tissue, enhancers (22.82%) and H3K27me3 (22.72%) accumulated most of the variance, 

whereas H3K36me3 (39.71%) and H3K9me3 (38.75%) concentrated most of the variance in L-

CDs.  

These data suggest that epigenetic marks account for most of the variance in DNA 

methylation and indicate that distinct DNA methylation landscapes exist both between 

NSCLCs and L-CDs, and between tumours and their normal matched tissues. The high 

percentage of variance at PC1 and PC2 for L-CDs across the different genomic categories were 

also suggestive of a greater level of dysregulation at the epigenetic level in L-CD tumours as 

compared to NSCLCs. This observation was reinforced by the high percentage of variance 

accounted for by the two first PCs when comparing NSCLC against L-CD tumours. 
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Table 4. 1| Percentage of variance explained by the two first Principal Components (PC1 and PC2) based on CpG DNA methylation data at different 
genomic regions in the four subsets of WGBS data. Abbreviations: PC, Principal Component; L-CD, Lung Carcinoids; NSCLC, Non-Small Cell Lung 
Cancer (includes Lung Squamous Carcinoma [LUSC] and Lung Adenocarcinoma [LUAD]); LNET, Lung Neuroendocrine Tumours; CGI, CpG Island; 
LncRNA, Long non-coding RNA; CTCF, CCCTC-binding factor; H3, histone H3; K, lysine residue; me, methylation at the indicated lysine residue.
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4.7 Analysis of Differentially Methylated Regions 

4.7.1 Descriptive Statistics of Samples  

Median CpG DNA methylation percentage was calculated for each tumour and unaffected 

tissue from LC patients from different histological subtypes. For this analysis, the focus was 

on the NSCLCs and L-CDs histological types (n=40), with the aim of identifying differences 

in CpG DNA methylation between these tumours and their normal counterparts, as well as 

inter-tumour differences for NSCLC and L-CD tumours. LNET data, due to their limited 

availability, are displayed in Figure 4.5 for context only. To limit the confounding influence 

of sex, differential methylation in the autosomes only was examined. 

  Autosomal DNA methylation levels were significantly reduced in tumour samples 

from L-CD (P = 4.136x10-5) and NSCLC (P = 1.694x10-8) histologies as compared with paired 

normal lung tissues (Fig. 4.5). Global DNA methylation loss is a common feature of cancer 

and ageing that has been generally observed in cancers with genomic instability and in 

cancers with rather stable genomes, such as Chronic Lymphocytic Leukaemia (CLL) or renal 

clear cell carcinoma (KIRC). In this present study, a relative reduction in DNA methylation 

levels genome-wide in NSCLC tumours with high TMB and CNB, and in L-CDs rather 

harbouring only a few alterations at the genetic level was detected.  
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Figure 4. 5| Median CpG DNA methylation per sample. The figure shows median DNA CpG 
methylation percentage per sample in L-CD samples in yellow, NSCLCs (in red for LUADs and 
blue for LUSCs), and LNETs in khaki. Males and females appear as squares and circles, 
respectively. Median CpG DNA methylation is significantly lower in tumour L-CDs (P = 4.136x10-

5) and NSCLCs (P = 1.694x10-8) as compared to normal tissue. L-CD, Lung Carcinoids; NSCLC, 
Non-Small Cell Lung Cancer (includes Lung Squamous Carcinoma [LUSC] and Lung 
Adenocarcinoma [LUAD]); LNET, Lung Neuroendocrine Tumours. 

 

There was a number of trends observed between DNA methylation and TMB, CNB 

and age, although these were not significant in all combined or for the individual histotypes 

(Fig. 4.6). For example, median DNA methylation levels showed a negative trend with TMB 

(R=-0.066; P = 0.76), CNB (R= -0.53; P = 0.0091) and age (R =-0.13; P = 0.55) for NSCLCs, whilst 

L-CDs showed a slightly positive trend for CNB (R = 0.18; P = 0.53) and age (R = 0.081; P = 

0.77). TMB also showed a negative trend (R = -0.28; P = 0.34) with DNA methylation in L-CDs. 

This data suggested the heterogenous genetic and epigenetic landscapes amongst LC 

subtypes. 
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Figure 4. 6| Scatter plots of the correlation between CNB, TMB and age with median genome wide CpG DNA methylation per sample. Spearman 
correlation coefficients and P-values are shown for the combined associations in both NSCLCs and L-CDs datasets; and age is shown in years. 
Abbreviations: CNB, Copy Number Burden; TMB, Tumour Mutation Burden; L-CD, Lung Carcinoids; NSCLC, Non-Small Cell Lung Cancer (includes 
Lung Squamous Carcinoma [LUSC] and Lung Adenocarcinoma [LUAD]); LNET, Lung Neuroendocrine Tumours. 
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Next the number of DMRs per chromosome for each of the three comparisons (T vs N within 

each histotype, and T vs T between histotypes) was determined. As can be seen in Figure 4.7, 

L-CDs harboured a particularly high number of DMRs in chromosomes 4 and 8 when 

compared to normal lung tissue. Interestingly, NSCLCs exhibited roughly half the number of 

DMRs per chromosome detected in L-CDs, with chromosome 7 harbouring the greatest 

number of differentially methylated regions. Nevertheless, an independence test showed that 

the differences were statistically not significant (two-sided Fisher’s hybrid test: P = 1) When 

comparing between tumours, the most DMRs were detected in chromosomes 1 and 4.  

Furthermore, the amount of DMRs were more stable for the T vs T comparison, with 

a coefficient of variation of 42.94%. Interestingly, NSCLC tumours showed a very high 

coefficient of variation as compared to L-CDs, with coefficients of variation of 77.98% and 

46.31%, respectively. This suggests more stable but substantial genome-wide epigenetic 

deregulation in L-CDs, whilst a more intermittent/discontinuous variation of DNA 

methylation levels in NSCLCs. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. 7| Number of DMRs per chromosome in three different contrasts. Colours indicate 
different tumours types/comparisons as indicated by the key. X axis shows chromosomes and Y 
axis shows the number of DMRs. Abbreviations: DMR, Differentially Methylated Region; L-CD, 
Lung Carcinoids; NSCLC, Non-Small Cell Lung Cancer (includes Lung Squamous Carcinoma 
[LUSC] and Lung Adenocarcinoma [LUAD]); LNET, Lung Neuroendocrine Tumours. 
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4.7.2 DMR Annotation 

To put these differences in context, integration of the regions obtained through differential 

methylation analysis with genome annotation datasets available with the Annotatr R package 

was conducted. The annotations datasets included both CpG annotations, such as CpG islands 

(CGIs), shores and shelves, and intergenic regions, as well as common genic annotations such 

as promoter, exonic, intronic and untranslated regions (UTRs), between 1 and up to 5 Kb 

upstream of the transcription start site.  

 The total number of DMRs was substantially higher in L-CDs when comparing against 

the normal tissue, with number of DMRs equalling 246,621 followed by 98,121 DMRs for the 

inter-tumour NSCLC versus L-CD comparison and finally 89,689 DMRs when comparing 

NSCLC tumour against normal tissue (Supplementary Table 4.1). 

Interestingly, the pattern of regions accumulating DMRs was the same in all three 

comparisons as can be seen in Figure 4.8. Despite not being included in the below figure, the 

number of intergenic regions with DMRs was huge for L-CDs (192,996) followed by 58,566 

DMRs for NSCLC vs L-CD and 74,342 DMRs for NSCLC.  

 

 

 

 

 

 

 

 

 
Figure 4. 8| Number of DMRs at different genic and CpG annotation classes for the three 
different comparative analyses. Abbreviations: DMR, Differentially Methylated Region; L-CD, 
Lung Carcinoids; NSCLC, Non-Small Cell Lung Cancer (includes Lung Squamous Carcinoma 
[LUSC] and Lung Adenocarcinoma [LUAD]); LNET, Lung Neuroendocrine Tumours; CGI, CpG 
Island; LncRNA, Long non-coding RNA; UTR, Untranslated region; Kb, Kilo base. 
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After intergenic regions, introns, CpG shores and shelves were the annotations concentrating 

the highest numbers of DMRs (Figs. 4.9 - 4.10). Interestingly, intronic regions were the most 

different between L-CD tumour and normal (n DMRs = 11,473) and between L-CD and 

NSCLC tumours (n DMRs = 10,078). This suggests that these regions may be of particular 

relevance for differentiating between these tumours. This observation mirrors the results 

obtained from the PCA (Section 4.5 above and Table 4.1), in which introns and the epigenetic 

mark related to alternative splicing, H3K36me3, were both found to explain a high amount of 

variance - 36.57% and 39.71%, respectively.  

 

 

Figure 4. 9| Number of hypomethylated (Hypo) and hypermethylated (Hyper) Differentially 
Methylated Regions at each genomic annotation category in three different comparative 
analyses. From top to bottom, hypermethylated and hypomethylated DMRs detected when 
comparing L-CD tumour versus normal and NSCLC tumour versus normal; and finally 
comparing NSCLC tumours versus L-CD tumours. Number of intergenic DMRs are shown on the 
top right corner in black for the same comparative analyses. 
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Furthermore, the number of DMRs in L-CDs was much higher for hypomethylation than for hypermethylation events in L-CDs as compared to 

normal tissue. In NSCLCs, hypomethylation and hypermethylation events were more even, although leaning towards a higher number of 

hypermethylated regions or DMRs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 10| Proportion of hypomethylated (Hypo) and hypermethylated (Hyper) Differentially Methylated Regions at each genomic annotation 
category in the three different comparative analyses. Figures show the same data as in the previous Figure 4.9 separate for each comparison to aid 
interpretation. 
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4.8 Pathway Analysis of Promoter Genes with DMRs and 

Comparative Inference 

Next, to get mechanistic insights from the gene lists generated from the DMR, the Reactome 

and g:profiler databases were used to scan for gene promoters and other subsets of genes of 

interest that will be detailed for each particular contrast next in this chapter. A detailed 

summary of the pathways enriched in each comparison is provided in Supplementary Tables 

4.2 a-c. 

 

4.8.1 L-CD: Tumour vs Normal 

A total of 767 promoters were found to be hypermethylated in L-CD as compared with normal 

tissue, with 1,925 hypomethylated. Similarly, regions 1 to 5 Kb upstream of 1,157 and 4,650 

genes were found hyper- and hypomethylated respectively.  

Pathways enriched in hypomethylated promoter genes and upstream regions were 

associated with olfactory signalling and sensory perception pathways, whereas 

hypermethylated regions were enriched for pathways related to apoptosis, the attenuation of 

the heat shock transcriptional response and the activation of HSF1 by stress, pathways related 

to neuronal development (myelinization, axon repulsion and semaphoring interactions) and 

gene expression during endocrine differentiation in the developing pancreas.  

 

4.8.2 NSCLC: Tumour versus Normal 

A total of 277 promoters were found to be hypomethylated in NSCLC as compared with 

normal tissue, and 177 hypermethylated. Similarly, regions 1 to 5 Kb upstream of 202 and 684 

genes were found to be hyper- and hypomethylated respectively.  

Pathways enriched in hypomethylated promoter genes and upstream regions 

included the olfactory signalling pathway, sensory perception, RUNX mediated transcription, 

activation of matrix metalloproteinases and downregulation of ERBB2 signalling, regulation 

of insulin secretion and formation of the cornified envelope during terminal differentiation of 

keratinocytes and TP53 regulates transcription of death receptors, among others. 
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Pathways enriched in hypermethylated promoters and upstream regions were related to 

activation of HOX genes during differentiation, hyaluronan biosynthesis and export, and 

repression of genes related to differentiation and developmental biology. 

 

4.8.3 NSCLC versus L-CDs: Inter-tumour Comparison 

A total of 1,901 promoters were hypermethylated in NSCLC as compared with L-CDs, and 

790 were hypomethylated. Similarly, regions 1 to 5 Kb upstream of 2,409 and 1,470 genes were 

found to be hypermethylated and hypomethylated respectively.  

Pathways enriched in hypomethylated promoter genes and upstream regions related 

to themes of inflammation, necrosis and transcriptional regulation, the activation of HSF1 by 

stress and myelinization process. Conversely, hypermethylated regions showed processes 

related to transcriptional activity of MECP2 and HOX genes, immune response (antigen 

presentation and interferon signalling), Notch1 signalling and hyaluronan biosynthesis. 

 

4.9 Comparison of DMRs in Promoter Regions across 

Comparison Group 

Next an analysis was performed to determine which genes were commonly differentially 

methylated at the promoter level across histologies or exclusively differentially methylated in 

a single histology only. Only a very small number of promoter genes were commonly 

hypomethylated (n 56, 2%) or hypermethylated (n 22, 1.2%) in both L-CDs and NSCLCs lung 

cancer histological subtypes (Fig. 4.11) out of the total genes hypo- and hypermethylated in 

each histology (L-CD nhypo =1,925 and nhyper = 766; NSCLC nhypo=277 and nhyper=177). 

 In addition, a few genes were commonly hypomethylated in NSCLC tumours as 

compared to their normal matched tissue and in NSCLC tumours relative to L-CD tumours 

(2.2%). These observations suggest that distinct epigenetic programmes are dysregulated in 

each histological LC type as compared to the normal lung tissue. Similarly, only 1.2% of the 

genes hypermethylated at the promoter level were commonly detected in both LC tumour 

types with 3.7% commonly hypermethylated in NSCLC tumour respective to the normal lung 

tissue and in NSCLC tumours as compared to L-CD tumours.
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Figure 4. 11| Venn diagram of the hypomethylated (a) and hypermethylated (b) DMRs in gene promoters across the three different comparison 
groups. 

 

a b 



 153 

Among common hypomethylated promoters between L-CDs and NSCLC were thirteen 

olfactory receptor (OR) genes: OR10T2, OR14A16, OR1C1, OR1S1, OR2A5, OR2M3, OR2T6, 

OR5AS1, OR6F1, OR6Q1, OR8B2, OR8B4, OR9I1 (Appendix, Supplementary Data 4.3). ORs 

are predominantly expressed in the olfactory sensory neurons but they have also been 

observed in all non-olfactory human tissues including the lung222,223. In the gastrointestinal 

system, they can sense external stimulants from the environment as well as odorous chemicals 

internally224. In the pancreas ORs regulate insulin secretion225,  among other functions222, when 

serotonin is linked to intracellular GTPases. Additionally, ORs have been suggested as 

markers of several cancers such as prostate cancers226 and somatostatin receptor SSTR-

negative lung carcinoid tumours227. Some of their most prominent functions are presented in 

Figure 4.10. 

Olfactory pathway gene methylation marks have been associated with BMI / obesity / 

diet228 all of which in turn relate to LC risk229. Nevertheless, in this present study DNA 

methylation levels at promoters or exonic regions were found not to be associated with BMI 

of LC patients (Appendix, Supplementary Figure 4.2). 

Whether the proteins encoded by genes whose promoters were commonly 

hypomethylated could form a Protein-Protein Interaction (PPI) network was investigated next 

using the STRING database230. Indeed, the PPI network (Fig. 4.12) identified contained 

significantly more interactions than expected by chance (PPI enrichment P = 0.0106). 
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Figure 4. 12| STRING protein-protein interaction network of proteins encoded by genes whose 
promoters were commonly hypomethylated in L-CDs and NSCLCs. Network nodes represent 
proteins. Coloured nodes indicate first shell of interactions and white nodes second shell of 
interactions. Node content is empty for proteins of unknown structure or filled for proteins whose 
3D structure is known or predicted. Edges represent protein-protein associations and are coloured 
to indicate different levels of support for the displayed interaction. Light blue edge for known 
interactions from curated databases; pink edges for experimentally determined interaction; green 
for predicted gene neighbourhoods; red for predicted gene fusion; blue navy for predicted gene 
co-occurrence; lime green for text mining; black for co-expressed proteins and purple for protein 
homology. 

 
Next cBioPortal was examined to see which other commonly hypomethylated genes, 

from the TCGA data, were relevant in LC cohorts. Interestingly RYR2, EGFR, CDH10, 

TAS2R1, THSD7B, LINC01020, RGS7, CD1E, CNTNAP4 appeared as frequently altered by 

somatic mutation or copy number change with frequencies ranging between 8-35% in NSCLC 

and LNETs respectively. In this study they were consistently identified as commonly 

significantly hypomethylated, suggesting that the expression of these genes may be 

frequently disrupted by both genetic and/or epigenetic events. Moreover, several long 
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intergenic non-coding RNAs (lincRNAs) and micro-RNAs (miRs) were also detected 

(Appendix, Supplementary Data 4.3) hypomethylated in the two LC types. 

The RAB25 gene, encoding for the Ras-related protein Rab-25 which is involved in the 

regulation of cell survival and associated with lung cancer invasiveness231 and tumour 

acquired radio resistance in NSCLC232,233, was also commonly found hypomethylated. 

Finally, this present study also found non-coding RNAs to also be commonly 

hypomethylated and some have already been found to be dysregulated in other cancer types 

or associated with measures of lung function. For instance, variants in LINC00917 associate 

with Forced Expired Volume in 1 second (FEV1)234 and LINC01020 has been found to be 

differentially expressed in Kidney Renal Clear Cell Carcinoma (KIRC) where it also related to 

overall survival235. Interestingly both were identified as part of a six-lncRNA signature, high 

expression of which was associated with shorter survival in breast cancer235. Also commonly 

hypomethylated were several micro RNAs (miRNAs) including miR-518b, whose 

overexpression serves as a biomarker in NSCLC236, and miR-520e which is upregulated in 

metastatic NSCLC tumour tissues as compared with non-metastatic ones237. 

Common hypermethylated promoters were found for APAF1, CA3, CLDN11, 

COLEC11, CPEB1, CUL1, DRD4, LIMD2, LIMS1, MAPK8IP2, MEIS1, MIR30B, MIR3150B, 

NKX2-8, PDZD2, RRN3P2, SERPING1, TAC1, TBX15, TBX4, TERT and ZNF106. Among these, 

TERT, PDZD2 and CLDN11 amplifications have been found as the most frequently genetically 

altered genes based upon lung cancer data generated by the TCGA Research Network: 

https://www.cancer.gov/tcga (accessed through cBioPortal)238,239. 

The TERT gene encodes for a ribonucleoprotein polymerase that acts as a cancer-

protection mechanism when repressed, since telomere erosion to a critical size and 

dysfunction triggers the activation of the DNA damage response (DDR) pathway and 

subsequent replicative senescence. Thus, telomerase activation/induction confers unlimited 

proliferation potential by maintaining telomere ends. The most frequent mechanism for TERT 

expression is via promoter mutation and focal amplification240,241. Nevertheless, epigenetic 

alterations have been recently discovered to be key players of TERT transcriptional regulation. 

Importantly DNA hypermethylation within TERT’s promoter has been revealed to be 

required for TERT expression and telomerase activation in cancer cells242. PDZD2 (PDZ 

domain-containing 2) is a protein, with multi-PDZ domains, which is expressed in several 

https://www.cancer.gov/tcga
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tissues including the lung and has been suggested as a TSG due to its anti-tumorigenic and 

anti-proliferative effects in LUAD243. CLDN11 is a tight junction associated protein and its 

silencing through promoter hypermethylation has been found to be associated with 

nasopharyngeal carcinoma progression244. The transcriptional silencing of CLDN11 through 

hypermethylation promotes migration by derepressing tubulin polymerization. 

 

Histology-specific DM Gene Promoters 

Promoters of 1,831 genes were uniquely detected as being hypomethylated in the L-

CDs. Enrichment analysis with g:profiler showed again olfactory signalling related pathways 

as the most enriched pathways amongst DM promoters (adj.P ≤ 44.62x10-61) (Fig. 4.13). Other 

signalling pathways significantly overrepresented were the relaxin receptors (adj.P = 2.58x10-

2); RUNX3 which regulates immune response and cell migration (adj.P = 5.11x10-2); MECP2 

which regulates TFs (adj.P = 5.11x10-2), loss of function of FBXW7 in cancer and NOTCH1 

signalling (adj.P = 5.13x10-2) and beta defensins (n=10 genes, adj.P = 5.4x10-2). Other abundant 

families of genes exclusively found to be hypomethylated in L-CDs included genes encoding 

for Zinc-Finger proteins (ZNFs), Solute-Carrier (SLC) superfamily proteins, small nucleolar 

RNAs (SNORs), interferon (IFN) family members, genes from the human leukocyte antigen 

(HLA) complex, and proteins of the High-Mobility Group (HMG) family (Appendix, 

Supplementary Data 4.3). 

Regarding promoters exclusively hypomethylated in NSCLCs as compared to the 

paired normal tissue, promoters of 151 genes were identified. Only one, the olfactory receptor 

activity pathway, was found significantly enriched (adj.P = 5.195x10-3). On the other hand, 81 

genes exclusively hypermethylated at the promoter level in NSCLCs tumours were enriched 

in pathways associated to transcriptional activity (Fig. 4.14).  



 157 

 

 

 

Figure 4. 13| | g:GOSt Manhattan plot of the significantly enriched pathways in hypomethylated promoters in L-CDs as compared to their normal 
matched tissue obtained with g:Profiler web server (https://biit.cs.ut.ee/gprofiler). The functional terms from Gene Ontology (GO) subcategories are 
grouped and colour-coded by data source are shown on the X axis, and significance of the enrichment is shown on the Y axis in negative log10 scale. 
Abbreviations: GO:MF, Gene Ontology: Molecular Function; GO:BP, Gene Ontology: Biological Process; GO:CC, Gene ontology: Cellular Component; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; Reac, Reactome; WP, Wiki pathway; TF, Transcription Factor; HPA, Human Protein Atlas.; HP, 
Human Phenotype Ontology. 

https://biit.cs.ut.ee/gprofiler
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Figure 4. 14| g:GOSt Manhattan plot of the significantly enriched pathways in hypermethylated promoters in NSCLCs as compared to their normal 
matched tissue obtained with g:Profiler web server (https://biit.cs.ut.ee/gprofiler). The functional terms from Gene Ontology (GO) subcategories are 
grouped and colour-coded by data source are shown on the X axis, and significance of the enrichment is shown on the Y axis in negative log10 scale. 
Abbreviations: GO:MF, Gene Ontology; Molecular Function; GO:BP, Gene Ontology: Biological Process; GO:CC, Gene ontology: Cellular Component; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; Reac, Reactome; WP, Wiki pathway; TF, Transcription Factor; HPA, Human Protein Atlas.; HP, 
Human Phenotype Ontology. 

https://biit.cs.ut.ee/gprofiler
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Finally, genes found uniquely hypermethylated in NSCLC tumours as compared to L-CD 

tumours were associated to GTPase activity and synapse and axonal cellular components (Fig. 

4.15). Although interesting, because these pathways have previously been found to be 

dysregulated in cancer245, it should be noted that the pathways failed to achieve significance 

at the FDR. Nevertheless, REACTOME pathways detected as enriched were associated to 

MECP2 regulates TFs (P = 7.81x10-3), loss of function of FBXW7 in cancer and NOTCH1 

signalling (P = 1.15x10-2), ERBB2 regulation of cell motility (P = 1.65 x10-2) and the circadian 

clock (P = 1.76 x10-2).  

 

 

 

Figure 4. 15| g:GOSt Manhattan plot of the significantly enriched pathways in 
hypermethylated promoters in NSCLs tumours as compared to L-CD tumours obtained with 
g:Profiler web server (https://biit.cs.ut.ee/gprofiler). The functional terms from Gene Ontology 
(GO) subcategories are grouped and colour-coded by data source are shown on the X axis, and 
significance of the enrichment is shown on the Y axis in negative log10 scale. Abbreviations: 
GO:MF, Gene Ontology; Molecular Function; GO:BP, Gene Ontology: Biological Process; GO:CC, 
Gene ontology: Cellular Component; KEGG, Kyoto Encyclopedia of Genes and Genomes; Reac, 
Reactome; WP, Wiki pathway; TF, Transcription Factor; HPA, Human Protein Atlas.; HP, Human 
Phenotype Ontology. 

 

https://biit.cs.ut.ee/gprofiler
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4.10  Integration of Mutational, Copy Number and DNA 

Methylation Data 

For this integrative analysis, the subset of samples that underwent WGBS data analysis (for 

which SNP and DNA sequencing data was also available) was used. 

 

4.10.1 L-CDs 

First looking at L-CDs (n=15), no overlap was found between genes that carried CNA and 

mutations (Fig. 4.16). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 4. 16| Venn diagram for the genes altered by somatic mutation, copy number alteration 
and/or DNA methylation changes at the promoter level in 15 L-CD patients. Abbreviations: 
CNA, Copy Number Alterations; DMR, Differentially Methylated Regions. 

 

Ten genes, however, were affected at the copy number and DNA methylation level, 

namely INSL6, EGFR, TERT, BRD9, PDLIM2, TGIF1, DLGAP1, ANK1, NKX2-8 and NMU. A 

description of the genes and their alterations is given in Table 4.2. 
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DM & CN 
status 

Genes Description 

Hypo & Amp ANK1 Epigenetic disruption in lung and pancreatic cancers 
Hypo & Amp BRD9 Role in chromatin remodelling and regulation of transcription 
Hypo & Amp DLGAP1 Oncogenic role in multiple cancer types, by regulating tumour cell growth 
Hypo & Amp EGFR Regulates epithelial tissue development and homeostasis; lung and breast cancer 

driver  
Hypo & Amp NMU Increased expression of this gene was observed in renal, pancreatic and lung 

cancers 
Hyper & Del PDLIM2 Tumour suppressor particularly important for lung cancer therapeutic responses 
Hypo & Del INSL6 Mainly expressed in testis, with lower levels of expression detectable in a variety 

of other tissues including intestine, thymus, kidney, uterus, ovary, spleen, 
breast, lung, and liver 

Hyper & Amp NKX2-8 Overexpressed in some lung cancers and is linked to poor patient survival, 
possibly due to its resistance to cisplatin. Aberrantly methylated in pancreatic 
cancer, deleted in squamous cell lung carcinomas, and acts as a tumour 
suppressor in oesophageal cancer 

Hyper & Amp TERT Roles in ageing and considered antiapoptotic. Active in progenitor and cancer 
cells 

Hyper & Amp TGIF1 Inhibits 9-cis-retinoic acid-dependent RXR alpha transcription activation; active 
transcriptional co-repressor of SMAD2 and may participate in the transmission 
of nuclear signals 

 
Table 4. 2| Genes altered at Copy Number and DNA methylation level. Differential Methylation 
(DM) and Copy Number (CN) status are shown. Genes showing a trend towards an increase of 
expression by amplification (CN level) and hypomethylation (DM level) are coloured in red, 
whereas genes that show a trend towards a decreased expression level by deletion and 
hypermethylation are coloured in blue. Uncoloured cells indicate disagreement between CN and 
DM status. 

 

In addition, thirty-eight genes harboured DMRs were found to be mutated 

(Supplementary Table 4.4). Genes included TJP1 (tight junction protein), HOXB3 

(differentiation), TRIB1 (cell cycle and immune regulatory functions) and CYFIP2 (cell 

survival). 
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4.10.2  NSCLCs 

Interestingly, overall a higher number of genes (Fig. 4.17) were found altered at the three 

different genomic levels in NSCLC tumours (n=25) when compared to the normal matched 

tissue. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4. 17| Venn diagram for the genes altered by somatic mutation, copy number alteration 
or DNA methylation changes at the promoter level in 25 NSCLCs (n=18 LUADs and n=6 LUSCs). 
Abbreviations: CNA, Copy Number Alterations; DMR, Differentially Methylated Regions. 

 

• 6 genes harboured both CNAs and promoter DMRs: MIR1204, IRX4, S100A11, 

PIP5K1A, TXNIP and NKX2-8. 

• 32 genes harboured DMRs and somatic mutations (Supplementary Table 4.5), 

including MET, PAX3, HOXD3 and CDKN2A. 

• 13 genes harboured CNAs and somatic mutations in NSCLC tumours, MKRN3, MYC, 

BRD9, CLPTM1L, ARNT, ITGA10, PIAS3, CELF3, ZNF229, ZNF467, ANK1, KAT6A and 

KDR.  

• Importantly, 2 genes harboured alterations via mutation, copy number change and 

differential methylation at the promoter level: EGFR and SLC12A7. 

 

The EGFR gene encodes the epidermal growth factor receptor (EGFR) tyrosine kinase 

which is the most well-established driver mutation in NSCLC. This driver is observed in 10-
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15% of Caucasian patients and up to 50% of East-Asian patients with NSCLC, with a higher 

incidence in females and those who have never smoked or light smokers246,247. Somatic 

mutations in this gene lead to constitutive ligand-independent receptor activation and 

subsequent downstream signalling promoting cell survival and proliferation.  

Looking at the whole NSCLC dataset, 11 LUAD patients (12.4%) and 1 LUSC patient 

(2.8%) harboured EGFR mutations. 

On the other hand, SLC12A7 gene encodes for a transmembrane protein that acts as a 

solute carrier to regulate cell volume. SLC12A7 (also known as KCC4) has been found 

overexpressed in several cancer types and associated with tumour cell growth and invasion248–

250. Exploration of the 4,767 Lung Cancer samples from the TCGA data portal similarly showed 

SLC12A7 mutations and copy number gains exclusively for LUAD and LUSC tumours 

(Supplementary Figure 4.6). 

 

4.10.3  Analysis of Cis-regulatory Regions  

After introns and intergenic regions, enhancer regions were the third genomic region most 

hypomethylated between the two tumour subtypes (see Fig. 4.18).  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4. 18| Number of DMRs for each type of genomic annotation obtained with Annotatr. 
Note the difference in the Y axis scale between the two graphs. 
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Enhancer regions have been found to have a stronger correlation with gene expression than 

promoters124. Consequently, the functional significance of DM enhancers (eDMRs) by using 

the Genomic Regions for Enrichment (GREAT) tool for each comparison group was 

investigated next.  

To get the most meaningful results of the pathways associated to eDMRs, the GREAT 

Gene Ontology (GO) results were filtered based on a normalised enrichment scores of >2 and 

multiple hypothesis testing corrected P values of <0.01, for both the binomial and 

the hypergeometric distribution-based tests (Appendix Supplementary Table 4.2). 

 

L-CD Tumour versus Normal 

In L-CDs a total of 2,580 and 1,235 enhancers were hypo- and hypermethylated 

respectively as compared to their paired normal tissues. Pathways associated to 

hypermethylated eDMRs were related to regulation of hemopoiesis, response to 

Transforming Growth Factor Beta (TGF-B), myeloid and leukocyte differentiation, 

angiogenesis, negative regulation of collagen biosynthesis and metabolic process, amongst 

others. Pathways associated to hypomethylated eDMRs included regulation of lymphocyte 

and T cell differentiation, regulation of dopaminergic neuron differentiation, mesoderm 

morphogenesis and development. The GO results are given in detail in Supplementary Table 

4.2.a) in the Appendix. 

 

NSCLC versus L-CD 

In NSCLC a total of 2,925 enhancers were hypomethylated in NSCLC as compared to 

L-CDs, whereas the number of hypermethylated enhancers was 1,235. Hypomethylated 

regions in enhancers (eDMRs) were enriched in biological processes related to myeloid and 

leukocyte differentiation, negative regulation of ERK1 and ERK2 cascades, and peptidyl-

tyrosine phosphorylation. Other significant pathways included regulation of ROS, pathways 

related to cell adhesion and Fc receptor mediated stimulatory signalling leading to activation 

of immune responses (Appendix, Supplementary Table 4.2.b). In contrast, pathways enriched 

in hypermethylated eDMRs included regulation of lymphocyte and T cell differentiation, 

regulation of circadian rhythm, angiogenesis and regulation of dopaminergic neuron 

differentiation, amongst others. 
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NSCLC Tumour versus Normal 

A total of 647 and 1,235 enhancers were hypo- and hypermethylated respectively as 

compared to paired normal tissue. Pathways associated to hypermethylated eDMRs were 

related to development and tissue morphogenesis, whereas pathways associated to 

hypomethylated eDMRs included regulation of muscle adaptation, endoderm development 

and regulation of leukocyte cell-cell adhesion. The GO results are given in detail in 

Supplementary Table 4.2.c) in the Appendix. 

 

4.10.4  Transposable Element (TE) Content in DMRs 

Genomic sequencing has revealed that the genomes of prokaryotes and eukaryotes contain a 

variety of TEs. This is as a result of insertional events that occurred during evolution251 (See 

Chapter 1, Section 1.3.3). In humans, these elements make up almost half of the nuclear DNA. 

The integration of these sequences into new sites create target site duplications and double-

strand breaks. This leads to the activation of DNA repair mechanisms of the host cells to 

enable repair and gaps to be filled. 

Since TE activity is well known to be under epigenetic control, the extent of DMRs that 

were enriched for TEs was investigated. Using the genomic coordinates of the four main 

classes of TEs (SINEs, LINEs, LTRs and DNA transposons), DMRs were overlapped and 

classified based on their TE content into TE-rich and TE-free DMRs (Fig. 4.18).  

L-CD tumours carried the highest proportion of TE-free DMRs (48%), whereas 

hypomethylated DMRs overlapped more with TEs in NSCLCs (50.75%). Hypermethylated 

DMRs similarly had a low overlap with TEs in both LC types, with 0.45% and 2.04% in NSCLC 

and L-CDs respectively. 
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Figure 4. 19| Proportion of repeat-free and repeat-rich DMRs. L-CD and NSCLC pie charts show 
tumour-normal comparisons while NSCLC tum/L-CD tum show tumour- tumour comparison. In 
yellow: hypomethylated and in red: hypermethylated DMRs with low TE content; and in light 
green squared pattern: hypomethylated and in blue squared pattern: hypermethylated DMRs with 
high TE content. Abbreviations: TE-free, Transposable Element-free; TE-rich Transposable 
Element -rich; Hypo, hypomethylated DMR, Hyper, hypermethylated DMR; L-CD, Lung 
Carcinoids; NSCLC, Non-Small Cell Lung Cancer (includes Lung Squamous Carcinoma [LUSC] 
and Lung Adenocarcinoma [LUAD]). 

 

Looking deeper into which categories showed a stronger overlap with DMRs (Table 

4.3) intergenic regions showed a substantial enrichment for DMRs, as expected since most of 

the genome is non-coding and where the vast majority of TEs are found. Intronic DMRs were 

the next genomic category showing a substantial proportion of TEs. Whilst present in NSCLC, 

these were a prominent feature in L-CDs with a sharp distinction between the two tumour 

classes. 

Interestingly hypermethylated DMRs in both LC tumours were found concentrated at 

TE-free regions. This suggests regulatory functions not related to the epigenetic silencing of 

TEs in cancer. Similarly, hypomethylated DMRs were more evenly distributed across 

overlapping and non-overlapping TE regions in both cancers, indicative that TE expression 

may be dysregulated through hypomethylation at TE regions in both tumour types but to a 

higher extent in L-CDs. 

L-CD NSCLC NSCLC tum/ L-CD 
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Table 4. 3| Number of Transposable Elements overlapping DMRs for each genomic category. Colour bars represent the proportion of DMRs in each 
category relative to the highest number. Intergenic regions are coloured independently for better proportion visualization of the rest of DMR categories.
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4.11  Discussion 

The work conducted in this chapter has revealed that DNA methylation at the whole-genome 

level distinguished NSCLC from L-CD tumours and tumours from healthy lung. 

Furthermore, PCA of DNA methylome data indicated that these data could alone be used to 

stratify patients and to distinguish cancer from healthy tissue. Importantly, targeted DNA 

methylation experiments for exonic regions could be used for cancer classification purposes, 

reducing the costs and time required for generating WGBS data. 

Global DNA hypomethylation was detected in both L-CD and NSCLC. Importantly 

this confirms that tumours with both stable and non-stable genomes harbour global 

hypomethylation. Considering the low mutational and copy number burden in L-CDs as 

compared to NSCLCs (discussed in Chapter 3) one can conclude that DNA methylation loss 

is a characteristic of lung cancer regardless of the level of genetic instability. 

Not only promoter but also DNA methylation changes at intergenic regions and gene 

bodies were found in this present study to be common features of both L-CD and NSCLC 

tumours. Other genome-wide DNA methylation studies have also provided data supporting 

this observation and consequently, the potential role of these alterations is starting to be 

explored. DNA methylation is generally suggested to be in part associated with gene 

expression by regulating processes related to transcription. For instance, DNA methylation 

plays a role in the regulation of alternative promoter usage, Alternative Splicing (AS) and 

polyadenylation and the expression of non-coding RNAs. In fact, the work conducted in this 

chapter found that lncRNAs formed the third most abundant category of aberrant 

methylation. In addition, many promoters of lncRNAs and miRs were detected as being 

differentially methylated. 

Furthermore, the fact that intronic regions and H3K36me3 marks accumulated high 

percentages of variance could suggest that alternative splicing (AS) may be a feature of L-CDs. 

The promoters of MEF2C and RBFOX1 were consistently hypomethylated in L-CD as 

compared to NSCLC tumours (Supplementary Data 4.3). These genes are involved in the 

regulation of AS by MeCP2. Knockdown of MeCP2 or treatment that reduces DNA 

methylation (lowering MeCP2 binding to the DNA) results in the aberrant exclusion of 

alternative exons252. 
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Previous studies have shown that methylation levels at enhancer regions correlates better 

with gene expression than that in promoter regions124. The present study has identified and 

associated differentially methylated enhancer regions (eDMRs) with cis regulatory functions 

by performing Gene Ontology analysis with genes physically located 50 to 500 Kb upstream 

or downstream of eDMRs. In both L-CD and NSCLC tumours, eDMRs were associated with 

developmental and differentiation programmes. This is consistent with the study by Ziller et 

al.125, where low DNA methylation levels were commonly found enriched for cell-type-

specific TF binding sites across different developmental stages and in cancer cells. Altogether, 

this suggests that DNA methylation patterns are associated with the expression of cell type 

specific TFs in both LC types and that deregulation of developmental regulatory programmes 

are a common feature in both. Further investigations are therefore warranted to confirm if 

these alterations lead to gene expression changes and such investigations will be addressed 

in the subsequent chapters of this thesis. 

EGFR appears as a common differentially methylated promoter in both LC histotypes, 

together with mutations and gene amplifications (Chapter 3, Fig. 3.14), suggesting that its 

expression and/or function can be altered at different levels, confirming its importance in LC 

carcinogenesis. Notably EGFR promoter hypomethylation has also been reported for gastric, 

colorectal, breast, head and neck squamous cell carcinoma and lung tumours253. The fact that 

different regulatory mechanisms are altered for this gene strengthens its potential as a 

therapeutic target for tyrosine kinase inhibitors (TKIs). 

Interestingly, in this present study, circadian genes were found to be hypermethylated 

including PER1.  The latter has already been reported previouslyto be hypermethylated in 

NSCLC254. Moreover PER2, CRY2 and RORA are known circadian genes altered in cancer255 

via promoter hypermethylation and have been detected also in this study for NSCLC. 

Circadian clocks can be disrupted by genetic, environmental and internal factors, all of which 

can in turn also disrupt cellular processes related to tumorigenesis (for example metabolic 

reprogramming, redox imbalance, chronic inflammation, etc.). In addition, many circadian 

clock proteins physically interact with proteins that participate in pathways relevant to cancer. 

In this way modulation of circadian clock function or expression of clock proteins may protect 

or promote cancer, opening a new line of study and therapeutic options. 
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Several DNA methylation changes occur across a cell’s lifespan. Embryonic stem cells show 

the highest levels of DNA methylation followed by primary cells and finally aged and 

cancerous cells have the lowest levels of DNA methylation. In this study, DMRs overlapping 

with TEs were mainly found at hypomethylated regions suggesting TE reactivation in both 

NSCLC and L-CD tumours. In contrast, hypermethylated DMRs were not colocalised with 

TEs. This is consistent with patterns observed in age-related diseases and cancer, where a 

decline in repeat element DNA methylation has been observed and CpG islands may become 

methylated256. 

Limitations of the present study include the heterogeneity in cellular composition that 

can directly cofound tumour-specific DNA methylation levels. It has become clear that cell 

type is a potential cofounder in DNA methylation studies, particularly in complex mixtures 

such as blood or tumour samples. Normal lung tissue is composed of many different cell types 

including cells of the epithelium, interstitial connective tissue, blood vessels, immune cells etc, 

and together with recent studies looking at immune cell composition in NSCLC257,  there is a 

level of  sample heterogeneity at the cellular level. Thus, further DNA methylation 

investigations although costly should be performed at the single cell level to confirm 

observations to date for whole tissue samples as well as identify further DNA methylation 

changes in cancerous cells. 

In addition, the repetitive nature of TEs remains a challenge for their accurate detection 

from high-throughput sequencing data. TEs account for more than half of the genome and 

can be even higher in abundance due to the insertion of active classes across the genome due 

to several biological processes. Consequently alignment and accurate detection can be 

confounded with mapping artefacts and requires high sequencing read depth. 

There is accumulating evidence on the effect of biological sex in in DNA methylation 

patterns during aging and disease258–261. In the setting of exploratory PCA analysis (Section 

4.5), only sex-mediated differences on the sex-chromosomes could be excluded as LC 

histotypes were clearly clustering in different groups when accounting only for DNA 

methylation data on autosomes (data not shown). This however cannot remediate the 

cofounding factor of sex-mediated differences as a whole in the different histotypes. Being 

aware of this limitation and to control for this factor as it may mask DNA methylation 
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signatures, DNA methylation data was adjusted for biological sex for calling DMRs in this 

present study. 

Nonetheless larger datasets, with higher representation of both genders in each LC 

histological group, would be required to determine if sex-driven differences are not 

explaining the dissimilarity seen in the methylomes.  
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Chapter 5: Marked Loss of Y Expression in NSCLC 
This chapter describes and extends the research paper “Y disruption, autosomal 

hypomethylation and poor male lung cancer survival”, published in Nature Scientific Reports 

in 20211 (full details of which are given on page 6). 

 

5.1 Introduction  

Through network analysis, Willis-Owen et al.1 identified weakening of a male-specific gene 

expression in 27.7% of male NSCLC tumours, accompanied by poor survival. Specifically, a 

Weighted Gene Co-expression Network Analysis (WGCNA)262 was used to summarise gene 

expression separately in tumour and matched normal tissues allowing comparison at the 

system level. WGCNA specifies modules or networks of co-varying transcripts. These 

transcripts can vary in the same or opposing directions. In this way, these networks contain 

genes that are related at the functional level, for example forming part of the same signalling 

pathway or regulated by similar TFs. Additionally, prior evidence indicates that genes that 

are highly interconnected or central to a gene expression network typically have the highest 

impact when disrupted. As a result, the application of WGCNA can identify common and 

divergent gene co-expression networks between tissues and specify key genes within these. 

For this study, WGCNA analysis (carried out by Dr. S.A.G. Willis-Owen) was used to 

identify gene co-expression networks in expression data generated with the Affymetrix 

HuGene 1.1 ST microarray. Research samples consisted of tumour and normal lung tissue 

from 126 NSCLC patients with Stage IA – IV lung cancer. DNA and RNA extractions and 

expression data had been generated by prior members of the Asmarley Centre for Genomic 

Medicine (NHLI, Imperial College London) and their collaborators2. 

 To study common and unique networks between tumour and normal NSCLC 

samples, networks were first constructed for tumour and normal samples together (consensus 

networks). Then, networks were constructed in tumour and normal samples separately to 

allow to specification of tissue-specific and common networks.  

One network specific to the normal lung tissue showed a significant relationship with 

biological sex (P = 3.72x10-28) and lacked assignment to a consensus network, indicating a 

different co-expression pattern between tumour and normal lung tissue samples in NSCLCs. 
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Furthermore, hierarchical clustering of samples and transcripts of this network distinguished 

an individual branch featuring a tumour-specific disturbance related to a reduction of male-

specific gene expression (Fig. 5.1a). This network included over a quarter of male NSCLC 

tumours (including both LUAD and LUSC tumour histologies). This observation was also 

reproduced in a replication dataset comprising microarray expression data of 123 samples 

from 69 patients with either LUAD or LUSC histology (Fig. 5.1b). 

 

Figure 5. 1| Hierarchical clustering of transcripts assigned to a normal-specific sex associated 
co-expression network in a) discovery and b) replication datasets. Samples are shown on the y 
axis with transcripts on the x axis. Expression is shown on a continuous colour scale from blue 
(low) to red (high). Sample colour (y axis) reflects tissue type (light – histologically normal, dark - 
tumour) and sex (blue - male, pink - female). Transcript colour (x axis) reflects chromosome class 
(yellow - autosomal, pink – X, blue – Y). Low Y sample / Transcript Clusters (TCs) are highlighted 
by a solid black box. The figure is reproduced with permission from Willis-Owen et al.1. 

 

Most of the transcripts forming this network mapped to the sex chromosomes. 

Specifically, 15 transcripts mapped to chromosome X and 16 transcripts mapped to 

chromosome Y. The remainder mapped to autosomes, with many previously found to show 

sex-biased gene expression (e.g. DDX43, NOX5, NLRP2)263,264. Intriguingly, most of the 

transcripts mapping to the Y chromosome lacked assignment to a tumour network (n=12, 

75%), indicating a specific loss rather than restructuring of the gene networks in tumour 

tissue. 
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This tumour-specific disturbance in sex-related gene co-expression was characterised 

by a substantial reduction of Y-chromosome transcripts encoded by the genes DDX3Y, 

EIF1AY, KDM5D, RPS4Y1, TXLNGY, USP9Y and UTY. 

Following these observations, mechanistic insights for the low expression of Y 

chromosome (LYE) transcripts in these NSCLC tumours were sought through the analysis of 

DNA sequencing and WGBS sequencing data.  

 

5.2 Material and Methods 

The DNA sequencing and WGBS sequencing data was generated as detailed in Chapter 2. 

 

5.3 Results 

5.3.1 LYE Tumours Exhibit Low Read Depth Consistent with 

Somatic Loss of Y  

To try and gain mechanistic insights for the deficiency of Y chromosome gene expression that 

had been observed, first somatic loss of Y was queried through read depth analysis of WES 

and WGBS data. 

A subset of male tumour samples exhibiting low Y chromosome expression (n WES = 

6, WGBS = 17) were compared with matched unaffected tissue from the same patients and 

with a subset of male tumour samples lacking this feature (n WES = 9, WGBS = 5; see 

Supplementary Tables 5.1 and 5.2) including all such samples for whom sufficient template 

was available. Consistent with tumour-specific LYE, normalised read depth was significantly 

lower in LYE tumours as compared with unaffected samples from the same patients (PWES = 

0.0108; PWGBS = 2.01x10-20). In male tumours lacking the low Y gene expression signature, this 

was not seen (PWES = 0.99; PWGBS = 0.97).  

Correspondingly the percentage loss was significantly greater in males with low Y-

expressing tumours than in males lacking this feature (PWES = 0.027; PWGBS = 0.046) (Fig. 5.2). 



 175 

 

 
Figure 5. 2| Validation of somatic LYE through sequence read depth analysis from WES (a) and 
WGBS (b) data. Box plots of the percentage of Y loss in male tumours with low Y-expression and 
in males lacking this feature. Error bars represent standard deviations from the mean. Magnitude 
of significance is denoted with asterisks with P values as shown (*). 

 

5.3.2 LYE Tumours Show a DNA Hypomethylation Signature 

Amongst the transcripts within the sex-associated co-expression network, KDM5D showed 

the highest Module Membership (MM), a concept closely relative to intra-network 

connectivity as highlighted in the introduction of this chapter (Section 5.1).  

The lysine Demethylase 5D (KDM5D) encodes a male-specific demethylase targeting 

trimethylated H3K4 (H3K4me3). This chromatin landmark is generally detected near the start 

site of transcriptionally active genes and can exhibit pronounced sex bias that can be 

translated to differences in gene expression between male and females265. Whilst histone and 

DNA methylation pathways involve distinct enzymes and chemical reactions, these pathways 

are interconnected, with complex dependency relationships266. Amongst histone methylation 

marks, H3K4me3 specifically is anti-correlated with DNA methylation267 and mutations in the 

X-linked KDM5D homolog (KDM5C) have been linked with multi-locus DNA methylation 

loss268 providing evidence of functional inter-dependency.  
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In the present study, a pronounced DNA methylation loss signature was observed in male 

tumours with the low Y gene expression phenotype (Fig. 5.3). Relative to paired unaffected 

tissues, median autosomal DNA methylation levels were significantly reduced (P = 3.12 x10-

6). This relative reduction was not reproduced in male tumours lacking the low Y gene 

expression feature (P = 0.0625) indicating that extensive hypomethylation is a characteristic of 

the low Y pulmonary tumour state and potentially therefore also a latent factor contributing 

to lung cancer-related methylation changes previously reported elsewhere269.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. 3| Median CpG DNA methylation percentage per sample. The figure shows median 
DNA methylation percentage per sample in males with deficient Y chromosome gene expression 
(d) and males lacking this feature (nd) for tumours with normal paired data available (n=21). Data 
is shown for both tumour and histologically normal tissue. Normality was assessed with a Shapiro 
Wilk test. Differences in DNA methylation between paired tumour and histologically normal 
tissues were assessed using a two-tailed paired t-test (low Y group), and a Wilcoxon test (non-low 
Y group). A two-tailed unpaired Mann-Whitney test was used to assess differences in DNA 
methylation between the two tumours groups. Error bars represent standard deviation from the 
mean. Magnitude of significance is denoted with asterisks (*) ** P = 0.0082, **** P = 3.12 x10-6. 
Abbreviations: d (deficient chromosome Y gene expression), nd (non-deficient chromosome Y 
gene expression), ns (non-significant). The figure is reproduced from Willis-Owen et al.1. 
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Autosomal DNA methylation levels were also significantly lower in LYE male tumours as 

compared with non-LYE tumours (P = 0.0082). These results demonstrated coincidence 

between reduced Y chromosome gene expression and widespread autosomal DNA 

hypomethylation in the same patients. The results also suggest reduced KDM5D activity as a 

potential mechanism leading to the widespread DNA methylation loss observed here. 

Through the examination of individual regions, showing significant differential 

methylation between LYE tumours and unaffected paired tissues, the cancer-associated 

changes in DNA methylation were found to be strongly biased in favour of hypomethylation. 

For instance, promoter regions 1Kb upstream of 1,728 genes were found to be hypomethylated 

in LYE tumours with methylation differences exceeding 20%. As shown in Table 5.1 these 

regions showed significant enrichment for multiple motifs relating to the dimeric Activating 

Protein 1 (AP-1) transcription factor complex. The latter has established roles in malignant 

transformation and invasion270. 

Table 5. 1| HOMER known motifs enriched in hypomethylated (a) and hypermethylated (b) 
promoter regions. Motif names are designated by the transcription factor name and its DNA 
binding domain, followed by the GEO Accession number for the public Chromatin 
Immunoprecipitation Sequencing (ChIP-Seq) experiment from the Genomic Spatial Event (GSE) 
database. Abbreviations: basic Leucine Zipper Domain (bZIP); POU, Homeobox (POU-domain 
homeobox transcription factor). This table is reproduced from Willis-Owen, S. A. G. et al1. 
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In addition to this hypomethylation signature, a total of 473 promoter regions were 

significantly hypermethylated. These sites showed significant enrichment for an X-box motif 

(Table 5.1) that is recognised by RFX transcription factors and has functions in cellular 

specialization and terminal differentiation with particular relevance to ciliogenesis271.  

Increase of methylation at CpG islands has been previously associated with aging and 

cancer whilst decreased methylation has been observed in CpG oceans or intergenic regions272, 

and a similar trend was observed in LYE tumours as compared to their normal matched tissue 

(Supplementary Fig. 5.1). 

 

The findings presented next for this study are not (unlike the above) included in the publication1 but 

show further research that support the conclusions reached by Willis-Owen et al. through the 

integration of data from the Targeted Capture Sequencing (TCS)(see Chapter 3).  

 

5.3.3 Molecular Characterization of LYE Tumours 

Somatic mutation variant calling as previously described (Chapter 2, Section 2.4.2) enabled 

comparison of somatic alterations present in low Y-expressing tumours (n=16) and tumours 

lacking this feature (n=102). 

The average number of variants per sample appeared much higher in the LYE group, 

with an average of 102.94 mutations per sample compared to a mean of 40.49 mutations per 

sample in tumours lacking the feature. In addition, the topmost frequently mutated genes 

amongst those scanned through the targeted capture gene panel (n=52 genes) were different 

between LYE samples as compared to non-LYE samples (Fig. 5.4). TP53 was still commonly 

the most recurrently mutated gene in both groups, followed by NF1 (25%), RBM10 (19%) and 

KRAS (19%) in LYE tumours; and KRAS (25%), STK11 (17%) and KEAP1 (16%) in non-LYE 

tumours.
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Figure 5. 4|Oncoplots of the top mutated genes detected by TCS and WES in LYE (left) and non-LYE (right) NSCLC tumours. Each column represents 
a different patient’s tumour and in rows are listed the 19 genes altered out of the total 52 genes of the panel. Genomic alterations are coloured by type 
of mutation and InDel (as per colour key); and percentages of patients with each altered gene are shown for the two groups on the right hand-side of 
the oncoplots. Bottom bar indicates LUAD and LUSC histotype as per the colour key shown. Abbreviations: LUAD, Lung Adenocarcinoma; LUSC, 
Lung Squamous Cell Carcinoma. 

LYE (n=16) Non-LYE (n=102) 
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In addition, when including WES data (Chapter 2, Section 2.5.1) three other genes appeared 

frequently mutated in the LYE group. Specifically, TTN (31%), CSMD3 (25%) and USH2A 

(19%). This finding is consistent with what has been observed and reported by The Cancer 

Genome Atlas273. 

The human gene TTN encodes for the TITIN protein. It is known as a major mutation 

gene (with the second highest rate after TP53 genes) in many types of tumours including 

NSCLC273. Similarly the CSMD3 gene, encoding for the CUB And Sushi Multiple Domains 3 

involved in dendrite development, has been reported as the second most frequently mutated 

gene in an alternative NSCLC dataset by Liu et al.274. USH2A provides instructions for the 

usherin protein, that serves as a structural component of basement membranes and has been 

associated with increased risk of breast cancer. Nevertheless, USH2A is no longer regarded a 

driver gene given its association with Usher syndrome and a high discovery rate in mutation 

calling275. 

Next the two groups of tumours (LYE and non-LYE) were compared to detect 

significantly differentially mutated genes. This analysis identified TP53 and TTN to be 

significantly differentially mutated between LYE and non-LYE tumours (PTP53 = 0.013; OR= 

5.91 [95% CI= 1.26-56.16]), (PTTN = 0.023; OR= 4.61 [95% CI= 1.03-18.99]) as shown in Figure 5.5. 

These observations are in line with previous data (by Thomson et al.) exploring genetic 

predisposition to mosaic loss of chromosome Y (LOY) in blood, where genetic variants in 

genes involved in cell cycle and mitotic processes (including TP53) were associated with LOY 

by using GWAS. This association suggests that clonal expansion of LOY cells requires a 

permissive environment (or ‘soil’) in which proteins that are involved in sensing and 

activating cell death signalling cascades are dysregulated276. The Thomson et al. study276 adds 

to prior studies277,278 and provides evidence that LOY can be a biomarker of cell-cycle efficiency 

and the DDR in leukocytes. As a result, the molecular alterations uncovered in this present 

study could be part of an underlying mechanism leading to genomic instability and cancer 

across this cell type.  

Following these premises, next (see Section below) the altered signalling pathways in 

LYE and non-LYE tumours were examined to investigate whether genes in pathways related 

to the cell cycle, programmed cell death and DDR were altered at the genetic and copy number 

(CN) level in tumours with deficient Y chromosome gene expression. 
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5.3.4 Oncogenic Signalling Pathways Enriched in LYE and Non-LYE 

Tumours 

TP53 and RTK-RAS pathways appeared as the signalling pathways most altered by mutations 

and InDels in both groups (LYE n=16 and non-LYE n=102, Fig. 5.5). The TP53 pathway, 

however, was more altered in the LYE group (87.5%) than in the non-LYE (81.3%), whereas 

RTK-RAS was more altered in the non-LYE group (70.59%) as compared to the LYE group 

(57.84%). Furthermore, the PI3K pathway was similarly frequently altered in both groups of 

NSCLC male tumours with 37.5% and 38.2% in the LYE and non-LYE group respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 5| Enrichment of known Oncogenic Signalling pathways in LYE (n=16) and non-LYE 
NSCLC tumours (n=102). Fraction of samples with mutations and/or InDels in genes of each 
signalling pathway are shown.  

 

Looking at the genes altered within the RTK-RAS pathway, the LYE group showed 

more mutations in NF1 (25%) than in KRAS (18.7%), followed by EGFR (12.5%). Conversely, 

non-LYE samples mostly showed mutations in KRAS (25.5%), EGFR and NF1 (10.8% each).  

 

 

LYE Non-LYE 
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5.3.5 Genetic Alterations in DNA Damage Repair Genes 

KDM5D is associated with augmented cell cycling and accumulation of stalled replication 

forks, culminating in DNA-replication stress and activation of the DDR pathway279,280. Next 

mutations in DDR genes were sought for by scanning the sequencing data generated for the 

DDR genes included in the updated table of Human DNA repair genes cited in Wood et al. 281.  

p53 is a key player in the DDR pathway acting through promotion of cell cycle arrest 

and thereby allowing for DNA repair, senescence or apoptosis. As mentioned above (Section 

5.3.3) TP53 appeared significantly differentially mutated between males with low Y-

expressing tumours and tumours lacking this feature (88% in LYE v/s 54% in non-LYE; P = 

0.013). Additionally, PTEN was also detected mutated at a slightly higher frequency in the 

LYE group of male tumours with a frequency of 12% compared to 9% in the non-LYE group 

of males (Fig 5.5). PTEN helps in DSB repair and nucleotide excision repair282 as well as  

interacting with p53283 . 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5. 6| Frequency of mutations and InDels in DNA damage repair genes in LYE (n=16) and 
non-LYE group of male tumours (n=102). Types of mutation and insertions and deletions coloured 
as per colour code key. 
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As shown in Figure 5.6, several other DDR genes were found to be mutated in LYE tumours 

with frequencies of 6% that were notably not mutated in the non-LYE group. 

Furthermore, Copy Number Alterations (CNA) in DDR genes were identified through 

the analysis of SNP genotyping data (see Chapter 3). The number of homozygous and 

heterozygous calls were queried for each tumour sample. CNAs were detected in DDR genes 

at high frequencies. This is consistent with accumulated evidence from various tumour classes 

that the redistribution, or perturbation, of DNA methylation mainly occurs upon copy 

number alteration272 and that such redistribution can be induced by oxidative damage284. 

The average CN status of DDR genes was calculated based on the 

heterozygous/homozygous deletions and amplifications that ranged from -2 for heterozygous 

deletions to +2 for homozygous amplifications. The CN status of DDR genes was significantly 

different (P = 0.0021) between the two groups of male tumours (Fig. 5.7; Supplementary Fig. 

5.7). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 7|Copy Number status of DDR genes in LYE and non-LYE NSCLC tumours. Dots 
represent the average CN status at each gene based on the number of heterozygous/homozygous 
calls.  
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5.3.6 APOBEC Enrichment 

APOBEC enzymes are a well-known source of mutations and DNA damage. TP53 mutation 

status and CNAs have been associated with APOBEC mutagenesis, intratumor 

heterogeneity285 and metastatis286 in NSCLCs. In line with these findings, in this present study 

enrichment of APOBEC related mutations in 50% of LYE tumours in contrast with 6.67% in 

tumours lacking this feature was observed. Known and de novo COSMIC mutational 

signatures (CMS) were then identified for the subset of samples that underwent WES (Chapter 

3, Sections 3.3.1-3.3.2) allowing more accurate inference of mutational profiles through whole-

exome sequencing data (n LYE=6; n non-LYE=15). 

Half of the LYE tumours carried signature CMS 13 (identified with deconstuctSigs), a 

signature attributed to activity of AID/APOBEC family of cytidine deaminases 

(Supplementary Figures 5.2). Furthermore, de novo mutational signatures were found to be 

similar to CMS 4 (cosine similarity of 0.932) and CMS 2 (cosine similarity of 0.867), signatures 

that are related to exposure to tobacco mutagens and APOBEC cytidine deaminases 

respectively (Supplementary Fig. 5.4). 

 In contrast only 26% of tumours showing normal Y expression harboured CMS 13, and 

none exhibited the de novo signatures associated with APOBEC activity but instead were 

related to signature CMS 1 of unknown aetiology (cosine similarity of 0.787) and CMS 4 

(cosine similarity of 0915) associated with smoking (Supplementary Figs. 5.3 and 5.4). 

 

5.3.7 TMB/CNB and LYE Relationship 

In light of the different mutational signatures and spectrum of genomic alterations observed 

between LYE and non-LYE NSCLC tumours, overall Tumour Mutational Burden (TMB) and 

copy number burden (CNB) were investigated (Fig. 5.8).  

 TMB was nominally raised in LYE tumours (median TMB = 30.97) relative to non-LYE 

tumours (median TMB = 14.12), although this difference did not quite reach significance (P = 

0.0548). CNB was also modestly higher in LYE tumours (median CNB = 12.63) as compared 

with tumours lacking this feature (median CNB = 4.69) but again this was not statistically 

significant (P = 0.5693). 
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Figure 5. 8| TMB and CNB in male NSCLC tumours. The figure shows TMB and CNB per sample 
in males with deficient Y chromosome gene expression (LYE) and males lacking this feature (non-
LYE). Normality of the data was examined through Shapiro-Wilk normality tests. Two-tailed 
unpaired Mann-Whitney tests were performed to assess differences in TMB and CNB between the 
two tumour groups. The samples shown correspond to samples that underwent WES for more 
accuracy (n LYE=6; n non-LYE=15). 

 

TMB and CNB were, however, both negatively associated with KDM5D expression as 

shown in Figure 5.9, and this association attained significance for the TMB-KDM5D 

expression relationship (P = 0.027). These data further demonstrated that a decrease in 

KDM5D activity was associated with an increased genomic instability in LYE tumours. 
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Figure 5. 9| KDM5D expression correlations with TMB and CNB in NSCLC male tumour 
samples. Spearman correlation coefficients and two-tailed P-values are shown for each 
association. Tumours with low Y expression are shown with circles and tumours lacking this 
feature are shown in triangles. 

 

5.4 Discussion 

The paper by Willis-Owen et al.1 (that included some of the data detailed in this present 

chapter) identified a gene co-expression network that was associated with biological sex in a 

group of NSCLC tumours. The male specific H3K4 demethylase, KDM5D, was found to be 

central to this network with significant prognostic value.  This was validated in a further 1,100 

male lung cancer samples. These observations are consistent with increased mortality and 

higher risk of cancer found in men with loss of Y chromosome in peripheral blood287,288. 

Integration of DNA sequencing and WGBS sequencing, as described in this chapter, 

reveals a link between low Y chromosome expression, DNA methylation loss and genomic 

DDR and APOBEC signatures. Analysis of read depth from WES and WGBS experiments 

showed that the reduced expression in Y-chromosome transcripts co-occurs with, and 

therefore likely results from, a somatic loss of Y chromosome. A polymerase chain reaction 

(PCR) -based chromosome deletion detection assay further corroborated partial somatic 

deletion of the Y chromosome in these tumours. 

Expanding upon these observations, the genes TP53 and TTN are significantly 

differentially mutated in tumours with deficient Y gene expression. This observation together 
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with DDR and APOBEC mutational signatures may create a permissive environment for cells 

to proliferate, thus strengthening the link between LYE and increased mortality in male 

NSCLC patients. For instance, TTN/TP53 co-mutation has previously been suggested as an 

effective predictor for OS and chemotherapy response in lung cancer289, as well as a potential 

predictive marker of immunotherapy for patients with LUAD290. TP53 is also a well-known 

DDR gene with critical roles in cell-cycle and survival, and in addition LOY has been 

previously associated with DNA-replication stress and activation of the DDR291,292.  

 Nevertheless, APOBEC-related mutations were found to be enriched in LYE tumours. 

Cigarette smoke contains established pulmonary free radicals, carcinogens, mutagens and 

tumour promoters, that induce a variety of oxidative damage, inflammation, DNA adducts 

and single- and double-strand DNA breaks (SSBs, DSBs)293,294. SSBs and DSBs are substrates 

for APOBEC enzymes which are known to be highly mutagenic295,296. Exposure to tobacco 

within a more permissive environment could potentially facilitate genomic instability. Hence, 

the TP53 mutations and CNAs in DDR genes together with an APOBEC mutational signature 

may partially explain deficient chromosome Y expression and the higher TMB detected in 

LYE tumours as compared with non-LYE tumours. 

  LYE tumours also feature a DNA methylation loss signature. Amongst histone 

methylation marks, H3K4me3 specifically is anti-correlated with DNA methylation267 and 

mutations in the X-linked KDM5D homolog (KDM5C) have been linked with multi-locus 

DNA methylation loss268 providing a plausible explanation for the DNA methylation loss 

detected in LYE tumours in this present study. The functional role of DNA methylation, for 

example whether DNA methylation is a passive mark of transcription activity or an active 

regulator that modifies gene expression, is however still under debate as discussed previously 

in Chapter 4. Evidence accumulated from various tumour classes also points to a 

redistribution or perturbation of DNA methylation upon CNAs272, and oxidative damage has 

also been shown to be at the basis of widespread chromosomal loss of DNA methylation 

thereby contributing towards an unstable genome284. 

The spectrum of mutations, CNAs and mutational signatures identified in this present 

study suggests the potential role of KDM5D status to predict response to chemotherapeutic 

agents targeting DNA damage and repair pathways. For instance, low expression of KDM5D 
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is associated with a reduced sensitivity to cisplatin and increased sensitivity to inhibitors of 

the ataxia telangiectasia and Rad3-related protein (ATR) in PC cell lines279. Additionally 

inactivation of p53 has been found to circumvent APOBEC3B-induced cell cycle arrest and 

maintain a kataegic mutational signature and DDR biomarkers, and sensitize cells to a 

platinum salt, cisplatin used in combination with ATR inhibitors (ATRi) as well as PARP 

inhibitors used in combination with ATRi297–299. 

In addition, in this present study low tumour KDM5D expression was associated with 

an increased relative hazard of death as compared with males with normal KDM5D 

expression (HR 4.92 [95% CI 1.46,16.55], P = 0.01), and when compared with both males and 

females (HR 3.80 [95% CI 1.40 - 10.3], P = 0.009). These results were also validated in 1,100 

male tumours from 11 independent LC mRNA gene expression datasets1. 

Finally, TTN/TP53 co-mutation was suggested as an effective predictor for OS and 

chemotherapy response in lung cancer, as well as a potential predictive marker of 

immunotherapy for patients with LUAD290. 

Several important limitations may impact the results described here. These include 

small sample size for the identification of DNA methylation changes and a lack of information 

describing cell type composition and purity of tumour samples. Studying different types of -

omic data to infer both tumour purity and cell type composition has been shown to be a 

promising approach and may avoid its cofounding effect in future studies. This study has also 

analysed two histological subtypes of NSCLC which, as outlined in Chapter 3, show a 

different repertoire of mutations, InDels and CNAs. Nevertheless, the reduced Y chromosome 

gene expression feature reported here occurs in both LUAD and LUSC histologies 

independent of stage and histology. Further research should therefore investigate this 

phenomenon in larger sample sizes, accounting for tumour purity, cell composition, stage and 

histological subtype. Finally, the SNP genotyping arrays used for this study may not fully 

represent the copy number burden genome-wide because the majority of probes on the arrays 

are designed for the purposes of SNP detection. Recently developed methods now enable the 

detection of the same set of SNPs included in this analysis plus an additional set of probes 

targeting non-polymorphic positions.  This may improve accuracy of CNA detection and 

show whether LYE tumours also lean towards genomic instability following CN changes. 
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Chapter 6: Lung Carcinoid Molecular Subtypes from 

Transcriptomic Data 
This chapter describes and extends the preprint “Distinct pancreatic and neuronal Lung 

Carcinoid molecular subtypes revealed by integrative omic analysis”300 currently under peer-

review process (full details of which are given on page 6). 

 

6.1 Introduction 

The World Health Organization (WHO) of Thoracic Tumours4 currently classifies L-CDs 

under the umbrella of Neuroendocrine Neoplasms (NENs) together with Small Cell Lung 

Cancer (SCLC) and Large Cell Neuroendocrine Carcinoma (LCNEC). L-CDs occur frequently 

in never-smokers and are subclassified as Typical Carcinoids (TC) and Atypical Carcinoids 

(ACs). ACs grow a little faster and are more likely to metastasize to other organs. TCs grow 

slowly and rarely spread beyond the lungs. Thus TCs and ACs are considered low grade and 

intermediate grade respectively and classified under the term NETs. LCNECs and SCLC 

classify as high-grade neuroendocrine carcinomas under the term Neuroendocrine 

Carcinomas (NECs). 

 These groupings, based on histopathology, have been supported by recent genomic 

and mutational studies showing that similar genes are altered, although at different 

prevalence between NENs with L-CDs consistently showing the lowest number of molecular 

alterations49,63,144,301,302. As a result there is controversy around the possibility that high-grade 

neuroendocrine tumours could arise from pre-existing L-CDs49,303. Recent studies, however, 

have argued that L-CDs may not be early progenitor lesions of other neuroendocrine tumours 

since some altered genes and pathways do not overlap between these classifications304,305. 

Furthermore, differentiating TCs from ACs is challenging and involves a board of experts due 

to the disagreement for the optimal diagnosis306 and interobserver variability on mitotic count 

and degree of necrosis307. This lack of consensus results in unspecific treatment and lack of 

disease specific support.  Consequently many patients with rare NETs experience a “no clear 

pathway” of care in their cancer journey308.  



 190 

Despite the central role of epigenetic alterations in L-CDs, there are no studies that have 

investigated DNA methylation alterations genome-wide and integrated the data with genetic, 

transcriptomic and clinical data in a comprehensive manner. Some studies have integrated 

genetic (WGS or WES or TCS) with transcriptomics data305 and a recent study integrated 

methylation array (850K) data with transcriptomic data comparing TCs, ACs and LCNECs 

using a Machine Learning (ML) approach62. While most LCNECs clustered in a separate 

subtype, TCs and ACs were indistinctively allocated to the same groups.  This highlights the 

need for further research to refine the current histopathological classification. 

L-CDs remain relatively understudied despite their increasing incidence309–315. An 

integrated and comprehensive characterization at the molecular level of these malignancies 

has the potential to provide novel deeper insights on the distinct mechanisms of dysregulation 

as well as opening up new avenues for biomarker selection and treatment opportunities for 

L-CD patients. 

The identification of CNAs and DNA methylation changes in L-CDs pinpoints 

alternative non-mutation processes leading to carcinogenesis. Thus, the aims of this chapter 

were to take the data generated previously (Chapters 3 and 4) and integrate it with expression 

and clinical features. 

 

6.2 Molecular Classification from Transcriptomic Data 

Unsupervised clustering and Principal Components Analysis (PCA) analysis of RNA 

sequencing data (Chapter 2, Section 2.7) from 15 L-CD tumours (comprising 3 ACs and 12 

TCs) was conducted and clearly differentiated the 15 tumours into two approximately equally 

sized groups (n=8 and 7 respectively). These two groups were reproducibly identified using 

data from the top 500 most variable genes or all sequenced genes (n 25,764) (Fig. 6.1a-b). 
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Figure 6. 1| Clustering of L-CD tumour RNA-sequencing data. a) Principal Component Analysis 
and b) Dendrogram of sample similarity based on all sequenced genes (n 25,764) obtained using 
the War.D2 algorithm316 with hclust. Two groups of L-CD tumours clustered into two separate 
groups based on their expression profiles. Abbreviations: TC (Typical Carcinoid; AC (Atypical 
Carcinoid); PC (Principal Component).  

 

The clustering results were further evaluated and validated with the clValid R package 

(Chapter 2, Section 2.7.8). Specifically, internal and stability measures were obtained by using 

the top 500 most variable genes, together with the optimal number of clusters (Table 6.1).  

 

 
Measure Score Method 

Optimal Number 

of Clusters 

Top 500 most 

variable genes 

Connectivity 6.0833 hierarchical 2 

Dunn 0.9540 hierarchical 2 

Silhouette 0.3639 hierarchical 2 

 

Table 6. 1| Hierarchical clustering validation measures and optimal number of clusters 
identified using top 500 most variable genes using the clValid R Package. The optimal number 
of clusters using the hierarchical clustering algorithm was 2, thus validating the results obtained 
with hclust and PCA methods. 

 b a 



 192 

Looking next at the two groups (Group 1: L-CD-PanC and Group 2: L-CD-NeU – assigned 

labels explained below) and gene expression levels (Chapter 2, Section 2.7.6) there was 

substantial DE between the two groups. There were 1,924 DE transcripts that achieved 

significance at a 1% FDR threshold (Fig. 6.2). The top 20 differentially expressed transcripts 

are listed in Table 6.2. 

 

 

Figure 6. 2| Heatmap of the significantly differentially expressed genes (P <0.01) between L-CD 
subtypes. Figure displays heat map and dendrograms with hierarchical clustering of 15 tumour 
lung carcinoids (on the X axis) and genes (on the Y axis) that were significantly differentially 
expressed. Top bar indicates lung carcinoid group membership. Abbreviations: L-CD-PanC, Lung-
Carcinoids with pancreatic expression profiles; L-CD-NeU, Lung-Carcinoids with neuronal 
expression profiles. 
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Gene Log2FC (CI) AveExpr P.Value adj.P PanC NeU 

A1CF 10.63(6.53,14.73) 3.24 2.94E-13 1.89E-09   

TM4SF5 10.50(10.25,10.73) 1.46 2.02E-14 3.39E-10   

SERPINA10 9.77(8.37,11.17) 1.12 4.39E-12 1.03E-08   

RDH12 9.65(8.00,11.30) 4.20 8.05E-13 3.69E-09   

RFX6 9.42(8.65,10.20) 1.44 2.12E-13 1.82E-09   

HNF1A 8.33(8.04,8.63) 1.16 2.63E-14 3.39E-10   

C2orf72 7.30(6.79,7.81) 3.41 2.02E-12 5.79E-09   

FOXA3 7.24(6.91,7.58) 0.60 8.18E-12 1.76E-08   

ARHGEF10L 3.02(2.54,3.51) 6.78 1.00E-12 3.69E-09   

GLYCTK 2.91(2.21,3.62) 4.82 1.18E-12 3.79E-09   

RFC3 -2.44(-4.40, -0.47) 4.29 1.09E-08 3.65E-06   

AUTS2 -2.51(-2.91, -2.11) 4.99 1.51E-08 4.62E-06   

ATP8A1 -2.89(-3.67, -2.11) 5.83 3.62E-09 1.56E-06   

DPYSL3 -5.08(-6.09, -4.06) 7.31 1.10E-07 2.08E-05   

DOK7 -5.53(-5.99, -5.07) -1.07 1.30E-08 4.23E-06   

PRUNE2 -5.58(-6.22, -4.94) 4.63 4.71E-08 1.18E-05   

FAM3B -6.21(-7.12, -5.29) 0.98 8.76E-08 1.76E-05   

HS3ST6 -6.27(-6.71, -5.82) -0.39 2.82E-08 7.66E-06   

KCNK10 -9.52(-9.86, -9.18) 0.84 3.03E-09 1.40E-06   

RALYL -9.70(-10.31, -9.08) 0.21 1.73E-10 1.78E-07   

 

Table 6. 2| The top 20 transcripts differentially expressed between PanC and NeU L-CDs (adj.P 
<0.01). Abbreviations: log2FC (log2 fold change); CI (confidence interval); AveExpr (Average 
expression across all samples in log2-counts per million); adj.P (Benjamini-Hochberg false 
discovery rate adjusted P-value). Coloured cells indicate relatively higher (red) or lower (blue) 
gene expression between subtypes. 

 

Gene Set Enrichment Analysis (GSEA – Chapter 2, Section 2.7.7) revealed several 

metabolic pathways and hallmarks of pancreatic beta cells significantly enriched in Group 1 

(Fig. 6.3), peaking at regulation of beta cell development (Normalised Enrichment Score [NES] 

2.19, P< 0.01). In addition, Wnt signalling pathway genes, including DKK4, KREMEN2 and 

RNF43; and genes related with aflatoxin activation and detoxification such as GGT5, CYP34A, 

CYP3A5 and DPEP1, were also found upregulated in this group. Consistent with these 

themes, the genes showing the strongest evidence of differential expression, both with 

relatively raised expression in this group, were TM4SF5 (log2 fold change [log2FC] 10.50, adj.P 
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= 3.39x10-10) and HNF1A (log2FC 8.33, adj.P = 3.39x10-10). TM4SF5 is a known tumorigenic 

factor in several cancer types, including liver, colon, pancreatic and esophageal cancers 317–322 

whilst HNF1A encodes a putative master regulator of human pancreatic cancer stem cell 

properties323. The APOBEC1 complementation factor (A1CF) showed the highest log2FC in 

expression as compared to Group 2, suggesting that A1CF protein expression could be used 

as a molecular marker.  Group 1 therefore was labelled as L-CD-PanC. 

Group 2 showed upregulation of various pathways involved in neuronal 

differentiation, peaking at serotonin neurotransmitter release cycle (NES -1,79, P = 0.004). In 

line with this pattern, significantly higher expression levels of various neuronal genes were 

observed in this group (Appendix, Supplementary Data 6.1). For example, ASCL1 encodes a 

neuronal differentiation transcription factor and is a lineage-specific oncogene for high-grade 

neuroendocrine lung cancer62,324; whilst SLIT1, ROBO1 and SRGAP1 all represent members of 

the cell signalling protein complex slit/robo that latter being involved in axon guidance and 

angiogenesis. Moreover FAM3B/PANDER, a pleiotropic secreted cytokine that induces 

apoptosis in insulin-secreting beta-cells325, was highly expressed in Group 2 (log2FC 6.21, adj.P 

= 1.76x10-5). PANDER is expressed ubiquitously, including lung326 and some neurons of the 

brain327, and it has recognised roles in invasiveness and tumorigenicity when overexpressed 

in prostate328 and colon329 cancers. Group 2 therefore was labelled as L-CD-NeU.  

 

 

 

 

 

 

 

 

 

 

 

 

 

L-CD-NeU 

L-CD-PanC 
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Figure 6. 3| Reactome pathways nominally enriched in L-CD molecular subtypes. Bar plot 
showing Reactome pathways achieving nominal significance for enrichment in a GSEA of RNA-
sequencing data at a P-value threshold of 0.01. Using the MSigDB Reactome Canonical Pathways 
gene set330, 10 enriched and 4 depleted pathways were identified in the L-CD-PanC subtype 
relative to the L-CD-NeU subtype. Each bar represents a pathway and its NES is given. 

Further, immune cell content was explored in the L-CD dataset by scanning the 

transcript abundances of immune markers. A total of 25 transcripts were identified 

significantly differentially expressed between L-CD-PanC and L-CD-NeU tumours 

(adj.P≤0.05) (Supplementary Fig. 6.1). The expression of genes enriched in granulocytes, 

monocytes, dendritic cells and T-cells was significantly higher in L-CD-PanC tumours, 

whereas B-cell marker genes (3/5; 60%) were significantly enriched in L-CD-NeU tumours.  

 

6.3 L-CD Subtypes are Associated with Histopathological 

Parameters 

Integration of these findings with clinical parameters (Supplementary Table 6.1) revealed that 

L-CD-NeU tumours were characterised by a focal spindle cell morphology (two-sided Fisher’s 

exact test: P = 0.041) and peripheral location (two-sided Fisher’s exact test: P = 0.007) (Fig. 6.4) 

and included every tumour of an Atypical Lung Carcinoid histology (n=3). L-CD-PanCs were 

all located centrally within the bronchi. Whilst L-CD-NeU patients exhibited a trend towards 

an older age, this difference was not statistically significant (unpaired t-test, P = 0.071). No 

significant associations were seen with survival, smoking history, sex, presence of 

emphysema, nodal stage or either lymph or vasculature invasion. 
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Figure 6. 4 | L-CD molecular subtypes have distinct histological characteristics. a) Focal spindle 
cell morphology in L-CD-NeU versus L-CD-PanC. b) Central or affecting the main lobar bronchi 
versus peripheral tumour location between L-CD-NeU and L-CD-PanC. P-values are for two-
sided Fisher’s statistical tests. 

 

 

6.4 Mutational Signatures of L-CD Subtypes 

Next, the molecular features associated with these two contrasting (in terms of 

expression) groups were investigated by analysing the spectrum of somatic base substitutions 

and their trinucleotide context. The mutational load was significantly higher in L-CD-NeU 

with 45.83 mutations on average compared with 27.87 for L-CD-PanC (P = 5.53x10-4) (Fig. 6.5). 

This is consistent with a higher mean number of mutations detected in ACs and tumours from 

this histology all falling in the L-CD-NeU molecular group. Noteworthy, the number of 

mutations was also significantly higher in ACs as compared to TCs (two-sided t-test: t -2.41; 

estimate TC=31.63, estimate AC=45.66 [95% CI -26.71, -1.35]; df 12; P=0.03). 

 

 

 

 

 

 

 

 

Figure 6. 5| Number of mutations in L-CD molecular subtypes 
was significantly higher in the L-CD-NeU subtype (two-sided 
t-test: P = 5.53x10-4). 

 

Considering COSMIC Mutational Signatures (CMS) (Chapter 3, Section 3.3.1) a 

different spectrum was consistently observed between the two L-CD subtypes with 50% of L-

CD-PanC samples possessing an aflatoxin exposure signature. This is consistent with the 

differential gene expression data in which several genes (GGT5, CYP34A, CYP3A5 and 

*** 
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DPEP1) participating in aflatoxin activation and detoxification were expressed at significantly 

higher levels in PanC tumours.  

On the other hand, L-CD-NeU samples varied either showing a CMS 5 signature 

(57%), found in most cancer samples, and/or a CMS 8 signature (43%), which is associated 

with double strand break repair by homologous recombination. A summary of the mutational 

signatures is shown below in Figure 6.6. 

 

 

 

a) L-CD-PanC 
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b) L-CD-NeU 
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Figure 6. 6| Weights of each mutational signature operative in (a) L-CD-PanC and (b) L-CD-
NeU tumours. Mutational Signatures identified with deconstructSigs in each molecular subtype 
with COSMIC mutational signatures version 2 by using the exome2genome normalization 
method. 
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Since most observed signatures were of unknown aetiology, de novo mutational signatures 

were then identified (Chapter 3, Section 3.3.2) and related to the catalogued (COSMIC) 

signatures331. Analysis with a cophenetic correlation metric confirmed a consistent presence 

of different spectra of mutational signatures in the two groups. L-CD-PanC showed an 

aflatoxin signature (CSM 24; cosine similarity of 0.603) while L-CD-NeU showed spontaneous 

deamination of 5-methylcytosine (CSM 1; cosine similarity of 0.801). Both subtypes were 

found to share a mutational signature associated with defective DNA mismatch repair (CSM 

20; cosine similarities of 0.399 in PanC and 0.642 in NeU) (Fig. 6.7). These data confirmed a 

biological distinction between the two observed L-CD subtypes.
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Figure 6. 7 | De novo Mutational signatures identified in L-CD subtypes using matrix factorization and compared to known mutagenic processes 
(COSMIC mutational signatures) identified by Alexandrov and colleagues29. Abbreviations: CMS, COSMIC Mutational Signature. 

CMS 24 associated to exposure to aflatoxin (C>A)  

Common CMS 20 

associated with 

defective DNA 

  

L-CD-PanC 

L-CD-NeU 

CMS 1 arising from spontaneous deamination of 5-methyl cytosine (C>T)  
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6.5 Mutations and Copy Number Alterations (CNAs) in L-CD 

Subtypes 

Next differences between the two subtypes (L-CD-PanC versus L-CD-NeU) in relation 

to mutations and CNAs (Chapter 2, Sections 2.2 and 2.4) were investigated. The most 

frequently mutated genes in L-CD-NeU were components of the cytoskeleton (57%), 

including ITGA1, ITGA2, PLEC and TPJ1, and histone covalent modifiers (43%) (JMJD1C, 

KDM1B and KDM4E) (Fig. 6.8). By contrast, L-CD-PanC tumours showed mutations in 

ARID1A and ARID5B (25%), both members of the SWI/SNF complex; and the Notch signalling 

genes PLXND1 and/or WWC1 (25%). Notch signalling controls cell fate decisions and has 

previously been found to be activated in neuroendocrine cells undergoing reprogramming 

after injury332. No significant difference was observed in the rate of gene mutations between 

the two L-CD groups. 

No significant difference in somatic copy number burden (CNB) could be detected 

between the two L-CD classifications. Just 4.8 and 5.5% of the genome showed evidence of 

CNV in L-CD-NeU and L-CD-PanC respectively (inter-sample range L-CD-NeU: 0.3% - 14.5%; 

L-CD-PanC: 0.3%-19.3%). These values lie within the range previously defined in healthy 

human populations333.  

Individual CNAs were found in genes related to the innate immune system and 

neutrophil degranulation, and included deletions affecting C1orf127 (1p36.22), TXK and TEC 

(4q12), NDUFS2 (1q23.3), KIF20B (10q23), INMT, ROCK1 and zinc finger proteins (ZNF180, 

ZNF846, ZNF283, ZNF404). One significant amplification was found in SCYP2, a major 

component of the synaptonemal complex the latter being key in meiotic division.  

A summary of the genes harbouring mutations and CNAs is given in Figure 6.8, with 

information regarding genes in significant cytobands and the percentages for CNAs in each 

subtype detailed in Table 6.3.  

Similar to mutations, L-CD-NeUs also showed higher frequencies of CNAs compared 

to the L-CD-PanC group, with 71.43% of tumours harbouring KIF20B deletions, a kinesin 

involved in neuron polarization334. In contrast with earlier studies49, no significant loss in RB1, 

TP53 and MEN1 or any significant gains in TERT, SDHA or RICTOR were detected, however 

this may be a function of low frequency and a small sample size in this present study49,62. 



 203 

 

Figure 6. 8| Oncoplot of the most recurrent mutations, InDels and significant Copy Number 
Alterations (CNAs) in L-CD molecular subtypes. Columns represent each patient and in rows 
are listed the genetic alterations. Recurrent somatic mutations (coloured by type of mutation or 
InDel) and their related biological pathway, with the total frequency of mutations belonging to 
each pathway is shown in red. Left bar plot represents median Variant Allele Frequencies for each 
gene with somatic mutations. Cytobands with significant deletions (in blue) and amplifications (in 
red) appear ranked from top to bottom based on significance (q-value). Below CNAs are shown L-
CD subgroup membership together with gender for each patient. On the bottom, summary of the 
types of substitutions as a stacked barplot showing the fraction of substitutions in each L-CD 
sample. Abbreviations: VAF (Variant Allele Frequency); WES (Whole-Exome Sequencing).
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Cytoband  Wide Peak Limits  Genes  q values  Residual q 

values  

PanC   

(%)  

NeU   

(%)  

1p36.22  chr1:11005496-11008843  C1orf127  4.28E-12  4.28E-12  12.50  42.86  

4q12    chr4:48068784-52743948  TXK, TEC  2.01E-09  2.01E-09  50.00  42.86  

1q23.3   chr1:161167699-161176136  ADAMTS4, NDUFS2  1.15E-07  1.15E-07  12.50  42.86  

10q23.31  chr10:91497196-91511197  KIF20B  1.07E-05  1.07E-05  25.00  71.43  

19q13.31  chr19:44978299-44988638  ZNF180  1.60E-05  0.00035745  25.00  14.29  

7p14.3   chr7:30793498-30795447  INMT  0.00042248  0.0038469  12.50  42.86  

18q11.1  chr18:14585295-18904233  ROCK1, ANKRD30B  0.00099715  0.00099715  25.00  28.57  

20q13.33  chr20:58416429-58467096  SCYP2  0.0073662  0.0073662  12.50  14.29  

19p13.2  chr19:9868450-9872906  ZNF846  0.0084492  0.0084492  12.50  28.57  

19q13.31  chr19:44350719-44377800  ZNF283, ZNF404  0.0084492  0.22424  25.00  28.57  

13q32.1  chr13:96496859-96546879  UGGT2  0.011732  0.011732  0.00  14.29  

7p22.3   chr7:2748718-2752382  AMZ1  0.017476  0.12272  0.00  28.57  

18p11.22  chr18:9254407-9256298  ANKRD12  0.017476  0.017476  12.50  14.29  

 
Table 6. 3| Genes in significant cytobands identified with Gistic22 in L-CD molecular subtypes. 
Q-values for each called peak and the associated residual q-values after removing segments shared 
with higher peaks are shown. Percentage of samples harbouring each copy number alteration is 
given for each molecular subtype. 

 

6.6 Focal and Widespread DNA Methylation Changes 

Distinguish L-CD Subtypes 

Aberrant DNA methylation is a common feature of cancer and provides a mechanism of gene 

expression dysregulation. Whole Genome Bisulfite Sequencing (WGBS) was performed 

(Chapter 2, Section 2.6) to generate a snapshot of the DNA methylation profile in tumour and 

matched histologically normal tissue. Mirroring the observations from transcriptomic data 

(Fig. 6.1), PCA of genome-wide DNA methylation data differentiated L-CD-NeU from L-CD-

PanC tumours (Fig. 6.9a). 
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Figure 6. 9 | Principal components analysis of whole genome (a) and repeat element (b) DNA 
methylation data differentiates L-CD molecular subtypes. The figure shows principal 
components analysis of WGBS data, a) whole genome and b) repeat elements only. NeU tumours 
are shown in red, PanC tumours are shown in blue. Histology is shown as TC and AC for Typical 
Carcinoid and Atypical Carcinoid respectively. 

 

A total number of 4,304 significant Differentially Methylated Regions (DMRs) were 

identified between L-CD groups (See Appendix, Supplementary Data 6.2 for full listing) and, 

consistent with gene expression data, promoters of genes expressed in beta cells and related 

to insulin secretion were identified to be hypomethylated in the L-CD-PanC group (Fig. 6.10). 

Other hypomethylated genes included SMAD7, NRG1 and PMS1.  

 

Figure 6. 10| Genes with promoters showing significant differential methylation of > 20% 
between L-CD subtypes. Statistical analysis was performed using a Wald test and P <1x10-6 was 
considered statistically significant.  

b  
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On the other hand, L-CD-NeU tumours showed hypomethylation of the PI3K/AKT/mTOR 

signalling pathway, a pathway known to be involved in pluripotency and cell fate 

determination. HOXB2 and HOXB developmental genes were also found to be 

hypomethylated. HOX genes are major transcriptional regulators with key roles in 

development, and frequent epigenetic and/or transcriptional deregulation in cancer 335,336. 

Notably the majority of DMRs identified mapped to intergenic and intronic regions (Table 

6.4).  

Next the properties of DNA methylation alterations in the non-coding genome of the 

two L-CD groups was investigated. PCA analysis of different genomic regions’ DNA 

methylation levels revealed that repeat elements explained most of the variance (26.89%) and 

alone distinguished L-CD-NeU from L-CD-PanC (Fig. 6.9b).  

 

Annotation type DMRs (n) 

hg19_cpg_inter 3869 

hg19_cpg_islands 60 

hg19_cpg_shelves 194 

hg19_cpg_shores 291 

hg19_enhancers_fantom 174 

hg19_genes_1to5kb 292 

hg19_genes_3UTRs 89 

hg19_genes_5UTRs 86 

hg19_genes_exons 390 

hg19_genes_introns 2265 

hg19_genes_promoters 129 

hg19_lncrna_gencode 497 

 
Table 6. 4| Number of DMRs between L-CD-PanC and L-CD-NeU per annotation type 
identified with Annotatr R package. 

 

Reactivation of transposable elements (TE) through epigenetic mechanisms is an 

established feature of some cancers with roles in tumour immunity118. In this present study, a 

significant enrichment of TEs in hypomethylated DMRs (relative enrichment = 1.31, 95% CI 

1.16-1.48, P = 8.03 x 10-06) was found. Specifically, DMRs enriched in TEs with a 30% fraction 
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overlap were significantly lowly methylated (two-tailed Wilcoxon matched-pairs signed rank 

test, P < 2.2 x 10-16) in PanC tumours (Supplementary Fig. 6). Repeat elements and non-genic 

CpG sites are known to lose methylation during aging337, nevertheless, no significant 

difference in age between L-CD subtypes was found in this present study. 

In addition to MEN1 mutations, alterations in ATRX or DAXX genes and activation of 

the Alternative Lengthening of Telomeres (ALT) pathway have previously been reported in 

Pancreatic Neuroendocrine Tumours (PanNETs)338,339,340,341 and have been proposed as 

markers for sensitivity to ATR inhibitors (ATRi)342. Genetic alterations (by mutation or CNA) 

were not detected in ATRX and/or DAXX genes in the data set of this study. Similarly, whilst 

expression and methylation levels of these genes were concordant neither differed 

significantly between L-CD-PanC and L-CD-NeU tumours (Fig. 6.11). 
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Figure 6. 11| Box plots of average DNA methylation percentage and expression levels for (a) ATRX and (b) DAXX, and their relationships. DNA 
methylation percentage was calculated for regions 2 Kb upstream of the first exon and the first exon itself. Spearman's correlation coefficients and 
associated P-values are shown in black for the whole L-CD data set (n=15), as well as the LCD-PanC (n=8) and L-CD-NeU (n=7) molecular subtypes.

b a 
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6.7 Transposable Element (TE) Expression Analysis 

Next the differential expression (DE) of TEs between the two L-CD groups were explored. 

From a total of 1,128 TEs detected, 29 were identified significantly as DE (P < 0.01). The Long 

Terminal Repeat (LTR) class of retrotransposons was found to be the most abundant (79.3%) 

among DE TEs. Interestingly, the majority of DE TEs (89%) were upregulated in the L-CD-

NeU group as compared to the L-CD-PanC group, with the LTR retrotransposon MER52 

showing the highest expression (log2 FC 3.91, adj.P = 1.7x 10-5) (Fig.6.12). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 12| Significant Differential Expression of the LTR MER52 between L-CD subtypes. 
Normality was assessed with a Shapiro Wilk test. Differential expression was assessed using a 
Welch t-test (P = 8.23 x 10-4). Magnitude of significance is denoted with an asterisk (*). 

 

MER52 is a TE from the Endogenous Retrovirus (ERV) superfamily within the LTR 

subclass of retrotransposons343. It is physically located in an intergenic region in the 4q13.2 

cytoband (chr4:70021864-70023292 in hg19/Human). Proximal loss of DNA methylation has 

been found to result in reactivation of TEs in some cancers118. Therefore, for the present data 

set DNA methylation was assessed 1 Kb upstream of MER52 and within the “gene body” of 

the Long Terminal Repeat (LTR). Interestingly, a positive correlation was observed in the L-

CD-NeU group and the correlation between expression and DNA methylation was higher 1 

Kb upstream of MER52 (Fig. 6.13a-b), although neither of these correlations was significant. 

*** 
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Figure 6. 13| MER52 DNA methylation-expression relationship. MER52 DNA methylation and 
gene expression were positively associated in the L-CD-NeU subtype, both 1 Kb upstream (R = 
0.62, P = 0.14) and within the LTR sequence (R = 0.46, P = 0.3), although associations were not 
statistically significant. Correlation coefficients (R) are given for each genomic region and L-CD 
group, with test statistics based on Pearson's correlation coefficients cor(x, y). 

TE sequences have been documented to regulate gene expression by acting as cis-

regulatory elements344,345 and are capable of controlling gene expression networks in a 

coordinated fashion251. Thus, a correlation matrix was computed to investigate genes whose 

expression co-varied with MER52 expression. A total of 259 genes were found to be 

significantly correlated with MER52 (adj.P < 0.05) and importantly 7 genes were amongst the 

top 20 genes DE (Table 6.2) between L-CD subtypes (Table 6.5). 

  

b a 
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Gene cor P adj.P 

A1CF -0.884651743 1.19E-05 0.024431917 

TM4SF5 -0.856803559 4.51E-05 0.039285805 

GLYCTK -0.854543163 4.97E-05 0.040579121 

RDH12 -0.845541865 7.17E-05 0.045993567 

DOK7 0.864826647 3.16E-05 0.034735741 

FAM3B 0.887354754 1.02E-05 0.023153912 

DPYSL3 0.913402472 1.98E-06 0.012433011 

 
 Table 6. 5| Genes that significantly correlated with MER52 expression that were also identified 
as the top-most significantly DE between L-CD subtypes. Abbreviations: cor (Pearson 
correlation coefficients); adj.P (Benjamini-Hochberg FDR adjusted P-value). 

 

 Pathway enrichment analysis with genes showing a significant negative correlation 

identified IL-37 signalling (P = 9.71 x 10-4), protein localization (P = 1.07 x 10-3), peroxisomal 

protein import (P = 1.33 x 10-3), activation of gene expression by SREBF (P = 2.14 x 10-3) and 

TP53 regulation of metabolic genes (P = 5.4 x 10-3) signalling pathways, amongst others. Genes 

related to cytosolic sulfonation of small molecules (P = 9.9 x 10-4) and ion homeostasis (P = 8.51 

x 10-3) signalling pathways were enriched in genes that positively correlated with MER52. 

 

6.8 Discussion 

In this study, two distinct molecular groups of L-CDs were identified by analysis of RNA-

sequencing data; L-CD-NeU and L-CD-PanC, and their molecular profiles were characterised 

using WES, SNP genotyping and WGBS. These two groups differed significantly in their 

transcriptional, mutational and epigenetic profiles, as well as their physical characteristics.  

 Differential analysis of gene expression data showed upregulation of metabolic 

pathways and hallmarks of pancreatic beta cells in PanC tumours, whereas pathways related 

to the neuronal system, neurotransmitter synthesis and release were found enriched in NeU 

tumours. Differential expression between these two groups was most marked with TM4SF5, 

notable since TM4SF5-targeted monoclonal antibody and peptide vaccination has previously 

established preventive and/or therapeutic effects in hepatocellular carcinoma, colon cancer 
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and pancreatic cancer models322. On the basis of these data, assessment of anti‑hTM4SF5 

antibody treatment efficacy in TM4SF5‑expressing PanC L-CDs may be warranted.  

The gene A1CF showed the highest log2 fold-change expression between the two L-

CD groups suggesting that A1CF protein expression may have utility as a molecular marker 

for anti‑hTM4SF5 antibody therapy. Furthermore, the NeU L-CD classification was 

significantly associated with a focal spindle cell morphology and peripheral tumour location, 

meaning that these physical features may provide a minimally invasive, accessible proxy, in 

agreement with the distinct characteristics of central and peripheral carcinoids reported by 

George et al.346. Additionally FAM3B/PANDER expression has been detected at the protein 

level and its inhibition has shown anti-tumour effects in vitro in prostate and several human 

cancer lines326, suggesting therapeutic potential and a marker for the differential diagnosis of 

L-CD subtypes in combination with TM4SF5 and A1CF protein expression. 

Solid tumours are commonly infiltrated by different types of immune cells. To 

compare the infiltration of immune cells between L-CD groups, we compared the expression 

levels of immune cell enriched genes as defined in the Human Protein Atlas, and identified 

significant differences for 25 transcripts (adj.P≤0.05). Thus, histological quantification of 

immune cell infiltrating cells in these tumours could be investigated to explore if L-CD-PanC 

tumours may be more likely to respond to checkpoint inhibitors. 

Molecular profiling of L-CDs have previously shown chromatin remodelling genes, 

such as MEN1, ARID1A, PSIP1, KMT2C and KMT2A, to be recurrently mutated in L-CDs 

while TP53, RB1 and STK11 mutations have been found frequently altered in non-carcinoid 

NETs347. Other studies have emphasized the distinction between TCs and ACs, and molecular 

events distinguishing these subtypes are reported to affect the genes MEN1, TP53, KMT2C, 

TERT, SDHA, RICTOR and RB149. In this present study, no mutation or CNA in any of these 

genes was detected although this may be a function of low frequency and a small sample 

size49,62.  

L-CD-NeU showed a higher tumour mutational load affecting cytoskeletal genes and 

histone covalent modifiers. Conversely, L-CD-PanC tumours showed a lower mutational 

load, mostly affecting members of the SWI/SNF complex and Notch signalling pathways. L-

CD-NeU tumours also showed more recurrent CNAs than L-CD-PanCs. Although L-CD-

NeUs encompassed all the ACs, most members of this group had typical histology 



 213 

highlighting the potential importance of molecular screening to help in the therapy decision 

process. 

To gain insights into the biological mechanisms involved in L-CD carcinogenesis, 

looking for the most frequent combinations of somatic mutations resulted in the identification 

of a combination of known and de novo mutational signatures. Known mutational signatures 

from the COSMIC database (https://cancer.sanger.ac.uk/signatures/) revealed a mixed 

repertoire of signatures that have been found in other cancer types. De novo signatures 

identified were compared with known catalogued COSMIC signatures. Both approaches 

linked an aflatoxin signature with L-CD-PanC, whereas signatures previously found in all 

cancer types were identified in the L-CD-NeU group.  

Aflatoxin B1 (AFB1) is a potent genotoxin produced by Aspergillus fungus. It can bind 

to double stranded DNA348 and induce hepatocellular carcinoma leaving a CA mutational 

signature349,350,351. Pancreatic tumours have previously shown dominance of this signature 

potentially due to the mutational properties of AFB1-DNA adducts352,353,82,354. Extrahepatic 

tissues, such as the nasal olfactory and respiratory mucosa, and mucosa of the trachea and 

oesophagus have a high capacity to activate AFB1 which when inhaled may cause lung 

cancer355,356. In this present study a predominance of CA mutations in the L-CD-PanC group 

was also observed (data not shown). High levels of AFB1 can be present in respiratory grain-

dust particles357,358 and as such could partially contribute to L-CD-PanC carcinogenesis. 

The mutational landscapes of L-CDs alone could not explain the transcriptomic 

differences detected (Section 6.5 above) and therefore their DNA methylomes were 

investigated by analysis of WGBS data. DMRs in promoters of pancreatic beta cells and genes 

related to insulin secretion in L-CD-PanCs were identified, as well as mismatch repair genes 

pinpointing DNA methylation changes as a key event in this cancer group.  

TE-enriched regions showed significant hypomethylation in L-CD-PanCs and alone 

were sufficient to differentiate from L-CD-Neu tumours by PCA analysis. This suggests that 

epigenetic dysregulation in the non-coding genome may be a major contributor to the PanC 

subtype. Significantly higher expression levels of A1CF in L-CD-PanC tumour genomes may 

contribute to this generalised hypomethylation. A1CF serves as a docking site to recruit 

APOBEC1 deaminase.  The latter has a role in active DNA demethylation followed by T:G 

https://cancer.sanger.ac.uk/signatures/
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mismatch repair359,360. Altogether these findings highlight the value of whole-genome data to 

better understand and refine the molecular alterations in these malignancies. 

TEs of the LTR class were the most abundantly significantly DE between L-CD groups, 

in line with what has been observed in 13 TCGA cancer types118. L-CD-NeU tumours showed 

significant higher expression of TEs relative to L-CD-PanCs with the endogenous retrovirus, 

MER52, showing the highest log2FC expression. MER52 is a LTR retrotransposon of the 

Endogenous Retrovirus 1 family (ERV1). DNA methylation levels were then assessed within 

MER52 LTR body sequence and its putative regulatory region 1 Kb upstream. In contrast to 

what other investigations have reported361,362, a positive correlation between DNA 

methylation and TE expression was observed in the L-CD-NeU subtype (although not 

significant), with a higher Pearson correlation metric for the region 1 Kb upstream of MER52. 

This could be explained by the complex interplay between genetics and epigenetics, since TEs 

can be epigenetically silenced by DNA methylation and/or repressive histone modifications.  

Furthermore, many TEs encode functional regulatory elements that can control gene 

regulatory networks. In this present study, a significant association between MER52 

expression and several genes found dysregulated between L-CD groups was observed. This 

suggests that TE expression could be associated with the disrupted gene expression 

programmes and phenotypic features of this group of tumours. 

The present study does have several limitations notably that due to the relative rarity 

of L-CD tumours the study sample size is fairly small. The study would benefit by follow up 

of the findings by conducting histopathological analyses for the markers identified. This has 

the potential to not only validate the observed carcinoid classifications but also enable their 

translation into a clinical setting.  
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Chapter 7: Final Remarks 
The overall aim of the work presented within this thesis was the integration of different sets 

of omics data to better understand the molecular processes contributing to lung cancer. In this 

project, it has been possible to integrate molecular with clinical data, enabling the detection of 

commonalities and differences at the genetic and epigenetic level as well as the pathway level, 

between different lung cancer histological and molecular groups.  

In Chapter 3, recurrent somatic mutations and InDels were detected in known and 

novel genes in LUAD, LUSC and LNET tumours, whilst L-CDs showed a low number of 

somatic mutations, potentially due to their indolent behaviour and differentiation status 

(Section 3.4). Nevertheless, analysis of copy number data and its integration with mutational 

data revealed a relative high number of deletions and amplifications in L-CDs as compared 

to the other LC histotypes (Chapter 3, Section 3.5.6). Moreover, functional annotation of the 

genetically altered genes allowed the identification of perturbations in ten hallmark oncogenic 

pathways in nearly all LC histotypes except for L-CDs (Chapter 3, Section 3.6.3). The latter 

histotype showed alterations in six out of the ten most common altered pathways in cancer.  

Next in Chapter 4, epigenetic alterations were investigated through the analysis of 

DNA methylation data at the whole-genome level in a subset of LC tumour and normal pairs. 

Unsupervised clustering analysis revealed that DNA methylation profiles clearly 

differentiated between LC histotypes, namely L-CDs and NSCLCs, as well as between tumour 

and normal matched tissue. A shared characteristic of L-CD and NSCLC histotypes was global 

DNA methylation loss (Chapter 4, Section 4.7.1). This genome-wide hypomethylation 

signature has been associated with the aberrant activation of repetitive elements and 

endogenous retroviruses and with the ectopic activation of non-lineage-appropriate 

enhancers, among others.  

These distinct DNA methylation landscapes were subsequently explored by the 

annotation of differentially methylated regions into genic and CpG annotations, thus 

disentangling the putative cis-regulatory mechanisms altered in tumours relative to normal 

samples, as well as between L-CD and NSCLC histotypes (Chapter 4, Section 4.7.2). After 

intergenic regions, intronic regions and lncRNAs were the annotations that harboured the 

highest number of DMRs (Chapter 4, Section 4.7.2). This however was not necessarily 

surprising considering only ~2% of the human genome is composed of protein-coding regions. 
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Nevertheless, a striking difference in the number of DMRs between L-CDs and NSCLCs was 

found, with DMRs in L-CDs at intergenic regions being double in number compared to those 

detected in NSCLCs (Chapter 4, Figure 4.9). Worthy of note is that DNA methylation at the 

promoter level revealed not such a marked difference between LC histotypes (Chapter 4, Section 

4.9).  This is in line with the well documented hyper- and hypomethylation at CpG islands 

associated with gene promoters. These observations, together with a considerable amount of copy 

number alterations detected in L-CDs, suggest that L-CDs have a more unstable genome compared 

to NSCLCs, and may be an indication of different molecular mechanisms being involved in L-

CD carcinogenesis. In other words, NSCLCs harbour more genetic and epigenetic aberrations 

centred at the (protein-coding) gene level, whilst L-CD molecular alterations are located 

outside of genes. The fact that non-coding regions have hardly been prioritized in research 

studies could explain the lack of genetic drivers and molecular biomarkers in this rarer LC 

histotype. Not only have non-coding alterations not been extensively explored but also the 

small number of L-CD cases seen at single centres make this cancer hard to investigate. 

Multinational multi genomic studies are therefore needed. 

Despite that it is highly likely that the majority of DNA methylation changes in cancer 

may not have a direct functional effect, this study has revealed new potential mechanisms 

driving altered genetic programmes. Although analysis of non-coding regions was outside of 

the scope of this study, the potential of whole-genome DNA methylation data allowed some 

meaningful and novel insights on their dysregulation across LC types to be determined. 

Significant hypomethylation was detected at transposable elements in both L-CDs and 

NSCLCs (Chapter 4, Section 4.10.4), whilst hypermethylation at TEs was not prominent. 

Transposable elements are conducive to genome instability and can lead to abnormal cellular 

differentiation and organismal development363. 

The cis-regulatory activity of enhancers was also explored and was found to be related 

to developmental and differentiation programmes in both L-CDs and NSCLCs (Chapter 4, 

Section 4.10.3). Although some differences in DNA methylation between normal tissues and 

specific cancer types appear to be tissue-specific, these observations are consistent with 

significant similarities seen across cancer types364,365. DNA methylation changes occur during 

normal differentiation and are inherent to the cellular lineage and differentiation stage. Thus 

further studies should focus on trying to distinguish which changes are cancer specific. For 

example, ensuring that both the cancer and the reference samples are of high cell purity, as 
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well as by the inclusion of other layers of genome-wide data sets such as histone 

modifications, epigenetic states, genomic accessibility and three-dimensional chromatin 

structure.  

Employing the knowledge acquired in Chapters 3 and 4, two sets of LC samples were 

investigated through the integration of different types of omics data together with clinical 

data (Chapter 5). As such, this investigation focused first on a group of NSCLC tumours that 

showed reduced Y gene expression. This group of patients featured a network of co-expressed 

genes related to a reduction of male-specific gene expression, together with recurrent TP53 

mutations and copy number alterations in DNA damage repair genes (Chapter 5, Section 

5.3.5). Moreover, consistent with the central loss of KDM5D expression, this group of males 

also showed a DNA methylation loss signature together with APOBEC-related mutations 

(Chapter 5, Section 5.3.6). APOBEC deaminases target DNA and RNA substrates that can lead 

to both genetic and epigenetic changes. This hints a potential link between environmental 

exposures and the genomic instability within a more permissive environment detected in 

these male NSCLC tumours. 

Finally, Chapter 6 focused on L-CDs because of their distinct genetic and epigenetic 

landscapes as compared the other LC types. Integration of genetic, epigenetic and gene 

expression data with clinical parameters in this final study uncovered the potential of omics-

data integration for molecular subtyping. Two distinct L-CD groups were identified from 

transcriptomic (Chapter 6, Section 6.2) and DNA methylation data (Chapter 6, Section 6.6), 

with each group individually featuring pancreatic and neuronal gene-related pathways. Some 

of the differentially expressed genes were detected altered at the DNA methylation level in 

promoters revealing DNA methylation as a key mechanism leading to distinct gene 

expression programmes in L-CDs (Chapter 6, Section 6.6 and Table 6.10). Moreover, a 

different spectrum of mutational signatures and copy number alterations were identified 

(Section 6.5), together with significant associations with histological parameters (Chapter 6, 

Section 6.3) and therapeutic stratification. 

It is becoming increasingly clear that gene expression is determined by a complex 

interplay among different genetic and epigenetic layers as well as external exposures.  Further 

research should therefore aim to integrate different data sets from large cohorts of samples 

and applying recently developed single cell techniques and digital histopathology in order to 
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achieve a deeper understanding of DNA methylation in cancer. Here, within this thesis, the 

integration of genomics and epigenomics has allowed a more comprehensive understanding 

of the expression programmes associated with current LC histological classifications, and in 

the molecular groups identified in Chapters 5 and 6. These results thus emphasize the 

importance of integrating different data types to identify molecular groups relevant in the 

clinical setting.  

For instance, the findings of this work could likely be translatable and would likely 

improve the detection, monitoring and stratification for targeted therapies in LC patients.  
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Supplementary Data 

Chapter 3 
 
Supplementary Table 3.1| Recurrent COSMIC mutational signatures detected in L-CD tumours using deconstructSigs on WES data. 
Abbreviations: Whole exome sequencing (WES); lung carcinoids (L-CD).

CMS Cancer types Proposed Aetiology Comments n samples with CMS (%) 

3 
Breast, ovarian, and pancreatic 

cancers 
Failure of DNA double-strand break-
repair by homologous recombination 

Associated with germline and somatic BRCA1 
and BRCA2 mutations in breast, pancreatic, and 
ovarian cancers. In pancreatic cancer, responders 
to platinum therapy usually exhibit Signature 3 

mutations 

10 (45.5%) 

16 Liver cancer Unknown  8 (36.4%) 

8 
Breast cancer and 
medulloblastoma 

Unknown  8 (36.4%) 

29 
Gingivo-buccal oral squamous cell 

carcinoma 
Tobacco chewing habit  8 (36.4%) 

5 
All cancer types and most cancer 

samples 
Unknown  7 (31.8%) 

20 Stomach and breast cancers Defective DNA mismatch repair 
Often found in the same samples as Signatures 
6, 15, and 26 associated with DNA mismatch 

repair 
7 (31.8%) 

24 Subset of liver cancers 
Found in cancer samples with known 

exposures to aflatoxin 
 5 (22.7%) 

26 
Breast cancer, cervical cancer, 
stomach cancer and uterine 

carcinoma 
Defective DNA mismatch repair  5 (22.7%) 
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Supplementary Figure 3.1| Scatter plot of 10% GC scores compared to call rates for Lung Cancer samples. p10 GC represents the 10th percentile 
of the GenCall score across all called genotypes and higher values indicate the reliability of the genotype called. Call rate and p10 GC are 
positively correlated. 
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Supplementary Figure 3.2| Histogram of Call Rate for SNP genotyped LC samples representing the frequency of call rate in tumour versus 
normal samples.  
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Supplementary Figure 3.3|Correlation of inferred Tumour purity and Tumour content determined by immunohistochemical analysis. 
Spearman correlation coefficient and P-value are shown for the whole lung cancer (LC) dataset. Abbreviations: LUAD, Lung Adenocarcinoma; 
LUSC, Lung Squamous Carcinoma; LNET, Lung Neuroendocrine Tumour; L-CD, Lung Carcinoid. 
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Table 3.2| Significant peaks detected in the normal lung cancer data with GISTIC that were subtracted from the Lung Cancer tumour data. 
Significant peaks were considered when a residual q-value of <1x10-5 was obtained.  
 
 
 

Unique Name Descriptor Peak Limits q values Residual q values after 
removing segments shared 
with higher peaks 

Deletion Peak 14 10q22.2  chr10:76855413-76867752(probes 382025:382035)     2.21E-34 3.87E-33 
Deletion Peak 16 12q13.12 chr12:49425197-49433598(probes 446233:446241)     2.66E-07 2.66E-07 
Deletion Peak 17 12q21.31 chr12:85444295-85450290(probes 455465:455475)     4.03E-29 1.75E-28 
Deletion Peak 19 14q32.11 chr14:91699419-91747826(probes 507689:507700)     1.56E-15 1.56E-15 
Deletion Peak 20 15q15.1  chr15:42144040-42150800(probes 516377:516386)     2.32E-10 2.32E-10 
Deletion Peak 21 16p13.3  chr16:3611762-3614135(probes 534372:534379)         2.66E-07 2.66E-07 
Deletion Peak 25 19p13.3  chr19:2396594-2422071(probes 591512:591521)         6.74E-19 6.74E-19 
Deletion Peak 26 19q13.2  chr19:40519936-40542425(probes 602359:602371)     5.39E-29 5.39E-29 
Deletion Peak 27 20q12    chr20:39976285-39980461(probes 618409:618420)     1.52E-06 1.52E-06 
Deletion Peak 28 22q11.23 chr22:24977287-24983109(probes 634910:634920)     9.90E-06 9.90E-06 
Deletion Peak 3 2p13.1   chr2:73653611-73678538(probes 76994:77011)         2.45E-13 2.45E-13 
Amplification Peak 1 5q31.3 chr5:139931385-139931690(probes 218698:218707) 2.26E-13 2.26E-13 
Deletion Peak 5 5q31.3   chr5:139931385-139931660(probes 218698:218706)   2.45E-91 2.45E-91 
Deletion Peak 6 6p21.31  chr6:36336804-36345976(probes 241042:241053)       1.85E-16 1.85E-16 
Deletion Peak 7 6q22.1   chr6:116441647-116443022(probes 257545:257554)   2.86E-145 2.86E-145 
Deletion Peak 10 8q24.3   chr8:144995957-145000981(probes 334753:334755)   1.52E-06 1.52E-06 
Deletion Peak 12 9q22.33  chr9:99521191-99521889(probes 351735:351742)       5.98E-34 3.00E-33 
Deletion Peak 13 9q34.11  chr9:131457126-131475467(probes 360506:360515)   1.30E-09 1.51E-07 
Deletion Peak 30 Xp11.21  chrX:57475062-57875541(probes 645540:645546)       2.53E-12 2.53E-12 
Deletion Peak 32 Xq21.1   chrX:83126544-83141578(probes 646412:646413)       1.42E-35 1.71E-25 
Deletion Peak 33 Xq22.3   chrX:107816827-108023532(probes 647561:647570)   2.37E-100 2.91E-95 
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Figure 3.4| Median segment size of segments deemed to be amplifications (Ampli) and 
deletions (Del). Median sizes were larger for amplification events: amplifications had a 
median segment size of ~2,000 Kb, while deletions had a median size of ~61 Kb.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 252 

Chapter 4 
 
Supplementary Table 4.1| Number of Differentially Methylated Regions (DMRs) hypomethylated and hypermethylated at each genomic 
annotation category. NSCLC vs L-CD refers to the tumour-tumour differential methylation comparison, whereas NSCLC and L-CD refers to the 
tumour-normal differential methylation comparison. Abbreviations: L-CD, Lung Carcinoids; NSCLC, Non-Small Cell Lung Cancer (includes 
Lung Squamous Carcinoma [LUSC] and Lung Adenocarcinoma [LUAD]); CGI, CpG Island; LncRNA, Long non-coding RNA; UTR, Untranslated 
region; Kb, Kilo base. 
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Supplementary Figure 4.1| DNA methylation levels at 1 to 5 Kb of promoter regions, within promoters and in exonic regions of olfactory 
receptors (OR) detected hypomethylated in both NSCLC and L-CD tumours. Body Mass Index (BMI) of patients is shown in green (normal 
weight; BMI >18-<25), overweight (salmon; BMI ≥25 - <30) and obese (garnet; BMI ≥ 30). 
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Supplementary Table 4.2| Significant pathways enriched in genes whose promoters of regions up to 5 Kb were identified hypomethylated 
and hypermethylated. a) between L-CD tumours and their normal matched tissue b) between NSCLC tumours and their normal matched tissue 
and c) between NSCLC tumours and L-CD tumours.

a 
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b 
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Supplementary Table 4.4| Genes identified mutated and differentially methylated at the 
promoter level in L-CDs. 
 

38 common elements in 
"DMR" and "Mutated" 

Status 

ABHD10 Hypomethylated 
ADAMTS18 Hypomethylated 
ANKRD11 Hypomethylated 
APBB1 Hypomethylated 
APCDD1 Hypermethylated 
ATP4A Hypomethylated 
BNC1 Hypermethylated 
C6 Hypomethylated 
CHSY1 Hypomethylated 
CTNNA3 Hypomethylated 
CTSW Hypomethylated 
CYFIP2 Hypomethylated 
DRAM1 Hypermethylated 
DSPP Hypomethylated 
ERC1 Hypomethylated 
FAT4 Hypomethylated 
FGF11 Hypermethylated 
HIVEP3 Hypomethylated 
HNF1A Hypomethylated 
HOXB3 Hypermethylated 
INPPL1 Hypomethylated 
INSRR Hypermethylated 
IQSEC1 Hypermethylated 
LRRK2 Hypomethylated 
NBEA Hypermethylated 
OTOF Hypermethylated 
PACRGL Hypomethylated 
PCDH8 Hypermethylated 
PDZD2 Hypermethylated 
PTMS Hypomethylated 
RGS7 Hypomethylated 
RYR2 Hypomethylated 
SVIL Hypomethylated 
TJP1 Hypermethylated 
TMCC1 Hypomethylated 
TMEM26 Hypomethylated 
TRIB1 Hypomethylated 
USP3 Hypermethylated 
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Supplementary Table 4.5| Genes identified mutated and differentially methylated at the 
prom  oter level in NSCLCs. 
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Supplementary Figure 4.6| Mutation and Copy Number count in SLC12A7 detected in 4,767 
Lung Cancer samples from TCGA obtained from cBioPortal for Cancer Genomics. 
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Chapter 5 
 
Supplementary Table 5.1| Dataset demographics for sequence (WES) read depth analysis. 
 

 n Males Histology n 
LUAD/LUSC (NR) 

Age 
µ(SD) 

Tumour stage n 
IA/IB/II/IIA/IIB/ 

III/IIIA/IIIB/IV (NR) 

Smoking n 
NS/EX/CS (NR) 

Deceased n T/F 
(NR) 

Low Y expression 6 2/4 (0) 66 (3.35) 0/2/0/2/1/0/1/0/0 (0) 0/2/4 (0) 4/2 (0) 

Non-low Y expression 9 5/4 (0) 67.67 (8.70) 1/1/0/2/2/0/3/0/0 (0) 0/6/3 (0) 3/6 (0) 

Overall 15 7/8 (0) 67 (6.93) 1/3/0/4/3/0/4/0/0 (0) 0/8/7 (0) 7/8 (0) 

 
Abbreviations: LUAD (lung adenocarcinoma); LUSC (lung squamous cell carcinoma); NS (non-smoker); EX (ex-smoker); CR (current smoker); 
NR (not recorded); T (true); F (false); sd (standard deviation); WES (whole exome sequencing). 
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Supplementary Table 5.2| Dataset demographics for methylation (WGBS) analysis. 
 

  n Males 
Histology n 

LUAD/LUSC 
(NR) 

Age 
µ (sd) 

Tumour stage n 
IA/IB/II/IIA/IIB/ 
III/IIIA/IIIB/IV 

(NR) 

Smoking n 
NS/EX/CS 

(NR) 

Deceased n 
T/F (NR) 

Low Y expression 17 11/6 (0) 69.29 (6.43) 5/3/0/3/1/0/4/0/1 (0) 1/10/6 (0) 10/7 (0) 
Non-low Y 
expression 

5 5/0 (0) 71.20 (8.35) 2/1/0/0/0/0/1/0/1 (0) 0/3/2 (0) 1/4 (0) 

Overall 22 16/6 (0) 69.73 (6.74) 7/4/0/3/1/0/5/0/2 (0) 1/13/8 (0) 11/11 (0) 
 
Abbreviations: LUAD (lung adenocarcinoma); LUSC (lung squamous cell carcinoma); NS (non-smoker); EX (ex-smoker); CR (current smoker); 
NR (not recorded); T (true); F (false); sd (standard deviation). 



 262 

Supplementary Figure 5.1| Correlation between CpG frequency and Differential Methylation (DM) percentage detected in tumours with 
deficient Y-chromosome expression when compared against their matched normal tissues. Different genomic categories (see legend colour) 
are shown for hypermethylated (circles) and hypomethylated (in triangles) CpGs. 
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Supplementary Figure 5.2| Weights of the mutational signatures in LYE tumours. COSMIC Mutational Signatures (CMS) were identified with 
decosntructSigs R package with COSMIC mutational signatures version 2 by using the exome2genome normalization method. 
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Supplementary Figure 5.3| Weights of the mutational signatures in non-LYE tumours. 
CMSs were identified with decosntructSigs R package with COSMIC mutational signatures 
version 2 by using the exome2genome normalization method.  
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Supplementary Figure 5.4| De novo Mutational signatures identified in LYE and Non-LYE tumours. De novo signatures are shown on the Y 
axis and were compared against COSMIC mutational signatures (X axis) identified by Alexandrov and colleagues49.
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Chapter 6 

Supplementary Table 6.1. Clinical data for L-CD patients

Sample ID Gender 

(f/m) 

Age 

years 

Stage Deceased 

(T/F)  

Survival 

(months) 

Smoking 

category 

Tumour 

percentage 

BMI Molecular 

group 

Histology  Location Spindle cell 

morphology 

Lymph 

invasion 

Emphysema 

presence 

Mitotic rate 

per mm2 

sample_001 f 76 IB F 71 NS   28 PanC TC Central No No Yes 1 

sample_002 f 72 IIB F 69 NS   33 PanC TC Central Prevalent Yes Yes 1 

sample_003 m 63 IA2 F 66 ES 80 26 PanC TC Central No No No 1 

sample_004 m 67 IB F 61 ES 90 33 PanC TC Central No Yes No 1 

sample_005 f 39 IA F 77 NS   25 PanC TC Central Prevalent No Yes 1 

sample_006 f 54 IIIB F 29 CS 90 22 PanC TC Central No Yes Yes 2 

sample_007 m 28 IIIA     95  PanC TC Central Focal Yes No 1 

sample_008 f 30 IIA F 45 NS 80 18 PanC TC Central No No No 1 

sample_009 f 82 IA T 41 NS   26 NeU AC Peripheral Prevalent Yes Yes 1 

sample_010 m 54 IA F 79 NS   31 NeU TC Peripheral Prevalent No No 1 

sample_011 f 73 IA F 63 ES 90  NeU TC Peripheral Focal No No 1 

sample_012 f 71 IIIA T 39 NS 80 30 NeU AC Central Focal Yes No 7 

sample_013 f 61 IIIA F 77 ES   30 NeU TC Central Focal Yes No 1 

sample_014 f 66 IA3 F 43 NS 90 22 NeU AC Peripheral Focal Yes Yes 7 

sample_015 f 75 IIB F 47 NS 90  NeU TC Peripheral Focal Yes No 1 
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Supplementary Figure 6.1: Boxplots of the 25 immune markers significantly differentially 

expressed between L-CD groups (adj.P≤0.05). 
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