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Abstract 
 

This thesis is intended to analyse the policy effects of the simulated Chinese climate policies. 

Without considering any benefits and influential factors, the carbon tax could effectively reduce the 

carbon emissions at the price of the welfare loss. Considering its ancillary (health) benefit, the tax will 

induce less emission reduction and welfare loss. The primary (climate) benefit of the tax will increase 

the carbon emissions, decrease the carbon intensity, and induce an economic boom. The induced 

technological change (ITC) of the carbon tax will have negative impacts on the carbon emissions, and 

it will increase the real GDP (RGDP) but decrease the household welfare. The inequality impacts of the 

carbon tax depend on the distribution of the climate damages and the payments of the abatement costs. 

Recycling the tax revenues will also affect the inequality impacts of the tax. Under the impacts of the 

projected urbanisation, the carbon tax will induce more emission reduction, less RGDP loss, and more 

household welfare loss. With the same amount of the targeted emission reduction as the carbon tax, the 

emission trading scheme (ETS) policy will induce the higher household welfare compared to the carbon 

tax. 
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Chapter 0: Overview 

Background 
Human activity is the dominant cause of the observed global warming since the mid-20th century 

(IPCC 2013). Having witnessed rapid economic growth for more than thirty years, China has become 

the leading carbon emitter with its carbon emissions exceeding the sum of the EU and US emissions 

since 2013, according to the World Bank (WB) data. Facing increasing pressure from the global 

community to abate carbon emissions in the context of international climate change agreements, the 

Chinese government has implemented climate policies to mitigate the anthropogenic emissions. 

As a kind of governmental interventions on the market mechanism, a climate policy tends to result 

in deadweight loss of social welfare as the market becomes imperfectly competitive. A growing 

literature attempts to assess the impacts of climate policies on the Chinese economy, aiming to assess 

the optimal policies maximising benefits or minimising costs (Chi, Guo et al. 2014, Liu and Lu 2015, 

Sun and Kuang 2015, Li and Jia 2017, Li, Dai et al. 2018). However, the aforementioned work largely 

overlooked positive side-effects of climate policies. This is because the benefits of climate policies are 

hard to quantify. For example, because carbon emissions and air pollutant emissions often originate 

from the same stationary and mobile sources (Workman, Blashki et al. 2019), a climate policy which 

curbs carbon emissions is likely to reduce air pollutant emissions. However, this benefit of a climate 

policy is usually neglected in the literature. 

Overlooking the benefits of a climate policy is likely to reduce the governmental willingness of 

policy implementation. Conversely, accounting for the benefits increases the attractiveness of a climate 

policy, and this evidence can be found globally. For example, Buonocore, Lambert et al. (2016) 

examined the costs and health co-benefits for a policy resembling the US Clean Power Plan, empirically 

showing that the simulated climate policy led to the monetised value of the health co-benefits exceeding 

costs in 10 of 14 power regions. Hence, it is important that the benefits of a climate policy should be 

unbiasedly modelled. 

The induced technical change, income distributional impacts, and the urbanisation may also 

influence the effects of a climate policy on the emissions and welfare. However, these influential factors 

are usually overlooked in the literature. Consequently, a biased evaluation may provide misleading 

policy recommendations. In this thesis, I attempt to quantify the benefits and influential factors of the 

carbon tax in comparison with the Emission Trading Scheme (ETS) to determine which climate policy 

is preferable in China. I hope the unbiased policy evaluation could have practical meanings for the 

government. 
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Policy Background 
On June 30th, 2015, China submitted its Intended Nationally Determined Contributions (INDC) to 

the United Nations Framework Convention on Climate Change (UNFCCC). The INDC requires China 

to peak its emissions around 2030 and make the best efforts to peak early; lower its emissions per unit 

of GDP by 60% to 65% from the 2005 level (NDRC 2015). To achieve these mitigation targets, the 

Chinese government has to implement climate policies to curb its increasing emissions. If the current 

existing policies remain unchanged, the target to peak the emissions in 2030 is very challenging as the 

promoting effects of the GDP growth on the emissions are much larger than the inhibiting effects of the 

technological advancement (Li and Qin 2019). Therefore, the Chinese government should take more 

measures to reduce its emissions. 

A mitigation target directly determines the amounts of emission reduction that a climate policy 

should achieve. For example, as the mitigation target becomes more ambitious, more climate policies 

need to be implemented or the existing policies need to be strengthened (Guo and Liu 2016). Previously, 

carbon taxes and emission trading schemes (ETS) are the two most popular climate policies to realise a 

mitigation target (Li and Jia 2016, Li and Jia 2017, Bi, Xiao et al. 2019). The fundamental principle 

underlying a carbon tax and ETS policy is the same: a price is set for emitting greenhouse gases, either 

through a specific tax or the requirement to acquire a permit (Allan, Lecca et al. 2014). In other words, 

a carbon tax attempts to regulate the economy by the optimal carbon price, whereas an ETS policy 

attempts to regulate the economy by the optimal carbon quotas at the given abatement target. For the 

simulated carbon tax and ETS policy in this paper, I assume that there are no uncertainties about what 

interest rate should be used to discount costs and benefits of the climate change, according to Weitzman 

(2007). 

Generally, the implementation of a carbon tax requires the government to play an important role 

in the economy, while the implementation of an ETS requires a solid carbon market be established (Liu 

and Lu 2015). Considering the strong government and relatively undeveloped carbon market, a carbon 

tax is more appealing in China. This is because attempts to implement a pilot ETS in the seven Chinese 

provinces encountered problems. For example, the large carbon quotas led to a low and unstable carbon 

price, inducing an inactive and ineffective carbon trading market (Li and Jia 2016). Compared to an 

ETS, a carbon tax promotes energy-saving technologies and optimises energy consumption structure, 

but its negative effect on GDP is relatively small (Chi, Guo et al. 2014). Therefore, “a carbon tax is 

recognised as one of the most cost-effective economic instruments to control carbon emissions”, 

according to Li, Dai et al. (2018) who examined the policy effects of a regional unbalanced carbon tax. 

As a kind of governmental interventions on the market mechanism, a carbon tax inevitably results 

in deadweight loss so that the economy arrives in a new but distorted equilibrium. The carbon tax rate 

is usually treated as an exogenous variable, shown in Eq. (0.1), where 𝑇𝑎𝑥𝑗 is the tax revenues from the 
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consumption of Energy j; 𝐸𝐶𝑖𝑗 refers to the consumption of Energy j in Sector i; 𝑃𝐸𝑗 stands for the price 

of Energy j; 𝜏𝑗 is the tax rate of Energy j. A subsidy that lowers the energy price can be also incorporated 

in Eq. (0.1), by specifying 𝜏𝑗 < 0  (Sue Wing 2004). The tax rate can be also introduced as an 

endogenous variable to internalise the impacts of the climate change and correct the market failure. 

Hence, an optimal carbon tax may result in superior emission mitigations with minimal negative or even 

positive socioeconomic impacts (Duan, Zhu et al. 2014). This is the case in Yahoo and Othman (2017) 

who evaluated the economic impacts of the climate policies in Malaysia, concluding that the negative 

macroeconomic impacts of the carbon tax would be not very large in Malaysia. 

𝑇𝑎𝑥𝑗 = ∑ 𝐸𝐶𝑖𝑗 ∗ 𝑃𝐸𝑗 ∗ 𝜏𝑗𝑖                                         (0.1) 

In the literature, a carbon tax, imposed on the consumption of fossil fuels, usually belongs to the 

domain of Pigouvian taxes. Proposed by Pigou, a Pigouvian tax is a tax imposed on the economic 

activities to internalise the negative externalities, including air pollution and environmental degradation 

(Baiardi and Menegatti 2011). There is a negative link between the innovation-inducing and emission-

reduction effects of a Pigouvian tax: the smaller is the tax’s Pigouvian effect on reducing emissions, the 

larger is its indirect effect on spurring innovation and diffusing environmentally clean technologies 

(Hattori 2017). Moreover, a Pigouvian tax overlooks the potential action of an economic agent caused 

by the incurred private welfare loss. For example, an increase in the energy price owing to a Pigouvian 

tax causes the production and consumption to shift to a less carbon-intensive equilibrium. Those sectors 

possessing a high proportion of carbon-intensive assets are likely to experience considerable costs 

incurred in this shift (Jenkins 2014), and thus they are likely to mount vociferous oppositions to the 

Pigouvian tax. 

A Pigouvian tax is usually viewed as the economically optimal or “first-best” policy to address 

climate externalities by economists (Jenkins 2014). A first-best climate policy is an ideal climate policy 

with perfect foresight and full policy implementation (Ebi and Yohe 2013). A first-best policy needs to 

be implemented in a first-best world without market imperfections, institutional and informational 

constraints, delayed policy implementation, or social preferences (Ebi and Yohe 2013). In the reality, 

such ideal climate policies are unrealistic, because the actual world is quite different from the ideal 

world. 

To accommodate the socioeconomic constraints in the real world where the Pareto optimal 

condition can be hardly attained (Bennear and Stavins 2007, Jenkins 2014), a second-best or mixed 

climate policy is preferable. A second-best climate policy usually includes the use of multiple policy 

instruments and can be justified as optimal under a fairly broad set of circumstances in a second-best 

world (Bennear and Stavins 2007). In other words, a second-best climate policy is suboptimal to address 

externalities in the presence of one or more binding constraints (Jenkins 2014). Nevertheless, compared 
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to a first-best climate policy, a second-best climate policy has economic inefficiencies (Garnache, Mérel 

et al. 2017). 

Despite the inefficiencies, the merits of a second-best or mixed climate policy have been already 

proved in the literature. For example, Li and Jia (2017) analysed the economy, energy, and environment 

impacts of the carbon tax, ETS, and mixed policy in China, concluding that the mixed policy was more 

effective than a single policy in the reduction of the primary energy consumption. Moreover, Sun and 

Kuang (2015) investigated the direct and cascaded effects of the hybrid policy in China, arguing that 

the mixed policy was highly recommended because of its significant lower economic loss, lower energy 

utilisation costs, and practical robustness against the fluctuation of the energy market and carbon 

market. 

In a mixed climate policy, a carbon tax is usually implemented in combination with other policies 

to reinforce the emission reduction effect or diminish the social welfare loss of the tax. Recycling the 

tax revenues is usually implemented as the complementary policy of the tax. Empirical evidence on the 

merits of the revenue recycling can be found worldwide. For example, Frey (2017) assessed the policy 

effects of the carbon tax on the Ukrainian economy and environment, arguing that there would have 

been a net increase of the social welfare if the carbon tax revenues had been recycled through a reduction 

of the indirect taxes in Ukraine; van Heerden, Blignaut et al. (2016) modelled the possible impacts of 

the carbon tax on the South African economy, concluding that the negative effect of the carbon tax on 

the GDP was greatly reduced by the recycling of the tax revenues in South Africa. In the case of China, 

Zhang, Zhang et al. (2017) recycled the carbon tax revenues to reduce the capital tax or support the 

clean energy subsidy, concluding that the mixed policy could achieve the target of reducing the 

emissions more effectively and efficiently than a single carbon tax. Similarly, Xiao, Niu et al. (2015) 

explored the impacts of the environmental tax on the Chinese economy, empirically showing that the 

carbon tax refund induced a recovery in the GDP and a promotion in the low-emission industries in 

China. 

Major Indexes Denoting the Socioeconomic Status 
The IPAT identity is a widely used term for analysing the effects of human activities on the 

environment (York, Rosa et al. 2003) where “I” is environmental impacts, “P” stands for population, 

“A” denotes affluence and “T” is short for technology. The IPAT identity means that environmental 

impacts are the product of population, affluence, and technology. In this thesis, the environmental 

impacts mainly refer to the socioeconomic impacts of the anthropogenic emissions. However, as the 

three influential factors are too summative, each factor needs to be decomposed in order that the whole 

picture of the economy is captured clearly.  

The population factor includes population growth rate, age structure, and urban-rural population 

ratio. In China, the population growth rate seems to be not a very important factor that drives the carbon 
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emissions, as it will diminish to zero and even negative owing to the low fertility rate below the 

replacement level for a long time (Zheng 2016). The age structure could have profound socioeconomic 

impacts owing to the low fertility rate, longer life expectancy, and higher survival rate (Zheng 2016). 

One widely used measure of ageing is the proportion of aged population (Scherbov and Sanderson 

2016). If the proportion of the population aged over 60 or 65 is larger than 10% or 7% respectively, 

population ageing is considered to occur (Zheng 2016). At present, the rapidly ageing population 

becomes unaffordable because of the low security and income level with the weak ability to resist risks; 

the significant growth in demands for care giving but a shortage of care-giving service resources (Jiang, 

Yang et al. 2016). Although population growth rate and population ageing may not directly affect 

emissions, these demographic factors could lay socioeconomic impacts, which will affect emissions 

indirectly.  

Another distinguished feature of the Chinese population is the rapid increase of the urban 

population. In the period 1978–2012, the fraction of the Chinese population dwelling in cities increased 

from 17.9% to 52.6% (Bai, Shi et al. 2014). Such rapid urbanisation may lay significant impacts on the 

environment. Urbanisation generally affects carbon emissions in three aspects: residential and industrial 

energy consumption; energy used by the construction sector; conversion of grasslands and woodlands 

(Bekhet and Othman 2017). These three aspects imply that urbanisation may positively influence carbon 

emissions. Conversely, at a higher level, urbanisation may also decrease carbon emissions by reducing 

road energy use, which was empirically proven in Norway (Liu, Huang et al. 2017a). Hence, an 

Environment Kuznets Curve (EKC) may exist between urbanisation and carbon emissions (Abdallh and 

Abugamos 2017). 

Affluence is usually measured by GDP, which denotes the level of economic development for a 

certain region within a given period. The EKC theory indicates that GDP may have an inverted-U 

relation with carbon emissions. As China is still in the process of industrialisation, economic growth 

was the dominant factor in increasing the emissions in 1996–2011, according to Xu, Zhao et al. (2014) 

who decomposed the Chinese sectoral emissions. Considering that China has experienced a slower GDP 

growth rate in recent years, the GDP may have a lower impact on the carbon emissions in the future. 

However, Zhou, Wang et al. (2018) explored the socioeconomic determinants of the carbon emissions 

in China, concluding that the GDP impact on the emissions would become more significant in the future 

than at present.  

Affluence is also influenced by capital accumulation, which may induce technological 

advancement and thus affect carbon emissions (Liu, Guo et al. 2017). Generally, capital accumulation 

includes the accumulation of physical and human capital. How physical capital affects emissions is 

contrary to the way that human capital changes emissions. Because of its significant role in booming 

economic growth (Du, Wang et al. 2014), an increase in physical capital will lead to further use of 
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energies, which implies that higher physical capital intensity may cause more pollution (Shimamoto 

2017). Conversely, an increase of human capital may diminish the use of fossil fuels and thus reduce 

the anthropogenic carbon emissions (Bano, Zhao et al. 2018). This is because human capital may 

provide the potential minds to understand the energy security and environmental issues, and the 

knowledge or skills to develop renewable energy (Bano, Zhao et al. 2018). Overall, physical capital 

accumulation may positively influence emissions, whilst human capital accumulation may influence 

emissions in the opposite direction. 

Affluence is also affected by air pollution which induces individual disutility. Having experienced 

the rapid economic growth over the past few decades, China is now facing serious air pollution, which 

arouses wide concern about the public health owing to the increasing mortality and morbidity. The 

severe air pollution is also criticised for the induced economic loss in urban areas, according to Zhan, 

Kwan et al. (2017) who identified the spatiotemporal variations of the air pollution and the associated 

driving factors of the pollution in China. 

Technological advancement is mainly denoted by the decrease of carbon intensity, which is defined 

as the ratio of 𝐶𝑂2 emissions to the total added values (Liu, Bai et al. 2018). When the GDP growth 

rate is greater than the increase rate of carbon emissions, the carbon intensity would decrease, according 

to Ye, Xie et al. (2018) who predicted the carbon intensity in the Pearl River Delta region of China. 

Although China’s carbon intensity has been declining recently (Liu, Bai et al. 2018), it remains to be 

seen whether the carbon intensity will continue to decline in the future to meet the INDC target of 

decreasing the carbon intensity in 2030 to 60%–65% of the 2005 level. 

Research Questions 
This paper aims to evaluate the socioeconomic and environmental effects of the Chinese carbon 

tax and ETS policy less biasedly, compared to the literature, by considering the influential factors, 

namely the ancillary benefit, primary benefit, technical impacts, inequality impacts, and urbanisation 

impacts. For the other factors, like the demographic factors and capital accumulation, are exogenously 

determined in the policy evaluation framework. In addition, I attempt to compare the policy effects of 

the carbon tax and ETS policy in this paper. 

Specifically, I will answer the following research questions in this paper: 

1.Considering all the influential factors, will the designed carbon tax help China meet the INDC 

target of peaking the emissions and intensity reduction in 2030? 

2.At the same abatement target, will the carbon tax or ETS policy induce a higher real GDP 

(RGDP) and household welfare? Hence, I will answer whether the carbon tax or ETS policy is 

preferable. 
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Chapter 1–6 will answer the first research question, whilst Chapter 7 will answer the second 

research question. 

Research Methods 
Nowadays, a Computable General Equilibrium (CGE) model (Johansen 1960) has already become 

a standard and useful tool in the intermediate and advanced macroeconomics for empirical studies. 

Specifically, policy simulation is widely conducted to evaluate the costs and benefits through analysing 

aggregate welfare change and distributional impacts prior to the implementation of the envisaged 

policies. In this thesis, a dynamic recursive CGE model is the basic research framework and used to 

numerically solve the market clearance after the occurrence of a shock using the given economic data. 

With the detailed disaggregation of the electricity sector in the CGE model, the carbon tax will not 

adversely affect the development of the electricity subsectors exploiting renewables only. 

As carbon emissions and air pollutant emissions often originate from the same stationary and 

mobile sources (Workman, Blashki et al. 2019), a climate policy which curbs carbon emissions is likely 

to reduce air pollutant emissions, too. Because the improved air quality may induce health benefits, 

climate policies could become more attractive. Unfortunately, researchers tend to overlook such health 

benefits when evaluating climate policies in the literature. In this thesis, the health benefit of the carbon 

tax is modelled within the framework of the CGE model. The result comparison between the model 

considering the health benefit with the one excluding the benefit will reveal to what extent the health 

benefit increases the attractivity of the carbon tax. 

The primary aim of climate policies is to protect the climate (Rubbelke 2006). Unfortunately, as 

the climate belongs to the domain of public goods, primary benefits of climate policies are usually 

neglected in the literature, owing to the difficulties in quantification. An integrated assessment model 

(IAM) that integrates knowledge from two or more domains into a single framework (Nordhaus 2018) 

is becoming more and more popular in the literature to model climate issues. One of the earliest IAMs 

to model climate change was the Dynamic Integrated model of Climate and the Economy (DICE) 

model, dating back to Nordhaus (1992). As “the projections of most environmental variables have seen 

relatively small revisions” in the family of the DICE models (Nordhaus 2018), a DICE model is 

employed to quantify primary benefits of the simulated carbon tax. 

The United Nation Framework Convention on Climate Change (UNFCCC) has stressed the role 

of technical progress on the mitigation of the climate change (Akhavan and Jabbari 2007). Hence, the 

endogenization of technical progress could influence the costs or benefits of a climate policy, which 

makes the policy implementation less or more appealing. In this thesis, a technical index, which is a 

formula of energy and nonenergy efficiencies, is defined to show the technical level before and after 

the carbon tax. This technical index affects both economic growth and anthropogenic emissions. 
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Unexpectedly, the poor suffered disproportionally from the climate change, according to Althor, 

Watson et al. (2016) who empirically determined the relationship between countries’ greenhouse 

emissions and their vulnerability to negative impacts of the climate change. Nevertheless, a climate 

policy could reinforce such inequality, according to Fremstad and Paul (2019) who estimated the 

household carbon footprints and examined the policy effects of the tax on the multiple forms of the 

inequality. To model the inequality impact of the carbon tax, I divide the representative household into 

three subgroups, namely low-income, middle-income, and high-income subgroup. The income and 

consumption distribution among the subgroups may change if a climate policy is implemented. This is 

because the income sources and marginal propensity to consume are different among the subgroups. 

Therefore, the inequality condition is likely to change under the implementation of the carbon tax, and 

the varied inequality condition may also affect the policy effect of the tax in return. 

The socioeconomic impact of the rapid Chinese urbanisation, projected in 2018 World 

Urbanisation Prospects (WUP) by United Nations (UN), is modelled using an autoregressive distributed 

lag (ARDL) model, because ARDL models provide reliable results when variables are in mixed order 

of stationarity (Kalmaz and Kirikkaleli 2019). The results of the ARDL model show the projected 

percentage impacts of the urbanisation, which are inputted into the CGE framework, and the new model 

is called the urbanisation model. The result comparison between the urbanisation model, defined in this 

chapter, with the inequality model, defined in the previous chapter, will answer to what extent the 

projected urbanisation affects the policy effect of the carbon tax. 

Finally, I compare the policy effect of the carbon tax with the Emission Trading Scheme (ETS). 

This is because an ETS is another very popular climate policy in the literature. The simulated ETS 

policy is deigned to have the same emission reduction effect as the corresponding tax but different 

welfare effect to make an easy comparison. The comparison will reveal whether the carbon tax or ETS 

is preferable. In this chapter, I will consider the influential factors of the ETS policy, including the 

quantities of the initial quotas, ratio of the free quotas, carbon trading, and trading of the free quotas. 

The Tinbergen Rule states that efficient policy requires at least as many independent policy 

instruments as there are policy targets (Schader, Lampkin et al. 2014). In this paper, the simultaneous 

consideration of the externalities may induce inefficiencies. To achieve the most efficient policy effects, 

each externality should be addressed by a unique policy instrument. Hence, a uniform carbon tax or 

ETS policy, simulated in this paper, may not induce the most efficient policy effects, considering the 

ancillary and primary benefits and influential factors. 

Innovations 
I have employed a dynamic recursive CGE model to study the policy effects of the Chinese carbon 

tax. In the CGE model, the detailed disaggregation of the electricity sector separates the subsectors 
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exploiting fossil fuels from those exploiting renewables. This disaggregation protects the development 

of renewable energies from the adverse effects of the simulated carbon tax. 

I have modelled the ancillary benefit as the improvement in the labour health and thus the increase 

in the productivity originating from the reduction of the 𝑃𝑀2.5 concentrations. I have also modelled the 

primary benefit of the Chinese carbon tax, using the DICE/RICE model. Hence, I have innovatively 

modelled both the ancillary and primary benefits of the carbon tax within the CGE policy evaluation 

framework. 

I have quantified the induced technological change (ITC) of the carbon tax basing on the technical 

index, which is a function of the energy-use efficiency (EUE), energy-production efficiency (EPE), and 

nonenergy-production efficiency (ENE). 

I have introduced the inequality impacts into the CGE framework basing on the consumer 

behaviour study of Johansson-Stenman, Carlsson et al. (2002). The inequality condition is measured by 

the Palma ratio, and the inequality impacts are measured by the relative utility. 

I have used the ARDL model to quantify the urbanisation impacts, which are inputted into the CGE 

policy evaluation framework. Hence, I have innovatively modelled the urbanisation impacts on the 

policy effects of the carbon tax. 

I have designed the ETS policy under the same abatement target as the carbon tax to compare the 

welfare effects. In other words, the abatement target of the designed ETS policy is based on the tax rate 

of the carbon tax. Hence, the comparison of the welfare effects will unbiasedly reveal which climate 

policy is preferable. 
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Chapter 1: The CGE Model Structure and 

Framework 

Introduction 
The accelerating global climate change needs to be regulated by the government as the market 

price of carbon emission fails to internalise the climate damages (Jorgenson, Goettle et al. 2009). 

Consequently, the market mechanism cannot allocate resources efficiently and effectively as the climate 

belongs to the domain of public goods. The nonexcludable and nonrivalry features of the climate justify 

public initiatives to intervene the anthropogenic emissions. Such intervention is necessary to overcome 

the shortcomings of the market mechanism in the climate issues; otherwise, a rational economic entity 

will exploit the climate as much as possible. With climate regulations, the social costs of carbon (SCC) 

are internalised as a part of production costs (Zhen, Tian et al. 2018). The internalisation of the SCC 

will induce a new equilibrium where the benefits of an entity equal its individual costs plus social costs. 

The role of climate policies to arrive at socioeconomically efficient conditions is becoming more and 

more important facing the accelerating global warming (Ding, Maibach et al. 2011, McCright, Dunlap 

et al. 2013). 

Within the domain of climate policies, a carbon tax is recognised as one of the most cost-effective 

economic instruments to abate anthropogenic emissions (Li, Dai et al. 2018). This is because a carbon 

tax is beneficial to energy-saving, emission-reduction, and energy consumption structure optimisation, 

but taxes have small negative effects on economic growth (Lu, Tong et al. 2010, Chi, Guo et al. 2014). 

Nevertheless, a carbon tax may not effectively or efficiently induce anticipated socioeconomic and 

environmental outcomes considering the complicated socioeconomic connections or stringent 

environmental issues. Hence, it is important that a holistic and general model should be employed to 

simulate the whole economic system and related environmental issues to fully explore the policy effects 

of a carbon tax (Khastar, Aslani et al. 2020). Unfortunately, a great deal of previous research, which 

evaluated carbon taxes using microeconomic models, only focused on a specific sector or even a 

company (Almutairi and Elhedhli 2014, Martin, de Preux et al. 2014). These evaluations of carbon taxes 

could be accurate on a targeted sector or company; however, the evaluations could be biased on a 

holistic view. The biased evaluations are likely to reduce the governmental willingness of policy 

implementation. 

Previously, the biased evaluation of a carbon tax is mainly caused by using the partial equilibrium 

(PE) approach, where one or a few closely related markets are researched (Farrow and Rose 2018). For 

example, Doda and Fankhauser (2020) used a partial equilibrium model to evaluate the supply-side 

distributional consequences of climate policies; Kersting, Duscha et al. (2018) used a partial equilibrium 

model to analyse the impact of shale gas on the policy costs. Although the partial equilibrium models 



18 

 

in the above research could elaborate the role of a specific policy in some sectors (Sugiyama, Akashi et 

al. 2014), the results of the PE approach could be biased as this approach cannot capture the whole 

picture of the complicated socioeconomic intra- and inter-connections. 

In contrast, the general equilibrium (GE) approach considers all the potential sectoral interactions 

at the cost of relying on a more aggregated and abstract level of analysis (Gohin and Moschini 2006). 

In other words, the GE approach fully considers the impacts of a shock on all the markets within a given 

area over a certain period even though it is more difficult to interpret the results. The GE approach is 

criticised for the lack of micro theoretic foundations (Farrow and Rose 2018). But if interpreted 

appropriately in details, the results of the GE approach are much more trustworthy. In this chapter, the 

GE approach is adopted to comprehensively analyse the socioeconomic effects of the carbon tax in 

China. 

In the GE approach, Computable General Equilibrium (CGE) models have been widely used to 

study a carbon tax. CGE models stem from the general equilibrium theory of Walras, which implies 

that the aggregated supplies and demands are equalised across all the interconnected markets in the 

economy (Xie, Dai et al. 2018). To some extent, the advent of CGE models intensified the study of 

macroeconomic “closure,” or the reconciliation of the macroeconomic and multisectoral perspectives 

(Robinson and Rolandholst 1988). In other words, CGE models depict the reality by incorporating all 

the endogenous variables in a series of equations. Therefore, CGE model results could be much closer 

to the reality than the results of a PE model. Owing to the capacity and applicability of modelling 

socioeconomic phenomena, CGE models have already become standard and useful tools in policy 

simulations or evaluations (Guo and Liu 2016, Li and Jia 2017, Li, Dai et al. 2018). 

Although CGE models originated from the pioneering work of Johansen (1960), however, the first 

CGE model that analysed the impacts of a carbon tax was in Hudson and Jorgenson (1974). Since then, 

CGE models have become popular tools to evaluate socioeconomic impacts of a carbon tax (Wang, 

Huang et al. 2020). Recently, CGE models have been used to evaluate the potential impacts of carbon 

pricing at the macro level (Li and Su 2017). This is because multisectoral CGE models incorporate 

macro variables and economic mechanisms for achieving balance among aggregates (Robinson and 

Rolandholst 1988). 

Previously, researchers often used static CGE models to evaluate the policy effects of a carbon tax 

(Guo, Zhang et al. 2014, Chen, Zhou et al. 2017, Li and Jia 2017). As static or standard CGE models 

can only show the interrelations of macro variables in the short term (usually one year), they are not 

applicable for dynamic analysis in the long term. Hence, static CGE models are not well-adapted to 

measuring the macroeconomic effects of governmental policies, which usually last for more than one 

year (Bhattarai, Bachman et al. 2018). Also, static CGE models are criticised for the analytical 

inconsistency, as adjustments are assumed to occur spontaneously (Babatunde, Begum et al. 2017). In 
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the reality, economic variables could vary in a time order, and feedbacks exist after the occurrence of a 

shock. 

This chapter contributes to the literature by employing a dynamic recursive CGE model to study 

the policy effects of the Chinese carbon tax. A dynamic CGE model captures the accumulative 

characteristics of an economic activity and thus increases the mid/long term predictive capabilities of 

the simulations (Chi, Guo et al. 2014). Compared to a static CGE model, a dynamic recursive CGE 

model has an additional dynamic block to capture how the variables change over time. In addition, 

within the CGE framework, the detailed disaggregation of the electricity sector separates the subsectors 

exploiting fossil fuels from those exploiting renewables. This disaggregation protects the development 

of renewable energies from the adverse effects of the simulated carbon tax. 

Method 
In this chapter, the structure of the CGE model is mainly based on Guo, Zhang et al. (2014) who 

investigated the policy effects of the Chinese carbon tax based on China 2010 Input–Output Table. The 

CGE model in this paper is run by the GAMS software. The GAMS code of this chapter is built basing 

on Zhang et al. (2014) who generously shared the GAMS code of their CGE model in the supplementary 

material of their published paper. Starting from the GAMS code in this chapter, the GAMS codes of the 

other chapters are built by adding additional equations or changing the optimal condition. 

To construct the CGE model in this chapter, the top-down method is adopted, because it considers 

initial market distortions, pecuniary spill-overs, and income effects on various economic agents from 

an economy-wide perspective. In contrast, the bottom-up method neglects the macroeconomic impacts 

of simulated policies (Bohringer and Rutherford 2008). Although the hybrid of top-down and bottom-

up allows an analyst to exploit the advantages of the top-down and bottom-up method, the 

dimensionality problem imposes limitations on the practical application (Bohringer and Rutherford 

2008). Nevertheless, the top-down method lacks details in current and future technological options 

(Bohringer and Rutherford 2008). I will model the technical impact of the carbon tax later in the fourth 

chapter. 

The CGE model in this chapter includes two regions (China and the rest of the world) and four 

economic entities (the representative household, enterprise, foreigner, and government). As this chapter 

is intended for an environmental issue, an environment block is included in the CGE model. The sector 

division of the Chinese economy is shown in Table A1.1 in Appendix A. According to Table A1.1, 

there are 42 sectors in the 2015 China Input-Output Table, and 21 sectors are left through the 

aggregation and disaggregation process in this chapter. 

1. Production Block 
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In the production block, the top level is formed by a Leontief combination of intermediate inputs 

and added values, while the lower levels are modelled by constant elasticity of substitution (CES) 

functions. Eq. (1.1) shows the polynomial expression of a CES function, where 𝐹1 and 𝐹2 refer to the 

input of Factor 1 and Factor 2 respectively; 𝑆𝐺𝐷𝑃𝑖 is the output of Sector i by using Factor 1 and Factor 

2; 𝑠𝑐𝑎𝑙𝑒 is the scale parameter; 𝑆ℎ𝑟𝐹1 is the share of 𝐹1 in the production;  𝜌𝑓 denotes the elasticity 

parameter between 𝐹1 and 𝐹2.  

𝑆𝐺𝐷𝑃𝑖 = 𝑠𝑐𝑎𝑙𝑒 ∗ (𝑆ℎ𝑟𝐹1 ∗ 𝐹1

𝜌𝑓−1

𝜌𝑓 + (1 − 𝑆ℎ𝑟𝐹1) ∗ 𝐹2

𝜌𝑓−1

𝜌𝑓 ) 

𝜌𝑓

𝜌𝑓−1                      (1.1) 

 

Fig. 1.1 The Structure of the Production Block 

Fig. 1.1 shows the structure of the production block using the top-down method. In Fig. 1.1, the 

elasticity parameters in the CES functions are from Guo, Zhang et al. (2014), and their values are shown 

in Table A1.2 in Appendix A. Noticeably, the elasticity parameters of the electricity subsectors in this 

chapter are assumed to be the same as the elasticity parameter of the electricity sector given in Guo, 

Zhang et al. (2014). The influence of the elasticity parameters on the model equilibrium will be assessed 

by the sensitivity analysis to find out how reliable the results are. 
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A carbon tax or ETS policy will increase the costs of the nonrenewable energy inputs, and thus the 

quantities of the nonrenewable energy inputs will decrease. If the elasticity parameters are fixed, a 

decrease in the energy inputs will reduce the national output even if the nonenergy inputs are the same.  

2. Income-Expenditure Block 

In this block, a representative household and enterprise are introduced to represent the entire 

Chinese households and enterprises respectively. The household consumes either the domestic or 

foreign goods, whilst its income is determined by the labour, capital, and money transfers. By 

comparison, the enterprise’s income only comes from the capital source, whereas its expenditure 

includes the tax payments to the government and money transfers to the household.  

International labour migration and capital flow will complicate the CGE model structure, but their 

magnitudes are relatively small compared to the overall labour supply and capital investment, according 

to the NBS (2017) data. Hence, the labour and capital are assumed to be immobile across regions in this 

chapter. The sectoral move of labour and capital within the country may incur training and installation 

costs respectively, which are likely to affect the CGE model results. The NBS (2017) data have shown 

that the unemployment rate was 3.30%, and the other costs occupied 11.16% of the total investments 

on fixed assets in 2015. The CGE model could have quantified the unemployment and other costs at 

the price of the reduction in the degree of freedom. With a small sample size, I have simplified the 

complicated real world by assuming that the labour and capital are perfectly mobile across the sectors 

with no transaction costs. 

The simulated carbon tax may cause the flow of the labour or capital between the sectors, but the 

summation of the labour or capital is assumed to equal that in the baseline scenario where no carbon 

tax is imposed. The sectoral output is defined as the summation of the sectoral depreciation of fixed 

capital (DFC), compensation of employees (CE), net tax subsidies on production (NTSP), and operating 

surplus (OS) in 2015 China Input-Output Table. CE is the labour income. The summation of DFC and 

OS is the capital income. NTSP is the production tax. The summation of the sectoral output denotes the 

real GDP (RGDP) of the country. In this chapter, the output tax refers to the carbon tax imposed on the 

sectoral output of the energy sectors except for the electricity subsectors exploiting renewables. 

3. Government Block 

This block mainly focuses on the economic behaviours of a representative government which plays 

the entire roles of the local and central governments in China. The governmental income comes from 

the taxes imposed on the consumption, production, international trade, and carbon emissions. The 

government spends its income on the consumption, money transfers, and savings. The governmental 

spending is formed by a CES utility function. The collected revenues from the carbon tax could be 

recycled to three economic entities: the government, household, and enterprise. There are no officially 
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published data of the governmental energy consumption. Perhaps, this is because the governmental 

energy consumption is very small compared to the household and enterprise consumption. Hence, the 

governmental energy consumption and thus its emissions are assumed to be zero in this chapter. 

4. Trade Block 

In this block, the rest of the world (RW) produces goods consumed by the household, and it 

consumes goods imported from the enterprise. Trade balance is assumed when the export monetary 

value equals the import value. The exchange rate of the Chinese currency is exogenously determined 

as it is mainly affected by the RW. The trade function is based on the Armington (1969) assumption that 

goods produced in different regions are imperfect substitutes. Profit maximisation drives the enterprise 

to sell its goods either in the domestic or foreign market. This production choice is expressed using a 

constant elasticity of transformation (CET) function (Ge and Lei 2017). The CET function has the same 

mathematic formula as the CES function, but the exponent of the CET function must be larger than 1 

to ensure that the Production Possibility Frontier (PPF) is convex to meet the Armington Assumption. 

The CET function is shown in Eq. (1.2). 

𝑄𝐴𝑖 = 𝑠𝑐𝑎𝑙𝑒𝐶𝐸𝑇𝑖 ∗ (𝑆ℎ𝐶𝐸𝑇𝑖 ∗ 𝑄𝐸𝑖

𝜌𝐶𝐸𝑇,𝑖−1

𝜌𝐶𝐸𝑇,𝑖 + (1 − 𝑆ℎ𝐶𝐸𝑇𝑖) ∗ 𝑄𝐷𝐴𝑖

𝜌𝐶𝐸𝑇,𝑖−1

𝜌𝐶𝐸𝑇,𝑖 ) 

𝜌𝐶𝐸𝑇,𝑖
𝜌𝐶𝐸𝑇,𝑖−1         (1.2) 

In Eq. (1.2), 𝑄𝐴𝑖  is the total domestic production of the Commodity i; 𝑠𝑐𝑎𝑙𝑒𝐶𝐸𝑇𝑖 is the CET scale 

parameter of Commodity i; ∆𝑆ℎ𝐶𝐸𝑇𝑖  is the share of the export in the domestic production for 

Commodity i; 𝑄𝐷𝐴𝑖 is the domestic consumption of the domestically produced Commodity i; 𝜌𝐶𝐸𝑇,𝑖 is 

the elasticity parameter between the domestic consumption and export for Commodity i. 

However, the Armington assumption was criticised for three main drawbacks: difficulties in 

determining output prices in multi-region models with IO tables that permit interregional trade in 

intermediate goods; difficulties in measuring the number of unknown factor prices whose equilibrium 

values need to be determined simultaneously; difficulties in estimating the substitution elasticity 

between goods from different regions for small regions (Plassmann 2005). In this chapter, the CGE 

model is mainly targeted at the connection between China and the RW through the trade and money 

transfers, but there are no multiple-region specific households or sectors. Labour, capital, and energy 

are the three main production factors, and technology is introduced as an influential factor in the fourth 

chapter. The CGE model enables the prices of the production factors to be determined simultaneously 

when the optimal condition is reached. The two regions (China and RW) are both large, and there are 

no issues of estimating elasticities in small regions. Hence, the aforementioned three drawbacks of the 

Armington assumption will not be of great concern in this chapter. 

5. Environmental Block 
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Originating from Dufournaud, Harrington et al. (1988), an environmental CGE model usually has 

an additional environmental block, compared to a traditional CGE model. In the environmental block 

of the CGE model in this chapter, when no carbon tax is imposed, the carbon emissions from the 

household and sectoral energy consumption affect the air quality, thereby impairing the labour health 

and reducing the effective labour supply. On the contrary, the carbon tax imposed on the outputs of the 

nonrenewable energy sectors may induce the deadweight loss, the magnitude of which is measured by 

the Hicksian equivalent variation (Zhang 1998). However, the tax may also decrease the nonrenewable 

energy exploitation and thus abate the carbon emissions, which may increase the labour health. 

According to Choi, Liu et al. (2017), the anthropogenic emissions are calculated using Eq. (1.3), where 

𝐸𝐶𝑖𝑗 is the consumption of Energy j in Sector i; 𝛼𝑗 is the carbon emission factor of Energy j, according 

to IPCC (2006). 

𝐸𝑗 = ∑ 𝐸𝐶𝑖𝑗 ∗ 𝛼𝑗𝑖                                                          (1.3) 

6. Model Closure 

In this block, three conditions are applied to the model closure. Firstly, the market clearance means 

no free disposability; this is to say, the flows of the goods and factors must be absorbed by the 

production and consumption within and beyond the economy (Sue Wing 2004). Secondly, the zero 

profit implies the constant returns to scale in the production and perfectly competitive markets for the 

produced commodities (Sue Wing 2004). Thirdly, the income balance denotes that all the entities within 

and beyond the economy exhaust their incomes, but deficits are not allowed. 

7. Dynamic Block  

In this chapter, the exogenously determined dynamic variables are the population, price, energy 

consumption growth rate, output growth rate, and capital accumulation. The projected Chinese 

population will follow the medium variant scenario in 2017 World Population Prospects (WPP) by UN 

(2017). The export price is assumed to change proportionally to the price projection of the total OECD 

countries by OECD (2014), whereas the GDP deflator, domestic commodity price, and import price 

will change proportionally to the price projection of China by OECD (2014). All the prices in the base 

year 2015 are assumed to be one. The projected energy consumption growth rate is from the reference 

scenario in 2017 International Energy Outlook by EIA (2017). The output growth of the energy sectors 

will follow the projected growth of the energy consumption, whilst the output growth of the nonenergy 

sectors will follow the regional GDP long-term forecast by OECD (2018). The projected physical 

capital stock will follow Long and Herrera (2016), whilst the projected human capital stock is based on 

the annual China Human Capital Report published by China Centre for Human Capital and Labour 

Market Research (CHLR). Appendix C shows the projections of the exogenous variables mentioned 

above in details. 
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Fig. 1.2 The Framework of the CGE Model 

Fig. 1.2 shows the structure of the CGE model defined in this chapter. In Fig. 1.2, the connections 

among the economic entities and the environment are denoted by the arrows. The equations underneath 

the arrows are displayed in Appendix B. 

The database of a CGE model is usually drawn from a Social Accounting Matrix (SAM), which is 

mainly based on an input-output table. A SAM, which highlights the circular flows of payments within 

a system, is a simple and efficient way of representing the fundamental law of the economics that “for 

every income, there is a corresponding outlay or spending (Karimsakov and Karadag 2017). A SAM 

also provides a comprehensive and consistent description of the transactions in a given year 

(Karimsakov and Karadag 2017). A SAM captures the interrelations among the economic activities, 

production factors, and institutions, but it ignores the interactions between the economy and 

environment (Xie 2000). 

When studying environmental issues, researchers tend to use an environmental CGE model which 

is based on an environmental Social Accounting Matrix (ESAM). However, in this chapter, the CGE 

model is built on a traditional SAM to analyse the policy effects of the carbon tax. This is because the 

environmental impacts of the tax are modelled in the environmental block of the CGE model. To build 

the SAM, I have used the 2015 China Input-Output Table as the starting point. The sectoral labour input 

is equal to the sectoral labour income divided by the corresponding average wage, whilst the sectoral 

and household energy consumption data are from China Energy Statistical Yearbook by NBS (2016). 

In this chapter, the carbon emission factors (CEFs) have been calculated according to IPCC (2006), 

shown in Table 1.1. However, the CEFs of the liquid energies need to be adjusted by the density 
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parameters. This is because the units of the liquid energy CEFs are kg CO2/L, while the units of the 

liquid energy consumption in China Energy Statistical Yearbook are 104 t. 

Table 1.1 The Carbon Emission Factors (CEFs) 
Energy Coal Coke Crude Oil Kerosene Gasoline Diesel Oil 

Unit t CO2/t t CO2/t t CO2/t t CO2/t t CO2/t t CO2/t 

CEF 1.98 3.18 3.63 3.92 4.29 3.78 

Energy Fuel Oil Natural Gas TD Supercrit USC Subc 

Unit t CO2/t t CO2/10 M3 t CO2/104 kwh t CO2/104 kwh t CO2/104 kwh t CO2/104 kwh 

CEF 3.64 19.98 0.0062 22.10 20.19 15.15 

Energy NG Nuclear Hydro wind solar  

Unit t CO2/104 kwh t CO2/104 kwh t CO2/104 kwh t CO2/104 kwh t CO2/104 kwh  

CEF 22.39 0 0 0 0  

Table 1 shows the calculated CEFs in this chapter. Noticeably, the electricity generating from the 

renewables is assumed to have zero CEFs, whilst the electricity transmission and distribution (TD) has 

a very low CEF. This is because the TD consumes the electricity generating from the nonrenewable 

energies. 

According to NBS (2016) data, the electricity sector accounted for about 25% of the Chinese 

anthropogenic emissions in 2015. Previously, electricity was regarded as a clean energy from the 

consumption perspective (Guo, Zhang et al. 2014), and thus a carbon tax imposed on the energy 

consumption usually exempts the electricity consumption. However, the electricity generation does 

emit greenhouse gases, which suggests the need for levying taxes on the generation. A crowding-out 

effect may arise from the taxation on the energy from the consumption perspective. This is because a 

rational economic entity will consume more electricity when the prices of fossil fuels rise induced by 

the taxation. Considering that approximately 75% of the Chinese electricity was generated from fossil 

fuels in 2015, the taxation may unexpectedly increase the consumption of fossil fuels in the electricity 

generation stage. In contrast, a carbon tax imposed on the electricity generation may avoid the 

crowding-out effect. This is because the emissions of the electricity, an entity consumes, are linked to 

the carbon dioxide emitted at the generation stage. From the generation perspective, the emissions of 

the electricity sector are the emissions in the generation of the self-consumed electricity only. 

The disaggregation of the electricity sector is needed in the carbon taxation because some 

electricity subsectors mainly exploit renewables and thus emit almost no carbon dioxide. In contrast, 

the other electricity subsectors combust fossil fuels and thus emit large quantities of greenhouse gases. 

Without disaggregation, all the electricity subsectors are faced with the same tax rate, and consequently 

those who use renewables may be stuck in an unfavourable situation. Electricity disaggregation within 

the framework of a CGE model dates back to Wing (2006) who disaggregated the US electricity sector 

to analyse the general equilibrium effects of the US climate policy. In the China case, Lindner, Legault 

et al. (2013) disaggregated the Chinese electricity sector in the 2007 input-output table using the 

regional data. In this chapter, I have followed the disaggregation approach in Lindner, Legault et al. 

(2013) to implement the carbon tax fairly for the electricity subsectors exploiting renewables only. In 
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Table A1.3 in Appendix A, the electricity sector is decomposed into eight generation subsectors and 

one transmission and distribution (TD) subsector. Therefore, there are 21 sectors in the un-

disaggregated model, whilst there are 29 sectors in the electricity-disaggregated model. 

According to 2016 China Electric Power Yearbook (CEPY) published by CEPY Editor 

Association (2016), the Chinese power generation and grid investment in 2015 took up 45.9% and 

54.1% of the electricity sectoral output respectively. Hence, the TD subsector output is assumed to 

occupy 54.1% of the electricity sectoral output, whilst the output of the generation subsectors altogether 

occupies 45.9% of the electricity sectoral output. The energy consumption of the electricity sector is 

divided as: the coal consumption is assumed to be in the three coal generation subsectors based on the 

output; the oil consumption is assumed to be divided among the subsectors exploiting nonrenewable 

energies according to Lindner, Legault et al. (2013); the gas consumption is assumed to be in the gas 

generation subsector only. The consumed electricity in the TD subsector is from the generation 

subsectors according to the sectoral electricity consumption mix in Lindner, Legault et al. (2013). A 

generation subsector is assumed to consume the electricity only generated from its own. The nuclear, 

hydro, wind, and solar generation subsectors are assumed to exploit renewables only and thus have no 

emissions. 

In this chapter, the simulated carbon tax is imposed on the outputs of the sectors that produce 

nonrenewable energy. As the nonrenewable energy production becomes less profitable under the carbon 

tax, less renewable energy will be produced. Although the outputs of the nonenergy sectors are not 

directly affected by the carbon tax, the nonenergy sectors will face a shortage of the energy inputs, and 

thus their outputs are indirectly affected. In addition, the shortage of the energy inputs will increase the 

energy price, and thus the nonenergy sectors will pay more to use the nonrenewable energy. Hence, the 

outputs of the nonenergy sectors are indirectly affected by the carbon tax. Because of the reduction in 

the nonrenewable energy consumption, the output tax will finally reduce the sectoral carbon emissions. 

Compared to a Pigouvian tax imposed on the energy consumption directly, owing to its indirect 

effect on the energy exploitation, an output tax may encounter less oppositions from the nonenergy 

sectors, whilst the nonrenewable energy sectors may suffer more income loss as their outputs are 

directly taxed. Noticeably, under an output tax, a rational entity could use more imported fossil fuels 

because of the tax-induced energy shortage. Hence, in this chapter, the imported fossil fuels are assumed 

to be not affected by the carbon tax, considering that China’s energy import is mainly controlled by the 

government to ensure the energy security (Wu 2014). 

If implemented alone, the carbon tax belongs to the domain of first-best climate policies which 

rarely induce the optimum change of social welfare owing to the socioeconomic constraints in the 

reality. As first-best climate policies might not be socioeconomically advantageous, in this chapter, a 

second-best climate policy is simulated where the tax revenues are recycled to an economic entity (the 
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household, government, or enterprise) as the complementary policy of the carbon tax. Some researchers 

emphasised the importance of recycling the tax revenues as a complementary policy. For example, Liu 

and Lu (2015) used a dynamic CGE model to study the economic impacts of different carbon tax 

revenue recycling schemes in China, arguing that carbon revenue recycling schemes were important in 

designing the carbon tax; Xiao, Niu et al. (2015) utilised a dynamic recursive multi-sector CGE model 

to explore the policy effects of the environmental tax in China, concluding that the governmental refund 

of the tax could relieve the negative effects of the tax. Because of the unique policy design in this 

chapter and the consideration of the influential factors in the next chapters, the socioeconomic impacts 

of recycling the tax revenues could be very different in this paper from the previous research. 

Finally, a sensitivity analysis is performed to test the uncertainties of the parameters on the model 

results. This is because a sensitivity analysis answers how sensitive the equilibrium values of the 

economic variables are subject to the choice of the fundamental parameters (Hermeling, Loschel et al. 

2013). In a CGE framework, a sensitivity analysis is crucial because it is helpful to understand how the 

specific model works and respond to the critics of the ‘black box’ in the CGE analysis (Antimiani, 

Costantini et al. 2015). In this chapter, the sensitivity analysis is performed on the uncertainties of the 

elasticity parameters, namely the elasticities of substitution. This is because the elasticities between 

energy and other inputs and among fuels are the most important parameters that affect the CGE results 

(Lu and Stern 2016). Unfortunately, “in the economic literature, there is little consensus about different 

elasticities for energy products” (Bhattacharya 1996). Hence, it is crucial to test how sensitive the model 

results are to the uncertainties of the elasticity parameters. 

The elasticity parameters used in this chapter are from Guo, Zhang et al. (2014) who complied the 

elasticities in the previous research. In the sensitivity analysis, all the elasticity parameters are assumed 

to change by 50%, 20%, 10%, -10%, -20%, and -50% to study to what extent the elasticity parameters 

affect the model equilibrium. In the range of ±50%, the inputs in some sectors may turn from poor 

(good) substitutes to good (poor) substitutes (Lu and Stern 2016). In general, the high elasticity 

parameters imply that an economy is flexible, while the low elasticity parameters imply that an economy 

is stringent. 

To decompose the real GDP (RGDP) changes resulting from the elasticity parameter changes, I 

have used the Logarithmic Mean Divisia Index (LMDI) method following Lu and Stern (2016). Dating 

back to Ang and Liu (2001), the LMDI decomposition method is preferred in the literature as it has no 

unexplained residuals (Ang 2004). The LMDI decomposition in this chapter is shown in Eq. (1.4). 

∆𝑅𝐺𝐷𝑃

𝑅𝐺𝐷𝑃𝐵𝐴𝑈
=

∆𝑅𝐺𝐷𝑃

∆𝐸
×

∆𝐸

𝐸𝐵𝐴𝑈
×

𝐸𝐵𝐴𝑈

𝑅𝐺𝐷𝑃𝐵𝐴𝑈
                                            (1.4) 

In Eq. (1.4), ∆𝑅𝐺𝐷𝑃 is the absolute RGDP change under the carbon tax compared to the baseline 

scenario; 𝑅𝐺𝐷𝑃𝐵𝐴𝑈 is the baseline RGDP; ∆𝐸 is the absolute emission change under the tax compared 
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to the baseline scenario; 𝐸𝐵𝐴𝑈  is the baseline carbon emissions. According to Eq. (1.4), the RGDP 

relative change 
∆𝑅𝐺𝐷𝑃

𝑅𝐺𝐷𝑃𝐵𝐴𝑈
 could be decomposed into three parts: 

∆𝑅𝐺𝐷𝑃

∆𝐸
 is defined as the average 

mitigation cost; 
∆𝐸

𝐸𝐵𝐴𝑈
 is the relative emission abatement; 

𝐸𝐵𝐴𝑈

𝑅𝐺𝐷𝑃𝐵𝐴𝑈
 is the baseline carbon intensity.  

I have defined 𝑔 =
∆𝑅𝐺𝐷𝑃

𝑅𝐺𝐷𝑃𝐵𝐴𝑈
, 𝐶 =

∆𝑅𝐺𝐷𝑃

∆𝐸
, 𝐴 =

∆𝐸

𝐸𝐵𝐴𝑈
, and 𝐼 =

𝐸𝐵𝐴𝑈

𝑅𝐺𝐷𝑃𝐵𝐴𝑈
. Eq. (1.5) is obtained using 

the LMDI method, where ∆𝐶𝑘 =
𝑔𝑘−𝑔𝑑

𝑙𝑛
𝑔𝑘
𝑔𝑑

× 𝑙𝑛
𝐶𝑘

𝐶𝑑
, ∆𝐴𝑘 =

𝑔𝑘−𝑔𝑑

𝑙𝑛
𝑔𝑘
𝑔𝑑

× 𝑙𝑛
𝐴𝑘

𝐴𝑑
, and ∆𝐼𝑘 =

𝑔𝑘−𝑔𝑑

𝑙𝑛
𝑔𝑘
𝑔𝑑

× 𝑙𝑛
𝐼𝑘

𝐼𝑑
. In Eq. 

(1.5), the subscript k denotes the k set of the elasticity parameters, and d is the default set of the elasticity 

parameters. If Eq. (1.5) is divided by 𝑔𝑑, the relative parametric impact on the RGDP is shown in Eq. 

(1.6). 

∆𝑔𝑘 = 𝑔𝑘 − 𝑔𝑑 = ∆𝐶𝑘 + ∆𝐴𝑘 + ∆𝐼𝑘                                             (1.5) 

∆𝑔𝑘

𝑔𝑑
=

∆𝐶𝑘

𝑔𝑑
+
∆𝐴𝑘

𝑔𝑑
+
∆𝐼𝑘

𝑔𝑑
                                                          (1.6) 

Scenarios 
Recently, with increasing recognition of the significant of carbon taxes, researchers are interested 

to evaluate whether the carbon tax is an effective tool for China to accomplish the win-win targets of 

emission reductions and GDP growth (Liu, Bai et al. 2021). Hence, I have analysed the emission 

reduction and welfare effects of the designed carbon tax in this chapter.  

The tax rate is one of the key factors that determine the policy effects of a carbon tax (Liu, Bai et 

al. 2021). In this chapter, the carbon tax is defined basing on the fixed percentage tax rate rather than 

the fixed amount of the tax price. This is because the baseline Chinese carbon emissions will increase 

steadily over the period 2015–2030. A fixed amount of the tax price may achieve a larger proportion of 

the emission reduction when the emissions were lower at the beginning, but it may achieve a lower 

proportion of the emission reduction when the emissions will be higher at the end of the period. Hence, 

designing the carbon tax basing on the fixed percentage tax rate is more meaningful as the tax will 

regulate the carbon emission evenly over the research period. 

I have designed three fixed percentage tax rates of the carbon tax, namely the 1%, 2%, and 3% tax, 

which is equivalently to 2.4–4.9, 3.6–7.8, and 4.4–9.8 $/𝑡 𝐶𝑂2 over the research period. According to 

Li and Jia (2017), the National Development and Reform Commission and the Ministry of Finance of 

China has published the guidance for the ideal tax rate, where the low, medium, and high tax rate are 

1.7, 4.2, and 6.7 $/𝑡 𝐶𝑂2 respectively. Hence, the 1% tax in this chapter will vary around the medium 

tax rate; the 2% tax will vary between the medium and high tax rate; the 3% tax will vary around the 

high tax rate. 
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Table 1.2 The Designed Scenarios and Their Main Features in This Chapter 

Scenarios Electricity  

Disaggregation 

Tax Imposition Complementary 

Policy of Tax 

Production Model No NA NA 

Consumption Model No Output of Nonrenewable 

Energy Sectors 

NA 

Electricity Model 

(Output Tax) 

Yes Output of Nonrenewable 

Energy Sectors 

No 

Pigouvian Tax Yes Consumption of 

Nonrenewable Energies 

NA 

Tax Recycling Yes Output of Nonrenewable 

Energy Sectors 

Yes 

Marginal Policy 

Effect 

Yes Output of Nonrenewable 

Energy Sectors 

NA 

Note: NA means not applicable in the scenario 

Table 1.2 summarises the designed scenarios in this chapter. To begin with, I compare the 2015 

sectoral and household emissions from the electricity consumption and production perspective in the 

consumption and production model in the baseline scenarios. In the consumption model, the electricity 

sector has the emissions of the self-consumed electricity, whilst in the production model, the electricity 

has the emissions of all the generated electricity. At the 1% tax, the electricity sector in the consumption 

model is disaggregated into nine subsectors, and the disaggregated model is called the electricity model. 

The 1% tax is not imposed on the electricity subsectors exploiting renewables in the electricity model. 

In contrast, in the consumption model, all the electricity subsectors are confronted with the same tax 

rate, which is unfair to the electricity subsectors exploiting renewables. Noticeably, in these two models, 

the economic and emission indicators at the country level in the baseline scenario are assumed to be the 

same. 

In the electricity model, the carbon tax is imposed on the output of the sectors producing 

nonrenewable energies, and thus the tax is an output tax. I compare the policy effects of the 1% output 

tax with the 1% Pigouvian tax. In the aforementioned carbon tax, the tax revenues are assumed to be 

kept in the governmental budget. However, the tax revenues could be also recycled to the household or 

enterprise, and thus I have studied how the revenue recycling will influence the policy effects of the 

carbon tax. Finally, the marginal policy effects of the 1%, 2%, and 3% output tax are also analysed in 

this chapter. 

In the Intended Nationally Determined Contribution (INDC) target, China has promised to peak 

its emissions around 2030 and make the best effort to peak early; lower its emissions per unit of GDP 

by 60% to 65% from the 2005 level by 2030 (NDRC 2015). I will check whether the carbon tax will 

help China meet its INDC target. 
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Model Results 

 
Fig. 1.3 The 2015 Sectoral Emissions in the Consumption and Production Model (Unit: 106 t) 

Fig. 1.3 shows the distribution of the sectoral and household emissions in 2015. From the electricity 

production perspective (production model), the electricity sector had the largest emissions, whilst the 

metal sector had the largest emissions from the electricity consumption perspective (consumption 

model). In both models, the petroleum processing sector had the second largest emissions. 

 

Fig. 1.4 The Comparison of the 2015 Sectoral and Household Emissions 

Fig. 1.4 shows the percentage comparison of the emissions from the electricity consumption and 

production perspective. In the consumption model, the household and sectors had more emissions 

except that the electricity sector only had the carbon emissions from the self-consumed electricity in 

2015. The significant differences of the sectoral emissions between the two models imply that the 

carbon emissions from the electricity generation played a very important role in the total emissions of 

China. As the production model overlooks the genuine emissions of an economic entity, I have 

calculated the sectoral and household emissions using the consumption model. 

0

500

1000

1500

2000

2500

3000

3500
C

ar
bo

n 
Em

is
si

on
s

Consumption
Production

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100% Consumption Production



31 

 

 

Fig. 1.5 The Comparison of the Household Emissions at the 1% Tax (Unit: 106 t) 

Fig. 1.5 shows the comparison of the household emissions in the consumption and electricity 

model, where the electricity sector is disaggregated. At the 1% tax, the household emissions in the 

electricity model will be slightly higher than that in the consumption model, and the gap between the 

two models will remain stable over time. Generally, the household emissions in the electricity model 

are approximately 5% higher than that in the consumption model. Fig. A1.1 in Appendix A shows the 

household emissions in the baseline scenario where the emission gap between the two models will be 

smaller. 

 

Note: “Baseline” denotes the baseline scenario in the two models; “Consumption” and “Electricity” 

denote the 1% tax scenario in the consumption and electricity model respectively. 

Fig. 1.6 The Total Emissions in the Consumption and Electricity Model (Unit: 106 t) 

Fig. 1.6 shows how the total emissions will change over the studied period in the consumption and 

electricity model. In the baseline scenario, the total emissions will be the same in these two models. 

The 1% tax will reduce approximately 40% of the total emissions in both models, compared to the 

baseline scenario. However, the tax will induce the lower total emissions in the consumption model. 

This is because the electricity subsectors exploiting renewables are regulated by the carbon tax in the 
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consumption model but not regulated in the electricity model. Fig. A1.2 in Appendix A shows that the 

tax will have almost no effect on the carbon intensity in these two models. 

 

Fig. 1.7 The Household Welfare Change in the Consumption and Electricity Model (Unit: 1012 CNY) 

Fig. 1.7 shows how the 1% tax will affect the household welfare in the consumption and electricity 

model over the research period. In both models, the household welfare will deteriorate, but the welfare 

will decrease more in the consumption model. The gap of the welfare change between the two models 

will expand over time, but the difference is less than 2%. More welfare loss induced by the tax in the 

consumption model corresponds to the fact that the electricity subsectors exploiting renewables are 

regulated by the tax in the consumption model. Fig. A1.3 in Appendix A shows the real GDP (RGDP) 

change at the 1% tax compared to the baseline scenario. The RGDP change is very similar to the 

household welfare change: the tax will reduce the RGDP in both models and induce more deadweight 

loss in the consumption model. 

 

Fig. 1.8 The Tax Revenues in the Consumption and Electricity Model (Unit: 109 CNY) 

Fig. 1.8 shows the fluctuations of the tax revenues at the 1% tax over time in the consumption and 

electricity model. According to Fig. 1.8, in the consumption model, more tax revenues will be collected, 

which means the more governmental intervention on the market mechanism. This is because the 

electricity subsectors exploiting renewables are regulated by the tax in the consumption model, but they 
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are not regulated in the electricity model. Hence, the 1% carbon tax will induce more welfare loss in 

the consumption model, shown in Fig. 1.7 and A1.3. 

 

Fig. 1.9 The Household Emission Reduction under the Output and Pigouvian Tax 

Fig. 1.9 shows the policy effect of the output and Pigouvian tax on the household emissions over 

time. According to Fig. 1.9, compared to the baseline scenario, both taxes will reduce the household 

emissions significantly. The policy effect increased in 2015–2019 but will decrease during 2020–2030. 

The output tax will induce approximately 1% less household emission reduction than the Pigouvian tax, 

and the gap between the two taxes will remain stable over the research period. 

Fig. A1.4 in Appendix A shows the total emission reduction under the output and Pigouvian tax. 

According to Fig. A1.4, the total emissions will follow a very similar trend to the household emissions. 

However, the output tax will induce roughly 0.1% more total emission reduction than the Pigouvian 

tax, even though the gap between the two taxes is minimal. Similarly, Fig. A1.5 in Appendix A shows 

that the output tax will induce more carbon intensity reduction, compared to the Pigouvian tax. 

 
Fig. 1.10 The Household Welfare Change under the Output and Pigouvian Tax (Unit: 1012 CNY) 

Fig. 1.10 shows how the output and Pigouvian tax will affect the household welfare over time. 

Both taxes will decrease the household welfare, and this policy effect will be strengthened as the time 

goes by. According to Fig. 1.10, there are almost no differences in this policy effect between the two 
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taxes. This result implies that the output and Pigouvian tax have equal welfare effects. Similarly, Fig. 

A1.6 in Appendix A shows the policy effect on the RGDP. Both taxes will decrease the RGDP, and the 

policy differences between the two taxes are also minimal. 

 

Fig. 1.11 The Tax Revenues under the Output and Pigouvian Tax (Unit: 109 CNY) 

Fig. 1.11 shows the comparison of the tax revenues generated in the 1% output and Pigouvian tax. 

According to Fig. 1.11, the tax revenues under the output tax will be more than four times that under 

the Pigouvian tax, implying that the output tax is more conducive to the implementation of 

complementary polices, such as the recycling of the tax revenues. 

 

Fig. 1.12 The Household Emission Change under Recycling the Tax Revenues 

Fig. 1.12 shows the household emission change under the revenues recycled to the household and 

enterprise compared to the revenues kept in the governmental budget (government policy). According 

to Fig. 1.12, the household receiving the revenues (household policy) will induce the biggest household 

emissions. This is because the household income will be the highest in the household policy. Under 

recycling the tax revenues, the government or enterprise only partially gives their increasing income to 

the household through the money transfer. The economic intuition underneath Fig. 1.12 is that the 

household emissions are positively related to the income. 
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Fig. A1.7 in Appendix A shows the relative change of the total emissions under the revenues 

recycled to the household and enterprise in comparison with the government policy. Recycling the 

revenues to the enterprise (enterprise policy) will induce the highest total emissions, while the 

government policy will induce the lowest total emissions, implying that the government policy is the 

most environmentally friendly way to use the tax revenues. Similarly, Fig. A1.8 in Appendix A shows 

the carbon intensity change in the household and enterprise policy compared to the government policy. 

The enterprise policy will induce the highest carbon intensity, and thus this policy is the least 

environmentally friendly. 

 

Fig. 1.13 The Change of the Household Welfare Loss under Recycling the Tax Revenues 

Fig. 1.13 shows the change of the household welfare loss in the household and enterprise policy 

compared to the government policy. The household will have the largest welfare in the household 

policy, but this policy will still induce the net welfare loss. This finding implies that the tax revenues 

cannot cover the household welfare loss owing to the carbon tax. The household will suffer more 

welfare loss in the enterprise policy than that in the government policy, implying that the enterprise 

gives a smaller proportion of its income as the money transfer to the household compared to the 

government. The finding in Fig. 1.12 corresponds to the microeconomic theory that market mechanism 

allocates resources more efficiently than governmental intervention. Fig. A1.9 in Appendix A shows 

the RGDP loss in the household and enterprise policy relative to the government policy. Recycling the 

revenues to the government will incur the lowest amount of the RGDP loss. 
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Fig. 1.14 The Tax Revenue Change under Recycling the Tax Revenues 

Fig. 1.14 shows the change of the tax revenues in the household and enterprise policy compared to 

the government policy. Recycling the revenues to the enterprise will induce the highest amount of the 

tax revenues, which implies that the government will intervene the market mechanism the most in the 

enterprise policy. This finding complies with the economic intuition that more governmental 

intervention induces lower efficient allocation of resources and thus more deadweight loss.  

 

Fig. 1.15 The Marginal Policy Effect on the Household Emission Reduction (Unit: 106 t) 

Fig. 1.15 shows the marginal policy effect of the carbon tax on the reduction of the household 

emissions. According to Fig. 1.15, this marginal effect will decrease as the tax rate increases; generally, 

the effect of the 2% and 3% tax is approximately 1 3⁄  and 1 6⁄  that of the 1% tax respectively. The 

effect of the 1% tax increased during 2015–2019 but will decrease during 2020–2030. By comparison, 

the effect of the 2% and 3% tax will slightly increase over the research period. This decreasing marginal 

policy effect implies that a carbon tax may be not enough to achieve more ambitious mitigation targets. 

Fig. A1.10 in Appendix A shows that the marginal effect on the total emissions is quite similar to the 

marginal effect on the household emissions. 

Fig. A1.11 in Appendix A shows the marginal effect on the carbon intensity, which differs from 

the marginal effect on the carbon emissions. Although the 1% tax will still have the biggest marginal 
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effect, the policy differences varying across the tax rates will be much smaller than that of the carbon 

emissions. According to Fig. A1.11, this marginal effect will decrease over time, and all the three curves 

will have an identical trend. 

 

Fig. 1.16 The Marginal Policy Effect on the Household Welfare Loss (Unit: 1012 CNY) 

Fig. 1.16 shows the marginal effect of the carbon tax on the household welfare loss. This marginal 

effect will decrease as the tax rate increases, but it will be strengthened over time. The effect of the 2% 

and 3% tax is about  to  and  to  that of the 1% tax respectively. Similarly, Fig. A1.12 

in Appendix A shows that the diminishing marginal effect on the RGDP loss will increase as the time 

goes by. In 2015–2019, the effect of the 1% tax increased at a higher rate, but the increase rate will be 

much lower in 2020–2030. By comparison, the effect of the 2% and 3% tax will steadily increase over 

time. 

 

Fig. 1.17 The Marginal Policy Effect on the Tax Revenues (Unit: 109 CNY) 

Fig. 1.17 shows the marginal policy effect of the carbon tax on the tax revenues over the studied 

period. According to Fig. 1.17, the diminishing marginal effect on the revenues increased at a relatively 

lower rate before 2019 and will increase much faster since 2020. Hence, the diminishing marginal effect 

on the revenues is analogous to the microeconomic theory of diminishing marginal utility. 
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Note: 0% refers to the baseline scenario. 

Fig. 1.18 The Emission Growth Rate in the Baseline and Tax Scenarios 

Fig. 1.18 shows the projected emission growth rate over the studied period. In all the scenarios, the 

projected emission growth rate in 2030 will not approach zero or become negative. This result implies 

that China’s INDC target of peaking its emissions in 2030 will not be met if the carbon tax is the only 

climate policy that has been implemented. Fig. A1.7 in Appendix A shows that recycling the revenues 

to the household or enterprise will only slightly change the total emissions, compared to the revenues 

kept in the governmental budget. Hence, implementing the revenue recycling policy as the 

complementary policy of the carbon tax will still not help China meet this INDC target. 

The carbon intensity in 2005 is calculated as 0.31 kg/CNY, whilst the carbon intensity in 2030 will 

be 0.074 kg/CNY in the baseline scenario. As the projected intensity in 2030 will be lower than 65% of 

the 2005 level, China can meet its INDC target of the carbon intensity reduction even if no tax is 

imposed. Fig. A1.11 in Appendix A shows that the tax will slightly decrease the carbon intensity over 

time, implying that the INDC target of the intensity reduction will be also met in the tax scenarios. 

Results of the Sensitivity Analysis 
Table 1.3 The Comparisons of the Model Results in 2015 

Variables 50% 20% 10% -10% -20% -50% 

Household Emissions -14.00% -6.27% -3.27% 3.57% 7.48% 21.92% 

Total Emissions -14.12% -6.33% -3.30% 3.60% 7.55% 22.13% 

Carbon Intensity -0.087% -0.035% -0.017% 0.017% 0.035% 0.088% 

Welfare Loss 23.90% 10.71% 5.58% -6.09% -12.78% -37.43% 

Tax Revenues -15.07% -6.74% -3.51% 3.83% 8.03% 23.51% 

RGDP Loss 23.82% 10.68% 5.56% -6.08% -12.75% -37.35% 

Table 1.4 The Comparisons of the Model Results in 2030 

Variables 50% 20% 10% -10% -20% -50% 

Household Emissions -10.71% -4.68% -2.41% 2.58% 5.34% 14.95% 

Total Emissions -10.84% -4.73% -2.44% 2.61% 5.40% 15.12% 

Carbon Intensity -0.10% -0.041% -0.020% 0.020% 0.041% 0.10% 

Welfare Loss 27.57% 12.04% 6.21% -6.63% -13.73% -38.46% 

Tax Revenues -11.78% -5.14% -2.65% 2.83% 5.85% 16.37% 

RGDP Loss 27.50% 12.01% 6.20% -6.62% -13.71% -38.40% 
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Table 1.3 and 1.4 show the results of the sensitivity analysis. If the economy becomes more 

inflexible, both the carbon emissions and intensity will increase. This is because in a less flexible 

economic, shifting to the low-carbon economy is more costly because of the high transaction costs. In 

contrast, the economic flexibility is negatively related to the household welfare loss and RGDP loss. 

This is because the mitigation costs would be lower in less flexible economies than that in more flexible 

economies (de La Grandville 1989). Similarly, Lu and Stern (2016) explored how the elasticity 

parameters affected the costs of the carbon tax in a CGE model, concluding that less flexible economies 

would induce the lower GDP loss under the carbon tax, and more flexible economies would have higher 

costs. 

Over the research period 2015–2030, the impacts of the elasticity parameters on the carbon 

emissions and tax revenues will increase, whilst the impacts on the other indexes will decrease. 

Generally, the percentage changes of the major indexes of the CGE model are much smaller than the 

corresponding percentage changes of the elasticity parameters, implying that the results of the CGE 

model are robust to the uncertainties of the elasticity parameters. 

Table 1.5 The LMDI Decomposition of the RGDP Change in 2015 and 2030 

Year 
Parameter 

Change 

RGDP 

(∆𝑔𝑘 𝑔𝑑⁄ ) 

Emission 

Abatement 

(∆𝐴𝑘 𝑔𝑑⁄ ) 

Mitigation  

Cost 

(∆𝐶𝑘 𝑔𝑑⁄ ) 

Baseline 

Intensity 

(∆𝐼𝑘 𝑔𝑑⁄ ) 

2015 

50% 23.82% 23.68% 0.14% 0 

20% 10.68% 10.61% 0.068% 0 

10% 5.56% 5.53% 0.037% 0 

-10% -6.08% -6.03% -0.043% 0 

-20% -12.75% -12.65% -0.093% 0 

-50% -37.35% -37.02% -0.33% 0 

2030 

50% 27.50% 27.29% 0.21% 0 

20% 12.01% 11.91% 0.10% 0 

10% 6.20% 6.14% 0.054% 0 

-10% -6.62% -6.56% -0.062% 0 

-20% -13.71% -13.58% -0.13% 0 

-50% -38.40% -37.94% -0.46% 0 

Table 1.5 shows the LMDI decomposition of the RGDP change resulting from the changes of the 

elasticity parameters. According to Table 1.5, the relative carbon emission abatement will have a 

predominant influence on the RGDP change, whilst the average mitigation cost will not make a 

significant contribution to the RGDP change. The LMDI decomposition in 2015 shows very similar 

findings to that in 2030. Different from Lu and Stern (2016), the baseline carbon intensity will not 

correlate with the RGDP change induced by the elasticity parameter changes in this chapter. This is 

because in the baseline scenario, the RGDP is defined as the sum of the added-values in the Input-

Output Table, and the carbon emissions are defined as the energy consumption, according to China 

Energy Statistical Yearbook (NBS 2016), multiplied by the carbon emission factors, given by IPCC 
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(2006). Therefore, defined as the carbon emissions divided by the RGDP, the carbon intensity will 

remain unchanged over time irrespective of the elasticity parameter changes in the baseline scenario. 

Discussion 
The CGE results in this chapter empirically shows that the carbon tax will decrease the carbon 

emissions significantly. This finding is in line with Dong, Dai et al. (2017) who used a 30-Chinese-

province CGE model to show that the carbon tax would decrease the Chinese industrial carbon 

emissions significantly. Similar policy effect could be also found worldwide: for example, the carbon 

tax would have the great capacity to decrease the greenhouse gas emissions in South Africa (van 

Heerden, Blignaut et al. 2016); the carbon tax could achieve the primary goal of reducing the carbon 

emissions in the US (Macaluso, Tuladhar et al. 2018). 

Different from the policy effect on the carbon emissions, the effect of the tax on the carbon intensity 

is not distinct in this chapter. This finding disagrees with the previous research showing that the tax 

could decrease the carbon intensity by over 20% and 25% in Liaoning Province and the rest of China 

(ROC) respectively compared to the baseline scenario (Li, Dai et al. 2018). The result difference lies in 

the structure of the CGE model: Li, Dai et al. (2018) modelled the provincial inflow and outflow of the 

consumption and production if the tax rate differed across the regions. In contrast, the carbon tax is 

imposed at the same rate across China with the rest of the world (RW) implicitly included in this chapter. 

Also, there existed a scale effect of the production and consumption in Liaoning Province compared to 

the ROC in Li, Dai et al. (2018), whilst the economic scale of the RW is assumed to be not affected by 

the Chinese carbon tax in this chapter. 

The carbon tax will decrease the household welfare over the research period. This finding abides 

by Guo, Zhang et al. (2014) who used a CGE model to investigate the socioeconomic impacts of the 

Chinese carbon tax and empirically found that the policy effect of the Chinese carbon tax on the welfare 

was negative. Previous studies with similar findings were also performed elsewhere: for example, Orlov 

and Aaheim (2017) used a multi-regional and multi-sectoral CGE model to empirically show that the 

international climate policy could decrease the private welfare by 1.8% in Russia; Woollacott (2018) 

used the forward-looking dynamic CGE model to show that the marginal net welfare cost of the US 

carbon tax was 27 $/t 𝐶𝑂2. 

The carbon tax will induce the deadweight loss of the real GDP (RGDP) over the research period. 

This finding complies with Dong, Dai et al. (2017) who used a 30-Chinese-province CGE model and 

concluded that the implementation of the carbon tax would impede the economic development for all 

the Chinese provinces. Similarly, Zhang, Guo et al. (2016) applied a CGE model to investigate the 

policy effects of the Chinese carbon tax at the provincial level and empirically found that the carbon 

tax could result in a slowdown in the Chinese economic growth. Similar empirical evidence could be 

found worldwide: for example, the CGE results implied that the application of the carbon tax led to the 
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adverse effects on the GDP in Finland (Khastar, Aslani et al. 2020); there was an inversely proportional 

relationship between the carbon tax level and GDP in Brazil (Grottera, Pereira et al. 2017). 

The marginal effects of the carbon tax on the emission reduction will decrease as the tax rate 

increases. This finding agrees with the previous research showing that the carbon tax had a decreasing 

marginal impact on the total emission reduction, implied by the non-equilibrium bottom-up model 

(Knobloch, Pollitt et al. 2019). Similarly, Jorgenson, Goettle et al. (2018) employed an intertemporal 

general equilibrium model and empirically found that the emission abatement increased at a decreasing 

rate with the increasing severity of the carbon taxation. 

The carbon tax will have a decreasing marginal effect on the RGDP in this chapter. This finding 

fits in with Xiao, Niu et al. (2015) who used a dynamic recursive multi-sectoral CGE model to 

empirically show that the higher tax rate could cause more negative effects on the GDP, but the carbon 

tax had a decreasing effect with the increase of the tax rate. Similarly, Mardones and Lipski (2020) used 

a CGE model to show that the negative effect of the carbon tax on the agricultural output in Chile would 

decrease as the tax rate increased. 

The revenue recycling policy in this chapter will have a minimal impact on the CGE model 

equilibrium over the studied period. This finding disagrees with Sands (2018) who used a CGE model 

to empirically show that the revenue recycling could make a difference to the policy effects of the 

carbon tax in the US. The result difference between Sands (2018) and this chapter lies in the way the 

revenues are recycled: the revenues were recycled as the reduction in the labour or capital tax in Sands 

(2018). By comparison, in this chapter, the labour or capital tax is exogenously given in 2015 China 

Input-Output Table, and thus the tax revenues are recycled as the increase in the income of the targeted 

entity directly. 

Hence, the designed revenue recycling policy could be one major limitation in this chapter. This is 

because how the recycling policy stimulates the economic growth is not fully explored in this chapter. 

Future research may lie in the detailed study of the mechanism that the revenue recycling complements 

the policy effects of the carbon tax. 

Another limitation in this chapter is that I have not considered the potential benefits of the carbon 

tax in addition to the emission reduction. Overlooking the benefits is likely to induce a biased evaluation 

of the carbon tax, and thus a climate policy is usually not appealing to the government. If all the benefits 

had been considered, the carbon tax might have increased the GDP and welfare. Therefore, I will 

explore the potential benefits of the carbon tax in the next chapters where the benefits are endogenously 

determined in the CGE framework. 

The simulated 1%, 2%, and 3% tax cannot help China meet the INDC target of peaking the 

emissions in 2030. To meet this INDC target, China needs to implement more climate policies. The 
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highest amount of the tax rate, in this chapter, will be 9.8 $/𝑡 𝐶𝑂2 in 2030 at the 3% tax, but it is much 

lower than the designed carbon price of 20–120 $/𝑡 𝐶𝑂2 in Dong, Dai et al. (2017). According to Yang, 

Teng et al. (2018), the marginal abatement cost to achieve China’s INDC target was equivalent to 13.2 

$/𝑡 𝐶𝑂2. Hence, under a carbon tax with a much higher tax rate, China could meet the INDC target of 

peaking its emissions. 

Policy Implications 
The carbon tax should be imposed on the consumption of the electricity as the electricity in China 

is mainly generated from nonrenewable energy. A differentiated carbon tax on the electricity subsectors 

is better than a uniformed tax on the electricity sector, because the electricity subsectors exploiting 

renewables should not be taxed. Although the differences of the policy effects between the output tax 

and Pigouvian tax are minimal, the output tax is more advantageous to be implemented as a second-

best climate policy. Recycling the tax revenues is not an important complementary policy of the carbon 

tax because it minimally changes the policy effects of the carbon tax. The tax has diminishing marginal 

effects both on the emission reduction and welfare loss. The carbon tax cannot help China meet the 

INDC target of peaking the emissions; a carbon tax with a higher tax may help China meet this INDC 

target. 

Conclusion 
Modelling the electricity carbon emissions from the electricity consumption perspective is 

beneficial to revealing the genuine household and sectoral emissions as the electricity generation in 

China is not environmentally friendly. Disaggregating the electricity sector is helpful to implement the 

carbon tax fairly as the electricity subsectors exploiting renewables should not be taxed. The 

disaggregation of the electricity sector will change the policy effects of the carbon tax. Specifically, the 

electricity disaggregation will increase the carbon emissions by 5% but decrease the welfare loss by 

less than 2%. 

The policy effects of the output tax, imposed on the outputs of the nonrenewable energy sectors, 

are different from that of the Pigouvian tax, imposed on the consumption of the nonrenewable energies 

directly. The output tax will induce 1% less household emission reduction but 0.1% more total emission 

reduction. There are almost no differences in the policy effect on the RGDP and household welfare 

between the two taxes if the tax is implemented as a first-best climate policy. Nevertheless, the output 

tax is more advantageous to be implemented as a second-best climate policy, because the tax revenues 

under the output tax will be more than four times that under the Pigouvian tax. Therefore, the output 

tax is preferable because the implementation of a first-best policy is usually constrained by 

socioeconomic factors in the reality. 

Recycling the revenues to the government is the most environmentally friendly and economically 

efficient policy. However, from the household perspective, recycling the tax revenues to the household 
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is more appealing as the welfare loss is the least, but this policy still cannot compensate the household 

welfare loss resulting from the carbon tax. The household may not support the enterprise policy, but 

this policy will induce the highest amount of the tax revenues. Nevertheless, there will be less than 0.1% 

differences in the policy effects of recycling the tax revenues. This result implies that recycling the 

revenues is not an important complementary policy to the carbon tax. 

There are diminishing marginal effects of the carbon tax on the carbon emissions, carbon intensity, 

household welfare, tax revenues, and RGDP loss. However, the diminishing marginal effects will vary 

across the indexes: the marginal effect of the 2% and 3% tax on the emissions is approximately 1⁄3 and 

1⁄6 that of the 1% tax respectively; The marginal effect of the 2% and 3% tax on the household welfare 

loss is about 1 3⁄  to 1 2⁄  and 1 6⁄  to 1 4⁄  that of the 1% tax respectively. All the marginal effects will 

increase over the research period except that the marginal effect of the 1% tax on the carbon emissions 

will fluctuate over time. 

The carbon tax alone cannot help China meet the INDC target of peaking the emissions in 2030 

even if the revenue recycling is implemented as the complementary policy of the tax. Nevertheless, 

China can meet its INDC target of the carbon intensity reduction in 2030 even if no tax is imposed. As 

the carbon tax slightly reduces the carbon intensity over time, this INDC target will be also met in the 

tax scenarios. 

The carbon tax will induce less welfare loss as well as less emission reduction if the Chinese 

economy becomes more inflexible. The LMDI decomposition analysis shows that the RGDP changes 

resulting from the elasticity parameter changes are mainly influenced by the changes of the relative 

emission abatement but irrelevant to the changes of the baseline carbon intensity. As the percentage 

changes of the major indexes are much smaller than the corresponding percentage changes of the 

elasticity parameters, I conclude that the CGE model is not severely influenced by the elasticity 

parameters. 
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Chapter 2: The Ancillary Benefit of the 

Carbon Tax 

Introduction 
Although a climate policy is mainly targeted to curb carbon emissions, it may also improve air 

quality because combustion of fossil fuels generates not only greenhouse gases but also other hazardous 

pollutants” (Cushing, Blaustein-Rejto et al. 2018). In other words, carbon emissions and air pollutant 

emissions often originate from the same stationary and mobile sources (Workman, Blashki et al. 2019). 

Hence, a climate policy which curbs carbon emissions is likely to reduce air pollutant emissions, too. 

Such kinds of benefits are called ancillary benefits, also known as secondary benefits, co-benefits or 

spill-over benefits in the literature (Longo, Hoyos et al. 2012). The ancillary benefits of a climate policy 

usually include improvements in human health and life expectancy, reduced materials and crop damage, 

better visibility, reduced road traffic congestion, and a diminished solid waste load (Dessus and 

O'Connor 2003). In contrast, primary benefits of a climate policy include “the direct benefits of 

greenhouse gas mitigation through avoided climatic change and the reduced likelihood of any ensuing 

net adverse impacts” (Corfee-Morlot and Agrawala 2004). Ancillary benefits stem from a climate policy 

but are different from the policy’s primary aim of climate protection (Rubbelke 2006). Pearce (2000) 

empirically found that a climate policy’s ancillary benefits could be comparable in size to its primary 

benefits targeted at the climate change. 

Despite their significant socioeconomic impacts, the ancillary benefits of a climate policy are 

usually overlooked within the framework of a CGE model. For example, Dong, Dai et al. (2017) 

designed a 30-Chinese-province CGE model to analyse the policy effects of the carbon tax, concluding 

that the tax would induce GDP loss. Overlooking the ancillary benefits corresponds to the fact that 

previous researchers tend to focus on the economy-wide effects of climate policies only (Orlov and 

Aaheim 2017) but neglect the important linkage between economic activities and environmental 

problems including air pollution (Aunan, Berntsen et al. 2007). This is because the clean air belongs to 

the domain of public goods, and there usually exist difficulties in internalising the externalities. 

Conversely, accounting for the ancillary benefits is likely to increase the attractiveness of a climate 

policy for governmental implementation. For example, if ancillary benefits are considered, the general 

public’s willingness to pay for climate policies were estimated to be 53–73% higher, implied by the 

Contingent Valuation Method (Longo, Hoyos et al. 2012). Similarly, Dessus and O'Connor (2003) used 

a CGE model, empirically showing that Chile could reduce its carbon emissions by almost 20% from 

the 2010 baseline with no net welfare loss if the ancillary benefits were considered. 

When analysing the ancillary benefits of a climate policy, researchers tend to use a partial 

equilibrium model. For example, Yang, Teng et al. (2018) used cost-benefit analysis (CBA) to evaluate 
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the policy effects of a Chinese carbon tax, showing that in the normal end-of-pipe control (NEPC) 

scenario, the carbon mitigation cost was 0.08% of the GDP loss, compensated by the environmental 

benefits accounting for 0.14% of the GDP. The CBA method in Yang, Teng et al. (2018) neglected the 

existence of feedback loops in their research framework. For example, the carbon tax will reduce the 

carbon emissions, which in turn will increase the labour health and thus labour input. The increase of 

the labour input will promote the GDP growth, which will increase the energy consumption and thus 

carbon emissions. Finally, the emission reduction effect of the carbon tax will be impaired in the 

balancing loop. Hence, if all the socioeconomic and environmental feedbacks had been analysed using 

a general equilibrium model, the results could have been different from that in Yang, Teng et al. (2018). 

Health benefits account for approximately 70–90% of the total ancillary benefits of a climate policy 

(Ostblom and Samakovlis 2007), and thus they could be considered as the representation of the ancillary 

benefits. In other words, this chapter focuses on the health benefit that is linked to the reduction of the 

air pollutant concentrations. In the China example, fine particulate matter with a diameter of 2.5 microns 

or less (𝑃𝑀2.5) is usually used to denote the air quality, because this air pollutant severely affects the 

labour productivity (Zhang and Jin 2017, Li, Zou et al. 2020). The exposure to 𝑃𝑀2.5 can cause lung 

and respiratory diseases, increase plaque formation in the blood vessels, affect the autonomous nervous 

system, and trigger premature deaths (He, Xue et al. 2012, Liu, Li et al. 2014). “In a fine particle (𝑃𝑀2.5) 

ranking of Global Burden of Disease regions, East Asia came out on top, both for its mean level in 

2001–2010 estimated at 50 𝜇𝑔/𝑚3  and for its trend at +1.6 𝜇𝑔/𝑚3/𝑦𝑒𝑎𝑟” (He, Liu et al. 2019). 

Therefore, 𝑃𝑀2.5 has recently become a primary pollutant which threats the health of the Chinese 

population (Liu, Li et al. 2014). 

Although 𝑃𝑀2.5 does affect human health and thus equilibrium conditions, little research has been 

comprehensively conducted to model the health impact of a climate policy in the literature. Although 

Xu, Xu et al. (2018) used a dynamic CGE model to evaluate the impact of a coal resource tax on the 

carbon reduction and haze, a more general and broader climate policy is needed to cope with the climate 

issue as well as the air pollution, considering that oil and gas are becoming more and more important 

in China’s energy budget currently. On the contrary, Hu, Sun et al. (2019) and Wei, Li et al. (2018) 

only evaluated the policy effects of controlling the air pollution, but they neglected the potential effects 

of the policy on the reduction of the greenhouse gases. Aunan, Berntsen et al. (2007) employed a CGE 

model to assess the costs and benefits of the climate commitment, concluding that China can reduce its 

emissions without suffering welfare loss. However, Aunan, Berntsen et al. (2007) emphasised that half 

of the benefits originated from the agricultural yields using 1997 input–output data. According to 2016 

China Statistical Yearbook (NBS 2016), the agricultural output occupied 17.9% of the Chinese GDP in 

1997, but the share decreased to 8.9% in 2015. Hence, the proportion of the agricultural ancillary 

benefits may be much less in 2015–2030 than that in 1997. Therefore, the CGE results presented in the 

aforementioned studies tend to evaluate the ancillary benefits of a climate policy biasedly. 
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This chapter contributes to the literature by using the CGE model to comprehensively model the 

ancillary (health) benefit as well as the other policy effects of the carbon tax. Specifically, the imposition 

of the carbon tax will decrease the fossil fuel combustions, leading to the reduction of the 𝐶𝑂2 and 

𝑃𝑀2.5 emissions. The decreasing 𝑃𝑀2.5 emissions will cause the reduction in its concentrations. Hence, 

the ancillary benefit is modelled as the improvement in the labour health and thus the increase in the 

productivity originating from the reduction of the 𝑃𝑀2.5 concentrations. In summary, accounting for 

the ancillary benefit may increase the labour productivity and thus boost the economic growth, which 

could decrease the welfare loss resulting from the carbon tax. 

Method 
The model employed in this chapter is based on the electricity model (output tax) defined in the 

previous chapter. However, I have quantified the health benefit in the environmental block of the CGE 

model in this chapter. To begin with, I have obtained the mean 𝑃𝑀2.5 exposure data from the World 

Bank shown in Fig. 2.1. 

 

Data Source: World Development Indicators by World Bank (WB) 

Fig. 2.1 The 𝑃𝑀2.5 Mean Exposure (𝜇𝑔/𝑚3) in China 

Fig. 2.1 shows the historical mean 𝑃𝑀2.5 exposure in China. According to Fig. 2.1, the exposure 

increased dramatically in 1990–2010 and fluctuated in 2010–2016. If China implemented strict climate 

policies to control the combustion of fossil fuels, the 𝑃𝑀2.5 concentrations would decrease in the future 

(Wang, Zhao et al. 2017). Unlike carbon dioxide, 𝑃𝑀2.5  does not have universally acknowledged 

emission factor data published by IPCC. If the emission factor of 𝑃𝑀2.5 remains unchanged, the 𝑃𝑀2.5 

emissions are proportional to the consumption of the fossil fuels. 

Previously, the projected 𝑃𝑀2.5 emissions in China tend to fluctuate dramatically owing to the 

various projection models applied or influential factors considered. The results of some previous 

research are compiled in Table 2.1. 

 

46

48

50

52

54

56

58

60

1985 1990 1995 2000 2005 2010 2015 2020

M
ea

n
 E

x
p

o
su

re

Year



47 

 

Table 2.1 Projected 𝑃𝑀2.5 Emission Change in China 

Authors Research Period Changes of 𝑃𝑀2.5 emissions 

Amann, Kejun et al. (2008)  2005–2030 -10% 

Cofala, Bertok et al. (2012) 2010–2030 -20% 

Wang, Zhao et al. (2014) 2010–2030 -8% 

IEA (2017) 2017–2040 -50% 

Cai, Ma et al. (2018) 2013–2030 Slightly (Unspecified) 

Table 2.1 summarises the projected changes of the Chinese 𝑃𝑀2.5 emissions in some previous 

studies. The projected change in IEA (2017) is much larger than that in the other studies because the 

projection in IEA (2017) was based on the new-policies scenario. Based on World Energy Outlook 

2012, the data in Cofala, Bertok et al. (2012) could be outdated as World Energy Outlook is published 

annually. Cai, Ma et al. (2018) used the chemical transport model (GEOS-Chem) to investigate the 

effects of the air pollutant control policies in China, but they only mentioned the slight decrease of the 

𝑃𝑀2.5 emissions without any exact data under the current legislation and implementation status. Amann, 

Kejun et al. (2008) and Wang, Zhao et al. (2014) showed quite similar projected changes of the baseline 

𝑃𝑀2.5 emissions. Considering the overlapping of the research period as well as the citation frequency, 

I have used the baseline 𝑃𝑀2.5 emission data in Wang, Zhao et al. (2014) who argued that the 𝑃𝑀2.5 

emissions in China were 11.786 Mt  in 2010 and would be 11.736 Mt in 2020 and 10.872 Mt in 2030. 

In this chapter, the 𝑃𝑀2.5 emissions were estimated as 11.761 Mt in 2015 on the assumption that the 

𝑃𝑀2.5 emissions would change at a constant rate during 2010–2020 and 2021–2030. The projected 

𝑃𝑀2.5 emissions are shown in Fig. 2.2. 

 
Fig. 2.2 The Projected 𝑃𝑀2.5 Emissions in the Baseline Scenario (Unit: Mt) 

Fig. 2.2 shows the projected 𝑃𝑀2.5 Emissions in the baseline scenario of this chapter. According 

to Fig. 2.2, the 𝑃𝑀2.5 Emissions decreased slightly in 2015–2020 and will decrease dramatically in 

2021–2030. This dramatic emission decrease in the future 10 years corresponds to the Chinese 

government’s efforts to control the severe air pollution (He, Zhang et al. 2020). 

According to Zhang, Cai et al. (2017), the average contribution rate of the primary source, namely 

the anthropogenic activities (consisting of the vehicle exhaust, coal combustion, dust, biomass burning, 

and industrial emissions), to the 𝑃𝑀2.5 concentrations is 60% and 50% in the northern and southern 
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China respectively. By comparison, the other source, consisting of the secondary source (formed 

through processes in the atmosphere) and the  emissions from the rest of the world, accounts for 

40% and 50% of the  concentrations in the northern and southern China respectively. According 

to Central People’s Government of the People’s Republic of China (CPGPRC), northern and southern 

China occupy approximately 20% and 25% of the total land in the country (the rest of the country is 

sparsely populated). Hence, the weighted contribution of the primary source to the  

concentrations is calculated as 54.44%, and the other source accounts for 45.56% of the  

concentrations in China. The impacts of the  concentrations on the labour productivity are also 

decomposed into the primary source impact and the other source impact. 

The World Bank (WB) data show that the  concentrations in China fluctuated from 69.48 

 in 2010 to 59.06  in 2015, decreased to 52.21  in 2016, and remained relatively 

stable at 52.66  in 2017. In this chapter, the projected  concentrations in 2018–2030 are 

based on the 2017 data. Over this period, the projected  concentrations from the other source are 

assumed to equal , while the projected  concentrations from 

the primary source are assumed to vary proportionally to the changes of the  emissions from the 

2017 data, shown in Eq. (2.1). 

       (2.1) 

Eq. (2.1) shows the projected  concentrations in 2018–2030.  denotes the projected 

 concentrations in Year t;  is the  emissions in Year t;  is the  

emissions in 2017. Hence, the baseline  concentrations in 2010–2030 are shown in Fig. 2.3. 

 
Note: 2010–2017 data from the World Bank; 2018–2030 data projected in this chapter 

Fig. 2.3 The Projected  Concentrations in the Baseline Scenario (Unit: ) 

According to Fig. 2.3, the  concentrations decreased by approximately 11% in 2015–2016, 

remained stable in 2017–2020, and will steadily decrease since then. In the literature, Cai, Ma et al. 

(2018) showed that the baseline  concentrations decreased by 2.1% in 2017–2020, less than the 

4.07% decrease in the same period of this chapter. This is because the projection in Cai, Ma et al. (2018) 
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was based on the legislation in 2012, whilst the projection in this chapter is based on the legislation in 

2015. As the legislation is stricter in 2015 than that in 2012, there will be more projected emission 

reduction in this chapter. 

Previous researchers have already studied how the 𝑃𝑀2.5  concentrations affected the labour 

productivity. For example, He, Liu et al. (2019) empirically found that a sizable 10 𝜇𝑔/𝑚3 increase of 

the 𝑃𝑀2.5 concentrations during the entire 3–4 week-period would lead to a 0.5 to 1 percent shortfall in 

a worker’s output. As He, Liu et al. (2019) conducted their research only at the two Chinese 

manufacturing sites, their research might not comprehensively reflect the average impacts of the 𝑃𝑀2.5 

pollution on the labour productivity in China. In contrast, Zhang and Jin (2017) used the data from 

China Employer-Employee Survey (CEES), which covers 26 cities, 1121 enterprises, and 10975 

employees. Hence, the results of Zhang and Jin (2017) could be much closer to the reality in China. In 

this chapter, I have referred to Zhang and Jin (2017) who showed that if the 𝑃𝑀2.5 concentrations 

increase by 1 𝜇𝑔/𝑚3, the labour productivity will decrease by 0.14%. The baseline labour productivity 

rate is calculated using Eq. (2.2), where 𝑃𝑀𝐿𝑡 is the labour productivity rate. 

𝑃𝑀𝐿𝑡 = 1 − 𝑃𝑀𝐶𝑡 × 0.14%                                                  (2.2) 

Eq. (2.2) shows 𝑃𝑀𝐿𝑡 is exogenously determined by the unit change of the labour productivity to 

the 𝑃𝑀2.5 pollution (0.14%), according to Zhang and Jin (2017). In this chapter, the projected baseline 

labour productivity rate is shown in Fig. 2.4. 

 
Fig. 2.4 The Labour Productivity Rate in the Baseline Scenario 

Fig. 2.4 shows how the labour productivity rate will change over the studied period. The labour 

productivity rate increased by 1.1% from 2015 to 2016, decreased in 2016–2017, remained stable until 

2020, and will steadily increase in 2021–2030. Fig. 2.4 implies that the negative impact of the 𝑃𝑀2.5 

pollution on the baseline labour productivity will decrease since 2017, which complies with the trend 

of the 𝑃𝑀2.5 concentrations, shown in Fig. 2.3. Previously, the relationship between the 𝑃𝑀2.5 pollution 

and labour productivity has already been confirmed. For instance, Xia, Guan et al. (2016) employed a 

supply-driven input-output (I-O) model and empirically found that the 𝑃𝑀2.5 pollution could result in 
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great labour constraints on the supply-side of the economy owing to the 𝑃𝑀2.5-related diseases. By 

utilising the piece-wise panel regression methods, Zhang, Hao et al. (2018) also found a significantly 

negative spatial correlation between the air pollution in nearby areas and the local labour supply. 

Therefore, I conclude that the labour productivity is negatively related to the 𝑃𝑀2.5 pollution. In light 

of this relationship, Eq. (2.3) is defined to show how the simulated carbon tax will affect the labour 

productivity over time. 

𝑃𝑀𝐿𝑡 =

{
 
 

 
 1 − (26.91 + 32.16 ×

𝑇𝐶𝐸𝑡

𝑇𝐶𝐸0𝑡
) × 0.14%      t = 2015

1 − (23.79 + 28.43 ×
𝑇𝐶𝐸𝑡

𝑇𝐶𝐸0𝑡
) × 0.14%      t = 2016

1 − (23.99 + 28.67 ×
𝑃𝑀𝐸𝑡

𝑃𝑀𝐸2017
×

𝑇𝐶𝐸𝑡

𝑇𝐶𝐸0𝑡
) × 0.14%      t ≥ 2017

              (2.3) 

In Eq. (2.3), 𝑇𝐶𝐸𝑡 is the total carbon emissions under the imposition of the carbon tax in Year t; 

𝑇𝐶𝐸0𝑡 is the baseline total carbon emissions in Year t. 

Finally, a sensitivity test is conducted to analyse to what extent the parameter (the unit change of 

the labour productivity to the 𝑃𝑀2.5  pollution) will affect the model equilibrium over time. This 

parameter was derived from the coefficients of the stepwise OLS regressions in Zhang and Jin (2017) 

whose empirical research was based on the China Employer-Employee Survey (CEES) data. 

Nevertheless, this parameter was subject to the uncertainties arising from the demographic factors (age, 

education, and marital status), meteorological factors (temperature, wind, and precipitation), city factors 

(city scales and location), and enterprise factors (the products). Hence, the sensitivity analysis is 

necessary to check the impacts of the parametric uncertainties on the model results. In the sensitivity 

test, the parameter will change by -10%, -5%, -3%, -1%, 1%, 3%, 5%, and 10%. If the corresponding 

percentage changes of the model results are less than the parametric changes, I will conclude that the 

model defined in this chapter is robust to the parametric uncertainties; otherwise, remedial meaures 

need to be taken to cope with the parametric uncertainties. 

In this chapter, the ancillary benefit of the carbon tax is represented by the health benefit, which 

will increase the labour productivity and thus affect the model equilibrium. To analyse the impacts of 

the health benefit on the carbon emissions and social welfare, I have calculated the result differences 

between the electricity model, defined in the previous chapter, and the clean-air model, defined in this 

chapter. The electricity model excludes the health benefit, whilst the clean-air model includes the health 

benefit. 

In the Intended Nationally Determined Contribution (INDC), China has pledged to lower its 

emissions per unit of the GDP by 60% to 65% from the 2005 level before 2030 (NDRC 2015). The 

2005 sectoral carbon intensity is calculated using the sectoral energy consumption data from 2016 China 

Energy Statistical Yearbook (NBS 2016) and the sectoral output data from 2005 China Input-Output 

Table (NBS 2005). The 2005 sectoral output has been adjusted by the relative price from 2005 to 2015 
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according to 2017 China Statistical Yearbook (NBS 2017). In the studied period, the sectoral carbon 

intensity in the tax scenarios is the same as that in the baseline scenario, because the sectoral energy 

consumption is assumed to change proportionally to the sectoral output in this chapter. 

Model Results 

 

Fig. 2.5 The Health Benefit Impact on the Household Emissions 

Fig. 2.5 shows that the health benefit will increase the household emissions in all the tax scenarios. 

The increase of the tax rate will strengthen the health benefit impact on the household emissions. In the 

literature, most researchers have agreed that climate policies will give rise to health benefits owing to 

the reduction of air pollutants, and this evidence can be found internationally (Dessus and O'Connor 

2003, Ambasta and Buonocore 2018, Kim, Xie et al. 2020). However, previous researchers tend to 

neglect that the health benefit could also influence the effects of climate policies in return. The economic 

intuition underneath Fig. 2.5 is that considering the health benefit will increase the household income, 

and thus it will increase the household energy consumption and carbon emissions. 

 
Fig. 2.6 The Health Benefit Impact on the Total Emissions 

By comparison, Fig. 2.6 shows that the health benefit will have a smaller impact on the total 

emissions. This impact will decrease over time, and it will turn negative in 2023 at the 1% tax and in 

2028 at the 2% tax. The increase of the tax rate will also strengthen the health impact on the total 
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emissions. This finding agrees with Fox, Zuidema et al. (2019) who reviewed the literature on the public 

health’s role in climate change action, arguing that the health benefit helped underpin the greenhouse 

gas reduction strategies. However, Workman, Blashki et al. (2018) identified the several constraints, 

existing in the political economy, which would induce the elusive influence of the health benefit on the 

development of the ambitious climate policies. In other words, the consideration of the health benefit 

will reduce the carbon emissions only in the first-best climate policies. As the simulated carbon tax in 

this chapter is a second-best climate policy, the induced health benefit will not significantly change the 

policy effect on the carbon emissions. 

 
Fig. 2.7 The Health Benefit Impact on the Carbon Intensity 

Fig. 2.7 shows that the health benefit will reduce the carbon intensity over time, and this impact 

will increase as the tax rate rises. In 2015–2020, the health benefit impact fluctuated, and then it will 

decrease steadily in 2021–2030. In the literature, many studies argued that controlling the air pollution 

and thus the improved health status would reduce the carbon intensity. For instance, Wang, Ye et al. 

(2014) developed a multi-region optimisation model to assess the value of a long-term climate policy 

agenda in the Chinese power sector, concluding that the current local air pollution control targets 

contributed slightly to the decrease of the carbon intensity in the power sector. Similarly, Kanada, Fujita 

et al. (2013) also empirically found that the air pollution control policy had a significant impact on the 

reduction of the industrial energy intensity in Kawasaki City, Japan. Hence, Fig. 2.7 implies that 

considering the health benefit of the tax will slightly increase the energy efficiency or the development 

of renewable energies to decrease the carbon intensity. 
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Fig. 2.8 The Health Benefit Impact on the Household Welfare Loss 

Fig. 2.8 shows that the household welfare loss, induced by the carbon tax, will decline if the health 

benefit is considered. As the tax rate increases, this health benefit impact will decrease. Fig. 2.8 implies 

that ignoring the health benefit will overstate the true welfare effects of a climate policy. This is because 

the ill-health would pose a substantial threat to the household welfare (Quintussi, Van de Poel et al. 

2015). This finding complies with Jensen, Keogh-Brown et al. (2013) who employed a single-country 

dynamic recursive CGE model and empirically found that the health co-benefits could improve the 

household welfare in UK. Similarly, Li (2006) also used a dynamic recursive CGE model and 

empirically found that including the health feedback would lead to better household welfare in Thailand. 

The economic intuition underlying Fig. 2.8 is that the health benefit will increase the labour productivity 

and thus labour income; finally, it will increase the household welfare. 

 
Fig. 2.9 The Health Benefit Impact on the Real GDP (RGDP) Loss 

Compared to the household welfare, Fig. 2.9 shows that the health benefit will have a much smaller 

impact on the RGDP loss. In all the tax scenarios, the health benefit will reduce the RGDP loss and thus 

increase the RGDP, but this impact will decline over the studied period. Fig. 2.9 implies that this health 

benefit impact is minimal, and the health benefit is less attractive at the country level than the household 

level. This minimal health benefit impact could be explained by the mismatch between the sectors with 

the high potential for emission reductions and the sectors with the high health benefits per unit emission 
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reduction (Liu, Huang et al. 2017). For example, the food, wood, and non-specified secondary industry 

had the highest health benefit per unit emission reduction but only contributed to less than 10% of the 

total emission reduction in the Chinese city of Suzhou (Liu, Huang et al. 2017). The magnitude of the 

health benefit impact in this chapter is much smaller than that in Balbus, Greenblatt et al. (2014). This 

is because Balbus, Greenblatt et al. (2014) estimated the population-level exposures based on the intake 

fractions, and the embedded assumptions and methodological choices explain why their empirical 

results were much more considerable than this chapter. 

 
Fig. 2.10 The Health Benefit Impact on the Tax Revenues 

Fig. 2.10 shows that the health benefit will induce more tax revenues in 2015–2024 and less tax 

revenues in 2025–2030 at the 1% tax. In contrast, the health benefit will increase the tax revenues over 

the studied period at the 2% and 3% tax. Fig. 2.10 implies that the health benefit will generally increase 

the tax revenues. This is because the health benefit will increase the labour productivity and thus 

promote the RGDP growth, which will finally increase the tax revenues. However, at the 1% tax, such 

economic boom will disappear in 2025–2030. 

Fig. A2.1–A2.6 in Appendix A shows the health benefit impact on the recycling of the tax revenues 

where the tax rate is 1%. These graphs imply that the health benefit will have almost no impacts on the 

carbon emissions, carbon intensity, or social welfare when the tax revenues are recycled to the different 

economic entities. The small impacts of recycling the revenues, shown in the previous chapter, may 

explain these findings: because recycling the revenues has minimal impacts on the model equilibrium, 

the health benefit impact on the policy effects of recycling the revenues is also minimal. 
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Fig. 2.11 The Total Emission Growth Rate in the Clean-air Model 

Fig. 2.11 shows the total emission growth rate when the health benefit is considered. The emission 

growth rate will decline continuously since 2026. However, 2030 will not be the emission peaking point 

as the growth rate will not approach zero in that year. This trend is contrary to the INDC target of 

peaking the emissions in 2030. To achieve this target, China needs to take more steps to control its 

carbon emissions in addition to the carbon tax simulated in this chapter or I need to internalise other 

influential factors of the carbon tax in the policy evaluation framework. Nevertheless, Fig. 2.7 shows 

that the health benefit impact will decrease the carbon intensity, and the previous chapter shows China 

can meet the INDC target of the intensity reduction by 60–65% from the 2005 level in 2030. Hence, 

considering the health benefit impact, China can still meet this INDC target under the carbon tax. 

The overall accomplishment of the INDC target of the carbon intensity reduction does not 

necessarily mean the accomplishment in all the sectors. A sectoral carbon intensity in 2030 is divided 

by its corresponding intensity in 2005, and the ratios are displayed in Table 2.2. As the sectoral energy 

consumption is assumed to be proportional to the corresponding sectoral output in this chapter, the 

carbon tax is assumed to have no effects on the sectoral carbon intensities. However, the carbon tax 

does affect the total carbon intensity. This is because the tax-induced rising energy price changes the 

household energy consumption, which varies the total energy consumption. 

Table 2.2 The Sectoral Intensity Ratios in 2030 to 2005 (Unit: kg/CNY) 

Sector Ratio Sector Ratio Sector Ratio Sector Ratio 

agric 35.65% metal 40.35% coking 36.87% Supercrit 8.07% 

othm 47.56% machi 58.54% petrm* 101.05% USC 7.21% 

food 21.93% water* 752.18% petrp 47.83% Subc 5.81% 

texti 45.30% const 32.57% gasn 44.49% NG 22.36% 

furni 26.19% trans 45.22% gasm 5.60%     

chemical 25.58% service 36.03% fipow* 87.26%     

mineral 38.62% coalm* 95.19% TD* 296.18%     

Note: * denotes the sectors that have a ratio larger than 65%.  

Full sectoral names are shown in Table A1.1 in Appendix A. 
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Table 2.2 shows the sectoral intensity in 2030 relative to 2005 except that the electricity subsectors 

exploiting renewables are assumed to have zero carbon intensity. In most of the sectors, the 2030 

intensity will be lower than 65% of the 2005 level except for the water production, coal mining, petrol 

extraction, heat production and distribution, and electricity transmission and distribution sector. 

Noticeably, the carbon intensity in the water production sector in 2030 will be approximately 7.5 times 

the 2005 level. As the energy consumption and sectoral output of the water production sector only take 

up a very small proportion to the national level, the influence of this sector on the overall intensity is 

quite small. 

Results of the Sensitivity Analysis 
Table 2.3 The Sensitivity Analysis of the Model Results in 2015 

2015 -10% -5% -3% -1% 1% 3% 5% 10% 

HCE 0.096% 0.048% 0.029% 0.010% -0.010% -0.029% -0.048% -0.096% 

TCE 0.005% 0.002% 0.001% 0.001% 0.000% -0.001% -0.002% -0.005% 

CI -0.008% -0.004% -0.002% -0.001% 0.001% 0.002% 0.004% 0.008% 

HWL -0.165% -0.082% -0.049% -0.016% 0.016% 0.049% 0.082% 0.165% 

TXR 0.006% 0.003% 0.002% 0.001% -0.001% -0.002% -0.003% -0.006% 

RL -0.021% -0.011% -0.006% -0.002% 0.002% 0.006% 0.011% 0.021% 

Table 2.4 The Sensitivity Analysis of the Model Results in 2030 

2030 -10% -5% -3% -1% 1% 3% 5% 10% 

HCE 0.077% 0.039% 0.023% 0.008% -0.008% -0.023% -0.039% -0.078% 

TCE -0.002% -0.001% -0.001% 0.000% 0.000% 0.001% 0.001% 0.002% 

CI -0.005% -0.003% -0.002% -0.001% 0.001% 0.002% 0.003% 0.005% 

HWL -0.199% -0.100% -0.060% -0.020% 0.020% 0.060% 0.100% 0.200% 

TXR -0.001% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.001% 

RL -0.009% -0.005% -0.003% -0.001% 0.001% 0.003% 0.005% 0.009% 

Note: HCE, TCE, CI, HWL, TXR, and RL denote the household emissions, total emissions, 

carbon intensity, household welfare loss, tax revenues, and RGDP Loss respectively. 

Table 2.3 and 2.4 show the sensitivity analysis results in 2015 and 2030 respectively when the 1% 

carbon tax is imposed, and the tax revenues are kept in the governmental budget. According to these 

tables, the percentage changes of the model results are much lower than that of the parameter (the unit 

change of the labour productivity to the 𝑃𝑀2.5 pollution). The results of the sensitivity analysis imply 

that the model results in this chapter are quite robust to the parametric uncertainties. 

Discussion 
In this chapter, the health benefit is modelled as the increase of the labour productivity induced by 

the reduction of the 𝑃𝑀2.5 emissions. I have assumed that the labour productivity is linear to the 𝑃𝑀2.5 

concentrations. However, this linear relationship may not exist in the reality. For example, Chang, Zivin 

et al. (2016) studied the impacts of outdoor air pollution on the productivity of the pear packers and 

empirically found that an increase in the 𝑃𝑀2.5 concentrations led to the significant decreases in the 

productivity with the impacts arising at the levels below the air quality standards. Similarly, Heyes and 

Zhu (2019) investigated a link from daily air pollution exposure to sleep loss in a panel of Chinese cities 



57 

 

and empirically found that the daytime air pollution had a substantial impact on the sleep quality of the 

following night. 

The labour productivity is also influenced by other air pollutants, such as 𝑆𝑂2, 𝑁𝑂x, and 𝑃𝑀10, in 

addition to 𝑃𝑀2.5. A climate policy that curbs the carbon emissions may also reduce the emissions of 

these air pollutants, and thus the health benefit in the reality can be much larger than the benefit this 

chapter has estimated. Therefore, a composite index, denoting the concentrations of all kinds of the air 

pollutants, may be conducive to revealing how the air pollutants will reduce the labour productivity 

more clearly. 

The improved labour health is also beneficial to the human capital accumulation as the capital 

damages are assumed to be linear to the level of the air pollution (Bretschger and Karydas 2018). Future 

research may comprehensively explore how the air pollutant emissions will affect the human capital 

accumulation in the CGE policy evaluation framework. For example, the rise of the respiratory diseases, 

owing to the air pollution, will both increase the household and government medical expenditures, 

which will indirectly reduce the expenditures on the other items, given that the overall income is 

unchanged or even decreases. 

As the health benefit is only part of the ancillary benefits, letting aside the primary benefits, an 

unbiased study needs to consider all the primary and ancillary benefits of climate policies. Even within 

the domain of the health benefits, the clean air can also improve the labour health by encouraging the 

active transportation choices, improving the ecosystems, and promoting the health equity in the society 

(Ambasta and Buonocore 2018). If all the benefits had been considered, many climate policies would 

have been deemed to increase the social welfare. In this case, the carbon tax rate can be defined as an 

endogenous variable to find out the optimum policy which will maximise the social welfare. 

The carbon tax is assumed to be technical neutral in this chapter, which implies that the tax has no 

effects on the sectoral carbon intensities. However, in the reality, the carbon tax is likely to promote the 

technical progress and thus increase the efficiency of the energy use or enhance the development of the 

renewable energies. Hence, the carbon tax might decrease the sectoral carbon intensities. 

Policy Implications 
The ancillary (health) benefit will slightly weaken the policy effects of the carbon tax; in other 

words, the ancillary benefit will increase the carbon emissions but decrease the household welfare and 

real GDP loss, induced by the carbon tax. The ancillary benefit has almost no impacts on the policy 

effects of recycling the tax revenues or the marginal effects of the carbon tax. The ancillary benefit does 

not affect how China will accomplish the INDC targets. 
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Conclusion 
In this chapter, the quantified ancillary benefit of the carbon tax is the health benefit from the 

reduction of the 𝑃𝑀2.5 pollution. The health benefit will increase the household carbon emissions by 

0.15%–0.4% depending on the tax rate and time. The health benefit will decrease the household welfare 

and real GDP loss, induced by the carbon tax, by 0.2%–0.45% and 0.015%–0.055% respectively. 

Nevertheless, the health benefit has almost no impacts on the policy effects of recycling the tax revenues. 

The minimal impacts of the health benefit on the policy effects of the carbon tax imply that the inclusion 

of the other types of ancillary benefits could significantly affect the model equilibrium. With the health 

benefit, the carbon tax alone cannot help China meet the INDC target of peaking the emissions before 

2030 but can meet the target of the intensity reduction. Most sectoral carbon intensities in 2030 will be 

lower than 65% of the 2005 level, and thus the intensity reduction target can be met in most sectors. 

The sensitivity analysis implies that the model results are quite insensitive to the given value of the 

parameter (unit change of the labour productivity to 𝑃𝑀2.5 pollution). 
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Chapter 3: The Primary Benefit of the 

Carbon Tax 

Introduction 
As the climate change has strong roots in the natural sciences and requires social sciences to solve 

in an effective manner, the primary aim of climate policies is climate protection in order to prevent 

climate-change-induced damages (Rubbelke 2006). Hence, primary benefits, also known as climate 

benefits or direct benefits, of climate policies refer to the avoided damages from the accelerating climate 

change (Lomborg 2020). Primary benefits include the reduction of the extreme weather and short-lived 

climate pollutants (SLCP), contributing significantly to the radiative forcing that drives climate change 

(Pierrehumbert 2014). Climate policies are also beneficial to reducing the negative impacts of the rising 

sea-level induced by the climate change (Farquharson, Jaramillo et al. 2017). 

Previously, a great deal of research has empirically documented the primary benefits of climate 

policies, and the evidence could be found worldwide. For example, Melvin, Sarofim et al. (2016) used 

the Environmental Protection Agency (EPA) data to show that the US climate policy generated climate 

benefits; Trotta (2020) assessed the climate benefits induced from energy efficiency improvements in 

Finland by performing the multi-sectoral decomposition analysis. These two studies only analysed the 

climate benefits in a partial equilibrium setting and thus may not comprehensively answer to what extent 

the primary benefits affect the socioeconomic and emission effects of climate policies. 

Some studies mixed the primary benefits with the ancillary benefits when analysing the effects of 

climate policies. For example, Siler-Evans, Azevedo et al. (2013) gathered the emission data of fossil-

fueled power plants but only quantified the combined health, environmental, and climate benefits of 

wind and solar generation. Similarly, Buonocore, Luckow et al. (2016) utilised a high-resolution model 

but only analysed the total health and climate benefits of different energy-efficiency and renewable 

energy choices but did not indicate the specific value of climate benefits. The mixture of the benefits in 

the literature corresponds to the fact that the primary benefits of climate policies are even harder to 

model, compared to the ancillary benefits (Baker, Collins et al. 2015).  

Previous studies that only measured the mixed benefits are likely to underestimate the primary 

benefits of climate policies. For example, Wang, Huang et al. (2020) assessed the synergy between 

climate policies and air pollution, focusing on the economic and household income impact from the 

health and labour market perspective (Wang, Huang et al. 2020). As labour health and supply are 

directly linked to air pollution but indirectly affected by the climate change (Robinson 2014), Wang, 

Huang et al. (2020) is likely to overestimate the impacts of the ancillary benefits and underestimate the 

impacts of the primary benefits. Because of the difficulties in the quantification, the primary benefits of 

climate policies only play a minor role in the political agenda of the developing countries including 
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China, even though the industrialised countries have a strong interest in combating the climate change 

(Rubbelke 2006). 

The underestimation of the primary benefits is likely to result in the reluctance of governmental 

policy implementation (Baker, Collins et al. 2015). The unpopularity of  climate policies justifies the 

increasing necessities to quantify primary benefits separately from ancillary benefits (Nordhaus 2018). 

The primary benefits of climate policies can be modelled by integrated assessment models (IAMs), 

which are used to study earth systemwide climate changes and the effects of public policies on the 

projected future climate change (Weyant 2017). The Dismal Theorem implies that IAMs cannot be used 

to determine an optimal climate policy because prior knowledge cannot place sufficiently narrow 

bounds on the overall damages of a climate catastrophe (Weitzman 2009). However, the conditions 

necessary for the Dismal Theorem to hold are limited and inapplicable to many potential uncertain 

scenarios (Nordhaus 2011). Hence, IAMs are widely applied in the literature to study the effects of 

climate policies on the climate change (Weyant 2017), because they can “provide conceptual 

frameworks for developing insights about highly complex, nonlinear, dynamic, and uncertain systems” 

(Weyant 2017). 

Previously, the three most widely used IAMs are: Dynamic Integrated model of Climate and the 

Economy (DICE) or Regional Integrated model of Climate and the Economy (RICE) model, deriving 

from Nordhaus (1992); Policy Analysis of the Greenhouse Effect (PAGE) model, shown in (Hope 2013); 

Climate Framework for Uncertainty, Negotiation, and Distribution (FUND) model, co-developed by 

Anthoff and Tol (2013). These IAMs have been used to find out the optimal climate policy considering 

the socioeconomic impacts of the climate change in the literature (Weyant 2017). The PAGE model has 

a relatively simple economic structure but detailed inventories of greenhouse gases (Hope 2013). As 

the CGE model is used to analyse the economic structure of China in the previous chapters and the 

targeted greenhouse gas is carbon dioxide only, therefore, the DICE model is preferable in this chapter. 

The FUND model gives more detailed impacts of the climate change, including the impacts on the 

agriculture, forestry, sea level rise, dengue fever, and schistosomiasis (Waldhoff, Anthoff et al. 2014), 

but it is considerably more complex than the other two IAMs (Anthoff and Tol 2013). In contrast, the 

DICE model captures the earth geophysical system using only a few simple equations, but the model 

has no distinct differences in the major environmental variables compared to the other IAMs (Nordhaus 

2018). In addition, the FUND model and PAGE model are run in the Julia software, whilst the 

DICE/RICE model is run in the GAMS software. Therefore, the DICE model is technically compatible 

with the CGE model presented in the earlier chapters. Hence, in this chapter, a DICE/RICE model is 

used to quantify the primary benefits of the carbon tax. The latest published DICE model is the DICE-

2016R2 (Nordhaus 2018), and the GAMS code of the model is available on the homepage of Nordhaus’s 

personal website. 
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As the main research framework of this paper is the CGE model, this chapter will not make direct 

contributions to the development of the Chinese IAMs in the literature. Nevertheless, this chapter 

contributes to the literature by innovatively modelling the primary benefits of the Chinese carbon tax, 

using the DICE/RICE model, within the CGE framework of the policy evaluations. Very little previous 

research has unbiasedly modelled the primary benefits of climate policies in the policy evaluations, 

because the climate benefits from a local carbon emission reduction are usually distributed spatially 

beyond the local region (Lee, Shindell et al. 2016). To my best knowledge, this chapter is the first 

attempt to model the climate benefits of the Chinese carbon tax as a part of the potential policy benefits 

in addition to the ancillary benefit defined in the previous chapter. 

In this chapter, how the primary benefits influence the policy effects of the carbon tax is analysed 

via the result comparison of the CGE-DICE model, defined in this chapter, and the clean-air model, 

defined in the previous chapter. As modelling the primary benefits is susceptible to the exogenous 

values of the geophysical parameters, a sensitivity analysis has been conducted to show to what extent 

the model results are robust to the parameters given by the DICE/RICE model. If the results are not 

subject to the changes of the parametric values, the geophysical equations explain the authentic impacts 

of the primary benefits on the model equilibrium. On the contrary, those parameters that lay undue 

influences on the results need to be identified. 

Method 
If analysed alone, the socioeconomic impacts of the climate change could be very small; indeed, 

the impact of the climate change in a century is roughly equivalent to a year’s growth in the global 

economy (Tol 2013). Hence, in this chapter, the aforementioned CGE model is used to analyse the 

ancillary benefits of the carbon tax in combination with the DICE/RICE model to quantify the primary 

benefit of the carbon tax simulated in this chapter. 

According to Nordhaus (2018), the geophysical variables are quite stable in the development of 

the DICE/RICE models because modelling environmental components was based on a solid scientific 

foundation as the environmental issues were relatively well-understood by the early 1990s. In contrast, 

the dominant underlying changes in the DICE/RICE model results lie in the economic variables 

(Nordhaus 2018) because of a major change in the projected global productivity growth (Nordhaus 

2018). Therefore, it is preferable to model regional economy separately. Even though the economic 

equations in the CGE model of this chapter is targeted at China only, the anthropogenic emissions in 

China has a global effect on the climate and thus the geophysical equations targeted globally in 

Nordhaus (2018) are kept in this chapter. These geophysical equations are used to analyse how the 

primary benefits of the carbon tax affect the CGE model equilibrium where the household welfare is 

introduced as the optimised target. 
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According to Nordhaus (2018), the net consumption goods are defined as the aggregation of the 

monetary values of the consumption goods minus the abatement costs and damages from the climate 

change over the research period. In Eq. (3.1), 𝑄𝑡 is the net consumption goods in Year t; 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 is 

the damage function shown in Eq. (3.2); Λ𝑡 is the abatement cost ratio shown in Eq. (3.3); 𝑇𝐻𝐷𝑡 refers 

to the monetary value of the consumption goods in Year t calculated in the CGE model.  

𝑄𝑡 = 𝑇𝐻𝐷𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × (1 − Λ𝑡)                                   (3.1) 

𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 = 𝜓1𝑇𝑡
𝐴𝑇 + 𝜓2(𝑇𝑡

𝐴𝑇)2                                           (3.2) 

Λ𝑡 = 𝜃1𝑡 × 𝜇𝑡
𝜃2                                                         (3.3) 

In Eq. (3.2), 𝑇𝑡
𝐴𝑇  refers to the global mean surface temperature in Year t; 𝜓1  and 𝜓2  are the 

parameters measuring how the global temperature rise induces welfare loss. In Eq. (3.3), 𝜃1𝑡 =

0.0741 × 0.0904𝑡−1 and 𝜃2 = 2.6. 𝜇𝑡 describes the proportion of the reduced emissions to the total 

industrial emissions in China resulting from the carbon tax.  

𝐻𝑊 = ∑ 𝑐𝑡
1−𝜂 (1 − 𝜂)⁄ × 𝑃𝑜𝑝𝑡 × (1 + 𝛿)

−𝑡2030
2015                                (3.4) 

Eq. (3.4) shows the definition of the household welfare (𝐻𝑊 ) in China. 𝑐𝑡  is the per capita 

consumption in Year t. The parameter 𝜂 measures the elasticity of the marginal utility of consumption, 

and it is interpreted as the generational inequality aversion with its value 1.45 according to Nordhaus 

(2018). 𝑃𝑜𝑝𝑡  is the Chinese population in Year t, and the predicted data are from 2017 World 

Population Prospects (WPP) by UN (2017). The parameter 𝛿 refers to the social time preference on the 

welfare, and its value is 1.5% given by the DICE-2016R2 model. In this chapter, the change of the 

household welfare is used to denote the policy effects of the carbon tax. From the household perspective, 

an optimum policy induces the largest increase of the welfare. Hence, the carbon tax rate is 

endogenously determined in the DICE model, whilst the tax rate is an exogenous variable in the CGE 

model. 

In this chapter, I have used the geophysical equations in the DICE/RICE models with some 

modifications. As the DICE or RICE models have almost the same geophysical equations, I make 

citations from the DICE models in the context below. The world carbon emissions (𝑊𝐸𝑡) is defined as 

the summation of industrial emissions in China (𝐶𝐸𝑡), industrial emissions in the rest of the world 

(𝑅𝑊𝐸𝑡) and the global exogenous land-use emissions (𝐸𝑡
𝐿𝑎𝑛𝑑). By comparison, in the DICE-2016R2 

model, the world carbon emissions are defined as the summation of global industrial emission and land-

use emissions. In this chapter, the 𝐶𝐸𝑡 projection is specified by the CGE model, whilst 𝑅𝑊𝐸𝑡 and 

𝐸𝑡
𝐿𝑎𝑛𝑑 are assumed to follow the projection route of 𝑊𝐸𝑡 and 𝐸𝑡

𝐿𝑎𝑛𝑑 respectively specified in the DICE-

2016R2 model. This assumption implies that 𝑅𝑊𝐸𝑡 and 𝐸𝑡
𝐿𝑎𝑛𝑑are exogenously determined, and their 

values will not change irrespective of the carbon tax simulated in this chapter. 
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In the DICE model, the global industrial and land-use emission data are based on the Nordhaus 

(2018), whose data were mainly from the Carbon Dioxide Information Analysis Centre (CDIAC) but 

updated using various sources. According to the CDIAC (2016) data, China and the RW emitted 10.37 

Gt 𝐶𝑂2 and 25.93 Gt 𝐶𝑂2 respectively in 2015. The CDIAC (2016) data provide the proportion of the 

Chinese emissions to the RW emissions in the base year (2015). Because the calculated Chinse emission 

data from the CGE model are different from the CDIAC data, I have adjusted the RW emission data in 

CDIAC (2016) by the aforementioned proportion. 

The carbon tax is assumed to affect the Chinese industrial emissions only, and it does not affect 

the industrial emissions in the rest of the world. Although researchers empirically confirmed the 

existence of carbon leakage between an Emission Trading Scheme (ETS) pilot site and the rest of China 

(Tan, Liu et al. 2018, Wang, Teng et al. 2018), no carbon leakage exists for all the Chinese sectors on 

the whole (Fan, Zhang et al. 2019). Similarly, Fu and Zhang (2015) used the industry panel data in 

1996–2010 and concluded that no carbon leakage existed for the whole manufacturing industry, whilst 

Zhao (2014) used the import and export data and empirically found  that there was no clear evidence of 

carbon leakage from America to China. Hence, in this chapter, the carbon leakage is assumed to have 

no impacts on the emissions in China or rest of the world (RW). 

𝑀𝑗𝑡 = 𝜙0𝑊𝐸𝑡 + ∑ 𝜙𝑘𝑗𝑀𝑘(𝑡−1)
3
𝑘=1                                                (3.5) 

Eq. (3.5) shows the carbon cycle of the three defined reservoirs, where the subscript j equals 𝐴𝑇, 

𝑈𝑃, and 𝐿𝑂, referring to the three reservoirs: the atmosphere, the upper oceans and biosphere, and the 

lower oceans respectively. 𝜙𝑘𝑗 is the flow parameter from Reservoir k to j; 𝜙0 is the flow parameter 

denoting how the global emissions are deposited; 𝑀𝑗𝑡 is the accumulated carbon dioxide of Reservoir j 

in Year t.  

𝐹𝑡 = 𝜂{log2[𝑀𝑡
𝐴𝑇 𝑀1750

𝐴𝑇⁄ ]} + 𝐹𝑡
𝐸𝑋                                          (3.6) 

Eq. (3.6) quantifies the increase of the radiative forcing caused by the accumulation of the carbon 

dioxide, where 𝐹𝑡 denotes the change of the radiative forcing from the anthropogenic emissions; 𝐹𝑡
𝐸𝑋 is 

the exogenous forcing; 𝜂  is the parameter measuring how the atmospheric carbon dioxide 

concentrations affect the radiative forcing; 𝑀𝑡
𝐴𝑇 is the accumulated carbon dioxide in the 𝐴𝑇 reservoir; 

𝑀1750
𝐴𝑇  is the value of 𝑀𝑡

𝐴𝑇 in 1750. 

𝑇𝑡
𝐴𝑇 = 𝑇𝑡−1

𝐴𝑇 + 𝜉1{𝐹𝑡 − 𝜉2𝑇𝑡−1
𝐴𝑇 − 𝜉3[𝑇𝑡−1

𝐴𝑇 − 𝑇𝑡−1
𝐿𝑂 ]}                                    (3.7) 

𝑇𝑡
𝐿𝑂 = 𝑇𝑡−1

𝐿𝑂 + 𝜉4[𝑇𝑡−1
𝐴𝑇 − 𝑇𝑡−1

𝐿𝑂 ]                                                  (3.8) 

Eq. (3.7) and (3.8) show how the radiative forcing leads to the global warming, where 𝑇𝑡
𝐴𝑇 is the 

global mean surface temperature in Year t; 𝑇𝑡
𝐿𝑂 is the global mean temperature of the lower oceans in 

Year t; 𝜉1, 𝜉2, 𝜉3, and 𝜉4 are all exogenous parameters, and their values are given by the DICE model.  
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The time interval in this chapter is one year, whereas the time interval in the DICE-2016R2 model 

is five years. The GAMS code for the DICE model needs to be revised to accommodate the change of 

the time interval in this chapter. The RW emissions in a five-year period are assumed to change linearly 

according to the baseline scenario of the global industrial emissions in the DICE-2016R2 model. 

The global output data in the DICE-2016R2 model is 2005 USD, while the real GDP (RGDP) data 

in the CGE model is 2015 CNY. To accommodate the unit difference, the abatement cost data calculated 

by the DICE model is multiplied by the exchange rate of USD to CNY in 2005 and the relative price of 

2015 to 2005 in China according to the NBS (2017) data. 

To analyse the primary-benefit impacts of climate policies, in this chapter, I compare the results of 

the two models: the clean-air model, defined in the previous chapter excluding the primary benefits, 

and the CGE-DICE model, defined in this chapter including the primary benefits. In the CGE-DICE 

model, 𝑃𝑀2.5 pollution deducted labour productivity rate (𝑃𝑀𝐿𝑡) was redefined as the effective labour 

productivity rate (𝐸𝐿𝑃𝑡 ). 𝐸𝐿𝑃𝑡  considers not only the reduction of the air pollution but also the 

reduction of the climate damages induced by a climate policy. In Eq. (3.9), 𝐷𝑎𝑚𝑡 refers to the climate 

damages in Year t; 𝐷𝑎𝑚0𝑡 refers to the baseline climate damages in Year t, and its value was obtained 

by running the GAMS code of the baseline scenario of the control model. 

𝐸𝐿𝑃𝑡 =

{
 
 

 
 1 − (26.91 + 32.16 ×

𝑇𝐶𝐸𝑡

𝑇𝐶𝐸0𝑡
×

𝐷𝑎𝑚𝑡

𝐷𝑎𝑚0𝑡
) × 0.14%      t = 2015

1 − (23.79 + 28.43 ×
𝑇𝐶𝐸𝑡

𝑇𝐶𝐸0𝑡
×

𝐷𝑎𝑚𝑡

𝐷𝑎𝑚0𝑡
) × 0.14%      t = 2016

1 − (23.99 + 28.67 ×
𝑃𝑀𝐸𝑡

𝑃𝑀𝐸2017
×

𝑇𝐶𝐸𝑡

𝑇𝐶𝐸0𝑡
×

𝐷𝑎𝑚𝑡

𝐷𝑎𝑚0𝑡
) × 0.14%      t ≥ 2017

       (3.9) 

The comparison between the two models will reveal how the primary benefit affects the policy 

effects of the carbon tax. In the baseline scenario, the household emissions, total emissions, carbon 

intensity and real GDP (RGDP) are all the same in the two models. However, when the carbon tax is 

imposed, the results in the two models may become different. 

The embedded assumption of the above analysis is that all the sectors exploiting nonrenewable 

energies are faced with the same given exogenous tax rates. To relax this assumption, the tax rate is 

endogenized to find out the optimum tax rate that maximises the household welfare. In the 

endogenization, the tax rate can change freely from 0 to 5%. The upper bounds of the labour, capital 

and energy inputs are equal to the corresponding baseline inputs. The lower bounds of the inputs are set 

to 1% of the baseline inputs, which are less than the inputs if a 5% tax is imposed. 

The social cost of carbon (SCC) refers to the present value of the costs paid by the present and 

future generations due to the emissions of an additional tonne of carbon dioxide today (Fleurbaey, 

Ferranna et al. 2019). The socially optimal carbon price is the smallest SCC that can achieve the 

abatement target (Tang, Ji et al. 2020). In the literature, many researchers designed socially optimal 
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carbon taxes basing on the SCC (Belfiori 2017, Belfiori 2018, Linnenluecke, Smith et al. 2018). 

However, the estimated SCC ranged from approximately $10 to well over $200 per metric ton, but 

hardly a consensus number has been reached (Pindyck 2019). The inability to reach the consensus 

partially explains why international climate negotiations have focused on intermediate targets (Pindyck 

2017). Binding the carbon price to quantitative targets by climate policies is the only way to ensure the 

effectiveness of carbon pricing (Boyce 2018). Hence, in this chapter, the SCC is analysed under China’s 

INDC target. 

Nordhaus (2017) defined the SCC as the marginal welfare impact of the emissions divided by the 

marginal welfare impact of the total consumption, which is a way to denote the economic impacts of 

the emissions. However, the definition of Nordhaus (2017) lacks the analysis of the uncertainty of the 

discount rate, the choice of which has a significant influence on the final estimate of the SCC (Guo, 

Cameron et al. 2006). According to Pindyck (2017), the marginal SCC has three main drawbacks: it is 

time-variant, and thus the optimal policy will change over time; it has a very limited guidance for the 

current policy; it has an extreme sensitivity to the discount rate. By comparison, the average SCC is less 

sensitive to the baseline time path for the carbon emissions, provides a guideline over an extended time 

period, and is much less sensitive to the choice of the discount rate (Pindyck 2019). In this chapter, the 

polynomial expression of the average SCC is from Tian, Ye et al. (2019) who analysed the uncertainties 

of the model related to the discount rate, carbon cycle, climate sensitivity, and damage parameters. Tol 

(2013) believed that the SCC is also affected by the aforementioned four parameters. 

𝑆𝐶𝐶𝑡𝑜𝑡𝑎𝑙𝑡 = χ𝑅𝐺𝐷𝑃𝑡̇ ∑
𝑎𝑘𝜖

(𝜂𝑘+𝑟)(𝜖+𝑟)
𝑘∈𝐾 (1 −

2𝐸𝑡

𝑛×𝐸𝑠𝑢𝑚
)                         (3.10) 

𝐴𝑆𝐶𝐶𝑡 = 𝑆𝐶𝐶𝑡𝑜𝑡𝑎𝑙𝑡 𝐸𝑡⁄                                                       (3.11) 

𝑅𝐺𝐷𝑃𝑡̇ = 𝑅𝐺𝐷𝑃𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × (1 − Λ𝑡)                                 (3.12) 

In Eq. (3.10) to (3.12), 𝑆𝐶𝐶𝑡𝑜𝑡𝑎𝑙𝑡 and 𝐴𝑆𝐶𝐶𝑡 stand for the total and average social cost of carbon 

respectively. 𝑅𝐺𝐷𝑃𝑡̇  is the net RGDP in Year t, defined as the RGDP minus the climate damages and 

abatement costs. χ is the damage sensitivity coefficient to the increase of the carbon dioxide in the 

atmosphere, and its value is 0.00236 (Nordhaus 2017). 𝜖 is the equilibrium temperature sensitivity, and 

its value is 3.1 (Nordhaus 2017). 𝑛 is the evolutionary coefficient of the carbon emissions, and its value 

is set to one (Tian, Ye et al. 2019). 𝐸𝑠𝑢𝑚 denotes the maximum carbon emissions, and it is equal to the 

summation of the annual carbon emissions over the research period. Following Tian, Ye et al. (2019), 

𝑎𝑘 and 𝜂𝑘 refer to the vector shares of the carbon emissions entering the climate box and the attenuation 

rate of the climate box respectively. The values of 𝑎𝑘 and 𝜂𝑘 are from the DICE model, shown in Table 

3.1. 

Table 3.1 The Parametric Values of 𝑎𝑘 and 𝜂𝑘 

 1st Value 2nd Value 3rd Value 

𝑎𝑘 0.029 0.356 0.615 

𝜂𝑘 0 0.0035 0.0364 
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In Eq. (3.10), 𝑟 refers to the social discount rate, which shows how the values of future goods and 

services are discounted relative to their present values (Snyder 2020). Debates about the discount rate 

have a long history in economics and social policies (Nordhaus 2007). Researchers still remain sceptical 

about what rate should be used for discounting the climate change (Weitzman 2007). Hence, the choice 

of the discount rate has significant impacts on the SCC estimates (Snyder 2020). In this chapter, the 

relation of the SCC and discount rate is compared between China and the US. The United States 

Environmental Protection Agency (EPA) published the US average social cost of carbon (ASCC), but 

the unit of the data is 2007 dollars per metric ton 𝐶𝑂2. In this chapter, the US data are adjusted with the 

relative price of 2007 to 2015, using the consumer price index in the World Development Indictors 

according to World Bank (WB). 

According to Tian, Ye et al. (2019), the social discount rate 𝑟 is defined in Eq. (3.13). 𝛿 denotes 

the pure time preference rate, and its value is 0.015 (Nordhaus 2017). 𝜉𝑐𝑜 is the elasticity of marginal 

utility of consumption, and its value is 1.45 (Nordhaus 2017). 𝜉𝑖𝑛 is the damage income elasticity, and 

its value is 1.15 (van den Bijgaart, Gerlagh et al. 2016). 𝑔  represents the average growth rate of 

consumption, and its value is 5.5% (Tian, Ye et al. 2019). 𝑙 is the average population growth rate, and 

its value is 0.6% given by Tian, Ye et al. (2019). 

𝑟 = 𝛿 + (𝜉𝑐𝑜 − 𝜉𝑖𝑛) × 𝑔 − 𝑙                                                 (3.13) 

The definition of the social discount rate in Tian, Ye et al. (2019) is time-invariant. However, the 

discount rate could vary with the time according to the classical Ramsey (1928) formula, show in Eq. 

(3.14). This is because the consumption changes as the time goes by. 

𝑟𝑡 = 𝛿 + 𝜂 × 𝑔𝑡                                                           (3.14) 

In Eq. (3.14), 𝛿 refers to the pure time preference rate; 𝑔𝑡 refers to the consumption growth rate in 

Year t; 𝑟𝑡 refers to social discount rate in Year t. 𝜂 measures the elasticity of the marginal utility of 

consumption, but it is interpreted as the inequality parameter in the welfare function of the DICE model 

(Nordhaus 2018). The inequality parameter denotes an aversion to inequality in consumption that is 

independent of whether the inequality is across contemporaries or across time, according to Dennig, 

Budolfson et al. (2015) who introduced a fine-grained representation of economic inequalities in the 

RICE model. A low value of the inequality parameter means that the consumptions of different 

generations are close substitutes, with low aversion to inequality, whilst a high value of the inequality 

parameter denotes the highly differentiated consumptions and thus high generational inequality 

aversion (Nordhaus and Sztorc 2013).  

In the literature, standard models in the welfare economics regard the parameter 𝜂  as the 

simultaneous representation of risk, time and space (Atkinson, Dietz et al. 2009): “risk” measures the 

uncertainties about the impacts of climate change which may be large and irresolvable (Stern 2007). 

“Time” means the intergenerational inequality. “Space” measures the spatial disparities in the relative 
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impacts of climate change (IPCC 2007), and thus it is also called the intragenerational inequality. 

However, in the context of the climate change, the correlations between preferences over these three 

dimensions are weak, according to Atkinson, Dietz et al. (2009) who surveyed the attitudes of over 

3000 people. Hence, the dimensional correlations need to be explored further in the analysis of climate 

policies. More recently, Emmerling (2018) explored the inequality dimensions within an emphasis on 

the intragenerational inequality across countries. As only the impacts of climate change in China are 

analysed in this chapter, the intragenerational inequality worldwide is omitted. However, 

intrageneration inequality exists within China, but it coincides with the income inequality analysed in 

the context above. To separate the risk from the time denoted by 𝜂 in Eq. (3.14), Eq. (3.15) is employed 

according to Traeger (2009). In Eq. (3.15), 𝜂 denotes the aversion to intertemporal fluctuations only. 

𝑟𝑡 = 𝛿 + 𝜂 × 𝑔𝑡 − 𝜂
2 ×

𝜎1
2

2
− 𝑅𝐼𝑅𝐴𝑡 × |1 − 𝜂

2| ×
𝜎1

2

2
                           (3.15) 

𝑅𝐼𝑅𝐴𝑡 =

{
 

 1 −
1−𝑅𝑅𝐴

1−𝜂
, 1 − 𝜂 > 0

∞,                 1 − 𝜂 = 0
1−𝑅𝑅𝐴

1−𝜂
− 1, 1 − 𝜂 < 0

                                              (3.16) 

In Eq. (3.15), the parameter 𝑅𝐼𝑅𝐴𝑡  characterises intertemporal risk aversion in Year t; the 

parameter 𝜎1  refers to the standard deviation of the growth rate, assuming that the growth rate is 

normally distributed. In the context of isoelastic welfare function defined in this chapter, the value of 

𝑅𝐼𝑅𝐴 is given by Eq. (3.16). In Eq. (3.16), 𝑅𝑅𝐴 refers to the Arrow-Pratt relative risk aversion, and its 

best-guess value is 9.5 given by Vissing-Jorgensen and Attanasio (2003). By employing a stochastic 

version of the DICE model, Crost and Traeger (2014) also used 𝑅𝑅𝐴 to compute the optimal carbon tax 

and abatement levels that maximise social welfare in the US. Because the absolute value in Eq. (3.15) 

is uneasy for calculation, Eq. (3.17) is introduced via combining Eq. (3.15) and (3.16). 

𝑟𝑡 = 𝛿 + 𝜂 × 𝑔𝑡 − 𝜂𝑡
2 ×

𝜎2

2
− (1 −

1−𝑅𝑅𝐴

1−𝜂
) × (1 − 𝜂2) ×

𝜎2

2
                     (3.17) 

𝑔𝑡 = 𝑇𝐻𝐷𝑡 𝑇𝐻𝐷𝑡−1⁄ − 1                                             (3.18) 

𝜎 = √
1

16−1
× ∑ (𝑔𝑡 −

1

16
× ∑ 𝑔𝑡

2030
𝑡=2015 )22030

𝑡=2015                                  (3.19) 

In Eq. (3.17), according to Nordhaus (2017), the pure time preference rate (𝛿) equals 0.015. The 

generational inequality parameter 𝜂 is time-invariant and equals 1.45. The consumption growth rate 𝑔𝑡 

is defined in Eq. (3.18) where 𝑇𝐻𝐷𝑡 refers to the total household consumption in Year t. The growth 

rate in the base year 2015 is calculated as the base year household consumption divided by the 

consumption in 2014. The 2014 consumption data is calculated using the 2012 and 2015 China Input-

Output Table on the assumption that the household consumption changed linearly from 2012 to 2015. 

After the growth rate is calculated, its standard deviation 𝜎 is calculated using Eq. (3.19). 
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Nordhaus (2018) defined the social discount rate in the DICE model only using the parameter of 

the pure time preference rate 𝛿 show in Eq. (3.20). Because 𝑟𝑡 in Eq. (3.20) is only related to 𝛿, its value 

remains unchanged irrespective of the imposition of the carbon tax. Eq. (3.20) also implies that the 

future generation will have a larger value of 𝑟𝑡, which means the welfare of the future generation is less 

important than that of the current generation. Hence, the definition of 𝑟𝑡 in the DICE model is likely to 

induce intergenerational inequality. In contrast, 𝑟𝑡 defined in Eq. (3.15) of this chapter is influenced by 

a climate policy. This is because a climate policy may change the growth and standard deviation of the 

total consumption. Also, the definition of 𝑟𝑡  in Eq. (3.15) shows no obvious discrimination on the 

welfare of the future generation regarding the total welfare. 

𝑟𝑡 = 1 −
1

(1+𝛿)𝑡−2015
                                                     (3.20) 

According to Price (2000), the social discount rate can be positive, zero, or negative, depending on 

the income growth rate, the investment return rate and so on. In this chapter, the social discount rate 

mainly depends on the consumption growth rate as the values of 𝛿 and 𝜂 are fixed. A positive discount 

rate denotes the case of economic growth, while a negative rate is the case of a recession (Hellweg, 

Hofstetter et al. 2003). 

𝐻𝑊 = {
∑ [𝑃𝑂𝑃𝑡 × (1 − 𝑟𝑡) ×

(𝑇𝐻𝐷𝑡 𝑃𝑂𝑃𝑡⁄ )1−𝜂−1

1−𝜂
]2030

𝑡=2015 , 𝜂 ≠ 1

∑ [𝑃𝑂𝑃𝑡 × (1 − 𝑟𝑡) × ln (𝑇𝐻𝐷𝑡 𝑃𝑂𝑃𝑡⁄ )]2030
𝑡=2015 , 𝜂 = 1

                      (3.21) 

The isoelastic welfare function defined in the DICE model includes the social discount rate 𝑟𝑡, 

shown in Eq. (3.21). 𝐻𝑊  is the household welfare; 𝑃𝑂𝑃𝑡  refers to the population in Year t. If the 

definition of 𝑟𝑡 changes, its value will change, and thus the household welfare will also change. 

Sensitivity Analysis 
I have analysed how the major exogenously determined parameters will affect the model results 

based on Nordhaus (2018) who investigated the uncertainties of the DICE model. The uncertainty 

analysis in Nordhaus (2018) is quite similar to the sensitivity test of the CGE model. As the relative 

uncertainty is much higher for the economic variables than for the geophysical variables (Nordhaus 

2018), only the geophysical equations of the DICE model are used in this chapter. Therefore, a 

sensitivity test has been conducted to analyse the impacts of the uncertainties existing in the geophysical 

parameters on the model equilibrium. Noticeably, the cumulative industrial emissions in this chapter 

are defined as the summation of the Chinese emissions plus the exogenous RW emissions over the 

research period. As the definition of the cumulative industrial emissions is irrelevant to the geophysical 

parameters, the sensitivity analysis on this variable is not performed in this chapter. 

Nordhaus (2018) used a Monte Carlo simulation to estimate the distribution of the five parameters: 

the equilibrium temperature sensitivity, productivity growth, damage function, carbon cycle, and 

decarbonisation rate. In this chapter, the productivity growth and decarbonisation rate, namely the 
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reduction of the carbon intensity, are endogenously determined by the CGE model. Hence, these two 

parameters are excluded in the sensitivity test. According to Nordhaus (2018), the probability density 

function (PDF) for each uncertain variable is divided into quintiles, and the expected values of the 

parameters in each quintile are shown in Table 3.2. 

Table 3.2 The Quintiles of the Parameters 

  Q1 Q2 Q3 Q4 Q5 

KKdam 0.00061 0.00141 0.00236 0.00242 0.00464 

KKets 2.00767 2.51586 3.1 3.38802 4.49126 

KKcarb 233.59 292.95 360 394.35 519.33 

Table 3.2 shows the quintiles of the parametric values defined in Nordhaus (2018). In Table 3.2, 

Q1–Q5 are the quantile points of the PDFs. KKdam is the coefficient for the damage equation, and an 

increase in KKdam means that the rising global temperature will give rise to more climate damages. 

KKets denotes the equilibrium temperature sensitivity or climate sensitivity, and it is defined as the 

equilibrium near-surface temperature response to a doubling of atmospheric CO2 (Olson, Sriver et al. 

2012). KKcarb measures the size of the intermediate reservoir (biosphere and upper level of the oceans) 

in the carbon cycle, which affects the atmospheric retention of the greenhouse gases over the medium 

term (Nordhaus 2018). The parametric values of Q3 are equivalent to the values of the best-guess case 

in the DICE model.  

Nordhaus used the parameter 𝜂  to denote the elasticity of marginal utility of consumption 

(Nordhaus 2017) and generational inequality aversion (Nordhaus 2018) interchangeably. This 

interchangeable use implies that the parameter 𝜂 in the DICE/RICE model measures a combined effect 

of the intragenerational and intergenerational inequality as well as the marginal utility of consumption, 

which is unclear and confusing. In Eq. (3.21), the parameter 𝜂 is supposed to measure the intertemporal 

aversion only. Hence, using the value of 1.45 given by Nordhaus (2018) may generate a biased 

estimation of the welfare. 

In the literature, other researchers have argued for different values of 𝜂. For example, Stern (2007) 

argued for the immediate action to mitigate the climate change and suggested the value of 𝜂 should be 

one. Weitzman (2007) showed 𝜂 = 2 using the geometric-average point estimate. Similarly, Nordhaus 

(2007) argued that the value of 𝜂 should be 2 in the early version of the DICE model. Dasgupta (2008) 

mentioned that the value of 𝜂 could vary 1.5 to 3 worldwide. Cline (2010) argued that the value of 𝜂 

consistent with observed progressive tax systems was 1.5: a higher value would lead to the prohibitive 

taxes on the rich and a lower value would induce the non-progressive proportional taxation. Vissing-

Jorgensen and Attanasio (2003) gave the best guess of 𝜂 equal to 
2

3
. In this chapter, the listed 𝜂 values 

mentioned above will be included to analyse the impacts on the model results. 

In this chapter, the default value of the pure time preference rate (𝛿) is 0.015 according to Nordhaus 

(2007) who argued for a low and positive discount rate to calibrate the utility function in the DICE 
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model. In contrast, Weitzman (2007) thought that the decent parametric values would be a “trio of twos”, 

arguing that  should be 0.02. However,  can be also 0.001, according to Stern (2007) who believed 

that the lowest conceivable value of  should be used to denote social discounting. Similarly, 

Emmerling (2018) also used 0.001 as the value of  to study the social discount rate considering 

intragenerational inequality. Nevertheless,  was assumed to be 0 in Yamaguchi (2019) who 

decomposed the consumption discount rate. Hence, there are uncertainties in the parametric value of , 

and I will perform the sensitivity analysis to study how the uncertainties of  will affect the utility 

(household welfare). 

Model Results 

 

Fig. 3.1 The Projected Baseline Emissions in China and the Rest of the World (RW) (Unit: Gt) 

Fig. 3.1 shows the projected China and RW emissions in the baseline scenario over the studied 

period. Fig. 3.1 implies that the baseline Chinese emissions are about one third of the RW emissions. 

The Chinese emissions will increase, but the increase rate will decline steadily over time. Similar 

findings can be found in the previous work by Yang and Teng (2018). By comparison, the RW 

emissions will increase drastically over the studied period, and the annual increase rate will remain 

relatively stable. 

 

Fig. 3.2 The Relative Change of the Household Emissions Influenced by the Primary Benefit 
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Fig. 3.2 shows the impact of the primary benefit on the household emissions over the studied period. 

In all the tax scenarios, the primary benefit will increase the household emissions by 0.10%–0.17% 

even though its impact will fluctuate over time. The rationale underlying Fig. 3.2 is that the primary 

benefit improves the labour health (Anenberg, Henze et al. 2017), which increases the labour income 

(Boachie 2017) and thus the household welfare shown in Fig. 3.7. Hence, the primary benefit will 

increase the household energy consumption and carbon emissions. 

 

Fig. 3.3 The Relative Change of the Total Emissions Influenced by the Primary Benefit 

Fig. 3.3 shows how the primary benefit of the carbon tax will affect the total emissions over the 

research period. According to Fig. 3.3, the primary benefit will have a decreasing impact on the total 

emissions over time, but the impact will increase as the tax rate rises. Fig. 3.3 implies that the primary 

benefit has a much smaller impact on the total emissions compared to the household emissions, which 

implies that the primary benefit is less distinct at the country level. In other words, the climate impact 

is not of vital importance to the analysis of the policy effect of the carbon tax on the emission reduction. 

This finding agrees with the previous research showing that the incentive to implementing the carbon 

tax is not a threat to mitigating the carbon emissions for the immediate future, according to Wang, 

Moreno-Cruz et al. (2017) who used the DICE model to check the incentives to continue carbon 

emissions.  
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Fig. 3.4 The Relative Change of the Carbon Intensity Influenced by the Primary Benefit 

Fig. 3.4 shows the variation of the carbon intensity under the primary benefit impact over the 

studied period. This impact fluctuated in 2015–2019 but will decrease gradually in 2020–2030. 

Generally, the primary benefit of the carbon tax will negatively influence the carbon intensity even 

though this impact is quite minimal. Fig. 3.4 implies that the primary benefit will increase the energy 

efficiency or the development of renewable energies to decrease the carbon intensity. 

 

Fig. 3.5 The Relative Change of the Household Welfare Loss Influenced by the Primary Benefit 

Fig. 3.5 shows the percentage change of the household welfare loss, denoted by the value of the 

Equivalent variation (EV), under the primary benefit impact over time. Fig. 3.5 implies that the primary 

benefit will decrease the household welfare loss, induced by the carbon tax, by 0.1%–0.3%. As the tax 

rate increases, this impact will be less distinct. The rationale underlying Fig. 3.5 is that the household 

is likely to suffer less from the extreme weather conditions and rising sea level when the primary benefit 

is considered. This finding agrees with the previous study concluding that the climate benefits would 

increase the household welfare, according to Freeman and Zerriffi (2012) who critically looked at the 

tradeoffs between the climate and health benefits of the cookstove projects. 

 

Fig. 3.6 The Relative Change of the RGDP Loss Influenced by the Primary Benefit 
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Fig. 3.6 shows how the primary benefit will affect the RGDP loss induced by the carbon tax over 

the studied period. This impact will decrease as the rate increases or the time goes by. Fig. 3.6 implies 

that the primary benefit of the carbon tax will decrease the RGDP loss and thus increase the real GDP, 

even though this impact is not distinct. The rationale underlying Fig. 3.6 is that the improved labour 

health, induced by the primary benefit, will increase the labour productivity and thus boost the economic 

growth. This finding consents to the previous study showing that the US carbon tax will result in an 

increase in the global social welfare when the benefits of reducing the emissions are included, according 

to Chen, Huang et al. (2014) who developed an integrated model of the fuel and agricultural sector. 

 
Fig. 3.7 The Relative Change of the Tax Revenues Influenced by the Primary Benefit 

Fig. 3.7 shows the changes of the tax revenues when the primary benefit is considered. The primary 

benefit will have a very minimal impact on the tax revenues, and this impact will decrease over time. 

The curve for the 1% tax rate is larger than zero in 2015–2024, equal to zero in 2025, and less than zero 

in 2026–2030, whilst the primary benefit of the 1% and 2% tax will have positive impacts over the 

studied period. The positive impact of the primary benefit on the tax revenues can be attributed to the 

induced economic boom, shown in Fig. 3.6. 

 

Fig. 3.8 The Relative Change of the Climate Damages Influenced by the Primary Benefit 
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Fig. 3.8 shows the variation of the climate damages under the primary benefit impact in the tax 

scenarios over time. The primary benefit will increase the monetary value of the climate damages. This 

impact is positively related to the tax rates but negatively rated to the time. Readers may expect that the 

primary benefit may decrease the climate damages because the primary benefits of climate policies are 

the avoided damages from the global warming (Lomborg 2020). However, Fig. 3.8 implies the opposite 

finding, owing to the projection that the primary benefit will generally increase the emissions, shown 

in Fig. 3.2 and 3.3. Hence, the primary benefit will have a promotion effect on the global warming and 

thus increase the climate damages. 

 

Fig. 3.9 The Relative Change of the Abatement Costs Influenced by the Primary Benefit 

Fig. 3.9 shows the impact of the primary benefit on the abatement costs in the tax scenarios over 

time. This impact will increase steadily at the 1% tax but remain stable at the 2% and 3% tax. The 

primary benefit will have a very minimal impact and generally positively affect the abatement costs 

except that it decreased the costs in 2015–2019 at the 1% tax. The rationale underlying Fig. 3.9 is that 

the primary benefit will slightly increase the carbon emissions, shown in Fig. 3.2 and 3.3, and thus it is 

unfavorable to abate the emissions under the impact of the primary benefit. 

 
Note: “C” and “CD” refers to the clean-air and CGE-DICE model respectively;  

“Base” refers to the baseline; “1%”, “2%”, “3%” refer to the tax rates. 
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Fig. 3.10 The Household Welfare Influenced by the Primary Benefit (Unit: 1018 CNY) 

Fig. 3.10 shows the comparison of the household welfare between the clean-air and CGE-DICE 

model in three tax scenarios. In the baseline scenario, the household welfare is the same in the two 

models. In the tax scenarios, the primary benefit will have a slight and positive impact on the welfare. 

However, as the tax rate increases, the welfare will decrease regardless of the primary benefit, which 

implies that considering the primary benefit is not enough to change the social reluctance of the 

implementation of a climate policy. This finding complies with the previous research showing that the 

costs of climate policies usually outweighed the climate benefits, according to Lomborg (2020) who 

outlined how to establish a rational climate policy. 

When the tax rate is endogenized, the results of the CGE-DICE model show that the optimum 

policy that incurs the largest household welfare is no tax imposed on any sector exploiting nonrenewable 

energy. The results imply that considering the primary and ancillary benefits are still not enough to 

make climate policies attractive to the government. 

 

Fig. 3.11 The Comparison of the Average Social Cost of Carbon (ASCC) (Unit: 2015 $/𝑡 𝐶𝑂2) 

Fig. 3.11 shows the values of the ASCC in the clean-air and CGE-DICE model. In all the scenarios, 

the ASCC was projected to increase over the studied period. The carbon tax will decrease the ASCC, 

and the ASCC is negatively correlated with the tax rate. This is because the carbon tax will significantly 

decrease the carbon emissions, shown in Fig 1.9 and A1.4 in Appendix A. Nevertheless, the primary 

benefit of the tax will slightly increase the ASCC because it will slightly increase the carbon emissions, 

shown in Fig. 3.2 and 3.3. The baseline ASCC in 2015 is 40.54 $/𝑡 𝐶𝑂2 at 𝜎 = 2.55%. The result in 

this chapter is in line with the previous research showing that the ASCC was 56.98 $/𝑡 𝐶𝑂2 at 𝜎 = 2% 

and 34.19 $/𝑡 𝐶𝑂2 at 𝜎 = 3%, according to Tian, Ye et al. (2019) who used a simplified formula to 

calculate the ASCC in China. 
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Note: “B” and “T” refer to the baseline and 1% tax scenario respectively;  

“2.5%”, “3%”, and “5%” refer to the discount rate. 
Fig. 3.12 The ASCC in China Influenced by the Social Discount Rate (Unit: 2015 ) 

Fig. 3.12 shows to what extent the social discount rate will affect the ASCC. According to Fig. 

3.12, the ASCC will be negatively related to the discount rate in both the baseline and 1% tax scenario. 

 
Data Source: EPA 

Fig. 3.13 The ASCC in the US Influenced by the Social Discount Rate (Unit: 2015 ) 

Fig. 3.13 shows the ASCC in the US under the influence of the social discount rate according to 

The United States Environmental Protection Agency (EPA). When the discount rate is 2.5% or 3%, the 

ASCC in the US will be larger than that in China. Nevertheless, when the discount rate rises to 5%, 

China will unexpectedly have a higher ASCC. According to Ricke, Drouet et al. (2018) who estimated 

the country-level contributions to the SCC, the ASCC in China and the US was projected to be 24 and 

48  respectively in 2020, which implies that the discount rate in China and the US would be 

over 5% and approximately 3% respectively in 2020. 
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Fig. 3.14 The Projected Emission Growth Rate Influenced by the Primary Benefit 

Fig. 3.14 shows the projected emission growth rate in the tax scenarios when the primary benefit 

is considered. As the emission growth rate in 2030 will be positive, China still cannot meet the INDC 

target of peaking the emissions in 2030 under the consideration of the primary benefit. Fig. 3.14 implies 

that China needs to take more measures in addition to the carbon tax to abate the emissions when both 

the ancillary and primary benefits of the carbon tax are considered. Nevertheless, as Fig. 3.4 shows the 

carbon intensity in the CGE-DICE model is even lower than that in the clean-air model defined in the 

previous chapter, China will meet the INDC target of the carbon intensity reduction in 2030. 

Results of the Sensitivity Analysis 
Table 3.3 The Changes of the Parametric Quintiles Relative to Q3 

  Q1 Q2 Q4 Q5 
KKdam -74.15% -40.25% 2.54% 96.61% 
KKets -35.24% -18.84% 9.29% 44.88% 

KKcarb -35.11% -18.63% 9.54% 44.26% 
Table 3.3 shows the percentage changes of the quintiles based on Table 3.2. Table 3.3 implies that 

the value of KKdam will have a broader range than the other two parameters. Because the definitions 

of the emissions and welfare in this chapter are irrelated with KKdam, KKets, and KKcarb, the policy 

effects of the carbon tax on the emission reduction and welfare change are insensitive to these three 

parameters which form the geophysical equations in the DICE model. However, the values of the 

geophysical variables in this chapter need to be explored, as their definitions are closely related to these 

parameters. 

Table 3.4 The Changes of the Atmospheric Temperature Increase Quintiles Relative to Q3 
   Baseline Scenario  1% Tax Scenario  

Year Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 
2015 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
2020 -4.68% -1.54% 0.19% 0.17% -4.59% -1.49% 0.17% 0.08% 
2025 -8.17% -2.64% 0.18% -1.32% -7.97% -2.52% 0.11% -1.65% 
2030 -11.79% -4.31% 0.68% -0.36% -11.51% -4.13% 0.58% -0.89% 
Table 3.4 shows how the atmospheric temperature increase is affected by the given geophysical 

parameters. According to Table 3.4, when the parametric values decrease from Q3 to Q1 or Q2, the 
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atmospheric temperature increase will decline both in the baseline and 1% tax scenario. Table 3.4 

implies that the percentage changes of the temperature increase will be much smaller than the 

percentage changes of the parameters, which means that the geophysical parameters do not lay undue 

influences on this variable. 

Table 3.5 The Changes of the Atmospheric Carbon Concentration Increase Quintiles Relative to Q3 

   Baseline Scenario 1% Tax Scenario 

Year Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 

2015 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

2020 12.96% 6.11% -2.60% -9.92% 13.04% 6.14% -2.62% -9.98% 

2025 13.91% 6.78% -3.04% -12.13% 14.00% 6.83% -3.06% -12.22% 

2030 13.98% 6.85% -3.10% -12.56% 14.06% 6.89% -3.12% -12.64% 

Table 3.5 shows that the change of the atmospheric carbon concentration increase influenced by 

the exogenously given parametric values. According to Table 3.5, when the geophysical parameters 

increase from Q3 to Q4 or Q5, the carbon concentration increase will decline. Table 3.5 implies that 

the percentage changes of this variable will be also much smaller than the percentage changes of the 

geophysical parameters. 

Table 3.6 The Changes of the Consumption Good Net Value Quintiles Relative to Q3 

   Baseline Scenario  1% Tax Scenario 

Year Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 

2015 0.13% 0.07% 0.00% -0.17% 0.13% 0.07% 0.00% -0.17% 

2020 0.37% 0.20% -0.01% -0.47% 0.36% 0.20% -0.01% -0.46% 

2025 0.62% 0.34% -0.02% -0.72% 0.60% 0.33% -0.02% -0.69% 

2030 0.87% 0.50% -0.04% -1.04% 0.84% 0.47% -0.04% -0.98% 

Table 3.6 shows how the consumption goods, free from the climate damages and abatement costs, 

will change under the influence of the geophysical parameters. Table 3.6 implies that the net value of 

the consumption goods will vary slightly when the parameters change. This is because the abatements 

and damages take up only a small proportion of the overall consumption goods. 

Table 3.7 The Changes of the Real Interest Rate Quintiles Relative to Q3 

   Baseline Scenario 1% Tax Scenario 

Year Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 

2015 0.55% 0.32% -0.04% -0.82% 0.58% 0.33% -0.04% -0.86% 

2020 0.61% 0.34% -0.01% -0.62% 0.50% 0.28% -0.01% -0.50% 

2025 0.65% 0.38% -0.04% -0.74% 0.49% 0.28% -0.03% -0.53% 

2029 0.67% 0.41% -0.07% -0.94% 0.53% 0.32% -0.05% -0.72% 

2030  UND UND  UND  UND  UND  UND  UND  UND  

Note: “UND” stands for “undefined”. 

Table 3.7 shows to what extent the parametric values will affect the real interest rate over time. 

Table 3.7 implies that the real interest rate is insensitive to the changes of the geophysical parameters. 

Noticeably, the real interest rate in 2030 is undefined as the geophysical equations in Nordhaus (2018) 

cannot calculate the value of this variable in the last year of the studied period. 
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Table 3.8 The Changes of the Damage Ratio Quintiles Relative to Q3 

  Baseline Scenario 1% Tax Scenario  

Year Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 

2015 -74.15% -40.25% 2.54% 96.61% -74.15% -40.25% 2.54% 96.61% 

2020 -76.51% -42.08% 2.93% 97.29% -76.47% -42.03% 2.88% 96.93% 

2025 -78.21% -43.37% 2.91% 91.44% -78.11% -43.22% 2.76% 90.18% 

2030 -79.89% -45.29% 3.95% 95.18% -79.76% -45.09% 3.73% 93.14% 

Table 3.8 shows the influence of the geophysical parameters on the ratio of the climate damages 

to the output over the studied period. Table 3.8 implies that the damage ratio will change proportionally 

to the given parametric values. Specifically, the damage ratio is proportional to the damage parameter 

but insensitive to the other parameters. 

Table 3.9 The Changes of the Household Welfare Quintiles Relative to Q3 

 Baseline Scenario 1% Tax Scenario 

Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 

0.12% 0.07% 0.00% -0.15% 0.17% 0.09% -0.01% -0.21% 

Table 3.9 shows the variation of the household welfare influenced by the geophysical parameters 

over the research period. Table 3.9 implies that the household welfare is insensitive to the changes of 

the given values of the geophysical parameters. 

Table 3.10 The Changes of the ASCC Quintiles Relative to Q3 

   Baseline Scenario 1% Tax Scenario 

Year Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 

2015 -74.23% -40.33% 2.61% 96.78% -74.23% -40.33% 2.61% 96.78% 

2020 -74.17% -40.25% 2.60% 96.18% -74.17% -40.25% 2.60% 96.20% 

2025 -74.11% -40.16% 2.59% 95.68% -74.11% -40.17% 2.59% 95.74% 

2030 -74.04% -40.07% 2.57% 95.05% -74.05% -40.08% 2.57% 95.18% 

Table 3.10 shows the variation of the average social cost of carbon (ASCC) quintiles under the 

influence of the geophysical parameters. The variation of the ASCC will remain stable over the research 

period. According to Table 3.10, the ASCC will have almost the same proportional changes to the 

damage parameter, implying that among the geophysical parameters, the damage parameter will have 

a crucial impact on the ASCC. 

Table 3.11 The Social Discount Rate Defined in the DICE Model and This Chapter 

Year DICE Eq. (3.17) in this Chapter 

Tax   0% 1% 2% 3% 

2015 0 0.16 -0.53 -0.86 -1.05 

2020 0.07 0.14 0.05 -0.05 -0.12 

2025 0.14 0.13 0.05 -0.04 -0.10 

2030 0.20 0.12 0.04 -0.06 -0.12 

Table 3.11 shows the comparison of the social discount rate between the DICE model and this 

chapter. The social discount rate 𝑟𝑡 in the DICE model will increase drastically as the time goes by. By 

comparison, 𝑟𝑡  will remain relatively stable in the baseline scenario of this chapter. In the 1% tax 

scenario, 𝑟𝑡 was negative in 2015 but will remain positive in 2016–2030. This is because the carbon tax 

decreased the energy consumption in 2015, but no tax was imposed in 2014. The social discount rate 

will become negative when the economic growth in the current year is less than that in the previous 
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year. This is the case at the 2% or 3% tax where the economic growth rate and thus the social discount 

rate will be negative over the studied period. 

Table 3.12 The Household Welfare Influenced by the Social Discount Rate (Unit: 1018 CNY) 

Tax 0% 1% 2% 3% 

Using 𝑟𝑡 in DICE Model 15.53 13.30 11.74 10.55 

Using 𝑟𝑡 in Eq. (3.17) 15.13 14.78 14.46 13.83 

Table 3.12 shows the impacts of the social discount rate on the household welfare in the baseline 

and tax scenarios. Table 3.12 implies that using 𝑟𝑡  in this chapter instead of the DICE model will 

decrease the welfare in the baseline scenario but increase the welfare in the tax scenarios. Irrespective 

of the value of 𝑟𝑡, the carbon tax will decrease the household welfare with the impact increasing as the 

tax rate increases. 

Table 3.13 The Household Welfare Influenced by 𝜂 (Unit: 1018 CNY) 

 Tax 0% 1% 2% 3% 

𝜂 = 3 -10.25  -10.26  -10.29  -10.32  

𝜂 = 2 -0.65  -1.05  -1.39  -1.69  

𝜂 = 1.5 13.29  11.38  10.03  8.97  

𝜂 = 1.45 15.53  13.30  11.74  10.55  

𝜂 = 1 51.40  42.00  36.41  32.55  

𝜂 = 2 3⁄  117.37  89.53  74.84  65.43  

Table 3.13 shows the changes of the household welfare influenced by the inequality parameter (𝜂) 

in the baseline and tax scenarios. As the value of 𝜂 decreases, the household welfare will increase 

dramatically. Interestingly, when 𝜂 equals 2 or 3, the household welfare will become negative, implying 

that the inequality parameter severely affects the household welfare. In addition, the large variation of 

the welfare under the influence of the inequality parameter suggests that the definition of the welfare 

function in the DICE model is susceptible to the exogenous values of the inequality parameter, and thus 

it needs to be improved. 

Table 3.14 The Household Welfare Influenced by 𝛿 (Unit: 1018 CNY)  

Tax  0% 1% 2% 3% 

𝛿 = 0 17.45  15.01  13.30  11.99  

𝛿 = 0.001 17.31  14.89  13.19  11.89  

𝛿 = 0.015 15.53  13.30  11.74  10.55  

𝛿 = 0.02 14.96  12.80  11.28  10.12  

Table 3.14 shows how the household welfare will vary under the influence of the pure time 

preference rate (𝛿). Generally, the value of 𝛿 will be negatively correlated with the household welfare 

over time: a lower 𝛿 value will induce the higher welfare, whilst a higher 𝛿 value will induce the lower 

welfare. As the 𝛿 value only slightly affects the household welfare, I conclude that the household 

welfare is robust to the uncertainties of 𝛿. This is because the time preference indirectly affects the 

welfare, and this indirect effect is moderated by the social discount rate. 

Discussion 
This chapter empirically shows that the primary benefit will reduce the carbon intensity. The 

reduction of the intensity denotes the energy efficiency improvement, which saves the energy 
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consumption and thus will generate the climate benefits (Trotta 2019). Trotta (2020) and Buonocore, 

Luckow et al. (2016) also drew similar conclusions. Hence, a bidirectional link exists between the 

climate benefit and intensity. On the contrary, Lankoski and Ollikainen (2011) developed a general 

economic–ecological modelling framework and empirically found that the climate benefit did not 

promote the biofuels production under the current technology. Hence, the impact of the climate benefit 

on reducing the carbon intensity must be accompanied by the enhanced technological innovation 

(Irandoust 2019). Only an adoption of a new technique that saved energy consumption would induce 

the climate benefits, according to Saliba, Subramanian et al. (2018) who measured optical properties of 

fresh aerosol emissions from stoves. Hence, the minimal impact of the primary benefit on the carbon 

intensity in this chapter agrees with the findings in Lankoski and Ollikainen (2011), Irandoust (2019), 

and Saliba, Subramanian et al. (2018). 

The primary benefit will significantly decrease the deadweight loss of the carbon tax and thus 

increase the output, especially for the agriculture sector whose output is severely affected by the climate 

change. For example, Sathre and Gustavsson (2009) developed a bottom-up method to empirically show 

that the climate benefit of the carbon tax significantly increased the added values of the forest product 

industries. As for the representative household, the primary benefit will also increase the welfare. Since 

the accelerating global warming will cause the severe economic costs and reduce the welfare 

(Vousdoukas, Mentaschi et al. 2017, Jevrejeva, Jackson et al. 2018), climate policies that relieve the 

global warming will generate the economic and welfare benefits. 

The primary benefit will increase the tax revenues. This finding agrees with Wang, Moreno-Cruz 

et al. (2017) who used the DICE model to demonstrate that the carbon tax for revenue generation could 

potentially motivate the tax implementation today, but this source of the revenue generation would start 

to risk motivating the continued carbon emissions in 2085. As the research period in this chapter only 

extends to 2030, the primary benefit will generally increase the tax revenues over time. 

The primary benefit of the carbon tax will increase the climate damages because it will increase 

the emissions and thus exacerbate the climate change. According to Lontzek, Cai et al. (2015) who  

used a stochastic integrated assessment model to indicate the need for a strict climate policy, the 

irreversible impacts of the tipping events, pushed by human activities, would increase with the global 

warming. In addition, the primary benefit of the Chinese carbon tax could have a global impact but only 

the regional impact is modelled in this chapter. This is because the climate is a kind of public goods 

owing to its nonexcludable and nonrivalry features. A previous study on the US climate policy 

concluded that the US policy resulted in a net cooling on a global scale, but the policy led to a net 

positive forcing over the USA on a regional scale, implied by the NASA GISS ModelE2 general 

circulation model (Lee, Shindell et al. 2016). 
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The primary benefit will minimally affect the abatement costs, and the impact is positive in most 

cases. This finding corresponds to the fact that in the developing countries, primary benefits play a 

minor role on the political agenda (Rubbelke 2006). This is because challenges existed in undertaking 

assessments of climate policies, according to Cohen, Tyler et al. (2017) who did co-impacts assessment 

under the Mitigation Action Plans and Scenarios (MAPS) Programme. Hence, the overwhelming near-

term development priorities in the developing countries impair the promotion of the climate benefits on 

the reduction of the abatement costs. In contrast, climate benefits are more concerned in the developed 

countries. For example, Woollacott (2018) used the forward-looking dynamic CGE model to identify 

the required amount of the climate benefits to justify the emission abatement achieved by the carbon 

tax in the US. Similarly, Melvin, Sarofim et al. (2016) monetised the climate and ozone-health impacts 

of the methane reductions and concluded that the US EPA policies generated the climate and air quality 

benefits. 

In summary, the main contribution of this chapter is the introduction of the primary benefits, using 

the geophysical equations of the DICE/RICE models, to the CGE framework in analysing the policy 

effects of the carbon tax. Future researchers could introduce other types of the IAMs to the CGE 

framework. This is because the ancillary benefits of climate policies, quantified by CGE models or 

other socioeconomic models, can be comparable in size to the primary benefits, modelled by the IAMs, 

according to Pearce (2000). 

The sensitivity analysis shows that among all the geophysical parameters, only the damage 

parameter will place undue influences on the climate damages over the studied period. This finding 

implies that all the geophysical variables, except for the damage variable, are insensitive to the given 

parametric values and perform well in the CGE-DICE model. The sensitivity of the damage parameter 

corresponds to the argument that the damage functions in the IAMs simply reflect the common beliefs, 

but they are completely made up with no theoretical or empirical foundation (Pindyck 2013). Moreover, 

the measurement of the household welfare is insensitive to the given parametric values of the discount 

rate and pure time preference rate, but it is subject to the variations of the inequality parameter. This 

finding implies that the intergenerational inequality will severely affect the household welfare over time. 

Hence, future potential research may lie in a clear clarification of the damage function, whose 

result should be insensitive to the exogenous values of the damage parameter. The quantification of the 

household welfare also needs to be improved in a way that its value should not be susceptible to the 

given value of the inequality parameter. Only when the undue influences from all the exogenous 

parameters are excluded will the authentic impacts of the primary benefit be modelled in the CGE-

DICE model.  

Another potential research lies in the clear modelling of the global primary benefits of the Chinese 

carbon tax. The climate benefits usually extend beyond the local region where the climate policy is 
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implemented (Lee, Shindell et al. 2016). As this chapter only focuses on the regional primary benefit 

of the Chinese carbon tax, the results tend to underestimate the entire primary benefits of the tax. 

According to the Tinbergen Rule (Tinbergen 1952), there must be at least one policy instrument 

for each policy target; in other words, when instruments are fewer than targets, then some targets will 

not be achieved (Knudson 2009). Hence, the primary benefits, quantified in this chapter, may not be 

the largest when the carbon tax is simulated to achieve the ancillary benefit defined in the last chapter. 

To achieve the largest primary benefit, a unique policy instrument, like reforestation, needs to be 

implemented. 

Policy Implications 
Considering the primary benefit will weaken the policy effects of the carbon tax on the emission 

reduction and welfare loss, but it will strengthen the policy effects on the intensity reduction. When the 

primary benefit is considered, the carbon tax will not help China meet the INDC target of peaking the 

emissions. 

Conclusion 
The empirical research in this chapter found that the primary benefit will increase the household 

emissions by 0.10%–0.17% owing to the induced improvement of the labour health. Nevertheless, the 

primary benefit will decrease the carbon intensity by approximately 0.01% because the primary benefit 

will induce the economic boom and energy efficiency improvement. The primary benefit will decrease 

the household welfare loss, induced by the carbon tax, by 0.1%–0.3%. This is because the labour health 

improvement will increase the labour income and thus household welfare. 

The carbon tax will decrease the average social cost of carbon (ASCC) because of the negative 

policy effects of the tax on the carbon emissions. Nevertheless, the primary benefit will minimally 

increase the ASCC in the tax scenarios because it will increase the emissions. A higher value of the 

social discount rate will induce a lower value of the ASCC. The sensitivity analysis shows that among 

all the geophysical parameters, only the damage parameter will severely affect the values of the 

geophysical variable, namely the ratio of the climate damages to the output. The household welfare will 

vary dramatically if the inequality parameter changes, implying that the definition of the welfare 

function in the DICE model needs improving. Considering the primary benefit of the tax is still not 

enough to help China meet the INDC target of peaking its emissions in 2030. 
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Chapter 4: The Technical Impacts of the 

Carbon Tax 

Introduction 
To address the challenges aroused by the accelerating global warming, the United Nations 

Environmental Program calls upon global action to adopt mitigation technologies to control the 

anthropogenic emissions and limit the global temperature rise (Wang, Li et al. 2018). The United Nation 

Framework Convention on Climate Change (UNFCCC) emphasises that technological transfer should 

be an important element in global action to mitigate the climate change. This is because technology is 

at the root of the climate change as well as an integral part of the mitigation process (Akhavan and 

Jabbari 2007). 

Despite the significant role of technology in relieving the global warming, technology was 

usually treated as an exogenous variable in the previous studies on designing climate policies (Popp 

2004). The omission of the technological impacts is likely to overestimate the economic costs of climate 

policies. This is because the technological progress can lower the cost of reducing carbon emissions 

over time, according to Fried (2018) who used a dynamic general equilibrium model with the 

endogenization of energy inputs. Indeed, switching from dirty energy production technologies to clean 

energy production technologies has become a possible answer to today’s environmental problems 

(Tang, Zhong et al. 2019). Hence, it is important to endogenously model the technical impacts as the 

assumptions on the technological change have significant impacts on the evaluation of climate policies 

(Baker and Shittu 2008). 

Previously, the endogenization of technology has already become popular to address the issues 

relating to the climate change (Goulder and Schneider 1999, Goulder and Mathai 2000, van der Zwaan, 

Gerlagh et al. 2002). Researchers tend to use the induced technological change (ITC) to denote the 

technical impacts in empirical analyses. With the ITC included, the climate policies could meet the 

abatement target more easily than the policies without the ITC impacts, according to van der Zwaan, 

Gerlagh et al. (2002) who employed a macroeconomic model to study how the endogenous 

technological change affected the emission abatement and tax levels . This is because the ITC warrants 

earlier investments in the non-fossil carbon-free technology (van der Zwaan, Gerlagh et al. 2002) and 

thus promotes the development of renewable energies. Therefore, the inclusion of the ITC in modelling 

the climate issues tends to reduce the costs of climate policies and lead to positive spillover and negative 

leakage (Loschel 2002). 

Although many previous researchers modelled how technology policies promoted technical 

progress to abate carbon emissions (Hanson and Laitner 2006, Wang, Mao et al. 2018), very few studies 

have focused on the ITC impacts of climate policies. As the carbon pricing in climate policies may 
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crowd out intrinsic motivations and voluntary action to reduce emissions (van den Bergh 2013), the 

ITC impacts could be very different in climate policies from technology policies. For example, although 

the carbon pricing increased the quantity and proportion of the clean invention patents, its effect on the 

overall R&D was negative, according to Lin, Wang et al. (2018) who employed a counter-factual 

method to estimate the impact of the Chinese carbon market on the innovation of clean technology. In 

addition to the negative impacts on technical progress, there is a negative feedback of the ITC induced 

by climate policies. According to Sorrell, Dimitropoulos et al. (2009) who focused entirely on 

household energy services, this feedback is called “direct rebound effect”: a promotion of the green 

technology to replace the carbon fuels decreases the carbon price, and thus the fossil fuels will become 

more attractive and be used more, which erases some of the stimulus provided by the ITC (Folster and 

Nystrom 2010). 

Considering the complicated ITC impacts, whether climate policies will promote or inhibit 

technical progress remain to be researched. Previously, Gans (2012) examined whether climate policies 

would induce innovation in environmentally friendly technologies or crowding out the intrinsic 

innovation in the economy, concluding that only technologies directly abating carbon emissions would 

have an unambiguously positive impact on technical innovation. However, Gans (2012) only designed 

a single-sector mathematic model, which may not conform to the multi-sector reality. Hence, it is 

desirable that a multi-sector model is designed to assess the net policy effects of the carbon pricing on 

the technical progress. 

When researchers model the ITC impacts of climate policies, CGE models have many 

advantages, including the ability to study both national and sectoral mitigation policies, according to 

Jacoby, Reilly et al. (2006) who used the MIT Emissions Prediction and Policy Analysis model to 

analyse the impact of potential technical change on the projection of emissions and mitigation costs. 

However, these advantages come at a price. For example, substantial uncertainties exist in all the 

variables reflecting a technical process, and the residuals yet remain to be poorly understood (Jacoby, 

Reilly et al. 2006). Uncertainties also apply to the modelling and analysis of the nonextant technologies, 

such as the wind and solar power for electricity generation (Jacoby, Reilly et al. 2006). 

In this chapter, the empirical model that captures the ITC impacts is built on the CGE-DICE 

model developed in the previous chapter. Specifically, a technical block is added to the CGE framework, 

and thus the developed model in this chapter is called the technical model. This chapter contributes to 

the literature mainly by including the ITC impacts of climate policies in addition to the ancillary and 

primary benefits discussed in the previous chapters. To my best knowledge, no previous research has 

been performed to collectively model all the three influential factors of climate policies. Hence, the 

model results of this chapter will answer whether the designed carbon tax will help China meet the 

INDC target in 2030 more persuasively. 
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Method 
To model the ITC impacts of the carbon tax, this chapter mainly refers to the quantification 

method in Wang, Saunders et al. (2019) who studied the relation between efficiency changes and energy 

cost share. In other words, the ITC impacts are denoted by the changes of the energy and nonenergy 

efficiencies if the carbon tax changes the energy cost share. In the reality, the efficiency changes can be 

achieved by the R&D investment, which is influenced by the scale effect. For example, if the carbon 

tax increases the consumption costs of nonrenewable energy, the nonrenewable energy production will 

become less attractive, and thus resources will be shifted away from nonrenewable energy sectors. 

Consequently, the R&D investment in nonrenewable energy sectors will decrease, and thus the energy 

production efficiency will also decrease. Noticeable, the ITC impacts in Wang, Saunders et al. (2019) 

mainly included the potential changes of the energy-saving technologies, but they excluded the induced 

development of the decarbonisation or clean energies. Hence, the ITC quantified in this chapter may 

underestimate the technical impacts in the real world. 

There are major differences in the embedded assumptions of the energy price and technical 

index between Wang, Saunders et al. (2019) and this chapter. Wang, Saunders et al. (2019) 

endogenously determined the energy price, but the future technical index was determined by the 

historical data using simple loglinear functions. However, in this chapter, the energy price is 

exogenously determined according to OECD (2014), but the future technical index is endogenously 

determined in the CGE model. 

The economy is assumed to be in a semi-steady state of capital allocation where the capital is 

allocated to maximise the output, but the capital stock will change because of the annual capital 

accumulation. According to Wang, Saunders et al. (2019), the real GDP (RGDP) can be expressed as a 

constant-elasticity-of-substitution (CES) production function of the energy and nonenergy goods, 

shown in Eq. (4.1). 𝑁𝑂𝑁𝐸𝑁𝑡 refers to the nonenergy goods in Year t; 𝐸𝑈𝐸𝑡 denotes the energy-use 

efficiency in Year t; 𝑇𝐸𝐶𝑡̈  is the total adjusted energy consumption in Year t. The reason to adjust the 

energy consumption is that the different energies have different units, and thus it is meaningless to make 

the summation directly. 𝜎𝑒𝑛 is the elasticity of substitution between the energy and nonenergy goods, 

and its centralised value is 0.4 according to Wang, Saunders et al. (2019). In Eq. (4.1), the nonenergy-

use efficiency is assumed to be one. 

𝑅𝐺𝐷𝑃𝑡 = [(𝐸𝑈𝐸𝑡 × 𝑇𝐸𝐶𝑡̈ )
𝜎𝑒𝑛−1

𝜎𝑒𝑛 +𝑁𝑂𝑁𝐸𝑁𝑡
𝜎𝑒𝑛−1

𝜎𝑒𝑛 ]

𝜎𝑒𝑛
𝜎𝑒𝑛−1

                                (4.1) 

The energy cost share is defined in Eq. (4.2), where 𝐸𝐶𝑖𝑞𝑡 refers to the consumption of Energy 

q in Sector i in Year t; 𝐸𝐶𝑆𝑡 stands for the total energy cost share in Year t. In this chapter, each sector 

is assumed to produce only one type of goods, which implies that an energy sector only produces one 

type of energy goods, and a nonenergy sector produces one type of nonenergy goods. 
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𝐸𝐶𝑆𝑡 =
∑ ∑ (𝑃𝐸𝑖𝑞𝑡×𝐸𝐶𝑖𝑞𝑡)𝑞𝑖

𝑅𝐺𝐷𝑃𝑡
                                                             (4.2) 

In Eq. (4.2), 𝑃𝐸𝑖𝑞𝑡 denotes the absolute energy price of Energy q in Sector i in Year t, and this 

variable is used to transform the physical amounts of the energy consumption into the monetary values. 

Noticeably, the energy price in Wang, Saunders et al. (2019) is endogenously determined, whilst in this 

chapter, the predicted energy price over time is exogenously given for the sake of the conformity of the 

CGE-DICE model. The energy price data in 2015–2018 are from the online open source (shown in 

Table 4.1–4.4 in the Data Section of this chapter), but the predicted data for 2019–2030 is currently 

unavailable. Hence, the future energy price, except for the electricity price, is assumed to change 

proportionally to the 2018 energy price based on the predicted price change by OECD (2014). The 

2020–2030 electricity price is assumed to change proportionally to the 2019 electricity price according 

to OECD (2014). 

Based on the calculation of the ECS, the energy-use efficiency (EUE) is defined in Eq. (4.3). 

This EUE definition is different from Wang, Saunders et al. (2019) who defined the EUE based on the 

historical data. In Eq. (4.3), the exponent is always negative because the elasticity parameter 𝜎𝑒𝑛 is 

always less than one. Hence, the EUE is negatively correlated with the ECS, and thus the increase of 

the ECS will decrease the EUE. In contrast, Wang, Saunders et al. (2019) defined the EUE as a loglinear 

function of the ECS with a positive slope. 

𝐸𝑈𝐸𝑡 = 𝐸𝐶𝑆𝑡
𝜎𝑒𝑛−1

𝜎𝑒𝑛 ×
𝑅𝐺𝐷𝑃𝑡

𝑇𝐸𝐶𝑡̈
                                                      (4.3) 

𝑇𝐸𝐶𝑡̈ = ∑ ∑ (𝐸𝐶𝑖𝑞𝑡 × 𝐶𝑜𝑛𝑣𝑞𝑞 )𝑖                                                   (4.4) 

In Eq. (4.3), 𝑇𝐸𝐶𝑡̈  refers to the total adjusted energy consumption in Year t, and its unit is a 

tonne of standard coal. Different from Wang, Saunders et al. (2019), annual sectoral energy 

consumption data are used in this chapter. To get the annual sectoral overall energy consumption data, 

in this chapter, sectoral energy consumption is converted into the unit of standard coal before the 

summation. Hence, the value of 𝑇𝐸𝐶𝑡̈  is calculated using Eq. (4.4) where 𝐶𝑜𝑛𝑣𝑞  refers to the 

conversion coefficient of Energy q to the standard coal (Scoal). The energy conversion coefficient data 

are obtained from 2016 China Statistical Yearbook by NBS (2016) and compiled in Table 4.5 in the 

Data Section of this chapter. 

Wang, Saunders et al. (2019) implicitly assumed that the quantities of the consumption goods 

are equal to the quantities of the production goods, which implies that the consumption of the imported 

goods is equal to the production of the export goods. In the reality, this assumption is seldom met 

because there are always net exporters or importers in the open economy. Hence, in this chapter, this 

assumption has been relaxed, and I assume that the energy cost share in the consumption goods is equal 

to that in the production goods. 
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Eq. (4.5) and (4.6) define the physical amounts of the energy and nonenergy production goods 

respectively. The subscript e and ne denote an energy sector and nonenergy sector respectively. 𝑄𝑀𝑖𝑡 

is the import of Sector i in Year t; 𝑄𝐸𝑖𝑡 is the export of Sector i in Year t. 𝑇𝐸𝑃𝐶𝑡 is the total energy 

production goods in Year t; 𝑁𝑂𝑁𝐸𝑃𝑡 is the total nonenergy production goods in Year t. 𝑁𝑂𝑁𝐸𝑁𝑡 refers 

to the nonenergy consumption goods, and Eq. (4.7) is derived from Eq. (4.1). 

𝑇𝐸𝑃𝐶𝑡

𝑇𝐸𝐶𝑡̈
=

∑ 𝑆𝐺𝐷𝑃𝑒𝑡𝑒

∑ 𝑆𝐺𝐷𝑃𝑒𝑡𝑒 +∑ 𝑄𝑀𝑒𝑡𝑒 −∑ 𝑄𝐸𝑒𝑡𝑒
                                             (4.5) 

𝑁𝑂𝑁𝐸𝑃𝑡

𝑁𝑂𝑁𝐸𝑁𝑡
=

∑ 𝑆𝐺𝐷𝑃𝑛𝑒,𝑡𝑛𝑒

∑ 𝑆𝐺𝐷𝑃𝑛𝑒,𝑡𝑛𝑒 +∑ 𝑄𝑀𝑛𝑒,𝑡𝑛𝑒 −∑ 𝑄𝐸𝑛𝑒,𝑡𝑛𝑒
                                     (4.6) 

𝑁𝑂𝑁𝐸𝑁𝑡 = [𝑅𝐺𝐷𝑃𝑡
𝜎𝑒𝑛−1

𝜎𝑒𝑛 − (𝐸𝑈𝐸𝑡 × 𝑇𝐸𝐶𝑡̈ )
𝜎𝑒𝑛−1

𝜎𝑒𝑛 ]

𝜎𝑒𝑛
𝜎𝑒𝑛−1

                           (4.7) 

When the production goods are calculated using Eq. (4.5) and (4.6), Eq. (4.8) and (4.9) denote 

the definition of the energy-production efficiency (EPE) and nonenergy-production efficiency (ENE) 

respectively. In Eq. (4.8) and (4.9), the physical amounts of the production and consumption goods are 

assumed to be proportional to their monetary values. As the sectoral ECS is undefined in this chapter, 

the sectoral EPE and ENE are also undefined, implying that the EPE and ENE in all the sectors are 

equal to the national level. Hence, the definitions of the EPE and ENE in this chapter are quite different 

from Wang, Saunders et al. (2019) who calculated the EUE and EPE using the historical data, assuming 

that there was a loglinear relationship between the ECS and EUE or between the ECS and EPE. Based 

on the definitions of the EUE [defined in Eq. (4.3)], EPE and ENE, the technic index is defined in Eq. 

(4.10), according to Wang, Saunders et al. (2019). 𝐴𝑇𝐶𝑡 refers to the technical index in Year t. 

𝐸𝑃𝐸𝑡 =
𝑇𝐸𝑃𝐶𝑡

𝑅𝐺𝐷𝑃𝑡×𝐸𝐶𝑆𝑡
=

𝑇𝐸𝐶𝑡̈

𝑅𝐺𝐷𝑃𝑡×𝐸𝐶𝑆𝑡
×

∑ 𝑆𝐺𝐷𝑃𝑒𝑡𝑒

∑ 𝑆𝐺𝐷𝑃𝑒𝑡𝑒 +∑ 𝑄𝑀𝑒𝑡𝑒 −∑ 𝑄𝐸𝑒𝑡𝑒
                        (4.8) 

𝐸𝑁𝐸𝑡 =
𝑁𝑂𝑁𝐸𝑃𝑡

𝑅𝐺𝐷𝑃𝑡×(1−𝐸𝐶𝑆𝑡)
=

𝑁𝑂𝑁𝐸𝑁𝑡

𝑅𝐺𝐷𝑃𝑡×(1−𝐸𝐶𝑆𝑡)
×

∑ 𝑆𝐺𝐷𝑃𝑛𝑒,𝑡𝑛𝑒

∑ 𝑆𝐺𝐷𝑃𝑛𝑒,𝑡𝑛𝑒 +∑ 𝑄𝑀𝑛𝑒,𝑡𝑛𝑒 −∑ 𝑄𝐸𝑛𝑒,𝑡𝑛𝑒
            (4.9) 

𝐴𝑇𝐶𝑡 = [(𝐸𝑈𝐸𝑡 × 𝐸𝑃𝐸𝑡)
𝜎𝑒𝑛−1 + 𝐸𝑁𝐸𝑡

𝜎𝑒𝑛−1]
1

𝜎𝑒𝑛−1                                    (4.10) 

The carbon tax changes the ECS and thus will affect the marginal benefits to improve the EUE, 

EPE, and ENE. Compared to the definition of the ECS in the baseline scenario shown in Eq. (4.2), the 

ECS in the tax scenarios is defined in Eq. (4.11), where the superscript * stands for the tax scenarios. 

Λ𝑡  refers to the abatement costs in Year t, and its value is calculated using Eq. (4.12). 𝜃1𝑡 =

0.0741 × 0.0904𝑡−1 and 𝜃2 = 2.6 are from the DICE model by Nordhaus (2018). 𝜇𝑡 is the proportion 

of the reduced emissions, and its value is zero in the baseline scenario. In this chapter, the dispersion of 

the sectoral abatement costs to the total costs are assumed to be the same as that of the sectoral emissions 

to the total emissions. Because of the abatement costs, the ECS in the tax scenarios is always larger 

than that in the baseline scenario. 
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𝐸𝐶𝑆𝑡
∗ =

∑ ∑ (𝑃𝐸𝑖𝑞𝑡×𝐸𝐶𝑖𝑞𝑡
∗ )𝑞𝑖 +Λ𝑡

𝑅𝐺𝐷𝑃𝑡
∗                                                    (4.11) 

Λ𝑡 = 𝜃1𝑡 × 𝜇𝑡
𝜃2                                                                 (4.12) 

The internalisation of the abatement costs increases the costs of the energy consumption. Wang, 

Saunders et al. (2019) argued that increasing the energy costs may induce more rapid technological 

change, because the increasing costs could accelerate the development of renewable energy and induce 

the energy-saving efficiency improvements. Nevertheless, Wang, Saunders et al. (2019) neglected the 

negative impacts of the increasing costs on the technical progress. Because the energy goods become 

more expensive after the tax is imposed, more resources will be shifted to the consumption and 

production of the nonenergy goods. The impacts of this resource shift cannot be modelled in Wang, 

Saunders et al. (2019). In contrast, the resource shift can be modelled in the CGE part of this chapter: 

as more resources will be shifted to the nonenergy sectors, confronted with less resources, the energy 

sectors will spend less funds on the R&D, and thus the EUE and EPE will decrease. Hence, a change in 

the energy cost share will finally induce a variation of the technical index. 

In this chapter, the real GDP (RGDP) is defined as the summation of the added-values of the 

sectoral household income, capital income, and net production tax according to 2015 China Input-

Output Table by NBS (2015). The Solow–Swan Growth model (Solow 1956) implies that the 

technology affects the economic growth. Hence, the technical impact on the RGDP is defined in Eq. 

(4.13), where the superscript 0 denotes the baseline scenario. 𝑌𝐻𝑖𝑡
∗ , 𝑌𝐾𝑖𝑡

∗ , and 𝐺𝐼𝑁𝐷𝑇𝐴𝑋𝑖𝑡
∗  stand for the 

labour income, capital income, and net production tax in the tax scenarios. Noticeably, in this chapter, 

the costs of the resource shifting among the sectors, induced by the carbon tax, are assumed to be zero. 

In the reality, the existence of the transaction costs may reduce the technical benefits of the carbon tax. 

𝑅𝐺𝐷𝑃𝑡
∗ = ∑ (𝑌𝐻𝑖𝑡

∗ + 𝑌𝐾𝑖𝑡
∗ + 𝐺𝐼𝑁𝐷𝑇𝐴𝑋𝑖𝑡

∗ ) × 𝐴𝑇𝐶𝑡
∗/𝐴𝑇𝐶𝑡

0
𝑖                      (4.13) 

To analyse how the ITC affects the model equilibrium, I compare the results of the technical 

(TL) model, defined in this chapter, with the results of the CGE-DICE (CD) model, defined in the 

previous chapter. The main differences between the two models lie in Eq. (4.11) and (4.13): the 

technical model has internalised the abatement costs as a part of the energy cost share, which affects 

the EUE, EPE, and ENE. These three indexes are directly linked to the definition of the technical index 

and thus the RGDP. In the baseline scenario, there are no differences in the socioeconomic conditions 

simulated by the two models; however, the carbon tax will change the equilibrium, and the consideration 

of the technical impacts will influence the policy effects of the tax. How the ITC of the carbon tax will 

affect the socioeconomic conditions and emission reduction is analysed through the result changes of 

the TL model relative to the CD model. 
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Data 
As China Statistical Yearbooks have not published the coal price data, I have used the data from 

China Coal Industry (CCI 2016, 2017, 2018, 2019), shown in Table 4.1. Table 4.1 shows the variation 

of the coal and coke price in 2015–2018. Noticeably, there was a sharp increase in the coal price from 

2015 to 2016, but the price remained stable in 2016–2018. In contrast, the coke price grew steadily in 

this period over 2015–2018. 

Table 4.1 The Coal Price and Coke Price in 2015–2018 (Unit: CNY/tonne) 

Year 2015 2016 2017 2018 

Coal 370 639 611.7 620.7 

Coke 569 787 1356 1528 

As the Chinese authority has not published the official data of the petroleum price, I have 

calculated the weighted arithmetic average price of the petroleum in 2015–2018 using the published 

data in the annual reports of PetroChina Company Limited (PCCL 2017, 2019) and China Petroleum 

and Chemical Corporation (CPCC 2017, 2019). 

Table 4.2 The Petroleum Prices in 2015–2018 (Unit: CNY/tonne) 

Year 2015 2016 2017 2018 

Crude Oil 2124 1865 2392 3207 

Kerosene 3366 2832 3539 4553 

Gasoline 6388 6091 6698 7492 

Diesel Oil 4733 4316 4821 5734 

Fuel Oil 2439 1892 2380 3335 

Table 4.2 shows the variation of the different kinds of the petroleum prices in China in 2015–

2018. The gasoline had the highest price, whilst the crude oil had the lowest price. Generally, the 

petroleum prices decreased from 2015 to 2016 but increased steadily in 2016–2018. 

As the retail price of the natural gas in China is unavailable in the published statistical 

yearbooks, I have used the price data in the annual report of China Gas Holdings Limited (CGHL 2017, 

2018, 2019), shown in Table 4.3. Noticeably, the 2015–2018 price of the natural gas, in this chapter, 

corresponds to the 2015/16, 2016/17, 2017/18, and 2018/19 fiscal year price of the natural gas in CGHL 

respectively. All the sectors, except for the transport, storage and post sector and service sector, are 

assumed to face the natural gas price for the industrial use, whilst these two sectors face the natural gas 

price for the commercial use. 

Table 4.3 The Natural Gas Price in 2015–2018 (Unit: CNY/m3) 

Year 2015 2016 2017 2018 

Household Use  2.29 2.36 2.40 2.52 

Industrial Use 2.59 2.38 2.50 2.65 

Commercial Use 2.68 2.55 2.60 2.79 

Table 4.3 shows the variation of the natural gas price in China over the period 2015–2018. The 

natural gas price for the household use was the lowest, whilst the price for the commercial use was the 

highest. The price for the household use increased steadily; in contrast, the price for the industrial and 

commercial use decreased in 2015–2016 but increased in 2016–2018. 
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In this chapter, all the sectors are assumed to face the 2015–2017 electricity price for general 

industry and commerce published by the National Energy Administration (NEA 2016, 2017, 2018). The 

electricity price is assumed to be the same regardless of the generation sources. The Chinese 

government (CG 2018) announced that it would reduce the electricity price for general industry and 

commerce by 10% in 2018, and the target was met according to the 2019 government report (CG 2019). 

The 2019 report also announced a further 10% reduction in addition to the 2018 reduction (CG 2019). 

I assume that the Chinese government has met the 2019 target, and thus the electricity price decreased 

by 10% in 2018 and 2019 respectively.  

Table 4.4 The Electricity Price in 2015–2019 (Unit: CNY/1000 kw.h) 

Year 2015 2016 2017 2018 2019 

Electricity 825.14 817.44 765.24 688.72 619.84 

Table 4.4 shows the change of the electricity price in China in 2015–2019. The electricity price 

decreased steadily in this period, which is quite different from the other energy prices shown in Table 

4.1–4.3. 

Table 4.5 The Energy Conversion Coefficients  

Energy Coal Coke Crude oil Kerosene Gasoline 

Unit kg (Scoal) / kg kg (Scoal) / kg kg (Scoal) / kg kg (Scoal) / kg kg (Scoal) / kg 

Conv 0.71 0.97 1.43 1.47 1.47 

Energy Diesel Oil Fuel Oil Natural gas Electricity  

Unit kg (Scoal) / kg kg (Scoal) / kg kg (Scoal) /m3 kg (Scoal) /kw.h 

Conv 1.46 1.43 1.22 0.12  

Note: The value for natural gas is the mean value. 

Table 4.5 displays the conversion coefficients from the energies to the standard coal. With the 

same quantities, the liquid energies can be converted to more standard coals than the coal and coke. The 

units of the natural gas and electricity are different from the other energies, and thus these two energies 

cannot be directly compared to the other energies. 

Model Results 

 
Note: “TL” and “CD” refer to the Technical and CGE-DICE mode respectively; “Base” refers 

to the baseline scenario; “1%”, “2%”, “3%” refer to the 1%, 2%, 3% tax scenario respectively 

Fig. 4.1 The Energy Cost Share (ECS) in the TL and CD Model 
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Fig. 4.1 displays the comparison of the energy cost share (ECS) between the two models over 

the studied period. In all the scenarios, the ECS will decrease gradually over time. In the tax scenarios, 

the ECS will remain at the same level as that in the baseline scenario without the ITC impact, but it will 

be larger than that in the baseline scenario with the ITC impact. As the tax rate increases, the ECS will 

increase in the TL model but remain relatively stable in the CD model. Fig. 4.1 implies that without the 

ITC impact, the rising energy price, induced by the carbon tax, will decrease the energy consumption, 

which explains why the ECS will remain stable in the CD model. As in the TL model the abatement 

costs are internalised in the energy consumption, the ECS will be much larger, compared to the CD 

model. This finding complies with Diaz and Puch (2019) who theoretically studied the relation between 

the energy demand and technical innovations, indicating that if the energy became scarcer under the 

carbon tax, the energy cost share would increase owing to the rising energy price. 

 
Fig. 4.2 The Energy-Use Efficiency (EUE) in the TL and CD Model 

Fig. 4.2 shows the variation of the EUE over the studied period. In all the scenarios, the EUE 

will increase steadily over time, and this variable in 2030 will be more than fivefold the 2015 level. The 

carbon tax will increase the EUE, and this policy effect will be strengthened as the tax rate increases. 

The economic intuition underlying this result is that the carbon tax decreases the amount of energy to 

be consumed, and thus a rational entity has an incentive to use the limited amount of energy more 

efficiently. This finding is in line with Zhang and Zhong (2010) who designed the optimal Chinese 

carbon tax, indicating that the designed carbon tax increased the energy efficiency. According to Fig. 

4.2, the ITC will slightly decrease the EUE, and this policy effect will be strengthened as the tax rate 

increases. This is because the ITC of the tax is more favourable to the development of the nonenergy 

sectors. Hence, as more resources are shifted away from the energy sectors, the EUE will decline.  
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Fig. 4.3 The Energy-Production Efficiency (EPE) in the TL and CD Model 

Fig. 4.3 shows how the EPE will change in the TL and CD model over time. In all the scenarios, 

the EPE will decrease steadily over the research period. Without the ITC impact, the carbon tax imposed 

on the nonrenewable energy sectors will only slightly decrease the EPE. This is because the tax 

increases the production costs of these sectors, and thus more resources will be shifted away, thereby 

reducing the R&D in energy production, according to Gerlagh (2008) who developed an endogenous 

growth model to measure the accumulated innovations globally in 1970–2000. The ITC will 

significantly decrease the EPE in the tax scenarios, implying that the ITC favours the technical 

innovation in the nonenergy sectors. As more resources are shifted away from the nonrenewable energy 

sectors, their output efficiency is likely to decrease considering the scale effect. 

 
Fig. 4.4 The Nonenergy-Production Efficiency (ENE) in the TL and CD Model 

Fig. 4.4 shows the changes of the ENE with and without the ITC impact over time. In all the 

scenarios, the ENE will decrease gradually over the studied period. The carbon tax will raise the ENE, 

and the increase of the tax rate will strengthen this policy effect. This is because the carbon tax will 

reduce the competitivity of the nonrenewable energy sectors, which results in the transfer of the social 

capital towards the nonenergy sectors (Chen, Zhou et al. 2017). Hence, the production efficiency of the 

nonenergy sectors will increase because of the scale effect. This finding complies with Wesseh and Lin 

(2020) who developed a dynamic equilibrium model to evaluate how the environmental policy affected 
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the productivity, concluding that the carbon tax increased the multifactor productivity. In the tax 

scenarios, the ITC will further increase the ENE in addition to the policy effect of the tax, implying that 

the ITC induces disproportionately more supports for the nonenergy sectors. Similar empirical evidence 

can be found in Fried (2018) who developed a dynamic general equilibrium model with the endogenous 

technical innovation to show that the innovation amplified the price incentives of the carbon tax. 

 

Fig. 4.5 The Technical Index (TI) in the TL and CD Model 

Fig. 4.5 shows the TI changes in the baseline and tax scenarios simulated in the TL and CD 

model. In the baseline scenario, the TI decreased in 2015–2020 but will remain stable in 2020–2030. 

The carbon tax will increase the TI, but the TI will decline gradually over time in the tax scenarios. An 

increase in the tax rate will strengthen this policy effect on the TI. This finding abides by Jin (2012) 

who used an intertemporal CGE model to examine the impacts of the Chinese R&D, indicating that the 

carbon taxation could induce the technical innovation in China. The ITC will slightly increase the TI 

over time at the 1% tax, but it will only increase the TI since 2020 at the 2% and 3% tax. This result 

implies that the carbon tax rate will change the direction of the ITC impact on the TI. This finding 

complies with Goulder and Schneider (1999) used the general equilibrium models to investigate the 

importance of the ITC, concluding that climate policies had very different impacts on the R&D and thus 

did not necessarily enhance the technological progress at the country level. 

Fig. A4.1 and A4.2 in Appendix A show how the household and total emissions will change in 

the TL model relative to that in the CD model. In the tax scenarios, the ITC will slightly reduce both 

the household and total emissions. However, when the tax rate increases, this policy effect will fluctuate 

over the studied period. This finding agrees with Goulder and Mathai (2000) who used the cost-

effectiveness criterion to explore the significance of the ITC in climate policies, indicating that the ITC 

justified the greater overall abatement than would be warranted in its absence. The negative impacts of 

the ITC on the emissions correspond to the fact that under the ITC, the R&D-based and learning-by-

doing based knowledge would be accumulated (Goulder and Mathai 2000) or more efficient and low-

carbon technologies would be adopted (Laitner, Bernow et al. 1998). 
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Fig. 4.6 The Carbon Intensity Change in the TL Model Relative to the CD Model 

Fig. 4.6 shows the carbon intensity changes influenced by the ITC over time. According to Fig. 

4.6, the ITC will decrease the intensity by 1%–4% depending on the tax rate and time. When the tax 

rate increases, this ITC impact will be strengthened, but it will fluctuate over the research period. 

Compared to the ITC impact on the emissions, the ITC will have a much more distinct impact on the 

intensity. The reason why the ITC will decrease the intensity is that energy consumption becomes more 

costly under the tax, and thus an entity has an incentive to exploit energy more efficiently. This finding 

agrees with Nordhaus (2002) who developed the DICE model to analyse the US Climate Change 

Technology Initiative, empirically showing that the ITC reduced the carbon intensity. 

 
Fig. 4.7 The RGDP Loss Change in the TL Model Relative to the CD Model 

Fig. 4.7 shows how the ITC will affect the RGDP loss over the studied period. According to 

Fig. 4.7, the ITC will reduce the RGDP loss by 2%–3.8% under the imposition of the carbon tax. In a 

time horizon, this impact decreased in 2015–2019 but will increase in 2020–2030. The reason why the 

ITC will increase the RGDP is that technical progress increases productivity and thus boosts economic 

growth, according to the Solow–Swan Growth model (Solow 1956). This finding complies with Popp 

(2004) who modified the DICE model to quantify the ITC in the energy sector, empirically showing 

that the welfare would improve by 9.4% when the ITC impact was considered. 
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Fig. A4.3 in Appendix A shows the change of the household welfare loss under the ITC impact. 

Unlike the RGDP loss, the household welfare loss, induced by the carbon tax, will be raised by the ITC 

over time. This ITC impact will be weakened as the tax rate increases. According to Fig. A4.3, the ITC 

impact on the household welfare is much smaller than that on the RGDP. This finding corresponds to 

the economic intuition that economic growth may not necessarily increase welfare. This is because 

economic growth may expand the wealth gap which decreases the overall welfare. 

Fig. A4.4 in Appendix A shows the variation of the tax revenues under the ITC impact over 

time. According to Fig. A4.4, the ITC will negatively affect the tax revenues even though this impact 

is not significant. This finding is in line with Sands (2018) who  used the Future Agricultural Resources 

Model to empirically show that the carbon tax revenues declined with the availability of a negative-

emissions technology. Similarly, Muratori, Calvin et al. (2016) used the Global Change Assessment 

Model (GCAM) to explore the economic impacts of deploying bioenergy with carbon capture and 

storage, indicating that the tax revenues would be substantially lower with the availability of the carbon 

capture and storage technology. 

 
Fig. 4.8 The Climate Damages in the TL and CD Model (Unit: 1012 CNY)  

Fig. 4.8 shows the climate damages in the TL and CD model over time. In all the scenarios, the 

climate damages will increase over the studied period. The carbon tax will reduce the damages, and this 

policy effect will be strengthened when the tax rate increases. This is because the tax, which curbs the 

combustion of the nonrenewable energy, will decelerate the global warming and thus reduce the climate 

damages. This finding agrees with the previous research showing that the climate control interventions 

to cap the global temperature rise would significantly reduce the cumulative damages from the climate 

change, according to Rasiah, Al-Amin et al. (2017) who analysed the implications of Malaysia’s INDC. 

Fig. 4.8 also implies that the ITC will weaken the negative effect of the carbon tax on the climate 

damages. As the ITC will increase the economic output (shown in Fig. 4.7), the increasing human 

activities, like the deforestation, could induce more climate damages even though the ITC impact on 

the carbon intensity is negative. 
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Fig. 4.9 The Abatement Costs in the TL and CD Model (Unit: 1012 CNY) 

Fig. 4.9 shows the abatement costs, induced by the carbon tax, in the TL and CD model. In all 

the tax scenarios, the abatement costs increased in 2015–2020 but will decrease in 2020–2030. An 

increase in the tax rate will induce more abatement costs, implying that the abatement costs will rise if 

the mitigation target becomes stricter. The positive relation between the abatement costs and tax rate 

could be also found in Brenchley (2013) and Yang, Teng et al. (2018). Compared to the CD model, the 

TL model shows that the ITC will slightly increase the abatement costs. The reason why the ITC will 

increase the abatement costs is that the ITC will decrease the EUE and EPE, shown in Fig. 4.2 and 4.3 

respectively. Hence, the emission abatement could become more costly if more R&D is shifted to the 

nonenergy sectors. This finding complies with Goulder and Mathai (2000) who explored the 

significance of the ITC in climate policies and found that the ITC increased the overall abatement costs. 

Table 4.6 The Comparison of the Total Household Welfare (Unit: 1018 CNY) 
Baseline 1% 2% 3% 

  TL CD TL CD TL CD 
15.5338 13.3048 13.3050 11.7422 11.7424 10.5461 10.5464 

Table 4.6 shows the summation of the household welfare over the studied period in the TL and 

CD model. According to Table 4.6, the tax will drastically decrease the household welfare, whilst the 

ITC will only slightly decrease the welfare. The unappealing technical impact on the household welfare 

implies that when considering the ITC, the benefits of the economic boom will be counteracted by the 

increasing climate damages and abatement costs. From the household perspective, the most attractive 

scenario is the baseline scenario where no carbon tax is imposed. The deadweight loss, induced by the 

carbon tax, dominates the policy effect of the tax on the household welfare. 
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Fig. 4.10 The ASCC in the TL and CD Model (Unit: 2015 ) 

Fig. 4.10 shows how the average social cost of carbon (ASCC) will change under the ITC 

impact over the research period. In all the scenarios, the ASCC will increase over time, but it is 

minimally affected by the carbon tax. The ITC will slightly increase the ASCC in the tax scenarios, and 

the magnitude of this impact will be positively related to the tax rate. The rationale underlying Fig. 4.10 

is that the ITC will increase the climate damages and thus the ASCC. This finding complies with Jensen 

and Traeger (2014) who evaluated the optimal mitigation policy using a stochastic integrated 

assessment model of the climate change, empirically showing that the technological growth would 

increase the ASCC at the positive economic growth rate. 

 

Fig. 4.11 The Annual Emission Growth Rate in the Tax Scenarios with the ITC Impact 

Fig. 4.11 shows the ITC impact on the emission growth rate over the studied period. 

Considering the ITC impact in addition to the ancillary and primary benefit, the carbon tax still cannot 

help China meet the INDC target of peaking the emissions in 2030. As Fig. 4.6 shows the ITC negatively 

affects the carbon intensity, China will still meet the INDC target of the carbon intensity reduction in 

2030 under the ITC impact of the carbon tax. 
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Discussion 
This chapter empirically shows that without the ITC impact, the carbon tax will have almost no 

impact on the energy cost share. This finding is contrary to Wang, Liu et al. (2018) who empirically 

found the carbon pricing would increase the energy cost for the energy sectors. The result difference is 

due to the sectoral coverage of the carbon tax: the tax in Wang, Liu et al. (2018) covered the energy 

sectors only, whilst the tax in this chapter has covered the entire country. 

The ITC will decrease the EUE in the tax scenarios. This finding disagrees with the previous 

research showing that the ITC improved the energy efficiency (Kemfert and Truong 2007). The result 

difference between Kemfert and Truong (2007) and this chapter lies in the socioeconomic conditions 

where the ITC impacts are analysed: Kemfert and Truong (2007) directly studied the ITC impacts 

caused by the increase of the R&D investment, whilst the ITC impacts are analysed under the carbon 

tax in this chapter. The socioeconomic conditions will affect the ITC impact on the energy-use 

efficiency. This is because a beneficial role of the technological progress on the energy efficiency 

improvement required the full play of the market power in the resource allocation, according to Li and 

Lin (2018) who used the dynamic panel data models to investigate the effects of the technological 

progress on the energy productivity in China. As the carbon tax is a kind of governmental interventions 

on the market mechanism, its distortion on the resource allocation is likely to induce the unexpected 

consequences to the ITC impact on the EUE. 

The ITC will drastically decrease the EPE in the tax scenarios. This is because the ITC of the 

carbon tax favours the nonenergy sectors, and more resources are shifted to the production of the 

nonenergy goods. This finding complies with Macaluso, Tuladhar et al. (2018) who provided a cross-

model analysis to investigate the policy effects of the carbon tax on the US industries, empirically 

showing that the carbon tax would induce the substitutions toward less carbon-intensive energy sources 

and production technologies. Hence, with resources shifted away, the energy sectors will have the lower 

EPE under the ITC impacts. 

The ITC will increase the ENE because the ITC favours the nonenergy sectors. This finding 

complies with Ekins, Pollitt et al. (2012) who explored the implications of the EU environmental tax 

reform and empirically found that the environmental tax reform could increase the material productivity 

by 3.4%. Similarly, Chavas, Aliber et al. (1997) investigated the technical change with a focus on the 

R&D investments, indicating that the R&D had a large and positive effect on the agricultural 

productivity. 

In the tax scenarios, the ITC will promote the technical progress at the lower tax rate. However, 

at the higher tax rate, the ITC inhibited the technical progress recently but will promote the progress in 

the future. The promotion impact of the ITC corresponds to the previous argument that a climate policy 

could induce additional R&D investment and knowledge application in carbon-saving innovations, 
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according to Jin (2012) who used an intertemporal CGE model to examine the effectiveness of China’s 

technical innovation on the emission abatement. In contrast, the inhibition impact of the ITC implies 

that owing to the socioeconomic constraints, the carbon pricing was ineffective to orientate the technical 

progress, according to Finon (2019) who explored the political economy constraints inhibiting the 

implementation of climate policies in developing countries. 

The ITC will decrease the GDP loss induced by the carbon tax; in other words, the ITC will 

stimulate the economic growth. This is because technology is a production factor, which increases the 

productivity. Similar empirical evidence could be found in the previous research showing that the ITC 

would decrease the costs of the environmental tax, according to Liu and Yamagami (2018) who 

analysed the ITC impacts on the costs of the carbon tax in a static optimal tax model. Similarly, Kemfert 

(2005) used the multiregional and multi-sectoral integrated assessment model to investigate the 

economic impacts of climate policies, concluding that the ITC would support the carbon-free 

technologies and thus lead to an economic boom. 

In contrast, the ITC will decrease the household welfare. This finding could be explained by 

the uncertainties existing in the household decision-making, according to Knobloch, Pollitt et al. (2019) 

who used the non-equilibrium bottom-up model to simulate the deep decarbonisation of residential 

heating. As the household may have very limited resources to cope with the rising price of the 

nonrenewable energies induced by the carbon tax, its welfare may decrease. Although the number of 

factors influencing the household choices regarding energy efficiency technologies is extensive, the 

economic factors are used as the key determinants for the technology choices (Mundaca, Neij et al. 

2010). 

The carbon tax will decrease the climate damages, and a similar result could be found in van 

der Meijden, Ryszka et al. (2018) who numerically investigated the climate damages and welfare effects 

of the climate policies in the climate-aware regions. As the anthropogenic emissions are considered as 

the main cause of the global warming (Rasiah, Al-Amin et al. 2017), the carbon tax, which mitigates 

the emissions, will relieve the global warming. However, the ITC will weaken this negative effect of 

the tax; in other words, the ITC will increase the climate damages. This finding could be explained by 

the positive impact of the ITC on the economic growth. As the economic impact of the ITC outweighs 

its negative impact on the emissions, hence, the ITC will increase the climate damages. 

In this chapter, the ITC will increase the abatement costs over the studied period. This finding 

is contrary to Ahmed, Devadason et al. (2017) who adopted a calibrated model of climate analysis to 

assess the net gains of technical change, empirically showing that the technical change was effective to 

reduce the severe climate damages on the Pakistan agriculture. The result difference could be explained 

by the analysed scope of the ITC impact: in this chapter, the ITC affects the emission costs at the country 

level, whilst Ahmed, Devadason et al. (2017) mainly focused on the ITC in the agricultural sector. 
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According to Borlu and Glenna (2020) who used the survey data to test the climate change perception 

among the US specialty-crop producers, the agriculture was more susceptible to climate disruptions 

than many other industrial sectors. Hence, the unit benefit of the ITC to reduce the climate damages is 

much smaller at the country level than that at the agriculture sector. In addition, Loschel (2002) used 

the energy-economy-environment models to endogenously treat the ITC, empirically showing that the 

ITC decreased the abatement costs of the climate policy. This is because the model in Loschel (2002) 

emphasised the main elements of the technological innovation but neglected the economic impacts of 

the ITC. In the China example, the technical progress had a significant and positive effect on the 

economic growth (Wang 2012), which explained the expansion of the energy consumption (Li, Zhou 

et al. 2019) and thus the soaring anthropogenic emissions recently in China. Therefore, the ITC will 

increase the abatement costs in China. 

Although the carbon tax will have almost no effect on the average social of carbon (ASCC), 

the ITC will slightly increase the ASCC. This finding is contrary to the previous argument that the ITC 

was conducive to enhancing the level of the emission abatement as well as reducing the social cost of 

the abatement, according to Wang, Mao et al. (2018) who employed a dynamic two-stage stochastic 

programming model to design the optimal low-carbon energy technologies. The result difference 

between Wang, Mao et al. (2018) and this chapter lies in the targeted scope of the ITC: Wang, Mao et 

al. (2018) only focused on the effect of the low-carbon energy policy on the ASCC, but they did not 

analyse the ITC of the climate policies; in contrast, this chapter has focused on the ITC impacts on the 

policy effects of the carbon tax. 

In summary, the empirical results in this chapter generally fit in well with the previous research 

except that the result differences are mainly caused by the model assumptions and scope of the targeted 

sectors in the tax scenarios. However, as I have only modelled the induced technological change (ITC) 

of the carbon tax, this chapter cannot reveal the pure socioeconomic impacts of the technical progress. 

In the reality, the governmental policies targeted to promote the technical progress may be far more 

appealing than the carbon tax simulated in this chapter. 

Another limitation of this chapter lies in the quantification method of the ITC. I have modelled 

the ITC based on Wang, Saunders et al. (2019) who argued that the ITC mainly included the potential 

changes of the energy-saving technologies but excluded the induced development of the 

decarbonisation or clean energies. The narrowed scope of the ITC is likely to underestimate the 

technical impacts. Future work may improve the quantification method of the ITC to include all types 

of the potential technologies that may be changed under the carbon tax. 

The Tinbergen Rule states that there must be at least one policy tool for each policy target 

(Knudson 2009). The carbon tax, simulated in this paper, has already considered the ancillary and 

primary benefits, which may correlate with the ITC impacts. Future research may introduce the ITC 



102 

 

impacts only in the CGE policy evaluation framework to study the net technical impacts. Alternatively, 

to achieve the largest technical benefits, an additional policy, like subsidies for the R&D in low-carbon 

technology, needs to be implemented. 

Policy Implications 
Considering the technical impacts of the carbon tax will increase the nonenergy-production 

efficiency, but it will decrease the energy-use and energy-production efficiency. Considering the 

technical impacts will strengthen the policy effects of the tax on the emission reduction, but it will 

weaken the negative effects of the tax on the household welfare and real GDP. 

Conclusion  
This chapter empirically shows that the carbon tax will significantly increase the energy cost 

share (ECS), and the ITC of the tax will further increase the ECS. By comparison, the carbon tax will 

increase the energy-use efficiency (EUE) and energy-production efficiency (EPE), but the ITC will 

decrease the EUE and EPE. In contrast, the carbon tax will increase the nonenergy-production 

efficiency (ENE), and the ITC will further increase the ENE in addition to the policy effect of the tax. 

The carbon tax will slightly increase the technical index; by comparison, the ITC will slightly increase 

the technical index over time at the 1% tax, but it will only increase the technical index since 2020 at 

the 2% and 3% tax. 

The ITC will have minimal negative impacts on the carbon emissions. It will decrease the 

carbon intensity by 1%–4% depending on the tax rate and time. The ITC will have a negative impact 

on the RGDP loss, and the magnitude of this impact is 2%–3.8%. In contrast, the ITC will minimally 

increase the household welfare loss, induced by the carbon tax, implying that the ITC will decrease the 

household welfare. The carbon tax will reduce the climate damages, but this policy effect will be 

weakened by the ITC. By comparison, the ITC will increase the abatement costs induced by the carbon 

tax. The average social cost of carbon (ASCC) will remain relatively stable irrespective of the carbon 

tax, and it will be increased by the ITC. 
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Chapter 5: The Inequality Impacts of the 

Carbon Tax 

Introduction 
The positive impacts of the climate change on the generational inequality have received a great 

deal of attention in recent years (Burke, Hsiang et al. 2015, Moore and Diaz 2015). Despite the highest 

vulnerability to the climate change and possession of the least resources to adapt to extreme climate 

events and rising temperatures, the poorest and marginalized populations are least responsible for the 

past greenhouse gas emissions (Markkanen and Anger-Kraavi 2019). The disproportional climate 

burden on the poor is contrary to the spirit of the environmental justice which argues that “all people 

and communities are entitled to equal protection of environmental and public health laws and 

regulations” (Brulle and Pellow 2006). 

The mismatch between the carbon emissions and burden of the climate change has been studied in 

the previous research (Althor, Watson et al. 2016). Higher energy price, induced by climate policies, is 

likely to undermine energy access, especially for the poor, and trap them in their current patterns of 

energy use (Jakob and Steckel 2014). Indeed, energy is related to the UN Millennium Development 

Goals (Modi, McDade et al. 2006) as well as the UNDP’s Human Development Index (HDI) 

(Steinberger and Roberts 2010). The minimum energy requirement is of vital importance to individual 

and macroeconomic development (Pereira, Sena et al. 2011). Hence, the energy inaccessibility of the 

poor in the content of the climate change “can decisively hamper the political feasibility of respective 

reforms and provoke public resistance”, according to Dorband, Jakob et al. (2019) who performed a 

global comparative analysis on the distributional effects of carbon pricing. 

Considering the accelerating global warming recently, many researchers (Chen, Zhou et al. 2017, 

Yahoo and Othman 2017, Bi, Xiao et al. 2019) claimed for more climate policies to effectively relieve 

this phenomenon by curbing anthropogenic emissions. Unexpectedly, because low-income households 

spend a high share of their income on pollution-intensive goods (Klenert, Schwerhoff et al. 2018), most 

simulated climate policies in the literature appear regressive (Berry 2019). For example, Fremstad and 

Paul (2019) utilised the US input-output tables and household expenditure data, concluding that the tax 

exacerbated the inequality since the low-income households spent a greater share of their income on 

the carbon intensive goods. By assessing the impacts of including indigenous peoples in climate change 

mitigation, Brugnach, Craps et al. (2017) also argued that the existing climate policy would increase 

the inequality condition if the livelihoods of the poor were reduced. Similarly, Jiang and Shao (2014) 

used the input–output model and empirically found that the carbon tax could intensify the income 

inequality in Shanghai because the tax burden on the low-income subgroup was the highest. In summary, 

previous researchers, who concluded that a climate policy would increase inequality, tend to assume 
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that the low-income subgroup faces the rising price of energy commodities without any protection from 

the government or society. 

Despite the severe consequences of uneven energy allocation induced by climate policies, less 

attention has been given to the potentially adverse inequality impacts on the socioeconomic 

development (Markkanen and Anger-Kraavi 2019). Omitting inequality impacts is unlikely to simulate 

optimal climate policies because a complex and multi-layered relationship exists between income 

inequality and greenhouse gas emissions (Rao and Min 2018). The omission may also lead to biased 

evaluations of climate policies. For example, Bae (2018) adopted a joint estimation method to examine 

how global inequality affected emissions under climate policies, arguing that the inequality weakened 

the effectiveness of certain climate policies. 

Previous researchers generally acknowledged that income inequality does affect economic growth; 

however, no consensus has been reached regarding the effect of inequality on growth (Caraballo, Dabus 

et al. 2017). By utilising a neoclassical growth model, Stiglitz (1969) argued for a positive relationship 

between inequality and economic growth owing to the saving rate, whilst Alesina and Perotti (1996) 

used a simple bivariate simultaneous equation model, concluding that the relationship was negative 

owing to the social instability. Nevertheless, researchers have generally believed that people will have 

negative feelings at the sight of another’s good fortune (Bosmans and Ozturk 2018). Such feelings can 

be measured by relative utility, which indirectly relates to economic growth. 

According to Pham (2008), relative utility postulates that individuals compare their income to a 

reference level. In other words, people’s utility not only depends on their own income but also is relative 

to their reference groups (Michalos 1985, Hagerty and Veenhoven 2003). By examining the impacts of 

the income of a reference group on the individual well-being in Germany, Ferrer-i-Carbonell (2005) 

empirically found that the income of the reference group was as important as the own income for 

individual happiness. In the literature, there is a growing amount of the evidence on how income 

inequality is associated with mental health (Burns 2015) or human psychology (Huang and Nguyen 

2016). Researchers used different terminologies to define the scope of relative utility, including 

happiness (Hagerty and Veenhoven 2003, Clark, Frijters et al. 2008), satisfaction level of workers 

(Clark and Oswald 1996), and personal life satisfaction (Georgellis, Tsitsianis et al. 2009). Although it 

is very hard to prove that human psychology measures utility, “the acceptance of subjective well-being 

measures as a direct proxy for utility has consequently opened up a wide range of opportunities to 

further inform theory and policy design” (Clark, Frijters et al. 2008). 

Generally, previous research has agreed that subjective well-being is negatively correlated with 

relative utility (Clark and Oswald 1996, Hagerty and Veenhoven 2003, Clark, Frijters et al. 2008, 

Georgellis, Tsitsianis et al. 2009). An increase in income inequality is likely to increase the absolute 

value of the negative relative utility. Therefore, raising the overall income may not necessarily increase 
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the average long-term happiness for the whole society, according to Hagerty and Veenhoven (2003) 

who tested the absolute utility theory against the relative utility theory. However, very little research 

has been performed to study the correlation between subjective well-being and relative utility. To my 

best knowledge, the first attempt to measure the consumer behaviour of relative risk aversion was the 

pioneering experiments conducted by Johansson-Stenman, Carlsson et al. (2002). Although the 

experiments were conducted in Sweden, the consumption behaviours of the participants facing different 

income distributions compared to their own incomes could be universal. As the utility is directly linked 

to the consumption goods, a Chinese household may behave similarly to the Swedish participants when 

the absolute or relative income changes. 

This chapter contributes to the literature by innovatively quantifying the inequality impacts of the 

simulated carbon tax based on the consumer behaviour study of Johansson-Stenman, Carlsson et al. 

(2002). Considering the influences of the climate damages and abatement costs, the inequality condition 

is measured by the Palma ratio, and the inequality impacts are measured by the relative utility. How the 

tax revenue recycling policies affect the inequality impacts is also analysed in the designed 12 scenarios. 

In this chapter, the optimal condition of the model is the maximisation of the net welfare rather than the 

total welfare defined in the previous chapters. Finally, a sensitivity analysis is performed to show how 

the relative utility defined in this chapter is affected by the exogenously given parametric values. 

Method 
In this chapter, the empirical model is named as the inequality model. I start the analysis by 

dividing the representative household in the technical model (defined in the previous chapter) into three 

groups, namely the low-income, middle-income, and high-income subgroup. The low-income subgroup 

is the lowest 40% income households; the high-income subgroup is the highest 10% income households; 

the rest of the households belong to the middle-income subgroup. The household division is based on 

the 2013 Chinese Household Income Project (CHIP) conducted by China Institute for Income 

Distribution (CIID). The compiled data are summarised in Table 5.1. 

Table 5.1 Income Ratios of Different Household Subgroups in 2013 

Group Overall Labour Capital Transfer 

Low-income 14.38% 10.03% 18.26% 23.38% 

Middle-income 55.39% 57.43% 49.76% 57.67% 

High-income 30.23% 32.55% 31.97% 18.95% 

In Table 5.1, “Labour” denotes the income from the labour factor, which is from “wage income” 

in the 2013 CHIP data; “Capital” denotes the income from the capital factor, which is from the 

summation of “net business income” and “net property income” in the 2013 CHIP data; “Transfer” is 

the aggregated transfer income from the government, enterprise, and the rest of the world. In this 

chapter, the ratios of the income sources for each household subgroup are assumed to remain unchanged 

over the period 2015–2030. Because different income source will experience different growth rate, the 

overall income for each household subgroup will change, and thus the equality conditions will also 
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change. The carbon tax will influence the income growth rate in different sources, which finally affects 

the income distribution among the household subgroups. The income from different sources among the 

household subgroups is shown in Eq. (5.1) to (5.3). 

𝐿𝐼𝑛𝑡 = 10.03%× 𝑇𝑌𝐿𝑡 + 18.26%× 𝑌𝐻𝐾𝑡 + 23.38%× (𝑌𝐻𝐺𝑡 + 𝑌𝐸𝐻𝑡 + 𝑌𝐻𝑊𝑡)     (5.1) 

𝑀𝐼𝑛𝑡 = 57.43%× 𝑇𝑌𝐿𝑡 + 49.76%× 𝑌𝐻𝐾𝑡 + 57.67%× (𝑌𝐻𝐺𝑡 + 𝑌𝐸𝐻𝑡 + 𝑌𝐻𝑊𝑡)     (5.2) 

𝐻𝐼𝑛𝑡 = 32.55%× 𝑇𝑌𝐿𝑡 + 31.97%× 𝑌𝐻𝐾𝑡 + 18.95%× (𝑌𝐻𝐺𝑡 + 𝑌𝐸𝐻𝑡 + 𝑌𝐻𝑊𝑡)     (5.3) 

In Eq. (5.1) to (5.3), 𝐿𝐼𝑛𝑡, 𝑀𝐼𝑛𝑡, and 𝐻𝐼𝑛𝑡 stand for the gross income of the low-income, middle-

income, and high-income subgroup in Year t respectively. 𝑇𝑌𝐿𝑡 refers to the household income from 

the labour factor, which is the summation of the sectoral household labour income in Year t. 𝑌𝐻𝐾𝑡 

denotes the household income from the capital factor in Year t. 𝑌𝐻𝐺𝑡, 𝑌𝐸𝐻𝑡, and 𝑌𝐻𝑊𝑡 refer to the 

household income from the government, enterprise, and foreign transfer in Year t respectively. 

In addition to the income distribution, the 2013 CHIP data also shows the distribution of the 

consumption in the surveyed households. The carbon tax that has different impacts on the various types 

of the consumption goods will affect the distribution of consumption among the household subgroups. 

Based on the 2013 CHIP data, Table 5.2 shows the calculated consumption ratios of different household 

subgroups. 

Table 5.2 Consumption Ratios of Different Household Subgroups in 2013 

Group Overall Food Clothing Transport Service Other Goods 

Low-income 20.91% 24.90% 16.56% 15.72% 20.63% 15.22% 

Middle-income 54.16% 55.08% 56.57% 53.47% 53.53% 50.11% 

High-income 24.93% 20.02% 26.87% 30.81% 25.83% 34.68% 

In Table 5.2, “Food” refers to “expenditure on food, tobacco, and alcohol” in the 2013 CHIP data. 

“Clothing” stands for “clothing expenditure”. “Transport” represents “expenditure on communication 

and transportation”. “Service” is the aggregation of “housing expenditure”, “expenditure on facility and 

services”, “expenditure on education and entertainment, and cultural activities”, and “healthcare 

expenditure”. “Other Goods” refers to “expenditure on miscellaneous goods and services”. In this 

chapter, the ratios of the consumption goods among the household subgroups are assumed to remain 

unchanged over the studied period. The distribution of consumption goods among the household 

subgroups is shown in Eq. (5.4) to (5.6). 

𝐿𝑇𝐻𝐷𝑡 = 24.90%× 𝐻𝐷𝐹𝑂𝑡 + 16.56%× 𝐻𝐷𝐶𝐿𝑡 + 15.72%×𝐻𝐷𝑇𝑅𝑡 + 20.63%× 𝐻𝐷𝑆𝐸𝑡 +

15.22%× 𝐻𝐷𝑂𝐺𝑡                        (5.4) 

𝑀𝑇𝐻𝐷𝑡 = 55.08%×𝐻𝐷𝐹𝑂𝑡 + 56.57%× 𝐻𝐷𝐶𝐿𝑡 + 53.47%× 𝐻𝐷𝑇𝑅𝑡 + 53.53%× 𝐻𝐷𝑆𝐸𝑡 +

50.11%× 𝐻𝐷𝑂𝐺𝑡                        (5.5) 

𝐻𝑇𝐻𝐷𝑡 = 20.02%× 𝐻𝐷𝐹𝑂𝑡 + 26.87%× 𝐻𝐷𝐶𝐿𝑡 + 30.81%×𝐻𝐷𝑇𝑅𝑡 + 25.83%× 𝐻𝐷𝑆𝐸𝑡 +

34.68%× 𝐻𝐷𝑂𝐺𝑡                        (5.6) 
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In Eq. (5.4) to (5.6), 𝐿𝑇𝐻𝐷𝑡, 𝑀𝑇𝐻𝐷𝑡, and 𝐻𝑇𝐻𝐷𝑡 denote the total consumption of the low-income, 

middle-income, and high-income subgroup in Year t respectively. 𝐻𝐷𝐹𝑂𝑡, 𝐻𝐷𝐶𝐿𝑡 , 𝐻𝐷𝑇𝑅𝑡 , 𝐻𝐷𝑆𝐸𝑡 

and 𝐻𝐷𝑂𝐺𝑡 stand for the household consumption of food, clothing, transport, service, and the other 

goods in Year t respectively. 

In addition to the uneven distribution of the income and consumption, the climate damages are also 

distributed unevenly among the household subgroups. The uneven distribution of the climate damages 

has become a significant part of the inequality issue induced by the climate change and its relating 

policies (Dennig, Budolfson et al. 2015). According to Dennig, Budolfson et al. (2015) who introduced 

a more fine-grained representation of inequalities in the RICE model, the relationship between damage 

distribution and income distribution can be denoted by the income elasticity of damage (𝜉). Although 

Dennig, Budolfson et al. (2015) has not given the exact value of the 𝜉, the sign of the 𝜉 could be used 

to denote the relationship: positive, zero, and negative 𝜉 values imply that the climate damages are 

proportional, independent, and inversely proportional to the income respectively. Because the welfare 

function of the DICE model is related to the household consumption, the climate damages that the 

household suffers are divided into three groups. If 𝜉 is positive, the division of the climate damages 

among the household subgroups is shown in Eq. (5.7). 

{

𝐿𝐷𝑎𝑚𝑡 = 𝐿𝑇𝐻𝐷𝑡 𝑇𝐻𝐷𝑡⁄ × 𝐷𝑎𝑚𝑡 = 𝐿𝑇𝐻𝐷𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡
𝑀𝐷𝑎𝑚𝑡 = 𝑀𝑇𝐻𝐷𝑡 𝑇𝐻𝐷𝑡⁄ × 𝐷𝑎𝑚𝑡 = 𝑀𝑇𝐻𝐷𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡
𝐻𝐷𝑎𝑚𝑡 = 𝐻𝑇𝐻𝐷𝑡 𝑇𝐻𝐷𝑡⁄ × 𝐷𝑎𝑚𝑡 = 𝐻𝑇𝐻𝐷𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡

                      (5.7) 

In Eq. (5.7), 𝐿𝐷𝑎𝑚𝑡, 𝑀𝐷𝑎𝑚𝑡, and 𝐻𝐷𝑎𝑚𝑡 are the climate damages suffered by the low-income, 

middle-income, and high-income subgroup in Year t respectively. 𝑇𝐻𝐷𝑡  is the total household 

consumption in Year t. 𝐷𝑎𝑚𝑡 is the climate damages suffered by the household, and these damages are 

only part of the total climate damages. 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 denotes the damage ratio in the DICE model.  

When 𝜉 equals zero, the climate damages are assumed to be independent from the income. Hence, 

the distribution of the damages is only related to the percentage of the occupied population in each 

household subgroup, shown in Eq. (5.8). The population percentage data are from the division of the 

household subgroups mentioned above. 

{

𝐿𝐷𝑎𝑚𝑡 = 40% × 𝐷𝑎𝑚𝑡

𝑀𝐷𝑎𝑚𝑡 = 50% ×𝐷𝑎𝑚𝑡

𝐻𝐷𝑎𝑚𝑡 = 10% × 𝐷𝑎𝑚𝑡

                                                  (5.8) 

{

𝐿𝐷𝑎𝑚𝑡 = 69.7%× 𝐷𝑎𝑚𝑡

𝑀𝐷𝑎𝑚𝑡 = 27.8%× 𝐷𝑎𝑚𝑡

𝐻𝐷𝑎𝑚𝑡 = 2.5%× 𝐷𝑎𝑚𝑡

                                               (5.9) 

When 𝜉 is negative, the low-income subgroup will suffer disproportionally more climate damages 

shown in Eq. (5.9). The damage ratios are from the “supporting information” in Dennig, Budolfson et 

al. (2015): the ratio for the low-income subgroup is the aggregation of the first and second quintiles; 
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the ratio for the middle class is the aggregation of the third and fourth quintiles and the first half of the 

fifth quintile; the ratio for the high-income subgroup is the second half of the fifth quintile. The 

embedded assumption of the division of the fifth quintile group is that the damages are evenly 

distributed. Noticeably, the aggregation of all the quintiles is equal to 99%, and thus all the ratios in this 

chapter have been amplified by 100% / 99% for the mathematic balance. 

Based on the definition of the climate damages suffered by each household subgroup, the net 

consumption is equal to the total consumption deducted by the climate damages and abatement costs, 

shown in Eq. (5.10). 𝑌𝐿𝐿𝑡, 𝑌𝑀𝑀𝑡, and 𝑌𝐻𝐻𝑡 denote the net consumption in the low-income, middle-

income, and high-income subgroup in Year t respectively. 𝑎𝑏𝑎𝑡𝑒𝑡 is the abatement ratio in Year t from 

the DICE model, and the ratio is assumed to be evenly distributed across the Chinese population. 

{

𝑌𝐿𝐿𝑡 = (𝐿𝑇𝐻𝐷𝑡 − 𝐿𝐷𝑎𝑚𝑡) × (1 − 𝑎𝑏𝑎𝑡𝑒𝑡)
𝑌𝑀𝑀𝑡 = (𝑀𝑇𝐻𝐷𝑡 −𝑀𝐷𝑎𝑚𝑡) × (1 − 𝑎𝑏𝑎𝑡𝑒𝑡)
𝑌𝐻𝐻𝑡 = (𝐻𝑇𝐻𝐷𝑡 −𝐻𝐷𝑎𝑚𝑡) × (1 − 𝑎𝑏𝑎𝑡𝑒𝑡)

                               (5.10) 

𝑐𝑡 = (𝑌𝐿𝐿𝑡 + 𝑌𝑀𝑀𝑡 + 𝑌𝐻𝐻𝑡) ÷ 𝑃𝑂𝑃𝑡                                    (5.11) 

Therefore, the per capita net consumption for the whole country equals the summation of the net 

consumption of the household subgroups divided by the total population, shown in Eq. (5.11). 𝑐𝑡 refers 

to the per capita net consumption in Year t; 𝑃𝑂𝑃𝑡 denotes the Chinese population in Year t. 

Based on the per capita net consumption, the welfare function in the DICE model defines the 

annual and total welfare, shown in Eq. (5.12) and (5.13) respectively. 𝐴𝑁𝐻𝑊𝑡  denotes the annual 

household welfare. 𝑟𝑡 is the social discount rate in Year t, and its value is from the DICE model. 𝜂 

measures the elasticity of the marginal utility of consumption, also known as the inequality parameter 

in the DICE model. 𝐻𝑊 refers to the absolute household welfare over the studied period, which is 

defined as the summation of the annual welfare. 

𝐴𝑁𝐻𝑊𝑡 = (
𝑐𝑡
1−𝜂

1−𝜂
− 1) × 𝑃𝑂𝑃𝑡 × 𝑟𝑡                                     (5.12) 

𝐻𝑊 = ∑ 𝐴𝑁𝐻𝑊𝑡𝑡                                                  (5.13) 

In the literature, Gini coefficient is widely used to denote income inequality. However, Gini 

coefficient is oversensitive to changes in the middle of income distribution and less sensitive to changes 

at the extremes, and thus it is not an ideal tool to analyse the current inequality patterns characterised 

by stable income share of middle classes and high fluctuations on the tails (Campagnolo and Davide 

2019). In contrast, the Palma ratio focuses on the top and bottom classes of income distribution, which 

is more appropriate to the current inequality patterns (Cobham, Schlogl et al. 2016). The Palma ratio is 

defined as “the ratio of the top 10% of population’s share of gross national income (GNI), divided by 

the poorest 40% of the population’s share of GNI” (Campagnolo and Davide 2019). Considering the 

climate damages and abatement costs, in this chapter, the net income data are used to define the Palma 
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ratio shown in Eq. (5.14). 𝑃𝑎𝑙𝑚𝑎𝑡 refers to the Palma ratio in Year t; 𝐿𝑖𝑛𝑐𝑜𝑡 and 𝐻𝑖𝑛𝑐𝑜𝑡 are the net 

income for the low-income and high-income subgroup respectively in Year t. The net income for each 

household subgroup is defined as the gross income subtracted by the climate damages and abatement 

costs. 

𝑃𝑎𝑙𝑚𝑎𝑡 = 𝐻𝑖𝑛𝑐𝑜𝑡 𝐿𝑖𝑛𝑐𝑜𝑡⁄                                                 (5.14) 

Because the poorest populations are least responsible for the historical emissions but possess the 

least resources to adapt to the accelerating climate change, the abatement costs should be only paid by 

the high-income subgroup (Markkanen and Anger-Kraavi 2019). On the contrary, the rich have much 

higher per capita carbon emission than the poor (Padilla and Serrano 2006), and they have more 

resources to adapt to the rising global temperature. Eq. (5.15) to (5.17) show the income distribution 

when the high-income subgroup pays the abatement costs. The three equations denote the cases when 

the income elasticity of damage (𝜉) is positive, zero or negative. 𝑌𝐻𝑇𝑡 refers to the total household 

income in Year t, and it equals the summation of 𝐿𝐼𝑛𝑡, 𝑀𝐼𝑛𝑡 and 𝐻𝐼𝑛𝑡. 

{

𝐿𝑖𝑛𝑐𝑜𝑡 = 𝐿𝐼𝑛𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡)

𝑀𝑖𝑛𝑐𝑜𝑡 = 𝑀𝐼𝑛𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡)

𝐻𝑖𝑛𝑐𝑜𝑡 = 𝐻𝐼𝑛𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) − 𝑌𝐻𝑇𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × 𝑎𝑏𝑎𝑡𝑒𝑡

    (5.15) 

{

𝐿𝑖𝑛𝑐𝑜𝑡 = 𝐿𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.4
𝑀𝑖𝑛𝑐𝑜𝑡 = 𝑀𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.5

𝐻𝑖𝑛𝑐𝑜𝑡 = 𝐻𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.1 − 𝑌𝐻𝑇𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × 𝑎𝑏𝑎𝑡𝑒𝑡

  (5.16) 

{

𝐿𝑖𝑛𝑐𝑜𝑡 = 𝐿𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.697
𝑀𝑖𝑛𝑐𝑜𝑡 = 𝑀𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.278

𝐻𝑖𝑛𝑐𝑜𝑡 = 𝐻𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.025 − 𝑌𝐻𝑇𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × 𝑎𝑏𝑎𝑡𝑒𝑡

   (5.17) 

If the abatement costs are proportional to the income, Eq. (5.18) to (5.20) show the net income for 

each household subgroup when 𝜉 is positive, zero, and negative respectively. 

{

𝐿𝑖𝑛𝑐𝑜𝑡 = 𝐿𝐼𝑛𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × (1 − 𝑎𝑏𝑎𝑡𝑒𝑡)
𝑀𝑖𝑛𝑐𝑜𝑡 = 𝑀𝐼𝑛𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × (1 − 𝑎𝑏𝑎𝑡𝑒𝑡)
𝐻𝑖𝑛𝑐𝑜𝑡 = 𝐻𝐼𝑛𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × (1 − 𝑎𝑏𝑎𝑡𝑒𝑡)

                       (5.18) 

{

𝐿𝑖𝑛𝑐𝑜𝑡 = (𝐿𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.4) × (1 − 𝑎𝑏𝑎𝑡𝑒𝑡)
𝑀𝑖𝑛𝑐𝑜𝑡 = (𝑀𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.5) × (1 − 𝑎𝑏𝑎𝑡𝑒𝑡)
𝐻𝑖𝑛𝑐𝑜𝑡 = (𝐻𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.1) × (1 − 𝑎𝑏𝑎𝑡𝑒𝑡)

             (5.19) 

{

𝐿𝑖𝑛𝑐𝑜𝑡 = (𝐿𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.697) × (1 − 𝑎𝑏𝑎𝑡𝑒𝑡)
𝑀𝑖𝑛𝑐𝑜𝑡 = (𝑀𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.278) × (1 − 𝑎𝑏𝑎𝑡𝑒𝑡)
𝐻𝑖𝑛𝑐𝑜𝑡 = (𝐻𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.025) × (1 − 𝑎𝑏𝑎𝑡𝑒𝑡)

             (5.20) 

By comparison, the abatement costs could be independent from the gross income, which means 

that the costs are only correlated with the population percentage that a household subgroup occupies. 

On this independent assumption, Eq. (5.21) to (5.23) show the net income for each household subgroup 

when 𝜉 is positive, zero, and negative respectively. 
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{

𝐿𝑖𝑛𝑐𝑜𝑡 = 𝐿𝐼𝑛𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) − 𝑌𝐻𝑇𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × 𝑎𝑏𝑎𝑡𝑒𝑡 × 0.4

𝑀𝑖𝑛𝑐𝑜𝑡 = 𝑀𝐼𝑛𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) − 𝑌𝐻𝑇𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × 𝑎𝑏𝑎𝑡𝑒𝑡 × 0.5
𝐻𝑖𝑛𝑐𝑜𝑡 = 𝐻𝐼𝑛𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) − 𝑌𝐻𝑇𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × 𝑎𝑏𝑎𝑡𝑒𝑡 × 0.1

    (5.21) 

{

𝐿𝑖𝑛𝑐𝑜𝑡 = 𝐿𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.4 − 𝑌𝐻𝑇𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × 𝑎𝑏𝑎𝑡𝑒𝑡 × 0.4
𝑀𝑖𝑛𝑐𝑜𝑡 = 𝑀𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.5 − 𝑌𝐻𝑇𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × 𝑎𝑏𝑎𝑡𝑒𝑡 × 0.5
𝐻𝑖𝑛𝑐𝑜𝑡 = 𝐻𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.1 − 𝑌𝐻𝑇𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × 𝑎𝑏𝑎𝑡𝑒𝑡 × 0.1

 (5.22) 

{

𝐿𝑖𝑛𝑐𝑜𝑡 = 𝐿𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.697 − 𝑌𝐻𝑇𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × 𝑎𝑏𝑎𝑡𝑒𝑡 × 0.4
𝑀𝑖𝑛𝑐𝑜𝑡 = 𝑀𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.278 − 𝑌𝐻𝑇𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × 𝑎𝑏𝑎𝑡𝑒𝑡 × 0.5
𝐻𝑖𝑛𝑐𝑜𝑡 = 𝐻𝐼𝑛𝑡 − 𝑌𝐻𝑇𝑡 × 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡 × 0.025 − 𝑌𝐻𝑇𝑡 × (1 − 𝑑𝑎𝑚𝑓𝑟𝑎𝑐𝑡) × 𝑎𝑏𝑎𝑡𝑒𝑡 × 0.1

 (5.23) 

According to Johansson-Stenman, Carlsson et al. (2002), the relative utility function for each 

household subgroup is defined in Eq. (5.24) where 𝐴𝐿𝑐𝑜𝑡 = 𝐿𝑖𝑛𝑐𝑜𝑡 ÷ (0.4 × 𝑃𝑂𝑃𝑡) , 𝐴𝑀𝑐𝑜𝑡 =

𝑀𝑖𝑛𝑐𝑜𝑡 ÷ (0.5 × 𝑃𝑂𝑃𝑡) and 𝐴𝐻𝑐𝑜𝑡 = 𝐻𝑖𝑛𝑐𝑜𝑡 ÷ (0.1 × 𝑃𝑂𝑃𝑡). 𝐴𝐿𝑐𝑜𝑡 , 𝐴𝑀𝑐𝑜𝑡 , and 𝐴𝐻𝑐𝑜𝑡  stand for 

the average net income for the low-income, middle-income, and high-income subgroup in Year t 

respectively; 𝐴𝐼𝑐𝑜𝑡 refers to the average net income. 𝐴𝑅𝐿𝑈𝑡𝑖𝑡, 𝐴𝑅𝑀𝑈𝑡𝑖𝑡, and 𝐴𝑅𝐻𝑈𝑡𝑖𝑡 refer to the 

average relative utility for the low-income, middle-income, and high-income subgroup in Year t 

respectively. 

{
 
 

 
 𝐴𝑅𝐿𝑈𝑡𝑖𝑡 =

1

1−𝛾2
(𝐴𝐿𝑐𝑜𝑡 × 𝐴𝐼𝑐𝑜𝑡

−𝛾1)1−𝛾2

𝐴𝑅𝑀𝑈𝑡𝑖𝑡 =
1

1−𝛾2
(𝐴𝑀𝑐𝑜𝑡 × 𝐴𝐼𝑐𝑜𝑡

−𝛾1)1−𝛾2

𝐴𝑅𝐿𝑈𝑡𝑖𝑡 =
1

1−𝛾2
(𝐴𝐻𝑐𝑜𝑡 × 𝐴𝐼𝑐𝑜𝑡

−𝛾1)1−𝛾2

                               (5.24) 

In Eq. (5.24), the parameter 𝛾1 stands for the weight that an individual attaches to the relative 

income (Johansson-Stenman, Carlsson et al. 2002). The value of 𝛾1 lies between 0 and 1, with the 

extreme value 0, denoting that the relative utility does not depend on the relative income, and the 

extreme value 1, denoting that the relative utility only depends on the positional effect of the 

individual’s income relative to the average national income (Johansson-Stenman, Carlsson et al. 2002). 

By default, in this chapter, 𝛾1 is assumed to equal 0.35, which was the median value of the positional 

experiment by Johansson-Stenman, Carlsson et al. (2002). 

The parameter 𝛾2 measures the rate at which the relative utility falls as the income rises, according 

to Howarth and Kennedy (2016) who empirically showed the relation between income and well-being 

in a classical utilitarian ethical framework. By default, in this chapter, 𝛾2 is assumed to equal 1.72, 

which was the median value of the risk (inequality) aversion experiment by Johansson-Stenman, 

Carlsson et al. (2002). This value is quite close to 1.8 given by Howarth and Kennedy (2016). The value 

of 𝛾2 can range from negative infinitive to positive infinitive. However, to make the definition of the 

relative utility abide by the literature that rising income inequality will decrease the relative utility, the 

value of 𝛾2  is assumed to be larger than one. This assumption is rational as the majority of the 

participants in the experiment of Johansson-Stenman, Carlsson et al. (2002) had the relative risk 

aversion larger than one. 
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After the relative utility for each household subgroup is defined, the total relative utility is defined 

as the weighted summation of the relative utility in each household subgroup, shown in Eq. (5.25). 𝑅𝑈𝑡𝑖 

denotes the overall relative utility for China over the studied period. Because the value of 𝛾2 is larger 

than one, the relative utility defined in Eq. (5.25) is always negative. The negative value of the relative 

utility implies that if the national income remains fixed, an increase in the income inequality will induce 

an increase in the absolute value of the negative relative utility. 

𝑅𝑈𝑡𝑖 = ∑ (𝐴𝑅𝐿𝑈𝑡𝑖𝑡 × 0.4 + 𝐴𝑅𝑀𝑈𝑡𝑖𝑡 × 0.5 + 𝐴𝑅𝐻𝑈𝑡𝑖𝑡 × 0.1) × 𝑃𝑂𝑃𝑡𝑡            (5.25) 

Based on the definition of the overall relative utility, the net welfare is defined as the overall 

welfare minus the absolute value of the relative utility, shown in Eq. (5.26). 𝑁𝐻𝑊 refers to the net 

household welfare. Noticeably, the unit of the absolute welfare is 1018 CNY in the result section. The 

unit of 𝑅𝑈𝑡𝑖 is defined as 106 × 1001−𝛾1 CNY, depending on the value of 𝛾1. If 𝛾1 = 0, the unit of 

𝑅𝑈𝑡𝑖 is 108 CNY, which means that the relative utility does not relate to the relative income; If 𝛾1 =

1, the unit of 𝑅𝑈𝑡𝑖 is 106 CNY, which means that the relative utility only relates to the relative income. 

From the unit difference between the total welfare and relative utility, the former is overwhelming larger 

than the latter. Therefore, the impact of the relative utility on the total welfare is negligible even though 

I have changed the optimum condition of the model from the maximisation of the total welfare to the 

net welfare. 

𝑁𝐻𝑊 = 𝐻𝑊 − |𝑅𝑈𝑡𝑖|                                              (5.26) 

A sensitivity test has been performed to check how susceptible the relative utility is to the given 

parametric values of 𝛾1 and 𝛾2. Derived from the experiments in Johansson-Stenman, Carlsson et al. 

(2002), 𝛾1 and 𝛾2 were used to denote the participants’ attitudes toward the relative income and risk. 

The experimental participants were the students from a Swedish university, and thus the participant 

selection may induce the parametric uncertainties. This is because participants from other social class 

or other countries may respond very different from the participated students in the experiments. 

Moreover, the participants’ behaviours were monitored under the hypothetical society; however, 

socioeconomic factors, like an economic recession or recovery, could affect the behaviours. In the 

sensitivity analysis, the value of  𝛾1 is assumed to change freely from -50% to 50%, while the value of 

𝛾2 is assumed to change freely from -40% to 50%. This is because if 𝛾2 changes by -50%, the value of 

𝛾2 will be lower than 1, which violates its definition. 

Scenarios 
Depending on the taxpayers, the abatement costs can be paid by the high-income subgroup only, 

proportionally to the income and independently from the income. The abatement costs paid by the high-

income subgroup only means that the middle-class and low-income subgroup do not have obligation to 

mitigate the climate change. The abatement costs paid proportionally implies that the middle-class and 

low-income subgroup have less obligation to abate the emissions compared to the high-income 
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subgroup. The abatement costs allocated independently from the income means that the payment of the 

abatement costs is only related to the scale of the household subgroup. 

Then this chapter analyses how recycling the tax revenues affects the inequality condition and 

relative utility. The tax revenues can be detained by the government, recycled to the enterprise, evenly 

to the household, and only to the low-income household. Recycling the revenues evenly to the 

household means the recycling is only related to the scale of a household subgroup. Recycling the 

revenues to the low-income subgroup corresponds to the fact that the low-income people are more 

susceptible to the losses induced by the climate change, but they are less responsible for the 

anthropogenic carbon emissions implied by the previous research (Jakob and Steckel 2014, Althor, 

Watson et al. 2016, Markkanen and Anger-Kraavi 2019). In this recycling policy, the livelihood loss of 

the low-income subgroup induced by the climate change is compensated disproportionally more from 

the recycling of tax revenues. The tax revenues could be also recycled to the enterprise because the 

most efficient way to use the revenues could be the capital formation (Caron, Cohen et al. 2018, 

Jorgenson, Goettle et al. 2018). 

Table 5.3 The Designed Scenarios in This Chapter 

Scenarios To Whom the Tax Revenues Are Recycled Who Pay the Abatement Costs 

SCRO1 Government High-Income Subgroup Only 

SCRO2 Government Proportionally to the Income 

SCRO3 Government Independently from the Income 

SCRO4 Household Evenly High-Income Subgroup Only 

SCRO5 Household Evenly Proportionally to the Income 

SCRO6 Household Evenly Independently from the Income 

SCRO7 Low-Income Subgroup Only High-Income Subgroup Only 

SCRO8 Low-Income Subgroup Only Proportionally to the Income 

SCRO9 Low-Income Subgroup Only Independently from the Income 

SCRO10 Enterprise High-Income Subgroup Only 

SCRO11 Enterprise Proportionally to the Income 

SCRO12 Enterprise Independently from the Income 

Table 5.3 shows the designed 12 scenarios in this chapter, based on the recipients of the tax 

revenues and payers of the abatement costs. In each scenario, the climate damages are assumed to be 

positively related, independently from, and negatively related to the income. 

Model Results 
Table 5.4 The Palma Ratio in SCRO1 

Tax  0%  1%   2%  3% 

 𝜉 Posi Zero Nega Posi Zero Nega Posi Zero Nega Posi Zero Nega 

2015 2.55 2.56 2.57 2.26 2.27 2.28 1.89 1.90 1.91 1.61 1.62 1.62 

2020 2.51 2.55 2.58 2.28 2.31 2.34 2.00 2.03 2.06 1.79 1.82 1.85 

2025 2.52 2.58 2.63 2.40 2.46 2.51 2.24 2.29 2.34 2.10 2.15 2.20 

2030 2.55 2.63 2.71 2.49 2.57 2.65 2.40 2.48 2.55 2.32 2.40 2.47 

Note: “Posi”, “Zero” and “Nega” refers to the positive, zero, and negative value of 𝜉 respectively 

Table 5.4 shows the Palma ratio in SCRO1 when the tax revenues are kept in the governmental 

budget, and the abatement costs are paid by the high-income subgroup only. When the income elasticity 
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of damage (𝜉) is zero or negative, the inequality condition will increase over time in all the tax scenarios. 

By comparison, when 𝜉 is positive, the inequality condition will decrease first and then increase until 

2030. The reason why the assumption of  𝜉 changes the inequality condition is that the share of climate 

damages will directly affect the net income of a household subgroup and thus change the inequality 

condition. According to Table 5.4, as the tax rate increases, the Palma ratio will decrease. This finding 

is contrary to the previous argument that most climate policies appeared regressive (Berry 2019). The 

economic intuition underlying the progressivity of the carbon tax is that as the high-income subgroup 

consumes much more energies than the low-income subgroup, the carbon tax will decrease the net 

income of the high-income subgroup disproportionately more than the average level. 

 

Fig. 5.1 The Relative Utility (RU) in SCRO1 (Unit: 109 CNY) 

Fig. 5.1 shows how the carbon tax will affect the relative utility (RU) in SCRO1. With the fixed 

tax rate, the absolute value of the RU will be the lowest, when 𝜉 is positive; it will be the highest, when 

𝜉 is negative. Although Table 5.4 shows the carbon tax will reduce the inequality condition, however, 

Fig. 5.1 implies that the taxation will induce more negative relative utility than the baseline scenario, 

and the absolute value of the RU is negatively related to tax rate. This is because the carbon tax will 

induce the deadweight loss and reduce the gross income for all the household subgroups. This finding 

implies that the absolute income is the main determinant of the RU even though the inequality condition 

does affect the RU. 

Table 5.5 The Palma Ratio in SCRO2 

Tax  0%  1%   2%   3%  

 𝜉 Posi Zero Nega Posi Zero Nega Posi Zero Nega Posi Zero Nega 

2015 2.55 2.56 2.57 2.54 2.55 2.56 2.54 2.55 2.56 2.54 2.55 2.56 

2020 2.51 2.55 2.58 2.51 2.54 2.58 2.51 2.54 2.57 2.50 2.54 2.57 

2025 2.52 2.58 2.63 2.51 2.57 2.62 2.51 2.57 2.62 2.51 2.57 2.62 

2030 2.55 2.63 2.71 2.54 2.62 2.70 2.54 2.62 2.70 2.54 2.62 2.69 

Table 5.5 shows the Palma ratio in SCRO2 assuming that the tax revenues are kept in the 

governmental budget, and the abatement costs are paid proportionally to the income. The baseline 

Palma ratio in Table 5.5 is the same as that in Table 5.4. This is because the abatement costs are zero in 
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the baseline scenario, and thus the allocation of the costs has no impacts on the Palma ratios. The Palma 

ratio in the tax scenarios of Table 5.5 is larger than that in Table 5.4. This is because the low-income 

subgroup will have the lower net income, and the high-income subgroup will have the higher net 

income, when the abatement costs are allocated proportionally to the income. Noticeably, in the tax 

scenarios, the Palma ratio will respond minimally to the variation of the tax rate. This is because each 

household subgroup will bear the same proportion of the abatement costs to the gross income. 

 
Fig. 5.2 The Relative Utility (RU) in SCRO2 (Unit: 109 CNY) 

Fig. 5.2 shows the variation of the RU in the baseline and tax scenarios of SCRO2. The RU in the 

baseline scenario of Fig. 5.2 is equal to that in Fig. 5.1. However, the absolute value of the RU in Fig. 

5.2 is larger than that in Fig. 5.1, because SCRO2 will induce the higher inequality condition compared 

to SCRO1. This finding complies with Clark, Frijters et al. (2008) who discussed the relation between 

happiness and utility, indicating that the increase of the income gap would reduce the happiness and 

thus increase the relative utility. At the same tax rate, the absolute value of the RU in Fig. 5.2 is only 

slightly larger than that in Fig. 5.1. This result implies that the absolute income is the main determinant 

of the RU. This finding conforms to Hagerty and Veenhoven (2003) who applied a dynamic model to 

revisit the wealth and happiness, concluding that contrary to the relative utility theory, the increasing 

national income would induce the increasing national happiness. 

Table 5.6 The Palma Ratio in SCRO3 

Tax  0%  1%  2%   3%  

 𝜉 Posi Zero Nega Posi Zero Nega Posi Zero Nega Posi Zero Nega 

2015 2.55 2.56 2.57 2.83 2.85 2.86 3.34 3.36 3.38 3.89 3.92 3.95 

2020 2.51 2.55 2.58 2.73 2.78 2.81 3.08 3.13 3.18 3.40 3.46 3.53 

2025 2.52 2.58 2.63 2.62 2.68 2.74 2.79 2.86 2.93 2.95 3.03 3.10 

2030 2.55 2.63 2.71 2.59 2.67 2.75 2.67 2.76 2.85 2.76 2.85 2.94 

Table 5.6 shows the Palma ratio in SCRO3 where the tax revenues are kept in the governmental 

budget, and the abatement costs are paid independently from the income. The Palma ratio in the tax 

scenarios of SCRO3 is much larger than that in Table 5.4 and Table 5.5. This is because in SCRO3, the 

low-income subgroup will disproportionally pay 40% of the abatement costs, whilst the high-income 

subgroup will only pay 10% of the costs. Noticeably, the inequality condition in the tax scenarios is 
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larger than that in the baseline scenario, implying that the tax is regressive if the abatement costs are 

independent from the income. 

 
Fig. 5.3 The Relative Utility (RU) in SCRO3 (Unit: 109 CNY) 

Corresponding to Table 5.6, the absolute value of the RU in Fig. 5.3 is much higher than that in 

Fig. 5.1 and 5.2. This result implies that given the absolute national income, the absolute value of the 

RU is positively related to the inequality condition. This finding fits in with Clark and Oswald (1996) 

who explored the data of 5000 British workers to test whether the utility depended on the income 

relative to a reference level, concluding that workers’ satisfaction levels were inversely related to their 

comparison wage rates. 

Table 5.7 The Palma Ratio in SCRO4 

Tax   0%     1%     2%     3%   

 𝜉 Posi Zero Nega Posi Zero Nega Posi Zero Nega Posi Zero Nega 

2015 2.55 2.56 2.57 2.25 2.27 2.28 1.88 1.89 1.90 1.60 1.61 1.61 

2020 2.51 2.55 2.58 2.27 2.31 2.34 1.99 2.02 2.05 1.78 1.81 1.84 

2025 2.52 2.58 2.63 2.40 2.45 2.50 2.23 2.28 2.33 2.09 2.14 2.19 

2030 2.55 2.63 2.71 2.49 2.57 2.64 2.40 2.47 2.55 2.31 2.39 2.46 

Table 5.7 shows the Palma ratio in SCRO4 when the tax revenues are recycled evenly to the 

household, and the abatement Costs are paid by the high-income subgroup only. In the tax scenarios, 

the Palma ratio is lower in SCRO4 than that in SCRO1, implying that recycling the revenues from 

climate policies evenly to the household is beneficial to reducing the inequality. This finding agrees 

with Davies, Shi et al. (2014) who tested the possibilities of eliminating the global inequality using the 

tax revenues, empirically showing that redistributing the revenues of the carbon tax globally via equal 

per capita transfers would reduce the global Gini coefficient. 

-48.04

-61.18

-72.35

-82.01

-48.34

-61.57

-72.86

-82.64

-48.66

-61.98

-73.40

-83.31

-90 -85 -80 -75 -70 -65 -60 -55 -50 -45

0%

1%

2%

3%

T
ax

Nega
Zero
Posi



116 

 

 
Fig. 5.4 The Relative Utility (RU) in SCRO4 (Unit: 109 CNY) 

Fig. 5.4 shows the RU under the influence of recycling the tax revenues evenly to the household. 

The absolute value of the RU in Fig. 5.4 is smaller than that in Fig. 5.1. On the assumption of recycling 

the tax revenues evenly to the household, Table A5.1 and Fig. A5.1 in Appendix A show the Palma 

ratio and RU in SCRO5, when the abatement costs are proportional to the income; Table A5.2 and Fig. 

A5.2 in Appendix A show the Palma ratio and RU in SCRO6, when the abatement costs are independent 

from the income. 

Table 5.8 The Palma Ratio in SCRO7 

Tax  0%  1%  2%   3%  

 𝜉 Posi Zero Nega Posi Zero Nega Posi Zero Nega Posi Zero Nega 

2015 2.55 2.56 2.57 2.24 2.26 2.27 1.87 1.88 1.89 1.58 1.59 1.60 

2020 2.51 2.55 2.58 2.27 2.30 2.33 1.98 2.01 2.04 1.77 1.79 1.82 

2025 2.52 2.58 2.63 2.39 2.44 2.50 2.22 2.27 2.32 2.08 2.13 2.17 

2030 2.55 2.63 2.71 2.48 2.56 2.64 2.38 2.46 2.53 2.30 2.37 2.44 

Table 5.8 shows the Palma ratio in SCRO7 where the tax revenues are recycled to the low-income 

subgroup only, and the abatement costs are paid by the high-income subgroup only. The Palma ratio 

shown in Table 5.8 is lower than that in Table 5.7, which implies that recycling the tax revenues to the 

low-income subgroup rather than evenly to the household is beneficial to reducing the income inequality 

further. This finding complies with Grottera, Pereira et al. (2017) who empirically found that recycling 

the tax revenues to the lower income class was the one which contributed the most to the reduction of 

the income inequality in Brazil. 
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Fig. 5.5 The Relative Utility (RU) in SCRO7 (Unit: 109 CNY) 

Fig. 5.5 shows the RU in SCRO7 where the tax revenues are recycled to the low-income subgroup 

only. The absolute value of the RU in the tax scenarios of Fig. 5.5 is lower than that in Fig. 5.4. This 

result implies that at the same absolute income, recycling the revenues to the low-income subgroup will 

induce the lowest inequality condition and thus the lowest absolute value of the RU. On the assumption 

of recycling the tax revenues to the low-income household only, Table A5.3 and Fig. A5.3 in Appendix 

A show the Palma ratio and RU in SCRO8 where the abatements costs are proportional to the income; 

Table A5.4 and Fig. A5.4 in Appendix A show the Palma ratio and RU in SCRO9 where the abatements 

costs are independent from the income. 

Table 5.9 The Palma Ratio in SCRO10 

Tax  0%  1%   2%  3% 

 𝜉 Posi Zero Nega Posi Zero Nega Posi Zero Nega Posi Zero Nega 

2015 2.55 2.56 2.57 2.26 2.27 2.28 1.89 1.90 1.91 1.61 1.62 1.63 

2020 2.51 2.55 2.58 2.28 2.31 2.34 2.00 2.03 2.06 1.79 1.82 1.85 

2025 2.52 2.58 2.63 2.40 2.46 2.51 2.24 2.29 2.34 2.10 2.15 2.20 

2030 2.55 2.63 2.71 2.49 2.57 2.65 2.40 2.48 2.55 2.32 2.40 2.47 

Table 5.9 shows the Palma ratio in SCRO10 where the tax revenues are recycled to the enterprise, 

and the abatement costs are paid by the high-income subgroup only. Recycling the revenues to the 

enterprise will deteriorate the inequality condition, compared to the case that the household receives the 

revenues. This is because the high-income subgroup will gain disproportionally more revenues, but the 

low-income subgroup will gain disproportionally less revenues under this recycling assumption. 

Although the data in Table 5.9 are roughly equal to that in Table 5.4, the Palma ratio in Table 5.9 is 

slightly larger than that in Table 5.4 in four decimals. Hence, Table 5.9 implies that recycling the 

revenues to the enterprise will induce the largest inequality condition among the designed recycling 

policies. This finding complies with Caron, Cohen et al. (2018), Gonzalez (2012) and Jorgenson, 

Goettle et al. (2018) who showed that using the tax revenues for capital formulation was regressive and 

thus increased the inequality. 
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Fig. 5.6 The Relative Utility (RU) in SCRO10 (Unit: 109 CNY) 

Fig. 5.6 shows the RU in SCRO10 where the tax revenues are recycled to the enterprise. The 

absolute value of the RU in the tax scenarios of Fig. 5.6 is the largest, compared to Fig. 5.1–5.5. On the 

assumption of recycling the tax revenues to the enterprise, Table A5.5 and Fig. A5.5 in Appendix A 

show the Palma ratio and RU in SCRO11 where the abatements costs are proportional to the income; 

Table A5.6 and Fig. A5.6 in Appendix A show the Palma ratio and RU in SCRO12 where the 

abatements costs are independent from the income. 

Table 5.10 The Household Welfare Loss under the Tax Recycling Policies (Unit: 1012 CNY) 

 Tax  1%  2%   3%  

 Recipient GOV HLD EPS GOV HLD EPS GOV HLD EPS 

2015 9.798  9.790  9.802  13.514  13.501  13.521  15.532  15.516  15.541  

2020 18.323  18.310  18.328  24.902  24.884  24.911  28.392  28.370  28.405  

2025 25.998  25.977  26.006  36.767  36.737  36.782  42.803  42.767  42.824  

2030 35.019  34.988  35.031  51.702  51.654  51.725  61.654  61.595  61.687  

Note: “GOV” and “EPS” stand for the revenues recycled to the government and enterprise;  

“HLD” refers to the revenues recycled evenly to the household. 

Table 5.10 shows the household welfare loss induced by the revenue recycling policies. Recycling 

the revenues to the household will induce the lowest amount of the welfare loss under the carbon tax. 

Noticeably, the differences of the welfare loss under the recycling policies are quite minimal (less than 

1%). This is because the RU defined in Eq. (5.26) has minimal impacts on the net welfare. Hence, the 

sharing of the climate damages or abatement costs, which affects the RU only, will have almost no 

effects on the welfare loss induced by the carbon tax. 

Table 5.11 The RGDP Loss under the Tax Recycling Policies (Unit: 1012 CNY) 

 Tax  1%  2%   3%  

 Recipient GOV HLD EPS GOV HLD EPS GOV HLD EPS 

2015 24.501  24.504  24.505  33.863  33.869  33.872  39.021  39.029  39.034  

2020 39.792  39.797  39.797  54.070  54.079  54.081  61.705  61.716  61.720  

2025 48.464  48.471  48.470  68.383  68.394  68.397  79.578  79.593  79.599  

2030 56.135  56.143  56.142  82.611  82.626  82.630  98.381  98.402  98.409  

Table 5.11 shows the effect of the revenue recycling policies on the real GDP (RGDP) loss over 

time. Like the household welfare loss, the RGDP loss is also minimally affected by recycling the tax 
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revenues. According to Table 5.11, the government policy will induce the lowest amount of the RGDP 

loss, which implies that recycling the revenues to the government is the most efficient way to use the 

tax revenues at the country level. 

Results of the Sensitivity Analysis 
Table 5.12 The RU Change in the Baseline Scenario When 𝜉 is Positive 

∆𝛾1 or ∆𝛾2 -50% -40% -30% -20% -10% 

∆𝑅𝑈 by ∆𝛾1 1.80% 1.42% 1.05% 0.69% 0.34% 

∆𝑅𝑈 by ∆𝛾2 UND 26156.70% 2067.88% 530.96% 136.48% 

∆𝛾1 or ∆𝛾2 10% 20% 30% 40% 50% 

∆𝑅𝑈 by ∆𝛾1 -0.33% -0.66% -0.98% -1.28% -1.58% 

∆𝑅𝑈 by ∆𝛾2 -54.45% -78.15% -89.10% -94.40% -97.05% 

Note: UND means undefined. 

Table 5.12 shows the RU percentage change influenced by the parametric values of ∆𝛾1 or ∆𝛾2 in 

the baseline scenario when the income elasticity of damage (𝜉) is positive. According to Table 5.12, the 

relative utility is quite insensitive to 𝛾1, which means that the RU is quite robust to the parametric 

uncertainties of 𝛾1. Noticeably, the changes of 𝛾1 is negatively correlated with the absolute value of the 

RU. In contrast, the RU is quite sensitive to the parametric uncertainties of 𝛾2. If 𝛾2 changes by -40%, 

the absolute value of 𝛾2 will increase by 26156.70%. However, even if the RU has changed by that 

large amount, its impact on the net welfare is still very small, and thus the variation of the RU will not 

change the optimum condition of the model equilibrium. Table A5.7–A5.10 in Appendix A show the 

results of the sensitivity analysis under the different assumptions of the abatement costs, climate 

damages, and targeted recipients of the revenues in the tax scenarios. Similar findings could be found 

in Table A5.7–A5.10, compared to Table 5.12. 

Discussion 
This chapter empirically shows that the income elasticity of damage (𝜉) affects the inequality 

condition. The negative value of 𝜉 means that the distribution of the income (equality condition) is 

disproportional to the income. Consequently, the inequality condition will be higher than the case where 

𝜉  is positive or zero. This finding is compatible with the argument that the poor were often 

disproportionally exposed to the damages relating to the climate change, according to Winsemius, 

Jongman et al. (2018) whose research was based on the survey data in 52 countries. Hence, the climate 

change would exacerbate the inequality condition, according to Beck (2010) who remapped the social 

inequality at the age of the climate change. 

If the abatement costs are independent from the income, the carbon tax will increase the inequality 

condition. This finding corresponds to the previous research arguing that a carbon tax would usually 

increase the inequality condition because of the rising energy prices, according to Markkanen and 

Anger-Kraavi (2019) who synthesised the evidence of the inequality impacts of climate policies in the 
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literature. Specifically, Freitas, Ribeiro et al. (2016) analysed the economic and distributional effects of 

the Brazilian emission taxation, concluding that the tax increased the inequality condition in Brazil. 

A decrease in the income, caused by the increase of the tax rate, always results in an increase in 

the absolute value of the relative utility even if the tax decreases the inequality condition. This finding 

complies with Clark, Frijters et al. (2008) who reviewed the evidence on the relative income from the 

well-being literature, arguing for the positive correlations between the individual income and well-being 

irrespective of the negative relation between the happiness and others’ income. This finding implies 

that compared to the inequality condition, the absolute income has a more influential impact on the 

relative utility. 

Keeping the tax revenues in the governmental budget is equivalent to the case with no revenue 

recycling in the literature. According to Wang, Hubacek et al. (2019) who used a multi-regional input-

output model to analyse the distributional impacts of the carbon pricing in China, the carbon tax was 

regressive without revenue recycling; the regressivity means the burden of the tax on the poor was 

higher than that on the rich. Conversely, Klenert and Mattauch (2016) analysed the distributional effects 

of the carbon tax reform to conclude that the carbon tax could decrease the inequality condition if the 

revenues were recycled as uniform lump-sum transfers.  

Recycling the tax revenues to the household will induce the lowest inequality condition in 

comparison with the recycling policies to the other recipients. This finding is compatible with 

Montenegro, Lekavicius et al. (2019) who used a multi-regional CGE to study the challenges and 

opportunities of the EU climate policies, empirically showing that redistributing the revenues from the 

carbon certificates decreased the income inequality. This is because the poor derived a higher share of 

their income from the governmental income redistribution than the rich (Montenegro, Lekavicius et al. 

2019). In summary, recycling the tax revenues to the household could relieve the inequality condition, 

compared to keeping the tax revenues in the governmental budget. 

Recycling the revenues to the low-income subgroup only will induce a more equitable condition, 

compared to the policy where the household receives the tax revenues evenly. By providing the best 

means for sheltering the poorest, recycling the revenues to the household was the most equitable way 

to use the tax revenues, according to Jorgenson, Goettle et al. (2018) who employed an intertemporal 

CGE model to study the welfare consequences of the carbon taxation. Similarly, Berry (2019) using a 

microsimulation model to study the distributional effects of the French carbon tax, indicating that 

targeting the revenue recycling at the low-income household was the cheapest option to offset the 

regressivity of the carbon tax in France. 

There is a tradeoff between the equity and efficiency among the revenue recycling policies, and 

the tradeoff could be also found in Caron, Cohen et al. (2018) who used a CGE model to explore the 

effects of the US economy-wide carbon taxes. In this chapter, the most equitable policy is recycling the 
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revenues to the household, whilst the most efficient policy is keeping the revenues in the governmental 

budget as this policy will induce the lowest amount of the RGDP loss. This finding is quite different 

from Caron, Cohen et al. (2018), Gonzalez (2012), and Jorgenson, Goettle et al. (2018) who showed 

that capital formulation was the most efficient to use the tax revenues. The result difference lies in the 

assumption of the capital tax: in the previous studies, the capital tax was endogenously determined; in 

this chapter, it is exogenously given by 2015 China Input-Output Table and assumed to change 

dynamically from the 2015 data. Hence, in this chapter, the revenues are recycled to the enterprise as 

an increase of its income. 

The sensitivity analysis shows the relative utility (RU) defined in this chapter is insensitive to the 

parametric value of the weight of relative income (𝛾1) but quite sensitive to the rate at which the RU 

falls as the income rises (𝛾2 ). This finding implies that the RU will be seriously affected by the 

parametric uncertainties of 𝛾2. Hence, the definition of the RU in this chapter needs to be improved. 

Future potential research may define the RU in a way that its value is robust to the given values of both 

𝛾1 and 𝛾2. 

As the relative utility, affected by the inequality impacts, only slightly influences the total welfare, 

the optimum condition of the technical model (defined in the previous chapter) does not change. The 

model equilibrium changes very minimal if the inequality impacts are considered. Hence, the carbon 

emissions and carbon intensity will be almost the same irrespective of the inequality impacts. Whether 

the carbon tax will help China meet the INDC target remains unchanged in this chapter, compared to 

the previous chapter. 

The Tinbergen Rule implies that one policy instrument per target is needed (Braathen 2007). As 

the previous chapters have already included the ancillary and primary benefits and technical impacts in 

the policy evaluation framework, the simulated carbon tax may not reveal the net inequality impacts in 

this chapter. To reduce the inequality impacts, an addition policy instrument, like subsidies for the poor, 

needs to be implemented as a complementary policy of the carbon tax. 

Policy Implications 
The inequality condition is not a significant factor that influences the policy effects of the carbon 

tax because the relative utility is quite small compared to the absolute utility. The inequality impacts of 

the carbon tax are affected by the assumption of the distribution of the climate damages, payment of 

the abatement costs, and recipients of the tax revenues. 

Conclusion 
This chapter empirically shows that if the climate damages are assumed to be positively related to 

the income, the inequality condition will be the lowest under the implementation of the carbon tax. If 

the climate damages become independent from the income, the low-income subgroup will suffer more 

welfare loss, and thus the inequality condition will increase. If the climate damages are negatively 
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correlated with the income, the low-income subgroup will suffer the largest amount of the welfare loss, 

and thus the inequality condition will be the highest. 

The abatement costs can be paid by the high-income subgroup only, proportionally to or 

independently from the income. The inequality condition will be the lowest if the high-income subgroup 

pays the abatement costs and will be the highest if the abatement costs are independent from the income. 

The carbon tax is progressive if the abatement costs are paid by the high-income subgroup; it is neutral 

if the abatement costs are proportional to the income; it is regressive if the abatement costs are 

independent from the income. 

Recycling the tax revenues has a profound effect on the inequality condition and relative utility. 

Among the recycling policies, the inequality condition and absolute value of the relative utility will be 

the lowest if the tax revenues are recycled to the low-income subgroup only. On the contrary, recycling 

the revenues to the enterprise will induce the highest inequality condition and absolute value of the 

relative utility. Nevertheless, the recycling policies will only minimally (less than 1%) affect the 

household welfare loss and real GDP loss, induced by the carbon tax. 

The relative utility is mainly determined by the absolute income even though the income inequality 

does have an impact on it. As the tax rate increases, the absolute value of the relative utility will always 

increase even if the increasing tax rate could result in less inequality. This is because as the tax rate 

increases, the absolute income of each household subgroup will always decrease irrespective of the 

income distribution within the household. 

The sensitivity analysis shows that the relative utility is quite robust to the parametric values of 𝛾1 

but quite sensitive to the parametric values of 𝛾2. As the relative utility is quite minimal compared to 

the total welfare, using the net welfare (the total welfare minus the relative utility) instead of the total 

welfare as the optimum condition almost has no impacts on the policy effects of the carbon tax. Even 

if 𝛾2 may significantly change the relative utility, the variation of the relative utility is still very minimal 

compared to the total welfare.  Hence, I conclude that considering the inequality impacts, the evaluation 

on the policy effects of the carbon tax in this chapter is robust despite that the relative utility is sensitive 

to 𝛾2. 
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Chapter 6: The Urbanisation Impacts on 

the Carbon Tax 

Introduction 
Since the Reform and Opening-up in 1978, China has been experiencing rapid urbanisation. The 

urbanisation rate (the percentage of the urban population in the total population) increased from 17.9% 

in 1978 to 51.27% in 2011 with an annual growth rate of 1.02% on average (Wang, Fang et al. 2014). 

This trend would continue in the future particularly in the western and central regions of China (Wang 

2014). The rapid urbanisation poses tremendous socioeconomic challenges for the sustainable 

development in China (Wang, Fang et al. 2014). One of the challenges is the expanding anthropogenic 

emissions accompanied by the urbanisation.  

The urbanisation impacts on carbon emissions are complicated as urbanisation changes economic 

production, lifestyles, and land use types (Xu, Dong et al. 2018). On the one hand, urbanisation-induced 

industrialisation results in the intensive use of energy, which increases carbon emissions; on the other 

hand, geographical concentration may enhance the efficiency of energy use, which decreases carbon 

emissions. Previous researchers have documented the following four types of urbanisation impacts (Xu, 

Dong et al. 2018): (1) the urbanisation positively affected the carbon emissions in the Middle East and 

North African countries, implied by the panel model over the period 1980–2009  (Al-mulali, Fereidouni 

et al. 2013); (2) negative impacts were found in China during 1978–2010, implied by the cointegration 

and Granger causality test (Zhao and Chen 2013); (3) the urbanisation had no significant impacts in 32 

Chinese cities during 1999–2011, implied by the cointegration analysis (Ji, Wu et al. 2013); (4) the 

urbanisation impacts on the carbon emissions took the form of an inverse U-shaped curve in China 

during 1979–2009, implied by the decomposition of the urbanisation shocks (Dong and Yuan 2011). 

Although previous researchers studied how the Chinese urbanisation affected the historical emissions, 

the projected urbanisation impacts during 2015–2030 remain to be researched in China. 

Urbanisation affects energy consumption because cities are the main contributors to fossil-fuel 

energy consumption worldwide (Zhao and Zhang 2018). Hence, urbanisation is likely to increase 

energy consumption. For example, a one-way positive causal relationship existed from the urbanisation 

to the energy consumption, according to Wang, Fang et al. (2014) who performed a panel data analysis 

on 30 Chinese provinces during 1995 to 2011. Conversely, urbanisation could also reduce energy 

consumption because it saves energy use in transport. For example, the urbanisation was empirically 

found to have a positive effect on reducing the residential energy use in the 12 transition economies 

during 1995–2013, according to Pablo-Romero, Sanchez-Braza et al. (2019) who tested the 

environmental Kuznets curve (EKC) hypothesis. Some researchers analysed both the positive and 

negative impacts of urbanisation on energy consumption. For example, Wang (2014) investigated the 
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impacts of the Chinese urbanisation on the energy consumption through a time-series analysis, 

concluding that the urbanisation slowed per capita residential energy consumption growth, but it had a 

greater promotional impact on the energy consumption growth. 

In addition to the environmental impacts, the rapid expansion of urban areas could generate 

profound economic impacts. Urbanisation both has positive and negative impacts on the economy, 

including the development of commercial activities and creation of new jobs; bridging the wealth gap; 

access to new technologies and activities; infrastructure development (Dociu and Dunarintu 2012). 

Deng, Huang et al. (2015) mapped the Chinese urban expansion in 2001–2013, concluding that the 

urbanisation created positive externalities through technological innovation and shared information, and 

generated negative externalities including public insecurity and social inequality. Wu, Fisher et al. 

(2011) used a multiple-equation empirical model to explore the US county data, concluding that the 

urbanisation influenced the costs and profits of farming. 

In summary, previous research shows that urbanisation affects energy consumption, carbon 

emissions, and economic growth altogether. Studies that omit the urbanisation impacts on any variable 

mentioned above tend to be biased owing to the omission of an explanatory variable. For example, Zhao 

and Zhang (2018) only focused on the bidirectional impacts of the urbanisation on the energy 

consumption in China during 1980–2010. As Zhao and Zhang (2018) only implicitly studied the energy-

related emissions affected by the urbanisation but excluded the direct urbanisation impacts on the 

emissions, their results might be biased owing to the fact that the urbanisation could affect the emissions 

directly (Xu, Dong et al. 2018). In contrast, Al-mulali, Sab et al. (2012) and Wang, Fang et al. (2014) 

neglected the urbanisation impacts on the economic growth. With the omission of an influential 

explanatory variable, these studies may not give full understanding of the urbanisation impacts. In 

comparison with these studies, Zhang, Yi et al. (2015) fully studied the relation between the 

urbanisation and its three influential factors. Hence, their results could be much more trustworthy 

compared to the aforementioned studies. 

Hence, in this chapter, I have referred to Zhang, Yi et al. (2015) who used an autoregressive 

distributed lag (ARDL) model to investigate the impacts of the urbanisation in Beijing during 1980–

2013. More specifically, an ARDL model is used in this chapter to study the interrelations among these 

variables during 1980–2014 in China instead of Beijing, which was the target area in Zhang, Yi et al. 

(2015). I assume that the historical ARDL interrelations will remain unchanged in 2015–2030. Based 

on the projected urbanisation data given by UN (2018), the projected urbanisation impacts are inputted 

into the inequality model, defined in the previous chapter, and the new model is named as the 

urbanisation model in this chapter. The result comparison between the two models will reveal the net 

impacts of the projected rapid Chinese urbanisation on the policy effects of the carbon tax. 
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This chapter contributes to the literature by introducing the urbanisation impacts into the CGE 

policy evaluation framework. To my best knowledge, very few studies have attempted to identify 

whether urbanisation is an influential factor of climate policies. Neglecting the urbanisation impacts is 

likely to induce the biased evaluation of climate policies because the structural transition in urban 

population has a significant influence on the efforts to mitigate carbon emissions (Wang, Wu et al. 

2019). Therefore, it is important that the urbanisation impacts should be modelled in the policy 

evaluation framework. 

Data 
The coefficients of the ARDL model are calculated using the historical (1980–2014) data of the 

four variables to be researched, namely the urbanisation rate, carbon emissions, GDP, and energy 

consumption. The historical urbanisation data are from 2018 World Urbanisation Prospects (WUP) by 

United Nations (UN). The carbon emission data are from the index of “CO2 Emissions (kt)” in World 

Development Indicators (WDI) by World Bank (WB). The GDP data are from the index of “GDP 

(constant 2010 US$)” in WDI by WB. The energy consumption data are from the index of “Total 

Energy Consumption” in China Energy Statistical Yearbook by NBS (2016). All the data have been 

transformed into their logarithm expressions to interpret the relative changes of the variables. 

The projected urbanisation rate data are also from 2018 WUP.1 By comparison, Sun, Zhou et al. 

(2017) predicted the urbanisation in China from 2016 to 2030 based on the fertility, mortality, and 

natural growth rate data. 

 

Fig. 6.1 The Projected Urbanisation Rate in China 

Fig. 6.1 depicts the projected urbanisation rate by 2018 WUP in UN (2018) and Sun, Zhou et al. 

(2017). The urbanisation rate in China will continue to rise in both projections, but Sun, Zhou et al. 

 
1 According to Hsieh, S. C. (2014). "Analyzing urbanization data using rural-urban interaction model and 
logistic growth model." Computers Environment and Urban Systems 45: 89-100., UN is the only institution that 
produces the projections of the urban and rural population growth worldwide in its annual publication “World 
Urbanisation Prospect”. Although the WUP data have been broadly applied in the literature, the data tend to 
overlook the regional socioeconomic conditions. 

45%

50%

55%

60%

65%

70%

75%

2015 2020 2025 2030

U
rb

an
is

at
io

n 
R

at
e

Year

2018 WUP
Sun, Zhou et al. (2017)



126 

 

(2017) projected the lower urbanisation rate with the larger increase rate compared to UN (2018). In 

2030, the urbanisation rate in both projections will be very similar, which implies that there will be 70% 

of the Chinese population living in the urban area in 2030. As Sun, Zhou et al. (2017) employed a 

logistic curve to predict the urbanisation rate, their results were volatile owing to the model specification 

errors or unexplained residuals. Hence, the results in Sun, Zhou et al. (2017) would have been changed 

if a different model had been employed. For example, Gu, Guan et al. (2017) used a dynamic system 

model to project the Chinese urbanisation, and their results varied in five different scenarios. 

Considering its widespread acceptance and applicability, the 2018 WUP data are adopted in this chapter, 

even though the data might overlook the unique socioeconomic conditions in China. 

Table 6.1 The Projected Urbanisation Rate in China 

Year  Rate Year  Rate Year  Rate Year  Rate 

2015 55.50% 2019 60.31% 2023 64.57% 2027 68.25% 

2016 56.74% 2020 61.43% 2024 65.54% 2028 69.07% 

2017 57.96% 2021 62.51% 2025 66.48% 2029 69.87% 

2018 59.15% 2022 63.56% 2026 67.38% 2030 70.63% 

   Source: UN (2018) 

Table 6.1 specifies the 2018 WUP data shown in Fig. 6.1. According to Table 6.1, the urbanisation 

in China was projected to grow continuously over the research period. However, the urbanisation 

growth will decelerate, and the urbanisation rate will exceed 70% in 2030. 

Method 
Because an ARDL model provides reliable results when the variables are in the mixed orders of 

the stationarity (Kalmaz and Kirikkaleli 2019), it has become very popular to analyse the cointegration 

relations among economic time series in the literature. However, the cointegration relations need to be 

tested in case that the model becomes a spurious regression. The cointegration relations are identified 

based on unit root tests which reveal whether a time-series is stationary.  

In the literature, the most commonly used unit root test is the Augmented Dickey-Fuller (ADF) 

test, also known as the standardized panel unit root test, based on the deviations from the estimated 

factors (Pesaran 2007). The null hypothesis of an ADF test is that a unit root exists in the time series, 

while the alternative hypothesis indicates that there is no unit root, and the time series is stationary. The 

results of an ADF test were proved to be robust to the different lag specifications and test 

misspecifications (Hooker 1993). However, an ADF test was proved to be biased when the selection of 

the lag length is too small or large (Phillips and Perron 1988, Schwert 1989). Therefore, I will use the 

other types of the unit root tests that have been developed. For example, proposed by Phillips and Perron 

(1988), the PP test is nonparametric with respect to nuisance parameters and thereby allows for a very 

wide class of weakly dependent and possibly heterogeneously distributed data. Choi and Chung (1995) 

empirically proved that for the data with low sampling frequency, a PP test is more powerful than an 

https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Alternative_hypothesis
https://en.wikipedia.org/wiki/Stationarity_(statistics)
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ADF test in finite samples. As the sample size in this chapter is small, the results of a PP test could be 

more reliable than that of an ADF test. 

Based on unit root tests, panel cointegration tests strive to provide more reliable results in testing 

the cointegration presence relative to those obtained by individual tests (Mitic, Ivanovic et al. 2017). 

The most frequently used panel cointegration test is the Engle-Granger (EG) cointegration test, put 

forward by Engle and Granger (1987). The EG test was derived from the basic idea that two 

nonstationary time series are cointegrated if there is a stationary linear combination of them, from which 

the residuals are also stationary (Mitic, Ivanovic et al. 2017). The null hypothesis of the EG test is that 

there is no long-term cointegration relationship. The existence of a cointegration relationship is 

determined by the F statistics larger than the corresponding critical value.  

After the existence of the cointegration relationships is confirmed, an autoregressive distributed 

lag (ARDL) model is defined according to Pesaran, Shin et al. (2001). In this chapter, the ARDL model 

is constructed using the HAC (Newey-West) coefficient covariance matrix as the HAC method is more 

robust than the ordinary method. Eq. (6.1) shows the long-term ARDL model where the carbon 

emissions are the dependent variable. Similar equations can be written when the energy consumption 

or GDP is the dependent variable. Because this chapter is targeted at the urbanisation impact, the 

urbanisation rate is only introduced as an independent variable in the ARDL model. 

𝐸𝑡 = 𝛾0 +∑ 𝛾1𝑘
𝐿1
𝑘=1 𝐸𝑡−𝑘 + ∑ 𝛾2𝑘

𝐿2
𝑘=0 𝐸𝐶𝑡−𝑘 +∑ 𝛾3𝑘

𝐿3
𝑘=0 𝑈𝑅𝑡−𝑘 + ∑ 𝛾4𝑘

𝐿4
𝑘=0 𝐺𝐷𝑃𝑡−𝑘 + 휀𝑡   (6.1) 

In Eq. (6.1), 𝐸𝑡  refers to the total carbon emissions in Year t. 𝐸𝐶𝑡−𝑘, 𝑈𝑅𝑡−𝑘, and 𝐺𝐷𝑃𝑡−𝑘 stand for 

the total energy consumption, urbanisation rate, and GDP in Year t-k respectively. 𝐿1 , 𝐿2 , 𝐿3 , 𝐿4 are 

the optimal lagged orders to be selected by the Schwarz Information Criterion (SIC). The maximum lag 

for all the variables is three owing to the constraint by the small sample size. 휀𝑡 refers to the residual 

term in Year t; presumably, it is a white noise showing the independence and equal variance. 

𝛾0,  𝛾1𝑘, 𝛾2𝑘, 𝛾3𝑘, 𝛾4𝑘  are all the regression coefficients, and 𝛾0 is the intercept. As all the variables are 

taken into their logarithm forms, the coefficients denote the elasticities. 

To check the robustness of the ARDL model, I have performed the residual diagnostic tests: a 

White test to check the heteroskedasticity; a Breusch-Godfrey Serial Correlation LM test to check the 

autocorrelation; a histogram to check the normality. The variance inflation factor (VIF) is used to test 

the multicollinearity, whilst a recursive residual plot is used to test the model stability. 

Once the urbanisation impacts are captured by the ARDL model, Eq. (6.2) is used to model the 

impact on the policy effects of the carbon tax, assuming that the historical ARDL relationships will 

remain unchanged in 2015–2030. The urbanisation impacts on the carbon emissions and real GDP 

(RGDP) are also assumed to be equal across the sectors and household. Noticeably, the unit impact of 

the urbanisation on the historical GDP is deemed to have an equal impact on the historical RGDP. 



128 

 

{

𝐸𝑖𝑡
𝑢𝑟 = 𝐸𝑖𝑡 ∗ (1 + 𝑢𝑟𝑡

𝐸)

𝑆𝐺𝐷𝑃𝑖𝑡
𝑢𝑟 = 𝑆𝐺𝐷𝑃𝑖𝑡 ∗ (1 + 𝑢𝑟𝑡

𝐺𝐷𝑃)

𝐸𝐶𝑖𝑡
𝑢𝑟 = 𝐸𝐶𝑖𝑡 ∗ (1 + 𝑢𝑟𝑡

𝐸𝐶)

                                            (6.2) 

In Eq. (6.2), 𝐸𝑖𝑡
𝑢𝑟, 𝑆𝐺𝐷𝑃𝑖𝑡

𝑢𝑟, and 𝐸𝐶𝑖𝑡
𝑢𝑟 refer to the revised carbon emissions, sectoral output, and 

energy consumption when the net urbanisation impacts are considered. 𝑢𝑟𝑡
𝐸, 𝑢𝑟𝑡

𝐺𝐷𝑃, and 𝑢𝑟𝑡
𝐸𝐶 are the 

urbanisation impact indicators of the carbon emissions, GDP, and energy consumption respectively. 

In this chapter, the results of the urbanisation model, which considers the urbanisation impacts 

quantified by the ARDL model, are compared with the results of the inequality model defined in the 

previous chapter. Performed by the relative changes of the socioeconomic and emission indexes, the 

comparison analysis will reveal to what extent the projected Chinese urbanisation will influence the 

policy effects of the carbon tax. 

Results of the ARDL Model 
In Table A6.1 in Appendix A, the determination of the intercept and trend in the unit root tests is 

based on the information criteria to minimise the information loss. The first-order difference of 𝐸𝑡 does 

not have a unit root according to the PP test, but the ADF test shows an opposite result. I conservatively 

believe that 𝐸𝑡  is integrated for order two as both tests show that the second-order difference is 

stationary. Similarly, Table A6.1 implies that 𝐺𝐷𝑃𝑡 is integrated for order one, whilst 𝐸𝐶𝑡 and 𝑈𝑅𝑡 are 

integrated for order two. 

Table 6.2 The Results of the EG Cointegration Tests 

Variable Form 
Dependent 

Variable 
Tau-Statistic P-value Z-Statistic P-value 

Level 

 

𝐸𝑡 -4.13 0.0892 -31.03 0.0062** 

𝐸𝐶𝑡 -4.09 0.0949 -16.27 0.3300 

𝐺𝐷𝑃𝑡 -5.97 0.0019** -55.64 <0.0001** 

Differenced 

∆2𝐸𝑡 -6.67 0.0004** -90.63 <0.0001** 

∆2𝐸𝐶𝑡 -7.54 <0.0001** -41.45 <0.0001** 

∆2𝐺𝐷𝑃𝑡 -4.41 0.0555 -43.29 <0.0001** 

Note:∆2 denotes the second-order difference; ** denotes statistical significance at the 5% level. 

Table 6.2 presents the EG test results at the level and differenced dependent variables. When the 

dependent variable is ∆2𝐸𝑡 , the Z-Statistic is statistically significant, whilst the Tau-Statistic is 

statistically insignificant. According to Mackinnon (1996), when the sample size is very small, the 

differences between the finite-sample and asymptotic distributions are quite small for the Tau-Statistics 

but very large for the Z-Statistics. As the sample size in this chapter is small, the results of the Tau-

Statistics are more persuasive. The EG test results for the differenced ∆2𝐸𝑡 show that both the Tau-

Statistics and Z-Statistics are significant at the 5% level, which means that the null hypothesis of the 

EG test is not accepted. Hence, Table 6.2 implies that when ∆2𝐸𝑡  is the dependent variable, the 

differenced EG test confirms the existence of a cointegration relationship. Table 6.2 shows a similar 
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implication in the EG test when ∆2𝐸𝐶𝑡 is the dependent variable. In contrast, if 𝐺𝐷𝑃𝑡 is the dependent 

variable, the level EG test confirms that a cointegration relationship exists. 

As three cointegration relationships are confirmed by the EG test, three ARDL models are 

constructed correspondingly, and the results are shown in Table 6.3. 

Table 6.3 The Results of the ARDL Models 

Dependent Variable Independent Variable Coefficient P-value 

∆2𝐸𝑡 

∆2𝐸𝑡−1 -0.43 <0.0001*** 

∆2𝐸𝐶𝑡 1.01 0.0002*** 

∆2𝐸𝐶𝑡−1 0.47 0.0052*** 

∆𝐺𝐷𝑃𝑡 0.18 0.0772* 

∆2𝑈𝑅𝑡 3.51 0.0083*** 

𝐶 -0.017 0.1152 

∆2𝐸𝐶𝑡 

∆2𝐸𝐶𝑡−1 -0.28 0.0170** 

∆2𝐸𝑡 0.58 <0.0001*** 

∆2𝐸𝑡−1 0.35 0.0110** 

∆𝐺𝐷𝑃𝑡 0.0031 0.8946 

∆2𝑈𝑅𝑡 -0.59 0.6690 

𝐺𝐷𝑃𝑡 

𝐺𝐷𝑃𝑡−1 1.11 <0.0001*** 

𝐺𝐷𝑃𝑡−2 -0.59 <0.0001*** 

𝐸𝑡 0.31 0.0280** 

𝐸𝐶𝑡 -0.35 0.0452** 

𝑈𝑅𝑡 1.59 0.0010*** 

𝐶 7.3851 0.0001*** 

Note：*denotes statistical significance at the 10% level; **denotes significance at the 5% level; 

*** denotes significance at the 1% level 

Table 6.3 displays the coefficients and their significance levels in the ARDL models. If ∆2𝐸𝑡 is the 

dependent variable, the independent variables have positive impacts on it except for its lagged term. 

The coefficient of ∆2𝑈𝑅𝑡 is statistically significant at the 1% level, and it means that when ∆2𝑈𝑅𝑡 

increases (decreases) by 1%, ∆2𝐸𝑡 will increase (decrease) by 3.51%. When ∆2𝐸𝐶𝑡 is the dependent 

variable, the coefficient of ∆2𝑈𝑅𝑡 is not statistically significant even at the 10% level, implying that the 

urbanisation does not have a significant impact on the energy consumption. When 𝐺𝐷𝑃𝑡  is the 

dependent variable, the coefficient of 𝑈𝑅𝑡 is statistically significant at the 1% level. 

When 𝐺𝐷𝑃𝑡 is the dependent variable, severe problems of the heteroskedasticity, autocorrelation, 

and multicollinearity exist in the ARDL model. Hence, I have made the first-order difference of the 

variables and rerun the ARDL model. As the Tau-Statistic and Z-Statistic are both statistically 

significant at the 5% level, I conclude that the cointegration relationship is not spurious. 

Table 6.4 The Result of the ARDL Model (Dependent Variable: Δ𝐺𝐷𝑃𝑡) 
Independent Variable Coefficient P-value 

Δ𝐺𝐷𝑃𝑡−1 0.68 0.0001*** 

Δ𝐺𝐷𝑃𝑡−2 -0.37 0.0342** 

Δ𝐸𝑡 0.25 0.2804 

Δ𝐸𝐶𝑡 -0.19 0.5291 

Δ𝑈𝑅𝑡 2.10 0.0005*** 
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Table 6.4 shows the ARDL model results when the dependent variable is the first-order differenced 

GDP. In Table 6.4, the coefficient of Δ𝑈𝑅𝑡 is statistically significant at the 1% level, and it means that 

if Δ𝑈𝑅𝑡 increases (decreases) by 1%, Δ𝐺𝐷𝑃𝑡 will increase (decrease) by 2.10%. 

In Appendix A, Table A6.2 and A6.3 display the results of the robust tests to determine whether 

the simulated ARDL models violate the embedded statistical assumptions. Table A6.2 shows that, for 

all the three ARDL models, the F-Statistics of the White tests are not statistically significant, implying 

that the null hypotheses of the residual equal variances are accepted. Similarly, the LM test’s null 

hypotheses that the residuals do not have serial correlations are accepted. Table A6.3 shows the VIFs 

of the independent variables are all less than 10 in the ∆2𝐸𝑡 and ∆2𝐸𝐶𝑡 models, indicating that there are 

no severe multicollinearity problems in these two models. However, in the Δ𝐺𝐷𝑃𝑡  model, the 

multicollinearity can be a serious problem. Although the multicollinearity may inflate the variations of 

the coefficients, the estimated coefficients are still unbiased. As the coefficient of  Δ𝑈𝑅𝑡 is statistically 

significant, I conclude that the multicollinearity has not generated severe adverse consequences on the 

study of the urbanisation impacts on the GDP in this chapter.  

In Appendix A, Fig. A6.1–A6.3 show that the residual terms approximately comply with the 

normality assumption. Fig. A6.4–A6.6 show that in each ARDL model, there are some data points lying 

outside the two-standard-error ranges, implying that these data points may lay undue influences on the 

model results. However, as most of the data points lie within the two-standard-error ranges, I conclude 

that the stability assumption is roughly met. 

Table 6.5 The Projected Impacts of the Urbanisation on the 𝐶𝑂2 Emissions and RGDP 

Year  𝐶𝑂2 RGDP Year  𝐶𝑂2 RGDP Year  𝐶𝑂2 RGDP 

2015 -0.22% 4.75% 2021 -0.32% 3.67% 2027 -0.25% 2.68% 

2016 -0.21% 4.62% 2022 -0.30% 3.49% 2028 -0.24% 2.53% 

2017 -0.24% 4.48% 2023 -0.30% 3.31% 2029 -0.23% 2.40% 

2018 -0.35% 4.27% 2024 -0.28% 3.14% 2030 -0.21% 2.27% 

2019 -0.35% 4.06% 2025 -0.27% 2.98%       

2020 -0.33% 3.86% 2026 -0.26% 2.83%       

According to the projected urbanisation data in 2018 WUP by UN (2018), the projected percentage 

impacts of the Chinese urbanisation during 2015–2030 are shown in Table 6.5. The urbanisation will 

have a consistently negative impact on the carbon emissions. In contrast, the urbanisation will positively 

affect the RGDP, but the impact will attenuate over time. 
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Result Comparison between the Inequality and Urbanisation Model 

 

Note: 0% refers to the baseline scenario; 1%, 2%, and 3% denote the tax rates 
Fig. 6.2 The Urbanisation Impact on the Household Emissions 

Fig. 6.2 shows the relative changes of the household emissions under the impacts of the projected 

urbanisation. In the baseline scenario, the urbanisation will decrease the household emissions by 0.2%–

0.4%; in the tax scenarios, the urbanisation will strengthen the negative effect of the tax on the 

household emissions by 0.3%–0.8%. The economic intuition underlying Fig. 6.2 is that the urbanisation 

saved the energy consumption in the transport sector, and thus the carbon tax will decrease more 

emissions, compared to the case without considering the urbanisation impacts. This finding complies 

with Liu and Liu (2019) who combined the STIRPAT model with spatial Dubin model to argue that the 

urbanisation impact on the emissions would become negative, and then the negative impact would 

gradually become weaker in China. Fig. A6.7 in Appendix A shows that the urbanisation impact on the 

total emissions is very similar to that on the household emissions. 

 

Fig. 6.3 The Urbanisation Impact on the Carbon Intensity 

Fig. 6.3 shows the urbanisation impact on the carbon intensity over the studied period. Generally, 

the urbanisation will decrease the carbon intensity by 2%–5% in the baseline and tax scenarios, and this 

impact will decline over time. This finding complies with Yao, Kou et al. (2018) who used the threshold 

regression model to investigate the urbanisation impacts on the emissions in China, empirically showing 
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that the urbanisation contributed to the declines in the carbon intensity, but this abatement effect 

diminished with the deepening Chinese urbanisation. Similarly, Lin and Zhu (2017) constructed a 4-

variable panel vector auto-regression model to study the energy and carbon intensity during the 

urbanisation, concluding that the energy and carbon intensity would decline with the development of 

the urbanisation in China. 

 

Fig. 6.4 The Urbanisation Impact on the Household Welfare Loss 

Fig. 6.4 shows how the urbanisation will affect the household welfare loss, induced by the carbon 

tax, over the research period. In all the tax scenarios, the urbanisation will increase the welfare loss by 

0.15%–0.6%, implying that the urbanisation will reinforce the negative policy effect of the carbon tax 

on the household welfare. As the time goes by, this urbanisation impact will gradually decrease. The 

economic intuition underlying Fig. 6.4 is that the household needs the resources to adapt to the lifestyle 

changes, accompanied by the urbanisation, and thus the household will have fewer resources to cope 

with the rising energy price under the carbon tax. This finding complies with Miao and Wu (2016) who 

used the survey data to examine the confounding health impacts of the rapid urbanisation in China, 

arguing that the urbanisation would negatively affect the social welfare as living in more urbanised 

areas increased the risks of acquiring chronic diseases. 

 

Fig. 6.5 The Urbanisation Impact on the RGDP Loss 
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Fig. 6.5 shows the urbanisation impact on the RGDP loss, induced by the carbon tax, over the 

studied period. In the tax scenarios, the urbanisation will increase the RGDP loss by 2.5%–5.5%, 

implying that it will decrease the RGDP. This urbanisation impact will steadily decline over time, and 

it is negatively related to the tax rate. Interestingly, the ARDL model shows that the urbanisation will 

increase the RGDP in the baseline scenario with no tax imposed; the urbanisation will decrease the 

RGDP in the tax scenarios. The rationale of Fig. 6.5 is that the carbon tax may negatively affect the 

industrial cluster, induced by the urbanisation, because the tax imposes limitations on the intensive use 

of energy. 

 

Fig. 6.6 The Urbanisation Impact on the Tax Revenues 

Fig. 6.6 shows the urbanisation impact on the revenues generated by the carbon tax. According to 

Fig. 6.6, the urbanisation will positively affect the tax revenues, but this impact will decline over time. 

As the tax rate increases, this urbanisation impact will decrease, even though the tax rate will minimally 

affect this impact. The reason why the urbanisation will increase the tax revenues is that the carbon tax 

will intervene more on the economy, implied by more RGDP loss under the urbanisation impacts shown 

in Fig. 6.5. 

In Appendix A, Fig. A6.8 shows how the tax marginal effect on the household emissions will 

change under the urbanisation impact. This tax marginal effect will increase at the 1% tax but decrease 

at the 2% and 3% tax, when the urbanisation impact is considered. In contrast, Fig. A6.9 shows that the 

urbanisation will generally decrease the tax marginal effect on the total emissions except that it 

increased the marginal effect in 2015–2018 at the 1% tax. 

Fig. A6.10 in Appendix A shows the urbanisation impact on the tax marginal effect on the carbon 

intensity. The urbanisation will weaken this marginal effect over the studied period at the 1% tax. 

However, the urbanisation strengthened the effect in 2015–2016 at the 2% tax and 2015–2019 at the 

3% tax but will weaken the effect since 2020 at the 2% and 3% tax. Fig. A6.10 implies that the 

urbanisation will counteract the tax marginal effect on the intensity reduction in the future. This 

prohibitive urbanisation impact analysed in this chapter complies with Yang, Fan et al. (2014) who 
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evaluated the potential effects of the Chinese carbon tax on the emission abatement, concluding that the 

inelastic demand for energy under the rapid urbanisation limited the effectiveness of the Chinese carbon 

tax. 

Fig. A6.11 in Appendix A shows how the urbanisation will affect the tax marginal effect on the 

household welfare loss. At the 1% tax, this urbanisation impact is positive, whilst it is negative at the 

3% tax. When the tax rate is 2%, this urbanisation impact was expected to fluctuate before 2022 but 

will increase the tax marginal effect in 2023–2030. In contrast, Fig. A6.12 in Appendix A shows that 

the urbanisation will strengthen the tax marginal effect on the RGDP loss over the research period, but 

this impact will steadily decrease as the time goes by or the tax rate increases. 

Fig. A6.13 in Appendix A shows how the urbanisation will affect the tax marginal effect on the 

tax revenues. In all the tax scenarios, this urbanisation impact is positive, but it will gradually decrease 

over time. As the tax rate increases, this urbanisation impact will decline. 

  
Fig. 6.7 The Urbanisation Impact on the Climate Damages 

Fig. 6.7 shows the change of the climate damages in the urbanisation model relative to the 

inequality model. Generally, the urbanisation will increase the climate damages by 2%–5% in all the 

scenarios; however, this impact is negatively correlated with the time or tax rate. The rationale 

underlying Fig. 6.7 is that under the urbanisation impact, the household may be more susceptible to the 

climate change because of the lifestyle changes induced by the urbanisation. Similar findings could be 

found in the previous research conducted elsewhere. For example, despite the decline in the annual 

rainfall, the flood risk increased because of the urbanisation, according to Mahmoud and Gan (2018) 

who analysed the urbanisation and climate change impact on the flood risk of two governorates in Egypt. 

Moreover, the urbanisation exacerbated the flood response in Houston, according to Zhang, Villarini et 

al. (2018) who studied the potential effects of the urbanisation on the hydrometeorology associated with 

the hurricane. 
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Fig. 6.8 The Urbanisation Impact on the Abatement Costs 

Fig. 6.8 shows how the urbanisation will affect the abatement costs in China over the research 

period. According to Fig. 6.8, the urbanisation will increase the abatement costs at the 1% tax. When 

the tax rate is 2%, the urbanisation increased the costs in 2015–2019, and then this impact will fluctuate 

around 0 in the future. At the 3% tax, the urbanisation increased the abatement costs recently but will 

decrease the costs in 2018–2030. To summarise, as the tax rate increases, the urbanisation impact on 

the abatement costs will become less or even negative. 

  

Fig. 6.9 The Urbanisation Impact on the Technical Index 

Fig. 6.9 shows the urbanisation impact on the technical index over time. Generally, the urbanisation 

will decrease the technical index in all the scenarios, and a rise in the tax rate will increase the fluctuation 

of this urbanisation impact over time. The reason why the urbanisation will discourage the technical 

innovation is that the carbon tax may impede the sharing of the information and technological spill-

over as the industrial cluster, inducing the intensive use of energy, is unfavourable under the tax. This 

finding agrees with the previous study showing that the urbanisation could have a negative impact on 

the low-carbon development in the urban area of China, according to Qu and Liu (2017) who established 

a regional low-carbon development indicator system to evaluate the low-carbon development in China. 
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Fig. 6.10 The Urbanisation Impact on the Palma Ratio 

Fig. 6.10 shows the changes of the Palma ratio under the urbanisation impact over time. In all the 

scenarios, the urbanisation will increase the Palma ratio by 3%–6.5%, implying that the urbanisation 

will increase the social inequality. This urbanisation impact will decrease over time but remain 

relatively stable as the tax rate increases. The economic intuition underlying Fig. 6.10 is that the adverse 

impact of the lifestyle changes, induced by the urbanisation, will be more distinct on the low-income 

household who will have fewer resources to cope with the rising energy price under the carbon tax. This 

finding complies with Zhang (2016) who examined the trends, promises, and challenges of the world 

urbanisation, arguing that the city size was positively correlated with the likelihood of the inequalities. 

 
Fig. 6.11 The Urbanisation Impact on the Average Social Cost of Carbon (ASCC) 

Fig. 6.11 shows how the ASCC will be affected by the urbanisation. In all the scenarios, the 

urbanisation will increase the ASCC by 2.5%–6%, but this impact will decline over the research period. 

A rise in the tax rate will increase this urbanisation impact, but the influence of the tax rate will diminish 

over time. The rationale of Fig. 6.11 is that the urbanisation will decrease the household welfare (shown 

in Fig. 6.4) and RGDP (shown in Fig. 6.5) and increase the climate damages (shown in Fig. 6.7) under 

the carbon tax. This finding agrees with Lee (2019) who adopted the panel data analysis methods to 

analyse the urbanisation impacts on the carbon footprint in Asia, concluding that the urbanisation could 

increase the carbon footprint of the entire region and thus increase the ASCC in China. 
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Table 6.6 The Urbanisation Impact on the Relative Utility and Household Welfare 

 Tax Rate 0% 1% 2% 3% 

Relative Utility 1.52% 1.63% 1.62% 1.59% 

Household Welfare 0.00% -0.06% -0.06% -0.02% 

Table 6.6 shows the differences of the relative utility and household welfare between the 

urbanisation model and inequality model. As the urbanisation increases the inequality, it will increase 

the absolute value of the relative utility. By comparison, the urbanisation will have almost no impact 

on the household welfare in the baseline scenario, but it will slightly decrease the welfare when the 

carbon tax is imposed. This finding complies with the previous research implying that the unfair 

distribution of the social welfare, induced by the rapid urbanisation, became a serious problem 

threatening the social stability in China (Cao, Lv et al. 2014). 

 

Fig. 6.12 The Urbanisation Impact on the Total Emission Growth Rate 

Fig. 6.12 shows the projected emission growth rate over the studied period under the urbanisation 

impacts. In all the scenarios, the emission growth rate in 2030 will not approach zero. This finding 

implies that considering the ancillary and primary benefits as well as the technical and urbanisation 

impacts, the carbon tax will not help China meet the INDC target of peaking its emissions in 2030. As 

Fig. 6.3 shows that the urbanisation will negatively affect the carbon intensity, China will still meet its 

INDC target of the carbon intensity reduction in 2030 under the urbanisation impacts. 

Discussion 
This chapter empirically shows that the urbanisation will decrease the carbon emissions and 

intensity over the studied period. This finding is contrary to Wang, Wu et al. (2016) who argued that 

the urbanisation increased the carbon emissions in China. The result difference between Wang, Wu et 

al. (2016) and this chapter is caused by the choices of the explanatory variables: Wang, Wu et al. (2016) 

omitted the correlation between the urbanisation and GDP, whilst this chapter has fully explored the 

interrelations among the GDP, emissions, energy consumption, and urbanisation. Considering that 

China has recently developed the green, circular, and low-carbon economy (He 2016), the omission of 

the economic factor is likely to result in a biased evaluation of the urbanisation impact on the emissions. 
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In the baseline scenario, the urbanisation will promote the GDP growth. This finding agrees with 

Yang, Liu et al. (2017) who used the STIRPAT model to investigate the urbanisation impacts based on 

the data of the 266 prefecture-level Chinese cities in 2000–2010, concluding that the urbanisation 

impact on the economic growth was positive and significant. However, in the tax scenarios, the 

urbanisation will negatively affect the economic growth in the studied period. This finding corresponds 

to Liddle (2013) who adopted a panel method to show that the urbanisation had a “ladder” impact on 

the income: it had a strong negative impact on the poorest countries, a less negative to neutral impact 

on the countries with the moderate incomes, and a reinforcing impact on the wealthy countries. As the 

carbon tax will decrease the national income according to the previous chapters, the urbanisation impact 

on the economic growth could become negative if the tax is imposed. 

Although the urbanisation may stimulate the economic growth depending on the imposition of the 

carbon tax, it will reduce the household welfare over time. This finding corresponds to the argument 

that the urbanisation might lead to the unhealth lifestyles: the populations experiencing the urbanisation 

would consume more fat and smoke more frequently, implied by the community and individual-level 

longitudinal data from the China Health and Nutrition Survey, according to Van de Poel, O'Donnell et 

al. (2012). By comparison, Chen, Liu et al. (2017) investigated the impacts of the Chinese urbanisation 

on individual health, showing that there existed an inverted U-shaped relationship between the health 

and urbanisation (with a turning point of the urbanisation rate at 42.0%). As Table 6.1 shows the 

projected urbanisation in the studied period 2015–2030 will exceed 42.0%, hence, the urbanisation will 

negatively affect the household welfare. 

The urbanisation will increase the tax revenues over the research period. In the literature, very little 

research has been conducted to analyse the urbanisation impacts on the revenues of climate policies. 

However, the primitive goal of the Chinese urbanisation is to generate governmental revenues, 

according to Ye and Wu (2014) who used the panel data of the 286 Chinese prefecture-level cities in 

1999–2009. Hence, the argument in Ye and Wu (2014) verifies the positive impacts of the urbanisation 

on the tax revenues in this chapter. 

The urbanisation impact on the abatement costs is complicated: a lower tax may increase the 

abatement costs, whilst a higher tax may decrease the costs. The positive impact complies with 

Bretschger and Zhang (2017) who developed a general equilibrium model to estimate the cost of the 

climate policy, concluding that the urbanisation increased the policy cost because the urban households 

consumed more energy and energy-intensive goods in China. In contrast, the negative impact agrees 

with Xi, Fei et al. (2013) who adopted a simplified method built upon benefit transfer to present a case 

study of co-benefits in the cement sector, indicating that the Chinese urbanisation brought about 

significant co-urban benefits, including the substantial reduction of the marginal abatement costs. 
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The urbanisation will pose an adverse impact on the technical progress. This finding is contrary to 

Duman and Kasman (2017) who empirically showed that the urbanisation improved the environmental 

technical efficiency in the European Union. The result difference between Duman and Kasman (2017) 

and this chapter lies in the targeted scope of the induced technological change: Duman and Kasman 

(2017) only researched the environmentally friendly technologies, whilst the technical index in this 

chapter is a general index that considers all kinds of technologies. In the reality, the urbanisation may 

lay influences on the development of the technologies that are not environmentally friendly. According 

to Shahbaz, Chaudhary et al. (2017) who employed the STIRPAT model to investigate the relationship 

between the urbanisation and energy consumption, there was a bidirectional causality between the 

technology and energy consumption under the urbanisation impacts in Pakistan. 

The embedded assumption of exogenously introducing the urbanisation impacts in this chapter is 

different from endogenously determining the ancillary and primary benefits and technical impacts in 

the previous chapters. This embedded assumption is due to the division of the population data: the 

representative household of the CGE model has been divided into three income subgroups in the 

previous chapter, and it is not easy to find the data of the rural and urban population dispersion within 

the income subgroups. Hence, in this chapter, the urbanisation is assumed to exogenously affect the 

model equilibrium rather than endogenously change the urban-rural population ratio in the income 

subgroups to determine the optimal climate policy. 

In summary, the urbanisation will decrease the emissions and intensity, induce more household 

welfare loss under the carbon tax, increase the climate damages and abatement costs, discourage the 

technical innovation, and deteriorate the social inequality. Noticeably, all these mentioned urbanisation 

impacts are quite minimal, which verifies that introducing the urbanisation as an exogenous variable is 

meaningful. The exogenously determined urbanisation impacts may not fully explore the mechanism 

that the urbanisation influences the policy effects of the carbon tax. This is because the optimal policy 

is based on the given inputted parameters describing the urbanisation impacts, but these parameters 

should vary freely to form the optimal policy. Hence, future research may lie in the use of detailed 

urban-rural population dispersion data to endogenously model the urbanisation as an influential factor 

of the carbon tax. 

The Tinbergen Rule argues that an efficient policy requires at least as many independent policy 

instruments as there are policy targets (Schader, Lampkin et al. 2014). I have already considered many 

influential factors of the carbon tax in the previous chapters, and these factors may correlate with the 

urbanisation impacts analysed in this chapter. Hence, the simulated carbon tax may not reveal the 

genuine urbanisation impacts. 
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Policy Implications 
The urbanisation will strengthen the policy effects of the carbon tax on the emission reduction as 

well as the household welfare loss and real GDP loss. In the tax scenarios, the urbanisation will increase 

the climate damages, discourage the technical innovation, deteriorate the inequality condition, and 

increase the average social cost of carbon (ASCC). 

Conclusion 
The urbanisation had a negative impact on the carbon emissions but positive impact on the GDP 

in 1980–2014, and these impacts were both statistically significant. However, the urbanisation impact 

on the energy consumption was not statistically significant. The urbanisation will decrease the 

household emissions by 0.2%–0.8% and carbon intensity by 2%–5% in 2015–2030. Although the 

urbanisation will increase the real GDP (RGDP) in the baseline scenario, it will decrease the RGDP in 

the tax scenarios. Similarly, it will increase the household welfare loss of the carbon tax by 0.15%–

0.6%, depending on the tax rate and time. The urbanisation will decrease the tax marginal effects on 

the total carbon emissions, whilst the marginal effects on the RGDP loss and tax revenues will be 

reinforced under the urbanisation impacts.  

The urbanisation will increase the climate damages by 2%–5%, but this impact will decline over 

time. By comparison, at the 1% tax, the urbanisation will increase the abatement costs, but at the 3% 

tax, the urbanisation increased the costs in 2015–2019 but will decrease the costs in 2020–2030. The 

urbanisation will decrease the technical index by less than 0.25%, implying that it will slightly 

discourage the technical innovation. The urbanisation will increase the Palma ratio by 3%–6.5%, 

implying that it will increase the inequality condition. The urbanisation will increase the average social 

cost of carbon (ASCC) by 2.5%–6%. Considering the urbanisation impacts, the carbon tax still cannot 

help China meet the INDC target of peaking the emissions in 2030. 
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Chapter 7: Comparing the Emission 

Trading Scheme with the Carbon Tax 

Introduction 
An emission trading scheme (ETS) or cap and trade is another very popular climate policy intended 

for curbing carbon emissions. In an ETS, the participating entities are allocated a certain quantity of 

carbon quotas within a specified period. The entities have options to either consume or trade the quotas, 

depending on the marginal costs: if the marginal costs are higher than the carbon price, entities will buy 

additional quotas from the market; if the costs are lower, entities will sell their superfluous quotas (Dai, 

Xie et al. 2018). In a word, owners of the rights to pollute the atmosphere would charge for allowing 

individuals and organisations to emit CO2 (Allan, Lecca et al. 2014). 

The socioeconomic impacts of an ETS policy have been previously studied in a variety of contexts. 

For example, Choi, Liu et al. (2017) employed a CGE model and empirically found that the South 

Korean ETS had significant abatement effects with mild negative impacts on the GDP and household 

consumption. Loisel (2009) adopted a comparative approach via a dynamic CGE model, empirically 

showing that the ETS implementation encouraged the economic growth in Romania. Nong, Meng et al. 

(2017) employed the MONASH-Green model, concluding that the operation of the proposed ETS in 

Australia would cause the economy to contract progressively over the lifetime of the ETS. Overall, the 

previous evidence suggests that an ETS policy can help meet a climate mitigation target, but it poses a 

negative impact on GDP. However, an ETS policy may result in a more attractive economic outcome 

compared to a carbon tax, because a carbon tax may have a punishing impact on productive activities 

and economic growth (Loisel 2009). 

A carbon tax usually requires strong governmental administrative power, while an ETS policy 

requires a solid carbon market to be established (Liu and Lu 2015). As China has a strong government 

and its nationwide carbon market is quite rough with low efficiencies (Lin and Jia 2019), a carbon tax 

seems to be preferable. However, Dai, Xie et al. (2018) used a CGE model to evaluate the economic 

impacts of the Chinese INDC, empirically confirming the economic efficiency of the simulated ETS 

policy since the emission reduction targets could be achieved at lower costs. The ETS implementation 

in one of the seven pilots (Hubei) showed a noticeable emission reduction with negligibly adverse 

impacts on the provincial GDP and household consumption, according to Liu, Tan et al. (2017) who 

applied a Chinese multi-regional general equilibrium model. 

In addition to the designed nationwide ETS in China only, some researchers simulated a 

conceivable multi-region integrated ETS where China participated (Hubler, Voigt et al. 2014, Zhang, 

Qi et al. 2017). A multi-region ETS could accelerate the reduction of coal consumption and facilitate 

the development of clean energy in China (Zhang, Qi et al. 2017). For example, linking the Chinese 
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ETS and European Union (EU) ETS slightly attenuated the welfare and GDP loss, compared to the 

single-region ETS in China, according to Hubler, Voigt et al. (2014) who employed a multi-region and 

multi-sector CGE model to study the policy effects of the Chinese ETS policy. 

The ETS market around the world is sophisticated. For example, South Korea implemented a 

national ETS covering the main industrial and power sectors, and the Korean ETS is the second largest 

carbon market in the world (Suk, Lee et al. 2018). The EU ETS is now the largest ETS in the world 

(Crossland, Li et al. 2013). According to International Carbon Action Partnership (ICAP 2020), the 

scope of covered industries in the EU ETS has been evolving: in Phase I (2005–2007), the covered 

industries mainly consisted of the electricity, energy production, and nonmetal production industry; in 

Phase II (2008–2012), the aviation industry was added; in Phase III (2013–2020), the metal production 

and chemistry industry were included, implying that almost all the industries are now covered by the 

EU ETS (Lin and Jia 2017, Lin and Jia 2020, Lin and Jia 2020); in Phase IV (2021–2030), the scope of 

covered industries will not change in the EU ETS. Despite its wide industrial coverage in Phase III and 

IV, the EU ETS regulates only 45% of the EU greenhouse gas emissions at present (Verde, Teixido et 

al. 2019, ICAP 2020), implying that the EU anthropogenic emissions are also regulated by other climate 

policies, like carbon taxes. 

Compared to the other sophisticated ETS markets in the world, the Chinese ETS market has been 

constructed very recently. China launched the pilot ETS market in seven municipalities and provinces 

in 2013, but each pilot had only a few but different ETS-covered sectors (Zhang, Xu et al. 2019). After 

several years of the trial, the period 2017–2020 was the phase for launching and initial operations of a 

national ETS (Liu and Fan 2018); however, the pilot ETS policy lacked the details of sectoral coverage 

(Lin and Jia 2019).  

As the Chinese ETS market is relatively new, uncertainty remains about the appropriate sectoral 

coverage. Lin and Jia (2020) designed an ETS policy with various sectoral coverages from the 

electricity sector only to all the sectors, and they used a dynamic recursive CGE mode to conclude that 

a higher sectoral coverage would lead to the higher GDP and lower ETS price. However, the overall 

emission reduction or carbon intensity reduction was not linearly correlated with the coverage rate (Lin 

and Jia 2020). Instead, there was a U-shaped relationship between the coverage and energy efficiency 

or between the coverage and actual emissions (Lin and Jia 2020). The emission costs in the full coverage 

scenario were higher than the other scenarios (Lin and Jia 2020). Nevertheless, it is very hard to find 

the lowest point of the two U-shaped curves. In the realty, according to the official document published 

by National Development and Reform Commission (NDRC) in 2017, only the power generation 

industry would be covered in the Chinese ETS market (Lin and Jia 2020). The current industrial 

coverage in the Chinese ETS market is even lower than the EU ETS in Phase I. Hence, the sectoral 

coverage of the Chinese ETS policy needs expanding, otherwise it would not be a nationwide policy. 
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Moreover, there is no compound index put forward in Lin and Jia (2020) to comprehensively evaluate 

the socioeconomic and environmental impacts of the industrial coverage rate in the ETS market. 

By comparison, Chen, Shi et al. (2020) adopted the difference in differences (DID) method to 

investigate the nationwide impacts of the ETS policy in the Chinese pilots only. They empirically found 

the Chinese pilot ETS reduced the nationwide carbon emissions by 13.39% on average with a growing 

trend, increasing from 11.23% to 16.95% in 2013–2016. If a nationwide ETS policy had been 

implemented, China would have achieved a much larger emission reduction in the past. Hence, in this 

chapter, I have studied the policy effects of the nationwide ETS policy covering all the sectors except 

the electricity subsectors exploiting renewables only. This is because the subsectors exploiting 

renewables have very few emissions, and thus they should not be regulated by climate policies in 

abating emissions. Instead, they should be supported to develop owing to the importance of renewable 

energy to sustainable development, diversification of energy supply, and preservation of the 

environment (Sims 2004). However, such supports are not considered in this chapter, because the 

supports are beyond the domain of the ETS policy. 

The quantification of the ETS policy in this chapter is mainly based on Lin and Jia (2018). 

Generally, their research attempted to capture the ETS policy effects on the Chinese social welfare as 

well as the completion of the INDC targets. However, the ETS market in their research did not allow 

the sectors, whose emissions were less than the carbon quotas, to sell the surplus quotas to those who 

had excess emissions. This chapter relaxes this assumption by allowing the surplus carbon quotas to be 

traded under the ETS policy. Moreover, the industrial classification in Lin and Jia (2020) was quite 

broad: the electricity sector faced the same carbon price in the ETS market, implying that the electricity 

subsectors exploiting renewables only were also regulated by the ETS policy. By comparison, in this 

chapter, the detailed disaggregation of the electricity sector separates the electricity subsectors 

exploiting renewables only, and these subsectors are not covered by the ETS policy. Like Lin and Jia 

(2017), the carbon market, in this chapter, is assumed to be perfect competitive, where the carbon price 

equals the equilibrium trading price if the carbon quotas are tradeable or the carbon price is 

endogenously determined if the quotas are untradeable. 

In the literature, most researchers evaluated an ETS policy using the cost-benefit analysis in 

comparison with a carbon tax. The cost-benefit analysis may not directly and conspicuously answer 

which climate policy is preferable, because an ETS or carbon tax could have very different emission 

and welfare effects. For example, Li and Jia (2017) used a dynamic recursive CGE model and 

empirically found that the carbon tax would reduce the emissions by 10%–13% and incur the unit 

emission cost at 98–241 $/𝑡 𝐶𝑂2 depending on the tax rate, whilst the ETS policy could reduce the 

emissions by 12%–13% and incur the unit cost at 64–76 $/𝑡 𝐶𝑂2  depending on the trading price. 

Readers may draw a misleading conclusion that the ETS was preferable because it reduced more 
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emissions and incurred the lower unit emission cost. However, this conclusion is variant to the scenario 

settings of the low, middle, and high tax rate and carbon price. In the literature, there was no consensus 

on the corresponding tax rate and carbon price comparison between the two policies (Yoon and Jeong 

2016, Dissanayake, Mahadevan et al. 2020). More importantly, the amount of the emission reduction 

may not be linearly correlated with the abatement costs, according to Lu and Stern (2016) who 

employed an intertemporal CGE model to study the relationship between the substitutability and cost 

of climate policy. Higher emission reduction could induce higher unit abatement cost (Liu, Sun et al. 

2016). Hence, the comparisons of the different emission and welfare effects make no sense. 

This chapter contributes to the literature by developing a direct unbiased comparison of the policy 

effects between the carbon tax and ETS policy. The direct comparison can be either the emission 

reduction effects at the same welfare change or the welfare effects at the same targeted emission 

reduction. Most international agreements on the climate change have clear emission reduction targets, 

but very few agreements include welfare targets. Hence, in this chapter, the ETS policy is designed with 

the same emission effects as the carbon tax simulated in the previous chapters, but the ETS policy may 

have very different welfare effects. In other words, the abatement target of the designed ETS policy is 

based on the tax rate of the carbon tax. For example, if a 1.5% carbon tax decreases the carbon emissions 

by 10%, then 10% becomes the targeted emission reduction of the ETS policy. At this point, the 

comparison of the welfare effects will unbiasedly reveal which climate policy is preferable. 

Method 
The carbon-cap policy is built as the solid foundation of the ETS policy, where the carbon market 

is assumed to be perfect competitive. Under the carbon-cap policy, the carbon quotas are allocated 

basing on the historical emissions. In other words, the quota allocation is based on the grandfather 

method (Verde, Teixido et al. 2019). According to Wu and Zhang (2019), there are three fundamental 

schemes to allocate the quotas, basing on historical emissions, GDP, and population respectively. 

Although the quota allocation scheme basing on historical emissions will result in more welfare for 

regions with more carbon emissions (Wu and Zhang 2019), this allocation scheme will result in the 

largest welfare for the society among the three schemes (Wu and Zhang 2019). Hence, in this chapter, 

the quota allocation is based on the carbon emissions in 2015 or 2005, which is named as the 2015 and 

2005 scheme respectively shown in Eq. (7.1). 

𝐶𝑅𝑒𝑠,𝑡 = 𝐸𝑒𝑠,2015
0  𝑜𝑟 𝐸𝑒𝑠,2005

0                                               (7.1) 

 In Eq. (7.1), 𝐶𝑅𝑒𝑠,𝑡 stands for the allocated carbon quotas in Sector 𝑒𝑠 in Year t, and it is time-

invariant; 𝐸𝑒𝑠,2015
0  and 𝐸𝑒𝑠,2005

0  denote the baseline emissions of Sector 𝑒𝑠  in 2015 and 2005 

respectively. Eq. (7.1) shows the sectoral carbon quotas are set to equal the corresponding sectoral 

emissions in 2015 or 2005. The reason why the ETS is based on the 2015 emissions is that 2015 is the 

beginning year of the studied period 2015–2030. By comparison, basing the 2005 emissions 
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corresponds to the fact that China has pledged to lower its carbon emissions per unit of GDP by 60% 

to 65% from the 2005 level by 2030 in its Intended Nationally Determined Contributions (INDC) in 

2015 (NDRC 2015). 

Regarding the allocation method, there are generally two options, namely free allocation and 

auction (Wu, Fan et al. 2016). Auction could be more efficient than free allocation when it was 

appropriately planned, according to Betz, Seifert et al. (2010) who designed the Australian carbon 

pollution reduction scheme. As China started to construct its nationwide ETS market in 2017, and more 

than 90% of the carbon quotas were free in the pilot carbon markets (Wu and Li 2020). Hence, the free 

allocation is the main method to distribute the carbon quotas at the current stage in China (Liu, Sun et 

al. 2016, Li, Zhang et al. 2018). According to Wang, Zhou et al. (2019) who verified the effectiveness 

of the carbon quota policy by examining a supply chain, carbon quota policies around the world are 

very similar: a phase of completely free allocation followed by a phase of decreasing quotas year by 

year. Hence, in this chapter, the free allocation is the adopted method to distribute the carbon quotas 

among the sectors; however, the free allocation will decline over time shown in Eq. (7.2). 

𝐹𝐶𝑄𝑒𝑠 = 𝐶𝑅𝑒𝑠 × 𝑓𝑎𝑟 × (1 − 𝜔)                                            (7.2) 

In Eq. (7.2), 𝐹𝐶𝑄𝑒𝑠 denotes the free allocation of the carbon quotas in the sector 𝑒𝑠; 𝑓𝑎𝑟 refers to 

the rate of the free quotas, and its value equals 0.9 in the period according to the seven pilot cities in 

China as well as the period I in EU-ETS (Lin and Jia 2018). The free allocation rate is assumed to be 

equal across the ETS-targeted sectors. 𝜔 refers to the annual decline factor of the free allocation, and 

its potential value is 0%, 0.5%, 1% and 2% in Guangdong Province, an ETS pilot in China (Lin and Jia 

2018). Eq. (7.2) shows that the free quotas in the base year (2015) are assumed to equal the carbon 

quotas multiplied by the free allocation rate and deducted by the decline factor. To study the 

socioeconomic impacts of the ETS carbon pricing, Lin and Jia (2019) assumed that the free quotas 

could not be traded or transferred, whilst the paid parts of the carbon quotas could be traded in the ETS 

market. In contrast, the free quotas could be traded under the ETS policy in this chapter. 

𝐶𝐸𝑐𝑜𝑠𝑡𝑒𝑠,𝑡 = {
𝑃𝑡
𝑒𝑡𝑠 × (𝐶𝑅𝑒𝑠 − 𝐹𝐴𝑒𝑠) + 𝑃𝑡

𝑓𝑖𝑛𝑒
× (𝐸𝑒𝑠,𝑡

𝑒𝑡𝑠 − 𝐶𝑅𝑒𝑠), 𝐸𝑒𝑠,𝑡
𝑒𝑡𝑠 ≥ 𝐶𝑅𝑒𝑠

𝑃𝑡
𝑒𝑡𝑠 × (𝐶𝑅𝑒𝑠 − 𝐹𝐶𝑄𝑒𝑠), 𝐸𝑒𝑠,𝑡

𝑒𝑡𝑠 < 𝐶𝑅𝑒𝑠
                  (7.3) 

𝑃𝑡
𝑓𝑖𝑛𝑒

= 2 × 𝑃𝑡
𝑒𝑡𝑠                                                       (7.4) 

According to Lin and Jia (2018), the emission costs under the carbon-cap or ETS policy are defined 

in Eq. (7.3). The subscript 𝑒𝑠  denotes the industries covered by the carbon-cap or ETS policy. 

𝐶𝐸𝑐𝑜𝑠𝑡𝑒𝑠,𝑡 is the emission costs in Sector 𝑒𝑠 in Year t. 𝑃𝑡
𝑒𝑡𝑠 is the normal carbon emission price in Year 

t. 𝑃𝑡
𝑓𝑖𝑛𝑒

 is the fine price of the over-emissions in Year t, which is much higher than 𝑃𝑡
𝑒𝑡𝑠. According to 

Lin and Jia (2018), the fine price of the over-emissions is twice the normal carbon price shown in Eq. 

(7.4). 𝐸𝑒𝑠,𝑡
𝑒𝑡𝑠  refers to the carbon emissions of Sector 𝑒𝑠 in Year t under the carbon-cap or ETS policy. 
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{
𝑆𝐺𝐷𝑃𝑒𝑠,𝑡

𝑒𝑡𝑠 = 𝑆𝐺𝐷𝑃𝑒𝑠,𝑡
0 − 𝐶𝐸𝑐𝑜𝑠𝑡𝑒𝑠,𝑡

𝑆𝐺𝐷𝑃𝑛𝑒𝑠,𝑡
𝑒𝑡𝑠 = 𝑆𝐺𝐷𝑃𝑛𝑒𝑠,𝑡

0                                           (7.5) 

𝑆𝐹𝑢𝑒𝑙𝑖𝑞𝑡
𝑒𝑡𝑠 = 𝑆𝐹𝑢𝑒𝑙𝑖𝑞𝑡

0 ×
𝑆𝐺𝐷𝑃𝑖𝑡

𝑒𝑡𝑠

𝑆𝐺𝐷𝑃𝑖𝑡
0                                           (7.6) 

𝐸𝑖𝑡
𝑒𝑡𝑠 = ∑ (𝑆𝐹𝑢𝑒𝑙𝑖𝑞

𝑒𝑡𝑠 × 𝐶𝐸𝐹𝑞)𝑞                                            (7.7) 

In Eq. (7.5),  𝑆𝐺𝐷𝑃𝑒𝑠,𝑡
𝑒𝑡𝑠  refers to the sectoral output under the carbon-cap policy. Eq. (7.5) shows 

that the sectoral output under the carbon-cap policy equals the baseline sectoral output minus the 

sectoral carbon emissions cost. By comparison, for the industries that are not covered by the carbon-

cap policy, their sectoral output is always equal to the baseline sectoral output. Eq. (7.6) shows that the 

sectoral energy use under the carbon-cap policy is proportional to the sectoral output change relative to 

the baseline sectoral output if the sectoral energy intensity remains unchanged. 𝑆𝐹𝑢𝑒𝑙𝑖𝑞𝑡
𝑒𝑡𝑠 and 𝑆𝐹𝑢𝑒𝑙𝑖𝑞𝑡

0  

refer to the sectoral energy use under the carbon-cap policy and baseline scenario respectively; the 

subscript q refers to a type of energy. Eq. (7.7) shows that the sectoral emissions under the carbon-cap 

policy equal the summation of the consumed energy multiplied by the corresponding carbon emission 

factors. 𝐶𝐸𝐹𝑞 refers to the carbon emission factor of Energy q. 

∑ 𝐸𝑖𝑡
𝑒𝑡𝑠

𝑖 = ∑ ∑ (𝑆𝐹𝑢𝑒𝑙𝑖𝑞𝑡
𝑒𝑡𝑠 × 𝐶𝐸𝐹𝑞)𝑞𝑖 = ∑ 𝐸𝑖𝑡𝑖                                   (7.8) 

In this chapter, the equilibrium condition is that the overall sectoral emissions under the carbon-

cap policy equal that under the carbon tax, shown in Eq. (7.8). Under this condition, the welfare effects 

could reveal which climate policy is preferable. The welfare effects are denoted by the real GDP (RGDP) 

and household welfare. The RGDP under the carbon-cap policy is defined in Eq. (7.9), where 𝑅𝐺𝐷𝑃𝑡
𝑒𝑡𝑠 

refers to the real GDP in Year t under the carbon-cap policy. The RGDP in Eq. (7.9) is modified by the 

technical index. 

𝑅𝐺𝐷𝑃𝑡
𝑒𝑡𝑠 = ∑ 𝑆𝐺𝐷𝑃𝑖𝑡

𝑒𝑡𝑠
𝑖 ×

𝐴𝑇𝐶𝑡

𝐴𝑇𝐶0
                                               (7.9) 

𝐻𝐷𝑖𝑡
𝑒𝑡𝑠 = 𝐻𝐷𝑖𝑡

0 ×
𝑆𝐺𝐷𝑃𝑖𝑡

𝑒𝑡𝑠

𝑆𝐺𝐷𝑃𝑖𝑡
0                                                    (7.10) 

𝐸𝑉𝑡
𝑒𝑡𝑠 = ∑ (𝑃𝑄𝑖𝑡

0 × 𝐻𝐷𝑖𝑡
𝑒𝑡𝑠) − ∑ (𝑃𝑄𝑖𝑡

0 × 𝐻𝐷𝑖𝑡
0)𝑖𝑖                             (7.11) 

Eq. (7.10) defines the household consumption on the assumption that the household consumption 

changes proportionally to the sectoral output. 𝐻𝐷𝑖𝑡
𝑒𝑡𝑠  refers to the household consumption of 

Commodity i in Year t under the carbon-cap policy. Eq. (7.11) shows that the household welfare change 

is denoted by the equivalent variation (EV) where 𝐸𝑉𝑡
𝑒𝑡𝑠 shows the EV in Year t under the carbon-cap 

policy. 

𝐻𝐷𝐹𝑢𝑒𝑙𝑒𝑡𝑠 = 𝐻𝐷𝐹𝑢𝑒𝑙0 ×
𝐻𝐷𝑒𝑡𝑠

𝐻𝐷0
                                      (7.12) 
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Eq. (7.12) shows the household energy consumption under the carbon-cap policy is assumed to 

change proportionally to the household consumption of commodities relative to the baseline scenario. 

𝐻𝐷𝐹𝑢𝑒𝑙𝑒𝑡𝑠 and 𝐻𝐷𝐹𝑢𝑒𝑙0 refers to the household energy consumption under the carbon-cap policy and 

baseline scenario respectively. Noticeably, the subscript of the variables in Eq. (7.12) is omitted because 

of the unit inconformity, which is explained by the corresponding relations between energy and 

commodity consumption shown in Table A7.1 in Appendix A. 

According to Table A7.1, there is no relation between energy and commodity in crude oil, fuel oil 

and solar electricity. This is because the household has no energy consumption on these energies. 

Noticeably, the household has no commodity consumption from the coking industry, but it does have 

the charcoal consumption. In this chapter, the consumed charcoal is assumed to be related to the 

commodity from the coal mining and washing industry. The household consumption of liquid energy 

is assumed to be related to the commodity from the petroleum processing industry, whilst the consumed 

natural gas is assumed to be related to the summation of the commodities from the gas mining and 

production industry. 

𝐻𝐶𝐸𝑡
𝑒𝑡𝑠 = ∑ (𝐻𝐷𝐹𝑢𝑒𝑙𝑞𝑡

𝑒𝑡𝑠 × 𝐶𝐸𝐹𝑞)𝑞                                        (7.13) 

Eq. (7.13) shows that the household emissions equal the summation of the consumed energy 

multiplied by its corresponding carbon emission factor. 𝐻𝐶𝐸𝑡
𝑒𝑡𝑠 refers to household emissions in Year 

t under the carbon-cap policy. 

Under the carbon-cap policy, the sectoral carbon quotas are not allowed to be transacted in the 

carbon market. However, the surplus carbon quotas can be traded in the carbon market under the ETS 

policy. The impact comparison of the carbon-cap and ETS policy will reveal the socioeconomic impacts 

of trading the surplus quotas. In this chapter, the transaction costs of carbon trading are assumed to be 

zero. Like the carbon-cap policy, the carbon market is assumed to be perfect competitive, and all the 

above equations also apply under the ETS policy except for the emission costs, shown in Eq. (7.14) and 

(7.17). The surplus sectoral quotas are assumed to be tradeable, including the free allocation part. If the 

aggregated sectoral emissions are less than the aggregated carbon quotas, all the sectors can have 

emissions absorbed by the carbon market through the transaction of the quotas. In other words, no 

sectors are subject to the fine price of over-emissions. Hence, the emission costs defined in Eq. (7.3) 

are redefined in Eq. (7.14). 

𝐶𝐸𝑐𝑜𝑠𝑡𝑒𝑠,𝑡 = 𝑃𝑡
𝑒𝑡𝑠 × (𝐶𝑅𝑒𝑠 − 𝐹𝐶𝑄𝑒𝑠)                                   (7.14) 

However, in most cases, the aggregated sectoral emissions are larger than the aggregated quotas. 

At this time, the ETS market cannot fully absorb all the over-emissions, and thus the fine price is applied 

to the sectors with the over-emissions. The emission costs of the sectors who sell the surplus quotas are 
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still defined in Eq. (7.14). By comparison, the emission costs of the sectors with the over-emissions are 

defined in Eq. (7.15) to (7.17). 

𝐷𝑖𝑓𝑒𝑚𝑡 = ∑ 𝐸𝑒𝑠,𝑡
𝑒𝑡𝑠

𝑒𝑠 − ∑ 𝐶𝑅𝑒𝑠𝑒𝑠                                        (7.15) 

𝑆𝐷𝑖𝑓𝑒𝑚𝑜𝑒𝑠,𝑡 = 𝐷𝑖𝑓𝑒𝑚𝑡 ×
𝐸𝑜𝑒𝑠,𝑡
𝑒𝑡𝑠

∑ 𝐸𝑜𝑒𝑠,𝑡
𝑒𝑡𝑠

𝑒𝑠
                                         (7.16) 

𝐶𝐸𝑐𝑜𝑠𝑡𝑜𝑒𝑠,𝑡 = 𝑃𝑡
𝑒𝑡𝑠 × (𝐸𝑜𝑒𝑠,𝑡

𝑒𝑡𝑠 − 𝑆𝐷𝑖𝑓𝑒𝑚𝑜𝑒,𝑡) + 𝑃𝑡
𝑓𝑖𝑛𝑒

× 𝑆𝐷𝑖𝑓𝑒𝑚𝑜𝑒𝑠,𝑡                 (7.17) 

Eq. (7.15) defines the over-emissions that cannot be covered by the ETS market, and 𝐷𝑖𝑓𝑒𝑚𝑡 

refers to the over-emissions. Eq. (7.16) defines the sectoral over-emissions where the subscript 𝑜𝑒𝑠 

refers to the sectors with the over-emissions, and 𝑆𝐷𝑖𝑓𝑒𝑚𝑜𝑒𝑠,𝑡 refers to the sectoral over-emissions. 

The embedded assumption in Eq. (7.16) is that the over-emissions are distributed proportionally to the 

sectoral emissions. Eq. (7.17) defines the emission costs of the sectors with the over-emissions. 

According to Deng, Li et al. (2018) who used the propensity score matching–difference in 

differences (PSM-DID) model to comprehensively analyse the pilot ETS policy, most sectors with free 

quotas chose to bank all their surplus quotas in the Chinese pilots. The reluctance to sell surplus quotas 

is equivalent to the situation where free allocation is untradeable. Under the untradeable free allocation, 

the emission costs of the sectors with the surplus quotas are still defined in Eq. (7.14). The tradeable 

part of the surplus quotas is defined in Eq. (7.18). To determine whether the surplus quotas excluding 

the free quotas can cover the over-emissions, Eq. (7.15) is redefined in Eq. (7.19). In Eq. (7.18) and 

(7.19), the subscript 𝑠𝑒𝑠 refers to the sectors with the surplus quotas; 𝑇𝐶𝑅𝑠𝑒𝑠,𝑡 refers to the tradeable 

quotas of Sector ses in Year t. Following the determination of 𝐷𝑖𝑓𝑒𝑚𝑡, the emission costs of the sectors 

with the over-emissions are calculated using Eq. (7.16) and (7.17). 

𝑇𝐶𝑅𝑠𝑒𝑠,𝑡 = {
𝐶𝑅𝑠𝑒𝑠 − 𝐹𝐶𝑄𝑠𝑒𝑠, 𝐹𝐶𝑄𝑠𝑒𝑠 ≥ 𝐸𝑠𝑒𝑠,𝑡

𝑒𝑡𝑠  

𝐶𝑅𝑠𝑒𝑠 − 𝐸𝑠𝑒𝑠,𝑡
𝑒𝑡𝑠 , 𝐹𝐶𝑄𝑠𝑒𝑠 < 𝐸𝑠𝑒𝑠,𝑡

𝑒𝑡𝑠 < 𝐶𝑅𝑠𝑒𝑠
                          (7.18) 

 𝐷𝑖𝑓𝑒𝑚𝑡 = ∑ (𝐸𝑜𝑒𝑠,𝑡
𝑒𝑡𝑠 − 𝐶𝑅𝑜𝑒𝑠)𝑜𝑒𝑠 −∑ 𝑇𝐶𝑅𝑠𝑒𝑠,𝑡𝑠𝑒𝑠                               (7.19) 

To compare the welfare effects of the ETS policy relative to the carbon tax, the absolute and 

relative change of the RGDP and household welfare, denoted by the equivalent variation (EV), are 

defined in Eq. (7.20) and (7.21), where ∆𝑅𝐺𝐷𝑃𝑡
𝑒𝑡𝑠 and ∆𝑅𝐺𝐷𝑃𝑡

𝑒𝑡𝑠̇  refer to the absolute and relative 

change of the RGDP respectively; ∆𝐸𝑉𝑡
𝑒𝑡𝑠 and ∆𝐸𝑉𝑡

𝑒𝑡𝑠̇  refer to the absolute and relative change of the 

EV respectively. 

{
∆𝑅𝐺𝐷𝑃𝑡

𝑒𝑡𝑠 = 𝑅𝐺𝐷𝑃𝑡
𝑒𝑡𝑠 − 𝑅𝐺𝐷𝑃𝑡

∆𝑅𝐺𝐷𝑃𝑡
𝑒𝑡𝑠̇ = ∆𝑅𝐺𝐷𝑃𝑡

𝑒𝑡𝑠/𝑅𝐺𝐷𝑃𝑡
                                  (7.20) 

{
∆𝐸𝑉𝑡

𝑒𝑡𝑠 = 𝐸𝑉𝑡
𝑒𝑡𝑠 − 𝐸𝑉𝑡

∆𝐸𝑉𝑡
𝑒𝑡𝑠̇ = ∆𝐸𝑉𝑡

𝑒𝑡𝑠/𝐸𝑉𝑡
                                                  (7.21) 
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In this chapter, Eq. (7.22) is used to define the absolute and relative change of the household 

emissions under the carbon-cap or ETS policy in comparison with the carbon tax, where ∆𝐻𝐶𝐸𝑡
𝑒𝑡𝑠and 

∆𝐻𝐶𝐸𝑡
𝑒𝑡𝑠̇  refer to the absolute change and relative change of the household emissions respectively. 

𝐻𝐶𝐸𝑡 refers to the household emissions in Year t under the carbon tax. 

{
∆𝐻𝐶𝐸𝑡

𝑒𝑡𝑠 = 𝐻𝐶𝐸𝑡
𝑒𝑡𝑠 −𝐻𝐶𝐸𝑡

∆𝐻𝐶𝐸𝑡
𝑒𝑡𝑠̇ = ∆𝐻𝐶𝐸𝑡

𝑒𝑡𝑠/𝐻𝐶𝐸𝑡
                                         (7.22) 

Scenarios 
In this chapter, two schemes are designed to allocate the carbon quotas. In the 2015 and 2005 

scheme, the sectoral carbon quotas are set to equal the 2015 and 2005 sectoral emissions in the baseline 

scenario respectively. As the sectoral emissions in 2015 are generally larger than that in 2005, the 

sectors will have larger carbon quotas under the 2015 scheme than the 2005 scheme. With the lower 

targeted emission reduction, sectors are less likely to be subject to the fine price of over-emissions under 

the 2015 scheme than under the 2005 scheme. 

Table 7.1 The Designed Four Scenarios under the Carbon-cap Policy 

Scenario Quota Allocation Scheme Targeted Emission Reduction 

SCRO1 2015 Sectoral Emissions  1% Tax 

SCRO2 2015 Sectoral Emissions  2% Tax 

SCRO3 2005 Sectoral Emissions  1% Tax 

SCRO4 2005 Sectoral Emissions  2% Tax 

Note: In these scenarios, the decline factor is assumed to be zero with no carbon trading. 

Table 7.1 shows the designed four scenarios to analyse the welfare impacts of the carbon-cap policy 

compared to the carbon tax. The differences of the scenarios lie in the quota allocation scheme and 

targeted emission reduction. In Table 7.1, the 1% tax refers to the loose abatement target, whilst the 2% 

tax denotes the strict abatement target. 

Table 7.2 The Designed Four Scenarios with the Different Decline Factors 

Scenario Decline Factor 

SCRO3 0% 

SCRO5 0.5% 

SCRO6 1% 

SCRO7 2% 

Note: In these scenarios, the carbon quota allocation scheme is assumed to be the 2005 sectoral 

emissions; the targeted emission reduction is the 1% tax; there is no carbon trading. 

Table 7.2 shows the designed four scenarios under the carbon-cap policy where the only difference 

lies in the decline factor of the free carbon quotas. The quantities of the initially allocated free carbon 

quotas are of vital importance to the effects of climate policies, according to Li and Jia (2016) who 

constructed a dynamic recursive CGE model to study the relation between the free quote ratio and ETS 

price in China. Hence, in this chapter, the comparison among these scenarios will reveal to what extent 

the decline factor will influence the welfare effects of the carbon-cap policy. 

 



150 

 

Table 7.3 The Designed Four Scenarios under the Carbon Trading  

Scenario Targeted Emission Reduction Carbon Trading 

SCRO3 1% Tax No 

SCRO4 2% Tax No 

SCRO8 1% Tax Yes 

SCRO9 2% Tax Yes 

Note: In these four scenarios, the carbon quota allocation  

scheme is assumed to be the 2005 sectoral emissions; the decline factor is zero. 

Tables 7.3 shows the designed four scenarios with the differences in the targeted emission 

reduction and whether the quotas are tradeable or untradeable. Under the carbon-cap policy, the trading 

of the surplus carbon quotas, namely the carbon trading, is banned while under the ETS policy, the 

carbon trading is allowed. The comparison among these scenarios will reveal how the targeted emission 

reduction and carbon trading will affect the welfare effects of the carbon-cap or ETS policy. 

Table 7.4 The Designed Four Scenarios under the FCQ Trading  

Scenario Targeted Emission Reduction Free Carbon Quotas (FCQ) 

SCRO8 1% Tax Tradeable 

SCRO9 2% Tax Tradeable 

SCRO10 1% Tax Untradeable 

SCRO11 2% Tax Untradeable 

Note: In these scenarios, the carbon quota allocation scheme is assumed to be the 2005 sectoral 

emissions; the decline factor is zero; the carbon trading is allowed. 

Table 7.4 shows the designed four scenarios under the ETS policy, focusing on the trading of the 

free carbon quotas. Despite that the free quotas are not allowed to trade in SCRO10 and SCRO11, the 

paid part of the carbon quotas can be traded in these scenarios. 

Model Results 

 

Fig. 7.1 The Targeted Emission Reduction Rate of the Carbon Tax 

Fig. 7.1 shows the abatement target of the 1% and 2% tax over time. According to Fig. 7.1, the 

reduction rate peaked in 2019 and was expected to decrease in 2020–2030. Fig. 7.1 implies that a stricter 

abatement target will induce higher emission reduction compared to a looser abatement target. 
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Fig. 7.2 The Carbon Price under the Carbon-cap Policy (Unit: CNY/kg) 

Fig. 7.2 shows the equilibrium carbon price in the four scenarios over time. The carbon price in 

SCRO1 and SCRO2 will remain relatively stable after 2020, whilst the price for SCRO3 and SCRO4 

will fluctuate over the studied period. The carbon price in SCRO2 and SCRO4 are higher than that in 

SCRO1 and SCRO3 respectively, which implies that as the tax rate or targeted emission reduction rises, 

the carbon price will increase. This is because when the abatement target becomes stricter, the carbon 

price has to rise in order that the carbon-cap policy will decrease the emissions to the targeted level. 

This finding complies with Yu, Geng et al. (2018) who used a CGE model to study the impacts of the 

carbon quota allocation in Shanghai, concluding that a stricter abatement target would lead to a higher 

carbon price. The carbon price in SCRO4 is higher than that in SCRO2, implying that less initial 

allocation of the carbon quotas will increase the carbon price at a stricter abatement target. However, 

this implication is unclear at a looser abatement target because there is no clear relation of the carbon 

price between SCRO3 and SCRO1 over time. 

 

Fig. 7.3 The Overall Emission Costs under the Carbon-cap Policy (Unit: 1012 CNY) 

Fig. 7.3 shows that over the research period, the emission costs will fluctuate in SCRO2 but 

increase in the other scenarios except for an outlier. The costs are the highest in SCRO4 and lowest in 

SCRO1. Noticeably, the curves for the 2015 scheme will grow steadily over time except for a case in 
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2021 of SCRO1. This outlier is due to the variation of the projected energy consumption. SCRO2 and 

SCRO4 will have higher costs compared to SCRO1 and SCRO3 respectively, which implies that as the 

emission reduction increases, the emission costs will increase. SCRO3 and SCRO4 will have higher 

costs compared to SCRO1 and SCRO2 respectively, which implies that at the same targeted emission 

reduction, the costs under the 2015 scheme are lower than that under the 2005 scheme. This is because 

at the same abatement target, a higher allocation of the initial carbon quotas means a lower amount of 

the targeted emission reduction and thus lower emission costs. This finding complies with the previous 

research showing that a larger possession of the initial quotas would lead to the lower emission costs 

for most of the sectors, according to Yu, Geng et al. (2018) who evaluated the macro-economy, carbon 

markets, and participating sectors in 2030. 

 
Fig. 7.4 The Proportion of the Overall Emission Costs to the RGDP under the Carbon-cap Policy 

Fig. 7.4 shows that the proportion of the emission costs will remain relative stable in SCRO1 and 

SCRO2, but the proportion will fluctuate dramatically in SCRO3 and SCRO4. SCRO4 will have the 

highest proportion, whilst SCRO1 will have the lowest proportion. The proportions in SCRO4 and 

SCRO2 will be higher than that in SCRO3 and SCRO1 respectively. Fig. 7.4 implies that the increase 

of the targeted emission reduction will raise the proportion of the emission costs to the RGDP. Similar 

findings could be found in Yang, Teng et al. (2018) who added the carbon tax into the Chinese multi-

pollutant abatement planning and long-term benefit evaluation, indicating that the contribution of the 

mitigation costs to the GDP would rise dramatically as the rate of the carbon mitigation increased. The 

proportions in SCRO3 and SCRO4 will be higher than that in SCRO1 and SCRO2 respectively, 

implying that a higher allocation of the carbon quotas will reduce the proportion of the emission costs 

to the RGDP. 

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

2015 2020 2025 2030

P
ro

p
o

rt
io

n
 o

f 
E

m
is

si
o

n
 C

o
st

s

Year

SCRO1
SCRO2
SCRO3
SCRO4



153 
 

 

Fig. 7.5 The Relative Change of the RGDP under the Carbon-cap Policy 

Fig. 7.5 focuses on the RGDP change shifting from the carbon-cap policy to the carbon tax in the 

four scenarios over time. The RGDP change will peak in 2019 but decline during 2020–2030. According 

to Fig. 7.5, the positive RGDP change in the four scenarios implies that compared to the carbon tax, the 

carbon-cap policy will induce the higher RGDP at the same abatement target. This is because compared 

to the carbon tax, the carbon-cap policy will give the entities more freedom to adjust their economic 

activities to meet the abatement target; in other words, the carbon-cap policy intervenes the market 

mechanism less than the carbon tax. Similarly, Yoon and Jeong (2016) researched better policy options 

for the emission abatement in the Korean international aviation industry, concluding that the ETS 

approach was the most efficient of all the designed climate policies in economic terms. Fig. 7.5 also 

shows that at the same tax rate, the curve for the 2015 scheme will have the higher RGDP than that for 

the 2005 scheme. This finding complies with the previous research showing that the GDP loss would 

increase when the abatement target became stricter (Yu, Geng et al. 2018). 

Fig. A7.1 in Appendix A shows the absolute change of the RGDP in the four scenarios over time. 

Different from the relative change of the RGDP, the absolute change will increase as the time goes by. 

The increase of the targeted emission reduction will reduce the RGDP but expand the RGDP gap 

between the carbon tax and carbon-cap policy. This finding complies with Wang, Dai et al. (2015) who 

designed a two-region dynamic CGE model to analyse the economic impacts of the ETS policy in 

Guangdong province of China, concluding that a stricter carbon constraint would results in more GDP 

loss. 
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Fig. 7.6 The Relative Change of the Household Welfare Loss under the Carbon-cap Policy 

Fig. 7.6 focuses on the household welfare loss change under the carbon-cap policy relative to the 

carbon tax. According to Fig. 7.6, the carbon-cap policy will induce the lower household welfare loss 

or higher household welfare compared to the tax. In other words, shifting the carbon tax to the carbon-

cap policy with the same targeted emission reduction will increase the household welfare. This is 

because at the same abatement target, the household income is more flexible in the dynamic transition 

to the low-carbon economy under the carbon-cap policy compared to the carbon tax. 

The 2005 scheme will increase the fluctuation of the household welfare loss over time and the 

impacts of the targeted emission reduction on the household welfare, compared to the 2015 scheme. In 

other words, the quantities of the initial carbon quotas will affect the household welfare. Specifically, 

at a higher quantity of the initial quotas, the policy difference between the carbon tax and carbon-cap 

policy is relatively stable. This is because the sectors can achieve the abatement target more easily under 

the carbon-cap policy, and thus the economic expectations under the carbon-cap policy are similar to 

that under the fixed tax rate. In contrast, a lower quantity of the initial quotas will induce some 

difficulties in the sectors to achieve the abatement target, and thus the economic expectations are more 

uncertain under the carbon-cap policy than that under the carbon tax. The uncertainties in the economic 

expectations could increase the volatility of the effect of the carbon-cap policy on the household welfare. 

Fig. 7.6 also shows that a stricter abatement target will reduce the household welfare increase from 

the policy shifting. This finding corresponds to the previous empirical research showing that the welfare 

loss caused by the carbon cap would increase at a stricter target (Yu, Geng et al. 2018). Fig. A7.2 in 

Appendix A shows the absolute change of the household welfare loss over the studied period. The 

locations of the four curves in Fig. A7.2 imply that the absolute change of the welfare loss will have a 

very similar trend to the relative change. 

Fig. A7.3 and A7.4 in Appendix A shows the absolute and relative change of the household 

emissions respectively under the carbon-cap policy compared to the carbon tax. The carbon-cap policy 
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will negatively affect the household emissions under the 2015 scheme, but its effect on the 2005 scheme 

is not clear because the curves for SCRO3 and SCRO4 will fluctuate around the value zero. 

 

Fig. 7.7 The Carbon Price Influenced by the Decline Factor (Unit: CNY/kg) 

Fig. 7.7 shows the variation of the carbon price influenced by the proportion of the free quotas to 

the allocated carbon quotas over time. The carbon price peaked in 2019 but will decline steadily since 

2020. The convergence of the four curves in Fig. 7.7 implies that the decline factor will have a 

decreasing impact on the carbon price since 2019. The ranking order of the four curves in Fig. 7.7 

implies that the quantities of the free quotas are negatively related with the carbon price. The economic 

intuition underlying Fig. 7.7 is that with more free quotas allocated, the paid part of the carbon quotas 

will be fewer, and thus an economic entity will buy the quotas at a higher carbon price. This finding 

agrees with the previous empirical work showing that the annual decline factor would reduce the carbon 

price (Lin and Jia 2018, Zhang, Li et al. 2018, Wu and Li 2020). 

 

Fig. 7.8 The Overall Emission Costs Influenced by the Decline Factor (Unit: 1012 CNY) 

Fig. 7.8 shows how the emission costs will vary under the influence of the decline factor of the 

free quotas in the four scenarios of the 2005 scheme over time. The four curves in Fig. 7.8 increased 

dramatically in 2015–2019 but will remain stable in 2020–2022 and decrease ever since. Fig. 7.8 implies 

that the emission costs are positively correlated with the proportion of the free quotas. The rationale of 
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Fig. 7.8 is that with more free quotas allocated, an economic entity will buy the non-free quotas at a 

higher carbon price even though fewer quotas will be bought. Fig. A7.5 in Appendix A shows the 

proportion of the emission costs to the RGDP influenced by the decline factor of the free quotas. 

According to Fig. A7.5, the cost proportion is also positively related to the free quota proportion, but 

the peaking time of the curves is slightly earlier than that in Fig. 7.8. This difference could be explained 

by the different growth rates of the RGDP and emission costs over the studied period. 

 

Fig. 7.9 The Relative Change of the RGDP Influenced by the Decline Factor 

Fig. 7.9 shows the RGDP change from the carbon tax to the carbon-cap policy influenced by the 

decline of the free quotas over time. According to Fig. 7.9, the RGDP is positively related to the decline 

factor, which implies that the decrease of the carbon quotas will induce an economic boom, even though 

this boom will decline as the time goes by. The reason why the decline factor will increase the RGDP 

is that fewer free carbon quotas will induce lower emission costs, shown in Fig. 7.8. Fig. A7.6 shows 

the absolute change of the RGDP influenced by the free quotas over the studied period. Since there exist 

very minimal differences among the four curves, the decline factor will have almost no impacts on the 

absolute change. 

 

Fig. 7.10 The Relative Change of the Household Welfare Loss Influenced by the Decline Factor 
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Fig. 7.10 shows the change of the household welfare loss, shifting from the carbon tax to the 

carbon-cap policy, under the influence of the decline factor over time. The differences among the four 

curves will decrease in 2020–2030. According to Fig. 7.10, the decline of the free quotas will decrease 

the welfare loss by less than 2% or slightly increase the household welfare. This is because fewer carbon 

quotas will induce the lower emission costs and boost the economic growth. Similarly, Li and Jia (2016) 

used a dynamic recursive CGE model to explore the relationship between the free quota ratio and carbon 

price, empirically showing that the ratio of the free quotas was negatively related to the resident utility. 

Fig. A7.7 in Appendix A shows how the decline factor will affect the absolute change of the household 

welfare loss. According to Fig. 7.7, the decline factor will have minimal impacts on the absolute change 

of the welfare loss. 

Fig. A7.8 and A7.9 in Appendix A show the absolute and relative change of the household 

emissions to the carbon tax respectively influenced by the decline factor over time. The convergence of 

the four curves in Fig. A7.8 and Fig. A7.9 implies that the decline factors will have almost no impacts 

on the absolute and relative change of the household emissions. 

 

Fig. 7.11 The Carbon Price under the Carbon Trading (Unit: CNY/kg) 

Fig. 7.11 shows the differences of the carbon price between the carbon-cap and ETS policy. The 

carbon price in SCRO8 will be lower than that in SCRO3, implying that allowing the carbon trading 

will decrease the carbon price at a looser abatement target. However, at a stricter abatement target, 

allowing the carbon trading will increase the carbon price in 2015–2024 but decrease the price in 2025–

2030. Noticeably, the curve for SCRO9 will decrease dramatically in 2014–2025, and the sudden drop 

is explained in Fig. 7.17. The positive impact of the carbon trading on the carbon price can be explained 

by the coverage of the fine price: since less sectoral emissions are subject to the fine price of the over-

emissions under the ETS policy, the carbon price will rise to compensate the loss of the emission 

reduction induced by the tightening of the targeted scope of the fine price; otherwise, the same reduction 

target cannot be achieved. In contrast, the negative impact of the carbon trading can be explained by 
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the economic intuition that the carbon trading gives more flexibility to the carbon market, and thus the 

economic entity in demand for the carbon quotas could buy the quotas from the market at a lower price. 

 

Fig. 7.12 The Overall Emission Costs under the Carbon Trading (Unit: 1012 CNY) 

Fig. 7.12 shows the differences of the emission costs between the carbon-cap and ETS policy over 

the studied period. At the target of the 1% tax, the carbon trading will slightly change the costs except 

for a dramatic decrease in 2029–2030. However, at the target of the 2% tax, the ETS policy will 

significantly reduce the costs over time, even if the carbon price will increase in 2015–2024, shown in 

Fig. 7.11. The reason why the carbon trading will decrease the emission costs is that the market allocates 

the carbon quotas more efficiently than the governmental instructions, and thus the emission costs will 

be lower under the market mechanism. Similarly, Liu and Wei (2016) used a multiregional general 

equilibrium model to assess the impacts of a joint Europe-China ETS, concluding that the carbon trading 

would reduce the overall emission costs of the participants. Fig. A7.10 in Appendix A shows the 

proportion of the emission costs to the RGDP influenced by the carbon trading over time. Fig. A7.10 

implies that the proportion of the emission costs will have a very similar trend to the emission costs 

under the impact of the carbon trading. 

 
Fig. 7.13 The Relative Change of the RGDP under the Carbon Trading 
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Fig. 7.13 shows how the carbon trading will affect the RGDP change under the carbon-cap and 

ETS policy relative to that under the carbon tax over time. At the target of the 1% tax, the carbon trading 

will only slightly increase the RGDP. By comparison, at the target of the 2% tax, the carbon trading 

will significantly increase the RGDP even though this impact will diminish in 2025–2030. Fig. 7.13 

implies that the carbon trading under the ETS policy will increase the RGDP compared to the carbon-

cap policy. This is because the carbon trading gives economic entities more freedom to meet the 

abatement target; hence, the sectors can make better production choices under the carbon trading. 

Similar findings can be found in the previous empirical work by Yu, Geng et al. (2018) and Cheng, Dai 

et al. (2016). Fig. A7.11 in Appendix A shows the absolute change of the RGDP between the carbon-

cap and ETS policy. Fig. A7.11 implies that the impact of the carbon trading on the RGDP absolute 

change is similar to that on the RGDP relative change. 

 

Fig. 7.14 The Relative Change of the Household Welfare Loss under the Carbon Trading 

Fig. 7.14 shows the impact of the carbon trading on the relative change of the household welfare 

loss over the studied period. As the curves for SCRO8 and SCRO9 are below that for SCRO3 and 

SCRO4, implying that the carbon trading will decrease the household welfare loss compared to that 

under the carbon-cap policy. This is because the carbon trading will increase the sectoral output, and 

thus the household may gain more labour income. Similarly, Yu, Geng et al. (2018) who used a CGE 

model to predict the future impacts of the carbon cap-and-trade policy in Shanghai, concluding that the 

carbon trading would alleviate the welfare loss caused by the carbon-cap policy. Fig. A7.12 in Appendix 

A shows the absolute change of the household welfare loss under the carbon-cap and ETS policy 

compared to the carbon tax. Fig. A7.12 implies that the absolute change of the household welfare loss 

will have a very similar trend to the relative change. 
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Fig. 7.15 The Relative Change of the Household Emissions under the Carbon Trading 

Fig. 7.15 shows how the carbon trading will affect the household emission change under the 

carbon-cap and ETS policy relative to that under the carbon tax. The curves for SCRO8 and SCRO9 

are much more volatile than that for SCRO3 and SCRO4, implying that the household emissions will 

fluctuate more in the 2005 scheme than that in the 2015 scheme. In 2020–2030, the curves for SCRO8 

and SCRO9 are generally below the curves for SCRO3 and SCRO4 except for a few outliers, owing to 

the variation of the projected data. The projections in the 2015 scheme imply that the carbon trading 

will have a minimal impact on the household emissions in the future. This finding complies with Ju and 

Kiyoshi (2019) who employed an input-output model to analyse the cost transmission of the ETS policy 

in China, indicating that the increase rate of the household consumption in most sectors would be below 

0.1%, and thus the household emissions might not change significantly. In contrast, the projection in 

the 2005 scheme implies that the carbon trading will generally have a negative impact on the household 

emissions. This finding corresponds to the potential effects of the ETS policy on improving the energy 

structure (Tang, Shi et al. 2016) and promoting the output of the renewable energy (Yu, He et al. 2017). 

Fig. A7.13 in Appendix A shows the absolute change of the household emissions under the carbon-cap 

and ETS policy. Fig. A7.13 implies that the carbon trading will have a very similar impact on the 

absolute change of the household emissions to the impact on the relative change. 
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Fig. 7.16 The Over-emissions under Banning the FCQ Trading (Unit: 106 tonne) 

Fig. 7.16 shows the over-emissions that cannot be covered by the ETS policy in the four scenarios 

over the studied period. At the target of the 1% tax, the overall sectoral emissions will exceed the overall 

carbon quotas irrespective of trading the free carbon quotas (FCQ). Hence, banning the FCQ trading 

will not affect the application of the fine price, and thus it will have almost no impacts on the ETS 

policy effects. However, the situation is different at the target of the 2% tax: without the FCQ trading, 

the over-emissions will be positive over time, implying that the overall tradeable carbon quotas cannot 

cover the summation of the sectoral over-emissions. In contrast, with the FCQ trading, the summed 

sectoral emissions are less than the summed carbon quotas in 2015–2024, but the situation will change 

in 2025–2030. Fig. 7.16 implies that at a stricter abatement target, banning the FCQ trading will 

influence the application of the fine price and thus ETS policy effects. 

 

Fig. 7.17 The Carbon Price under Banning the FCQ Trading (Unit: CNY/kg) 

Fig. 7.17 shows the variation of the carbon price under the ETS policy where the FCQ trading is 

allowed and disallowed. At the target of the 1% tax, banning the FCQ trading will only slightly reduce 

the carbon price; however, this impact is minimal. At the target of the 2% tax, banning the FCQ trading 

will have a much more significantly negative impact on the carbon price. The sudden drop of the carbon 

price in 2024–2025 in SCRO9 can be explained by the applying of the fine price. According to Fig. 

7.16, the over-emissions will become positive in 2025, which means that not all the sectoral emissions 

can be absorbed by the carbon quotas. The applying of the fine price will reduce the carbon price since 

the sectoral emissions begin to be regulated by the fine price. 

0

2

4

6

8

10

12

14

2015 2020 2025 2030

C
ar

bo
n 

Pr
ic

e

Year

SCRO8
SCRO9
SCRO10
SCRO11



162 
 

 

Fig. 7.18 The Overall Emission Costs under Banning the FCQ trading (Unit: 1012 CNY) 

Fig. 7.18 shows the emission costs under the impact of the FCQ trading over the studied period. 

At the target of the 1% tax, banning the FCQ trading will have almost no impacts on the emission costs 

except for the two outliers, owing to the variation of the projected data. In contrast, banning the FCQ 

trading will increase the costs in 2015–2026, decrease the costs in 2027–2029, and have no impact in 

2030 at the target of the 2% tax. Fig. 7.18 implies that at a stricter abatement target, banning the FCQ 

trading will increase the costs in the short term but decrease the costs in the long term. This is because 

the strict emission abatement directly soars the costs of energy consumption; however, the induced 

technical progress or development of renewable energy will decrease the emission costs in the long 

term. Similar evidence can be found in Hagem (2003) who used a two-period model to explore how the 

tradeable or untradeable free quotas would affect the investment in new abatement technology, 

concluding that the grandfathering rule of the untradeable quotas helped the firms develop new 

abatement technology to reduce the emission costs. Fig. A7.14 in Appendix A shows the proportion of 

the emission costs to the RGDP influenced by banning the FCQ trading. The curves in Fig. A7.14 have 

very similar implications to the curves in Fig. 7.18. 

 

Fig. 7.19 The Relative Change of the RGDP under Banning the FCQ Trading 
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Fig. 7.19 shows the RGDP change under the impact of the FCQ trading over the studied period. At 

the target of the 1% tax, banning the FCQ trading will have almost no impacts on the RGDP change 

except that it will slightly increase the RGDP in 2024 and 2030. However, at the target of the 2% tax, 

banning the FCQ trading will decrease the RGDP in 2015–2024, have no impact in 2025–2026, and 

increase the RGDP by approximately 5% in 2027–2030. Fig. 7.19 implies that at a stricter abatement 

target, banning the FCQ trading could decrease the RGDP in the short term but have a positive impact 

in the long term. This is because a strict abatement target may adversely affect the economy by soaring 

the costs of energy consumption; however, the strict target could facilitate the dynamic transition to the 

low-carbon economy and thus generate economic benefits. Similarly, Bartels and Musgens (2008) 

analysed the effects of freely allocating carbon quotas to new power plants in the EU ETS market, 

concluding that the free allocation distorted the investments and hampered the efficiency of the ETS 

policy. Fig. A7.15 in Appendix A shows the absolute change of the RGDP influenced by banning the 

FCQ trading. The RGDP absolute change will have very similar implications to the RGDP relative 

change. 

 

Fig. 7.20 The Relative Change of the Household Welfare Loss under Banning the FCQ Trading 

Fig. 7.20 shows how banning the FCQ trading will affect the household welfare loss under the ETS 

policy over time. At the target of the 1% tax, banning the FCQ trading will have minimal impacts on 

the welfare loss except that it will slightly decrease the loss in 2024 and 2030. At the target of the 2% 

tax, there is a sharp decrease of the welfare loss in 2020–2021 in SCRO11, but considering this decrease, 

the welfare loss in SCRO11 will still surpass that in SCRO9. In 2027–2029, banning the FCQ trading 

will decrease the welfare loss by approximately 3% in SCRO11 compared to SCRO9, and the two 

curves will be almost at the same level in 2030. Fig. 7.20 implies that at a stricter abatement target, 

banning the FCQ trading decreases the household welfare at an initial stage, but it will increase the 

welfare in a more sophisticated ETS market. This is because the household will pay more energy costs 

when the FCQ trading is banned; however, in the long term, the induced technical progress or 

development of renewable energy will decrease the energy costs for the household. This finding agrees 

with Golombek and Hoel (2008) who adopted a static research framework to endogenously define 
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abatement technologies, concluding that the welfare would be lower when the carbon trading was 

permitted than when it was not. Fig. A7.16 in Appendix A shows the absolute change of the household 

welfare loss under banning the FCQ trading. Fig. A7.16 implies that the absolute change of the 

household welfare loss will have an identical trend to the relative change. 

 

Fig. 7.21 The Relative Change of the Household Emissions under Banning the FCQ Trading 

Fig. 7.21 shows how banning the FCQ trading will affect the relative change of the household 

emissions under the ETS policy compared to the carbon tax. At the target of the 1% tax, banning the 

FCQ trading will have almost no impact on the household emissions except for a slight reduction in 

2024 and 2030. In contrast, at the target of the 2% tax, banning the FCQ trading decreased the household 

emissions in 2015–2020, and then it will increase the emissions until 2030 where the two curves will 

converge. Fig. 7.21 implies that at a stricter abatement target, banning the FCQ trading may decrease 

the household emissions in the short term but increase the emissions in the long term. This is because 

banning the FCQ trading curbs the household energy consumption owing to the rising energy costs and 

induced economic recession; however, in the long term, it will decrease the energy costs and boost the 

economic growth and thus increase the household energy consumption. Fig. A7.17 in Appendix A 

shows the absolute change of the household emissions influenced by banning the FCQ trading. 

According to Fig. A7.17, the absolute change of the household emissions will have a very similar trend 

to the relative change. 

Recycling the revenues of the carbon-cap or ETS policy, under the 2005 and 2015 quota allocation 

schemes, will minimally influence the effects of the carbon-cap or ETS policy. This is because the 

policy revenues are quite small compared to the induced RGDP change and household welfare loss. 

This result is quite similar to the minimal policy effects of recycling the tax revenues shown in Chapter 

1. 

In the INDC (NDRC 2015), China has pledged to lower its carbon emissions per unit of the GDP 

by 60% to 65% from the 2005 level by 2030. The 2005 carbon intensity is calculated as 0.31 (2015 
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price), basing on the sectoral energy consumption data from 2016 China Energy Statistical Yearbook 

(NBS 2016) and sectoral output data from 2005 China Input-Output Table (NBS 2005). 

  

Fig. 7.22 The Carbon Intensity under the Carbon-cap Policy (Unit: kg/CNY) 

Fig. 7.22 shows the projected carbon intensity under the carbon-cap policy in the four scenarios 

over the studied period. The 2030 carbon intensity in the four scenarios will be much lower than 60% 

of the 2005 level, implying that the designed carbon-cap policy will help China meet the INDC target 

of the carbon intensity reduction. The curves for SCRO3 and SCRO4 are above the curve for SCRO1 

and SCRO2, implying that a higher allocation of the carbon quotas will increase the carbon intensity. 

The curves for SCRO2 and SCRO4 are below the curve for SCRO1 and SCRO3, implying that a stricter 

target of the emission reduction will decrease the carbon intensity. However, the differences among the 

curves will diminish as the time goes by.  

Fig. A7.18 in Appendix A shows how the decline factor of the free quotas will affect the carbon 

intensity. According to Fig. A7.18, the decline factor will have very limited impacts on the carbon 

intensity. Fig. A7.19 in Appendix A shows the impacts of the carbon trading on the carbon intensity. 

According to Fig. A7.19, at a looser target of the emission reduction, the carbon trading will have almost 

no impacts on the carbon intensity; however, at a stricter target, the carbon trading will reduce the 

carbon intensity. Fig. A7.20 in Appendix A shows the carbon intensity influenced by banning the FCQ 

trading. According to Fig. A7.20, at a looser target, banning the FCQ trading will have almost no 

impacts on the carbon intensity; in contrast, it will increase the carbon intensity in 2015–2024 but have 

no impacts in 2025–2030. 

Discussion 
In this chapter, the carbon-cap or ETS policy is simulated to have the same emission effect but 

different welfare effects, compared to the carbon tax. Theoretically, the carbon-cap or ETS policy is 

equivalent to the carbon tax because both policies set a carbon price for emitting greenhouse gases 

(Allan, Lecca et al. 2014). Hence, it is meaningful to compare the welfare effects of the ETS policy and 

carbon tax at the same abatement target. 
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The carbon price is regarded as the marginal costs to achieve the required emission reduction, 

according to Wu, Dai et al. (2016) who used a static CGE model to evaluate the economic impacts of 

the ETS policy in Shanghai. Generally, previous researchers agreed that the carbon price is positively 

related to the reduction amount of the carbon emissions. For example, Yu, Fan et al. (2020) modelled 

the ETS policy from an agent-based perspective based on the European data, indicating that when the 

abatement target was low, the carbon price would drop to zero; when the abatement target was high, 

the carbon price would stay high. Similarly, Wang, Dai et al. (2015) employed a two-region dynamic 

CGE model to assess the ETS impacts in Guangdong Province of China, concluding that the more the 

reduction rate was, the higher the carbon price would be. The mechanism of the emission reduction 

driving the carbon price is that a stricter abatement target would reduce the volume of the circulating 

quotas in the market and thus boost the price (Yu, Geng et al. 2018). 

At the given abatement target, the carbon price will vary if the carbon quotas become tradeable. 

This chapter empirically shows that the carbon trading will decrease the carbon price at the target of the 

1% tax and in 2025–2030 at the target of the 2% tax. This finding agrees with Wu, Dai et al. (2019) 

who utilised a CGE model to investigate the impacts of achieving Taiwan’s INDC target, concluding 

that the shadow prices of most sectors in the cap-without-trade scenarios were higher than the actual 

carbon price in Taiwan. 

Banning the FCQ trading will decrease the carbon price. This finding disagrees with the previous 

study on the enterprise behavior of the optimal use of the carbon quotas (Brechet, Tsachev et al. 2012). 

Banning the FCQ trading could induce the non-optimal use of the FCQ at the enterprise level, which 

might increase the market price for the tradeable quotas (Brechet, Tsachev et al. 2012). The result 

difference lies in the model assumptions: Brechet, Tsachev et al. (2012) analysed the carbon quotas 

mainly basing on the market mechanism but neglected the induced effects of banning the FCQ trading. 

In contrast, the comprehensive CGE model in this chapter not only quantifies the market mechanism 

but also measures the induced effects, including the technological progress. In the literature, the ETS 

impacts on the technological progress was confirmed in Zhou, Liang et al. (2020) who used the 

difference-in-difference-in-difference (DDD) model to evaluate the ETS impacts in China. 

Interestingly, the carbon price analysed in this chapter is not linearly correlated with the emission 

costs, because the carbon price will affect the effort of the emission reduction. I have empirically found 

that the costs are influenced by the allocation scheme of the carbon quotas. The more quotas are given 

to a sector, the less emission costs the sector will have. Similarly, Wu, Dai et al. (2016) compared the 

carbon cap policy with the ETS policy in Shanghai under the INDC target, concluding that the average 

costs would almost double in 2020–2030 owing to the increasingly stricter carbon cap. 

The emission costs will be affected by the quantities of the free quotas under the chosen scheme 

of the allocated quotas. I have empirically found that the costs will be reduced by the decline factor of 
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the free quotas. Conversely, Lin and Jia (2018) used a dynamic recursive CGE model to study the 

impacts of the ETS quota decline scheme in China, empirically showing that the emission costs would 

be higher in the scenarios with the high decline factors. The policy coverage may explain this result 

difference. Only a few sectors were covered in Lin and Jia (2018) who did not consider and calculate 

the future carbon emissions of the noncovered sectors. By comparison, in this chapter, almost all the 

sectors are covered by the carbon-cap policy except for the electricity subsectors exploiting renewables 

only. 

The decline factor of the free quotas will increase the RGDP or decrease the RGDP loss induced 

by the carbon-cap and ETS policy. This finding disagrees with Wu and Li (2020) who used a dynamic 

recursive CGE model to analyse the economic and environmental impacts of the quota allocation in 

China, indicating that the higher the free allocation ratio was, the lower the GDP loss was and thereby 

the greater the GDP would be. The result difference between this chapter and Wu and Li (2020) lies in 

the assumption of the projected GDP growth rate: the real GDP in this chapter is assumed to grow at 

the given rate by OECD (2018), whilst the GDP growth rate was endogenously determined and also 

affected by the decline factor in Wu and Li (2020). 

The carbon trading will increase the RGDP, and this evidence could be found in many previous 

studies. For example, Wu, Dai et al. (2016) used a static CGE model to empirically show that with the 

help of the emission trading, the GDP loss, induced by the mitigation policy, of Shanghai would change 

by 0.9% instead of 1.0% in 2020 and 1.6% instead of 1.7% in 2030; Wang, Dai et al. (2015) used a two-

region dynamic CGE model to empirically show that the ETS could reduce the mitigation costs at both 

the sectoral level, such as the sectoral output, and the macro level, such as the GDP; Qi and Weng (2016) 

used a multi-regional CGE model to ambitiously design a global ETS market, which increased the 

economic aggregate of the participating countries. 

The ETS impact on the household welfare is different from that on the RGDP. This chapter 

empirically shows that the decline factor of the free quotas will increase the household welfare. This 

finding disagrees with Lin and Jia (2018) and Zhang, Li et al. (2018) who argued that the higher decline 

factor would decrease the household welfare. This result difference mainly lies in the assumption on 

the ETS revenues: the government transferred the ETS revenues to the household in Lin and Jia (2018) 

and Zhang, Li et al. (2018). In contrast, the ETS revenue recycling is not considered in this chapter. 

This is because approximately 90% of the allocated carbon quotas are free, and the revenues of the 10% 

quotas are quite small compared to the values of the macroeconomic variables in this chapter. 

The carbon trading will increase the household welfare. This evidence could be found in Wu, Dai 

et al. (2019) who used a CGE model to analyse the effects of the ETS policy in Taiwan, showing that 

the consumption loss, caused by the carbon-cap policy, diminished under the ETS policy, and the 
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reduction of the consumption loss would increase the household welfare. This positive impact can be 

explained by the income increase resulting from the RGDP growth induced by the carbon trading. 

Although the sectoral emissions under the ETS policy are set to equal that under the carbon tax, 

the household emissions are directly affected by the amount of the targeted emission reduction. This is 

because compliance with the cap would increase the costs of the fossil fuel generation as well as the 

benefits of exploiting the renewable energy, according to Bird, Holt et al. (2008) who explored the 

policy options to enable the carbon markets and renewable energy markets to work together. As the 

household consumption of the fossil fuels occupies a significant proportion to the overall household 

energy consumption, the ETS policy will affect the household emissions via its impact on the 

nonrenewable energy consumption. 

To summarise, the empirical results of this chapter fit well with the literature even though some 

result differences exist owing to the model assumptions. With the same amount of the targeted emission 

reduction, the ETS policy will induce the higher household welfare, compared to the carbon tax, even 

though the ETS policy will still generate the net welfare loss, compared to the baseline scenario. Since 

the evaluation of the ETS policy is mainly based on the welfare effect, how effective the ETS policy is 

to reduce the emissions is beyond the research scope of this chapter. The designed carbon price of the 

ETS scenario in Li and Jia (2017) was 100 CNY/t 𝐶𝑂2, equivalent to 0.1 CNY/kg 𝐶𝑂2. Similarly, the 

highest carbon price in Lin and Jia (2017) ranged from 32.5–57.2 USD/t 𝐶𝑂2, equivalent to 0.2–0.4 

CNY/kg 𝐶𝑂2, using the 2015 exchange rate from USD to CNY according to NBS (2017). In contrast, 

the carbon price in the SCRO3 of this chapter ranges from 1.7–3.2 CNY/kg 𝐶𝑂2, much higher than the 

previous research. 

In the reality, the carbon price of the ETS market may not reach the simulated level in this chapter. 

This is because the exorbitant price may induce some covered sectors to be overwhelmed (Lin and Jia 

2017). Although a strict ETS policy with a high carbon price could facilitate the creation of a low-

carbon supply chain (Wang, Yang et al. 2020), it might lead to insufficient funds for technological 

upgrading and even bankruptcies (Chen, Yuan et al. 2020). Conversely, a low carbon price would 

undermine the capacity of the ETS market to reduce the emissions, because it had little impacts on the 

energy consumption (Lin and Jia 2019) and was not beneficial to low carbon technological innovations 

and economic structure reshaping (Chen, Yuan et al. 2020). Hence, a medium carbon price is more 

rational because it motivates market transactions and benefits low-carbon technological innovations 

(Chen, Yuan et al. 2020). 

To overcome the overwhelming carbon pricing under the ETS policy, a potential complementary 

study lies in analysing the ETS impacts on the emission reduction assuming the equal welfare impacts. 

In the complementary study, the ETS carbon pricing is directly linked to the welfare effects of the 

carbon tax. As the carbon tax may not severely harm the economic output, the ETS carbon pricing could 
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be reasonable. Perhaps, this chapter and the potential complementary study altogether may 

comprehensively reveal whether the carbon tax or ETS policy is preferable. 

Policy Implication 
The results of this chapter imply that fewer quantities of the carbon quotas will induce the higher 

emission costs and thus harm the economic growth. However, for the allocated carbon quotas, the 

government should give less free quotas, which will reduce the carbon price and emission costs as well 

as boom the economic growth and increase the household welfare. At a looser target of the emission 

reduction, the carbon trading will reduce the carbon price and increase the household welfare, but its 

impact on the RGDP is not distinct. The untradeable free quotas will have very limited impacts on the 

emission costs or welfare, compared to the tradeable free quotas, even though banning the FCQ trading 

will increase the over-emissions. In contrast, at a stricter target, the carbon trading will increase both 

the RGDP and household welfare but decrease the emission costs. Banning the FCQ trading will 

increase the emission costs and decrease the welfare in the short term, but it will increase the welfare 

in the long term. 

The designed carbon-cap and ETS policy in all the scenarios of this chapter will help China meet 

the committed INDC target of the carbon intensity reduction but cannot help China meet the INDC 

target of peaking the emissions. This is because the emission reduction of the carbon-cap and ETS 

policy is set to equal that of the carbon tax, and the designed carbon tax cannot help China peak its 

emissions committed in the INDC target, according to the previous chapters. 

Overall, the desired ETS policy, implied by this chapter, should have a higher allocation of the 

carbon quotas; a lower proportion of the free quotas for the given carbon quotas; allowing the trading 

of the carbon quotas. At a stricter target of the emission reduction, banning the trading of the free quotas 

will deteriorate the welfare in the short term but will improve the welfare in the long term. 

Conclusion 
Compared to the 2015 scheme, the 2005 scheme will induce fewer carbon quotas allocated among 

the sectors. Hence, under the 2005 scheme, the carbon price and emission costs will be higher, but the 

RGDP will be lower. As the targeted emission reduction increases, both the carbon price and emission 

costs will increase, but the RGDP loss, induced by the climate policy, will decrease. As the decline 

factor increases or the rate of the free quotas decreases, both the carbon price and emission costs will 

unexpectedly decrease; in the meantime, the RGDP and household welfare will increase by less than 

2%. 

At the target of the 1% tax, the carbon trading will decrease the carbon price and increase the 

household welfare, but its impacts on the emission costs and RGDP will be less significant. Banning 

the FCQ trading will have almost no impacts on the carbon price and emission costs as well as the 

RGDP and household welfare. In contrast, at the target of the 2% tax, the carbon trading will induce a 
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sudden drop of the carbon price in 2024–2025 because the fine price will apply owing to the over-

emissions. The carbon trading will decrease the emission costs and increase the welfare, whilst banning 

the FCQ trading will increase the emission costs and decrease the welfare in the short term. However, 

in a more sophisticated ETS market, banning the FCQ trading could decrease the emission costs, 

increase the RGDP by approximately 5%, decrease the household welfare loss by approximately 3%, 

and increase the household emissions in the long term.  

The designed carbon-cap and ETS policy in all the scenarios will reduce the carbon intensity to the 

extent where the Chinese government committed in the INDC target. 
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Chapter 8: Overall Discussion 

Main Findings 
Chapter 1 shows that modelling the electricity carbon emissions from the electricity consumption 

perspective is beneficial to revealing the genuine household and sectoral emissions. Disaggregating the 

electricity sector is helpful to implement the carbon tax fairly. There are minimal differences in the 

policy effects between the Pigouvian and output tax; however, the output tax will generate much more 

tax revenues than that of the Pigouvian tax. There will be less than 0.1% differences in the policy effects 

of recycling the tax revenues; hence, recycling the revenues is not an important complementary policy 

of the carbon tax. The carbon tax has diminishing marginal effects on the carbon emissions, carbon 

intensity, tax revenues, household welfare, and RGDP loss. 

Chapter 2 shows that the ancillary (health) benefit of the carbon tax will increase the household 

carbon emissions by 0.15%–0.4%. The health benefit will decrease the household welfare and real GDP 

loss by 0.2%–0.45% and 0.015%–0.055% respectively. Nevertheless, the health benefit has almost no 

impacts on the policy effects of recycling the tax revenues. 

Chapter 3 shows that the primary benefit will increase the household emissions by 0.10%–0.17%, 

decrease the carbon intensity by approximately 0.01%, and decrease the household welfare loss by 

0.1%–0.3%. The primary benefit will minimally increase the average social cost of carbon (ASCC) in 

the tax scenarios because it will increase the emissions. 

Chapter 4 shows that the technical impacts of the carbon tax will increase the energy cost share 

(ECS), decrease the energy-use efficiency (EUE) and energy-production efficiency (EPE), and increase 

the nonenergy-production efficiency (ENE). The technical impacts will decrease the carbon intensity 

by 1%–4% and RGDP loss by 2%–3.8%. However, the technical impacts will minimally increase the 

household welfare loss, climate damages, abatement costs, and ASCC. 

Chapter 5 shows that the inequality impacts of the carbon tax are related to the assumption of the 

distribution of the climate damages, payment of the abatement costs, and recipient of the tax revenues. 

The relative utility is mainly determined by the absolute income even though the income inequality 

does have an impact on it. The net utility is mainly determined by the total utility, whilst it is only 

minimally affected by the relative utility. Hence, the inequality impacts will minimally influence the 

policy effects of the carbon tax. 

Chapter 6 shows that the urbanisation will decrease the household emissions by 0.2%–0.8% and 

carbon intensity by 2%–5% in 2015–2030. In the tax scenarios, the urbanisation will decrease the RGDP 

and household welfare. The urbanisation will increase the climate damages by 2%–5%, decrease the 
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technical index by less than 0.25%, increase the Palma ratio by 3%–6.5%, and increase the average 

social cost of carbon (ASCC) by 2.5%–6%.  

Chapter 7 shows that at the same abatement target, the carbon-cap or ETS policy will induce the 

higher household welfare and RGDP. Under the 2005 quota allocation scheme, the carbon price and 

emission costs will be higher, but the RGDP will be lower than the 2015 quota allocation scheme. As 

the targeted emission reduction increases, both the carbon price and emission costs will increase, but 

the RGDP loss, induced by the climate policy, will decrease. The decline factor will decrease the carbon 

price and emission costs, but it will increase the RGDP and household welfare. At the target of the 1% 

tax, the carbon trading will decrease the carbon price and increase the household welfare. Banning the 

FCQ trading will have almost no impacts on the effects of the ETS policy. In contrast, at the target of 

the 2% tax, the carbon trading will decrease the emission costs and increase the welfare, whilst banning 

the FCQ trading will increase the emission costs and decrease the welfare in the short term. However, 

in a more sophisticated ETS market, banning the FCQ trading could decrease the emission costs and 

increase the welfare in the long term.  

The sensitivity analysis shows that the model results are robust to the income elasticities, the 

parameter of the unit change of the labour productivity to 𝑃𝑀2.5  pollution, and the geophysical 

parameters excluding the damage parameter. The relative utility is quite robust to the parametric values 

of 𝛾1 but quite sensitive to the parametric values of 𝛾2. Even if 𝛾2 may significantly change the relative 

utility, the variation of the relative utility is still very minimal compared to the total welfare. 

Discussion 
The carbon tax will decrease the carbon emissions significantly, but it will not distinctly affect the 

carbon intensity. The significant emission reduction effect of the tax is in line with Dong, Dai et al. 

(2017) who used a 30-Chinese-province CGE model to show that the carbon tax would decrease the 

Chinese industrial carbon emissions significantly. However, the indistinct policy effect on the intensity 

disagrees with Li, Dai et al. (2018) who showed that the tax could decrease the carbon intensity by over 

20% and 25% in Liaoning Province and the rest of China respectively. The result difference lies in the 

structure of the CGE model: Li, Dai et al. (2018) modelled the provincial inflow and outflow of the 

consumption and production if the tax rate differed across the regions. In contrast, the carbon tax is 

imposed at the same rate across China in this paper. Also, there was a scale effect of the production and 

consumption in Liaoning Province compared to the rest of China in Li, Dai et al. (2018), whilst the 

economic scale of the RW is assumed to be not affected by the Chinese carbon tax in this paper. 

The carbon tax will decrease the household welfare and real GDP (RGDP). The negative effect of 

the tax on the household can be also found in Guo, Zhang et al. (2014) who used a CGE model to 

investigate the socioeconomic impacts of the Chinese carbon tax. The negative effect on the RGDP 

complies with Dong, Dai et al. (2017) who used a 30-Chinese-province CGE model and concluded that 
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the implementation of the carbon tax would impede the economic development for all the Chinese 

provinces. 

The carbon tax has the diminishing marginal effects on the emission reduction and welfare loss. 

The diminishing effect on the emission reduction complies with Knobloch, Pollitt et al. (2019) who 

employed the non-equilibrium bottom-up model to empirically show that the carbon tax had a 

decreasing marginal impact on the total emission reduction. The diminishing marginal effect on the 

welfare can be also found in Xiao, Niu et al. (2015) who used a dynamic recursive multi-sectoral CGE 

model to study the impacts of the environmental tax in China. 

The revenue recycling policy will have a minimal impact on the policy effects of the tax. This 

finding disagrees with Sands (2018) who used a CGE model to empirically show that the revenue 

recycling could make a difference to the policy effects of the carbon tax in the US. The result difference 

between Sands (2018) and this paper lies in the way the revenues are recycled: the revenues were 

recycled as the reduction in the labour or capital tax in Sands (2018). By comparison, in this paper, the 

tax revenues are recycled as the increase in the income of the targeted entity directly. 

The ancillary (health) benefit of the carbon tax will decrease the carbon emissions and carbon 

intensity. The negative impact on the emissions agrees with Fox, Zuidema et al. (2019) who reviewed 

the literature on the public health’s role in climate change action, arguing that the health benefit helped 

underpin the greenhouse gas reduction strategies. The negative impact on the intensity complies with 

Wang, Ye et al. (2014) who developed a multi-region optimisation model to show that the current local 

air pollution control targets contributed slightly to the decrease of the carbon intensity in the Chinese 

power sector. 

The ancillary benefit will increase the household welfare. The positive impact on the household 

welfare can be also found in Jensen, Keogh-Brown et al. (2013) who employed a single-country 

dynamic recursive CGE model to assess the health co-benefits of the UK greenhouse gas emission 

reduction strategies. By comparison, the health benefit will have a much smaller and positive impact on 

the RGDP. This minimal health benefit impact could be explained by the mismatch between the sectors 

with the high potential for emission reductions and the sectors with the high health benefits per unit 

emission reduction (Liu, Huang et al. 2017). 

The primary (climate) benefit will slightly reduce the carbon intensity. Similar findings can be 

found in Trotta (2020) and Buonocore, Luckow et al. (2016). By comparison, the primary benefit will 

significantly decrease the deadweight loss of the carbon tax, especially for the agriculture sector whose 

output is severely affected by the climate change. For example, Sathre and Gustavsson (2009) 

developed a bottom-up method to empirically show that the climate benefit of the carbon tax 

significantly increased the output of the forest product industries. 
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The primary benefit of the carbon tax will increase the climate damages because it will increase 

the emissions and thus exacerbate the climate change. This is because the primary benefit of the Chinese 

carbon tax could have a global impact but only the regional impact is modelled in this paper. A previous 

study on the US climate policy concluded that the US policy resulted in a net cooling on a global scale, 

but the policy led to a net positive forcing over the USA on a regional scale (Lee, Shindell et al. 2016). 

By comparison, the primary benefit will minimally affect the abatement costs, and the impact is positive 

in most cases. This is because in developing countries, primary benefits play a minor role on the political 

agenda (Rubbelke 2006). Nevertheless, climate benefits are more concerned in the developed countries. 

For example, Woollacott (2018) used the forward-looking dynamic CGE model to identify the required 

climate benefits to justify the emission abatement in the US. 

The ITC will decrease the energy-use efficiency (EUE) and energy-production efficiency (EPE) 

in the tax scenarios. The negative impact of the ITC on the EUE disagrees with Kemfert and Truong 

(2007) who showed that the ITC improved the energy efficiency. The result difference between Kemfert 

and Truong (2007) and this paper lies in the socioeconomic conditions where the ITC impacts are 

analysed: Kemfert and Truong (2007) directly studied the ITC impacts caused by the increase of the 

R&D investment, whilst the ITC impacts are analysed under the carbon tax in this paper. The negative 

ITC impact on the EPE complies with Macaluso, Tuladhar et al. (2018) who provided a cross-model 

analysis to show that the carbon tax would induce the substitutions toward less carbon-intensive energy 

sources and production technologies in the US. 

The ITC will increase the nonenergy-production efficiency (ENE). This finding complies with 

Ekins, Pollitt et al. (2012) who empirically found that the EU environmental tax reform could increase 

the material productivity by 3.4%. By comparison, the ITC will promote the technical progress at the 

lower tax rate. However, at the higher tax rate, the ITC inhibited the technical progress recently but will 

promote the progress in the future. The promotion impact of the ITC agrees with Jin (2012) who used 

an intertemporal CGE model to show that a climate policy could induce additional R&D investment 

and knowledge application in carbon-saving innovations in China. The inhibition impact of the ITC 

implies that owing to the socioeconomic constraints, the carbon pricing was ineffective to orientate the 

technical progress (Finon 2019). 

The ITC will increase the RGDP but decrease the household welfare. The positive ITC impact 

on the RGDP can be also found in Kemfert (2005) who used the multiregional and multi-sectoral 

integrated assessment model to conclude that the ITC would support the carbon-free technologies and 

thus lead to an economic boom. The negative ITC impact on the household welfare could be explained 

by the uncertainties existing in the household decision-making (Knobloch, Pollitt et al. 2019). 

The income elasticity of damage (𝜉) affects the inequality condition. The climate change would 

exacerbate the inequality condition, according to Beck (2010) who remapped the social inequality at 
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the age of the climate change. If the abatement costs of the carbon tax are independent from the income, 

the tax will increase the inequality condition. This finding complies with Markkanen and Anger-Kraavi 

(2019) who showed that a carbon tax would usually increase the inequality condition because of the 

rising energy prices. 

A decrease in the income, caused by the increase of the tax rate, will induce an increase in the 

absolute value of the relative utility. This finding complies with Clark, Frijters et al. (2008) who 

reviewed the evidence on the relative income from the well-being literature, arguing for the positive 

correlations between the individual income and well-being irrespective of the negative relation between 

the happiness and others’ income. 

Recycling the tax revenues to the household will induce the lowest inequality condition in 

comparison with the recycling policies to the other recipients. This finding is compatible with 

Montenegro, Lekavicius et al. (2019) who used a multi-regional CGE to show that redistributing the 

revenues from the carbon certificates decreased the income inequality in EU, as the poor derived a 

higher share of their income from the governmental income redistribution than the rich. Recycling the 

revenues to the low-income household subgroup only will induce the most equitable condition. A 

similar finding can be found in Jorgenson, Goettle et al. (2018) who employed an intertemporal CGE 

model to study the welfare consequences of the carbon taxation. 

The urbanisation will decrease the carbon emissions and intensity in China. This finding is contrary 

to Wang, Wu et al. (2016) who argued that the urbanisation increased the carbon emissions in China. 

The result difference between Wang, Wu et al. (2016) and this paper is caused by the choices of the 

explanatory variables: Wang, Wu et al. (2016) omitted the correlation between the urbanisation and 

GDP, whilst this paper has fully explored the interrelations among the GDP, emissions, energy 

consumption, and urbanisation. 

In the tax scenarios, the urbanisation will decrease the household welfare and RGDP. The negative 

urbanisation impact on the household welfare complies with Van de Poel, O'Donnell et al. (2012) who 

empirically showed that the urbanisation might lead to the unhealth lifestyles. The negative impact of 

the urbanisation on the RGDP complies with Liddle (2013) who adopted a panel method to show that 

the urbanisation had a “ladder” impact on the income: it had a strong negative impact on the poorest 

countries, a less negative to neutral impact on the countries with the moderate incomes, and a 

reinforcing impact on the wealthy countries. As the carbon tax will decrease the national income, the 

urbanisation impact on the economic growth could become negative under the carbon tax. 

The urbanisation will pose an adverse impact on the technical progress. This finding is contrary to 

Duman and Kasman (2017) who empirically showed that the urbanisation improved the environmental 

technical efficiency in the EU. The result difference between Duman and Kasman (2017) and this paper 

lies in the targeted scope of the induced technological change: Duman and Kasman (2017) only 
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researched the environmentally friendly technologies, whilst the technical index considers all kinds of 

the tax-induced technologies in this paper. 

The carbon trading will decrease the carbon price at the target of the 1% tax and in 2025–2030 at 

the target of the 2% tax. This finding agrees with Wu, Dai et al. (2019) who utilised a CGE model to 

conclude that the shadow prices of most sectors in the cap-without-trade scenarios were higher than the 

actual carbon price in Taiwan. The carbon price is not linearly correlated with the emission costs, but 

the costs are influenced by the allocation scheme of the carbon quotas. The more quotas are given to a 

sector, the less emission costs the sector will have. This finding complies with Wu, Dai et al. (2016) 

who concluded that the average costs would almost double in 2020–2030 in Shanghai, owing to the 

increasingly stricter carbon cap. 

The emission costs will be reduced by the decline factor of the free quotas. Conversely, Lin and 

Jia (2018) used a dynamic recursive CGE model to show that a higher decline factor would increase the 

emission costs. The policy coverage may explain this result difference. Only a few sectors were covered 

in Lin and Jia (2018) who did not consider and calculate the future carbon emissions of the noncovered 

sectors. By comparison, in this paper, almost all the sectors are covered by the carbon-cap policy except 

for the electricity subsectors exploiting renewables only. 

The decline factor of the free quotas will increase the RGDP. This finding disagrees with Wu and 

Li (2020) who used a dynamic recursive CGE model to show that the higher the free allocation ratio 

was, the greater the GDP would be in China. The result difference between Wu and Li (2020) and this 

paper lies in the assumption of the projected GDP growth rate: the GDP growth rate was endogenously 

determined and also affected by the decline factor in Wu and Li (2020), whilst the real GDP in this 

paper is assumed to grow at the given rate by OECD (2018). The carbon trading will also increase the 

RGDP. This finding complies with Wang, Dai et al. (2015) who used a two-region dynamic CGE model 

to empirically show that the ETS policy could reduce the mitigation costs and thus increase the GDP. 

The decline factor of the free quotas will increase the household welfare. This finding disagrees 

with Lin and Jia (2018) and Zhang, Li et al. (2018) who argued that the higher decline factor would 

decrease the household welfare. This result difference mainly lies in the assumption on the ETS 

revenues: the government transferred the ETS revenues to the household in Lin and Jia (2018) and 

Zhang, Li et al. (2018). In contrast, the ETS revenue recycling is not considered in this paper, because 

the revenues of the 10% non-free quotas are small compared to the macroeconomic variables. The 

carbon trading will increase the household welfare. This finding is in line with Wu, Dai et al. (2019) 

who used a CGE model to show that the consumption loss, caused by the carbon-cap policy, diminished 

under the ETS policy, and the reduction of the consumption loss would increase the household welfare 

in Taiwan. 
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In summary, the empirical results in this paper generally fit in well with the literature except that 

the result differences are mainly caused by the model assumptions and research methods. 

Limitations and Future Research 
The designed revenue recycling policy could be one limitation in this paper, because the revenues 

are given to an entity as an increase of its income. In the reality, the tax revenues can be used to stimulate 

the economic growth, like the refund of the capital tax and labour tax. Future research may lie in the 

detailed study of the mechanism that the revenue recycling complements the policy effects of the carbon 

tax. 

To model the ancillary benefit, I have assumed that the labour productivity is linearly correlated 

with the 𝑃𝑀2.5 concentrations. However, this linear relation may not exist in the reality. For example, 

Chang, Zivin et al. (2016) empirically found that an increase in the 𝑃𝑀2.5 concentrations led to the 

significant decreases in the productivity of the pear packers with the impacts arising at the levels below 

the air quality standards. Hence, future research may comprehensively model the relation between the 

labour productivity and air pollution. 

The labour productivity is also influenced by other air pollutants, such as 𝑆𝑂2, 𝑁𝑂x, and 𝑃𝑀10, in 

addition to 𝑃𝑀2.5. A climate policy that curbs the carbon emissions may also reduce the emissions of 

these air pollutants, and thus the health benefit in the reality can be much larger than the benefit this 

paper has estimated. Therefore, a composite index, denoting the concentrations of all kinds of the air 

pollutants, may be conducive to revealing how the air pollutants will reduce the labour productivity 

more clearly. 

The improved labour health is beneficial to the human capital accumulation as the capital damages 

are assumed to be linear to the level of the air pollution (Bretschger and Karydas 2018). The clean air 

can also improve the labour health by encouraging the active transportation choices, improving the 

ecosystems, and promoting the health equity in the society (Ambasta and Buonocore 2018). Hence, 

future research may comprehensively explore the other aspects of the health benefit. More importantly, 

as health benefits are only part of ancillary benefits, an unbiased study may fully explore all kinds of 

the ancillary benefits of a climate policy. 

The damage parameter will place undue influences on the climate damages. Future research may 

lie in a clear clarification of the damage function, whose result should be insensitive to the exogenous 

values of the damage parameter. In addition, the measurement of the household welfare is sensitive to 

the variation of the inequality parameter. Hence, the quantification of the household welfare also needs 

to be improved in a way that its value should not be susceptible to the given value of the inequality 

parameter. 
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In this paper, I have only modelled the regional primary benefit of the Chinese carbon tax, and thus 

I may underestimate the entire primary benefits of the tax. This is because the climate benefits usually 

extend beyond the local region where the climate policy is implemented (Lee, Shindell et al. 2016). 

Future research may lie in the modelling of the global primary benefits of the Chinese carbon tax. 

I have only modelled the induced technological change (ITC) of the carbon tax, but the model 

cannot reveal the pure socioeconomic impacts of the technical progress. The ITC is quantified basing 

on Wang, Saunders et al. (2019) who argued that the ITC mainly included the potential changes of the 

energy-saving technologies but excluded the induced development of the decarbonisation or clean 

energies. The narrowed scope of the ITC may underestimate the technical impacts. Future work may 

improve the quantification method of the ITC to include all types of the potential technological changes 

under the carbon tax. 

The relative utility (RU) is insensitive to the parametric value of the weight of relative income (𝛾1) 

but quite sensitive to the rate at which the RU falls as the income rises (𝛾2). Future research may 

improve the definition of the RU so that its value is robust to the given values of both 𝛾1 and 𝛾2. 

The urbanisation is assumed to exogenously influence the policy effects of the carbon tax. The 

exogenous determination may induce a biased evaluation of the urbanisation impacts: the optimal policy 

is based on the given inputted parameters describing the urbanisation impacts, but these parameters 

should vary freely to form the optimal policy. Hence, future research may lie in the use of detailed 

urban-rural population dispersion data to endogenously model the urbanisation impacts in the CGE 

policy evaluation framework. 

To achieve the same abatement target as the carbon tax, the ETS policy will induce a high carbon 

price. However, the carbon price of the ETS market may not reach the simulated level in the reality, 

because the exorbitant price may induce some covered sectors to be overwhelmed (Lin and Jia 2017). 

To overcome the overwhelming carbon pricing under the ETS policy, a potential complementary study 

lies in analysing the ETS impacts on the emission reduction assuming the equal welfare impacts. In the 

complementary study, the ETS carbon pricing is directly linked to the welfare effects of the carbon tax. 

As the carbon tax may not severely harm the economic output, the ETS carbon pricing could be 

reasonable. Perhaps, this paper and the potential complementary study altogether may comprehensively 

reveal whether the carbon tax or ETS policy is preferable. 

Policy Implications 
The carbon tax should be imposed on the electricity consumption rather than electricity generation. 

A differentiated carbon tax on the electricity subsectors is better than a uniformed tax on the electricity 

sector. Compared to the Pigouvian tax, the output tax is more advantageous to be implemented as a 

second-best climate policy because of much more tax revenues generated. Recycling the tax revenues 

is not an important complementary policy of the carbon tax; however, it affects the inequality 
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conditions. The carbon tax has diminishing marginal effects both on the emission reduction and welfare 

loss; however, the marginal effects are almost not affected by the ancillary (health) benefit.  

The health benefit will weaken the policy effects of the carbon tax on the emission reduction and 

welfare loss. In contrast, the primary benefit will weaken the policy effects of the carbon tax on the 

emission reduction, but it will strengthen the policy effects on the intensity reduction and welfare loss. 

The technical impacts will strengthen the policy effects of the tax on the emission reduction, but it 

will weaken the negative effects of the tax on the welfare. However, the inequality impact is not a 

significant factor that influences the policy effects of the carbon tax. By comparison, the urbanisation 

will strengthen the policy effects of the carbon tax on the emission reduction and welfare loss. 

Hence, when the Chinese government designs the carbon tax, it should fully consider the 

influences of the ancillary benefit, primary benefit, technical impacts, inequality impacts, and 

urbanisation impacts on the policy effects of the tax. 

Although carbon taxes are popular in China, the government should support more on ETS policies. 

This is because at the same abatement target, the ETS policy will induce the higher welfare than that of 

the carbon tax. The desired ETS policy includes a higher allocation of the carbon quotas; a lower 

proportion of the free quotas for the given carbon quotas; allowing the trading of the carbon quotas. At 

a stricter abatement target, banning the trading of the free quotas will deteriorate the welfare in the short 

term but will improve the welfare in the long term. 

Considering all the influential factors, China will still meet the INDC target of the carbon intensity 

reduction under the designed carbon tax and ETS policy. Nevertheless, the carbon tax and ETS policy 

cannot help China meet the INDC target of peaking the emissions. To meet this INDC target, China 

needs to implement more climate policies or researchers need to consider more influential factors in the 

policy evaluation framework. 

Overall, I have established a research framework where climate policies can be evaluated less 

biasedly, compared to most previous studies. The research framework can provide theoretical and 

practical guidance to the Chinese government when designing climate policies. In addition, the research 

framework can be applied to analyse the effects of climate policies elsewhere, considering the 

accelerating global warming faced by the human beings. 

 

 

 

 



180 

 

Appendix A: Tables and Figures 

Tables 
Table A1.1 The Sector Division of the Chinese Economy 

1.Agriculture, Forestry, Animal Husbandry & Fishery 1.Agriculture (agric) 

2.Mining and Washing of Coal 2. Mining and Washing of Coal (coalm) 

3.Extraction of Petroleum and Natural Gas 
3.Extraction of Petroleum (petrm) 

4.Extraction of Natural Gas (gasn) 

4.Ferrous Metal and Ore Mining 5. Metal, Ore, Non-metal and Other Mining 

(othm) 5.Non-metal Minerals and Other Mining 

6.Foods and Tobaccos 6. Foods, Beverage & Tobacco (food) 

7.Textile Products 

7.Textile Related Products (texti) 8.Textile Wearing Apparel, Footwear and Caps, 

Leather, furs, down and related products 

9.Processing and Manufacture of Timber and Furniture 
8. Timber Related Products and Recreational 

Products (furni) 
10. Paper and Printing, Cultural, Sporting and Athletic 

and Recreation Products 

11. Petroleum Processing, Coking, and Nuclear Fuel 

Processing 

9. Petroleum, Nuclear Fuel Processing (petrp) 

10.Coking Processing (coking) 

12. Chemical Product 11. Chemical Industry (chemical) 

13. Manufacture of Non-metallic Mineral Products 12. Non-metallic Mineral Products (mineral) 

14. Smelting and Pressing of Ferrous Metals 
13. Metal Products (metal) 

15. Metal products 

16. Manufacture of General-Purpose Machinery 

14. Machinery and Equipment (machi) 

17. Manufacture of Special Purpose Machinery 

18. Manufacture of Railroad Transport Equipment 

19. Manufacture of Electrical Machinery and 

Equipment 

20. Manufacture of Communication Equipment, 

Computers and Other Electronic Equipment 

21. Instruments, meters and other measuring equipment 

22. Other Manufacturing Products 

23. Scrap and Waste 

24. Metal products, Machinery and Equipment 

Maintenance Service 

25. Production and Distribution of Electric Power and 

Heat Power 

15. Electricity Production and Distribution (ED) 

16. Heat Production and Distribution (fipow) 

26. Production and Distribution of Gas 17. Gas Production and Distribution (gasm) 

27. Production and Distribution of Water 18. Water Production and Distribution (water) 

28. Construction 19. Construction (const) 

29. Wholesale and Retail Trade 21. Other Service (service) 

30. Transport, Storage and Post 20. Transport, Storage and Post (trans) 

31. Hotels and Restaurants 

21. Other Service (service) 

32. Information Transfer, Computer Services and 

Software 

33. Finance 

34. Real Estate 

35. Tenancy and Business Services 

36. Scientific Research and Technical Service 

37. Management of Water Conservancy, Environment 

and Public Establishment 

38. Resident Services, Maintenance Service and Other 

Services 

39. Education 

40. Sanitation and Social Work 

41. Culture, Sports and Entertainment 
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42. Public Management Social Security & Social 

Organisations 

 

Table A1.2 The Default Elasticity Parameters in This Chapter 
 rhoQX rhoKEL rhoKE rhoE rhoCPG rhoPG rhocoal rhogas rhopetr rhopow rhoQq rhoCET 

agric 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 3 4 

othm 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 

food 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 
texti 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 

furni 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 

chemical 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 
mineral 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 

metal 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 

machi 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 
commu 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 

const 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2 3 

trans 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2 3 
service 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2 2.5 

coalm 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2 2.5 

coking 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 
petrm 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 

petrp 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 

gasn 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 
gasm 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 2.5 3.5 

fipow 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 1.1 0.5 
TD 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 1.1 0.5 

Supercrit 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 1.1 0.5 

USC 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 1.1 0.5 
subc 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 1.1 0.5 

NG 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 1.1 0.5 

Nuclear 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 1.1 0.5 
Hydro 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 1.1 0.5 

wind 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 1.1 0.5 

solarpv 0.3 0.8 0.6 1.2 1.2 1.3 1.25 1.6 1.25 3 1.1 0.5 

 
Table A1.3 The Decomposition of the Electricity Sector 

Electricity Production and Distribution (ED) 

Electricity Transmission and Distribution (TD) 

Supercritical Coal Generation (Supercrit) 

Ultra-Supercritical Coal Generation (USC) 

Sub-c Coal Generation (Subc) 

Natural Gas Generation (NG) 

Nuclear Power Generation (Nuclear) 

Hydro Power Generation (Hydro) 

Wind Power Generation (Wind) 

 Solar Power Generation (Solar) 

 

Table A5.1 The Palma Ratio in SCRO5 

Tax  0%  1%   2%   3%  

𝜉  Posi Zero Nega Posi Zero Nega Posi Zero Nega Posi Zero Nega 

2015 2.55 2.56 2.57 2.53 2.55 2.56 2.53 2.54 2.55 2.52 2.53 2.55 

2020 2.51 2.55 2.58 2.50 2.54 2.57 2.50 2.53 2.56 2.49 2.53 2.56 

2025 2.52 2.58 2.63 2.51 2.57 2.62 2.50 2.56 2.61 2.50 2.55 2.61 

2030 2.55 2.63 2.71 2.54 2.62 2.70 2.53 2.61 2.69 2.53 2.61 2.68 

 

Table A5.2 The Palma Ratio in SCRO6 

Tax  0%  1%   2%   3%  

𝜉  Posi Zero Nega Posi Zero Nega Posi Zero Nega Posi Zero Nega 

2015 2.55 2.56 2.57 2.82 2.84 2.85 3.32 3.34 3.36 3.86 3.89 3.91 

2020 2.51 2.55 2.58 2.73 2.77 2.81 3.07 3.12 3.17 3.38 3.44 3.50 

2025 2.52 2.58 2.63 2.61 2.68 2.73 2.78 2.85 2.92 2.93 3.01 3.09 

2030 2.55 2.63 2.71 2.58 2.67 2.75 2.67 2.75 2.84 2.75 2.84 2.93 
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Table A5.3 The Palma Ratio in SCRO8 

Tax  0%  1%   2%   3%  

𝜉  Posi Zero Nega Posi Zero Nega Posi Zero Nega Posi Zero Nega 

2015 2.55 2.56 2.57 2.52 2.54 2.55 2.51 2.52 2.53 2.49 2.50 2.52 

2020 2.51 2.55 2.58 2.49 2.53 2.56 2.48 2.51 2.55 2.47 2.50 2.53 

2025 2.52 2.58 2.63 2.50 2.56 2.61 2.49 2.54 2.60 2.48 2.53 2.59 

2030 2.55 2.63 2.71 2.53 2.61 2.69 2.52 2.60 2.67 2.51 2.59 2.66 

 

Table A5.4 The Palma Ratio in SCRO9 

Tax  0%  1%   2%   3%  

𝜉  Posi Zero Nega Posi Zero Nega Posi Zero Nega Posi Zero Nega 

2015 2.55 2.56 2.57 2.81 2.83 2.84 3.29 3.31 3.33 3.80 3.82 3.85 

2020 2.51 2.55 2.58 2.72 2.76 2.80 3.04 3.09 3.14 3.34 3.40 3.46 

2025 2.52 2.58 2.63 2.61 2.67 2.73 2.76 2.83 2.90 2.91 2.98 3.06 

2030 2.55 2.63 2.71 2.58 2.66 2.74 2.65 2.74 2.82 2.72 2.81 2.90 

 

Table A5.5 The Palma Ratio in SCRO11 

Tax  0%  1%  2%  3% 

𝜉  Posi Zero Nega Posi Zero Nega Posi Zero Nega Posi Zero Nega 

2015 2.55 2.56 2.57 2.54 2.55 2.56 2.54 2.55 2.56 2.54 2.55 2.56 

2020 2.51 2.55 2.58 2.51 2.54 2.58 2.51 2.54 2.57 2.51 2.54 2.57 

2025 2.52 2.58 2.63 2.51 2.57 2.62 2.51 2.57 2.62 2.51 2.57 2.62 

2030 2.55 2.63 2.71 2.54 2.62 2.70 2.54 2.62 2.70 2.54 2.62 2.69 

 

Table A5.6 The Palma Ratio in SCRO12 

Tax  0%   1%  2%   3% 

𝜉  Posi Zero Nega Posi Zero Nega Posi Zero Nega Posi Zero Nega 

2015 2.55 2.56 2.57 2.83 2.85 2.86 3.34 3.36 3.38 3.89 3.92 3.95 

2020 2.51 2.55 2.58 2.73 2.78 2.81 3.08 3.13 3.18 3.40 3.47 3.53 

2025 2.52 2.58 2.63 2.62 2.68 2.74 2.79 2.86 2.93 2.95 3.03 3.10 

2030 2.55 2.63 2.71 2.59 2.67 2.75 2.67 2.76 2.85 2.76 2.85 2.94 

 

Table A5.7 The RU Change in the Baseline Scenario When ξ Is Negative 

∆𝛾1 or ∆𝛾2 -50% -40% -30% -20% -10% 

∆𝑅𝑈 by ∆𝛾1 1.77% 1.40% 1.04% 0.68% 0.34% 

∆𝑅𝑈 by ∆𝛾2 UND 25834.80% 2046.02% 526.37% 135.57% 

∆𝛾1 or ∆𝛾2 10% 20% 30% 40% 50% 

∆𝑅𝑈 by ∆𝛾1 -0.33% -0.65% -0.96% -1.26% -1.56% 

∆𝑅𝑈 by ∆𝛾2 -54.26% -77.96% -88.96% -94.29% -96.98% 

Note: UND means undefined 

 

Table A5.8 The RU Change in the 1% Tax Scenario When Tax Revenues Detained by the 

Government under the Abatement Costs Only to High-income Subgroup and ξ Is Negative 

∆𝛾1 or ∆𝛾2 -50% -40% -30% -20% -10% 

∆𝑅𝑈 by ∆𝛾1 8.05% 6.37% 4.73% 3.12% 1.54% 

∆𝑅𝑈 by ∆𝛾2 UND 21283.41% 1756.88% 468.74% 124.46% 

∆𝛾1 or ∆𝛾2 10% 20% 30% 40% 50% 

∆𝑅𝑈 by ∆𝛾1 -1.51% -2.98% -4.43% -5.84% -7.22% 

∆𝑅𝑈 by ∆𝛾2 -51.99% -75.71% -87.22% -93.06% -96.14% 
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Table A5.9 The RU Change in the 1% Tax Scenario When Tax Revenues Detained by the 

Government under the Abatement Costs Proportionally to the Income and ξ Is Negative 

∆𝛾1 or ∆𝛾2 -50% -40% -30% -20% -10% 

∆𝑅𝑈 by ∆𝛾1 8.09% 6.40% 4.75% 3.13% 1.55% 

∆𝑅𝑈 by ∆𝛾2 UND 20984.77% 1736.10% 464.26% 123.53% 

∆𝛾1 or ∆𝛾2 10% 20% 30% 40% 50% 

∆𝑅𝑈 by ∆𝛾1 -1.51% -3.00% -4.44% -5.86% -7.25% 

∆𝑅𝑈 by ∆𝛾2 -51.78% -75.49% -87.04% -92.93% -96.05% 

 

Table A5.10 The RU Change in the 1% Tax Scenario When Tax Revenues Recycled to the  

Low-income Household under the Abatement Costs Proportionally to the Income and ξ Is Negative 

∆𝛾1 or ∆𝛾2 -50% -40% -30% -20% -10% 

∆𝑅𝑈 by ∆𝛾1 8.08% 6.39% 4.74% 3.13% 1.55% 

∆𝑅𝑈 by ∆𝛾2 UND 21029.39% 1739.32% 464.97% 123.68% 

∆𝛾1 or ∆𝛾2 10% 20% 30% 40% 50% 

∆𝑅𝑈 by ∆𝛾1 -1.51% -2.99% -4.44% -5.86% -7.24% 

∆𝑅𝑈 by ∆𝛾2 -51.81% -75.53% -87.07% -92.96% -96.07% 

 

Table A6.1 The Results of the Unit Root Tests 

Variable Form Intercept Trend Test P-value Unit Root 

𝐸𝑡 level no no ADF  0.9799 yes 

level no no PP  1.0000 yes 

1st DIFF yes no ADF 0.1398 yes 

1st DIFF yes no PP 0.0496** no 

2nd DIFF no no ADF <0.0001** no 

2nd DIFF no no PP <0.0001** no 

𝐸𝐶𝑡 level no no ADF  0.9919 yes 

level no no PP  1.0000 yes 

1st DIFF yes no ADF  0.0868 yes 

1st DIFF yes no PP  0.0694 yes 

2nd DIFF no no ADF  <0.0001** no 

2nd DIFF no no PP  <0.0001** no 

𝐺𝐷𝑃𝑡 level yes yes ADF  0.0043** no 

level no no PP   1.0000 yes 

1st DIFF yes no ADF   0.0020** no 

1st DIFF yes no PP  0.0179** no 

𝑈𝑅𝑡 level no no ADF  0.9382 yes 

level yes no PP   0.3091 yes 

1st DIFF no no ADF   0.0996 yes 

1st DIFF no no PP   0.1137 yes 

2nd DIFF no no ADF   <0.0001** no 

2nd DIFF no no PP  <0.0001** no 

Note：** denotes statistical significance at the 5% level 

Table A6.2 The P-values of the White and Breusch-Godfrey LM Tests 

Test ∆2𝐸𝑡 ∆2𝐸𝐶𝑡 Δ𝐺𝐷𝑃𝑡 
White 0.8423 0.9971 0.4102 

Breusch-Godfrey LM 0.2377 0.7495 0.0803 
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Table A6.3 The VIF Scores of the ARDL Models 
Dependent Independent Uncentered VIF 

 

 2.1935 
 1.5042 
 1.4716 

 1.8013 
 1.5188 

 

 1.9360 
 2.2258 
 2.7091 
 2.2458 
 1.8326 

 

 37.5551 
 46.8721 

 44.5444 
 52.9756 
 37.0162 

 
Table A7.1 The Corresponding Relations between Household Energy and Commodity Consumption 
Energy  Commodity  Energy  Commodity  
Coal Coal Supercrit-coal Electricity Supercrit-coal Electricity 
Charcoal Coal USC-coal Electricity USC-coal Electricity 
Crude Oil / Subc-coal Electricity Subc-coal Electricity 
Kerosene Processed Petrol Natural-gas Electricity Natural-gas Electricity 
Gasoline Processed Petrol Nuclear Electricity Nuclear Electricity 
Diesel Oil Processed Petrol Hydro Electricity Hydro Electricity 
Fuel Oil / Wind Electricity Wind Electricity 
Natural Gas Gas and Natural Gas Solar Electricity / 
Electricity Transmission 
and Distribution 

Electricity Transmission 
and Distribution 
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Fig. A1.1 The Baseline Household Emissions in the Consumption and Electricity Model (Unit: 106 t) 
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Fig. A1.2 The Carbon Intensity in the Consumption and Electricity Model (Unit: kg/ CNY) 

 

Fig. A1.3 The RGDP Change in the Consumption and Electricity Model (Unit: 1012 CNY) 

 

Fig. A1.4 The Total Emission Reduction under the Output and Pigouvian Tax 
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Fig. A1.5 The Carbon Intensity Reduction under the Output and Pigouvian Tax 

 

Fig. A1.6 The RGDP Change under the Output and Pigouvian Tax (Unit: 1012 CNY) 

 

Fig. A1.7 The Total Emission Change under Recycling the Tax Revenues 
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Fig. A1.8 The Carbon Intensity Change under Recycling the Tax Revenues 

 

Fig. A1.9 The Change of the RGDP Loss under Recycling the Tax Revenues 

 

Fig. A1.10 The Marginal Policy Effect on the Total Emission Reduction (Unit: 106 t) 
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Fig. A1.11 The Marginal Policy Effect on the Carbon Intensity Reduction (Unit: kg/ CNY) 

 

Fig. A1.12 The Marginal Policy Effect on the RGDP Loss (Unit: 1012 CNY) 

 
Fig. A2.1 The Health Benefit Impact on the Household Emissions under the Revenue Recycling 
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Fig. A2.2 The Health Benefit Impact on the Total Emissions under the Revenue Recycling 

 
Fig. A2.3 The Health Benefit Impact on the Carbon Intensity under the Revenue Recycling 

 
Fig. A2.4 The Health Benefit Impact on the Household Welfare  

Loss under the Revenue Recycling 
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Fig. A2.5 The Health Benefit Impact on the RGDP Loss under the Revenue Recycling 

 
Fig. A2.6 The Health Benefit Impact on the Tax Revenues under the Revenue Recycling 

 
Fig. A4.1 The Household Emission Change in the TL Model Relative to the CD Model 
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Fig. A4.2 The Total Emission Change in the TL Model Relative to the CD Model 

 

Fig. A4.3 The Household Welfare Loss Change in the TL Model Relative to the CD Model 

 

Fig. A4.4 The Tax Revenue Change in the TL Model Relative to the CD Model 
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Fig. A5.1 The Relative Utility (RU) in SCRO5 (Unit: 109 CNY) 

 
Fig. A5.2 The Relative Utility (RU) in SCRO6 (Unit: 109 CNY) 

 
Fig. A5.3 The Relative Utility (RU) in SCRO8 (Unit: 109 CNY) 
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Fig. A5.4 The Relative Utility (RU) in SCRO9 (Unit: 109 CNY) 

 
Fig. A5.5 The Relative Utility (RU) in SCRO11 (Unit: 109 CNY) 

 
Fig. A5.6 The Relative Utility (RU) in SCRO12 (Unit: 109 CNY) 
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Fig. A6.1 The Histogram Diagnostic for the Residual Normality (Dependent Variable: ∆2𝐸𝑡) 

 

Fig. A6.2 The Histogram Diagnostic for the Residual Normality (Dependent Variable: ∆2𝐸𝐶𝑡) 

 

Fig. A6.3 The Histogram Diagnostic for the Residual Normality (Dependent Variable: 𝛥𝐺𝐷𝑃𝑡) 

 

Fig. A6.4 The Recursive Residual Plot (Dependent Variable: ∆2𝐸𝑡)  
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Fig. A6.5 The Recursive Residual Plot (Dependent Variable: ∆2𝐸𝐶𝑡) 

 

Fig. A6.6 The Recursive Residual Plot (Dependent Variable: 𝛥𝐺𝐷𝑃𝑡) 

 

Fig. A6.7 The Urbanisation Impact on the Total Emissions 
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Fig. A6.8 The Relative Change of the Tax Marginal Effect on the Household Emissions 

 
Fig. A6.9 The Relative Change of the Tax Marginal Effect on the Total Emissions 

 
Fig. A6.10 The Relative Change of the Tax Marginal Effect on the Carbon Intensity 
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Fig. A6.11 The Relative Change of the Tax Marginal Effect on the Household Welfare Loss 

 
Fig. A6.12 The Relative Change of the Tax Marginal Effect on the RGDP Loss 

 
Fig. A6.13 The Relative Change of the Tax Marginal Effect on the Tax Revenues 
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Fig. A7.1 The Absolute Change of the RGDP under the Carbon-cap Policy (Unit: 1012 CNY) 

 

Fig. A7.2 The Absolute Change of the Household Welfare Loss  

under the Carbon-cap Policy (Unit: 1012 CNY) 

 

Fig. A7.3 The Absolute Change of the Household Emissions  

under the Carbon-cap Policy (Unit: 106 tonne) 
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Fig. A7.4 The Relative Change of the Household Emissions under the Carbon-cap Policy 

 

Fig. A7.5 The Proportion of the Overall Emission Costs to the RGDP  

Influenced by the Decline Factor 

 

Fig. A7.6 The Absolute Change of the RGDP Influenced by the Decline Factor (Unit: 1012 CNY) 
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Fig. A7.7 The Absolute Change of the Household Welfare Loss 

 Influenced by the Decline Factor (Unit: 1012 CNY) 

 

Fig. A7.8 The Absolute Change of the Household Emissions  

Influenced by the Decline Factor (Unit: 106 tonne) 

 

Fig. A7.9 The Relative Change of the Household Emissions Influenced by the Decline Factor 
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Fig. A7.10 The Proportion of the Overall Emission Costs to the RGDP  
under the Carbon Trading 

 

Fig. A7.11 The Absolute Change of the RGDP under the Carbon Trading (Unit: 1012 CNY) 

 

Fig. A7.12 The Absolute Change of the Household Welfare Loss 
under the Carbon Trading (Unit: 1012 CNY) 
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Fig. A7.13 The Absolute Change of the Household Emissions  

under the Carbon Trading (Unit: 106 tonne) 

 

Fig. A7.14 The Proportion of the Overall Emission Costs to the RGDP  

under Banning the FCQ Trading 

 

Fig. A7.15 The Absolute Change of the RGDP  

under Banning the FCQ Trading (Unit: 1012 CNY) 
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Fig. A7.16 The Absolute Change of the Household Welfare Loss 
under Banning the FCQ Trading (Unit: 1012 CNY) 

 
Fig. A7.17 The Absolute Change of the Household Emissions  

under Banning the FCQ Trading (Unit: 106 tonne) 

 
Fig. A7.18 The Carbon Intensity Influenced by the Decline Factor (Unit: kg/CNY) 
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Fig. A7.19 The Carbon Intensity under the Carbon Trading (Unit: kg/CNY) 

 

Fig. A7.20 The Carbon Intensity under Banning the FCQ Trading (Unit: kg/CNY) 
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Appendix B: Equations in the CGE Model 

 

Table B1 The Sector Abbreviations (Abbr) in the CGE Equations 

Sector Abbr Sector Abbr Sector Abbr 

Agriculture 

Industry 
agric 

Construction 

Industry 
const 

Electricity 

Transmission 
TD 

Other Mining 

Industry 
othm 

Transport and 

Storage 
trans 

Supercrit-coal 

Electricity 
Supercrit 

Food and Tobacco food Service service USC-coal Electricity USC 

Textile texti Coal Mining coalm Subc-coal Electricity subc 

Furniture furni Coking coking Gas Electricity NG 

Chemical Industry chemical Petroleum Mining petrm Nuclear Electricity Nuclear 

Mineral  

Products 
mineral 

Petroleum 

Processing 
petrp 

Hydro  

Electricity 
Hydro 

Metal Products metal Gas Mining gasn Wind Electricity wind 

Machinery machi Gas Production gasm Solar Electricity solarpv 

Water Production water Fire power fipow   
 

Table B2 The Energy Abbreviations (Abbr) in the CGE Equations 

Energy Abbr Energy Abbr Energy Abbr 

Coal Fuel1 Fuel Oil Fuel7 Natural-gas Electricity Fuel13 

Charcoal Fuel2 Natural Gas Fuel8 Nuclear Electricity Fuel14 

Crude Oil Fuel3 Electricity Transmission Fuel9 Hydro Electricity Fuel15 

Kerosene Fuel4 Supercrit-coal Electricity Fuel10 Wind Electricity Fuel16 

Gasoline Fuel5 USC-coal Electricity Fuel11 Solar Electricty Fuel17 

Diesel Oil Fuel6 Subc-coal Electricity Fuel12     

 

********************************Production Function ******************************** 

𝑈𝑁𝐷𝑜𝑡ℎ𝑠,𝑖𝑡 = 𝑐𝑎𝑜𝑡ℎ𝑠,𝑖𝑡 × 𝑁𝐷𝑖𝑡; 
𝑃𝑁𝐷𝑖𝑡 = ∑ (𝑐𝑎𝑜𝑡ℎ𝑠,𝑖𝑡 × 𝑃𝑄𝑜𝑡ℎ𝑠,𝑡)𝑜𝑡ℎ𝑠 ; 

𝑁𝐷𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑁𝐷𝑖𝑡

1

1−𝑝𝑎𝑟𝑄𝑋𝑖𝑡 × (
𝑃𝑋𝑖𝑡

𝑃𝑁𝐷𝑖𝑡
)

1

1−𝑝𝑎𝑟𝑄𝑋𝑖𝑡 × 𝑄𝑋𝑖𝑡; 

𝐾𝐸𝐿𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐾𝐸𝐿𝑖𝑡

1

1−𝑝𝑎𝑟𝑄𝑋𝑖𝑡 × (
𝑃𝑋𝑖𝑡

𝑃𝐾𝐸𝐿𝑖𝑡
)

1

1−𝑝𝑎𝑟𝑄𝑋𝑖𝑡 × 𝑄𝑋𝑖𝑡; 

𝑄𝑋𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝐾𝐸𝐿𝑖𝑡 × 𝐾𝐸𝐿𝑖𝑡
𝑝𝑎𝑟𝑄𝑋𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝑁𝐷𝑖𝑡 × 𝑁𝐷𝑖𝑡

𝑝𝑎𝑟𝑄𝑋𝑖𝑡)1 𝑝𝑎𝑟𝑄𝑋𝑖𝑡⁄ ; 

𝐾𝐸𝑖𝑡 = (𝑠𝑐𝑎𝑙𝑒𝐾𝐸𝐿𝑖𝑡
𝑝𝑎𝑟𝐾𝐸𝐿𝑖𝑡 × 𝑑𝑒𝑙𝑡𝑎𝐾𝐸𝑖𝑡 ×

𝑃𝐾𝐸𝐿𝑖𝑡

𝑃𝐾𝐸𝑖𝑡
)

1

1−𝑝𝑎𝑟𝐾𝐸𝐿𝑖𝑡 × 𝐾𝐸𝐿𝑖𝑡; 

𝑊𝐿𝑡 × 𝑤𝑙𝑑𝑖𝑠𝑡𝑖𝑡 = 𝑃𝐾𝐸𝐿𝑖𝑡 × 𝐾𝐸𝐿𝑖𝑡 × (𝑑𝑒𝑙𝑡𝑎𝐾𝐸𝑖𝑡 ×𝐾𝐸𝑖𝑡
𝑝𝑎𝑟𝐾𝐸𝐿𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐿𝑖𝑡 × 𝐿𝑖𝑡

𝑝𝑎𝑟𝐾𝐸𝐿𝑖𝑡)−1 ×

𝑑𝑒𝑙𝑡𝑎𝐿𝑖𝑡 × 𝐿𝑖𝑡
𝑝𝑎𝑟𝐾𝐸𝐿𝑖𝑡−1; 

𝐾𝐸𝐿𝑖𝑡 = 𝑠𝑐𝑎𝑙𝑒𝐾𝐸𝐿𝑖𝑡 × (𝑑𝑒𝑙𝑡𝑎𝐾𝐸𝑖𝑡 × 𝐾𝐸𝑖𝑡
𝑝𝑎𝑟𝐾𝐸𝐿𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐿𝑖𝑡 × 𝐿𝑖𝑡

𝑝𝑎𝑟𝐾𝐸𝐿𝑖𝑡)1 𝑝𝑎𝑟𝐾𝐸𝐿𝑖𝑡⁄ ; 

𝐸𝑖𝑡 = (𝑠𝑐𝑎𝑙𝑒𝐾𝐸𝑖𝑡
𝑝𝑎𝑟𝐾𝐸𝑖𝑡 × 𝑑𝑒𝑙𝑡𝑎𝐸𝑖𝑡 ×

𝑃𝐾𝐸𝑖𝑡

𝑃𝐸𝑖𝑡
)

1

1−𝑝𝑎𝑟𝐾𝐸𝑖𝑡 × 𝐾𝐸𝑖𝑡; 

𝑊𝐾𝑡 × 𝑤𝑟𝑑𝑖𝑠𝑡𝑖𝑡 = 𝑃𝐾𝐸𝑖𝑡 × 𝐾𝐸𝑖𝑡 × (𝑑𝑒𝑙𝑡𝑎𝐾𝑖𝑡 × 𝐾𝑖𝑡
𝑝𝑎𝑟𝐾𝐸𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐸𝑖𝑡 × 𝐸𝑖𝑡

𝑝𝑎𝑟𝐾𝐸𝑖𝑡)−1 ×

𝑑𝑒𝑙𝑡𝑎𝐾𝑖𝑡 × 𝐾𝑖𝑡
𝑝𝑎𝑟𝐾𝐸𝑖𝑡−1; 

𝐾𝐸𝑖𝑡 = 𝑠𝑐𝑎𝑙𝑒𝐾𝐸𝑖𝑡 × (𝑑𝑒𝑙𝑡𝑎𝐾𝑖𝑡 × 𝐾𝑖𝑡
𝑝𝑎𝑟𝐾𝐸𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐸𝑖𝑡 × 𝐸𝑖𝑡

𝑝𝑎𝑟𝐾𝐸𝑖𝑡)1 𝑝𝑎𝑟𝐾𝐸𝑖𝑡⁄ ; 

𝐸𝑓𝑜𝑠𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑓𝑜𝑠𝑖𝑡

1

1−𝑝𝑎𝑟𝐸𝑖𝑡 × (
𝑃𝐸𝑖𝑡

𝑃𝐸𝑓𝑜𝑠𝑖𝑡
)

1

1−𝑝𝑎𝑟𝐸𝑖𝑡 × 𝐸𝑖𝑡; 

𝐸𝑝𝑜𝑤𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑝𝑜𝑤𝑖𝑡

1

1−𝑝𝑎𝑟𝐸𝑖𝑡 × (
𝑃𝐸𝑖𝑡

𝑃𝐸𝑝𝑜𝑤𝑖𝑡
)

1

1−𝑝𝑎𝑟𝐸𝑖𝑡 × 𝐸𝑖𝑡;  

𝐸𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝑓𝑜𝑠𝑖𝑡 × 𝐸𝑓𝑜𝑠𝑖𝑡
𝑝𝑎𝑟𝐸𝑖𝑡 + 𝑑𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑝𝑜𝑤𝑖𝑡

𝑝𝑎𝑟𝐸𝑖𝑡)1 𝑝𝑎𝑟𝐸𝑖𝑡⁄ ;  
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𝐸𝑐𝑜𝑎𝑙𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑐𝑜𝑎𝑙𝑖𝑡

1

1−𝑝𝑎𝑟𝐶𝑃𝐺𝑖𝑡 × (
𝑃𝐸𝑓𝑜𝑠𝑖𝑡

𝑃𝐸𝑐𝑜𝑎𝑙𝑖𝑡
)

1

1−𝑝𝑎𝑟𝐶𝑃𝐺𝑖𝑡 × 𝐸𝑓𝑜𝑠𝑖𝑡; 

𝐸𝑝𝑔𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑝𝑔𝑖𝑡

1

1−𝑝𝑎𝑟𝐶𝑃𝐺𝑖𝑡 × (
𝑃𝐸𝑓𝑜𝑠𝑖𝑡

𝑃𝐸𝑝𝑔𝑖𝑡
)

1

1−𝑝𝑎𝑟𝐶𝑃𝐺𝑖𝑡 × 𝐸𝑓𝑜𝑠𝑖𝑡; 

𝐸𝑓𝑜𝑠𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝑐𝑜𝑎𝑙𝑖𝑡 × 𝐸𝑐𝑜𝑎𝑙𝑖𝑡
𝑝𝑎𝑟𝐶𝑃𝐺𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝑝𝑔𝑖𝑡 × 𝐸𝑝𝑔𝑖𝑡

𝑝𝑎𝑟𝐶𝑃𝐺𝑖𝑡)1 𝑝𝑎𝑟𝐸𝑖𝑡⁄ ; 

𝐸𝑝𝑒𝑡𝑟𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑝𝑒𝑡𝑟𝑖𝑡

1

1−𝑝𝑎𝑟𝑃𝐺𝑖𝑡 × (
𝑃𝐸𝑝𝑔𝑖𝑡

𝑃𝐸𝑝𝑒𝑡𝑟𝑖𝑡
)

1

1−𝑝𝑎𝑟𝑃𝐺𝑖𝑡 × 𝐸𝑝𝑔𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙8𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙8𝑖𝑡

1

1−𝑝𝑎𝑟𝑃𝐺𝑖𝑡 × (
𝑃𝐸𝑝𝑔𝑖𝑡

𝑃𝐸𝐹𝑢𝑒𝑙8𝑖𝑡
)

1

1−𝑝𝑎𝑟𝑃𝐺𝑖𝑡 × 𝐸𝑝𝑔𝑖𝑡; 

𝐸𝑝𝑔𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝑝𝑒𝑡𝑟𝑖𝑡 × 𝐸𝑝𝑒𝑡𝑟𝑖𝑡
𝑝𝑎𝑟𝑃𝐺𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙8𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙8𝑖𝑡

𝑝𝑎𝑟𝑃𝐺𝑖𝑡)1 𝑝𝑎𝑟𝑃𝐺𝑖𝑡⁄ ; 

𝐸𝐹𝑢𝑒𝑙1𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙1𝑖𝑡

1

1−𝑝𝑎𝑟𝑐𝑜𝑎𝑙𝑖𝑡 ×
𝑃𝐸𝑐𝑜𝑎𝑙𝑖𝑡

𝑃𝑄"coalm",𝑡×(1+𝑡𝑐"coalm",𝑡)

1

1−𝑝𝑎𝑟𝑐𝑜𝑎𝑙𝑖𝑡 × 𝐸𝑐𝑜𝑎𝑙𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙2𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙2𝑖𝑡

1

1−𝑝𝑎𝑟𝑐𝑜𝑎𝑙𝑖𝑡 ×
𝑃𝐸𝑐𝑜𝑎𝑙𝑖𝑡

𝑃𝑄"coking",𝑡×(1+𝑡𝑐"coking",𝑡)

1

1−𝑝𝑎𝑟𝑐𝑜𝑎𝑙𝑖𝑡 × 𝐸𝑐𝑜𝑎𝑙𝑖𝑡; 

𝐸𝑐𝑜𝑎𝑙𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙1𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙1𝑖𝑡
𝑝𝑎𝑟𝑐𝑜𝑎𝑙𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙2𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙2𝑖𝑡

𝑝𝑎𝑟𝑐𝑜𝑎𝑙𝑖𝑡)1 𝑝𝑎𝑟𝑐𝑜𝑎𝑙𝑖𝑡⁄ ; 

𝐸𝑔𝑎𝑠𝑛𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑔𝑎𝑠𝑛𝑖𝑡

1

1−𝑝𝑎𝑟𝑔𝑎𝑠𝑖𝑡 ×
𝑃𝐸𝑔𝑎𝑠𝑖𝑡

𝑃𝑄"gasn",𝑡

1

1−𝑝𝑎𝑟𝑔𝑎𝑠𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙8𝑖𝑡; 

𝐸𝑔𝑎𝑠𝑚𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑔𝑎𝑠𝑚𝑖𝑡

1

1−𝑝𝑎𝑟𝑔𝑎𝑠𝑖𝑡 ×
𝑃𝐸𝑔𝑎𝑠𝑖𝑡

𝑃𝑄"gasm",𝑡

1

1−𝑝𝑎𝑟𝑔𝑎𝑠𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙8𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙8𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝑔𝑎𝑠𝑛𝑖𝑡 × 𝐸𝑔𝑎𝑠𝑛𝑖𝑡
𝑝𝑎𝑟𝑔𝑎𝑠𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝑔𝑎𝑠𝑚𝑖𝑡 × 𝐸𝑔𝑎𝑠𝑚𝑖𝑡

𝑝𝑎𝑟𝑔𝑎𝑠𝑖𝑡)1 𝑝𝑎𝑟𝑔𝑎𝑠𝑖𝑡⁄ ; 

𝐸𝐹𝑢𝑒𝑙3𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙3𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 ×
𝑃𝐸𝑝𝑒𝑡𝑟𝑖𝑡

𝑃𝑄"pertm",𝑡×(1+𝑡𝑐"petrm",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 × 𝐸𝑝𝑒𝑡𝑟𝑖𝑡; 

𝐸𝑝𝑒𝑡𝑟𝑝𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑝𝑒𝑡𝑟𝑝𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 ×
𝑃𝐸𝑝𝑒𝑡𝑟𝑖𝑡

𝑃𝐸𝑝𝑒𝑡𝑟𝑝𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 × 𝐸𝑝𝑒𝑡𝑟𝑖𝑡; 

𝐸𝑝𝑒𝑡𝑟𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙3𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙3𝑖𝑡
𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝑝𝑒𝑡𝑟𝑝𝑖𝑡 × 𝐸𝑝𝑒𝑡𝑟𝑝𝑖𝑡

𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡)1 𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡⁄ ; 

𝐸𝐹𝑢𝑒𝑙4𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙4𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 ×
𝑃𝐸𝑝𝑒𝑡𝑟𝑝𝑖𝑡

𝑃𝑄"petrp",𝑡×(1+𝑡𝑐"petrp",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 × 𝐸𝑝𝑒𝑡𝑟𝑝𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙5_6_7𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙5_6_7𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 ×
𝑃𝐸𝑝𝑒𝑡𝑟𝑝𝑖𝑡

𝑃𝐸𝐹𝑢𝑒𝑙5_6_7𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 × 𝐸𝑝𝑒𝑡𝑟𝑝𝑖𝑡;  

𝐸𝑝𝑒𝑡𝑟𝑝𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙4𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙4𝑖𝑡
𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙5_6_7𝑖𝑡 ×

𝐸𝐹𝑢𝑒𝑙5_6_7𝑖𝑡
𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡)

1

𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙5𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙5𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 ×
𝑃𝐸𝐹𝑢𝑒𝑙5_6_7𝑖𝑡

𝑃𝑄"petrp",𝑡×(1+𝑡𝑐"petrp",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙5_6_7𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙6_7𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙6_7𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 ×
𝑃𝐸𝐹𝑢𝑒𝑙5_6_7𝑖𝑡

𝑃𝐸𝐹𝑢𝑒𝑙6_7𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙5_6_7𝑖𝑡;  

𝐸𝐹𝑢𝑒𝑙5_6_7𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙5𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙5𝑖𝑡
𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙6_7𝑖𝑡 ×

𝐸𝐹𝑢𝑒𝑙6_7𝑖𝑡
𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡)1 𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡⁄ ; 

𝐸𝐹𝑢𝑒𝑙6𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙6𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 ×
𝑃𝐸𝐹𝑢𝑒𝑙6_7𝑖𝑡

𝑃𝑄"petrp",𝑡×(1+𝑡𝑐"petrp",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙6_7𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙7𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙6_7𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 ×
𝑃𝐸𝐹𝑢𝑒𝑙6_7𝑖𝑡

𝑃𝑄"petrp",𝑡×(1+𝑡𝑐"petrp",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙6_7𝑖𝑡;  

𝐸𝐹𝑢𝑒𝑙6_7𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙6𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙6𝑖𝑡
𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙7𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙7𝑖𝑡

𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡)1 𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡⁄ ; 

𝐸𝑓𝑖𝑝𝑜𝑤𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑓𝑖𝑝𝑜𝑤𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝑝𝑜𝑤𝑖𝑡

𝑃𝑄"fipow",𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑝𝑜𝑤𝑖𝑡; 

𝐸𝑒𝑙𝑒𝑐𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑒𝑙𝑒𝑐𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × (
𝑃𝐸𝑝𝑜𝑤𝑖𝑡

𝑃𝑒𝑙𝑒𝑐𝑡
)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑝𝑜𝑤𝑖𝑡; 

𝐸𝑝𝑜𝑤𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝑓𝑖𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑓𝑖𝑝𝑜𝑤𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝑒𝑙𝑒𝑐𝑖𝑡 × 𝐸𝑒𝑙𝑒𝑐𝑖𝑡

𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡)1 𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡⁄ . 

 

The subscript i refers to a sector; 𝑜𝑡ℎ𝑠 refers to a nonenergy sector excluding the fire power sector; t 

refers to a year. 
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𝑐𝑎𝑜𝑡ℎ𝑠,𝑖𝑡 is the Chinese direct consumption coefficient in the input-output table. 

𝑑𝑒𝑙𝑡𝑎𝑐𝑜𝑎𝑙𝑖𝑡 is the share of the coal composite input. 

𝑑𝑒𝑙𝑡𝑎𝐸𝑖𝑡 is the share of the energy composite input. 

𝑑𝑒𝑙𝑡𝑎𝑒𝑙𝑒𝑐𝑖𝑡 is the share of the electricity composite input. 

𝑑𝑒𝑙𝑡𝑎𝑓𝑖𝑝𝑜𝑤𝑖𝑡 is the share of the heat input. 

𝑑𝑒𝑙𝑡𝑎𝑓𝑜𝑠𝑖𝑡 is the share of the fossil composite input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙1𝑖𝑡 is the share of the coal mining input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙2𝑖𝑡 is the share of the charcoal input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙3𝑖𝑡 is the share of the crude oil input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙4𝑖𝑡 is the share of the kerosene input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙5𝑖𝑡 is the share of the gasoline input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙5_6_7𝑖𝑡 is the share of the gasoline-diesel-fuel-oil composite input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙6𝑖𝑡 is the share of the diesel oil input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙6_7𝑖𝑡 is the share of the diesel-fuel-oil composite input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙7𝑖𝑡 is the share of the fuel oil input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙8𝑖𝑡 is the share of the gas composite input. 

𝑑𝑒𝑙𝑡𝑎𝑔𝑎𝑠𝑚𝑖𝑡 is the share of the gas input. 

𝑑𝑒𝑙𝑡𝑎𝑔𝑎𝑠𝑛𝑖𝑡 is the share of the natural gas input. 

𝑑𝑒𝑙𝑡𝑎𝐾𝑖𝑡 is the share of the capital input. 

𝑑𝑒𝑙𝑡𝑎𝐾𝐸𝑖𝑡 is the share of the capital-energy composite input. 

𝑑𝑒𝑙𝑡𝑎𝐾𝐸𝐿𝑖𝑡 is the share of the capital-energy-labour composite input. 

𝑑𝑒𝑙𝑡𝑎𝐿𝑖𝑡 is the share of the labour input. 

𝑑𝑒𝑙𝑡𝑎𝑁𝐷𝑖𝑡 is the share of the intermediate input of the i-th sector. 

𝑑𝑒𝑙𝑡𝑎𝑝𝑒𝑡𝑟𝑖𝑡 is the share of the petroleum composite input. 

𝑑𝑒𝑙𝑡𝑎𝑝𝑒𝑡𝑟𝑝𝑖𝑡 is the share of the processed petroleum composite input. 

𝑑𝑒𝑙𝑡𝑎𝑝𝑔𝑖𝑡 is the share of the petroleum-gas composite input. 

𝑑𝑒𝑙𝑡𝑎𝑝𝑜𝑤𝑖𝑡 is the share of the electricity-heat composite input. 

𝐸𝑖𝑡 is the energy composite input. 

𝐸𝑐𝑜𝑎𝑙𝑖𝑡 is the coal composite input. 

𝐸𝑒𝑙𝑒𝑐𝑖𝑡 is the electricity composite input. 

𝐸𝑓𝑖𝑝𝑜𝑤𝑖𝑡 is the heat input. 

𝐸𝑓𝑜𝑠𝑖𝑡 is the fossil composite input. 

𝐸𝐹𝑢𝑒𝑙1𝑖𝑡 is the coal mining input. 

𝐸𝐹𝑢𝑒𝑙2𝑖𝑡 is the charcoal input. 

𝐸𝐹𝑢𝑒𝑙3𝑖𝑡 is the crude oil input. 

𝐸𝐹𝑢𝑒𝑙4𝑖𝑡 is the kerosene input. 

𝐸𝐹𝑢𝑒𝑙5𝑖𝑡 is the gasoline input. 

𝐸𝐹𝑢𝑒𝑙5_6_7𝑖𝑡 is the gasoline-diesel-fuel-oil composite input. 

𝐸𝐹𝑢𝑒𝑙6𝑖𝑡 is the diesel oil input. 

𝐸𝐹𝑢𝑒𝑙6_7𝑖𝑡 is the diesel-fuel-oil composite input. 

𝐸𝐹𝑢𝑒𝑙7𝑖𝑡 is the fuel oil input. 

𝐸𝐹𝑢𝑒𝑙8𝑖𝑡 is the gas composite input. 

𝐸𝑔𝑎𝑠𝑚𝑖𝑡 is the gas input. 

𝐸𝑔𝑎𝑠𝑛𝑖𝑡 is the natural gas input. 

𝐸𝑝𝑒𝑡𝑟𝑖𝑡 is the petroleum composite input. 

𝐸𝑝𝑒𝑡𝑟𝑝𝑖𝑡 is the processed petroleum composite input. 

𝐸𝑝𝑔𝑖𝑡 is the petroleum-gas composite input. 

𝐸𝑝𝑜𝑤𝑖𝑡 is the electricity-heat composite input. 

𝐾𝑖𝑡 is the capital input. 

𝐾𝐸𝑖𝑡 is the capital-energy composite input. 

𝐾𝐸𝐿𝑖𝑡 is the capital-energy-labour composite input. 

𝐿𝑖𝑡 is the labour input. 

𝑁𝐷𝑖𝑡 is the intermediate input of the i-th sector. 

𝑃𝐸𝑖𝑡 is the price of the energy composite input. 
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𝑃𝐸𝑐𝑜𝑎𝑙𝑖𝑡 is the price of the coal composite input. 

𝑃𝐸𝑒𝑙𝑒𝑐𝑖𝑡 is the price of the electricity composite input. 

𝑃𝐸𝑓𝑖𝑝𝑜𝑤𝑖𝑡 is the price of the heat input. 

𝑃𝐸𝑓𝑜𝑠𝑖𝑡 is the price of the fossil composite input. 

𝑃𝐸𝐹𝑢𝑒𝑙1𝑖𝑡 is the price of the coal mining input. 

𝑃𝐸𝐹𝑢𝑒𝑙2𝑖𝑡 is the price of the charcoal input. 

𝑃𝐸𝐹𝑢𝑒𝑙3𝑖𝑡 is the price of the crude oil input. 

𝑃𝐸𝐹𝑢𝑒𝑙4𝑖𝑡 is the price of the kerosene input. 

𝑃𝐸𝐹𝑢𝑒𝑙5𝑖𝑡 is the price of the gasoline input. 

𝑃𝐸𝐹𝑢𝑒𝑙5_6_7𝑖𝑡 is the price of the gasoline-diesel-fuel-oil composite input. 

𝑃𝐸𝐹𝑢𝑒𝑙6𝑖𝑡 is the price of the price of the diesel oil input. 

𝑃𝐸𝐹𝑢𝑒𝑙6_7𝑖𝑡 is the price of the diesel-fuel-oil composite input. 

𝑃𝐸𝐹𝑢𝑒𝑙7𝑖𝑡 is the price of the fuel oil input. 

𝑃𝐸𝐹𝑢𝑒𝑙8𝑖𝑡 is the price of the gas composite input. 

𝑃𝐸𝑔𝑎𝑠𝑚𝑖𝑡 is the price of the gas input. 

𝑃𝐸𝑔𝑎𝑠𝑛𝑖𝑡 is the price of the natural gas input. 

𝑃𝐸𝑝𝑒𝑡𝑟𝑖𝑡 is the price of the petroleum composite input. 

𝑃𝐸𝑝𝑒𝑡𝑟𝑝𝑖𝑡 is the price of the processed petroleum composite input. 

𝑃𝐸𝑝𝑔𝑖𝑡 is the price of the petroleum-gas composite input. 

𝑃𝐸𝑝𝑜𝑤𝑖𝑡 is the price of the electricity-heat composite input. 

𝑃𝐾𝑖𝑡 is the price of the capital factor input. 

𝑃𝐾𝐸𝑖𝑡 is the price of the capital-energy composite input. 

𝑃𝐾𝐸𝐿𝑖𝑡 is the price of the capital-energy-labour composite input. 

𝑃𝑁𝐷𝑜𝑡ℎ𝑠,𝑖𝑡 is the price of the unit intermediate input. 

𝑃𝑄𝑖𝑡 is the price of an Armington composite good. 

𝑃𝑋𝑖𝑡 is the price of the output of the i-th sector. 

𝑄𝑋𝑖𝑡 is the output of the i-th sector. 

𝑡𝑐𝑖𝑡 is the carbon tax imposed on the output of an energy sector. 

𝑈𝑁𝐷𝑜𝑡ℎ𝑠,𝑖𝑡 is the unit intermediate input. 

𝑊𝐾𝑡 is the price of the capital input. 

𝑊𝐿𝑡 is the price of the labour input 

𝑤𝑙𝑑𝑖𝑠𝑡𝑖𝑡 is the sectoral unit labour input. 

𝑤𝑟𝑑𝑖𝑠𝑡𝑖𝑡 is the sectoral unit capital input. 

𝑝𝑎𝑟𝑄𝑋𝑖𝑡, 𝑝𝑎𝑟𝐾𝐸𝐿𝑖𝑡, 𝑝𝑎𝑟𝐾𝐸𝑖𝑡, 𝑝𝑎𝑟𝐸𝑖𝑡, 𝑝𝑎𝑟𝑃𝐺𝑖𝑡, 𝑝𝑎𝑟𝑐𝑜𝑎𝑙𝑖𝑡, 𝑝𝑎𝑟𝑔𝑎𝑠𝑖𝑡, 𝑝𝑎𝑟𝑝𝑒𝑡𝑟𝑖𝑡, and 𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 are 

all the elasticity parameters in the CES functions. 

𝑠𝑐𝑎𝑙𝑒𝐾𝐸𝐿𝑖𝑡 and 𝑠𝑐𝑎𝑙𝑒𝐾𝐸𝑖𝑡 are the scale parameters in the CES functions. 

*****************************Electricity Production Function*************************** 

𝐸𝐹𝑢𝑒𝑙9𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙9𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝑒𝑙𝑒𝑐𝑡

𝑃𝑄"TD",𝑡×(1+𝑡𝑐"TD",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑒𝑙𝑒𝑐𝑖𝑡; 

𝐸𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × (
𝑃𝐸𝑒𝑙𝑒𝑐𝑡

𝑃𝐸𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑡
)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑒𝑙𝑒𝑐𝑖𝑡; 

𝐸𝑒𝑙𝑒𝑐𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙9𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙9𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑖𝑡 × 𝐸𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑖𝑡

𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡)1 𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡⁄ ; 

𝐸𝑓𝑜𝑠𝑔𝑒𝑛𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑓𝑜𝑠𝑔𝑒𝑛𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × (
𝑃𝐸𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑡

𝑃𝐸𝑓𝑜𝑠𝑔𝑒𝑛𝑡
)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑖𝑡; 

𝐸𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × (
𝑃𝐸𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑡

𝑃𝐸𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑡
)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑖𝑡; 

𝐸𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝑓𝑜𝑠𝑔𝑒𝑛𝑖𝑡 × 𝐸𝑓𝑜𝑠𝑔𝑒𝑛𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑖𝑡 ×

𝐸𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡)1 𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡⁄ ; 

𝐸𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × (
𝑃𝐸𝑓𝑜𝑠𝑔𝑒𝑛𝑡

𝑃𝐸𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑡
)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑓𝑜𝑠𝑔𝑒𝑛𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙13𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙13𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝑓𝑜𝑠𝑔𝑒𝑛𝑡

𝑃𝑄"NG",𝑡×(1+𝑡𝑐"NG",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑓𝑜𝑠𝑔𝑒𝑛𝑖𝑡; 
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𝐸𝑓𝑜𝑠𝑔𝑒𝑛𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑖𝑡 × 𝐸𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙13𝑖𝑡 ×

𝐸𝐹𝑢𝑒𝑙13𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡)1 𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡⁄ ; 

𝐸𝐹𝑢𝑒𝑙10𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙10𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑡

𝑃𝑄"Supercrit",𝑡×(1+𝑡𝑐"Supercrit",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙11_12𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙11_12𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑡

𝑃𝐸𝐹𝑢𝑒𝑙11_12𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑖𝑡; 

𝐸𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙10𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙10𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙11_12𝑖𝑡 ×

𝐸𝐹𝑢𝑒𝑙11_12𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡)1 𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡⁄ ; 

𝐸𝐹𝑢𝑒𝑙11𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙11𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝐹𝑢𝑒𝑙11_12𝑖𝑡

𝑃𝑄"USC",𝑡×(1+𝑡𝑐"USC",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙11_12𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙12𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙12𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝐹𝑢𝑒𝑙11_12𝑖𝑡

𝑃𝑄"subc",𝑡×(1+𝑡𝑐"subc",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙11_12𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙11_12𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙11𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙11𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙12𝑖𝑡 ×

𝐸𝐹𝑢𝑒𝑙12𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡)1 𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡⁄ ; 

𝐸𝐹𝑢𝑒𝑙14𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙14𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑡

𝑃𝑄"Nuclear",𝑡×(1+𝑡𝑐"Nuclear",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑡; 

𝐸𝐹𝑢𝑒𝑙15_16_17𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙15_16_17𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑡

𝑃𝐸𝐹𝑢𝑒𝑙15_16_17𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑡; 

𝐸𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑡 = (𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙14𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙14𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙15_16_17𝑖𝑡 ×

𝐸𝐹𝑢𝑒𝑙15_16_17𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡)1 𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡⁄ ; 

𝐸𝐹𝑢𝑒𝑙15𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙15𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝐹𝑢𝑒𝑙15_16_17𝑖𝑡

𝑃𝑄"Hydro",𝑡×(1+𝑡𝑐"Hydro",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙15_16_17𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙16_17𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙16_17𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝐹𝑢𝑒𝑙15_16_17𝑖𝑡

𝑃𝐸𝐹𝑢𝑒𝑙16_17𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙15_16_17𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙15_16_17𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙15𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙15𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙16_17𝑖𝑡 ×

𝐸𝐹𝑢𝑒𝑙16_17𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡)1 𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡⁄ ; 

𝐸𝐹𝑢𝑒𝑙16𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙16𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝐹𝑢𝑒𝑙16_17𝑖𝑡

𝑃𝑄"wind",𝑡×(1+𝑡𝑐"wind",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙16_17𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙17𝑖𝑡 = 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙17𝑖𝑡

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 ×
𝑃𝐸𝐹𝑢𝑒𝑙16_17𝑖𝑡

𝑃𝑄"solarpv",𝑡×(1+𝑡𝑐"solarpv",𝑡)

1

1−𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙16_17𝑖𝑡; 

𝐸𝐹𝑢𝑒𝑙16_17𝑖𝑡 = (𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙16𝑖𝑡 × 𝐸𝐹𝑢𝑒𝑙16𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙17𝑖𝑡 ×

𝐸𝐹𝑢𝑒𝑙17𝑖𝑡
𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡)1 𝑝𝑎𝑟𝑝𝑜𝑤𝑖𝑡⁄ . 

 

 

𝑑𝑒𝑙𝑡𝑎𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑖𝑡 is the share of the coal electricity composite input. 

𝑑𝑒𝑙𝑡𝑎𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑖𝑡 is the share of the electricity-generation composite input; 

𝑑𝑒𝑙𝑡𝑎𝑓𝑜𝑠𝑔𝑒𝑛𝑖𝑡 is the share of the fossil electricity input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙9𝑖𝑡 is the share of the electricity transmission input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙10𝑖𝑡 is the share of the supercrit-coal electricity input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙11𝑖𝑡 is the share of the USC-coal electricity input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙11_12𝑖𝑡 is the share of the USC-subc-coal electricity composite input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙12𝑖𝑡 is the share of the subc-coal electricity input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙13𝑖𝑡 is the share of the gas electricity input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙14𝑖𝑡 is the share of the nuclear electricity input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙15𝑖𝑡 is the share of the hydroelectricity input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙15_16_17𝑖𝑡 is the share of the hydro-wind-solar electricity composite input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙16𝑖𝑡 is the share of the wind electricity input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙16_17𝑖𝑡 is the share of the wind-solar electricity composite input. 

𝑑𝑒𝑙𝑡𝑎𝐹𝑢𝑒𝑙17𝑖𝑡 is the share of the solar electricity input. 

𝑑𝑒𝑙𝑡𝑎𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑖𝑡 is the share of the renewable electricity generation input. 

𝐸𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑖𝑡 is the coal electricity composite input. 

𝐸𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑖𝑡 is the electricity-generation composite input; 
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𝐸𝑓𝑜𝑠𝑔𝑒𝑛𝑖𝑡 is the fossil electricity input. 

𝐸𝐹𝑢𝑒𝑙9𝑖𝑡 is the electricity transmission input. 

𝐸𝐹𝑢𝑒𝑙10𝑖𝑡 is the supercrit-coal electricity input. 

𝐸𝐹𝑢𝑒𝑙11𝑖𝑡 is the USC-coal electricity input. 

𝐸𝐹𝑢𝑒𝑙11_12𝑖𝑡 is the USC-subc-coal electricity composite input. 

𝐸𝐹𝑢𝑒𝑙12𝑖𝑡 is the subc-coal electricity input. 

𝐸𝐹𝑢𝑒𝑙13𝑖𝑡 is the gas electricity input. 

𝐸𝐹𝑢𝑒𝑙14𝑖𝑡 is the nuclear electricity input. 

𝐸𝐹𝑢𝑒𝑙15𝑖𝑡 is the hydroelectricity input. 

𝐸𝐹𝑢𝑒𝑙15_16_17𝑖𝑡 is the hydro-wind-solar electricity composite input. 

𝐸𝐹𝑢𝑒𝑙16𝑖𝑡 is the wind electricity input. 

𝐸𝐹𝑢𝑒𝑙16_17𝑖𝑡 is the wind-solar electricity composite input. 

𝐸𝐹𝑢𝑒𝑙17𝑖𝑡 is the solar electricity input. 

𝐸𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑖𝑡 is the renewable electricity generation input. 

𝑃𝐸𝑐𝑜𝑎𝑙𝑔𝑒𝑛𝑖𝑡 is the price of the coal electricity composite input. 

𝑃𝐸𝑒𝑙𝑒𝑐𝑔𝑒𝑛𝑖𝑡 is the price of the electricity-generation composite input; 

𝑃𝐸𝑓𝑜𝑠𝑔𝑒𝑛𝑖𝑡 is the price of the fossil electricity input. 

𝑃𝐸𝐹𝑢𝑒𝑙9𝑖𝑡 is the price of the electricity transmission input. 

𝑃𝐸𝐹𝑢𝑒𝑙10𝑖𝑡 is the price of the supercrit-coal electricity input. 

𝑃𝐸𝐹𝑢𝑒𝑙11𝑖𝑡 is the price of the USC-coal electricity input. 

𝑃𝐸𝐹𝑢𝑒𝑙11_12𝑖𝑡 is the price of the USC-subc-coal electricity composite input. 

𝑃𝐸𝐹𝑢𝑒𝑙12𝑖𝑡 is the price of the subc-coal electricity input. 

𝑃𝐸𝐹𝑢𝑒𝑙13𝑖𝑡 is the price of the gas electricity input. 

𝑃𝐸𝐹𝑢𝑒𝑙14𝑖𝑡 is the price of the nuclear electricity input. 

𝑃𝐸𝐹𝑢𝑒𝑙15𝑖𝑡 is the price of the hydroelectricity input. 

𝑃𝐸𝐹𝑢𝑒𝑙15_16_17𝑖𝑡 is the price of the hydro-wind-solar electricity composite input. 

𝑃𝐸𝐹𝑢𝑒𝑙16𝑖𝑡 is the the price of wind electricity input. 

𝑃𝐸𝐹𝑢𝑒𝑙16_17𝑖𝑡 is the price of the wind-solar electricity composite input. 

𝑃𝐸𝐹𝑢𝑒𝑙17𝑖𝑡 is the price of the solar electricity input. 

𝑃𝐸𝑟𝑒𝑛𝑒𝑤𝑔𝑒𝑛𝑖𝑡 is the price of the renewable electricity generation input. 

***********************************Trade Function********************************** 

𝑃𝑊𝑀𝑖𝑡 = 𝑃𝑊𝑀0𝑖𝑡 × 𝐸𝑋𝑅𝑡; 
𝑃𝑊𝐸𝑖𝑡 = 𝑃𝑊𝐸0𝑖𝑡 × 𝐸𝑋𝑅𝑡; 

scaleQQ𝑖 =
𝑄𝑄0𝑖

(𝑑𝑒𝑙𝑡𝑎𝑄𝑀𝑖×𝑄𝑀0𝑖
etaQq𝑗

+𝑑𝑒𝑙𝑡𝑎𝑄𝐷𝑖×𝑄𝐷0𝑖
etaQq𝑗

)

1
etaQq𝑖

; 

𝑑𝑒𝑙𝑡𝑎𝑄𝑀𝑖 =
(1+𝑡𝑚𝑖)×𝑄𝑀𝑖

1−etaQq𝑖

𝑄𝐷0
𝑖

1−etaQq𝑖+(1+𝑡𝑚𝑖)×𝑄𝑀𝑖
1−𝑒𝑡𝑎𝑄𝑞𝑖

; 

𝑄𝐷𝑖𝑡 = (𝑠𝑐𝑎𝑙𝑒𝑄𝑄𝑖𝑡
𝑒𝑡𝑎𝑄𝑞𝑖𝑡 × 𝑑𝑒𝑙𝑡𝑎𝑄𝐷𝑖𝑡 ×

𝑃𝑄𝑖𝑡

𝑃𝐷𝑖𝑡
)

1

1−𝑒𝑡𝑎𝑄𝑞𝑗𝑡 × 𝑄𝑄𝑖𝑡; 

𝑄𝑀𝑖𝑡 = (𝑠𝑐𝑎𝑙𝑒𝑄𝑄𝑖𝑡
𝑒𝑡𝑎𝑄𝑞𝑖𝑡 × 𝑑𝑒𝑙𝑡𝑎𝑄𝑀𝑖𝑡 ×

𝑃𝑄𝑗𝑡

𝑃𝑊𝑀𝑖𝑡(1+𝑡𝑚𝑖𝑡)
)

1

1−𝑒𝑡𝑎𝑄𝑞𝑖𝑡 × 𝑄𝑄𝑖𝑡; 

𝑑𝑒𝑙𝑡𝑎𝑄𝐷𝑖 = 1 − 𝑑𝑒𝑙𝑡𝑎𝑄𝑀𝑖; 

𝑄𝑄0𝑖 = 𝑄𝐷0𝑖 + (1 + 𝑡𝑚𝑖) × 𝑄𝑀0𝑖; 

𝑄𝑄𝑖𝑡 = 𝑠𝑐𝑎𝑙𝑒𝑄𝑄𝑖𝑡 × (𝑑𝑒𝑙𝑡𝑎𝑄𝑀𝑖𝑡 × 𝑄𝑀𝑖𝑡
𝑒𝑡𝑎𝑄𝑞𝑖𝑡 + 𝑑𝑒𝑙𝑡𝑎𝑄𝐷𝑖𝑡 × 𝑄𝐷𝑖𝑡

𝑒𝑡𝑎𝑄𝑞𝑖𝑡)
1

etaQq𝑖𝑡; 

𝑄𝐷𝑚𝑡 = (𝑠𝑐𝑎𝑙𝑒𝐶𝐸𝑇𝑚𝑡
𝑝ℎ𝑖𝐶𝐸𝑇𝑚𝑡 × 𝑑𝑒𝑙𝑡𝑎𝑄𝐷𝑠𝑚𝑡 ×

(1+𝑡𝑖𝑛𝑑𝑚𝑡)×𝑃𝑋𝑚𝑡

𝑃𝐷𝑚𝑡
)

1

1−𝑝ℎ𝑖𝐶𝐸𝑇𝑚𝑡 × 𝑄𝑋𝑚𝑡; 

𝑄𝐸𝑚𝑡 = (𝑠𝑐𝑎𝑙𝑒𝐶𝐸𝑇𝑚𝑡
𝑝ℎ𝑖𝐶𝐸𝑇𝑚𝑡 × 𝑑𝑒𝑙𝑡𝑎𝑄𝐸𝑚𝑡 ×

(1+𝑡𝑖𝑛𝑑𝑚𝑡)×𝑃𝑋𝑚𝑡

𝑃𝑊𝐸𝑚𝑡
)

1

1−𝑝ℎ𝑖𝐶𝐸𝑇𝑚𝑡 × 𝑄𝑋𝑚𝑡; 

𝑄𝑋𝑚𝑡 = 𝑠𝑐𝑎𝑙𝑒𝐶𝐸𝑇𝑚𝑡 × (𝑑𝑒𝑙𝑡𝑎𝑄𝐷𝑠𝑚𝑡 × 𝑄𝐷𝑚𝑡
𝑝ℎ𝑖𝐶𝐸𝑇𝑚𝑡 + 𝑑𝑒𝑙𝑡𝑎𝑄𝐸𝑚𝑡 × 𝑄𝐸𝑚𝑡

𝑝ℎ𝑖𝐶𝐸𝑇𝑚𝑡)1 𝑝ℎ𝑖𝐶𝐸𝑇𝑚𝑡⁄ ; 

𝑄𝐷𝑛𝑡 = (1 + 𝑡𝑖𝑛𝑑𝑛𝑡) × 𝑄𝑋𝑛𝑡; 
𝑄𝐸𝑛𝑡 = 0; 

𝑃𝐷𝑛𝑡 = 𝑃𝑋𝑛𝑡; 
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𝑡𝑚𝑖𝑡 =
𝑇𝐴𝑅𝐼𝐹𝐹𝑖𝑡

𝑄𝑀𝑖𝑡
.  

 

Subscript “m” and “n” refers to a traded and nontraded good respectively.   

𝑑𝑒𝑙𝑡𝑎𝑄𝐷𝑖 is the QD share parameter in the Armington function. 

𝑑𝑒𝑙𝑡𝑎𝑄𝑀𝑖 is the QM share parameter in the Armington function. 

𝑒𝑡𝑎𝑄𝑞𝑖 is the elasticity parameter in the Armington function. 

𝐸𝑋𝑅𝑡 is the currency exchange rate. 

𝑃𝐷𝑖𝑡 is the price of the domestic good. 

𝑝ℎ𝑖𝐶𝐸𝑇𝑚𝑡 is the elasticity parameter in the CET function. 

𝑃𝑄𝑖𝑡 is the price of the Armington composite good. 

𝑃𝑊𝐸𝑖𝑡 is the export price. 

𝑃𝑊𝐸0𝑖𝑡 is the baseline export price. 

𝑃𝑊𝑀𝑖𝑡 is the import price. 

𝑃𝑊𝑀0𝑖𝑡 is the baseline import price. 

𝑃𝑋𝑚𝑡 is the price of the domestic sectoral output. 

𝑄𝐷𝑖𝑡 is the domestic good.  

𝑄𝐷0𝑖𝑡 is the baseline domestic good. 

𝑄𝑀𝑖𝑡 is the import good. 

𝑄𝑀0𝑖𝑡 is the baseline import good. 

𝑄𝑄𝑖𝑡 is the Armington composite good. 

𝑄𝑄0𝑖𝑡 is the baseline Armington composite good. 

𝑄𝑋𝑚𝑡 is the domestic sectoral output. 

scaleQQ𝑖 is the scale parameter in the Armington function. 

𝑇𝐴𝑅𝐼𝐹𝐹𝑖𝑡 is the tariff. 

𝑡𝑖𝑛𝑑𝑖𝑡 is the rate of the production tax. 

𝑡𝑚𝑗 is the tariff rate. 

**********************************Household Function******************************* 

𝑌𝐻𝑖𝑡 = 𝑊𝐿𝑡 × 𝑤𝑙𝑑𝑖𝑠𝑡𝑖𝑡 × 𝐿𝑖𝑡;  
𝑇𝑌𝐿𝑡 = ∑ 𝑌𝐻𝑖𝑡𝑖 ; 

𝑌𝐻𝐾𝑡 = 𝑟𝑎𝑡𝑒ℎ𝑘𝑡 × 𝑇𝑌𝐾𝑡; 
𝑌𝐻𝑊𝑡 = 𝑟𝑎𝑡𝑒ℎ𝑤𝑡 × ∑ (𝑃𝑊𝑀𝑗𝑡 × 𝑄𝑀𝑗𝑡)𝑗 ; 

𝑌𝐻𝑇𝑡 = 𝑇𝑌𝐿𝑡 + 𝑌𝐻𝐾𝑡 + 𝑌𝐸𝐻𝑡 + 𝑌𝐻𝐺𝑡 + 𝑌𝐻𝑊𝑡;     

𝑆𝐻𝑡 = 𝑠𝑎𝑣ℎ𝑡 × 𝑌𝐻𝑇𝑡; 
𝐻𝐷𝑌𝑡 = 𝑌𝐻𝑇𝑡 − 𝑆𝐻𝑡 − 𝐺𝐻𝑇𝐴𝑋𝑡; 
𝐿𝐻𝐷𝑡 = ∑ (𝐿𝐻𝐷0𝑖𝑡 × 𝑃𝑄𝑖𝑡)𝑖 +∑ (𝐻𝐷𝐹𝑢𝑒𝑙𝑄𝑡 × 𝑃𝑌𝑄𝑡 × 𝑡𝑐𝑄𝑡)𝑄 ; 

𝐻𝐷𝑛𝑓𝑒,𝑡 × 𝑃𝑄𝑛𝑓𝑒,𝑡 = 𝐿𝐻𝐷0𝑛𝑓𝑒,𝑡 × 𝑃𝑄𝑛𝑓𝑒,𝑡 +𝑚𝑝𝑐𝑛𝑓𝑒,𝑡 × (𝐻𝐷𝑌𝑡 − 𝐿𝐻𝐷𝑡); 

𝐻𝐷𝑓𝑒,𝑡 × 𝑃𝑄𝑓𝑒,𝑡 × (1 + 𝑡𝑐𝑓𝑒,𝑡) = 𝐿𝐻𝐷0𝑓𝑒,𝑡 × 𝑃𝑄𝑓𝑒,𝑡 × (1 + 𝑡𝑐𝑓𝑒,𝑡) + 𝑚𝑝𝑐𝑓𝑒,𝑡 × (𝐻𝐷𝑌𝑡 − 𝐿𝐻𝐷𝑡). 

 

 

The subscript Q refers to an energy product; 𝑛𝑓𝑒 refers to a nonenergy sector; 𝑓𝑒 refers to an energy 

sector. 

𝐺𝐻𝑇𝐴𝑋𝑡 is the household income tax. 

𝐻𝐷𝑖𝑡 is the household consumption. 

𝐻𝐷𝐹𝑢𝑒𝑙𝑄𝑡 is the household energy consumption. 

𝐻𝐷𝑌𝑡 is the household disposable income. 

𝐿𝐻𝐷𝑡 is the minimum household consumption. 

𝐿𝐻𝐷0𝑖𝑡 is the baseline minimum household consumption. 

𝑚𝑝𝑐𝑖𝑡 is the household marginal propensity to consume. 

𝑃𝑌𝑄𝑡 is the energy price. 

𝑟𝑎𝑡𝑒ℎ𝑘𝑡 is the rate of household capital income in the capital income. 

𝑟𝑎𝑡𝑒ℎ𝑤𝑡 is the rate of household income from the RW. 

𝑠𝑎𝑣ℎ𝑡 is the rate of household saving. 
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𝑆𝐻𝑡 is the household saving. 

𝑇𝑌𝐾𝑡 is the total income from the capital. 

𝑇𝑌𝐿𝑡 is the total household income from the labour. 

𝑊𝐿𝑡 is the price of the labour input 

𝑤𝑙𝑑𝑖𝑠𝑡𝑖𝑡 is the sectoral unit labour input. 

𝑌𝐸𝐻𝑡 is the household transfer income from the enterprise. 

𝑌𝐻𝑖𝑡 is the sectoral household income from the labour. 

𝑌𝐻𝐺𝑡 is the household transfer income from the government. 

𝑌𝐻𝐾𝑡 is the household income from the capital. 

𝑌𝐻𝑊𝑡 is the household income from the rest of the world (RW). 

𝑌𝐻𝑇𝑡 is the total household income. 

************************************ Enterprise Function***************************** 

𝑌𝐾𝑖𝑡 = 𝑊𝐾𝑡 × 𝑤𝑟𝑑𝑖𝑠𝑡𝑖𝑡 × 𝐾𝑖𝑡; 
𝑇𝑌𝐾𝑡 = ∑ 𝑌𝐾𝑖𝑡𝑖 ; 

𝑌𝑊𝐾𝑡 = 𝑟𝑎𝑡𝑒𝑤𝑘𝑡 × 𝑇𝑌𝐾𝑡;        
𝑌𝐸𝐾𝑡 = (1 − 𝑟𝑎𝑡𝑒ℎ𝑘𝑡 − 𝑟𝑎𝑡𝑒𝑤𝑘𝑡) × 𝑇𝑌𝐾𝑡; 
𝑌𝐸𝐻𝑡 = 𝑟𝑎𝑡𝑒ℎ𝑒𝑡 × 𝑌𝐸𝐾𝑡; 
𝑆𝐸𝑡 = 𝑌𝐸𝐾𝑡 − 𝑌𝐸𝐻𝑡 − 𝐺𝐸𝑇𝐴𝑋𝑡; 
𝑆𝑇𝑂𝑖𝑡 = 𝑠𝑡𝑜𝑖𝑛𝑣𝑖𝑡 × 𝑄𝑋𝑖𝑡. 
 

 

𝑟𝑎𝑡𝑒ℎ𝑒𝑡 is the rate of the enterprise income transfer to the household. 

𝑟𝑎𝑡𝑒𝑤𝑘𝑡 is the rate of the RW capital income in the total capital income. 

𝑆𝐸𝑡 is the enterprise saving. 

𝑆𝑇𝑂𝑖𝑡 is the sectoral stock. 

𝑠𝑡𝑜𝑖𝑛𝑣𝑖𝑡 is the sectoral rate of the stock in the produced good. 

𝑇𝑌𝐾𝑡 is the total capital income. 

𝑊𝐾𝑡 is the price of the capital input. 

𝑤𝑟𝑑𝑖𝑠𝑡𝑖𝑡 is the sectoral unit capital input. 

𝑌𝐸𝐾𝑡 is the enterprise capital income. 

𝑌𝐾𝑖𝑡 is the sectoral capital income. 

𝑌𝑊𝐾𝑡 is the RW capital income. 

************************************ Government Function*************************** 

𝐺𝐼𝑁𝐷𝑇𝐴𝑋𝑖𝑡 = 𝑡𝑖𝑛𝑑𝑖𝑡 × 𝑃𝑋𝑖𝑡 × 𝑄𝑋𝑖𝑡; 
𝐺𝑇𝑅𝐼𝐹𝑀𝑖𝑡 = 𝑡𝑚𝑖𝑡 × 𝑃𝑊𝑀𝑖𝑡 × 𝑄𝑀𝑖𝑡; 
𝐺𝐻𝑇𝐴𝑋𝑡 = 𝑡ℎ𝑡 × 𝑌𝐻𝑇𝑡; 
𝐺𝐸𝑇𝐴𝑋𝑡 = 𝑡𝑒𝑡 × 𝑌𝐸𝐾𝑡; 
𝐺𝑊𝑌𝑡 = 𝑟𝑎𝑡𝑒𝑔𝑤𝑡 × ∑ (𝑃𝑊𝑀𝑖𝑡 × 𝑄𝑀𝑖𝑡)𝑖 ; 

𝑌𝐺𝑇𝑡 = ∑ 𝐺𝐼𝑁𝐷𝑇𝐴𝑋𝑖𝑡𝑖 + ∑ 𝐺𝑇𝑅𝐼𝐹𝑀𝑖𝑡𝑖 + 𝐺𝐻𝑇𝐴𝑋𝑡 + 𝐺𝐸𝑇𝐴𝑋𝑡 + 𝐺𝑊𝑌𝑡 + 𝑇𝐶𝑇𝐴𝑋𝑡; 
𝑌𝐻𝐺𝑡 = 𝑟𝑎𝑡𝑒ℎ𝑔𝑡 × 𝑌𝐺𝑇𝑡;  
𝑌𝑊𝐺𝑡 = 𝑟𝑎𝑡𝑒𝑤𝑔𝑡 × 𝑌𝐺𝑇𝑡; 
𝑆𝐺𝑡 = 𝑠𝑎𝑣𝑔𝑡 × 𝑌𝐺𝑇𝑡; 
𝐺𝐷𝑛𝑓𝑒,𝑡 = 𝑐𝑜𝑛𝑔𝑛𝑓𝑒,𝑡 × (1 − 𝑟𝑎𝑡𝑒ℎ𝑔𝑡 − 𝑟𝑎𝑡𝑒𝑤𝑔𝑡 − 𝑠𝑎𝑣𝑔𝑡) × 𝑌𝐺𝑇𝑡/𝑃𝑄𝑛𝑓𝑒,𝑡; 

(1 + 𝑡𝑐𝑓𝑒,𝑡) × 𝐺𝐷𝑓𝑒,𝑡 = 𝑐𝑜𝑛𝑔𝑓𝑒,𝑡 × (1 − 𝑟𝑎𝑡𝑒ℎ𝑔𝑡 − 𝑟𝑎𝑡𝑒𝑤𝑔𝑡 − 𝑠𝑎𝑣𝑔𝑡) × 𝑌𝐺𝑇𝑡/𝑃𝑄𝑓𝑒,𝑡. 

 

 

𝑐𝑜𝑛𝑔𝑓𝑒,𝑡 is the rate of government consumption. 

𝐺𝐷𝑖𝑡 is the government consumption. 

𝐺𝐼𝑁𝐷𝑇𝐴𝑋𝑖𝑡 is the sectoral production tax. 

𝐺𝑇𝑅𝐼𝐹𝑀𝑖𝑡 is the import tax. 

𝐺𝑊𝑌𝑡 is the government income from the RW. 

𝑟𝑎𝑡𝑒ℎ𝑔𝑡 is the rate of government transfer to the household in the government income. 

𝑟𝑎𝑡𝑒𝑔𝑤𝑡 is the rate of the RW transfer to the government in the RW income. 
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𝑠𝑎𝑣𝑔𝑡 is the government saving rate. 

𝑆𝐺𝑡 is the government saving. 

𝑇𝐶𝑇𝐴𝑋𝑡 is the carbon tax revenues. 

𝑡𝑒𝑡 is the rate of the enterprise income which is taxed. 

𝑡ℎ𝑡 is rate of the household income which is taxed. 

𝑡𝑖𝑛𝑑𝑖𝑡 is rate of the production tax in the monetary value of the produced good. 

𝑡𝑚𝑖𝑡 is the rate of the import good which is taxed. 

𝑌𝐺𝑇𝑡 is the total government income. 

𝑌𝐻𝐺𝑡 is the government money transfer to the household. 

𝑌𝑊𝐺𝑡 is the government money transfer to the RW. 

******************************Equilibrium Function********************************** 
∑ (𝑃𝑊𝑀𝑖𝑡 × 𝑄𝑀𝑖𝑡) + 𝑌𝑊𝐾𝑡 + 𝑌𝑊𝐺𝑡 = ∑ (𝑃𝑊𝐸𝑖𝑡 × 𝑄𝐸𝑖𝑡)𝑖 + 𝑌𝐻𝑊𝑡 + 𝐺𝑊𝑌𝑡 + 𝑆𝐹𝑡 × 𝐸𝑋𝑅𝑡𝑖 ; 

𝑇𝑆𝐴𝑉𝑡 = 𝑆𝐸𝑡 + 𝑆𝐺𝑡 + 𝑆𝐻𝑡 + 𝑆𝐹𝑡 × 𝐸𝑋𝑅𝑡; 
𝑇𝐼𝑁𝑉𝑡 = 𝑇𝑆𝐴𝑉𝑡 −∑ (𝑆𝑇𝑂𝑛𝑓𝑒,𝑡 × 𝑃𝑄𝑛𝑓𝑒,𝑡)𝑛𝑓𝑒 − ∑ [𝑆𝑇𝑂𝑛𝑓𝑒,𝑡 × 𝑃𝑄𝑛𝑓𝑒,𝑡 × (1 + 𝑡𝑐𝑓𝑒,𝑡)]𝑛𝑓𝑒 ; 

𝐼𝑁𝑉𝑛𝑓𝑒,𝑡 = 𝑖𝑛𝑣𝑒𝑠𝑡𝑛𝑓𝑒,𝑡 × 𝑇𝐼𝑁𝑉𝑡/𝑃𝑄𝑛𝑓𝑒,𝑡; 

𝐼𝑁𝑉𝑓𝑒,𝑡 × (1 + 𝑡𝑐𝑓𝑒,𝑡) = 𝑖𝑛𝑣𝑒𝑠𝑡𝑓𝑒,𝑡 × 𝑇𝐼𝑁𝑉𝑡/𝑃𝑄𝑓𝑒,𝑡; 

∑ 𝐾𝑖𝑡𝑖 = 𝐾𝑆0𝑡; 
∑ 𝐿𝑖𝑡𝑖 = 𝐿𝑆0𝑡; 
𝑆𝐺𝐷𝑃𝑖𝑡 = 𝑌𝐻𝑖𝑡 + 𝑌𝐾𝑖𝑡 + 𝐺𝐼𝑁𝐷𝑇𝐴𝑋𝑖𝑡; 
𝑅𝐺𝐷𝑃𝑡 = ∑ 𝑆𝐺𝐷𝑃𝑖𝑡𝑖 ; 

𝐺𝐷𝑃𝑡 = 𝑅𝐺𝐷𝑃𝑡 × 𝑃𝐺𝐷𝑃𝑡. 
 

 

𝐺𝐷𝑃𝑡 is the Chinese GDP. 

𝐼𝑁𝑉𝑖𝑡 is the sectoral investment. 

𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑡 is the rate of the investment on Sector i in the total investment. 

𝐾𝑆0𝑡 is the baseline total capital supply. 

𝐿𝑆0𝑡 is the baseline total labour supply. 

𝑃𝐺𝐷𝑃𝑡 is the GDP deflator. 

𝑅𝐺𝐷𝑃𝑡 is the real GDP in China. 

𝑆𝐹𝑡 is the RW saving. 

𝑆𝐺𝐷𝑃𝑖𝑡 is the sectoral output. 

𝑇𝐼𝑁𝑉𝑡 is the total investment. 

𝑇𝑆𝐴𝑉𝑡 is the total saving. 

******************************Carbon Emission Function****************************** 

𝑃𝑌𝑄𝑡 = 𝑃𝑌0𝑄𝑡 × 𝑃𝐺𝐷𝑃𝑡 𝑃𝐺𝐷𝑃0𝑡⁄ ; 

𝑆𝐹𝑢𝑒𝑙𝑖𝑄𝑡 = 𝑆𝐹𝑢𝑒𝑙0𝑖𝑄𝑡 × (𝑆𝐺𝐷𝑃𝑖𝑡 𝑃𝐺𝐷𝑃𝑡⁄ )/(𝑆𝐺𝐷𝑃0𝑖𝑡 𝑃𝐺𝐷𝑃0𝑡⁄ ); 

𝑆𝐶𝐸𝑖𝑡 = ∑ (𝑆𝐹𝑢𝑒𝑙0𝑖𝑄𝑡 × 𝑐𝑒𝑓𝑄)𝑄 ; 

𝐻𝐷𝐹𝑢𝑒𝑙𝑄𝑡 = 𝐻𝐷𝐹𝑢𝑒𝑙0𝑄𝑡 × ∑ (𝐻𝐷𝑖𝑡 × 𝑃𝑄𝑖𝑡)𝑖 ∑ (𝐻𝐷0𝑖𝑡 × 𝑃𝑄0𝑖𝑡)𝑖⁄ ; 

𝐻𝐶𝐸𝑡 = ∑ (𝐻𝐷𝐹𝑢𝑒𝑙𝑄𝑡 × 𝑐𝑒𝑓𝑄)𝑄 ; 

𝑇𝐶𝐸𝑡 = ∑ 𝑆𝐶𝐸𝑖𝑡𝑖 +𝐻𝐶𝐸𝑡; 
𝐶𝐼𝑡 = 𝑇𝐶𝐸𝑡 𝑅𝐺𝐷𝑃𝑡⁄ . 

 

 

𝑐𝑒𝑓𝑄 is the carbon emission factor. 

𝐶𝐼𝑡 is the carbon intensity. 

𝐻𝐶𝐸𝑡 is the household carbon emissions. 

𝐻𝐷𝐹𝑢𝑒𝑙𝑄𝑡 is the household energy consumption. 

𝐻𝐷𝐹𝑢𝑒𝑙0𝑄𝑡 is the baseline household energy consumption. 

𝑃𝑌𝑄𝑡 is the energy price. 

𝑃𝑌0𝑄𝑡 is the baseline energy price. 

𝑆𝐶𝐸𝑖𝑡 is the sectoral carbon emissions. 
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𝑆𝐹𝑢𝑒𝑙𝑖𝑄𝑡 is the sectoral energy consumption. 

𝑆𝐹𝑢𝑒𝑙0𝑖𝑄𝑡 is the baseline energy consumption. 

𝑇𝐶𝐸𝑡 is the total carbon emissions. 

********************************Carbon Tax Function******************************** 

𝐸𝑇𝐴𝑋𝑓𝑒,𝑡 = 𝑡𝑐𝑓𝑒,𝑡 × (𝑌𝐻𝑓𝑒,𝑡 + 𝑌𝐾𝑓𝑒,𝑡 + 𝐺𝐼𝑁𝐷𝑇𝐴𝑋𝑓𝑒,𝑡);  

𝑇𝐶𝑇𝐴𝑋𝑡 = ∑ 𝐸𝑇𝐴𝑋𝑓𝑒,𝑡𝑓𝑒 . 

 

 

𝐸𝑇𝐴𝑋𝑓𝑒,𝑡 is the carbon tax imposed on the output of an energy sector. 

𝑇𝐶𝑇𝐴𝑋𝑡 is the total carbon tax. 

**********************************Welfare Function********************************** 

𝐸𝑉𝑡 = ∑ (𝑃𝑄0𝑖𝑡 × 𝐻𝐷𝑖𝑡)𝑖 − ∑ (𝑃𝑄0𝑖𝑡 × 𝐻𝐷0𝑖𝑡)𝑖 . 

 

 

𝐸𝑉𝑡 is the welfare change induced from the equivalent variation. 

 

 

 

 

 

 

 

 

 

 

 

 



215 

 

Appendix C: Dynamic Transitions 

Demographic Changes 
There are no official projections of the Chinese population by the Chinese government, but UN 

(2017) have projected the Chinese population in nine scenarios in 2017 World Population Prospects 

(WPP). 

 

Fig. C1 The Projected Chinese Population in 2016–2030 (Unit: thousands) 

Table C1 The Projected Chinese Population in the Medium Variant Scenario (Unit: thousands) 
Year 2015 2016 2017 2018 2019 2020 2021 2022 

Population 1397029 1403500 1409517 1415046 1420062 1424548 1428481 1431850 

Year 2023 2024 2025 2026 2027 2028 2029 2030 

Population 1434676 1436995 1438836 1440205 1441106 1441555 1441574 1441182 

Source: UN (2017) 

Fig. C1 shows that in all scenarios except the high variant scenario, the Chinese population will 

rise slowly or even decline in 2030. This projection is consistent with Cai (2012) who empirically found 

that the growth rate of the Chinese population will gradually diminish to zero, and the peak time will 

be 2030. The projected curve of the medium variant scenario is highlighted in red as it is in the middle 

of the nine curves. Hence, the Chinese population is assumed to follow the curve of the medium variant 

scenario, where the Chinese population will have a medium variation of fertility rate. Table C1 shows 

the population data of the medium variant scenario. According to Table C1, the Chinese population is 

expected to peak in 2029, and the annual population growth rate will become negative in 2030.  

Low fertility rate induced by family planning policies may result in the shrinking labour force. In 

the literature, many researchers argued that China has already reached the Lewis turning point (Cai 

2010, Zhang, Yang et al. 2011) where labour supply becomes in shortage, and it is no longer unlimited 

(Cai 2010). Population projection with a total fertility rate (TFR) of 1.4 indicated that the percentage of 

working-age population peaked in 2013 at 71.9% and will be 67.5% in 2030 (Du and Yang 2014).  

According to 2017 China Statistical Yearbook, the number of population aged 15–64 peaked in 2013, 

and it has declined since then. By comparison, the total population remains to grow slightly with the 
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growth mainly from people aged 65 and over. Hence, China’s labour force will continue to decline even 

if the government has already revised the family planning policy from one-child to two-child policy 

(Wang, Zhao et al. 2017).  

High dependency ratio is another demographic phenomenon that may arouse great concern in the 

future. According to 2017 WPP, the dependency ratio (ratio of dependent population per working-age 

population) of China will be 48.0% in 2030, 67.4% in 2050, and 83.8% in 2100 in the medium variant 

scenario (UN 2017). The increasing dependency ratio is due to the decrease of the working-age 

population and the increase of dependent population. 

Table C2 Working Age and Dependent Population in China (Unit: thousands) 
Year 2015 2016 2017 2018 2019 2020 2021 2022 

Working-age  1014777 1012998 1010367 1007330 1004476 1002172 1000769 999793 

Dependent   382251 390502 399150 407716 415586 422376 427712 432056 

Year 2023 2024 2025 2026 2027 2028 2029 2030 

Working-age  998932 997678 995649 992809 989409 985258 980050 973598 

Dependent 435744 439317 443186 447396 451697 456297 461524 467584 

Source: UN (2017) 

Table C2 shows the projected working-age and dependent population in the medium variant 

scenario by 2017 WPP. As there are no official projections of the Chinese population in age groups, I 

assume that the historical population data from the Chinese government will change proportionally to 

the WPP data. Although 2017 WPP includes the historical population data, I have used the data from 

the Chinese government for the consistency purpose as the database of the CGE model is based on the 

statistical yearbooks published by the Chinese authorities. Noticeably, the working-age population is 

assumed to be inputted as a production factor with full employment. Eq. (1) are the equations showing 

the growth of population and labour respectively. 

{
𝑁𝑡+1 = 𝑁𝑡 ∗

𝑁𝑡+1
∗

𝑁𝑡
∗ = 𝑁0 ∗

𝑁𝑡+1
∗

𝑁0
∗

𝐿𝑖,𝑡+1 = 𝐿𝑖𝑡 ∗
𝐿𝑡+1
∗

𝐿𝑡
∗ = 𝐿𝑖0 ∗

𝐿𝑡+1
∗

𝐿0
∗

                                                  (C1) 

In Eq. (C1), the subscript i refers to an industrial sector, and the subscript 0 denotes the base year 

2015. 𝑁𝑡 is the total population in Year t; 𝐿𝑖𝑡 is the number of employees in Sector i in Year t. 𝑁𝑡
∗ is the 

total population in Year t published by WPP; 𝐿𝑡
∗  is the working-age population in Year t published by 

WPP. Because there are no sectoral working age population in 2017 WPP, I assume that the sectoral 

data in the CGE model will follow the same trend as the total data in 2017 WPP. 

Economic Change 
The Organisation for Economic Co-operation and Development (OECD) has published regional 

GDP long-term forecast, whilst other organisations, such as the World Bank and United Nations, only 

provided regional GDP short-term forecast. Based on OECD (2018), Fig. C2 shows the forecast GDP 

growth rate in China during 2016–2020. Noticeably, the GDP projection is based on the 2015 GDP, 

whose data is from 2015 China Input-Output Table. 
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Fig. C2 Projected GDP Growth Rate in China 

According to Fig. C2, the GDP growth rate will decline continuously since 2017, and the number 

in 2030 will be less than half of the number in 2017. Sectoral output growth may follow a different 

growth route from the national GDP. Nevertheless, owing to the lack of data, I assume that the projected 

gross output and intermediate use of nonenergy sectors will follow the GDP projection by OECD (2018) 

and labour projection in 2017 WPP, shown in Eq. (C2) and (C3) respectively. The subscript ne refers 

to a nonenergy sector; 𝑆𝐺𝐷𝑃𝑛𝑒,𝑡 is the sectoral output of Sector ne in Year t; 𝐺𝐷𝑃𝑡
∗ is the projected GDP 

in Year t by OECD (2018); 𝐼𝑀𝑈𝑛𝑒,𝑗𝑡 is the input of Commodity j in the output of Sector ne in Year t; 

𝐿𝑡 is the total employed labour in Year t. 

𝑆𝐺𝐷𝑃𝑛𝑒,𝑡 = 𝑆𝐺𝐷𝑃𝑛𝑒,𝑡−1 ×
𝐺𝐷𝑃𝑡

∗

𝐺𝐷𝑃𝑡−1
∗ ×

𝐿𝑡

𝐿𝑡−1
= 𝑆𝐺𝐷𝑃𝑛𝑒,0 ×

𝐺𝐷𝑃𝑡
∗

𝐺𝐷𝑃0
∗ ×

𝐿𝑡

𝐿0
                    (C2) 

𝐼𝑀𝑈𝑛𝑒,𝑗𝑡 = 𝐼𝑀𝑈𝑛𝑒,𝑗,𝑡−1 ×
𝐺𝐷𝑃𝑡

∗

𝐺𝐷𝑃𝑡−1
∗ ×

𝐿𝑡

𝐿𝑡−1
= 𝐼𝑀𝑈𝑛𝑒,𝑗0 ×

𝐺𝐷𝑃𝑡
∗

𝐺𝐷𝑃0
∗ ×

𝐿𝑡

𝐿0
                    (C3) 

Inflation usually occurs with the economic growth. Like GDP data, to my best knowledge, OECD 

is the only major international organisation that has recently published long-term projections of price 

levels around the world. In the OECD database, Archive 2014 is the most recent publication that 

includes long term baseline projections. The projected price change in 2016–2030 is shown in Fig. C3. 

Noticeably, the price projection is based on the base year 2015 price which is set to one. This is because 

the CGE model analyses how relative price changes affect the model equilibrium. 
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Fig. C3 Projected Annual Price Growth in China and OECD (Countries) Total 

Fig. C3 shows the projected price growth in China and total OECD countries. The price growth in 

China will be higher than that in OECD total. The curve for China is expected to become stable in 2017, 

while the curve for OECD total will be stable since 2019. The prices of domestic goods, intermediate 

inputs, production factors are assumed to follow the curve for China in Fig. C3. As the world GDP 

deflator data is not available in OECD (2014), I assume that the projected price changes of import and 

export goods in China will follow the curve for OECD Total in Fig. C3. 

Energy Consumption  
Table C3 Emission Factors and Densities of Fossil Fuels 

  Emission Factor Unit Density Unit 

Coal 1.9804 𝑘𝑔(𝐶𝑂2)/𝑘𝑔     

Charcoal 3.1839 𝑘𝑔(𝐶𝑂2)/𝑘𝑔     

Crude Oil 3.0703 𝑘𝑔(𝐶𝑂2)/𝐿 0.846 𝑘𝑔/𝐿 

Kerosene 3.0992 𝑘𝑔(𝐶𝑂2)/𝐿 0.79 𝑘𝑔/𝐿 

Gasoline 3.1941 𝑘𝑔(𝐶𝑂2)/𝐿 0.744 𝑘𝑔/𝐿 

Diesel Oil 3.1630 𝑘𝑔(𝐶𝑂2)/𝐿 0.836 𝑘𝑔/𝐿 

Fuel Oil 3.2392 𝑘𝑔(𝐶𝑂2)/𝐿 0.89 𝑘𝑔/𝐿 

Natural Gas 1.9976 𝑘𝑔(𝐶𝑂2)/𝑚
3   

Electricity 0 𝑘𝑔(𝐶𝑂2)/𝑘𝑤ℎ     

Source: IPCC (2006) 

 

Table C3 shows the emission factors of fossil fuels calculated basing on IPCC (2006). For the sake 

of unit conformity, the emissions of the liquid energies need to be divided by the corresponding density. 

The emission factor of electricity is assumed to be zero as the consumption of electricity generates very 

few emissions compared to the overall anthropogenic emissions. The 2015 sectoral carbon emissions 

are calculated basing on the emission factors in Table C3 and sectoral energy consumption data in China 

Energy Statistical Yearbook. By comparison, the sectoral carbon emissions in 2016–2030 are calculated 

basing on the assumption of sectoral energy consumption growth shown below. 

According to the report of CNPC Economics &Technology Research Institute (ETRI), China’s oil 

demand will experience an annual increase of 2.7% in 2015–2020, 1.2% in 2020–2030, and it will peak 
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in 2030. The demand for natural gas will increase by 8.1% annually during 2015–2030; in contrast, the 

demand for coal will decrease by 1.1% yearly in the meantime (ETRI 2017). I assume that energy 

demand equals energy consumption. 

𝑜𝑖𝑙𝑡 = {
 𝑜𝑖𝑙0(1 + 2.7%)

𝑡−2016, 2016 < 𝑡 ≤ 2020

𝑜𝑖𝑙0(1 + 2.7%)
4 ∗ (1 + 1.2%)𝑡−2020, 2020 < 𝑡 ≤ 2030

                        (C4) 

𝑔𝑎𝑠𝑡 = 𝑔𝑎𝑠0 ∗ (1 + 8.1%)
𝑡−2016, 2016 < 𝑡 ≤ 2030                                      (C5) 

𝑐𝑜𝑎𝑙𝑡 = 𝑐𝑜𝑎𝑙0 ∗ (1 − 1.1%)
𝑡−2016, 2016 < 𝑡 ≤ 2030                                      (C6) 

In Eq. (C4) to (C6), 𝑜𝑖𝑙𝑡, 𝑔𝑎𝑠𝑡, and 𝑐𝑜𝑎𝑙𝑡 refer to the oil, gas, and coal consumption in Year t 

respectively. According to the ETRI report, the increase of oil consumption is mainly driven by the 

transport sector, and the drop of increase rate in 2020 is caused by the peaking of household, commercial 

and industrial consumption. Electricity generation and industrial and household use will induce the 

increase of gas consumption, because the Chinese government is implementing “change coal into gas” 

policy to cope with haze. The decrease of the coal consumption is mainly caused by the falling demand 

of industrial sectors owing to the structural optimisation and adjustment of the energy consumption. 

The construction sector will also have a decreasing demand for coal because of the advancement in 

electric technology. 

To compare the projected energy consumption basing on the ETRI report with the data in US 

Energy Information Administration (EIA), the conversion factors in Table C4 are used. 

Table C4 Energy Consumption in British Thermal Unit (Btu) 

 
Source: Conversion Factor 1 from Cook (1991) 

Conversion Factor 2 from EIA (2016) 
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Fig. C4 The Comparison of Projected Energy Consumption in China (Unit: Quadrillion Btu)  

Fig. C4 shows the projected total energy consumption basing on the ETRI report in comparison 

with five scenarios by EIA (2017). According to Fig. C4, the ETRI report overestimated China’s energy 

consumption in 2015–2017 but will underestimate the consumption in 2018–2030. The curve for the 

reference scenario in EIA (2017) will lie in the middle of the curves, which implies that the reference 

scenario shows the projected energy consumption in China on average. Hence, in this thesis, the energy 

consumption growth rate (shown in Table C5) in the reference scenario in EIA (2017) is adopted to 

calculate the projected energy consumption in 2016–2030 basing on the 2015 sectoral energy 

consumption data from China Energy Statistical Yearbook. This is because EIA (2017) did not provide 

sectoral energy consumption data. 

Table C5 Projected Energy Consumption Growth Rate 

Year 2016 2017 2018 2019 2020 2021 2022 2023 

Coal 0.12% 1.05% -0.46% -0.58% -0.82% 0.00% 0.00% 0.00% 

Natural Gas 4.35% 5.56% 6.58% 6.17% 3.49% 7.87% 7.29% 6.80% 

Petrol 3.31% 3.20% 2.33% 2.27% 2.22% 2.90% 2.82% 2.05% 

Electricity 3.00% 2.91% 3.60% 2.48% 1.94% 2.38% 1.62% 1.83% 

Manufacturing 0.73% 1.28% 1.08% 0.18% -0.18% 0.53% 0.53% 0.35% 

Year 2024 2025 2026 2027 2028 2029 2030  

Coal -0.71% -0.83% -0.96% -0.72% -0.73% -0.74% -0.74%  

Natural Gas 4.55% 4.35% 3.33% 4.03% 4.65% 4.44% 4.26%  

Petrol 2.01% 1.97% 1.29% 1.27% 1.26% 0.62% 1.23%  

Electricity 1.35% 1.33% 1.31% 1.08% 1.07% 1.48% 1.46%  

Manufacturing 0.00% -0.35% -0.70% -0.53% -0.36% -0.36% -0.18%  

Source: EIA (2017) 

In Table C5, the electricity data means the end use of electricity, and the projected electricity 

consumption is assumed to have the same growth path as the end use of electricity. According to 1997 

China IO Table, the heat sector mainly produces steam and hot water. Because there is no energy 

consumption projection of the heat sector, the growth of the heat sector is assumed to follow the same 

pattern as the manufacturing sector in EIA (2017). 

The output and intermediate use of an energy sector is assumed to follow the projected energy 

consumption in EIA (2017) and labour growth in 2017 WPP, shown in C7 and C8 respectively. The 

subscript e refers to an energy sector consisting of the production or extraction of coal (coal and coke), 

oil (crude oil and petroleum), gas (gas and natural gas), electricity and heat. 𝐸𝐶𝑒𝑡
∗  is the energy 

consumption of Sector e in Year t projected by EIA (2017). 

𝑆𝐺𝐷𝑃𝑒,𝑡+1 = 𝑆𝐺𝐷𝑃𝑒𝑡 ×
𝐸𝐶𝑒,𝑡+1

∗

𝐸𝐶𝑒𝑡
∗ ×

𝐿𝑡+1

𝐿𝑡
= 𝑆𝐺𝐷𝑃𝑒0 ×

𝐸𝐶𝑒,𝑡+1
∗

𝐸𝐶𝑒0
∗ ×

𝐿𝑡+1

𝐿0
                               (C7) 

𝐼𝑀𝑈𝑒𝑗,𝑡+1 = 𝐼𝑀𝑈𝑒𝑗𝑡 ×
𝐸𝐶𝑒,𝑡+1

∗

𝐸𝐶𝑒𝑡
∗ ×

𝐿𝑡+1

𝐿𝑡
= 𝐼𝑀𝑈𝑒,𝑗0 ×

𝐸𝐶𝑒,𝑡+1
∗

𝐸𝐶𝑒0
∗ ×

𝐿𝑡+1

𝐿0
                                (C8) 
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Capital Accumulation 
Both physical and human capital can induce technological advancement and thus may affect 

emissions (Liu, Guo et al. 2017). However, significant differences exist in how physical or human 

capital affects emissions. Despite its significant role in booming economic growth (Du, Wang et al. 

2014), an increase in physical capital will lead to further use of energy and resources, which implies 

that higher physical capital intensity may cause more pollution (Shimamoto 2017). On the contrary, an 

increase in human capital may decrease the use of fossil fuels in the production process and thus reduce 

anthropogenic emissions (Bano, Zhao et al. 2018). This is because human capital may provide the 

potential minds to understand the energy security and environmental issues, and the knowledge or skills 

to develop renewable energies (Bano, Zhao et al. 2018). In conclusion, physical capital accumulation 

may positively affect emissions, whilst human capital accumulation may affect emissions in the 

opposite direction. 

Having not been officially published, the Chinese social capital stock data have to be obtained from 

the previous research. Long and Herrera (2016) proposed original time series for various definitions of 

physical capital stock in China in 1952–2014. In this thesis, the projected physical capital stock is based 

on Long and Herrera (2016), shown in Eq. (C9). 

𝑃𝐶𝑡+1 = 𝑃𝐶𝑡 × (1 − 𝑑𝑒𝑝𝑡𝑃𝐶) +
𝐼𝑁𝑉𝑃𝐶𝑡

𝑃𝑡
𝐺𝐶𝐹                                           (C9) 

In Eq. (C9), 𝑃𝐶𝑡 is the capital stock in Year t; 𝐼𝑁𝑉𝑃𝐶𝑡 is the gross capital formation in Year t; 

𝑃𝑡
𝐺𝐶𝐹 is the price of gross capital formation; 𝑑𝑒𝑝𝑡𝑃𝐶 is the capital depreciation rate, which is time-

invariant. The 2014 capital stock in Long and Herrera (2016) was based on 1952 price level, and thus 

it needs to be transformed into the stock at 2015 price level. Because Long and Herrera (2016) only 

showed the 𝑃𝑡
𝐺𝐶𝐹 in 1952–2014, I assume that the 𝑃𝑡

𝐺𝐶𝐹 in 2015–2030 will change proportionally to the 

GDP deflator projected by OECD (2014). The projected gross capital formation data are also from 

OECD (2014), but the unit of OECD data needs to be transformed into 𝑦𝑢𝑎𝑛  assuming that the 

exchange rate in 2016–2030 will remain at the 2015 level. Long and Herrera (2016) shows that the 

annual depreciation rate of physical capital is 6.68% in 1952–2014, I assume that the depreciation rate 

in 2015–2030 will remain unchanged. 

Table C6 The Projected Physical Capital Stock in China (Unit: constant 2015 trillion 𝑦𝑢𝑎𝑛) 

Year 2015 2016 2017 2018 2019 2020 2021 2022 

Stock 197.38 215.71 233.18 250.07 266.03 281.33 296.02 310.13 

Year 2023 2024 2025 2026 2027 2028 2029 2030 

Stock 323.51 336.41 348.69 360.44 371.73 382.64 393.26 403.71 

Table C6 shows the projected Chinese physical capital stock calculated using Eq. (C8). According 

to Table C6, the physical capital stock will increase steadily over the studied period; however, the 

growth rate will gradually decrease. 



222 

 

Human capital is defined as the knowledge, skills, competencies and attributes embodied in 

individuals that facilitate the creation of personal, social and economic well-being (Li, Liang et al. 

2013). Compared to physical capital stock, human capital stock is even more difficult to measure. 

Hence, very few studies have successfully measured the Chinese human capital stock, considering the 

enormous amount of the time and effort required for data collection, parameter estimation, and 

computation (Li, Liang et al. 2013). China Centre for Human Capital and Labour Market Research 

(CHLR) has undertaken an expansive research project to study the human capital in China since 2008. 

The agency has released an annual China Human Capital Report since it initiated the project. In the 

2018 report, the Chinese human capital stock in 2015 was estimated as 331.546 trillion 𝑦𝑢𝑎𝑛 at the 

1985 price. After adjusting this data using the 2015 price, I have used Eq. (C10) to calculate the Chinese 

human capital stock in 2016–2030. 

𝐻𝐶𝑡+1 = 𝐻𝐶𝑡 × (1 − 𝑑𝑒𝑝𝑡𝐻𝐶𝑡) + 𝐼𝑁𝑉𝐻𝐶𝑡                                     (C10) 

In Eq. (C10), 𝐻𝐶𝑖𝑡 is the human capital stock in Year t; 𝐼𝑁𝑉𝐻𝐶𝑖𝑡 is the human capital investment 

in Year t; 𝑑𝑒𝑝𝑡𝐻𝐶𝑡 is the human capital depreciation rate, which is time-invariant. Qian, Wang et al. 

(2009) comprehensively calculated the depreciation rate (5.14%) of general and professional knowledge 

and skills in China. I assume that the depreciation rate is the same in the research period as that in Qian, 

Wang et al. (2009).  

According to Jiao and Jiao (2010), human capital can be divided into education, training, health, 

R&D, and migration. As migration human capital only occupies a small proportion of the whole human 

capital, I assume that human capital investment consists of the investment on education, training, health, 

and R&D. 

The 2016 China Educational Finance Statistical Yearbook shows that the total national expenditure 

on education was 3.61 trillion 𝑦𝑢𝑎𝑛 in 2015. As there are no official annual projections of education 

investment, I have projected the education investment based on National Institute of Education Science 

(2017) who expected there would be 8.5 trillion 𝑦𝑢𝑎𝑛 of total national expenditure on education in 

2030. I assume that the projected education investment will increase linearly in 2015–2030, and the 

projection is shown in Table C7. 

Table C7 The Projected Education Investment in China (Unit: trillion 𝑦𝑢𝑎𝑛) 

Year 2015  2016 2017 2018 2019 2020 2021 2022 

Investment 3.61 3.82 4.05 4.29 4.54 4.81 5.09 5.39 

Year 2023 2024 2025 2026 2027 2028 2029 2030 

Investment 5.70 6.04 6.39 6.77 7.16 7.58 8.03 8.50 

According to CreditSuisse (2017), the expenditure on healthcare in China will rise from 611 billion 

USD in 2015 to 2.3 trillion USD in 2030. I assume that the healthcare investment will increase linearly, 

and the exchange rate will remain constant at the 2015 level in the studied period. The projected health 

investment is shown in Table C8. 
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Table C8 The Projected Health Investment in China (Unit: trillion 𝑦𝑢𝑎𝑛) 

Year 2015 2016 2017 2018 2019 2020 2021 2022 

Investment 3.81 4.16 4.54 4.96 5.42 5.92 6.47 7.06 

Year 2023 2024 2025 2026 2027 2028 2029 2030 

Investment 7.72 8.43 9.21 10.06 10.99 12.01 13.11 14.33 

According to 2015 R&D Expenditure Statistical Bulletin, the 2015 R&D expenditure in China was 

1.42 trillion 𝑦𝑢𝑎𝑛. The national innovation-driven development strategy programme by the Chinese 

central government shows the proportion of the R&D expenditure on GDP will be 2.8% in 2030. Based 

on the GDP projection mentioned above, the R&D Expenditure will be 6.40 trillion 𝑦𝑢𝑎𝑛 in 2030. The 

projected R&D expenditure is also assumed to change linearly over the research period, and it is shown 

in Table C9. 

Table C9 The Projected R&D Investment in China (Unit: trillion 𝑦𝑢𝑎𝑛) 

Year  2015 2016 2017 2018 2019 2020 2021 2022 

investment 1.42 1.57 1.73 1.92 2.12 2.34 2.59 2.86 

Year  2023 2024 2025 2026 2027 2028 2029 2030 

investment 3.17 3.50 3.87 4.28 4.73 5.23 5.79 6.40 

Unlike education, health, and R&D, to my best knowledge, training investment doesn’t have 

official projections in 2030. According to CIconsulting (2018), the Chinese educational training market 

was projected to increase by 12% annually to over 3 trillion 𝑦𝑢𝑎𝑛 in 2020. I assume that the training 

market will continue to grow by 12% annually in 2021–2030. The projected training investment is 

shown in Table C10. 

Table C10 The Projected Training Investment in China (Unit: trillion 𝑦𝑢𝑎𝑛) 

Year 2015 2016 2017 2018 2019 2020 2021 2022 

Investment 1.66 1.96 2.20 2.46 2.75 3.08 3.45 3.87 

Year 2023 2024 2025 2026 2027 2028 2029 2030 

Investment 4.33 4.85 5.44 6.09 6.82 7.64 8.55 9.58 

The depreciation rate of the human capital is difficult to obtain, as the perpetual inventory method 

is used to calculate the human capital stock. I assume that the annual depreciation rate of human capital 

is equivalent to the inflation rate. The projected inflation rate in China is from OECD (2014), shown in 

Fig. C3. Hence, the projected human capital stock is calculated and shown in Table C11 where the data 

have been adjusted to the 2015 price level. Table C11 shows that the human capital stock in China will 

grow steadily over the research period. 

Table C11 The Projected Human Capital Stock in China (Unit: trillion 𝑦𝑢𝑎𝑛)  

Year 2015 2016 2017 2018 2019 2020 2021 2022 

stock 1555.81 1571.38 1590.35 1613.89 1642.51 1676.63 1716.68 1763.15 

Year 2023 2024 2025 2026 2027 2028 2029 2030 

stock 1816.59 1877.60 1946.85 2025.09 2113.12 2211.85 2322.29 2445.52 

To overcome the paucity of sectoral physical capital data, I have referred to the convergence of the 

capital-output ratio, which means that the ratio tends to converge towards a steady-state value across 

countries in the long-term (McQuinn and Whelan 2007). Hence, I assume that sectoral physical capital 

stock, investment and depreciation are linked to the ratio of sectoral output to the overall output, shown 

in Eq. (C11). Owing to the unavailability of the sectoral human capital data, I make assumptions on the 
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number of employees and their education years, which are the two main features of human capital 

(Wang, Liu et al. 2018). As there are no official data of the employees’ education years, I assume that 

the education years are equally distributed across sectors. Therefore, sectoral human capital stock, 

investment and depreciation are linked to the proportional of sectoral employed labour to the overall 

labour, shown in Eq. (C12). 

{
 
 

 
 𝑃𝐶𝑖𝑡 =

𝑆𝐺𝐷𝑃𝑖𝑡

∑ 𝑆𝐺𝐷𝑃𝑖𝑡𝑖
× 𝑃𝐶𝑡

𝐼𝑁𝑉𝑃𝐶𝑖𝑡 =
𝑆𝐺𝐷𝑃𝑖𝑡

∑ 𝑆𝐺𝐷𝑃𝑖𝑡𝑖
× 𝐼𝑁𝑉𝑃𝐶𝑡

𝐷𝐸𝑃𝑅𝐸𝑃𝐶𝑖𝑡 =
𝑆𝐺𝐷𝑃𝑖𝑡

∑ 𝑆𝐺𝐷𝑃𝑖𝑡𝑖
× 𝐷𝐸𝑃𝑅𝐸𝑃𝐶𝑡

                                                (C11) 

{
 
 

 
 𝐻𝐶𝑖𝑡 =

𝐿𝑖𝑡

𝐿𝑡
× 𝐻𝐶𝑡

𝐼𝑁𝑉𝐻𝐶𝑖𝑡 =
𝐿𝑖𝑡

𝐿𝑡
× 𝐼𝑁𝑉𝐻𝐶𝑡

𝐷𝐸𝑃𝑅𝐸𝐻𝐶𝑖𝑡 =
𝐿𝑖𝑡

𝐿𝑡
× 𝐷𝐸𝑃𝑅𝐸𝐻𝐶𝑡

                                                 (C12) 

In Eq. (C11) and (C12), 𝑃𝐶𝑖𝑡 and 𝐻𝐶𝑖𝑡 refer to the physical and human capital stock of Sector i in 

Year t respectively. 𝐼𝑁𝑉𝑃𝐶𝑖𝑡 and 𝐼𝑁𝑉𝐻𝐶𝑖𝑡 refer to the physical and human capital investment of Sector 

i in Year t respectively. 𝐷𝐸𝑃𝑅𝐸𝑃𝐶𝑖𝑡  and 𝐷𝐸𝑃𝑅𝐸𝐻𝐶𝑖𝑡  refer to the physical and human capital 

depreciation of Sector i in Year t respectively. 

A conventional input-output table shows that a portion of each intermediate transaction reflects the 

value of pure physical flows, with the remainder being the value of intangible knowledge flows (Jin 

2012). Jin (2012) quantified human capital flows embodied in an intermediate transaction, shown in 

Eq. (C13). 𝑖𝑛𝑡𝑖𝑗𝑡 denotes the intermediate inputs from Sector i to j in Year t; ℎ𝑐𝑖𝑗𝑡 is the embodied 

human capital flows from Sector i to j in Year t; 𝐼𝑁𝑇𝑖𝑡 is the total intermediate production of Sector i 

in Year t. 

ℎ𝑐𝑖𝑗𝑡

𝑖𝑛𝑡𝑖𝑗𝑡
=

∑ ℎ𝑐𝑖𝑗𝑡𝑗

∑ 𝑖𝑛𝑡𝑖𝑗𝑡𝑗
=

𝐼𝑁𝑉𝐻𝐶𝑖𝑡

𝐼𝑁𝑇𝑖𝑡
 ⇒   ℎ𝑐𝑖𝑗𝑡 =

𝑖𝑛𝑡𝑖𝑗𝑡

𝐼𝑁𝑇𝑖𝑡
× 𝐼𝑁𝑉𝐻𝐶𝑖𝑡                       (C13) 

Traditionally, human capital investment was regarded as a competitor for physical capital 

investment (Alvarez Albelo 1999). The endogenous replacement of physical capital accumulation by 

human capital accumulation as a prime engine of economic growth was captured in the transition from 

the Industrial Revolution to modern growth (Galor and Moav 2004). Daniels and Kakar (2017) showed 

that physical capital has a CES substitution with human capital in the production function. Accordingly, 

the composite score of capital investment is formed through a CES function, shown in Eq. (C14). 

𝐼𝑁𝑉𝑖𝑡 = 𝑠𝑖𝑛𝑣𝑖 × (𝑆𝐼𝑃𝐶𝑖𝑡 × 𝐼𝑁𝑉𝑃𝐶𝑖𝑡

𝜌𝑖𝑛,𝑖−1

𝜌𝑖𝑛,𝑖 + (1 − 𝑆𝐼𝑃𝐶𝑖𝑡) × 𝐼𝑁𝑉𝐻𝐶𝑖𝑡

𝜌𝑖𝑛,𝑖−1

𝜌𝑖𝑛,𝑖 ) 

𝜌𝑖𝑛,𝑖
𝜌𝑖𝑛,𝑖−1    (C14) 
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In Eq. (C14), 𝐼𝑁𝑉𝑖𝑡 is the total investment of Sector i in Year t; 𝑠𝑖𝑛𝑣𝑖 is the scale parameter for the 

investment in Sector i; 𝑆𝐼𝑃𝐶𝑖𝑡 is the share parameter of physical capital investment in Sector i in Year 

t; 𝜌𝑖𝑛,𝑖  is the elasticity parameter between the physical and human capital investment in Sector i. 

Dynamic Change of the SAM 

{
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                                              (C15) 

{
𝐼𝑀𝑈𝑛𝑒,𝑗𝑡̂ = 𝐼𝑀𝑈𝑛𝑒,𝑗0 ×

𝐺𝐷𝑃𝑡
∗

𝐺𝐷𝑃0
∗ ×

𝐿𝑡

𝐿0
×

𝑃𝐶𝑖𝑡+𝐻𝐶𝑖𝑡

𝑃𝐶𝑖0+𝐻𝐶𝑖0

𝐼𝑀𝑈𝑒𝑗𝑡̂ = 𝐼𝑀𝑈𝑒𝑗0 ×
𝐸𝐶𝑒𝑡

∗

𝐸𝐶𝑒0
∗ ×

𝐿𝑡

𝐿0
×

𝑃𝐶𝑖𝑡+𝐻𝐶𝑖𝑡

𝑃𝐶𝑖0+𝐻𝐶𝑖0

                                      (C16) 

The composite influential factor that considers the influence of projected economic growth or 

energy consumption, effective labour supply, and capital accumulation is defined in Eq. (C15). The 

ultimate intermediate use part of the SAM table is defined in Eq. (C16). 𝐶𝐼𝐹𝑛𝑒,𝑡 and 𝐶𝐼𝐹𝑒𝑡 refer to the 

composite influential factor for a nonenergy and energy sector respectively. The composite influential 

factor for either an energy sector or nonenergy sector is denoted by 𝐶𝐼𝐹𝑖𝑡 . 𝐶𝐼𝐹𝑡
𝑊  is the composite 

influential factor for the world. 𝐺𝐷𝑃𝑡
𝑊 is the world GDP from GDP Long-term Forecast by OECD. 𝐿𝑡

𝑊 

is the world labour from the world population aged 15–64 in 2017 WPP. 𝐶𝑆𝑡
𝑊 is the world capital stock 

from the CEPII database by Foure, Benassy-Quere et al. (2013). 𝐸𝐶𝑒𝑡
∗  is the projected energy 

consumption given by EIA (2017). 𝐼𝑀𝑈𝑛𝑒,𝑗𝑡̂  and 𝐼𝑀𝑈𝑒𝑗𝑡̂  refer to the ultimate input of Commodity j in 

the Output of Nonenergy Sector ne and Energy Sector e respectively. 

The 2015 China Input-Output Table shows Compensation of Employees, Net Taxes on Production, 

Depreciation of Fixed Capital, and Operating Surplus. The dynamic change of these four indexes is 

shown in Eq. (17). The sectoral output is defined as the summation of these four indexes, whilst the 

GDP for the country is defined as the summation of the sectoral output, shown in Eq. (C18). 

{
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                                     (C17) 

{
𝑆𝐺𝐷𝑃𝑖𝑡̂ =𝑌𝐻𝑖�̂� + 𝐺𝐼𝑁𝐷𝑇𝐴𝑋𝑖𝑡̂ +𝐷𝐸𝑃𝑅𝐸𝑖𝑡̂ +𝑂𝑆𝑖𝑡̂

𝐺𝐷𝑃�̂� = ∑ 𝑆𝐺𝐷𝑃𝑖𝑡̂
𝑖 = ∑ 𝑆𝐺𝐷𝑃𝑛𝑒,𝑡 +̂

𝑛𝑒 ∑ 𝑆𝐺𝐷𝑃𝑒𝑡̂
𝑒

                        (C18) 

In Eq. (C17), 𝑌𝐻𝑖�̂� is the ultimate employees’ compensation or household income from Sector i in 

Year t; 𝐺𝐼𝑁𝐷𝑇𝐴𝑋𝑖𝑡̂  is the ultimate net production taxes of Sector i in Year t; 𝐷𝐸𝑃𝑅𝐸𝑖𝑡̂  is the fixed 

capital depreciation of Sector i in Year t; 𝑂𝑆𝑖𝑡̂  is the ultimate operating surplus of Sector i in Year t. 𝑁𝑡
∗ 
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denotes the projected Chinese population in 2017 WPP. 𝑌𝐻𝑖�̂� is assumed to change with the population 

growth and composite influential factor. 𝐺𝐼𝑁𝐷𝑇𝐴𝑋𝑖𝑡̂  and 𝑂𝑆𝑖𝑡̂  are assumed to change with the 

composite influential factor only. In contrast, 𝐷𝐸𝑃𝑅𝐸𝑖𝑡̂  is only related to the estimated physical capital 

depreciation according to Long and Herrera (2016). In Eq. (C18), 𝑆𝐺𝐷𝑃𝑖𝑡̂  denotes the sectoral 

output; 𝐺𝐷𝑃�̂� is the ultimate GDP in Year t. 

According to Guo et al. (2014), the sectoral capital input is determined by the sectoral depreciation 

divided by the depreciation rate, shown in Eq. (C19). The capital income equals the summation of the 

fixed capital depreciation and the operating surplus, shown in Eq. (C20). 

𝐾𝑖𝑡 =
𝐷𝐸𝑃𝑅𝐸𝑖𝑡̂

𝑑𝑒𝑝𝑡𝑖
                                                                (C19) 

𝑌𝐾𝑖�̂� = 𝐷𝐸𝑃𝑅𝐸𝑖𝑡̂ +𝑂𝑆𝑖𝑡̂                                                      (C20) 

In Eq. (C19) and (C20), 𝐾𝑖𝑡 is the capital input of Sector i in Year t; 𝑑𝑒𝑝𝑡𝑖 denotes the depreciation 

rate which is time-invariant; 𝑌𝐾𝑖�̂� is the capital income from Sector i in Year t. Hence, the household 

and rest of the world (RW) capital income is defined in Eq. (C21). 

{
𝑌𝐻𝐾�̂� = 𝑌𝐻𝐾0 ×

𝑁𝑡
∗

𝑁0
∗ ×

𝐺𝐷𝑃�̂�

𝐺𝐷𝑃0

𝑌𝑊𝐾𝑡̂ =𝑌𝑊𝐾0 ×
𝐺𝐷𝑃�̂�

𝐺𝐷𝑃0

                                               (C21) 

In Eq. (C21), 𝑌𝐻𝐾�̂� is the household capital income in Year t; 𝑌𝑊𝐾𝑡̂  is the RW capital income in 

Year t. Eq. (C21) implies that 𝑌𝐻𝐾�̂� is assumed to change proportionally to the population growth and 

GDP, whilst 𝑌𝑊𝐾𝑡̂  is assumed to change proportionally to GDP growth only.  The enterprise capital 

income 𝑌𝐸𝐾�̂� is used as the balancing item of the capital account in the SAM. 

As the sectoral output changes over time, the final use part of the SAM also changes. The 

household consumption is assumed to change proportionally to the population growth and composite 

influential factor. In contrast, the enterprise, government and RW consumption (export) are assumed to 

be related to the composite influential factor only. 

{
 
 
 
 

 
 
 
 𝐻𝐷𝑖�̂� = 𝐻𝐷𝑖0 ×

𝑁𝑡
∗

𝑁0
∗ × 𝐶𝐼𝐹𝑖𝑡

𝐺𝐷𝑖�̂� = 𝐺𝐷𝑖0 × 𝐶𝐼𝐹𝑖𝑡
𝐼𝑁𝑉𝑖�̂� = 𝐼𝑁𝑉𝑖0 × 𝐶𝐼𝐹𝑖𝑡

𝑄𝑀𝑖�̂� = 𝑄𝑀𝑖0 ×
𝑁𝑡
∗

𝑁0
∗ × 𝐶𝐼𝐹𝑖𝑡

𝑄𝐸𝑖�̂� = 𝑄𝐸𝑖0 ×
𝑁𝑡
𝑊

𝑁0
𝑊 × 𝐶𝐼𝐹𝑖𝑡

𝑊

𝐺𝑇𝑅𝐼𝐹𝑀𝑖𝑡̂ =𝐺𝑇𝑅𝐼𝐹𝑀𝑖0 × 𝐶𝐼𝐹𝑖𝑡

                                           (C22) 

In Eq. (C22), 𝐻𝐷𝑖�̂� is the adjusted household consumption of Commodity i in Year t; 𝐺𝐷𝑖�̂� is the 

adjusted government consumption of Commodity i in Year t; 𝐼𝑁𝑉𝑖�̂�  is the adjusted total capital 
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investment of Sector i in Year t; 𝑄𝑀𝑖�̂� is the adjusted import of Commodity i in Year t; 𝑄𝐸𝑖�̂� is the 

adjusted export of Commodity i in Year t; 𝐺𝑇𝑅𝐼𝐹𝑀𝑖𝑡
̂  is the adjusted import tax of Sector i in Year t; 

𝑁𝑡
𝑊  is the projected world population from the medium-variant scenario in 2017 WPP. Eq. (C22) 

implies that 𝐻𝐷𝑖�̂�  and 𝑄𝑀𝑖�̂�  are assumed to change proportionally to the Chinese population and 

composite influential factor, whilst 𝑄𝐸𝑖�̂�  is assumed to change proportionally to the population and 

composite influential factor in the world. In contrast, 𝐺𝐷𝑖�̂� , 𝐼𝑁𝑉𝑖�̂� , and 𝐺𝑇𝑅𝐼𝐹𝑀𝑖𝑡
̂  are assumed to 

change proportionally to the composite influential factor only. The sectoral stock change 𝑆𝑇𝑂𝑖𝑡 is used 

to balance the commodity account in the SAM. 

{
 
 
 

 
 
 𝑌𝐻𝐺�̂� = 𝑌𝐻𝐺0 ×

𝑁𝑡−𝐿𝑡

𝑁0−𝐿0
×
𝐺𝐷𝑃�̂�

𝐺𝐷𝑃0

𝑌𝐻𝑊 𝑡
̂ =𝑌𝐻𝑊0 ×

𝑁𝑡
∗

𝑁0
∗ ×

𝐺𝐷𝑃𝑡
𝑊

𝐺𝐷𝑃0
𝑊

𝐺𝐻𝑇𝐴𝑋𝑡̂ =𝐺𝐻𝑇𝐴𝑋0 ×
𝐿𝑡

𝐿0
×
𝐺𝐷𝑃�̂�

𝐺𝐷𝑃0

𝑆𝐻�̂� = 𝑆𝐻0 ×
𝑁𝑡
∗

𝑁0
∗ ×

𝐺𝐷𝑃�̂�

𝐺𝐷𝑃0

                                         (C23) 

In Eq. (C23), 𝑌𝐻𝐺�̂� is the adjusted governmental income transfer to the household in Year t; 𝑁𝑡 −

𝐿𝑡 is the non-working-age population in Year t; 𝑌𝐻𝑊 𝑡
̂  is the adjusted household income from the rest 

of the world (RW) in Year t; 𝐺𝐻𝑇𝐴𝑋𝑡̂  is the adjusted household income tax paid to the government in 

Year t; 𝑆𝐻�̂� is the adjusted household saving in Year t. 𝑌𝐻𝐺�̂� will change proportionally to the Chinese 

non-working-age population and GDP, whilst 𝑌𝐻𝑊 𝑡
̂  will change proportionally to the Chinese 

population and world GDP. 𝐺𝐻𝑇𝐴𝑋𝑡̂  will change proportionally to the Chinese working-age population 

and GDP, whereas 𝑆𝐻�̂� will change proportionally to the Chinese population and GDP. The enterprise 

money transfer to the household 𝑌𝐻𝐸�̂� is used to balance the household account in the SAM.  

{
 
 

 
 𝐺𝐸𝑇𝐴𝑋𝑡̂ =𝐺𝐸𝑇𝐴𝑋0 ×

𝐺𝐷𝑃�̂�

𝐺𝐷𝑃0

𝑌𝑊𝐺𝑡̂ =𝑌𝑊𝐺0 ×
𝐺𝐷𝑃�̂�

𝐺𝐷𝑃0

 𝐺𝑊�̂�𝑡 = 𝐺𝑊𝑌0 ×
𝐺𝐷𝑃𝑡

𝑊

𝐺𝐷𝑃0
𝑊

                                               (C24) 

In Eq. (C24), 𝐺𝐸𝑇𝐴𝑋𝑡̂  is the adjusted direct tax of the enterprise paid to the government in Year t. 

𝑌𝑊𝐺𝑡̂  is the adjusted governmental money transfer to the RW in Year t. 𝐺𝑊�̂�𝑡 is the adjusted RW 

money transfer to the government in Year t. 𝐺𝐸𝑇𝐴𝑋𝑡̂  and 𝑌𝑊𝐺𝑡̂  will change proportionally to the 

Chinese GDP, whilst 𝐺𝑊𝑌�̂� will change proportionally to the world GDP. The enterprise saving 𝑆�̂�𝑡 is 

used to balance the enterprise account in the SAM. The government saving 𝑆�̂�𝑡 is used to balance the 

government account in the SAM. The RW saving 𝑆�̂�𝑡 is used to balance the RW account in the SAM. 

The welfare change resulting from the carbon tax is measured by the Hicks Compensation 

Variation (CV) and Equivalent Variation (EV). The CV means that the amount of the additional money 
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an entity needs to reach its initial utility after the price changes, whilst the EV is the income change at 

the current prices as if the price equivalently changes. 

𝐶𝑉 = ∑ 𝐶𝑉𝑡 𝑡
= ∑ ∑ (𝑃𝑄𝑖𝑡 × 𝐻𝐷𝑖𝑡 − 𝑃𝑄𝑖𝑡 ×𝐻𝐷𝑖0𝑖 )𝑡                              (C25) 

𝐸𝑉 = ∑ 𝐸𝑉𝑡 𝑡
= ∑ ∑ (𝑃𝑄𝑖0 × 𝐻𝐷𝑖𝑡 − 𝑃𝑄𝑖0 ×𝐻𝐷𝑖0)𝑖𝑡                              (C26) 

In Eq. (C25) and (C26), the subscript “0” denotes the reference scenario where no carbon tax is 

implemented; 𝐶𝑉𝑡 and 𝐸𝑉𝑡 denote the compensation variation respectively. A positive sign of the CV 

(EV) implies that the carbon tax will increase the social welfare, whilst a negative sign of the CV(EV) 

not necessarily means climate policies will incur the loss of social welfare owing to the underestimation 

of the ancillary benefits (only one pollutant is analysed), letting aside the primary benefits of these 

policies, including damage, such as rising sea level and wildlife extinction, averted from climate change. 
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