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Efficient and Convergent Federated Learning
Shenglong Zhou and Geoffrey Ye Li, Fellow, IEEE

Abstract—Federated learning has shown its advances over
the last few years but is facing many challenges, such as
how algorithms save communication resources, how they reduce
computational costs, and whether they converge. To address
these issues, this paper proposes a new federated learning
algorithm (FedGiA) that combines the gradient descent and the
inexact alternating direction method of multipliers. It is shown
that FedGiA is computation and communication-efficient and
convergent linearly under mild conditions.

Index Terms—GD and inexact ADMM-based federated learn-
ing, communication-efficient, communication-efficient, global
convergence, linear convergence rate

I. INTRODUCTION

CFederated learning (FL), as an effective machine learning
technique, gains popularity in recent years due to its abil-

ity to deal with various issues like data privacy, data security,
and data access to heterogeneous data. Typical applications
include vehicular communications [1], [2], [3], [4], digital
health [5], and smart manufacturing [6], just to name a few.
The earliest work for FL can be traced back to [7] in 2015
and [8] in 2016. It is still undergoing development and also
facing many challenges [9], [10], [11].

A. Related work

Gradient descent-based learning. In recent years, there is an
impressive body of work on developing FL algorithms. One of
the most popular approaches benefits from the stochastic gra-
dient descent (SGD). The general framework is to run certain
steps of SGD in parallel by clients/devices and then average
the resulting parameters from clients by a central server once
in a while. Representatives of SGD family consists of the
famous Federated averaging (FedAvg [12]) and Local SGD
(LocalSGD [13], [14]). Other state-of-the-art ones can be
seen in [15], [16], [17], [18]. These algorithms execute global
averaging/aggregation periodically and thus can reduce the
communication rounds (CR), thereby saving resources (e.g.,
transmission power and bandwidth in wireless communication)
for real-world applications.

However, to establish the convergence theory, most SGD
algorithms assume that the local data is identically and in-
dependently distributed (i.i.d.), which is unrealistic for FL
applications where data is usually heterogeneous. More details
can be referred to the LocalSGD [13], K-step averaging SGD
[19], and Cooperative SGD [18].

A parallel line of research aims to investigate gradient
descent (GD) based-FL algorithms. Since full data is used
to construct the gradient, these algorithms do not impose
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assumptions on distributions of the involved data [20], [21],
[22], [23], [24]. Nevertheless, strong conditions for the objec-
tive functions of the learning optimization problems are still
required to guarantee the convergence. Typical assumptions are
gradient Lipschitz continuity (also known as L-smoothness),
strong smoothness, convexity, or strong convexity.

ADMM-based learning. The alternating direction method of
multipliers (ADMM) has shown its advances both in theoreti-
cal and numerical aspects over the last few decades, with ex-
tensive applications into various disciplines. In particular, there
is a success of implementation ADMM in distributed learning
[25], [26], [27], [28], [29]. Fairly recently, ADMM-based FL
draws much attention due to its simple structure and easy
implementation. They can be categorized into two classes:
exact and inexact ADMM. The former aims at updating local
parameters through solving sub-problems exactly, which hence
brings more computational burdens for local clients [30], [31],
[32], [33], [34].

Therefore, inexact ADMM is an alternative to reduce the
computational complexity for clients [35], [36], [37], [38],
where clients update their parameters via solving sub-problems
approximately, thereby alleviating the computational burdens
and accelerating the learning speed. Again, we shall emphasize
that those algorithms that have been established for conver-
gence properties still impose some restrictive assumptions.
Fairly recently, an algorithm from the primal-dual optimization
perspective was developed in [38] and turned out to be a
member of inexact ADMM-based FL. It is shown that the
algorithm converges under weaker assumptions. Finally, it is
worth mentioning that ADMM is very useful in FL for the
purpose of data privacy [30], [32], [34], [35], [33], [37].

B. Our contributions

The main contribution of this paper is to develop a new FL
algorithm that is capable of saving communication resources,
reducing computational burdens, and converging under rela-
tively weak assumptions.

I) The proposed algorithm, FedGiA in Algorithm 1, has
a novel framework. After each round of communication (i.e.,
iteration k is a multiple of a given integer k0), all clients are
split into two groups randomly. One group adopts the scheme
of the inexact ADMM to update their parameters k0 times.
While the second group exploits the GD approach to update
their parameters just once. Therefore, FedGiA possesses three
advantages as follows.
• It is communication-efficient since CR can be controlled

by setting k0. Our numerical experiments have shown that
CR decline when k0 increases, see Figure 2.

• It is computation-efficient due to the nature of inexact up-
dates for all local clients. The communication efficiency
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has been demonstrated by our numerical comparisons
with two state-of-the-art algorithms, see Table III.

• It is possible to cope with scenarios where a portion
of clients are in bad conditions. The sever could select
them for the second group where less effort is required
to update their parameters.

II) The assumptions to guarantee the convergence are mild.
We prove that FedGiA converges to a stationary point (see
Definition II.1) of the learning optimization problem in (4)
with a linear rate O(k0/k) only under two conditions: gradient
Lipschitz continuity (also known for the L-smoothness in
many publications) and the boundedness of a level set, as
shown in Theorem IV.2. These conditions do not impose
convexity or strong convexity. Hence, they are weaker than
those used to establish convergence for most current dis-
tributed learning and FL algorithms. If we further assume
the convexity, then FedGiA achieves the optimal solution,
as shown in Corollary IV.1.

C. Organization and notation

This paper is organized as follows. In the next section, we
introduce FL and the framework of ADMM. In Section III, we
present FedGiA and highlight its advantages, followed by the
establishment of its global convergence and convergence rate
in Section IV. We then conduct some numerical experiments
and comparisons with two popular algorithms to demonstrate
the performance of FedGiA in Section V. Concluding remarks
are given in the last section.

We end this section with summarizing the notation that
will be employed throughout this paper. We use plain, bold,
and capital letters to present scalars, vectors, and matrices,
respectively, e.g., m, r, and σ are scalars, x,xi and xki are
vectors, X and Xk are matrices. Let btc represent the largest
integer strictly smaller than t + 1 and [m] := {1, 2, . . . ,m}
with ‘:=’ meaning define. In this paper, Rn denotes the n-
dimensional Euclidean space equipped with the inner product
〈·, ·〉 defined by 〈x,y〉 :=

∑
i xiyi. Let ‖ · ‖ be the Euclidean

norm for vectors (i.e., ‖x‖2 = 〈x,x〉) and Spectral norm
for matrices, and ‖ · ‖H be the weighted norm defined by
‖x‖2H := 〈Hx,x〉. Write the identity matrix as I and a
positive semidefinite matrix A as A � 0. In particular, A � B
represents A − B � 0. A function, f , is said to be gradient
Lipschitz continuous with a constant r > 0 if

‖∇f(x)−∇f(z)‖ ≤ r‖x− z‖. (1)

for any x and z, where ∇f(x) represents the gradient of f
with respect to x.

II. GD AND INEXACT ADMM-BASED FL

Suppose we have m local clients/edge nodes with datasets
{D1,D2, . . . ,Dm}. Each client has the total loss fi(x) :=
1
di

∑
(a,b)∈Di `i(x; (a, b)), where `i(·; (a, b)) : Rn 7→ R is a

continuous loss function and bounded from below, di is the
cardinality of Di, and x ∈ Rn is the parameter to be learned.
Below are two examples used for our numerical experiments.

Example II.1 (Least square loss). Suppose the ith client has
data Di = {(ai1, bi1), . . . , (aidi , b

i
di

)}, where aij ∈ Rn, bij ∈ R.
Then the least square loss is

fi(x) =
∑di
j=1

1
2di

(〈aij ,x〉 − bij)2. (2)

Example II.2 (`2 norm regularized logistic loss). Similarly,
the ith client has data Di but with bij ∈ {0, 1}. The `2 norm
regularized logistic loss is given by

fi(x) = 1
di

∑di
j=1[ln(1 + e〈a

i
j ,x〉)− bij〈aij ,x〉+ µ

2 ‖x‖
2], (3)

where µ > 0 is a penalty parameter.

The overall loss function can be defined by

f(x) := 1
m

∑m
i=1 fi(x),

Federated learning aims to learn a best parameter x∗ that
reaches the minimal overall loss, namely,

x∗ := argminx∈Rn f(x). (4)

Since fi is bounded from below, we have

f∗ := f(x∗) > −∞. (5)

By introducing auxiliary variables, xi = x, problem (4) can
be equivalently rewritten as

min
x,x1,...,xm∈Rn

1
m

∑m
i=1 fi(xi), s.t. xi = x, i ∈ [m]. (6)

Throughout the paper, we shall place our interest on the above
optimization problem. For simplicity, we also denote X :=
(x1,x2, . . . ,xm) and

F (X) := 1
m

∑m
i=1 fi(xi). (7)

It is easy to see that f(x) = F (X) if X = (x,x, . . . ,x).

A. ADMM

The backgrounds of ADMM can be referred to the earliest
work [39] and a nice book [25]. To apply ADMM for
problem (6), by letting X := (x1,x2, . . . ,xm) ad Π :=
(π1,π2, . . . ,πm), we introduce the augmented Lagrange
function defined by,

L(x, X,Π)

:=
∑m
i=1(fi(xi)/m+ 〈xi − x,πi〉+ (σ/2)‖xi − x‖2︸ ︷︷ ︸

=:L(x,xi,πi)

). (8)

Here, πi ∈ Rn, i ∈ [m] are the Lagrange multipliers and
σ > 0. The framework of ADMM for problem (6) is given
as follows: for an initialized point (x0, X0,Π0), perform the
following updates iteratively for every k ≥ 0,

xk+1 = argmin
x∈Rn

L(x, Xk+1,Πk+1)

= 1
m

∑m
i=1(xk+1

i + 1
σπ

k+1
i ),

xk+1
i = argmin

xi∈Rn
L(xk,xi,π

k
i ), i ∈ [m],

πk+1
i = πki + σ(xk+1

i − xk), i ∈ [m].

(9)
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B. Stationary points

To end this section, we present the optimality conditions of
problems (6) and (4).

Definition II.1. A point (x∗, X∗,Π∗) is a stationary point of
problem (6) if it satisfies

1
m∇fi(x

∗
i ) + π∗i = 0, i ∈ [m],

x∗i − x∗ = 0, i ∈ [m],∑m
i=1 π

∗
i = 0.

(10)

A point x∗ is a stationary point of problem (4) if it satisfies

∇f(x∗) = 0. (11)

Note that any locally optimal solution to problem (6) (resp.
(4)) must satisfy (10) (resp. (11)). If fi is convex for every i ∈
[m], then a point is a globally optimal solution to problem (6)
(resp.(4)) if and only if it satisfies condition (10) (resp. (11)).
Moreover, it is easy to see that a stationary point (x∗, X∗,Π∗)
of problem (6) indicates

∇f(x∗) = 1
m

∑m
i=1∇fi(x∗) = − 1

m

∑m
i=1 π

∗
i = 0.

That is, x∗ is also a stationary point of the problem (4).

III. ALGORITHMIC DESIGN

The framework of ADMM in (9) encounters three draw-
backs in reality. (i) It repeats the three updates in every step,
leading to communication inefficiency. In FL, the framework
manifests that local clients and the central server have to com-
municate at every step. However, frequent communications
would come at a huge price, such as a long learning time
and large amounts of resources. (ii) Solving the second sub-
problem in (9) would incur expensive computational cost as it
generally does not admit a closed-form solution. (iii) In real
applications, some clients may suffer from bad conditions,
which leads to computational difficulties. It is necessary to
leave them more time to update their parameters. Therefore,
to overcome the above mentioned drawbacks, we cast a new
algorithm in Algorithm 1, where

gk+1
i := 1

m∇fi(x
τk+1).

The merits of Algorithm 1 are highlighted as follows.
(i) Communication efficiency: Algorithm 1 shows that com-

munications only occur when k ∈ K = {0, k0, 2k0, . . .},
where k0 is a predefined positive integer. Therefore, CR can
be reduced if setting a big k0, thereby saving the cost vastly.
In fact, such an idea has been extensively used in literature
[15], [16], [13], [17], [14], [18].

(ii) Fast computation using inexact updates: We update
xk+1
i by (13) instead of solving the second sub-problem in (9).

It can accelerate the computation for local clients significantly,
as the computation is relatively cheap if Hi is chosen properly
(e.g, diagonal matrices). We point out that (13) is a result of

xk+1
i = argminxi (1/m)hi(xi;x

τk+1)

+〈xi − xτk+1 ,πki 〉+ σ
2 ‖xi − xτk+1‖2

= xτk+1 − (Hi/m+ σI)−1(gk+1
i + πki ),

(19)

Algorithm 1: FL via GD and inexact ADMM (FedGiA)
Given an integer k0 > 0 and a constant σ > 0, every client
i initializes Hi � 0,x0

i , π0
i and z0

i = x0
i + π0

i /σ, i ∈ [m].
Let τk be a function of k as τk := bk/k0c.
for k = 0, 1, 2, 3, . . . do

if k ∈ K := {0, k0, 2k0, 3k0, . . .} then
Weights upload: (Communication occurs)
All clients upload {zk1 , . . . , zkm} to the server.
Global aggregation:
The server calculates average parameter xτk+1 by

xτk+1 = 1
m

∑m
i=1 z

k
i . (12)

Weights broadcast: (Communication occurs)
The server broadcasts xτk+1 to all clients.
Clients selection:
The server randomly selects a new set Cτk+1 ⊆ [m]
of clients for training in the next round.

end
for every i ∈ Cτk+1 do

Local update: Client i updates its parameters by

xk+1
i = xτk+1 − (Hi/m+ σI)−1(gk+1

i + πki ), (13)

πk+1
i = πki + σ(xk+1

i − xτk+1), (14)

zk+1
i = xk+1

i + πk+1
i /σ. (15)

end
for every i /∈ Cτk+1 do

Local invariance: Client i keeps parameters by

xk+1
i ≡ xτk+1 , (16)

πk+1
i ≡ −gk+1

i , (17)

zk+1
i ≡ xτk+1 − gk+1

i /σ. (18)

end
end

where hi(xi; z) is an approximation of fi(xi), namely,

fi(xi)≈ fi(z) + 〈∇fi(z),xi − z〉+ (1/2)‖xi − z‖2Hi︸ ︷︷ ︸
=:hi(xi;z)

.
(20)

(iii) Mixed updates: At every k ∈ K in Algorithm 1, all
clients are divided into two groups. For clients in Cτk+1 , they
update their parameters k0 times based on the inexact ADMM,
while for clients not in Cτk+1 , they update their parameters just
once based on the GD. This suggests that, in real applications,
the sever should try to select clients with good devices to form
Cτk+1 and put the rest as the second group. This would leave
clients in the second group having more time to update their
parameters since they only need to update them once.

We would like to point out that FedAvg [12], [40] and
FedProx [41] select partial devices to join in the training in
each communication round. That is, if k ∈ K, they randomly
select a subset Cτk+1 of clients and only clients in Cτk+1

update their parameters and the rest clients remain unchanged.
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However, differing from that, FediAG asks clients outside
Cτk+1 for updating their parameters only once during k0 steps.

IV. CONVERGENCE ANALYSIS

To establish the convergence, we need one assumption.

Assumption IV.1. Every fi, i ∈ [m] is gradient Lipschitz
continuous with a constant ri > 0.

Assumption IV.1 implies that there is always a Θi satisfying
riI � Θi � 0 such that

fi(xi) ≤ fi(zi) + 〈∇fi(zi),xi − zi〉+ 1
2‖xi − zi‖2Θi , (21)

for any xi, zi ∈ Rn. Apparently, many Θis satisfy the above
condition (e.g., Θi = riI). In the subsequent convergence
analysis, we suppose that every client i chooses Hi = Θi.

A. Global convergence

For notational convenience, hereafter we let ak → a stand
for limk→∞ ak = a and denote

Lk := L(xτk , Xk,Πk), r := maxi∈[m] ri. (22)

With the help of Assumption IV.1, our first result shows that
whole sequences of {Lk}, {F (Xk)}, and {f(xτk)} converge.

Theorem IV.1. Let {(xτk , Xk,Πk)} be the sequence gener-
ated by Algorithm 1 with Hi = Θi, i ∈ [m] and σ > 6r/m.
The following results hold under Assumption IV.1.

i) Three sequences {Lk}, {F (Xk)}, and {f(xτk)} con-
verge to the same value, namely,

lim
k→∞

Lk = lim
k→∞

F (Xk) = lim
k→∞

f(xτk). (23)

ii) ∇F (Xk) and ∇f(xτk) eventually vanish, namely,

lim
k→∞

∇F (Xk) = lim
k→∞

∇f(xτk) = 0. (24)

Theorem IV.1 states that the objective function values
converge, and its establishment does not relied on the random
selection of Cτk+1 . In the below theorem, we would like to
see the convergence performance of sequence {(xτk , Xk,Πk)}
itself. To proceed with that, we need the assumption on the
boundedness of the following level set

S(α) := {x ∈ Rn : f(x) ≤ α} (25)

for a given α > 0. We point out that the boundedness of the
level set is frequently used in establishing the convergence
properties of optimization algorithms. There are many func-
tions satisfying this condition, such as the coercive functions1.

Theorem IV.2. Let {(xτk , Xk,Πk)} be the sequence gener-
ated by Algorithm 1 with Hi = Θi, i ∈ [m] and σ > 6r/m.
The following results hold under Assumption IV.1 and the
boundedness of S(L0).

i) Then sequence {(xτk , Xk,Πk)} is bounded, and any its
accumulating point, (x∞, X∞,Π∞), is a stationary point
of (6), where x∞ is a stationary point of (4).

1A continuous function f : Rn 7→ R is coercive if f(x) → +∞ when
‖x‖ → +∞.

ii) If further assume that x∞ is isolated, then the whole se-
quence, {(xτk , Xk,Πk)}, converges to (x∞, X∞,Π∞).

It is noted that if f is locally strongly convex at x∞, then
x∞ is unique and hence is isolated. However, being isolated
is a weaker assumption than locally strong convexity. It is
worth mentioning that the establishment of Theorem IV.2 does
not require the convexity of fi or f , because of this, the
sequence is guaranteed to converge to the stationary point of
problems (6) and (4). In this regard, if we further assume the
convexity of f , then the sequence is capable of converging to
the optimal solution to problems (6) and (4), which is stated
by the following corollary.

Corollary IV.1. Let {(xτk , Xk,Πk)} be the sequence gener-
ated by Algorithm 1 with Hi = Θi, i ∈ [m] and σ > 6r/m.
The following results hold under Assumption IV.1, the bound-
edness of S(L0), and the convexity of f .

i) Three sequences {Lk}, {F (Xk)}, and {f(xτk)} con-
verge to the optimal function value of (4), namely

lim
k→∞

Lk = lim
k→∞

F (Xk) = lim
k→∞

f(xτk) = f∗. (26)

ii) Any accumulating point (x∞, X∞,Π∞) of sequence
{(xτk , Xk,Πk)} is an optimal solution to (6), where x∞

is an optimal solution to (4).
iii) If further assume f is strongly convex. Then whole

sequence {(xτk , Xk,Πk)} converges the unique optimal
solution, (x∗, X∗,Π∗), to (6), where x∗ is the unique
optimal solution to (4).

Remark IV.1. Regarding the assumption in Corollary IV.1,
we note that f being strongly convex does not require that
every fi, i ∈ [m] is strongly convex. If one of fis is strongly
convex and the remaining is convex, then f =

∑m
i=1 wifi is

strongly convex. Moreover, the strongly convexity suffices to
the boundedness of level set S(α) for any α. Therefore, under
the strongly convexity, the assumption on the boundedness of
S(L0) can be exempted.

B. Complexity analysis

Finally, we investigate the convergence speed of the pro-
posed Algorithm 1. The following result states that the mini-
mal value among ‖∇f(xτj )‖2, j ∈ [k] vanishes with a linear
rate O(rk0/k).

Theorem IV.3. Let {(xτk , Xk,Πk)} be the sequence gener-
ated by Algorithm 1 with Hi = Θi, i ∈ [m] and σ > 6r/m. If
Assumption IV.1 holds, then it follows

minj∈[k]‖∇f(xτj )‖2 ≤ ρk0
k (L0 − f∗).

where ρ := 5mσ2/η with η given by (39).

We would like to point out that the establishment of such
a convergence rate only requires the assumption of gradient
Lipschitz continuity, namely, Assumption IV.1. Moreover, if
we take σ = tr/m with t > 6, then

ρk0
k = 10t3

t2−5t−6 ·
rk0
k = O( rk0k ).
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This is what we expected. The larger k0 is, the more iterations
is required to converge stated as below.

Remark IV.2. Theorem IV.3 hints that Algorithm 1 should be
terminated if

‖∇f(xτk)‖2 ≤ ε, (27)

where ε is a given tolerance. Therefore, after

k =
⌊
ρk0(L0−f∗)

ε

⌋
= O( rk0ε ) (28)

iterations, Algorithm 1 meets (27) and the total CR are

CR :=
⌊

2k
k0

⌋
=

⌊
2ρ(L0−f∗)

ε

⌋
= O( rε ). (29)

V. NUMERICAL EXPERIMENTS

This section conducts some numerical experiments to
demonstrate the performance of FedGiA in Algorithm 1. All
numerical experiments are implemented through MATLAB
(R2019a) on a laptop with 32GB memory and 2.3Ghz CPU.

A. Testing example

We use Example II.1 with synthetic data and Example II.2
with real data to conduct the numerical experiments.

Example V.1 (Linear regression with non-i.i.d. data). For this
problem, local clients have their objective functions as (2).
We randomly generate d samples (ai1, b

i
1), i ∈ [d] from three

distributions: the standard normal distribution, the Student’s
t distribution with degree 5, and the uniform distribution in
[−5, 5]. Then we shuffle all samples and divided them into
m parts (Ai,bi) for m clients, where Ai = (a1, . . . ,adi)

>

and bi = (b1, . . . , bdi)
>. Therefore, d = d1 . . . + dm.

The data size of each part, di, is randomly chosen from
[50, 150]. For simplicity, we fix n = 100, but choose m ∈
{64, 96, 128, 196, 256}. In the reagrd, each client has non-
i.i.d. data (Ai,bi).

Example V.2 (Logistic regression). For this problem, local
clients have their objective functions as (3), where µ = 0.001
in our numerical experiments. We use two real datasets
described in Table I to generate aij and bij . We randomly split
d samples into m groups corresponding to m clients.

TABLE I: Descriptions of two real datasets.

Data Datasets Source n d

qot Qsar oral toxicity uci 1024 8992
sct Santander customer transaction kaggle 200 200000

B. Implementations

As mentioned in Remark IV.2, we terminate FedGiA if
k ≥ 104 or solution xτk satisfies

Error := ‖∇f(xτk)‖2 ≤ n10−9. (30)

and initialize x0
i = π0

i = 0. For every k ∈ K, we randomly
select sm clients to form Cτk+1 , namely, |Cτk+1 | = sm and s ∈
(0, 1]. Here, s = 1 means all clients are chosen. Parameters

σ,Hi and Cτk+1 are set as follows. Theorem IV.1 suggests that
σ should be chosen to satisfy σ = tr/m, where t is given in
Table II. Finally, Hi is chosen as Table II, where FedGiAG
and FedGiAD represent FedGiA under Hi opted as a Gram
and Diagonal matrix, respectively.

TABLE II: Choices of t and Hi.

FedGiAG FedGiAD
t Hi Hi

Example V.1 0.15 1
di

A>
i Ai

1
di

‖A>
i Ai‖

Example V.2 max{0.1, 8
n
ln(d)} 1

4di
A>

i Ai
1

4di
‖A>

i Ai‖

C. Numerical performance

In this part, we conduct some simulation to demonstrate
the performance of FedGiA including global convergence,
convergence rate, and effect of k0 and Cτk+1 . To measure the
performance, we report the following factors: f(xτk), error
‖∇f(xτk)‖2, CR, and computational time (in second). We
only report results of FedGiA solving Example V.1 and omit
ones for Example V.2 as they show the similar observations.

1) Global convergence with rate O(k0/k): We fix m =
64, s = 0.5, and k0 ∈ {1, 5, 10, 15, 20} and present the results
in Figure 1. From the left sub-figure, as expected, all lines
eventually tend to the same objective function value, well
testifying Theorem IV.1. It is clear that the bigger values of
k0 > 1 (i.e., the wider gap between two global aggregations)
are, the more iterations are required to reach the optimal
function value. From the right sub-figure, the trends show that
all errors vanish gradually along with the iterations rising, and
the big values of k0, the more iterations required to converge,
which perfectly justifies Theorems IV.3 that the convergence
rate O(k0/k) relies on k0.
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Fig. 1: Objective function values and errors v.s. iterations.
FedGiAG (solid lines) and FedGiAD (dashed lines) solve
Example V.1 with m = 64 and s = 0.5.

2) Effect of k0: Next, we would like to see how the choices
of k0 impact the performance of FedGiA. To proceed with
that, for each dimension (m, d1, . . . , dm) of the dataset, we
generate 20 instances of Example V.1 solved by FedGiA with
fixing s = 0.5 and k0 ∈ [20] and report the average results
in Figure 2. With the increasing of k0, CR decreases first and
then stabilize at a certain level. To this end, it is efficient to
save communication costs if we set a proper k0. However, it
is unnecessary to set a big value of k0 as it results in longer
computational time. In comparison with FedGiAG, FedGiAD
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needs more CR for small k0 and fewer CR for large k0 but
always rans faster.
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Fig. 2: Effect of k0 for FedGiAG (solid lines) and FedGiAD
(dashed lines) solving Example V.1 with s = 0.5.

3) Effect of Cτk+1 : Finally, we would like to see how
choices of Cτk+1 impact the performance of FedGiA. We alter
s ∈ (0.1, 1] and report the average results in Figure 3. We
observe that s would not have a big influence on CR when
k0 > 5. As expected, the larger s the longer the computational
time for most cases. In general speaking, FedGiAD needs
fewer CR when s is small and more CR when s is large but
always runs faster than FedGiAG.
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Fig. 3: Effect of s. FedGiAG (solid lines) and FedGiAD
(dashed lines) solve Example V.1 with m = 64.

D. Numerical comparison

In this part, we will compare our proposed method with
FedAvg [12] and LocalSGD [13], [14]. For the former, we
use its non-stochastic version. Precisely, we select all clients
for the training in each round of communication and sue full
local dataset to calculate the gradient. The learning rate is set
as γ = γk(a) := a/log2(k+1) with a = 0.01 for Example V.1
and a = 0.5d/m for Example V.2, where d = d1 + . . .+ dm.
For LocalSGD, as suggested by [14] using small mini-batch
size to approximate the gradient for every local client, we
choose mini-batch size 0.05di for the ith client. Its learning
rate is set as γ = γk(a) with a = 0.005 for Example V.1
and a = 0.1d/m for Example V.2. For FedGiA, we fix the
size of Cτk+1 as 0.5m (i.e., s = 0.5). To ensure relatively
fair comparisons, we terminate all methods if condition (30)
is satisfied or CR are over 1000.

1) Solving Example V.1: For simplicity, we fix m = 64 and
n = 100. From the left sub-figure in Figure 4, we can see that
(i) the objective function values for all methods eventually
tend to be the same; (ii) Basically, the larger k0 the faster

the decline of the objective function values; (iii) FedGiAG
and FedGiAD behave better than FedAvg which outperforms
LocalSGD. We then run 20 independent trials and report the
average results in Table III. We can conclude that FedGIA
and FedGIA use the fewest CR and run the fastest.

TABLE III: Comparison for four algorithms.
Ex. V.1 Ex. V.2 with qot Ex. V.2 with sct

Alg. k0 Obj. CR Time Obj. CR Time Obj. CR Time
FedAvg 1 1.684 1000 1.17 0.260 1000 9.30 0.327 96.6 4.65

5 1.684 1000 3.27 0.237 572 14.5 0.327 20.0 2.75
10 1.684 1000 5.64 0.237 289 13.0 0.327 10.0 2.49

LocalSGD 1 1.686 1000 2.95 0.325 1000 13.2 0.333 1000 58.9
5 1.685 1000 11.0 0.302 1000 44.1 0.331 1000 196
10 1.684 1000 19.5 0.299 1000 81.5 0.330 1000 369

FedGiAG 1 1.684 13.6 0.16 0.236 19.8 0.60 0.326 5.00 0.59
5 1.684 7.40 0.20 0.236 19.9 1.35 0.325 5.00 0.97
10 1.684 6.10 0.25 0.236 19.9 2.10 0.325 5.00 1.45

FedGiAD 1 1.684 18.4 0.13 0.236 19.9 0.44 0.326 5.00 0.49
5 1.684 10.1 0.11 0.236 19.9 0.63 0.325 4.90 0.76
10 1.684 7.00 0.11 0.236 19.9 0.87 0.325 4.90 1.05

2) Solving Example V.2: Again, we fix m = 64 for
simplicity. From the two right sub-figures in Figure 4, we can
observe the objective function values obtained by FedGiA
decline the fastest. In addition, FedGiA uses the fewest CR
to reach the optimal solutions, followed by FedAvg, and
LocalSGD needs the most. We then run 20 independent trials
and report the average results in Table III, where FedGIA
outperforms the other two algorithms by consuming the fewest
CR and running the fastest.

VI. CONCLUSION

This paper developed a new FL algorithm and managed
to address three key issues in FL, including saving commu-
nication resources, reducing computational complexity, and
establishing convergence property under mild assumptions.
These advantages hint that the proposed algorithm might be
practical to deal with many real applications such as mobile
edge computing [42], [43], over-the-air computation [44], [45],
vehicular communications [1], unmanned aerial vehicle online
path control [46] and so forth. Moreover, we feel that the algo-
rithmic schemes and techniques used to build the convergence
theory could be also valid for tackling decentralized FL [29],
[47]. We leave these for future research.
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APPENDIX A
SOME USEFUL PROPERTIES

For notational simplicity, hereafter, we denote

4xk+1
i := xk+1

i − xki , 4πk+1
i :=πk+1

i − πki ,

4xτk+1 := xτk+1 − xτk , 4xk+1
i := xk+1

i − xτk+1

gki := 1
m∇fi(x

k
i ), gk+1

i := 1
m∇fi(x

τk+1).

For any vectors a,b,ai, matrix H � 0, and t > 0, we have

−‖b‖2 = 2〈a,b〉+ ‖a‖2 − ‖a + b‖2,

‖a + b‖2 ≤ (1 + t)‖a‖2 + (1 + 1/t)‖b‖2,

‖
∑m
i=1 ai‖2 ≤ m

∑m
i=1 ‖ai‖2,

2〈Ha,b〉 ≤ t‖a‖2H + (1/t)‖b‖2H .

(31)

By the Mean Value Theorem, the gradient Lipschitz continuity
indicates that for any x, z and w ∈ {x,y},

f(x)− f(z)− 〈∇f(w),x− z〉

=
∫ 1

0
〈∇f(z + t(x− z))−∇f(w),x− z〉dt

≤
∫ 1

0
r‖z + t(x− z))−w‖‖x− z‖dt

= r
2‖x− z‖2.

(32)

APPENDIX B
PROOFS OF ALL THEOREMS

A. Key lemmas

Lemma B.1. Let {(xτk , Xk,Πk)} be the sequence generated
by Algorithm 1 with Hi = Θi, i ∈ [m]. The following results
hold under Assumption IV.1.

a) ∀ k ∈ K, ∑m
i=1(

πki
σ + xki − xτk+1) = 0. (33)

b) ∀ k ≥ 0,∀ i ∈ [m],

gk+1
i + πk+1

i + 1
mHi4xk+1

i = 0. (34)

c) ∀ k ≥ 0,∀ i ∈ [m],

‖4πk+1
i ‖2 ≤ 3r2i

m2 ‖4xk+1
i ‖2 +

6r2i
m2 ‖4xτk+1‖2. (35)

Proof. a) For any i /∈ Cτk+1 , we have from (15) that

zk+1
i =

πk+1
i

σ + xk+1
i . (36)

For any i /∈ Cτk+1 , it follows from (16)-(18) that the above
relation is still valid. Hence, we have (36) for any i ∈ [m] and
for any k ≥ 0. As a result, for any k ∈ K,∑m

i=1(
πki
σ + xki − xτk+1)

(36)
=

∑m
i=1(zki − xτk+1)

(12)
= 0.

b) For i ∈ Cτk+1 , solution xk+1
i in (13) satisfies (19), thereby

contributing to,

0 = gk+1
i + πki + ( 1

mHi + σI)4xk+1
i

(14)
= gk+1

i + πk+1
i + 1

mHi4xk+1
i .

(37)

For any i /∈ Cτk+1 , the second equation in (37) is still valid due
to πk+1

i = −gk+1
i and 4xk+1

i = 0 from (16)-(18). Hence, it
is true for any i ∈ [m] and any k ∈ K.

c) It follows from (34) and riI � Hi = Θi � 0 that

‖4πk+1
i ‖2

= ‖gk+1
i − gki + 1

mHi(4xk+1
i −4x

τk+1

i )‖2
(31)
≤ 3r2i

m2 ‖4xk+1
i ‖2 +

3r2i
m2 ‖4xτk+1‖2 + 3‖gk+1

i − gki ‖2
(1)
≤ 3r2i

m2 ‖4xk+1
i ‖2 +

6r2i
m2 ‖4xτk+1‖2,

which finishes the proof.

Lemma B.2. Let {(xτk , Xk,Πk)} be the sequence generated
by Algorithm 1 with Hi = Θi, i ∈ [m] and σ > 6r/m. If
Assumption IV.1 holds, then for any k ≥ 0,

Lk+1 − Lk ≤ −η
∑m
i=1(‖4xτk+1‖2 + ‖4xk+1

i ‖2), (38)

where η is given by

η := σ
2 −

5r
2m −

3r2

σm2 . (39)

Proof. Gap (Lk+1 − Lk) can be decomposed as

Lk+1 − Lk =: ek1 + ek2 + ek3 , (40)

with

ek1 := L(xτk+1 , Xk,Πk)− Lk,

ek2 := L(xτk+1 , Xk+1,Πk)− L(xτk+1 , Xk,Πk),

ek3 := Lk+1 − L(xτk+1 , Xk+1,Πk).

(41)

Estimating ek1 . If k /∈ K, then xτk+1 = xτk , yielding

ek1 = 0 = −σm2 ‖4xτk+1‖2.

For k ∈ K, multiplying both sides of the first equation in (33)
by 4xτk+1 yields∑m

i=1〈4xτk+1 ,πki 〉 =
∑m
i=1〈4xτk+1 , σ(xτk+1 − xki )〉. (42)
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The fact allows us to derive that

ek1
(8)
=

∑m
i=1(L(xτk+1 ,xki ,π

k
i )− L(xτk ,xki ,π

k
i ))

(8)
=

∑m
i=1(〈4xτk+1 ,−πki 〉

+ σ
2 ‖x

k
i − xτk+1‖2 − σ

2 ‖x
k
i − xτk‖2)

(42)
=

∑m
i=1(〈4xτk+1 , σ(xki − xτk+1)〉

+ σ
2 ‖x

k
i − xτk+1‖2 − σ

2 ‖x
k
i − xτk‖2)

(31)
= −σ2

∑m
i=1 ‖4xτk+1‖2 = −σm2 ‖4xτk+1‖2.

Overall, for both scenarios, we obtained

ek1 = −σm2 ‖4xτk+1‖2. (43)

Estimating ek2 . We denote

pki :=L(xτk+1 ,xk+1
i ,πki )− L(xτk+1 ,xki ,π

k
i )

(8)
= 1

mfi(x
k+1
i )− 1

mfi(x
k
i ) + 〈4xk+1

i ,πki 〉

+ σ
2 ‖4xk+1

i ‖2 − σ
2 ‖x

k
i − xτk+1‖2.

(44)

We will consider two cases: i /∈ Cτk+1 and i ∈ Cτk+1 . For
i /∈ Cτk+1 , if k ∈ K, then xk+1

i ≡ xτk+1 (namely 4xk+1
i = 0)

suffices to

pki
(44)
= 1

mfi(x
k+1
i )− 1

mfi(x
k
i ) + 〈4xk+1

i ,πki 〉 − σ
2 ‖4xk+1

i ‖2
(32)
≤ 〈4xk+1

i , gk+1
i + πki 〉+ ri

2m‖4xk+1
i ‖2 − σ

2 ‖4xk+1
i ‖2

= 〈4xk+1
i , gk+1

i + πki 〉 − σm−ri
2m ‖4xk+1

i ‖2
(17)
= 〈4xk+1

i ,−4πk+1
i 〉 − σm−ri

2m ‖4xk+1
i ‖2

(31)
≤ 3ri

2m‖4xk+1
i ‖2 + m

6ri
‖4πk+1

i ‖2 − σm−ri
2m ‖4xk+1

i ‖2
(35)
≤ ri

m‖4xτk+1‖2 − σm−5ri
2m ‖4xk+1

i ‖2.

If k /∈ K, then (16) indicates xk+1
i = xτk+1 = xτk = xki . This

immediately results in

pki
(44)
= 0 = ri

m‖4xτk+1‖2 − σm−5ri
2m ‖4xk+1

i ‖2.

Therefore, for any i /∈ Cτk+1 , we showed that

pki ≤ ri
m‖4xτk+1‖2 − σm−5ri

2m ‖4xk+1
i ‖2

≤ r
m‖4xτk+1‖2 − σm−5r

2m ‖4xk+1
i ‖2

where the last inequality is due to r ≥ ri for any i ∈ [m].
For any i ∈ Cτk+1 , direct calculation yields that

〈4xk+1
i , gk+1

i + πki + σ4xk+1
i 〉

= 〈4xk+1
i , gk+1

i − gk+1
i + gk+1

i + πki + σ4xk+1
i 〉

(37)
= 〈4xk+1

i , gk+1
i − gk+1

i −Hi4xk+1
i /m〉

= 〈
√
ri/m4xk+1

i ,
√
m/ri(g

k+1
i − gk+1

i −Hi4xk+1
i /m)〉

≤ ri
2m‖4xk+1

i ‖2 + 2ri
m ‖4xk+1

i ‖2,

where the last inequality is from riI � Hi = Θi � 0 and the
gradient Lipschitz continuity of fi. Moreover, it follows from
(31) that

σ
2 ‖4xk+1

i ‖2 − σ
2 ‖x

k
i − xτk+1‖2

= 〈4xk+1
i , σ4xk+1

i 〉 − σ
2 ‖4xk+1

i ‖2.

Using the above two facts derives

pki
(44)
= 1

mfi(x
k+1
i )− 1

mfi(x
k
i ) + 〈4xk+1

i ,πki 〉

+ 〈4xk+1
i , σ4xk+1

i 〉 − σ
2 ‖4xk+1

i ‖2
(32)
≤ 〈4xk+1

i , gk+1
i + πki + σ4xk+1

i 〉 − σm−ri
2m ‖4xk+1

i ‖2

≤ 2ri
m ‖4xk+1

i ‖2 − σm−2ri
2m ‖4xk+1

i ‖2
(14)
≤ 2ri

mσ2 ‖4πk+1
i ‖2 − σm−2ri

2m ‖4xk+1
i ‖2

(35)
≤ 12r3i

m3σ2 ‖4xτk+1‖2 − (σm−2ri
2m − 6r3i

m3σ2 )‖4xk+1
i ‖2

≤ r
m‖4xτk+1‖2 − σm−5r

2m ‖4xk+1
i ‖2,

where the last inequality is due to σ > 6r/m and r ≥ ri for
any i ∈ [m]. Overall, we showed

ek2 =
∑m
i=1 p

k
i =

∑
∈Cτk+1 p

k
i +

∑
i/∈Cτk+1 p

k
i

≤
∑m
i=1( rm‖4xτk+1‖2 − σm−5r

2m ‖4xk+1
i ‖2).

(45)

Estimating ek3 . Again, we have two cases. For client i ∈ Cτk+1 ,
it has the following inequalities,

qki := L(xτk+1 ,xk+1
i ,πk+1

i )− L(xτk+1 ,xk+1
i ,πki )

(8)
= 〈4xk+1

i ,4πk+1
i 〉 (14)

= 1
σ‖4π

k+1
i ‖2

(35)
≤ 3r2i

σm2 ‖4xk+1
i ‖2 +

6r2i
σm2 ‖4xτk+1‖2.

For client i /∈ Cτk+1 , since xk+1
i = xτk+1 by (16), it follows

4xk+1
i = 0 and thus

qki = 0 ≤ 3r2i
σm2 ‖4xk+1

i ‖2 +
6r2i
σm2 ‖4xτk+1‖2.

The above two errors and r ≥ ri bring out

ek3 =
∑m
i=1 q

k
i ≤

∑m
i=1( 6r2

σm‖4xτk+1‖2 + 3r2

σm2 ‖4xk+1
i ‖2). (46)

Combining (40), (43), (45), (46) shows

Lk+1 − Lk = ek1 + ek2 + ek3

≤ −(σ2 −
r
m −

6r2

σm2 )
∑m
i=1 ‖4xτk+1‖2

−(σ2 −
5r
2m −

3r2

σm2 )
∑m
i=1 ‖4xk+1

i ‖2

≤ −(σ2 −
5r
2m −

3r2

σm2 )
∑m
i=1(‖4xτk+1‖2 + ‖4xk+1

i ‖2)

which finishes the proof.

Lemma B.3. Let {(xτk , Xk,Πk)} be the sequence generated
by Algorithm 1 with Hi = Θi, i ∈ [m] and σ > 6r/m. The
following results hold under Assumption IV.1.

i) {Lk} is non-increasing.
ii) Lk ≥ f(xτk) ≥ f∗ > −∞ for any integer k ≥ 0.

iii) For any i ∈ [m],

lim
k→∞

(4xk+1
i ,4πk+1

i ,4xτk+1 ,4xk+1
i ) = 0. (47)

Proof. i) Since σ > 6r/m, it follows η > 0 which by (38)
results in the conclusion immediately .
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ii) From riI � Hi = Θi � 0 and (21), we have

1
mfi(x

τk+1)− 1
mfi(x

k+1
i )

(32)
≤ 〈4xk+1

i ,−gk+1
i 〉+ ri

2m‖4xk+1
i ‖2

(34)
= 〈4xk+1

i ,πk+1
i + 1

mHi4xk+1
i 〉+ ri

2m‖4xk+1
i ‖2

≤ 〈4xk+1
i ,πk+1

i 〉+ 3ri
2m‖4xk+1

i ‖2,

(48)

which by σ > 6r/m allows us to obtain

pki := 1
mfi(x

k+1
i ) + 〈4xk+1

i ,πk+1
i 〉+ σ

2 ‖4xk+1
i ‖2

(48)
≥ 1

mfi(x
τk+1) + σm−3ri

2m ‖4xk+1
i ‖2 ≥ 1

mfi(x
τk+1).

Using the above condition, we obtain

Lk+1 =
∑m
i=1 p

k
i ≥

∑m
i=1

1
mfi(x

τk+1)

= f(xτk+1) ≥ f∗
(5)
> −∞.

(49)

iii) From (38), we conclude that∑
k≥0

∑m
i=1 η(‖4xτk+1‖2 + ‖4xk+1

i ‖2)

≤
∑
k≥0(Lk − Lk+1) = L0 − limk→∞Lk+1

(49)
< +∞.

The above condition means ‖4xτk+1‖ → 0 and ‖4xk+1
i ‖ →

0, yielding ‖4πk+1
i ‖ → 0 by (35) for any i ∈ [m]. Finally,

we note that 4xk+1
i = 4πk+1

i /σ → 0 from (14) if i ∈ Cτk+1

and 4xk+1
i = 0 from (16) if i /∈ Cτk+1 . Overall, 4xk+1

i → 0,
which completes the whole proof is finished.

B. Proof of Theorem IV.1

Proof. i) It follows from Lemma B.3 that {Lk} is non-
increasing and bounded from below. Therefore, the whole
sequence, {Lk}, converges. For i /∈ Cτk+1 , we have xk+1

i = 0
from (16), thereby leading to

L(xτk+1 ,xk+1
i ,πk+1

i )
(8)
= 1

mfi(x
k+1
i ).

For i ∈ Cτk+1 , it follows

L(xτk+1 ,xk+1
i ,πk+1

i )− 1
mfi(x

k+1
i )

(8)
= 〈4xk+1

i ,πk+1
i 〉+ σ

2 ‖4xk+1
i ‖2

(14)
= 1

σ 〈4π
k+1
i ,πk+1

i 〉+ 1
2σ‖4π

k+1
i ‖2

= 1
2σ‖π

k+1
i ‖2 − 1

2σ‖π
k
i ‖2 + 1

σ‖4π
k+1
i ‖2.

Using the above two conditions, we can conclude that

|Lk+1 − F (Xk+1)|

= |
∑m
i=1 L(xτk+1 ,xk+1

i ,πk+1
i )− 1

mfi(x
k+1
i )|

= |
∑
i∈Cτk+1

1
2σ‖π

k+1
i ‖2 − 1

2σ‖π
k
i ‖2 + 1

σ‖4π
k+1
i ‖2|

≤
∑m
i=1 |

1
2σ‖π

k+1
i ‖2 − 1

2σ‖π
k
i ‖2|+ 1

σ‖4π
k+1
i ‖2 (47)→ 0.

In addition, same reasoning to show (48) enables to derive

1
mfi(x

k+1
i ) − 1

mfi(x
τk+1)

≤ 〈4xk+1
i ,−πk+1

i 〉+ 3ri
2m‖4xk+1

i ‖2,

which by (48) yields that |qki | ≤ 3ri
2m‖4xk+1

i ‖2, where

qki := 1
mfi(x

k+1
i )− 1

mfi(x
τk+1)− 〈4xk+1

i ,πk+1
i 〉.

Therefore, the above fact brings out

|Lk+1 − f(xτk+1)| = |
∑m
i=1 q

k
i + σ

2 ‖4xk+1
i ‖2|

≤
∑m
i=1(σ2 + 3ri

2m )‖4xk+1
i ‖2 → 0.

ii) By (33), we derive that, for any ∀ k ∈ K,

0 =
∑m
i=1(πki + σ(xki − xτk+1))

(16)
=

∑
i∈Cτk+1 (πki + σ4xk+1

i − σ4xk+1
i )

+
∑
i/∈Cτk+1 (πk+1

i − σ4xk+1
i −4πk+1

i )
(14)
=

∑m
i=1(πk+1

i − σ4xk+1
i )−

∑
i/∈Cτk+1 4πk+1

i ,

(50)

which together with (47) implies limk(∈K)→∞
∑m
i=1 π

k+1
i =

0. Let s := (τk+1 − 1)k0 ∈ K. Then

lims(∈K)→∞
∑m
i=1 π

s+1
i = 0. (51)

Moreover, for any k, it is easy to show that

s+ 1 = (τk+1 − 1)k0 + 1 ≤ k + 1 ≤ τk+1k0,

τs+1 = b(s+ 1)/k0c = bτk+1 − 1− 1/k0c = τk+1.
(52)

Based on this, we now estimate πk+1
i − πs+1

i for any k. For
any i ∈ Cτk+1 , we can show that and hence

‖πk+1
i − πs+1

i ‖
(34)
= ‖gk+1

i − gs+1
i + 1

mHi(4xk+1
i −4xs+1

i )‖

≤ ri
m (‖xτk+1 − xτs+1‖+ ‖4xk+1

i ‖+ ‖4xs+1
i ‖)

(52)
= ri

m (‖4xk+1
i ‖+ ‖4xs+1

i ‖)

For any i /∈ Cτk+1 , πk+1
i = πs+1

i = −gs+1
i by (17). So, the

above condition is still valid. Overall, we show that

‖πk+1
i − πs+1

i ‖ ≤ ri
m (‖4xk+1

i ‖+ ‖4xs+1
i ‖), (53)

for any i ∈ [m] and k ≥ 0, which by (47) allows us to show
πk+1
i − πs+1

i → 0, thereby recalling (51) suffices to

limk→∞
∑m
i=1 π

k+1
i = 0. (54)

This together with (34) and (47) immediately gives us

limk→∞∇f(xτk+1) = limk→∞
∑m
i=1 g

k+1
i = 0. (55)

Finally, the above condition together with 4xk+1
i = (xk+1

i −
xτk+1)→ 0 and the gradient Lipschitz continuity yields that

limk→∞
∑m
i=1 wi∇fi(xτk+1) = 0,

completing the whole proof.
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C. Proof of Theorem IV.2
Proof. i) It follows from Lemma B.3 i) and (49) that

L0 ≥ Lk+1 ≥
∑m
i=1 wifi(x

τk+1) = f(xτk+1), (56)

which implies xτk+1 ∈ S(L0) and hence {xτk+1} is bounded
due to the boundedness of S(L0). This calls forth the bound-
edness of {xk+1

i } as4xk+1
i → 0 from (47). The boundedness

of {πk+1
i } can be ensured because of

‖πk+1
i ‖ (34)

= ‖gk+1
i + 1

mHi4xk+1
i ‖

≤ ‖gk+1
i − g0

i ‖+ ‖g0
i ‖+ ri

m‖4xk+1
i ‖

(1)
≤ ri

m‖x
τk+1 − x0

i ‖+ ‖g0
i ‖+ ri

m‖4xk+1
i ‖ < +∞,

where ‘<’ is from the boundedness of {xτk+1}. Overall,
{(xτk+1 , Xk+1,Πk+1)} is bounded. Let (x∞, X∞,Π∞) be
any accumulating point of the sequence, it follows from (34)
and 4xk+1

i → 0 that

0 = gk+1
i + πk+1

i + 1
mHi4xk+1

i

= gk+1
i + πk+1

i + gk+1
i − gk+1

i + 1
mHi4xk+1

i

→ 1
m∇fi(x

∞
i ) + π∞i .

Moreover, (54) and (47) suffice to
∑m
i=1 π

∞
i = 0 and x∞i −

x∞ = 0. By recalling (10), (x∞, X∞,Π∞) is a stationary
point of (6) and x∞ is a stationary point of (4).

Since 4xτk+1 → 0 and x∞ being isolated, whole sequence
{xτk+1} converges to x∞ by [48, Lemma 4.10]. This together
with 4xk+1

i → 0 and (34) implies that {Xk} and {Πk}
converge to X∞ and Π∞.

D. Proof of Corollary IV.1
Proof. i) The convexity of f and the optimality of x∗ lead to

f(xτk) ≥ f(x∗) ≥ f(xτk) + 〈∇f(xτk),x∗ − xτk〉. (57)

Theorem IV.1 ii) states that

limk→∞∇F (Xk) = limk→∞∇f(xτk) = 0.

Using this and the boundedness of {xτk} from Theorem IV.2,
we take the limit of both sides of (57) to derive that f(xτk)→
f(x∗), which recalling Theorem IV.1 i) yields (26).

ii) The conclusion follows from Theorem IV.2 ii) and
the fact that the stationary points are equivalent to optimal
solutions if f is convex.

iii) The strong convexity of f means that there is a positive
constance ν such that

f(xτk)− f(x∗) ≥ 〈∇f(x∗),xτk − x∗〉+ ν
2‖x

τk − x∗‖2

= ν
2‖x

τk − x∗‖2,
where the equality is due to (10). Taking limit of both sides
of the above inequality immediately shows xτk → x∗ since
f(xτk) → f(x∗). This together with (47) yields xki → x∗.
Finally, πki → π∗i because of

‖πki − π∗i ‖
(34),(10)

= ‖gki + 1
mHi4xki − 1

m∇fi(x
∗)‖

(1)
≤ ri

m (‖xτk − x∗‖+ ‖4xki ‖)→ 0,

displaying the desired result.

E. Proof of Theorem IV.3
Proof. Following the fact

σ > 6r/m ≥ 6ri/m, ∀ i ∈ [m], (58)

for any j ≥ 1 and (35), there is

‖4πj+1
i ‖2 ≤ 3r2i

m2 ‖4xj+1
i ‖2 +

6r2i
m2 ‖4xτj+1‖2

≤ σ2

6 (‖4xj+1
i ‖2 + ‖4xτj+1‖2).

(59)

We note that 4xk+1
i = 4πk+1

i /σ → 0 from (14) if i ∈ Cτk+1

and 4xk+1
i = 0 from (16) if i /∈ Cτk+1 . Therefore,

‖4xk+1
i ‖ ≤ ‖4πk+1

i /σ‖, ∀ i ∈ [m]. (60)

Now we focus on s ∈ K. This by (50) results in∑m
i=1 π

s+1
i =

∑m
i=1 σ4xs+1

i +
∑
i/∈Cτs+1 4πs+1

i

which leads to

‖
∑m
i=1 π

s+1
i ‖2 ≤ m

∑m
i=1 2(‖σ4xs+1

i ‖2 + ‖4πs+1
i ‖2).

Using this condition generates

‖∇f(xτs+1)‖2 = ‖
∑m
i=1 g

s+1
i ‖2

(34)
= ‖

∑m
i=1(πs+1

i + 1
mHi4xs+1

i )‖2

≤ 2‖
∑m
i=1 π

s+1
i ‖2 + 2m

∑m
i=1

r2i
m2 ‖4xs+1

i ‖2
(58),(60)
≤ 2‖

∑m
i=1 π

s+1
i ‖2 + m

18

∑m
i=1 ‖4π

s+1
i ‖2

≤ m
∑m
i=1(4‖σ4xs+1

i ‖2 + 5‖4πs+1
i ‖2)

(59)
≤ 5mσ2

∑m
i=1(‖4xs+1

i ‖2 + ‖4xτs+1‖2)
(38)
≤ 5mσ2

η (Ls − Ls+1).

(61)

Since sequence {Lk} is non-increasing from Lemma B.3, it
has Ltk0+1 ≥ L(t+1)k0 ≥ f∗ by Lemma B.3 for any t ≥ 0,
thereby resulting in∑τk+1−1

t=0 (Ltk0 − Ltk0+1)

= L0 −
∑τk+1−2
t=0 (Ltk0+1 − L(t+1)k0)− L(τk+1−1)k0+1

≤ L0 − L(τk+1−1)k0+1 ≤ L0 − f∗.

(62)

We note that for j = 0, 1, 2, . . . , τk+1k0 − 1,

τj+1 =


1, j = 0, 1, . . . , k0 − 1,
2, j = k0, k0 + 1, . . . , 2k0 − 1,
...

...
τk+1, j = (τk+1 − 1)k0, . . . , k, . . . , τk+1k0 − 1.

Using the above three facts and k < τk+1k0 − 1, we derive

minj∈[k] ‖∇f(xτj )‖2 ≤ 1
k

∑k−1
j=0 ‖∇f(xτj+1)‖2

≤ 1
k

∑τk+1k0−1
j=0 ‖∇f(xτj+1)‖2

= k0
k

∑τk+1−1
t=0 ‖∇f(xτtk0+1)‖2

(61)
≤ 5mσ2k0

ηk

∑τk+1−1
t=0 (Ltk0 − Ltk0+1)

(62)
≤ 5mσ2k0

ηk (L0 − f∗),

completing the proof.
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