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i. Abstract 

Bolus calculators are considered state-of-the-art for insulin dosing decision support 

for people with Type 1 diabetes (T1D). However, they all lack the ability to 

automatically adapt in real-time to respond to an individual’s needs or changes in 

insulin sensitivity. A novel insulin recommender system based on artificial 

intelligence has been developed to provide personalised bolus advice, namely the 

Patient Empowerment through Predictive Personalised Decision Support 

(PEPPER) system. Besides adaptive bolus advice, the decision support system is 

coupled with a safety system which includes alarms, predictive glucose alerts, 

predictive low glucose suspend for insulin pump users, personalised carbohydrate 

recommendations and dynamic bolus insulin constraint.  

 

This thesis outlines the clinical evaluation of the PEPPER system in adults with 

T1D on multiple daily injections (MDI) and insulin pump therapy. The hypothesis 

was that the PEPPER system is safe, feasible and effective for use in people with 

TID using MDI or pump therapy. Safety and feasibility of the safety system was 

initially evaluated in the first phase, with the second phase evaluating feasibility of 

the complete system (safety system and adaptive bolus advisor). Finally, the whole 

system was clinically evaluated in a randomised crossover trial with 58 

participants.  

 

No significant differences were observed for percentage times in range between 

the PEPPER and Control groups. For quality of life, participants reported higher 

perceived hypoglycaemia with the PEPPER system despite no objective difference 

in time spent in hypoglycaemia. 
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Overall, the studies demonstrated that the PEPPER system is safe and feasible for 

use when compared to conventional therapy (continuous glucose monitoring and 

standard bolus calculator). Further studies are required to confirm overall 

effectiveness.   
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1 Introduction 

1.1 Type 1 Diabetes and Background 

Type 1 diabetes (T1D) is an autoimmune condition, resulting in the destruction of 

pancreatic beta-cells, required for maintaining glucose homeostasis. The burden of 

diabetes management is significant; with approximately 300,000 people in the 

United Kingdom having T1D. Worldwide, there is an annual increase in incidence 

of about 2-3% per year (1,2), although there are indications of geographic 

differences (3). Lifetime risk varies widely by country and geographical region, 

but overall is about 1 in 250 people (4). T1D is slightly more common in men and 

boys, than in women and girls (5). 

 

In a person with a fully functioning endocrine pancreas gland, insulin production 

is primarily regulated by glucose concentrations in the blood and by glucagon, a 

hormone produced by the α-cells in the pancreas. The destruction of the pancreatic 

β-cells within the islets of Langerhans results in an inability of the pancreas to 

produce insulin in response to a glucose stimulus. 
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At diagnosis, people with T1D may present with hyperglycaemia and osmotic 

symptoms such as polydipsia, polyuria, weight loss and blurred vision. The relative 

or absolute deficiency of insulin results in increased activity of hormone-sensitive 

lipase, which converts triglycerides to fatty acetyl-CoA (fatty acid β-oxidation), 

facilitating ketogenesis and leading to diabetic ketoacidosis (DKA) (6). DKA can 

be life-threatening if not treated promptly. 

 

No cure has been discovered for T1D. However, an increased understanding of the 

pathogenesis, as well as the identification of predisposing genetic and 

environmental factors, aid potential theoretical targets for disease process 

modification. Moreover, the various interplay of factors may also partly explain 

significant heterogeneity observed in responses to insulin management, and 

potential for personalised, adaptive systems. 

 

1.1.1 An interplay of genetic, immune and environmental influences 

The pathogenesis of T1D is complex, with interactions occurring between 

pancreatic B-cells and the innate and adaptive immune system. T-cell mediated 

autoimmune destruction within the islets of Langerhans results in an inability of 

the pancreas to produce insulin in response to a glucose stimulus. CD8+ T cells are 

predominantly associated within the insulitis lesion, followed by macrophages 

(CD68+), CD4+ T cells, B lymphocytes (CD20+) and plasma cells (CD138+) (7). 

 

A key distinguishing feature between Type 1 and Type 2 diabetes is the presence 

of autoantibodies against B-cell autoantigens. In the ADDRESS-2 study of 1778 
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participants aged ≥ 5 years, 85% of individuals with newly diagnosed T1D (within 

6 months of diagnosis) have ≥1 autoantibody at onset of diagnosis against glutamic 

acid decarboxylase (GAD), islet-cell antigen (IA2) and zinc transporter (ZnT8) (8). 

Insulin autoantibodies were not tested as majority of participants had received 

insulin therapy prior to study entry and may have developed antibodies to 

exogenous insulin (8). Tetraspanin-7 antibodies have also been identified in T1D, 

but are unlikely to account for large numbers (8,9). 

 

T1D is a heritable polygenic disease; identical twins have concordance of 30-70%, 

siblings have a risk of 6-7% and for children with a parent with T1D the risk is 1-

9% (4). To date, approximately 40 genetic loci have been known to affect disease 

susceptibility, supporting that the risk of T1D is polygenic (7). The HLA region of 

chromosome 6 (i.e. the IDDM1 locus) provides approximately one-half of the 

genetic susceptibility that leads to the risk of T1D (7). 

 

Despite the links with genetic susceptibility, the incidence of T1D differs 

substantially in genetically similar people that are separated by socioeconomic 

borders (10). This suggests that environmental risk factors play a role in the 

development of T1D regardless of genetic background (4). A plethora of such 

environmental influences have been alleged to be involved, including infections 

(particularly viral), diet, and toxins that affect children in-utero, perinatally, or 

during early childhood (11). The Environmental Determinants of Diabetes in the 

Young (TEDDY) Study is the largest prospective observation cohort study 

following 8676 children from birth, and is an effort to better identify environmental 

factors (12). Vehik et al (2019) reported that frequencies of enterovirus B infection 
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did not differ between children with or without islet autoimmunity, but instead 

prolonged duration of viral infection (rather than independent, short lived 

infections) was observed with islet autoimmunity (13). 

 

Despite known genetic underpinnings and various environmental influences 

postulated, attempts at primary prevention remain difficult and a cure for T1D 

remains elusive. Teplizumab, an anti-CD3 monoclonal antibody, has been shown 

to have potential in delaying progression of T1D in high-risk individuals (14). 

However, the study cohort was relatively small, with limited power. More 

importantly, development of antibodies to teplizumab has not been fully assessed, 

with previous reports reporting approximately 20% to 55% participants treated 

with teplizumab developing antibodies after their first course (14–16). Long-term 

immunologic effects or clinical outcomes are unclear. In therapeutic treatment of 

T1D, teplizumab failed to meet the primary end-point in the Protégé trial; showing 

no difference in percentage (%) of people with insulin use < 0.5 units/kg/day and 

HbA1C <6.5% at 1 year (17). 

 

One of the major limitations in conducting studies targeting a cure is that majority 

of people with T1D already have significant β-cell destruction at diagnosis. Hence, 

aiming for maintenance or improvement of remaining functional β-cell mass may 

be a more realistic goal. Significant evidence suggests intensification of glycaemia 

early after diagnosis plays a major role in preserving β-cell function, which is likely 

to be beneficial in the long-term (6, 7). In the Diabetes Control and Complications 

Trial (DCCT) persistent C-peptide secretion was associated with reduced 

development of retinopathy, neuropathy and hypoglycaemia (18,19). Additionally, 
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the persistence of C-peptide secretion in people with long-term T1D could improve 

glucagon responses to hypoglycaemia (20). 

 

1.1.2 Complications associated with Type 1 diabetes 

In 1922, the discovery of insulin transformed T1D from a terminal to a treatable 

condition. However, despite advances in care (as discussed below), the condition 

continues to be associated with substantial medical, psychological and financial 

burden. Hypoglycaemia and diabetic ketoacidosis are persistent potentially life-

threatening complications. 

 

The burden of hypoglycaemia in adults with T1D is significant and is associated 

with mortality and morbidity (21). In adults, severe hypoglycaemia is defined as 

any episode of hypoglycaemia requiring the assistance of a third party to actively 

administer carbohydrate, glucagon, or take other corrective actions. On average, 

people with T1D have 1-2 self‐treated incidences of hypoglycaemia per week, and 

0.2–3.2 episodes of severe hypoglycaemia annually (22). However, this may well 

be under-reported by individuals. In a real-world non-interventional, multi-country 

questionnaire-based survey of 1631 people with T1D, 65% of respondents reported 

either rarely or never reporting hypoglycaemic events (23). Reasons for this may 

include fear of losing their job or driving licence, or some individuals may 

deliberately under-report events so that they are perceived as being in control of 

their diabetes (24). Additionally, hypoglycaemic episodes may go unnoticed by 

individuals themselves or their families (24). 
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Severe hypoglycaemia has the ability to provoke major vascular events, including 

adverse effects on cognitive function, and causing neurological disability (25). 

Between 4 - 10% of deaths in people with T1D are attributed to hypoglycaemia 

(26) and the risk of severe hypoglycaemia increases 6-fold in people with impaired 

awareness of hypoglycaemia (27,28). 

 

Nocturnal hypoglycaemia accounts for approximately half of severe 

hypoglycaemic events, and is a source of hypoglycaemia fear (11). Recurrent 

hypoglycaemia results in an increased likelihood of impaired awareness of 

hypoglycaemia, affecting approximately 20% of adults with T1D (27). 

Furthermore, a preceding episode of severe hypoglycaemia is a powerful predictor 

of subsequent episodes of hypoglycaemia, independent of treatment intensity (29), 

as well as 5 year mortality, with nearly 3.4-fold higher risk of death (21). 

 

The impact of hypoglycaemia on health systems is widespread and includes both, 

acute and chronic complications. In the United Kingdom (UK), diabetes accounts 

for greater than 10% of the National Health Service (NHS) budget (30) and in the 

USA relatively more is spent on type 1 compared with type 2 diabetes (8.6% of the 

diabetes budget compared with 5.6% of diabetes prevalence) (31). 

 

Mean costs per hospital admission for hypoglycaemia in England is estimated to 

be greater than £1000, with approximately £13million spent each year relating to 

the total direct cost of severe hypoglycaemic episodes (32–34). Whilst hospital 

admissions represent only a small proportion of emergency department visits for 

hypoglycaemia, they have substantial resource implications (35). 
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Other complications related to hyperglycaemia in type 1 (and type 2) diabetes can 

be classified as macrovascular or microvascular. Cardiovascular disease is 

becoming the most common macrovascular complication and remains a major 

cause of morbidity and mortality. Microvascular complications of the condition 

primarily manifest as retinopathy, neuropathy and nephropathy. The degree and 

length of exposure to hyperglycaemia is believed to be the primary risk factor for 

microvascular disease, and reducing HbA1c through intensive diabetes 

management, particularly during early disease, is associated with a striking (about 

70%) reduction in incidence and slower progression of microvascular and 

macrovascular complications (4). 

 

Compared to the general population, the higher mortality observed in T1D results 

almost exclusively from higher rates of diabetes related acute and chronic 

complications (36). The absence of microalbuminuria appears to minimise this risk 

and such individuals may have a normal life expectancy (36). 

 

It has been shown that diabetes is associated with reduced quality of life and an 

increased risk of developing depression (37). Adults with T1D commonly 

experience psychosocial problems and coping difficulties, with worry about 

developing complications and loss of functional abilities being a source of major 

distress (38). Acute fluctuations in blood glucose, particularly hypoglycaemia, can 

be disruptive and burdensome, negatively impacting relationships, work 

performance, relationships and emotional health (39). 
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1.2 Insulin is Key: Devices in Insulin Management 

1.2.1 Multiple daily injection and Insulin Pumps 

Most individuals with T1D receive insulin either through injections or through 

continuous subcutaneous insulin infusion (CSII; commonly known as insulin pump 

therapy). Intensive insulin therapy through multiple daily injections (MDI) is 

achieved with a long acting insulin to keep glucose levels within target in fasting 

condition (basal insulin) and rapid acting insulin to lower the blood glucose levels 

after each meal (bolus insulin). This is to mimic the natural insulin secretion of the 

pancreatic ß-cells. The majority of people worldwide, with T1D, are still using 

MDI. 

 

Novel insulins continue to be developed to improve outcomes or quality of life, 

particularly for those on MDI. Since the early days of human insulin use, newer 

insulin analogues have been developed to optimise glycaemia, whilst minimising 

hypoglycaemia. Analogue insulins are similar to human insulin, but additions in 

free fatty acid chains to the parent molecule or modifications in amino acid 

sequencing, result in changes to the pharmacokinetic profile; predominantly by 

altering absorption through subcutaneous tissue (40). 

 

Compared to human insulin, rapid acting insulin analogues (aspart, lispro and 

glulisine) dissociate faster in the subcutaneous space, enabling more rapid onset 

and a less protracted duration of insulin action (40). This enables insulin analogues 

to be injected closer to mealtimes, with greater flexibility in daily life, as well as 

lowering hypoglycaemia risk post-meals, particularly late evenings and in the 
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night. Despite these advances, limitations include that the insulin is required to be 

taken in advance of the meal, to coincide with glucose excursions (ideally at least 

15 minutes before eating). 

 

Newer short-acting insulin aspart (Fiasp; Novo Nordisk) has shown 23% faster 

onset of action than conventional insulin aspart (NovoRapid; Novo Nordisk) with 

a 74% greater glucose-lowering effect in the first 30 min post injection (41). The 

ONSET 1 trial in adults with T1D on MDI regimen showed improved glycaemia 

with Fiasp vs NovoRapid at 52 weeks (HbA1c levels −0.08% and +0.01% 

respectively with estimated treatment difference significantly favouring Fiasp 

(−0.10% [95% confidence interval {CI} −0.19 to −0.00]) (42). Despite this, the 

ONSET 5 study in adults on CSII over 16 weeks did not show improvements in 

HbA1c, with a statistically significant small difference in favour of insulin aspart. 

However, Fiasp was superior to NovoRapid for 30mins, 1 hour and 2 hours 

postprandial glucose measurements (43). 

 

In 2020, novel ultra-rapid lispro (URLi; Liumjev, Eli Lilly) was approved for use. 

It contains treprostinil, a prostacyclin analogue, resulting in increased local 

vasodilation to enhance absorption of insulin lispro, and citrate, which speeds up 

insulin absorption through increased local vascular permeability (44,45). In adults 

on MDI regimen, the PRONTO-T1D study showed superior postprandial 

glycaemia with mealtime dosing, as well as improved daytime time in target range 

(least squares mean (LSM) difference = +43.6min; p=0.020) and reduced time in 

nocturnal hypoglycaemia (LSM difference ≤ 3.9mmol/l = -11.5min; p=0.009) (46). 

At 26 weeks, URLi demonstrated non-inferiority to conventional lispro (Humalog; 
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Eli Lilly) for HbA1c with mealtime and post-meal URLi, although there was a 

significantly higher endpoint HbA1c for post-meal URLi vs Humalog (47).  

 

In a Phase 1 randomized, double-blinded, four-period, crossover study with 68 

participants by Heise et al (2020), URLi had significantly faster insulin absorption 

compared to Fiasp and the conventional insulins (Novorapid and Humalog) (48). 

The early half-maximal drug concentration was reached in 12.8 minutes of 

administration with URLi. Least square mean differences showed URLI was 5.9 

(4.1 to 7.7) minutes faster than Fiasp, 12.5 (10.8 to 14.3) minutes faster than 

Humalog and 13.9 (12.1 to 15.7) minutes faster than NovoRapid (all p <0.0001). 

The maximum postprandial glucose at 1 and 2 hours post-meal was significantly 

reduced with URLi compared to Humalog and NovoRapid (p<0.05) (48). It is 

important to note, however, that the main study limitation was the use of a liquid 

test meal, which is not a typical meal for people. Further evaluation in larger, long-

term clinical studies is warranted. It is likely any advantages of rapid onset of 

action with faster short-acting insulin analogues, will need to be offset against the 

potential disadvantages of earlier cessation of action. 

 

Amongst the long acting insulins, new insulin degludec (Tresiba; Novo Nordisk) 

is an ultra-long acting insulin lasting >24hours, with a relatively stable profile, low 

intra-individual variability and minimal peaks/troughs in pharmacodynamic 

studies (40). In a meta-analysis comparing insulin degludec and glargine (Lantus; 

Sanofi-Aventis) in T1D, no difference in glycaemia were seen, but hypoglycaemia 

was less probable with degludec, including nocturnal hypoglycaemia (rate ratio 
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(RR) = 0.68, 95% CI 0.56 to 0.81) (49). Between degludec and detemir (Levemir; 

Novo Nordisk), no differences were observed in people with T1D (49). 

 

Another newer insulin is glargine U300 (Toujeo; Sanofi-Aventis), which is more 

slowly released and lasts longer than Lantus, the U100 formulation (40). A meta-

analysis comparing insulin glargine U300 to U100, found reductions in clinically 

significant nocturnal hypoglycaemia (RR = 0.64, 95% CI 0.42 to 0.97) in T1D (50). 

 

Overall, the repertoire of available insulins is ever increasing and is important for 

people with T1D. Newer analogues have more stable profiles and less variability 

in glucose-lowering, which may be clinically useful, with some potential additional 

benefit in the reduction of nocturnal hypoglycaemia and severe hypoglycaemia 

events (40). The challenge is establishing who would benefit the most from these 

newer insulin analogues and whether they are cost-effective. Further studies will 

help to establish this. 

 

An inhaled insulin preparation (Afrezza, Mannkind, Westlake City, CA, USA) is 

an ultrarapid-acting insulin that mimics the time action of physiological insulin 

more closely than subcutaneous insulin, but is currently used sparingly. The “ultra-

short” duration of insulin exposure can lead to late post-meal hyperglycaemia, 

necessitating the use of a second dose of Afrezza in approximately 20-40% of 

individuals (51). Further limitations include the need for fixed dosing (multiples of 

4 unit increments only), issues with cost and need for pulmonary function tests 

(52). As a result, insulin administered subcutaneously remain the mainstay of 

treatment. 
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New “Smartpen” insulin systems integrate additional features to the standard 

insulin pen. For example, the Eli Lilly Memoir insulin pen was one of the first to 

track administered doses and log the last 16 doses through its Digital Log. The 

InPen system (Companion Medical) not only tracks administered doses, provides 

bolus advice in 0.5 U increments, but can also transmit these data via Bluetooth 

(53). 

 

CSII provides an alternate modality of insulin therapy via a pump, with the 

advantage of delivering variable basal rates throughout the day and fewer 

injections. One of the other advantages of insulin pump therapy, is the ability of 

the bolus infusion to be varied to adjust for the composition of food (e.g. glycaemic 

index) or duration of a particular meal (including spread of different courses i.e. 

starter, main and/or dessert). There are various different bolus subtypes, including 

square and dual/combination bolus (Figure 1.1). The aim of extending a bolus with 

an insulin pump, manipulates the insulin action to match the extended absorption 

of glucose from low glycaemic index foods or foods with protein and fat (54). 

 

 
Figure 1.1: Subtypes of insulin bolus dosing through insulin pump therapy 

Insulin pumps can deliver meal bolus insulin through various subtypes of bolus dosing. These 
include standard bolus, where the insulin is delivered immediately; short or long extended/ square 
wave bolus, where the insulin delivery is spread over longer period of time; and dual wave bolus, 
where a percentage of the insulin is delivered as a rapid bolus and the remainder is delivered as an 

extended bolus. 
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Previously, the overall effectiveness of CSII has been debated due to the 

heterogeneity of participants at baseline and their glycaemic control, inclusion of 

studies with short duration, use of obsolete pump technology and differing 

psychological factors, such as non-adherence and lack of motivation (55). 

Furthermore, some initial meta-analyses comparing outcomes with MDI vs. CSII 

were reported to be misleading due to poor trial selection and over-reliance on 

summary mean effect size as evidence of effectiveness (56). 

 

Strict glycaemic control is achievable for both MDI and CSII users without 

hypoglycaemia in some people with T1D, especially those who are motivated, have 

had structured education and have ongoing input from healthcare professionals 

(56). However, a beneficial effect of CSII has been shown in a meta-regression 

analysis of mean effect size (HbA1c difference or severe hypoglycaemia rate ratio) 

on reducing HbA1c, particularly in those with baseline suboptimal glycaemia, and 

reducing hypoglycaemic frequency, especially in those with frequent, severe 

hypoglycaemia (57). Best outcomes in CSII use are therefore observed in those 

motivated to use insulin pumps and with continued elevated HbA1c and/or 

disabling hypoglycaemia on MDI (56). 

 

1.2.2 Adjuvant Pharmacotherapies to Insulin 

In addition to insulin therapy, the inclusion of other pharmacological agents have 

been explored for use in T1D to improve glycaemia. Pramlintide (Symlin; 

AstraZeneca) is an amylin analogue. Amylin is a polypetide co-secreted with 

insulin by pancreatic β-cells, and acts by suppressing postprandial glucagon 
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secretion and slowing gastric emptying (58). In a meta‐analysis comparing 

pramlintide vs placebo, a reduction in HbA1c was observed, as well as a reduction 

in total daily and mean insulin doses, body weight and postprandial glucose levels 

(59). Pramlintide is FDA approved for adjunctive use in Type 1 diabetes in the US, 

however its clinical use has been limited by cost, gastrointestinal side effects, and 

frequency of administration (requires 3 to 4 additional pre‐meal injections per day 

being impractical on a daily basis)  (58). Pramlintide is not available in Europe. 

 

Glucagon-like peptide-1 (GLP-1) is an incretin secreted by intestinal 

enteroendocrine L-cells in response to a meal stimulus and stimulates insulin 

secretion in a glucose-dependent manner (60). It suppresses glucagon secretion, 

inhibits gastric emptying and reduces appetite and food intake through early satiety 

(60). In a meta-analysis of adjunctive GLP-1 receptor agonist use, there was a 

statistically significant but only minimal reduction in HbA1c levels (-0.2 (-0.40 to 

0.02)% ), decrease in body weight (-3.53 (-4.86 to 2.19) kg), and weight-adjusted-

bolus insulin doses (61). Its use was associated with increased gastrointestinal side 

effects but not with hypoglycaemia (62).  

 

The enzyme dipeptidyl peptidase-4 (DPP-4) rapidly degrades physiological GLP-

1, therefore DPP-4 inhibitors enhance the action of endogenous incretins by 

inhibiting their degradation (62). In a meta-analysis with pooled data from 5 

randomized controlled trials (RCTs), the additional use of DPP-4 inhibitors in T1D 

had no significant impact on HbA1c, weight, daily insulin requirement, 

hypoglycaemia incidence (63). Neither DPP-4 inhibitors, nor GLP-1 receptor 

agonists, are currently licenced for adjunctive use in T1D in the UK. 
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Another group of adjunctive agents include sodium-glucose cotransporter-2 

(SGLT-2) inhibitors, which primarily work by increasing excretion of glucose in 

the urine secondary to blocking reabsorption of glucose in the proximal renal 

tubule (64). Dual SGLT-1/2 inhibitor additionally blocks SGLT-1, a major 

transporter of intestinal glucose and decreases reabsorption of glucose in the 

intestine as well (62). In a meta-analysis of 13 RCTs, SGLT inhibitors reduced 

HbA1c, fasting plasma glucose and total daily insulin dose (65). However, higher 

risks of diabetic ketoacidosis, urinary tract and genital infections were associated 

with SGLT inhibitors. SGLT inhibitors did not increase overall hypoglycaemia risk 

(65). Both sotagliflozin (SGLT-1/2 inhibitor; Lexicon Pharmaceuticals) and 

dapagliflozin (SGLT-2 inhibitor; AstraZeneca) have been licensed in the UK for 

adjunctive use in people with T1DM with a body mass index (BMI) > 27 kg/m2, 

when insulin alone does not provide adequate glycaemic control despite optimal 

insulin therapy (66,67). 

 

1.2.3 Techniques for glucose monitoring 

Glucose monitoring methods have significantly improved since urine testing 

before the 1980s, to portable glucose meters for self-monitoring in 1978, to present 

day use of continuous glucose monitoring, introduced in 1999 (68). For most 

people, blood glucose levels are determined by intermittent capillary blood glucose 

measurements using glucose meters. The National Institute of Clinical Excellence 

(NICE) recommends people with T1D to test at least 4 times a day, and up to 10 

times daily (69). The commercial market for blood glucose meters accounts for 
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approximately 85% of the total biosensor market (70). In 2015, the global market 

for glucose sensors was estimated at US$15.3 billion, and is anticipated to reach 

US$ 31.0 billion by 2022 (71). 

 

Current day commercially available real-time continuous glucose monitoring 

(rtCGM) devices use subcutaneous needle type sensors, which employ a sensor 

inserted beneath the skin to detect glucose concentrations within the interstitial 

fluid. There are three generations of enzyme-based glucose sensors, with the 

fourth-generation being non-enzymatic. These have been summarised in Figure 

1.2. Most currently used systems for CGM are first-generation enzyme-based, with 

the exception of Abbott Freestyle Libre (intermittently scanned continuous glucose 

monitoring; isCGM), which uses osmium as a mediator (72). 
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Figure 1.2: Methods of glucose sensing technology 

(a) First-generation glucose sensors based on hydrogen peroxide production by glucose oxidase 
(GOx). (b) Second-generation glucose sensors based on redox mediators. (c) Third-generation 

glucose sensors based on direct electron transfer, without artificial mediators. (d) Fourth-
generation glucose sensors using non-enzymatic electron transfer (e.g. carbon nanotubes and alloy 

nanostructures containing lead, palladium, gold and rhodium) enable direct electro-oxidation of 
glucose to gluconic acid. Reproduced with permission from Avari et al (72). 

 

 

RtCGM systems support optimal insulin dosing by providing continuous real-time 

glucose values and trends. Additionally, it provides alerts and alarms for 

impending hypo- and hyperglycaemia, and in times of rapid glucose change. 

Freestyle Libre does not provide real-time data with alerts and alarm, but users are 

able to review preceding 8 hours of continuous data when the reader is swiped over 

the sensor. At the time of writing, FreeStyle Libre 2, a hybrid CGM device with 

(a) First-generation glucose sensors: Glucose concentration estimated by hydrogen peroxide production by glucose oxidase
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optional high and low glucose alarms has obtained Certification (CE) Mark and 

US Food and Drug Administration (FDA) approval, but is yet not widely available. 

 

The use of rtCGM has been associated with improved glycaemic control, reduced 

HbA1c (73), and reduced exposure to hypoglycaemia (74), in people using CSII 

and MDI regimens (75–77). Reduced fear of hypoglycaemia (78), improvements 

in quality of life (79), and cost-effectiveness (80) have also been associated with 

rtCGM use. Moreover, rtCGM can be particularly beneficial in people with T1D 

at higher risk of hypoglycaemia, for example, those with recurrent severe 

hypoglycaemia and hypoglycaemia unawareness (81,82). 

 

However, despite the advances in technology and established benefits, there are 

barriers to device uptake, which include person-related, health-care system related 

and environmental factors. Data from the T1D Exchange Registry in 2016-2018 

with 22,697 participants indicate that rtCGM uptake in the United States (US) was 

only 30%, increased from 7% in 2010–2012 (83). One of the most commonly 

endorsed reasons for discontinuation of rtCGM was cost (84). 

 

In the UK, rtCGM funding is available to individuals meeting the NICE criteria, 

with remaining users self-funding. The criteria include: >1 episode of severe 

hypoglycaemia/year; complete loss of awareness of hypoglycaemia; 

hypoglycaemia that is causing problems with daily activities; extreme fear of 

hypoglycaemia; and HbA1c ≥ 75mmol/mol IFCC (≥ 9.0% DCCT) despite testing 

≥10 times/day (69). 
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However, even within a reimbursed healthcare system, there are barriers to rtCGM 

use, which limit uptake. These include concerns about accuracy and reliability, 

alarm fatigue, and physical discomfort. Current rtCGM devices are susceptible to 

5-15 minutes lag behind blood glucose owing to diffusion of glucose to interstitial 

fluid (85). Another important factor for device uptake is age. Younger users (18–

25 years) in the T1D Exchange Registry in the United States have the lowest 

uptake, but are also associated with highest levels of diabetes distress and HbA1c 

compared to older individuals (72,84). Younger users are also more likely to worry 

about others’ perception and dislike wearing devices (72,84). In contrast, in the 

German/Austrian Diabetes Patienten Verlaufsdokumentation (DPV) registry, since 

2015, there has been an exponential increase of rtCGM use amongst young adults 

aged 18 – 26 years in Germany and Austria, with relatively slower uptake in other 

age groups. 

 

For many years, huge research efforts have gone in to developing alternative 

modalities of glucose sensing, including non-invasive sensors using optical and 

transdermal approaches. However, despite non-invasive techniques having been 

developed, no commercial device has, to date, been successful (72). 

 

Currently available glucose monitoring technologies that can be used by people 

with T1D are summarised in Table 1.1.  
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Table 1.1: Currently available glucose monitoring systems and their accuracy 

The mean absolute relative difference (MARD) is a metric of glucose sensor accuracy (i.e. how 
close the sensor glucose measurement is to blood glucose). A MARD of <10% represents 

sufficient accuracy for CGM device readings to make insulin dosing decisions. Reproduced with 
permission from Avari et al (72). 

 

  

System 
Guardian 
Connect 

(Sensor 3) 
Enlite Sensor Dexcom G6 Eversense Freestyle Libre Medtrum S7 

EasySense 

Sensor life 7 days 6 days 10 days 

90 days / 180 
days 

(Eversense 
XL) 

14 days 14 days 

Sensor 
method Subcutaneous Subcutaneous Subcutaneous 

Implantable 
(within the 

subcutaneous 
tissue) 

Subcutaneous Subcutaneous 

Transmitter 
life 12 months 12 months 3 months 12 months 

(rechargeable) 
3 years (reader 

life-span) 3 months 

Calibration Yes, every 
12h 

Yes, every 
12h 

No, factory-
calibrated (user 

may self-calibrate 
if required) 

Yes, every 
12h 

No, factory-
calibrated Yes, every 12h 

Frequency of 
readings 5 minutes 5 minutes 5minutes 5 minutes 

When sensor is 
scanned. 

Glucose data 
stored every 
15minutes 

2 minutes 

CE Mark 2018 2011 2018 2017 2014 2014 

FDA 
approval date 2018 2013 2018 2017 2017 Awaiting 

Company Medtronic Medtronic Dexcom Senseonics Abbott Medtrum 

Sensing 
technology 

Enzyme 
electrode 

Enzyme 
electrode Enzyme electrode Optical 

Fluorescence 
Enzyme 
electrode 

Enzyme 
electrode 

MARD 

10.6% in 
abdomen; 

9.1% in arm 
(86) 

13.6% (87) 

9.0% calibrated 
once daily (88); 
10.0% without 
calibration (89) 

8.8% (90) 11.4% (91) 9.1% (92) 
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1.2.4 State-of-the-art innovation: Automated insulin delivery systems 

With insulin pump and rtCGM improving diabetes care, these two technologies are 

now being used together as sensor augmented pump therapy. Insulin pumps 

combined with rtCGM integrated with computer algorithms (i.e. closed-loop 

systems or artificial pancreas) are now available. 

 

Initial systems, also known as low glucose suspend (LGS) pumps, suspend basal 

insulin delivery if a low glucose concentration threshold is reached (Medtronic 

630G; Medtronic diabetes, Northridge, CA, USA). Subsequent systems are able to 

suspend or reduce insulin delivery by algorithms which predict when 

hypoglycaemia is likely to occur (known as predictive low glucose suspend 

(PLGS) system; Medtronic 640G system (Medtronic diabetes, Northridge, CA, 

USA) and Tandem Basal-IQ (Tandem Diabetes Care, San Diego, CA, USA). Both 

LGS and PLGS have been shown to be efficacious in reducing hypoglycaemia 

without deterioration in glycaemic control (93–97). 

 

The latest state-of-the-art technologies that are commercially available include the 

Medtronic 670G system (Medtronic diabetes, Northridge, CA, USA), Tandem X2 

insulin pump with Control-IQ technology (Tandem Diabetes Care, San Diego, CA, 

USA), and the Dana RS pump compatible-CamAPS FX (Cambridge University, 

Cambridge, UK). In addition to PLGS, these systems are able to increase insulin 

delivery in response to hyperglycaemia or predictive hyperglycaemia. The system 

is not fully automated as a closed-loop “artificial pancreas”, and is therefore known 

as a hybrid closed-loop automated system. The user is required to announce when 
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a meal will be eaten and provide the planned carbohydrate intake information to 

activate an appropriate insulin bolus. 

 

Future hybrid closed-loop systems due to be available soon, include Diabeloop 

(Grenoble, France; CE mark 2018), which uses the Kaleido patch pump (Kaleido, 

Utrecht, Netherlands). Initial studies appear to be promising (98,99), however 

long-term studies on clinical and cost-effectiveness of hybrid closed-loop systems 

are required, as well as studies of which populations derive meaningful benefits. 

Lal et al published decreasing use of Medtronic 670G over 12 months (despite 

increased time in range (TIR) when used), with the % time in auto mode (i.e. hybrid 

CL) decreasing from median of 83% after a week, to 2% median after a year of use 

(100). 

 

In a closed-loop system, the control engineering algorithm enables integration of 

the parts of these technologies for glucose control (Figure 1.3). Several control 

algorithms have been developed and studied, including Model Predictive Control 

(MPC), Proportional Integral Derivative (PID) and Fuzzy Logic (FL), with the two 

former approaches most widely used. MPC is a control method which predicts 

future glucose concentrations using an individualised mathematical model of 

glucose regulation based on inputs such as insulin delivery. The model-predicted 

glucose concentration is compared with measured glucose levels, and the model is 

updated, calculating future insulin delivery rates to minimise the difference 

between model-predicted glucose concentration and target glucose levels (101). 

PID is a reactive control algorithm that adjusts insulin delivery rate from 

determining three key perspectives: deviation from target glucose (proportional 
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component), area under the curve between measured and target glucose (integral 

component) and rate of glucose change (derivative component) (102). The use of 

FL has increased over the recent years and the algorithm modulates insulin delivery 

based on rules that replicate diabetes clinicians (103). 

 

 

Figure 1.3: Illustration of a closed-loop automated artificial pancreas system 

A closed-loop insulin delivery system consists of continuous glucose monitoring, an insulin 
pump, and a glucose control algorithm. These algorithms are a set of programmed rules which 
enable the glucose controller to make automated insulin adjustments based on real-time CGM 
data. Current hybrid closed-loop control algorithms used in clinical practice also require meal-

announcement and in some, exercise-announcement as well, to influence the algorithm’s 
response. 

 

Barriers remaining to full automation include the slow pharmacokinetics of 

subcutaneous insulin, sensor accuracy and the impact of other factors such as 

activity. Further developments including the addition of glucagon, better accuracy 

of rtCGM and the availability of insulins with more rapid onsets of action have the 

potential to improve current AP systems (101). In terms of clinical practice, 
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questions remain regarding adoption of closed-loop systems and whether it will be 

cost-effective for health care systems with adequate training and infrastructure. 

 

Intriguingly despite the advances in technology, results from the recent T1D 

Exchange clinical registry show that although there is increased use of insulin 

pumps from 57% in 2010–2012 to 63% in 2016–2018 and use of rtCGM from 7% 

to 30%, the adjusted mean HbA1c increased from 7.8% to 8.4% (p < 0.001 adjusted 

for age, diabetes duration, self-monitoring blood glucose (SMBG), and use of 

rtCGM) (83). It remains unclear on why glycaemia worsened despite increased use 

of technology, although Rodbard speculated this may be due to changes in 

population at study groups, racial/ ethnic groups and income status (104). The 

overall findings also suggest that use of technology does not automatically result 

in improved glycaemia, but that interpretation and subsequent action is also 

required. Structured education and decision support systems may be key to “getting 

the dose right” (Section 1.3). 

 

1.2.5 Measures of glycaemia 

HbA1c, has traditionally been the standard for assessing glycaemia and reflects 

average blood glucose levels over 1 to 3 months prior to testing. Its utility was 

established by the DCCT trial (105,106) and the Stockholm Diabetes Intervention 

Study (107,108) as a predictor of diabetes complications. For example, for every 

10% reduction in HbA1c, the risk of progression of retinopathy reduced by 44%, 

microalbuminuria by 25%, macroalbuminuria by 44% and of confirmed clinical 

neuropathy by 30% (105). Furthermore, the Epidemiology of Diabetes 
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Interventions and Complications (EDIC) study established that mortality increased 

significantly with increasing HbA1c (109,110). 

 

HbA1c does, however, have its limitations with its validity compromised in people 

with iron deficiency anaemia, haemoglobinopathies, and renal disease. 

 

With increasing use of glucose monitoring technologies, latest consensus 

guidelines identify percentage times in glucose range as a metric of glycaemia that 

enables actionable information (111). The recommended times in ranges metrics 

for rtCGM include the following: time per day within target glucose range (time in 

range [TIR]: 3.9-10.0 mmol/l), time below target glucose range (TBR: <3.0 and 

<3.9 mmol/l), and time above target glucose range (TAR: >10.0 mmol/l). Validity 

of %TIR using seven-point SMBG testing has been demonstrated with a clear 

association with the risk of development of, or progression of retinopathy and 

development of microalbuminuria in the DCCT study data (68). The adjusted 

hazard ratios for developing retinopathy and microalbuminuria were 1.64 (1.51–

1.78) and 1.40 (1.25–1.56), respectively, for each 10% decrease in % time spent 

between 3.9-10 mmol/l. 

 

Glycaemic variability (GV) is also being increasingly recognised as a potential 

contributory factor for developing diabetes related complications (112). GV 

reflects hypo- and hyperglycaemic excursions, and can define within- and between 

day glucose variability. 
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Animal and human studies in-vitro suggest hypo‐ and hyperglycaemic excursions 

may be associated with mitochondrial oxidative stress, accelerated atherosclerosis, 

secondary endothelial damage, impaired quality of life, as well as mortality (113–

116). A higher incidence of severe hypoglycaemia in people with T1D has been 

associated with increased glycaemic variability (117). Furthermore, in-vitro and 

in-vivo data suggest glycaemic variability is as an independent risk factor for total 

mortality and death due to cardiovascular disease in both type 1 and type 2 diabetes 

(118–120). 

 

One of the main limitations of GV is that a gold standard measurement has yet not 

been identified, leading to heterogenous study designs and reported study outcome 

measures (116). As a result, the “International Consensus on Use of Continuous 

Glucose Monitoring” published in 2017, recommend the coefficient of variance 

(CV) should be considered as the primary measure of variability (119,121). The 

advantage of CV is that it is more descriptive of hypoglycaemic excursions than 

standard deviation (SD) alone, as SD is dependent on the mean. A threshold %CV 

of 36% is used to distinguish between stable and unstable glycaemia in people with 

diabetes, because the frequency of hypoglycaemia is significantly increased 

beyond this limit (122).   

 

Using discriminant ratios, Moscardo et al (2020) showed that the mean absolute 

glucose (MAG) may be the optimal index to differentiate glucose variability, and 

may be a complementary therapeutic monitoring tool in addition to HbA1c and a 

measure of hypoglycaemia (116). The data supported percentage TIR reported at 
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3.9-10.0 mmol/l (70‐180 mg/dL) to be the optimal range for discriminating 

between individuals (116). 

 

Overall, GV can be subdivided into glycaemic measures (i.e. based on glucose 

distribution), and measures based on risk and quality of glycaemic control, which 

are associated with frequency and severity of hypoglycaemia (74). Table 1.2 

reports definitions of the various GV metrics that exist and glucose control indices. 

(123) 
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Metric Definition Computational Formula Clinical 
interpretation 

Glycaemic measures based on glucose distribution 
 

Standard 
deviation  

(SD) 

 
Shows how much 
variation or dispersion 
there is from the average 

𝑆𝑆𝑆𝑆 = ��(𝐺𝐺𝑖𝑖 − 𝐺̅𝐺)2
𝑖𝑖=1

(𝑁𝑁 − 1)�  

 
G = glucose reading 
N = the number of observations 
I = the sample index 
 

 

 
Coefficient 
of variation  

(%CV) 

 
Measure of dispersion of 
data points around the 
mean 

 
%𝐶𝐶𝐶𝐶 = 𝑆𝑆𝑆𝑆/𝐺̅𝐺 ∙ 100 

 
 
SD = standard deviation 
G = glucose reading 
 

 
Target %CV <36%  
 
Lower %CV targets 
(<33%) may provide 
additional protection 
against hypoglycaemia 
for those receiving 
insulin (111) 
 

 
Mean 

amplitude of 
glycaemic 
excursions 
(MAGE) 

 
(124) 

 

 
The mean of the glycaemic 
excursions of glucose 
peaks and nadirs 
encountered in a day 
(greater than 1 SD) 

 

𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺 = �𝜆𝜆𝑖𝑖

𝑥𝑥

𝑖𝑖=1

𝑥𝑥� 𝑖𝑖𝑖𝑖 𝜆𝜆 > 𝑣𝑣 

 
λ = blood glucose change from peak to 
nadir (or nadir to peak) 
x = total number of valid observations 
ν = 1 SD of mean glucose for a 24h period. 

 

 
Continuous 
overlapping 

net 
glycaemic 

action 
(CONGA) 

 
(125) 

 

 
A composite index of the 
amount of time spent in 
glycaemic excursions and 
the degree of glycaemic 
variation 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑛𝑛 = ��(𝐷𝐷𝑡𝑡 − 𝐷𝐷�)2
𝑘𝑘

𝑡𝑡=1

(𝑘𝑘 − 1)�  

 
 
Dt = Gt – Gt-m  
k = number of observations where there is 
an observation nx60 min ago 
m = nx60 
Gt = the glucose reading at time t min after 
start of observations. 

 

 
Mean of 

daily 
differences 
(MODD) 

 
(126) 

 

 
Metric of intraday 
variability: the average of 
the difference between 
values on different days 
but at the same time 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = � |𝐺𝐺𝑡𝑡 − 𝐺𝐺𝑡𝑡−24ℎ|
𝑡𝑡𝑡𝑡

𝑡𝑡=𝑡𝑡1

𝑘𝑘�  

 
k = number of observations with an 
observation 24h ago 

 

 
Lability 
Index 
(LI) 

 
(127) 

 
The formula processes 
three glucose values to 
calculate a lability value 
and then moves to the next 
three glucose values, and 
so on. The LI is the mean 
of these values (128) 

 

𝑀𝑀 = �|10 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐺𝐺𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼⁄ )|3
𝑁𝑁

𝑖𝑖=1

𝑁𝑁�  

 
G = glucose measured 
IGv = ideal glucose value (default: 
100mg/dL) 
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N = the total number of readings 
 

Glycaemic 
variability 
percentage 

(GVP) 
 

(116) 
 
 

 
A quantitative 
measurement of GV over 
an interval of time by 
analysing the length of the 
CGM temporal trace 
normalized to the duration 
under evaluation. 

 
𝐺𝐺𝐺𝐺𝐺𝐺 = 100 ⋅ (𝐿𝐿 ∕ 𝐿𝐿0 − 1) 

 

𝐿𝐿 = ��𝑑𝑑𝑥𝑥𝑖𝑖2 + 𝑑𝑑𝑦𝑦𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 

 
L0 = the ideal length for a given temporal 
duration  
dx = the decomposition of the temporal line 
into horizontal component 
dy = the decomposition of the temporal line 
into vertical component 
n = the total number of glucose recordings 
 

 

 
Mean 

absolute 
glucose 

change per 
unit time 
(MAG) 

 
(121) 

 

 
Calculates the sum of the 
differences between 
successive glucose values 
divided by the 
total time measured in 
hours 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = �(𝐺𝐺𝑖𝑖 − 𝐺𝐺𝑖𝑖+1)
𝑁𝑁=1

𝑖𝑖=1

𝑇𝑇�  

 
Gi = the glucose measured 
N = the number of measurements 
T = the total time (in hours)  

 

Measures based on risk and quality of glycaemia 
 

Glycaemic 
Risk 

Assessment 
in Diabetes 
Equation 
(GRADE) 

 
(129) 

 
An integrated risk score 
based on use of the mean 
value and the relative 
percent contribution to the 
weighted risk score from 
the hypoglycaemic, 
euglycaemic, 
hyperglycaemic range, 
respectively, e.g. GRADE 
(hypoglycaemia%, 
euglycaemia%, 
hyperglycaemia%) 
 

 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(425 𝑥𝑥 {log[𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺𝐺𝐺)] + 0.16}²) 
 
 
G = glucose measured 
 
 

 
Median GRADE < 5 is 
good control with values 
corresponding to 
euglycaemia 
 

 
M‐VALUE 

 
(130) 

 
A measure of the stability 
of glucose excursions in 
comparison with an “ideal” 
glucose value, which can 
be decided by the 
investigator 
 
Calculated on each glucose 
value using a formula and 
then divided by the total 
number of values to 
produce a mean (131) 

 

𝑀𝑀 = �|10 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐺𝐺𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼⁄ )|3
𝑁𝑁

𝑖𝑖=1

𝑁𝑁�  

 
 
G = glucose measured 
IGV = the ideal glucose value (default: 
100mg/dL) 
N = the total number of readings 

 
M-value is zero in 
healthy controls, rising 
with increasing 
glycaemic variability or 
poorer glycaemic control 
(131) 
 
Defined for T2D: 
 0≤M≤18 is good 
control; 19≤M≤31 is fair 
control; and M≥32 is 
poor control (128) 
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Low blood 

glucose 
index 

(LBGI)/ 
High blood 

glucose 
index 

(HBGI) 
 

(132) 

 
Measures of risk of 
hypoglycaemia (LBGI) 
and hyperglycaemia 
(HBGI) 
 
Calculated by transforming 
each glucose value by the 
formula and then 
attributing a risk value to 
the transformed point 
 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ��𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

� 𝑁𝑁�  

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = ��𝑟𝑟ℎ(𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

� 𝑁𝑁�  

𝑟𝑟𝑟𝑟(𝑥𝑥𝑖𝑖) = 22.77 ⋅ 𝑓𝑓(𝑥𝑥𝑖𝑖)2 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑥𝑥𝑖𝑖)  
≤ 0,𝑎𝑎𝑎𝑎𝑎𝑎 0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝑟𝑟ℎ(𝑥𝑥𝑖𝑖) = 22.77 ⋅ 𝑓𝑓(𝑥𝑥𝑖𝑖)2 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑥𝑥𝑖𝑖)  
> 0,𝑎𝑎𝑎𝑎𝑎𝑎 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝑓𝑓(𝑥𝑥1) = 𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖)1.084 − 5.381 
 
 
xi = the glucose recording 
N = the total number of recordings. 
 

 
If the glucose risk score 
is below 0, then the risk 
is labelled as LBGI, and 
if it is above 0, then it is 
labelled as HBGI (128) 
 
 
 

 
Average 
daily risk 

ratio 
(ADRR) 

 
 

(133) 
 

 
A risk assessment of the 
total daily BG variation in 
risk space; i.e. the sum of 
the peak risks of 
hypoglycaemia and 
hyperglycaemia for the day  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ��𝐿𝐿𝑅𝑅𝑗𝑗
𝑀𝑀

𝑗𝑗=1

+ 𝐻𝐻𝑅𝑅𝑗𝑗� 𝑀𝑀�  

𝐿𝐿𝑅𝑅𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑟𝑟(𝑥𝑥1),⋯𝑟𝑟𝑟𝑟(𝑥𝑥𝑛𝑛)� 
𝐻𝐻𝑅𝑅𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟ℎ(𝑥𝑥1),⋯𝑟𝑟ℎ(𝑥𝑥𝑛𝑛)� 

 
 
 j = the day index 
M = total number of days 
xi = the glucose recording 
n = total number of recordings per day 
 

 

 
Personal 

glycaemic 
status (PGS) 

 
(134) 

 
A composite index based 
on rtCGM data only that 
assesses four domains of 
glycaemic control: mean 
glucose, glycaemic 
variability, time in range 
and frequency and severity 
of hypoglycaemia 
 

 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐹𝐹(𝐺𝐺𝐺𝐺𝐺𝐺) + 𝐹𝐹(𝑀𝑀𝑀𝑀) + 𝐹𝐹(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
+ 𝐹𝐹(𝐻𝐻) 

 
𝐹𝐹(𝐺𝐺𝐺𝐺𝐺𝐺) = 1 + 9 ∕ 1 + 𝑒𝑒−0.049⋅(𝐺𝐺𝐺𝐺𝐺𝐺−65.47) 
𝐹𝐹(𝑀𝑀𝑀𝑀) = 1 + 9 1⁄ + 𝑒𝑒−0.1139⋅(𝑀𝑀𝑀𝑀−72.08)

+ 9 ∕ 1
+ 𝑒𝑒−0.1139⋅(𝑀𝑀𝑀𝑀−157.57) 

𝐹𝐹(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 1 + 9 ∕ 1
+ 𝑒𝑒−0.0833⋅(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−55.04) 

𝐹𝐹(𝐻𝐻) = 𝐹𝐹54(𝐻𝐻) + 𝐹𝐹70(𝐻𝐻) 
 
 
𝐹𝐹54(𝐻𝐻) = 0.5 + 4.5 ⋅ (1 − 𝑒𝑒−0⋅81093⋅𝑁𝑁54) 
𝐹𝐹70(𝐻𝐻)

= �0.5714 ⋅ 𝑁𝑁70 + 0.625  𝑁𝑁70 ≤ 7.65
                    5                   𝑁𝑁70 > 7.65 

 
 
MG = the mean glucose 
PTIR = the %TIR (70‐180mg/dL) 
N54 = number of hypoglycaemic events per 
week below the low threshold (≤54mg/dL) 
N70 = number of hypoglycaemia events per 
week below the higher threshold 
(≤70mg/dL) 
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Index of 

glycaemic 
control 
(IGC) 

 
(135) 

 

 
Sum of hyperglycaemia 
index and hypoglycaemia 
index 

 
𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

= � � �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐺𝐺ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖�
𝑏𝑏

𝑘𝑘ℎ𝑦𝑦𝑦𝑦𝑦𝑦

1=1

� (𝑁𝑁 ⋅ 𝑑𝑑)�  

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

= � � �𝐺𝐺ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 − 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈�𝑎𝑎
𝑘𝑘ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

1=1

� (𝑁𝑁 ⋅ 𝑐𝑐)�  

 
LLTR = the Lower Limit of Target Range 
(default= 80mg/dL) 
b = an exponent in the range [1.0, 2.0] 
(default= 2.0) 
d = a scaling factor to weigh hypoglycaemia 
and hyperglycaemia values (default= 30) 
ULTR is the upper Limit of Target Range 
(default= 140mg/dL) 
a = an exponent in the range [1.0, 2.0] 
(default=1.1) 
c = a scaling factor (default=30) 
 

 

 
J-Index 

 
(136) 

 
Combination of 
information from mean 
and SD of all glucose 
values  
 
Sensitive to 
hyperglycaemia; but rarely 
sensitive to hypoglycaemia 
(135) 
 

 
𝐽𝐽 = 0.001 ∙ (𝐺̅𝐺 + 𝑆𝑆𝑆𝑆)2 

 
 G = glucose reading (mg/dL) 
 
 

𝐽𝐽 = 0.324 ∙ (𝐺̅𝐺 + 𝑆𝑆𝑆𝑆)2 
 
G = glucose reading (mmol/L) 
 

 
Defined for T2D: 
10 ≤ J ≤20 is ideal 
control; 20 ≤ J ≤30 is 
good control; 
30 ≤J ≤40 is poor 
control; J > 40 is lack of 
control 

Table 1.2: List of measures of glycaemic variability 

Abbreviations: AUC, area under the curve; CV, coefficient of variation; CONGA, continuous 
overlapping net glycaemic action; G, glucose; GRADE, glycaemic risk assessment in diabetes 

equation; GVP, glycaemic variability percentage; HBGI, high blood glucose index; IGC, index of 
glycaemic control; LI, lability index; LBGI, low blood glucose index; MAG, mean absolute 
glucose change; MAGE, mean amplitude of glycaemic excursions; MODD, mean of daily 

differences; PGS, personal glycaemic status; SD, standard deviation.  
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1.3 Getting the Dose Right 

For maintaining glucose physiology, a balance is required between the two main 

driving forces i.e. insulin requirements and dietary intake. Besides optimising basal 

insulin, it is therefore necessary to ensure insulin dosing at mealtimes and 

correction doses are appropriate to avoid postprandial hypo- or hyperglycaemia. 

 

1.3.1 Structured education and carbohydrate counting 

Structured education has been shown to be effective for self-management of T1D, 

by empowering individuals with self-monitoring capillary blood glucose (CBG), 

carbohydrate counting, and insulin dose adjustment (137,138). Adjusting insulin 

meal bolus doses according to carbohydrate content enables flexibility to manage 

glycaemia, but requires knowledge of individualised insulin to carbohydrate ratios 

(ICR) and insulin sensitivity factor (ISF). 

 

NICE recommends that structured education should be offered to all adults 

diagnosed with T1D with the aim of supporting self-management (69). The Dose 

Adjustment for Normal Eating (DAFNE) programme, derived from the German 

Diabetes Teaching and Treatment Programme (DTTP), provides an evidence‐

based training course for adults with T1D in the UK. Participation in DAFNE has 

been associated with a reduction in HbA1c (137) and GV (139), as well as being 

cost-effective (140). An observational analysis of 687 people demonstrated 

significant reduction in median HbA1c of −3.5 mmol/mol (−0.3%) at 12 months, 

with a significant reduction of −1.5 mmol/mol (−0.1%) still seen at 5 years of 

follow‐up (p<0.001) (139). DAFNE is also associated with significant reductions 
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in diabetic ketoacidosis and severe hypoglycaemia, as well as restoring 

hypoglycaemia awareness (141), reducing psychosocial distress and improvement 

in perceived well-being (142). Another evidence-based structured education course 

delivered in the UK for T1D, includes the Bournemouth Type 1 Intensive 

Education (BERTIE) (143). 

 

However, despite structured education, in the UK, only 7.5% of people with T1D 

achieve a treatment target of HbA1c below 48mmol/mol and only 27% of people 

were found to have achieved a HbA1c below 58mmol/mol (144). Barriers to 

optimal glucose control include fear of hypoglycaemia, the time commitment 

required from each individual, inadequate support, and the complexity of 

calculating meal boluses, which involves a combination of arithmetic addition, 

subtraction and division. Low numeracy skills are common amongst people with 

diabetes and can be a significant problem in diabetes self-management (145,146). 

One study found approximately 25% of people were unable to determine what 

blood glucose values were within the normal range, 56% of participants were 

unable to calculate the total carbohydrate content in a pre-packaged snack, and 

59% could not accurately calculate the insulin dose based on glucose level and 

carbohydrate intake (146,147). 

 

1.3.2 Insulin bolus advisors for clinical decision support 

To assist people with calculating meal insulin boluses and improve post-meal 

glucose excursions, bolus advisors (also known as bolus calculators) are simple 

decision support systems to calculate prandial and corrective bolus insulin doses. 
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Clinical decision support systems (CDSS) are computerised systems to assist 

clinicians and patients in assessing disease status and facilitating one or more 

aspects of the therapy or management. Individualised characteristics of patients are 

matched to a computerised knowledge base, with software algorithms using 

communication or processing technology (feedback, advice, reinforcement, 

rewards, patient decision support, goal setting and reminders) to provide a tailored 

response (148). 

 

The first bolus calculator was patented by Medtronic in 1999 (#6554798) and 

implemented within an insulin pump (Deltec Cozmo) in 2002 (12). Now, bolus 

calculators are incorporated into many commercially available blood glucose 

monitors (13) and insulin pumps (14). The incorporation of bolus calculators into 

standard glucose meters (e.g. AccuCheck Aviva Expert and FreeStyle Insulinx) 

enabled use in individuals who are not on insulin pumps, but using MDI basal-

bolus regime. The widespread availability of smartphones has also led to a rapid 

increase in the availability of bolus calculators and other decision support software. 

 

A standard bolus calculator uses a generic formula taking into account the target 

glucose level, current glucose level, carbohydrate content of a meal, 

insulin:carbohydrate ratio (ICR), insulin sensitivity factor (ISF) and insulin on 

board (IOB). This formula is described as follows: 
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B =
CHO
ICR

+
Gc − Gsp

ISF
− IOB 

 

 

 

1.3.2.1 Insulin-Carbohydrate Ratio 

The ICR denotes the amount of carbohydrates covered by one unit of insulin. A 

commonly used formula to estimate the initial ICR is based on the total daily dose 

(TDD) of insulin, where the ICR is determined by dividing the TDD from a factor 

of 300, 450 or 500 (i.e. 300/450/500 rule).  

 

Another formula proposed by Davidson and colleagues, is based on the 

retrospective analysis of 167 adults on insulin pump that incorporated the weight 

(lb) of the individual: 

ICR =  
2.8 × Weight(lb)

TDD
 

 (149) 

 

In 2010, the formula was later adjusted by Walsh et al following analysis of data 

from 1020 pumps downloaded to: 

ICR =  
2.6 ×  Weight(lb)

TDD
 

     (150) 

B = recommended dose of insulin (units) 
CHO = total amount of carbohydrate in the meal 
(grams) 
ICR = insulin-to-carbohydrate ratio i.e. how many 
grams correspond to one unit fast acting insulin 
(g/U) 
Gc = the current capillary BG level (mmol/l) 
Gsp = the target blood glucose level (mmol/l) 
ISF = insulin sensitivity factor (mmol/l/U) i.e. a 
personal relation describing drop in blood glucose 
after one unit of insulin  
IOB = insulin-on-board i.e. the amount of insulin 
still in the body from previous injections 
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Estimated ICR values often need to be adjusted for different times of the day and 

regularly re-adjusted to compensate for changes in insulin sensitivity. 

 

1.3.2.2 Insulin Sensitivity Factor 

Insulin sensitivity factor (ISF) is used to determine the insulin dose needed to 

correct for glucose levels outside the target range. More specifically it describes 

how much glucose levels drop for one unit of insulin given. Similar to ICR values, 

rules or guidelines exist based on the experience of clinical experts to determine 

the starting point of ISF for an individual. Most rules are based on factors, which 

are divided by the TDD. Commonly used factors in the literature are 1700 (149), 

1800 (151) and 1960 (sometimes rounded to 2000 (150)) for mg/dL and 94, 100 

and 110 for mmol/l, respectively. 

 

1.3.2.3 Insulin on Board 

Bolus advisors are also able to factor in active “insulin on board” (IOB). The IOB 

insulin is estimated by the individual’s duration of insulin action (DIA), with 

adjustments based on mathematical modelling of insulin kinetics for insulin that 

has been injected subcutaneously. Modifying the DIA, therefore, regulates how 

aggressive or conservative subsequent insulin bolus recommendations are after 

previous dosing. IOB estimations are designed to prevent “stacking” of multiple 

insulin boluses, which can result in hypoglycaemia. 
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Different formulae may be used by different manufacturers to estimate the IOB 

(i.e. linear or curvilinear). The linear estimation is the simplest formula used and 

is described as: 

IOB = Bk−1, 1 −
t − TB
TIOB

 

where Bk-1 is the previously administered bolus, TB is the time of bolus 

administration, t is the time that IOB wants to be estimated, and TIOB is a predefined 

interval during which the administered insulin is supposed to be active (e.g. 4 

hours) (15). 

 

1.3.3 Factors affecting blood glucose 

In addition to carbohydrate content of a meal, there are many other variables that 

may impact the glucose regulatory system and insulin requirements. These factors 

can often be challenging to address and have been listed below: 

 

Fat/ Protein Content and Glycaemic index: Principals of carbohydrate counting 

assume carbohydrates are the nutrient component with greatest impact on 

postprandial glucose excursions. There is evidence, however, that dietary fat and 

protein can delay gastric emptying and therefore delay carbohydrate digestion and 

glucose absorption. Another mechanism postulated is that free fatty acids (FFA) 

directly induce insulin resistance, and therefore FFA-induced insulin resistance 

with increased hepatic glucose output, may be the cause for delayed 

hyperglycaemia (152). 
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Caffeine: Caffeine intake alters blood glucose metabolism, however the results 

from studies remain varied (153). In few studies, glucose levels increased more 

following caffeine intake with, compared to just, carbohydrate intake. However, 

acute caffeine consumption in T1D may not raise glucose levels alone (153,154). 

 

Alcohol Consumption: Alcohol consumption has been shown to reduce 

gluconeogenesis by approximately 45% and hepatic glucose output by 12% (155). 

Furthermore, the relationship between alcohol and insulin sensitivity is J-shaped, 

with increased insulin resistance in both abstainers and in heavy drinkers 

(156,157). Moderate intake has been associated with increased insulin sensitivity 

in young adults (158). 

 

For people with T1D, alcohol is recognised as a risk factor for hypoglycaemia, 

particularly the following morning after consumption the evening before 

(159,160). Whilst there is a general paucity of clinical trials with several studies 

and meta-analyses failing to identify any acute changes in glucose or insulin 

concentration (161–163), caution about potential dangers of excessive alcohol is 

deemed the safest course (163). 

 

Physical Activity: Basal plasma insulin concentrations have been known to drop 

as a result of physical activity. In addition, glucose uptake is amplified by working 

tissue and there is an increase in hepatic glycogenolysis (164). Physical exercise 

has both immediate (acute) and longer-term effects on insulin sensitivity. The 

immediate effects are directly resultant from the episode of activity and may be 
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evident up to 72 hours post exercise. If repeated regularly, physical activity can 

produce additional long-term chronic improvements in insulin sensitivity (165). 

 

Hormone cycle: Women may face additional challenges with their diabetes care 

due to metabolic influences on glycaemia during the menstrual cycle (166,167). 

During the perimenstrual phase, many women experience luteal phase 

hyperglycaemia that remains consistent between cycles (168,169). In addition, 

significant alterations in insulin doses are required during pregnancy and in the 

post-partum period (170), as well as later in life through menopause (171). 

 

Hormones may in part account for these changes; oestrogen which is highest in the 

luteal phase, has been associated with reduced insulin sensitivity, whilst 

progesterone has been implicated in insulin resistance (168). 

 

Stress and Illness: Stress and illness are important contributors to glycaemia, due 

to several hormonal changes that can affect glucose homeostasis in both healthy 

people and in those with diabetes. The hormones released during stress include 

norepinephrine, epinephrine, cortisol, β-endorphin and growth hormone, which 

can reduce insulin sensitivity and lead to elevated glucose levels (172,173). 

 

Environmental temperature and season: Ambient temperature levels have been 

noted to affect glycaemic profiles and variability in people with T1D. Tsujimoto et 

al (2014) found lower HbA1c levels in the summer or warmer seasons and 

increased HbA1c in the winter or cold season (174). Additionally, severe 
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hypoglycaemia occurred significantly more often in the summer than in the winter. 

By contrast, Moscardo et al (2018) observed an increasing trend in glycaemic mean 

with increasing temperatures, with varying influences on glycaemic measures 

(175). 

 

Insulin timing and absorption:  

The timing of insulin injection given in relation to the meal can affect postprandial 

glycaemia and is dependent on the type of insulin used and its variables (such as 

onset, peak, and duration). Studies have shown superiority and safety of injecting 

rapid acting insulins 15–20 minutes pre-meal, resulting in almost 30% lower 

postprandial glycaemia, lower area under the curve (AUC) for hyperglycaemia and 

less post-meal hypoglycaemia when the pre-meal glucose levels are in range (176). 

Mistiming of insulin bolus and eating within a few minutes after (or before) 

injecting rapid-acting insulins may substantially reduce the ability of that insulin 

to prevent a rapid rise in blood glucose (177). Fear of hypoglycaemia, the 

practicality of injecting 15–20 minutes prior to mealtimes and individual 

circumstances may prevent individuals from following this advice (176). 

Ultrarapid insulins (Fiasp and URLi) with faster onset of action, but shorter 

duration of action, can potentially support insulin administration closer to meal-

times but will need to be offset against earlier cessation of action. 
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1.3.4 Review of standard bolus calculators to date 

Overall, standard bolus calculators have been associated with improved 

postprandial glucose values, reduced dosing errors, a reduction in hypoglycaemia 

fear, and improved confidence in diabetes self-management (178–180). Clinical 

outcomes related to HbA1c, however, have been mixed with some studies showing 

improved HbA1c (181–183), whilst other studies have shown no impact on 

HbA1c, but improved treatment satisfaction (180). Furthermore, some studies have 

shown improved glycaemic control, but at the expense of increased hypoglycaemia 

(184). 

 

The BolusCal study in 2012 of 51 adults with baseline HbA1c 8.0 – 10.5% were 

randomised to three groups: control, carbohydrate counting and carbohydrate 

counting with an automated bolus calculator (AccuCheck Aviva Expert). 

Reduction in HbA1c in the carbohydrate counting groups was significantly lower 

than in the control group. No difference in HbA1c was reported in those using the 

bolus calculator, however treatment satisfaction was greater in this group (180). 

 

The ABACUS trial was a 26-week prospective, multi-centred, randomised 

controlled trial evaluating the Aviva Expert in 193 adults with T1D and T2D. 

Significantly more people in the bolus calculator group achieved >0.5% HbA1c 

reduction (p<0.01), without increased hypoglycaemia and improved treatment 

satisfaction (181). 
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Newer bolus calculators have incorporated additional features to aid the user. For 

example, VoiceDiab analyses input from voice description by the user to estimate 

amount of carbohydrate, protein, and fat in a meal (185). The %TIR for 

postprandial glycaemia (2h from the beginning of eating) was 58.6 ± 18.2 vs 46.6 

± 17.4 in the VoiceDiab group compared to control respectively (p=0.03). No 

significant differences were observed for %TIR; %TBR and %TAR. Whilst the 

application itself was designed in Polish, the system can be translated into other 

languages. It would also require customisation of the food products database. 

 

In 2015, Huckvale et al. assessed 46 bolus calculators available for iOS and 

Android. Of these, 59% contained a clinical disclaimer, but only 30% documented 

the calculation formulae used, 91% lacked numeric input validation, 59% allowed 

calculation with missing inputs, 48% used ambiguous terminology, 9% lacked 

numeric precision, and 4% did not reliably store parameters. Critically, 67% of the 

apps carried a risk of inappropriate dose recommendation. As per the author’s 

criteria, only one app (for iOS) was issue free (186). 

 

With majority of bolus calculators largely untested and rendering individuals at 

risk of hypoglycaemia or hyperglycaemia (187), it has highlighted the 

requirements for greater scrutiny and standards for medical apps and decision 

support systems in the field. 

 

As a result of the need for greater clinical evidence and real-world 

performance/outcomes by ‘digital health technology’, the European Association 

for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) 
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have introduced and implemented a new regulatory framework in 2020 to provide 

clarity on medical device software (188). 

 

Table 1.3 summarises current FDA approved/ CE marked standalone bolus 

calculators available on the market. 
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Name/ Platform FDA/ CE 
marked 

Author 
Sample Size 

Type of Diabetes 

Trial Design Comparator Evidence in literature/ Main Results 

Accu-Chek Connect 
(Roche Diagnostics, 
Indianapolis, IN, 
USA) 
 
Platform: 
Glucometer and app 

FDA 
(recalled in 
2019 
(189)) 

Zeigler et al (181) 
n=193 
T1D (93%) + T2D 
Adults; MDI 

Multi-centred RCT 
26weeks 
HbA1c >7.5% (58 mmol/mol) 
 

Standard therapy ABACUS Trial 
Improvement in HbA1c (56.0% participants in 
intervention group achieved >0.5% HbA1c reduction 
compared to 34.4% in control, p<0.01). 
Improvement in GV (MAGE) and treatment satisfaction 
 
No difference in hypoglycaemia  

Aviva Accu-Chek 
Expert 
(Roche Diagnostics) 
 
Platform: 
Glucometer and app 

FDA Mora et al (190,191) 
n=85 
T1D 
Adults; MDI 
 
 
 
Schmidt et al (180) 
n= 51 
T1D 
Adults; MDI 
 

Randomised prospective parallel‐arm 
(n=85) 
4‐months + 4-months extension 
HbA1c >7.0% (53 mmol/mol) 
 
 
 
Randomised, open-label, three-arm 
parallel study 
16-weeks 
Poorly controlled (HbA1c 8.0–10.5%) 
 

Standard therapy CBMDI Study 
At 4 months (190): No significant differences in HbA1c 
or hypoglycaemia fear. 
 
At 8 months (191): Reduction in fear of hypoglycaemia 
and greater treatment satisfaction; no change in HbA1c. 
 
BolusCal Study 
No improvement in HbA1c; Improvement in treatment 
satisfaction 
 

Dario 
(NASDAQ) 
 
Platform: 
Glucometer and app 

FDA + CE     None 

Diabeo 
 
Platform: 
Smartphone app 
 
 
 

CE 
(France) 

Charpentier et al, 
2011 (182) 
n = 180 
Adults 
T1D; MDI and CSII 
 
Further multicentre, 
randomised, open-label, 
three parallel–arms 
study in approximately 

Open-label parallel-group, multicentre 
study 
6 months 
Poorly controlled (HbA1c ≥8%) 
 
Diabeo software with basal and 
prandial insulin bolus advisor +/- 
telemonitoring and phone 
consultations providing motivational 
support. 

Group1: Standard therapy 
Vs 
Group2: Bolus calculator 
with quarterly caregiver 
visits  
vs 
Group 3: Bolus calculator 
with teleconsultations every 
2 weeks (no caregiver visits 
till end of study) 

TeleDiab 1 Study 
Improvement in HbA1c (0.91% (0.60-1.21)% HbA1c 
reduction in Group 3 with teleconsultations vs 0.67% 
(0.35-0.99)% reduction in Group 2 without 
teleconsultations). 
No difference in hypoglycaemia or QOL 
 
Sub-analysis of the TeleDiab Study (above) to determine 
high and low users of system. 
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100 centres in France 
(NCT0228753; 
TELESAGE Study) 
(192). 
 

 Improved glycaemia in both high and low users using 
Diabeo, although greatest improvement seen in low 
users having motivational teleconsultations support 

Diabetes Diary 
 
Platform: 
Smartphone app 
 

CE 
(Norway) 

Skrovseth et al, 2015 
(193) 
N=30 
Adults 
T1D; MDI and CSII 
 

Randomised stepped-wedge trial with 
two groups 
23 weeks  
 
Diastat modules:  
(1) Glucose periodicity graph  
(2) Glucose trends  
(3) Situation matching (i.e. presents 
situations most similar to the current 
one) 
  

4 weeks run-in period (basic 
Diabetes Diary without 
Diastat), then Group 1 
served as intervention group 
(with Diastat), and Group 2 
served as a control group for 
8 weeks. Subsequently, 
Group 1 was dismissed, and 
Group 2 served as 
intervention group for 10 
weeks (with Diastat). 
 

No differences between groups in HbA1c or out of range 
events 

Diabetes Insulin 
Guidance System 
(Hygieia) 
 
Platform: 
Glucometer app 

CE (Italy) Bergenstal et al, 2012 
(194) 
n = 46 
Adults 
T1D (43%) + T2D; 
MDI 
 

Open-label, single-arm feasibility 
study 
16 weeks 
HbA1c ≥7.5% 

Run-in period (standard 
therapy + weekly diary 
keeping) 

No differences in HbA1c or out of range episodes 
between control and intervention groups 
 
All participants had reduction of 0.6% in mean HbA1c 
(p<0.001) 
 

Diabetes Interactive 
Diary 
 
Platform: 
Glucometer app 

CE  Rossi et al, 2010 (195) 
n=130 
Adults 
T1D; MDI and CSII 
 
Rossi et al, 2013 (196) 
n=127 
Adults 
T1D; MDI 
 

Multicentre, randomised, parallel-
group study 
HbA1c levels≥7.5% 
 
 
Multicentre RCT; 6 months 
HbA1c levels≥7.5% 
 

Standard therapy  
 
 
 
 
Structured educated  

No reduction in HbA1c 
Improved perceived frequency of hyperglycaemic 
episodes; improved treatment satisfaction (p=0.04) 
 
 
No reduction in HbA1c or GV between groups (HbA1c 
decrease of 0.5% in both groups) 
Lower mean basal insulin in the intervention group 
(p=0.04)  

Freestyle InsuLinx 
(Abbott) 
 

FDA + CE Sussman et al 2012 
(197) 
n=205 

Multicentre observational study 
1 day 
 

Manual calculation Primary outcome = frequency of insulin dosing errors 
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Table 1.3: FDA approved or CE marked standalone bolus calculators for T1D 

Abbreviations: CSII, continuous subcutaneous insulin infusion; FDA, Food and Drug Administration; isCGM, intermittently scanned continuous glucose monitoring; MDI; 
multiple daily injections of insulin; SMBG, self-monitoring blood glucose; T1D, type 1 diabetes; T2D, type 2 diabetes; QOL, quality of life. 

Platform: 
Glucometer app 

>13years old 
T1D (48%) + T2D; 
MDI 

Opinion surveys completed after to 
doses determined using the FreeStyle 
InsuLinx or manual calculation 

63% of manually calculated doses were incorrect; 10 
times fewer errors (i.e. 6% of same dose determinations) 
using the meter (p<0.0001) 
 

Glooko 
(Mountain View, CA, 
USA) 
 
Platform: Phone app 

FDA + CE Clements et al, 2017 
(198) 
N= 81 
Youth + young adults 
T1D; MDI and CSII 
 
Offringa et al, 2018 
(199) 
n=1,788 
Adults 
T1D + T2D 

Retrospective multicentre study 
 
 
 
 
Retrospective multicentre study 

Compared to clinic 
population (n= 2294) 

Improvement in SMBG frequency (2.3 fold increase; 
p<0.01); 
No reduction in HbA1c 
 
 
 
Improvement in SMBG frequency (p<0.001); 
Reduction in average glucose by 3.5% after 2 months 
(p<0.001) 
Reduction in probability of hyperglycaemic events after 
2 months (p<0.001) 
 

Go Dose (Eli Lily) 
(Companion 
Medical Inc.) 
 
Platform: Phone app 

FDA     None 

InPen 
 
Platform: Phone app 

FDA + CE     None 

MySugr  
(AccuChek, Roche 
Diagnostics) 
 
 
Platform: Phone app 

FDA + CE Debong et al, 2019  
N=2104 
Adults 
T1D 
 
Secher et al, 2020 
Adults 
T1D 

Retrospective observational study 
Highly engaged users (logging ≥5 
days/week for ≥6 months) 
 
 
 

 
 
 
 
 
 

Improvement in blood glucose at 6 months (p < 0.01) 
Reduction of eA1c of ∼0.3% in an already well-
controlled population (from 7.3% to 7.0%) 
 
 
Four groups to compare: standard care, bolus calculator, 
isCGM or bolus calculator + isCGM. 
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1.3.5 Limitations and sources of error of standard bolus calculators 

Bolus calculators are considered state-of-the-art for insulin dosing decision 

support. However, besides the requirements for greater scrutiny, they suffer from 

several other key limitations. Firstly, whilst bolus calculators may have potential, 

their overall effectiveness is limited by the requirement for adaptation over time, 

which necessitates frequent review of ICR and ISF settings. In clinical practice, 

this can be impractical as diabetes clinic appointments are generally scheduled 

twice a year.  

 

Secondly, bolus calculators require accurate carbohydrate counting skills (200), 

and structured education amongst people with T1D remains limited (201). 

Inaccurate or non-physiological settings of ICRs or ISF can introduce errors into 

bolus recommendations. Another common error is to select a DIA time that is too 

short, in order to increase the size of the recommended bolus doses (202). In an 

online discussion, pump wearers were questioned about what their DIA setting 

was. Nineteen respondents reported a median DIA time of 3 hours and an average 

time of 3.4 hours (range 2.5 – 5.0 hours) (203). Selection of short DIA times may 

result in unexplained hypoglycaemia (203). The inappropriate selection of the most 

commonly used DIA time setting of 3 hours, masks active bolus insulin on board 

(BOB), leading to insulin stacking (187). 

 

Third, current commercially available calculators limit the estimation of required 

bolus insulin at mealtimes to the amount of carbohydrate consumption. As 

discussed previously, additional parameters that are required to be taken into 

account include glycaemic index, fat or protein content of meals, altered digestion 
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(i.e. in individuals with gastroparesis) and concomitant use of a glucagon-like 

peptide agonist (187). 

 

Finally, whilst some bolus calculators additionally consider parameters such as 

exercise, all lack the ability to automatically adapt over time to respond to 

individual needs or changes in insulin sensitivity. It is hypothesised that a 

personalised and adaptive insulin advisory system will provide better glycaemic 

control than state-of-the-art standard bolus calculators. This brings us to the 

frontier of artificial intelligence and adaptive decision support systems, which can 

help rapidly analyse large datasets and provide recommendations to adjust 

bolus/basal insulin in real-time. 

 

 

1.4 Artificial Intelligence Powering Innovation in Healthcare 

Over the last few years, artificial intelligence (AI) has brought a paradigm shift to 

healthcare management, much of which is powered by increasing availability of 

healthcare data and rapid progress of analytic techniques. AI has been defined in 

many ways. One such accepted definition quoted by Forbes, is “the theory and 

development of computer systems to perform tasks normally requiring human 

intelligence, such as visual perception, speech recognition, decision-making, and 

translation between languages” (204). 

 

It is reported that each person will generate more than 1 million gigabytes of 

health-related data in their lifetime, which is equivalent to approximately 300 
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million books (205). The promise of machines (computers) to therefore learn and 

identify patterns using biostatistics by handling massive datasets (big data) through 

layered mathematical models (algorithms), offers the potential to power innovation 

in healthcare. Correcting algorithm mistakes (training) adds to AI predictive model 

confidence (206). It is anticipated that AI has the potential to help healthcare move 

from traditional “one-size-fits-all” medical solutions towards personalised 

therapies, targeted treatments and uniquely composed drugs i.e. precision 

medicine. 

 

In the literature, intelligent algorithms are widely used to support advanced 

analysis and provide individualised medical aid. Successful applications for AI 

include image analysis in radiology, pathology (207) and dermatology (208), with 

diagnostic speed exceeding, and accuracy paralleling, medical experts. 

Additionally, an increasing number of health care companies are using these 

techniques (209). Examples of large corporations using AI, range from mining 

medical records (Google Deepmind and IBM Watson (210)), identifying therapies 

(Zephyr Health), genomics (Deep Genomics (211) to supporting diagnostic 

imaging (Enlitic, Arterys, 3Scan). 

 

The US Agency for International Development (USAID) has several key areas of 

healthcare to which AI techniques may be applied (Figure 1.4; (212)). At an 

individual health level, care services can broadly be divided into applications for 

prevention, diagnosis (both data-driven and image-based), acute treatment (i.e. 

clinical decision support, monitoring and AI-facilitated care) and follow-up and 

chronic care. 
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Despite the huge promise of AI, there are many challenges to be faced for its use 

in healthcare and in diabetes (i.e. apps, devices and systems). Firstly, the biggest 

challenge will be governance, with physician cooperation, expensive up-front and 

ongoing costs being some of the initial challenges starting up. Technical 

interoperability between systems to exchange and use information, and the 

limitation of sharing algorithms and codes in published studies, make reproducing 

results challenging. From a survey of 400 algorithms presented at two AI 

conferences, only 6% of presenters shared codes, with only half sharing a 

“pseudocode” and limited summary (213). 

 

Figure 1.4: Potential use-cases for AI use in Healthcare 

AI has the potential to transform medical care at multiple levels of healthcare provision, including 
at a population level (e.g. surveillance and intervention targeting), or by targeting individual 

health, (e.g. through information technology), and other related industries. The classification is 
based on key areas identified by the US Agency for International Development (212) with 
examples provided in each of the key areas. Abbreviations: AI, artificial intelligence; IT, 

information technology; HR, human resources. 
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1.4.1 Artificial intelligence techniques 

This section provides a short overview of several well-known AI techniques and 

methodologies. Historically, the dominant approach to AI was inspired by logic or 

“reasoning systems” (214). However, over the past decade, significant research has 

been invested into “learning systems”, especially machine learning and its compute 

intensive offspring, deep learning. Each AI technique has strengths and 

weaknesses. When selecting an AI technique, it is important to consider the 

features that are critical to the particular problem (215). Figure 1.5 provides a 

framework for AI techniques, categorized by learning and reasoning systems. 

Table 1.4 describes the key algorithms and their limitations in AI processes.  

 

Figure 1.5: Framework of artificial intelligence (AI) techniques 

AI techniques can be categorized into learning and reasoning systems. Current day learning 
systems include supervised, unsupervised and reinforcement learning. Reasoning systems (or 

knowledge-based or logic-based systems) involve the use of logical techniques to generate 
conclusions, through deduction and induction from available knowledge. 
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Learning systems 

Learning from data is commonly referred to as machine learning, which is 

characterised by the ability to learn over time without explicitly being 

programmed. Geoffrey Hinton and colleagues renewed interest within this field of 

research in their 1986 seminal paper on backpropagation, published in Nature 

(216). Current day machine learning can be divided into three main categories, 

namely, supervised learning, unsupervised learning and reinforcement learning. 

Table 1.4 summarises these methods.  

 

Reasoning systems 

Reasoning systems, also referred to as knowledge-based or logic-based systems, 

involve the use of logical techniques to generate conclusions, through deduction 

and induction from available knowledge. For example, knowledge engineers 

extract the logic by interviewing or observing human experts. Such systems 

commonly apply heuristics and are based on three key components. Firstly, a 

knowledge acquisition system gathers information and collect inferences that can 

be used for further development. Second, a knowledgebase is used for problem 

solving. This is characterised by rules and information. Finally, the inference 

engine links the knowledge base with the gathered information (215). These 

facilitate the process of reasoning, enabling the system to recognise an anticipated 

solution. Examples include rule-based reasoning, expert systems, case-based 

reasoning and planning systems. 
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Method How it works Limitations and examples 

Machine learning (ML) 

Supervised ML 

The user trains the algorithm to generate an 
answer based on a known and labelled data set 

Problems encountered with data preparation and 
pre-processing include: missing values; 
impossible/unlikely values inputted; irrelevant 
input features present in the data. This leads to 
many research areas where labelled data is 
elusive or too expensive (217) 
 
Examples: logistic regression, linear regression, 
k-nearest neighbour, support vector machine 

Unsupervised 
ML 

The algorithms generate answers on unlabelled 
data. Techniques are useful in exploratory 
situations and are used to find undefined 
patterns or clusters within datasets  

Algorithmic outcomes may not be easily 
interpretable (i.e. black boxes) 
 
Examples: K-means, hierarchical clustering, 
probabilistic clustering 

Reinforcement 
learning 

An iterative process, where the learning 
algorithm is set a goal which it tries to solve by 
adapting its previously used actions or series of 
actions when confronted with same problem 

Typically these algorithms make a lot of 
mistakes during early iterations, but over time 
become more successful at achieving their set 
goals 

Reasoning systems 

Expert systems 

These are based on collections of ‘if-then’ rules 
and were the dominant technology for AI in the 
1980s and are still in wide use today 
 
Expert systems require human experts and 
knowledge engineers to construct a series of 
rules within the knowledge domain (218) 

When the number of rules are large (usually 
over several thousand) and rules begin to 
conflict with each other, they may tend to break 
down 
 
If the knowledge domain changes, changing 
rules can be difficult and time-consuming 
 
Examples: rule-based reasoning, case-based 
reasoning 

Fuzzy logic 

A form of multi-valued logic dealing with 
reasoning that is approximate rather than 
precise. The truth value may range between 
completely true and completely false, and fuzzy 
logic is able to handle values between with an 
appropriate degree of fuzzification (219) 

Determining the exact fuzzy rules and 
membership functions can be time-consuming 

Classical natural 
language 

processing (NLP) 

NLP algorithms analyse large amounts of 
natural language data to include text and speech 
processing and voice recognition 
 
Classical NLP from the 1950s were designed 
with heuristic methods, using rules of syntax 
and grammar. This approach is deeply rooted in 
using logic to create a sense of meaning   
 

Rules for classical NLP need to be well-crafted 
and are often numerous and time-consuming. 
Do not handle colloquial text well  
 
Classical NLP has now given way to deep 
learning NLP, based on ML, for improved 
accuracy  

Table 1.4: Examples of AI techniques 
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1.4.2 Diabetes care powered by artificial intelligence 

Diabetes is attracting increased attention of AI and its applications due to the large 

amount of data that can be drawn and exploited from the newer technologies, such 

as rtCGM and wearable health monitors (e.g. Fitbit wrist watches). 

 

Diabetes care may be transformed over the forthcoming years with AI systems 

deployed within this specialist field. Key areas where AI has been successfully 

used include: 1) Screening and predicting risk; 2) Minimising diabetes related 

complications; 3) Personalising glycaemic control through monitoring and insulin 

recommender systems. 

 

Screening and predicting risk: Population-based intervention may be facilitated 

through machine learning algorithms for more targeted screening and prevention 

programmes in diabetes. For example, in predicting type 2 diabetes risk, machine 

learning-based predictive modelling can mine vast numbers of various genetic and 

metabolic combinations to identify at risk populations (220). 

 

Another example includes the use of machine learning for causal inference in 

identifying important heterogeneous treatment effects hidden amongst large 

datasets within existing trials, even in trials reporting average negative effects. The 

Action for Health in Diabetes (Look AHEAD) trial of 5145 people investigating 

whether weight loss intervention resulted in reduced long-term cardiovascular 

disease morbidity and mortality in type 2 diabetes, found no significant reductions 

(221). However, post-hoc analysis using causal forest modelling (type of machine 

learning) identified participant subgroups where weight loss was indeed beneficial 
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(222). As a result, more personalised intervention could be provided to both 

subgroups. 

 

Diabetes related complications: Deep learning using neural networks can be used 

to predict the onset of diabetic retinopathy from retinal image evaluation. To build 

the model, large image datasets (annotated retinal images) can be collected and the 

algorithm can “self-rate” severity from pixel intensity, ‘learning’ to predict the 

consensus grade of the raters (clinicians). Findings demonstrated comparable 

specialist level proficiency compared to a panel of ophthalmologists, with high 

sensitivity and specificity in detecting referable diabetic retinopathy (223). Tested 

in an-outpatient clinic setting, this has been feasible and well-accepted by patients 

(224). In 2018, the FDA approved the first autonomous AI diagnostic system in 

any field of medicine - without the need for a clinician to also interpret the results 

or image. The device, called IDx-DR (IDx LLC, Coralville, IA) uses an AI 

algorithm to analyse images of the eye taken with retinal camera called Topcon 

NW400 (Topcon Medical Systems, Inc, Oakland, NJ). The pivotal trial of 900 

participants at 10 clinical sites concluded a sensitivity of 87.2% (95% CI 81.8–

91.2%), specificity of 90.7% (95% CI 88.3–92.7%), and imageability rate of 96.1% 

(95% CI 94.6–97.3%) (225). 

 

Other promising research includes advanced computer vision algorithms to help in 

the detection and monitoring of diabetic foot pathologies. FootSnap captures 

standardised photographs of diabetic feet in relation to the distance from the foot 

and the orientation of the camera relative to the foot (226). This system may be 

used for longitudinal follow-ups in diabetic feet, as a potential for monitoring 
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pathology. Approaches such as this may lead to people at higher risk of foot 

complications benefitting from quicker referral times, and reducing specialist 

referrals for those at low risk (227). 

 

Glucose monitoring and insulin recommender systems: Various strategies 

using AI techniques and algorithms are being adopted to improve glycaemic 

control. GoCARB is a computer vision-based smartphone system, which employs 

computer vision, machine learning, and smartphone technologies to estimate the 

carbohydrate content on plated meals for individuals with T1D. Comparing 

GoCARB and dietitians on 64 plated meals, both achieved comparable accuracies 

(228). Using technologies such as these may offer individuals easy, accurate, and 

real-time estimation of carbohydrate content in their meals, thus enhancing 

diabetes self-management (228,229). 

 

Zeevi et al. from Weizmann Institute of Science, use a machine learning algorithm 

to predict personalised postprandial glycaemic responses to real-life meals. Inputs 

into the algorithm included blood parameters, dietary habits, anthropometrics, 

physical activity and gut microbiota. Subsequently, they were able to tailor dietary 

interventions based on these predictions to significantly improve post-meal 

glucose levels (230).  

 

AI has also been successful in enabling short to medium-term glucose forecasting  

for up to 15mins-2hours (231,232). With machine learning, glucose forecasting is 

now further extended to predict quality of glycaemia over the overnight period 
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(01.00 – 05.00hrs), thereby allowing the user to take the appropriate preventive 

action (snack or change in basal insulin) (233). 

 

Adaptive bolus calculators, for example, the ‘Advanced Bolus Calculator for 

Diabetes Management’ (ABC4D) which uses case-based reasoning (CBR) to 

support individuals with T1D, have been discussed in greater depth in the 

following sections (234,235).  

 

 

1.5 Innovations in Bolus Calculators 

Bolus calculators are considered state-of-the-art for insulin dosing decision 

support. However, as outlined previously, they suffer from several key limitations. 

The main drawback is that standard bolus calculators are based on clinical 

algorithms, which remain constant over time. However, parameters (such as ISF 

and ICR) are usually not constant and can vary depending on parameters such as 

circadian rhythms, physical activity levels, hormone cycles, psychological stress, 

alcohol consumption, and recurrent illness. To address this, an ideal bolus 

calculator should be able to automatically adapt over time and respond to an 

individual’s needs and changes in insulin sensitivity. It is therefore hypothesised 

that a personalised and adaptive insulin advisory system will provide better 

glycaemic control than state-of-the-art standard bolus calculators. 

 

Over the recent years, there has been growing interest in developing algorithms 

using AI to guide insulin therapy adjustments. Bolus calculators are one such 
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proposed area. Whilst rtCGM and insulin pump data have revolutionised decision 

support and the way in which clinicians and individuals are able to analyse glucose 

trends and patterns, incorporation of new physiological variables (e.g. heart rate, 

hours of sleep and physical activity) will be particularly helpful when analysed 

with AI applications. 

 

The predominant methods of reasoning, which have been integrated in adaptive 

bolus calculators have been reviewed below. 

 

1.5.1 Rule-based reasoning 

During the 1970s and 1980s, one of the most visible developments in AI research 

was the emergence of rule-based expert systems. Rule-based reasoning stores the 

knowledge of experts directly into a rule base and uses inference to solve the 

problem. Skyler et al (236) and Jovanovic and Peterson (237) were among the first 

to introduce heuristic algorithms, using rules based on practical experience to 

adjust insulin dosing. 

 

An example of such rules may be expressed in IF−THEN format: 

IF fasting glucose is <5mmol/l → THEN reduce evening basal insulin by 2units. 

 

Algorithm may differ in inputs, for example, Skyler et al used only pre-prandial 

blood glucose measurements, whilst the algorithm by Jovanovic and Peterson used 

pre- and postprandial measurements (238). 
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However, despite the success of rule-based systems in various sectors, there were 

several pertinent problems (239): 

1. Construction of the intended knowledge base can be difficult and time-

consuming. This was particularly the case for topics covering a broad range 

of knowledge. 

2. Challenge of dealing with problems not anticipated by rules, and require 

exact matching (of antecedents). 

3. Lack of learning, creativity and common sense. Traditional rule-based 

expert systems do not have the ability to learn or be creative, and therefore 

require expert intervention/programmer to facilitate any addition to the 

existing system. 

 

1.5.2 Run-to-Run control 

Run-to-Run (R2R) is a control engineering algorithm designed to exploit the 

repetitive nature of a process being controlled (240). The algorithm learns from 

one run so that variables in the next run can be changed, thereby converging upon 

a set target within a set time period or number of runs (241). 

 

 R2R was first proposed in a bolus calculator by Owens et al in 2006 (238). Both 

insulin dosing and basal insulin delivery can be classified as being repetitive, and 

thus R2R control can be used to exploit the repetitive nature of insulin therapy 

regimen in an individual with diabetes.  The ICR can be corrected for the following 

day, based on a performance metric evaluating post-meal glucose excursions. 

Efficacy of the R2R algorithm (on its own) in individuals with T1D has been 
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investigated in pilot clinical studies (241,242). Zisser et al tested glucose 60 and 

90 mins postprandially to adjust the dose and timing of the insulin bolus. Whilst, 

majority of the people converged to or maintained good glycaemia, several 

diverged in their responses (241). 

 

There are several key limitations to R2R. Firstly, R2R assumes that the insulin 

therapy regime of the individual with T1D is repetitive, which is in most cases is 

unrealistic. Furthermore, the R2R algorithms are useful for dealing with intra-day 

variability but are not able to deal with inter-day variability due to other factors 

such as exercise, alcohol, stress, and menstrual cycle (243). 

 

1.5.3 Case-based reasoning 

Case-based reasoning (CBR) is an AI technique (235), that addresses the task of 

solving newly encountered problems by applying the solutions learnt from solving 

similar problems encountered in the past (i.e. cases). CBR stores the related cases 

that are used in the past into a case base, and each case is defined by three 

components: the problem description, the problem solution and the outcome. For 

example, the problem may be described by parameters that could affect glucose 

levels (e.g. exercise or alcohol consumption), the solution can be defined by the 

parameters of a bolus calculator (i.e. ISF and ICR) and the outcome can be the 

glycaemic metric assessing glucose excursions. 

 

The foundations of CBR have been established in the work conducted by Kolodner 

based on the idea of dynamic memory modelling proposed by Schank (244). 
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Several applications were developed to demonstrate the capabilities of CBR for 

solving real-world problems, notable seminal examples include CHEF for meal 

dish planning, MEDIATOR for conflict resolution, and CASEY for diagnosing 

heart problems and JULIA for meal designing (245,246). Since then, the 

applications of CBR have been widely used by more than 130 major companies 

worldwide till 1997 (247). One widely adopted CBR cycle model, proposed by 

Aamodt and Plaza (248), consists of a four cycle approach (Figure 1.6): 

• Retrieve: Retrieve the most similar case or cases; 

• Re-use: the information in that case to solve the problem; 

• Revise: the proposed solution; 

• Retain: experiences retained are likely to be useful for future problem 

solving. 

 

Figure 1.6: The Case-based reasoning (CBR) cycle model 

The CBR cycle (adapted from Aamodt and Plaza) learns through solving new problems when a 
“learned” case is created from the current case, which is revised, and its confirmed solution is 

retained as a new case within the case base.    
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In general, as a major advantage, the CBR approach can be applied to problem 

domains that are only partially understood, and can provide solutions when no 

algorithmic or rule-based method is available. The main advantages of CBR over 

rule-based models include the following (249): 

1. CBR systems can be built where a model of the problem does not exist; 

2. Implementation is made easy by identifying relevant case features; 

3. CBR systems can be rolled out using only a partial case base, and the case 

base will continue to grow due to its cyclic nature; 

4. CBR systems are efficient in avoiding the need to infer answers from first 

principles each time; 

5. Retrieved cases can be used to provide satisfactory explanations as to why 

the given solution is produced (i.e. is not a “black-box”); 

6. The case-based nature of the learning system makes maintenance easier. 

 

Main disadvantages include memory requirements and time-consuming execution 

for handling large case bases, although this is less of an issue as hardware 

technology is becoming faster and cheaper. Dynamic problems which lead to a 

shift in the way problems are solved, may result in an outdated case base. 

 

The first use of CBR combined with rule-based reasoning (i.e. multimodal 

reasoning; MMR) within decision support for diabetes was first coined by Montani 

and Bellazzi in 2002 within the telemedicine EU-funded project M2DM (250,251). 

The system was an aid for doctors to aid modifications to the individual’s therapy 

regime, later giving rise to the T-IDDM project (see Section 1.5.5). 
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CBR combined with the R2R control framework has been shown to have better 

outcomes in-silico and is better in managing intra-subject and inter-subject 

variability (252). 

 

1.5.4 Model-based reasoning 

Model-based reasoning (MBR) is based on a model of the structure and behaviour 

of the system aiming to simulate or control.  

 

Observed behaviour (what the system is actually doing) is compared with predicted 

behaviour (what the system should do). Assuming the models are correct, any 

discrepancy between these processes is defined as defaults on the system (e.g. 

rtCGM or pump fault) (253).  

 

Within the context of diabetes technology, MBR techniques have been proposed 

to predict episodes of hypoglycaemia (254), detect rtCGM and insulin pump faults 

(255), and to constrain insulin delivery by an artificial pancreas (256). 

 

1.5.5 Review of studies on adaptive bolus advisors to date 

To date, there are limited trials on adaptive bolus calculators assessing clinical 

outcomes in people with T1D. Reasons for the limited clinical research in this field 

are unclear, but it is likely to be related to the primary focus of research being on 

closed-loop systems, the limited use of clinical diabetes apps in the real-world 

setting, and the lack of Bluetooth enabled insulin pens to fully support insulin 

inputs in to an automated system (213). There are few studies in an artificial 
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pancreas setting, which are adaptive for both basal and bolus insulin (99,257,258), 

however, in these studies it is difficult to evaluate whether the net benefit is due to 

basal or bolus adaptation, or both. 

 

The first clinical project to use CBR to aid decision support in the management of 

T1D was the Telematic Management of Insulin-Dependent Diabetes Mellitus (T-

IDDM) project in 2002 (259). Designed as an “intelligent” web-based telemedicine 

system, this integrated rule-based reasoning with CBR and a probabilistic model 

of insulin effects on blood glucose levels. Participants in the study used standard 

MDI therapy. The system, however, was not intended for self-management use, 

but rather as a tool for doctors to aid modifications to the individual’s therapy 

regime. 

 

In 2010, the 4 Diabetes Support System (4DSS) project used CBR as the primary 

reasoning modality for decision support in participants on insulin pump therapy. 

Several factors were included into the calculations, for example, life events that 

may influence blood glucose fluctuations. Within the feasibility study, the system 

identified twelve distinct types of clinical problems and offered learning solutions 

as decision support to the physician (260). No glycaemic outcomes were reported. 

 

The first automated decision support system approved by the FDA in June 2018 is 

the DreaMed Advisor Pro (DreaMed Diabetes Ltd, Petah Tikva, Israel). This 

system is approved as a decision support software to provide basal and bolus 

insulin therapy adjustment recommendations to physicians for people with T1D 

using an insulin pump (does not include hybrid closed-loop). The system uses the 
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AI technique, fuzzy logic (named Medical Doctor-Logic; MD-Logic). Nimri et al 

evaluated the system with healthcare professionals, and found physicians only 

were in full agreement with Advisor Pro in basal 41.5 ± 8%, ICR 48 ± 11% and 

ISF 43.4 ± 11% of cases (261). However, the Advisor Pro provided similar 

directional agreement to that of clinicians, with the magnitude of dosing change 

equal or less than that recommended by clinicians for safety reasons (261). The 

study also found there was only 41-45% agreement amongst physicians for the 

trend of adjustment of basal rates, ICR and ISF. These findings confirm that insulin 

dosing adjustment is both an art and science, with a range of different 

recommendations given to single situation. The Advisor Pro has also been tested 

clinically in a single centre feasibility study with 15 participants. Participants were 

randomly assigned to the group with insulin pump adjustments made by a 

physician (control group) or a group guided by Advisor Pro (intervention group). 

No difference was observed for time spent in range or hypoglycaemia between the 

two groups (262). The algorithm effectiveness is being tested in a randomised 

controlled clinical (NCT03003806) with publications of results awaited. 

 

One of the key limitations of these projects is that they have been intended to aid 

clinicians with therapy adjustments as opposed to the individual directly. It is an 

important aspect to consider whether decision support systems are directed towards 

providing recommendations to patients, providers (i.e. healthcare professionals) or 

both. Meta-analyses suggest that providing recommendations to both users and 

providers improves adherence and is more effective than providing decision 

support to providers only (263). In the management of diabetes, providing support 
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to the user directly, not only facilitates more patient centred care, but empowers 

users in real-time. 

 

The Advanced Bolus Calculator for Diabetes (ABC4D) project has been one of the 

most relevant clinical studies in this field. The decision support system provides 

real-time insulin advice through a smartphone application with CBR. For the 

retrieval process of the CBR, ABC4D uses the k-nearest neighbour (k-NN) 

classifier to retrieve the most similar case when compared to the current meal 

scenario. Reddy et al published results from a 6-week prospective non-randomised 

single arm pilot study with 10 adult participants. More than a two-fold reduction 

in the number of postprandial hypoglycaemic episodes was observed, however the 

study was not sufficiently powered to show significance (234). No significant 

differences were observed for percentage TIR (55% at baseline vs 60.9% at 

endpoint; p=0.9) or time in hypoglycaemia (5.0% vs 3.6%; p=0.7). The study 

concluded ABC4D is safe for use as a decision support tool. Currently, a 

randomised controlled trial over 8 months with 40 participants is underway 

(NCT03963219). 

 

There are many promising studies conducted in-silico. Cappon et al uses a neural 

network approach to optimise and personalise meal bolus calculation using rtCGM 

data (264). The system was testing in-silico using 100 meals, with its use 

significantly decreasing the blood glucose risk index after meals. Reselat et al 

incorporate an adaptive learning postprandial hypoglycaemia prevention algorithm 

(ALPHA) that adjusts the insulin delivery after meals within a hybrid closed-loop 

system where meals are announced. ALPHA combined with an insulin sensitivity 
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adaptation algorithm significantly reduced time spent in hypoglycaemia by 71.7% 

and the total number of rescue carbs by 67.8% to 0.37% events/day/patient (123). 

Further studies in-silico have been outlined in Table 1.5. 

 

Although there are a significant number of in-silico studies, these algorithms need 

to be ideally tested in-humans to assess the associated risk of hypoglycaemia. 

Within experimental fully closed-loop systems, there is still a strong compromise 

between the aggressiveness of the control algorithm within a closed-loop system 

and the postprandial excursion. If the controller is too aggressive, there is a higher 

risk of insulin overdosing and consequently, postprandial hypoglycaemia (265). 

On the other hand, if the controller is not aggressive enough to an administered 

meal, there is a higher risk of insulin underdosing (266). Similar principles are 

likely to apply in bolus calculators for differing algorithms. 

 

Several systems adapt both bolus and basal insulin. Breton et al conducted a 

prospective crossover study with 24 adults using either MDI or CSII. Participants 

were randomised to either usual care or the University of Virginia Decision 

Support System (UVA DSS), which provided automated basal insulin titration, 

bolus calculation and carbohydrate treatment advice. The UVA DSS significantly 

reduced hypoglycaemia without increasing the mean rtCGM values, as well as 

reduced GV (267). 

 

Dassau et al investigated the use of decision support to optimise parameters within 

a hybrid closed-loop (268). 30 adults with T1D participated in a single arm 12-

week feasibility study. The system uses MPC, a control engineering algorithm, 
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combined with the Health Monitoring System hypoglycaemia prediction 

algorithm. Compared with SAP run-in, %time spent in hypoglycaemia improved 

during the day from 5.0 to 1.9% (-3.1, 95% CI -4.1 to -2.1, p< 0.001) and overnight 

from 4.1 to 1.1% (-3.1, 95% CI -4.2 to -1.9, P < 0.001) (268). 10% of adaptation 

recommendations were manually overridden. Larger, randomised control trials are 

required to evaluate overall efficacy. 

 

In summary, the number of clinical trials facilitating adaptive bolus calculators are 

limited. Furthermore, clinical studies in humans and outcomes involving AI for 

automated real-time adaptation to people with T1D remain in the primitive stage. 

At present, there are no large randomised control trials assessing outcomes in 

adaptive bolus calculators for people using MDI and CSII. Results from small trials 

or in-silico data are promising and it is likely we are at the start of a new era where 

the potential of AI and technology will enable personalised management of T1D. 

Further large-scale clinical studies are required to evaluate the efficacy of many 

algorithms being proposed. Table 1.5 summarises current adaptive systems. 
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Author, 
Year 

Algorithm Methods/ 
Population 

Bolus/Basal 
adaptation 

Study 
duration 

Population/ 
Study design 

Main Results 
 

Comments/ Limitations 

ADAPTIVE BOLUS ADVISORS 
Marling et al. 
2009 (269) 

CBR In-vivo;  
Adults;  
CSII 

Bolus 
rtCGM (3 
occasions x 3 
days) + SMBG  
6-15 x daily 

6 weeks N=20 
T1D 

No glycaemic outcomes reported 
 
Feedback on automated problem detection: 77.5% 
reported correct identification of problem; 15% having 
mixed feelings. 87.5% usefulness to bring to attention 
of patient  
 
Feedback on case retrieval: 70% felt applying  matching 
case’s solution to the original problem would be 
beneficial; 23% felt neither beneficial nor detrimental 
  

Only 10/ 352 problem detections randomly 
selected for evaluation by panel 
 
Clinicians review/revise cases on weekly 
basis 
 

Schwartz et al. 
2010 (270) 
 
The 4 Diabetes 
Support 
System (4DSS) 

CBR + run-to-
run 

In-vivo;  
Adults; 
CSII 

Bolus 
rtCGM + SMBG 
6-15 x daily 
 

5 weeks N=23 
T1D 

 

No glycaemic outcomes reported  

Reddy et al. 
2016 (234)/ Pesl 
et al. 2017 
(235) 
 
ABC4D 
project 
 
 

CBR 
 
(k-nearest 
neighbour for 
case retrieval) 
 

In-vivo;  
Adults;  
MDI 

Bolus 
rtCGM data 

6 weeks home 
study 

N=10 
T1D 

 
Non-randomised 
single arm study 

 

No difference in %TIR (55% vs 60.9%; p=0.9) 
 
No difference in % time in hypoglycaemia <3.9 (5.0% 
vs 3.6%; p=0.7) 
 
More than two-fold reduction in number of postprandial 
hypoglycaemic episodes, but not statistically significant 

Exercise and alcohol were the most 
frequently used parameters 
 
11.6 ± 3.5 cases were created by end of 
study which is half the maximum possible 
number of cases (i.e., 24). Majority 
created were within first week of use, with 
subsequent user attrition  

Bell et al.. 2016 
(271) 

Model-based In-vivo; 
Adults;  
CSII 

Bolus Single meal N=10 
T1D 

 

Reduced glucose incremental area under the curve 
(27,092 ± 1,709 mg/dL/min to 11,712 ± 3,172 
mg/dL/min; p= 0.001) 
 
Reduced incremental change in blood glucose 
concentration (73 ± 4mg/dL to 24 ± 11 mg/dL; p= 
0.001) 
 
For high fat high protein diet, the insulin dose needed to 
be increased by 65% +/- 10% and delivered as a 
combination bolus with a 30%/70% split over 2.4h 

Limited study as only evaluated for a 
single meal 
 
For high fat high protein diet  
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IN-SILICO STUDIES 
Boiroux et al. 
2017 (272) 

Bergman 
minimal 
model with 
Kalman filter 

In-silico Bolus/Basal - N=9 simulated. 
T1D 

 
 
 
 

Significant improvement with nonlinear adaptive basal-
bolus calculator compared to the conventional bolus 
calculator (p<0.01) 
 
No hypoglycaemia (glucose <3.0 mmol/l) 

If no meal announced to the controller 
within previous 3hours, the filter will only 
estimate the insulin sensitivity  
 
If a meal announced within 3 previous 
hours, the filter will only estimate the 
second meal compartment, and the 
mealtime constant. The insulin sensitivity 
is not estimated 

Cappon et al. 
2018 (273) 
 

Neural 
Networks 

In-silico;  Bolus - N=100 Reduction in blood glucose risk index by 0.37 with 
neural networks compared to standard formula 
(p<0.001) 

NN was trained to learn the optimal 
insulin dose using the standard formula 
parameters, rate of change of glucose, 
body weight, insulin pump basal infusion 
rate and insulin sensitivity as features 

Oviedo et al. 
2018 (274) 

Neural 
Networks 

In-silico Bolus - N=10 Reduction in postprandial episodes of hypoglycaemia 
(<3.9mmol/l and <3.0mmol/l) by 37% and 44%, 
respectively 
 
Percentage of time <3.9mmol/l and <3.0mmol/l 
decreased (p<0.05) 
 
Increase by 9% increase in postprandial peak, 10% 
increase in mean CGM, and a 35% increase in the 
%time above range (p<0.05) 

Different machine learning algorithms: 
artificial neural networks,  support vector 
machines (SVMs), Gaussian naïve Bayes 
(NB), AdaBoost (AB) used. Postprandial 
hypoglycaemia predicted using 
retrospective data from 10 real patients 

Toffanin et al. 
2018 (275) 

Run-to-run In-silico Bolus/basal - N=100 Time in range after 8 weeks during the day and night 
increased from 82.0% to 91.3%, and the time spent 
above 10mmol/l is reduced from 15.1% to 7.8% 

In-silico only 

Resalat et al. 
2019 (123) 
 
 

Adaptive 
learning 
postprandial 
hypoglycaemi
a prevention 
algorithm + 
insulin 
sensitivity 
adaptation  

In-silico Bolus/Basal - N=99 
T1D 

Reduced time spent in hypoglycaemia by 71.7% 
Reduced total number of rescue carbs by 67.8% to 
0.37% events/day/patient  

In-silico only  

BOLUS AND BASAL ADAPTATION 
Peters et al. 
1991 (276) 

Rule-based 
with 
algorithms 

In-vivo;  
Adults 

Bolus/basal 
SMBG data 

32 days N=40 
T1D 

No difference in HbA1c (%) between groups (9.0 ± 1.2 
vs 9.2 ± 1.2) 
 

Short study with data input SMBG only 
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modified with 
control 
engineering 
theory 

Reduction in day to day standard deviation (2.6 ± 0.8 vs 
2.8 ± 0.9; p<0.05)  
 
Reduction in MAGE (7.1 ± 1.4 vs 8.1 ± 2.0; p<0.05) 
Reduction in time in hyperglycaemia ≥11.1mmol/l 
(16.8% ± 0.8% vs 28.0% ± 2.0; p<0.01) 

Ambrosiadou 
et al, 1996 
(277) 
 
DIABETES 
expert system 

Rule-based Cases of 600 
adults reviewed 

Bolus/basal 
SMBG 

 N=600 cases 
(chosen from 600 

participants) 
T1D/ T2D 

65% of cases was graded by medical expert as 0 or 1 
degree (Scale = 0 indicating full agreement and 5 full 
disagreement)  

Evaluation of system compared to medical 
experts. 
Glycaemic outcomes not evaluated in real-
world setting 

Holman et al 
1996 (278) 
 
Patient-
oriented 
insulin 
regimen 
optimizer 
(POIRO) 

Rule-based In-vivo 
Adults 

Bolus/basal 
SMBG 

7 weeks N=6 
T1D 
RCT 

3 weeks 

Pre-prandial blood glucose levels lower with decision 
support (7.5 (0.4) versus 8.9 (0.4) mmol/l; p = 0.015) 
 
No change in hypoglycaemia 

Small numbers; short study duration 

Bellazzi et al. 
2002 (259) 
 
T-IDDM 
project 

Rule-Based 
Reasoning + 
CBR 

 In-vivo;  
Children and 
Adults 

Bolus/basal 415 days N=17 
T1D 

 

In paediatric cohort (n=6) using INTRAnet: 
No significant reduction of HbA1c  
Reduced insulin requirements (p<0.03) 
 
In adults using INTERnet (n=11): 
No significant changes 
 

Small numbers; feasibility study 
 
Assistance on dose adjustments provided 
by the system considered acceptable only 
by 3 participants. A negative opinion 
provided by one patient on the user 
interface 
 
The medical unit assists the physician in 
the definition of the basal insulin regimen 
through a periodic evaluation of patient's 
data, whilst the patient unit helps tpatients 
in their self-monitoring activity, by 
suggesting insulin dose adjustments  
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Schwartz et al. 
2008 (260) 

CBR In-vivo 
Adults;  
CSII 

Bolus/Basal 
rtCGM (3 
occasions for 
72hours) + SMBG 

6 weeks N = 12 No glycaemic outcomes reported  
 
The prototypical system detected 12 distinct types of 
clinical problems: 
Hypoglycaemia; Awakening; Pre-meal; Post-meal; 
Over-correction for low glucose; Over-bolus with meal; 
Pre-waking; Exercise-induced 
 
Hyperglycaemia: Awakening; Pre-meal; Post-meal; 
Over-correction for high glucose; Possible pump or 
infusion set malfunction 
 

Overall description of cases provided only  
 
 

Wong et al. 
2009 (279) 
 
  

Model-based + 
rule-based for 
basal insulin 
titration 

In-silico Bolus/Basal 
SMBG 

 N=40 
T1D 

Adaptive protocol significantly reduced HbA1c for 
SMBG frequencies ≥6/day compared with controls and 
the conventional intensive insulin therapy protocol. 
With adaptive control for basal insulin, mild and severe 
hypoglycaemia reduced by 86–100% for all SMBG 
frequencies 

The basal insulin dosing regimen used to 
optimise the single, daily insulin glargine 
dose based on the forced-titration 
regimens. This regimen incorporates a 
dose decrement if hypoglycaemia occurs  
 
Adaptive protocol prescribes 1–2 boluses 
per meal, a conservative initial bolus, and 
an aggressive second bolus to restore basal 
glycaemia, administered 90min after the 
start of the meal and first bolus. The first 
bolus is dosed according to the 
conventional insulin protocol 

Dassau et al. 
2017 (268) 

MPC + the 
Health 
Monitoring 
System 
hypoglycaemi
a prediction 
algorithms 
(University of 
California, 
Santa 
Barbara/Harva
rd University) 
– run on DiAs. 

In-vivo;  
Adults;  
AP 

Bolus/Basal 
rtCGM 

12 weeks N=30 
T1D 

 
 

HbA1c 7.0 +/- 0.8% at the start of AP use, improved to 
6.7 +/- 0.6% after 12 weeks (-0.3, 95% CI -0.5 to -0.2, 
p=0.001). 
 
Compared with the SAP run-in,  %time spent in 
hypoglycaemia improved during the day from 5.0 to 
1.9% (-3.1, 95% CI -4.1 to -2.1, P< 0.001) and 
overnight from 4.1 to 1.1% (-3.1, 95% CI -4.2 to -1.9, p 
< 0.001) compared with the last week  
 
No protocol-related serious adverse events 

Single arm, uncontrolled study 
 
10% of adaptation recommendations were 
manually overridden 
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Bode et al. 
2018 (280) 
 
 

Proportional 
integral 
derivative 
model 

In-vivo;  
Adults;  
MDI 

Bolus/Basal 
SMBG 

90 days training 
period + 11 

months 

N=46 
T1D + T2D 

 
 

Reduced HbA1C 10.2% vs 7.2% at 12 months (p 
<.00001) – No control group  

Retrospective analysis with no control 
group 
 
Adaptive advice provided to clinicians 
only. Changed doses communicated to 
participants by email, telephone, text 
messages. 

Breton et al. 
2018 (267) 
 
UVA decision 
support system 

Kalman filter 
with glucose-
insulin 
dynamics 

In-vivo;  
Adults;  
MDI / CSII 

Bolus/Basal 2x 48hr visits N=24 
T1D 

 
RCT 

Reduced glycaemic variability (primary outcome); CV: 
0.33 ± 0.06 vs 0.36 ±0.08; p=0.045 
LBGI: 1.6 ±1.3  vs 2.5± 2.1; p= 0.042 
 
Reduced TBR <3.3mmol/l 1.59 (± 1.27) vs 2.49(± 
2.08); p=0.042 
 
No change in TIR and TAR 
 
 

Decision support system consists of two 
real-time advisors (CGM-Informed Bolus 
Advisor, and Exercise Advisor), and a 
retrospective insulin titration tool - 
generates ad hoc behavioural advice to 
avoid hypoglycaemia during an imminent 
exercise bout 
 
n=2 met stopping criteria (1 for high 
ketones; 1 for use of glucagon) 
 
5 adverse events –unrelated to system 
 
High drop-out rate: visit availability 
(n=11), study-related stress (n=4), unable 
to complete data collection (n=2) 
 

Nimri et al. 
2018 (261) 
 
Advisor Pro 
(DreaMed, 
Petah Tikva, 
Israel) 

MD-Logic In-Vivo 
Children and 
Adults;  
CSII 

Bolus 
rtCGM and 
SMBG 
participants 

 N=15 
T1D 

Full agreement by physicians with Advisor Pro for 
basal, ICR and ICF plans were 41.5 ± 8%, 48 ± 11% 
and 43.4 ± 11% 

Evaluation of system compared to medical 
experts 

Biester et al. 
2019 (257) 
 
DREAM5 
Study 

MD-Logic In-vivo;  
Children and 
Adults;  
CSII (hybrid 
closed-loop) 
 

Bolus/Basal 
rtCGM  

60 hours N=48 
T1D 
RCT 

 
SAP vs MD-Logic 
closed-loop system 

(DreaMed 
GlucoSitter) 

Increased TIR range (3.9 – 10mmol/l) 66.6% vs 59.9% 
(p= 0.002) observed with the closed-loop system vs 
control 
 
Reduced time in hyperglycaemia > 10mmol/l 28.3% vs 
36.3 (p=0.01) 
 
No change in hypoglycaemia  

Short study duration 
 
High rate of communication errors 
between tablet computer running 
algorithm and insulin CSII. Most 
commonly due to miscommunication from 
the communication device: USB plugged 
ComLink 
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MD‐Logic algorithm into the CSII itself 
this could be alleviated 

Tyler et al. 
2020 (281) 
 
 

Machine 
learning: K-
nearest-
neighbours 

In-vivo; 
Children and 
Adults 
MDI  
 

Bolus/Basal 
rtCGM 

4 weeks N=25 
T1D 

 

Improved TIR 47.7% to 58.7% (p<0.001).  
No reduction in hypoglycaemia over 24hr period 
(p=0.051) or during the day 
 
Reduction in serious hypoglycaemia (<3.0mmol/l) by 
76% overnight (from 0.48% to 0.11%; p = 0.03) 
 
No reduction in hypoglycaemia for prandial mealtime 
dosing during the daytime was observed. 

Small numbers; feasibility study not 
powered 
 
Weekly recommendations suggested by 
the KNN- decision support system were 
provided to clinicians (rather than in real-
time to the user).  
 
 

Table 1.5: Review of adaptive bolus and basal decision support systems in T1D 

Abbreviations: CSII, continuous subcutaneous insulin infusion; CV, coefficient of variation; KNN, k-nearest neighbours; LBGI, low blood glucose index; MAGE, mean 
amplitude of glucose excursion; MDI, multiple daily injections of insulin; RCT, randomised control trial; rtCGM, real-time continuous glucose monitoring; SAP, sensor 

augmented pump therapy; SMBG, self-monitoring blood glucose; T1D, type 1 diabetes; T2D, type 2 diabetes; TAR, time above range; TBR, time below range; TIR, time 
in range; QOL, quality of life. 
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2 System Architecture 

and Study Design  

2.1 Introduction 

The PEPPER (Patient Empowerment through Predictive PERsonalised decision 

support) project is a personalised decision support system for self-management of 

T1D, which includes an AI-derived insulin bolus recommender and a safety 

system. The project has been funded by a €3.8million H2020 grant with several 

European collaborators namely: Imperial College London (UK); Oxford Brookes 

University (UK); Institut d'Investigacio Biomedica de Girona (IDIBGI; Spain); 

University of Girona (Spain); Romsoft (Romania) and Cellnovo (UK).  

 

In this chapter, the architecture for the PEPPER system has been described and is 

based on the work of the multi-partner consortium of clinicians, software engineers 

and academics. During the clinical trial, my involvement in the system architecture 

has been to provide feedback to de-bug the software system described, as well as 

provide clinical input for settings and criteria devised. During clinical testing, I 
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contributed in regular teleconference meetings held once weekly with the 

Consortium, as well as maintained a clinical and technical log of issues faced by 

participants. A further action log to include software fixes and testing of each 

component was maintained by the Consortium. More than 25 software versions 

were released across the period of the full clinical trial, each software update 

performed manually on each participant handset by me. Parts of this chapter have 

been published in Liu*, Avari* et al (282), as well as in the final Phase 3 

manuscript (in revision). 

 

 

2.2 PEPPER Architecture 

PEPPER, as shown in Figure 2.1, offers dual architecture to serve both MDI or 

CSII users, the latter via the Cellnovo patch pump (Cellnovo Ltd., UK). In both 

cases, the user wears rtCGM (Dexcom G5, CA, US) which communicates to the 

handheld device via xDrip+, an open source software (283,284). An activity 

monitor (MiBand 1s, Xiaomi, China) is used to determine physical activity.  
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Figure 2.1: The PEPPER system architecture for use with MDI and CSII. 

The user wears real-time CGM and an activity monitor which communicate with the PEPPER 
mobile application (app). Additional data such as food intake, alcohol consumption, stress, 

hormone cycles are inputted by the user. The hand-held unit remotely communicates to a secure 
web server where all collected data is uploaded and stored, and the clinical team can monitor the 

functioning of the system (i.e. PEPPER clinical platform). 

 

 

The PEPPER app is integrated into the handheld device unit. For MDI users this is 

an Android smartphone (Google Nexus 5x) and for CSII users, this is via 

Dexcom G5 

Xiaomi Mi Band 1s Accu-Chek Connect

PEPPER Clinical Platform

Cellnovo pump

PEPPER Mobile Application

98
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Cellnovo’s own handset running an Android OS. The PEPPER app enables input 

of carbohydrate intake for bolus recommendations, and additional data such as 

alcohol consumption, stress, hormonal cycles through the user interface (Figure 

2.2). The handheld unit remotely communicates to a secure web server where all 

collected data, including insulin information, is automatically uploaded and stored 

via wireless internet connection or mobile data. 

 

Insulin pen devices with half-unit increments are used with the PEPPER system 

(i.e. Echo pen [Novo Nordisk] for insulin aspart, Junior Star [Sanofi] for insulin 

glulisine, or HumaPen Luxura HD [Lilly] for insulin lispro) as insulin bolus advice 

was provided to the nearest 0.5 units. When the user accepts insulin 

recommendations, the data are automatically uploaded into the remote server. If 

the bolus advice is rejected by the user, the app requests the user to input the dose 

of insulin administered. The CBR uses the user insulin dose for revision of cases 

(see Section 2.4). The web-based interface enables the clinical team to monitor the 

functioning of the system (PEPPER clinical platform).  
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Figure 2.2: PEPPER interface on the smartphone version 
The displays provides the user with an estimate of the active insulin bolus (blue square), an 

estimate of the remaining carbohydrates on-board (yellow circle), and the blood glucose level 
coming from the CGM (pink circle). The pink dotted line in the upper graph shows the CGM 

measurements, with the green dotted link displaying the 30-minute forecasted glucose. The “Get 
bolus advice” button triggers quick access to the insulin bolus recommender. 

 

 

2.3 PEPPER Safety System 

The novel PEPPER safety system encompasses four active modules (Figure 2.3): 

the first module consists of alerts crossing predictive glucose thresholds and 

standard glucose threshold crossing alarms. The second module is devised 

specifically for CSII users and automatically suspends basal insulin delivery when 

predicted glucose levels fall below threshold. A third module provides personalised 

carbohydrate recommendations (in grams) to improve glycaemia to safe levels. 
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Finally, the fourth module comprises of dynamic bolus insulin constraint, which 

eliminates extreme bolus advice, by safely restricting the amount of insulin that 

can be recommended to the user. Further details on the four modules are given in 

the following sections.  

 

 

Figure 2.3: The modular PEPPER safety system 

Block diagram of the novel PEPPER safety system and the four modules namely, predictive 
glucose alerts and alarms, predictive low-glucose basal insulin suspend, adaptive carbohydrate 
recommender and dynamic bolus inulin constraint. Corresponding inputs and outputs outlined. 

 

2.3.1 Glucose alerts and alarms module 

This module includes a novel 30-minute glucose forecasting algorithm (232) to 

provide two predictive alerts to notify the user before reaching predefined high and 

low glucose thresholds. Additionally, when thresholds measured by the rtCGM are 

exceeded, standard glucose alarms are used to notify the user. The user is able to 

select the thresholds for when alerts are triggered, meanwhile the alarm thresholds 
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cannot be modified and are hard-coded (3.9mmol/l for hypoglycaemia and 

16.6mmol/l for hyperglycaemia). 

 

In order to prevent alarm fatigue, once the user has snoozed an alert/ alarm, another 

alert/ alarm cannot be triggered until a predefined time interval of 30minutes has 

elapsed. Furthermore, for safety reasons, alarms cannot be muted, but alerts can. 

In addition, if a hypoglycaemia alarm is not addressed by the user within a 

predefined time interval of 30minutes, an SMS message containing the type of 

alarm (i.e. hypoglycaemia or hyperglycaemia) and the time it was triggered, is sent 

to a designated carer. Finally, the system continues to send messages every 

30minutes until the alarm is snoozed on the handheld unit.  

 

2.3.2 Predictive low glucose basal insulin suspend module 

The predictive low glucose basal insulin suspension module allows suspension, or 

partial suspension, of basal insulin delivery in response to predicted low glucose 

levels. As a result, it aims at minimising the incidence and severity of 

hypoglycaemia. Basal insulin delivery is partially suspended by 50% if the 30-

minute forecasted glucose value falls below a predefined threshold (Threshold 1). 

There is full suspension of insulin delivery when glucose falls below a second 

predefined threshold (Threshold 2), which is lower than Threshold 1. Whilst full 

insulin suspension is not possible due to a technical limitation of the pump, the rate 

is set at 0.01 U/h, which is virtually negligible for most people with T1D. This was 

the only way to make the pump resume without manual intervention by the user. 
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During basal insulin suspension, insulin delivery is resumed to 50% when 

forecasted glucose is above Threshold 2 and is fully resumed when forecasted 

above Threshold 1. To prevent excessive insulin deficiency and rebound 

hyperglycaemia, a total suspension time limit of 90 minutes is set. After this time 

limit, insulin is resumed to 50% for up to 30 minutes. Throughout, the user can 

resume basal insulin delivery at any time.  

 

Further details of the PEPPER modular safety system and forecasting algorithm 

with predictive low-glucose basal insulin suspend have been published by Liu et 

al (273). Note, this feasibility study only includes MDI participants and the 

predictive low glucose basal insulin suspend module was not formally evaluated 

in the published study.  

 

2.3.3 Adaptive carbohydrate recommender 

In the event of hypoglycaemia, the adaptive carbohydrate recommender module 

recommends an oral dose of carbohydrates with the aim of reverting 

hypoglycaemia and minimising rebound hyperglycaemia. This is personalized and 

adaptive, based on the participant’s weight and carbohydrate sensitivity factor 

(282).  

 

The carbohydrate recommendation (CHOrescue) is calculated using the following 

formula: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝐶𝐶𝐶𝐶𝐶𝐶
− 𝐶𝐶𝐶𝐶𝐶𝐶 
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where Gsetpoint is the target glucose concentration after ingesting the rescue 

carbohydrates (6.7 mmol/l), Gforecast is the 30-minute predicted glucose 

concentration, CSF is the carbohydrate sensitivity factor defined as the glucose 

concentration increase (mmol/l) per 1 gram of carbohydrates, and COB is the 

estimated rescue carbohydrates on board. 

 

The carbohydrate sensitivity factor is initialised using body weight (150), however 

it is thereafter adapted using an R2R control algorithm to minimize both 

hypoglycaemia and rebound hyperglycaemia (282). 

 

2.3.4 Dynamic bolus insulin constraint 

The dynamic bolus insulin constraint (DBIC) module aims to eliminate potentially 

dangerous, extreme bolus advice that could be recommended to the user, resulting 

in severe hypo- or hyperglycaemia. As part of the PEPPER safety system by Liu 

et al, the DBIC is an additional safety layer to the CBR-based insulin recommender 

(252,282,285). 

 

DBIC is based on a standard insulin bolus calculator (Section 1.3.2), and is 

expressed by: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
𝐶𝐶𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼𝐼𝐼

+
𝐺𝐺𝑐𝑐 − 𝐺𝐺𝑠𝑠𝑠𝑠
𝐼𝐼𝐼𝐼𝐼𝐼

− 𝐼𝐼𝐼𝐼𝐼𝐼 

 

where CHO (grams) is the amount of estimated carbohydrate, Gc (mmol/l) is the 

blood glucose measurement, Gsp (mmol/l) is the blood glucose target, ICR (g/U) 

and ISF (mmol/l/U). The IOB (units) is calculated using linear decay expressed as: 
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𝐼𝐼𝐼𝐼𝐼𝐼 = �𝐵𝐵𝐵𝐵𝑖𝑖 �1 −  
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

 �
𝑁𝑁

𝑖𝑖=1

, 

 

where 𝐵𝐵𝐵𝐵𝑖𝑖 is the previously administered insulin bolus, N is the total number of 

insulin boluses delivered within the time window [t - Tact, t], 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the time 

elapsed since the last insulin bolus administered and Tact is the insulin action time, 

which is person dependent. Note, in order to estimate the IOB, only glucose centric 

insulin calculated from the correction dose is accounted for. 

 

The recommended insulin dose is bounded by numerical intervals, accounting for 

the inherent uncertainty of the bolus calculator parameters and inputs. If the 

recommended insulin dose is outside the limits of ICR (±30%), ISF (±30%), Tact 

(±30min), Gc (±9%), and CHO (±15%), it is saturated to the corresponding upper 

or lower bound (282). For example, in the scenario where Gc=8.3mmol/l, 

𝐺𝐺𝑠𝑠𝑠𝑠=6.7mmol/l, CHO=70grams, ICR=10grams/unit, ISF=2.2mmol/l/unit and 

IOB=0 unit. Then, the resulting bolus insulin intervals are 4.8 units and 13.0 units 

for the lower and upper bound respectively. The resulting value is displayed to the 

user when the “request bolus advice” button is pressed on the handset.  

 

To summarise, the standard formula above is used to calculate the DBIC bounds, 

whilst the CBR algorithm is used to calculate the adaptive bolus advice in real time 

(see Section 2.4).  
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2.4 PEPPER Adaptive Bolus Advisor 

The PEPPER adaptive bolus advisory system implements an AI-derived insulin 

bolus calculator based on CBR, which provides personalised insulin 

recommendations and automatically adapts its parameters over time. The core of 

the adaptive case revision process in the PEPPER system has been created by 

University of Girona, and has been previously published by Torrent-Fontbona et 

al (285,286). Furthermore, the advisory system has been validated in-silico (285). 

 

To understand the functioning of the system, an explanation of each process and 

its integration has been described below. 

 

2.4.1 Cases 

As part of the CBR-based adaptive bolus advisor, in each instance of insulin 

recommendation, a case is created and stored. Each case captures all the 

information pertaining to when the user administers a bolus dose through the 

PEPPER system. The following case parameters are captured: time of day, past 

and planned exercise, alcohol, meal absorption rate, stress, tiredness, menstrual 

cycle for women, fever and digestive illness. 

 

Prior to a case being introduced in to the CBR cycle, an evaluation step occurs on 

the server and requires approval by an expert clinician before a new case is 

incorporated to the case base. The evaluation step has been described in Section 

2.4.6.  
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2.4.2 Retrieve 

The retrieve step selects similar cases to the new case, based on the input data. In 

this phase, two main steps occur: 1) feature identification, and 2) the match-and-

selection of cases.  

 

Feature identification: In the feature identification step, all variables used in the 

retrieve step are quantified. 

 

Physical activity before a meal, is quantified in four levels according to the average 

exercise performed in the last 10 hours measured by the activity monitor (MiBand 

1s, Xiaomi, China). Each activity level is personalised for each participant by 

determining their mean step count. The mean step count was determined by total 

step count/days. Levels were determined as follows: “None” is defined as <1000 

steps, “low” is <(2000 + individual mean/2) steps, “mild” <(5500 + individual 

mean/2) steps and “intense” >(5500 + individual mean/2) steps.  

 

For consideration of future physical activity, the user is asked to provide a 

subjective prediction of the physical activity that is likely to be carried out during 

the postprandial phase. Four quantification levels are used (none, low, mild and 

intense). 

 

The carbohydrate content of the meal also impacts the ICR and ISF. Therefore, the 

quantity of carbohydrates is computed on three levels (low, medium, high) 
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depending on whether the meal has less than 30g, between 30g - 70g, or more than 

70g of carbohydrates, respectively.  

 

The time of day is a discrete variable with possible values ranging from 0 to 23 

(i.e. as integer hours of the day). The timestamp is adjusted to the nearest hour. 

 

Match and select: The retrieval of similar cases is based on a similarity measure. 

The method uses k-nearest means, and consists of an average Euclidean distance 

between all the attributes. The Euclidean distance is the most widely used distance 

function. Several other types of distance functions exist, such as cosine, Chi square, 

and Minkowsky similarity measure (287). 

 

The PEPPER recommender is able to deal with missing values and ensures that 

selected cases are the most similar to the new query case (285). Other techniques 

such as replacing the unknown value with an average value may introduce bias in 

the selection of cases.  

 

For case retrieval, all parameters are weighted differently. The system learns the 

weighting for each participant based on user input, and these weights change with 

each recommendations and case retrieval (286). 

 

The final outcome of the retrieval stage is a number of the most similar cases. 
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2.4.3 Re-use 

During the re-use process, retrieved and new “query” situations are not identical. 

Thus, the PEPPER recommender provides the ICR solution using a weighted mean 

of the ICR of the retrieved cases.  

 

The formulae used have been previously published in the work by Torrent-

Fontbona et al (285). The following equation is used where Q is the query case, K 

is the number of retrieved cases, ICRQ is the ICR of the query case, Ck is the kth 

retrieved case, and ICRCk is its corresponding ICR. 

𝐼𝐼𝐼𝐼𝑅𝑅𝑄𝑄 =
∑ 𝑆𝑆𝐾𝐾
𝑖𝑖=1 (𝑄𝑄,𝐶𝐶𝑘𝑘)𝐼𝐼𝐼𝐼𝑅𝑅𝐶𝐶𝑘𝑘
∑ 𝑠𝑠𝐾𝐾
𝑖𝑖=1 (𝑄𝑄,𝐶𝐶𝑘𝑘)  

 

The insulin sensitivity factor of the query case ISFQ is calculated using the equation 

below, based on the hypothesis that ICR and ISF are correlated (288),  where W is 

the weight of the user in kg.  

𝐼𝐼𝐼𝐼𝐹𝐹𝑄𝑄 =
341.94 ⋅ 𝐼𝐼𝐼𝐼𝑅𝑅𝑄𝑄

𝑊𝑊
 

 

Following the calculations of ICRQ and ISFQ, the recommended bolus (B) for the 

query case is calculated according using the same equation as that used in standard 

bolus calculators (202), with the same input data: 

𝐵𝐵 =
𝐶𝐶𝐶𝐶𝐶𝐶
𝐼𝐼𝐼𝐼𝐼𝐼

+
𝐺𝐺𝑐𝑐 − 𝐺𝐺𝑠𝑠𝑠𝑠
𝐼𝐼𝐼𝐼𝐼𝐼

− 𝐼𝐼𝐼𝐼𝐼𝐼 
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2.4.4 Revise 

The proposed ICR solution is evaluated by the postprandial glucose curve of the 

user. If the outcome is sub-optimal (i.e. above or below glucose target range), then 

the new ICR and ISF are revised accordingly (289). The minimum postprandial 

glucose value, Gmin, is the main focus with the revise step.  

 

Gmin is calculated by the below equation for any given mealtime tm, with the 

minimum glucose value of Gcgm(t) measured by rtCGM between t1 and t2 time after 

tm, with t1 < t2, e.g. t1 = 1h and t2 =5h (285). 
 

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 =
min

𝑡𝑡 ∈ {𝑡𝑡𝑚𝑚 + 𝑡𝑡1, 𝑡𝑡𝑚𝑚 + 𝑡𝑡2} �𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐
(𝑡𝑡)� 

 

Given Gmin, the revised ICRQ is recommended by the re-use process according to 

the following equation, where ICRQ is the corrected ICR of the query case, and α 

∈ [0,1] is the learning rate. The learning rate is incorporated to smooth changes, 

which could be influenced by noisy measurements of the continuous glucose 

monitor (285). 

𝐼𝐼𝐶̂𝐶𝑅𝑅𝑄𝑄 = (1 − 𝛼𝛼)𝐼𝐼𝐼𝐼𝑅𝑅𝑄𝑄 + 𝛼𝛼
𝐶𝐶𝐶𝐶𝐶𝐶 +

𝐺𝐺𝐶𝐶 − 𝐺𝐺𝑠𝑠𝑠𝑠
341.94 𝑊𝑊⁄

𝐵𝐵𝑄𝑄 + 𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙
𝐼𝐼𝐼𝐼𝐹𝐹𝑄𝑄

 

 

The target glucose values, Gsp, and Glow, may be agreed upon between the 

participant and the clinician. For the PEPPER clinical study, these were both 

standardised to 5.5mmol/l, but were later modified if required.  
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2.4.5 Retain 

The retain step is responsible for updating the case base for further 

recommendations. Hence, the maintenance process decides whether the case 

should be stored in the case base, or whether they should be removed because they 

are redundant or old. 

 

Over time, there may be changes in users’ physiology, for example age or changes 

in body weight. PEPPER deals with this problem, called concept drift, by a 

maintenance strategy consisting of keeping the most recent cases (i.e. to the query 

case) over similar cases in the case base if they are sufficiently similar. This 

maintenance process relies on the assumption that similar cases should have the 

same (or very similar) ICR and, if not, the case should be removed due to a change 

in the individual’s physiology. Thus, similar old cases are removed because they 

are either redundant (have the same ICR) or obsolete (285). 

 

2.4.6 PEPPER clinical platform 

The PEPPER clinical platform enables clinician supervision of bolus insulin 

adjustments proposed by the CBR algorithm. The platform is available for case 

revisions to be made online and is designed to run on a desktop computer (using 

Chrome). For the UK participants, the revision process by accepting cases into the 

case base was performed by myself, and for the participants in IDIBGI (Spain), 

this was conducted by Dr Marzena Wos, clinician at IDIBGI.  
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The clinician is able to accept/reject clinical cases that are presented for adaptation. 

If the minimum postprandial glucose is sub-optimal (i.e. above or below glucose 

target range), then the new ICR and ISF are revised accordingly. Figure 2.4 shows 

a screenshot of the clinical platform, which presents the proposed adaptation for 

revision of the ICR and ISF of a presented case.  

 

Figure 2.4: The clinical platform for case revisions 

 Glucose data visualisations and the corresponding meal scenarios were available for review on 
the clinical platform. Clinicians would approve or reject clinical cases based on predefined 
criteria. Exclusion criteria include: if a meal or insulin bolus was taken within the 5-hour 

postprandial period, if quality of the CGM sensor data affected the postprandial curve, if insulin 
on board was > 4 units, and if carbohydrate content of a meal was <20g (i.e. a snack). Approved 

cases would be introduced into the case base for future use. 

 

Insulin: carbohydrate ratio 
used in the specific case

Insulin: carbohydrate ratio 
revised to be used in next 
similar case

Step count

Clinician approves clinical 
cases

Clinician rejects clinical 
cases

Time frame considered in 
post prandial period (e.g. 
1-5hrs)

Basal insulin

Insulin on board 
considered for each 
specific case

Minimum post prandial 
glucose during specified 
time range

Minimal postprandial 
glucose in specified 
duration (e.g. 1-5hrs)

Bolus given by user

Bolus dose 
recommended by CBR

Bolus dose 
recommended to the user 
(with safety constraint)
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The following rejection criteria were used based on rules co-written by Dr. Pau 

Herrero and myself for revision of the cases. Cases were rejected under the 

following conditions: 

1. If extra carbohydrates were ingested within the 0-5hours window frame of 

a bolus administered (unless this was to correct impending hypoglycaemia) 

2. If an extra bolus was given within the 0-5hours window frame of a bolus 

administered (unless the extra bolus was to correct hyperglycaemia and 

duration was sufficiently long enough post initial bolus to confirm need for 

change in ICR) 

3. If the postprandial glucose value was equal to 0 or −1 

4. If the postprandial curve looked suspicious (e.g. sensor malfunctioning or 

pump occlusions) 

5. If the IOB for the case was more than 4 units 

6. If the carbohydrate content for the meal consisted of less than 20g 

7. If values were greater than the constraints placed on the minimum and 

maximum values that the ICR/ISF can take.  
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2.5 PEPPER Aims, Objectives and Hypotheses 

2.5.1 Aims and objectives 

The study aims and objectives include: 

1. Phase 1 (Chapter 3): To demonstrate safety, feasibility and proof of 

concept for the PEPPER safety system (without CBR-based adaptive bolus 

calculator) in the participant’s own environment. 

 

2. Phase 2 (Chapter 4): To demonstrate safety, feasibility and proof of 

concept for the complete PEPPER system (with CBR-based adaptive bolus 

calculator enabled) in the participant’s own environment. 

 

3. Phase 3 (Chapter 5): To demonstrate safety, feasibility and efficacy of the 

complete PEPPER system (i.e. safety system and CBR-based adaptive 

bolus calculator) compared to a standard bolus calculator. 

 

2.5.2 Hypotheses 

1) Phase 1 (Chapter 3): The PEPPER safety system is safe and feasible for 

use in people with TID using MDI or CSII. 

 

2) Phase 2 (Chapter 4): The PEPPER adaptive bolus calculator with safety 

system is safe and feasible for use in people with TID using MDI or CSII. 
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3) Phase 3 (Chapter 5): The complete PEPPER system (safety system and 

adaptive bolus calculator) is safe and effective for use in people with TID 

using MDI or CSII. 

 

2.5.3 Study design 

The full project is designed to address the objectives through three clinical phases 

(Figure 2.5) as follows:  

 

1) Phase 1 (Chapter 3): A non-randomised single-arm open-label study to 

evaluate the PEPPER safety system over 8 weeks. 

 

2) Phase 2 (Chapter 4): A non-randomised single-arm open-label study to 

evaluate the PEPPER safety system and adaptive bolus advisor over 8 

weeks. 

 

3) Phase 3 (Chapter 5): A randomised controlled open-label study evaluating 

the complete PEPPER system compared to standard care over 8-months. 
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Figure 2.5: Overview of the PEPPER clinical studies 

 

2.5.4 Regulatory approvals  

The following approvals were obtained for study trials in the UK: 

Research and Development at Imperial College Healthcare NHS Trust (Ref no 

17HH3961) 

Sponsor (Ref no 17HH3961) 

NRES London Committee–Westminster (REC Ref no 17LO/0939) 

MHRA (Ref no CI/2019/0030) 

The study has been registered at ClinicalTrials.gov with identification number: 

NCT03738982  

 

PEPPER complies with medical software standards (IEC 62304, IEC 62366, 

SnomedCT, and HL7).  

Clinical Study: 
Phase 1

8-week non-randomised 
single-arm study

Evaluation of PEPPER 
safety system 

Clinical Study: 
Phase 2

8-week non-randomised 
single-arm study

Evaluation of the complete 
PEPPER system 

Clinical Study: 
Phase 3

8-month randomised open-
label crossover study 

Evaluation of the PEPPER 
system versus standard 

therapy 
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3 Phase 1: Safety and 

Feasibility of the 

PEPPER Safety 

System 

3.1 Introduction and Aims 

Despite the benefits of intensive insulin management, many individuals with T1D 

find it challenging to follow and/or adjust their insulin regimens as needed. Key 

contributors to this include fear of hypoglycaemia, lack of self-efficacy and 

difficulties associated with insulin dose determination, such as carbohydrate 

counting or dose calculation. Automated bolus advisors can help individuals meet 

prandial insulin dosage requirements more accurately, improve postprandial 

glycaemic excursions and help achieve optimal glycaemia (290).  
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The Patient Empowerment through Predictive Personalised Decision Support 

(PEPPER) project is an adaptive bolus calculator derived from AI, coupled with a 

safety system unique to PEPPER. This safety system is designed to minimise any 

risk of insulin overdosing, whilst the insulin recommender system is designed to 

propose a safe insulin dose. 

 

The PEPPER safety system has been comprehensively reviewed in Chapter 2. To 

summarise, it implements state-of-the-art techniques for hypoglycaemia detection 

and prevention, through rtCGM derived alarms, predictive glucose alerts and 

predictive automated suspension of basal insulin for CSII users. It further innovates 

with a novel carbohydrate recommendation system that advises the ingestion of a 

personalised carbohydrate dose in the case of impending hypoglycaemia. The 

safety system also includes a set of safety constraints that guarantee that the 

proposed insulin dose remains in a safe range. Finally, if an alarm is not addressed 

in a timely manner by the user, caregivers/relatives are informed by SMS through 

the use of 3G-connectivity employed within the handset device. 

 

At the first stage of clinical evaluation, it was pertinent to ensure the safety system 

was evaluated on its own, prior to adding in the adaptive bolus calculator. Although 

insulin pump and rtCGM systems are relatively mature technologies, faults may 

still occur within the coded algorithms. It was initially planned that the predictive 

low glucose suspend system would run in the background, without being active, 

for safety reasons. It was, however, activated in a software update and thus the 

whole safety system (see Section 3.2.6) 
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Thus, the aim of the first stage of the clinical assessment of the PEPPER system 

was to demonstrate safety and feasibility of the safety system within PEPPER in 

adults with T1D. It is important to remark that, during this stage, the CBR-based 

adaptive bolus calculator was not active. Bolus recommendations were based on a 

standard bolus calculator, which was embedded within the PEPPER handset. 

Generic details of the system architecture have been discussed in Chapter 2.  

 

The hypothesis of Phase 1 of the clinical study is that the PEPPER safety system 

is safe and feasible for use in people with TID using MDI and CSII therapy.  

 

The results in this chapter on MDI participants have been published in the Journal 

of Diabetes, Science and Technology, on which I am joint-first author (282). 

 

 

3.2 Methodology 

3.2.1 Study design and recruitment 

Phase 1 was a non-randomised, open-label study evaluating the PEPPER safety 

system over 8 weeks.  Recruitment was undertaken at Imperial College London 

(UK) and the Institut d'Investigacio Biomedica de Girona (IDIBGI) in Spain. 

Potential participants were identified through diabetes clinics at each respective 

site, or from interested participants who contacted the research team through the 

NIHR Research Gateway. 
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Ethics and device approvals were obtained from the relevant regulatory bodies at 

each of the sites. All participants provided verbal and written informed consent. 

 

3.2.2 Participants  

Study participants fulfilled the following inclusion / exclusion criteria: 

 

Inclusion criteria: 

• Adults ≥ 18years of age 

• Diagnosis of T1D for > 1 year 

• On MDI using a basal-bolus insulin regime or CSII (insulin pump) for at 

least 6 months 

• Structured education (either in a group or 1:1 sessions) and good ability 

to perform CHO counting 

• HbA1c ≥ 48mmol/mol and ≤ 86mmol/mol 

• Using ICR and ISF to calculate the mealtime bolus 

• An understanding of and willingness to follow the protocol and sign the 

informed consent 

• CBG measurements at least 2 times per day for calibration of the rtCGM 

 

Exclusion criteria: 

• Severe episode of hypoglycaemia (requiring 3rd party assistance) in the 

6 months prior to enrolment 

• Diabetic ketoacidosis in the last 6 months prior to enrolment 
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• Impaired awareness of hypoglycaemia (based on Gold score ≥4 for 

participants in UK or Clarke score ≥4 for participants in Spain)  

• Pregnancy, breastfeeding or intention of becoming pregnant over time of 

study 

• Enrolled in other clinical trials 

• Have active malignancy or under investigation for malignancy 

• Suspected or diagnosed endocrinopathy e.g. adrenal insufficiency, 

unstable thyroidopathy, endocrine tumour 

• Gastroparesis 

• Autonomic neuropathy 

• Macrovascular complications (acute coronary syndrome, transient 

ischaemic attack, cerebrovascular event within the last 12 months prior 

to enrolment in the study) 

• Visual impairment including unstable proliferative retinopathy 

• Reduced manual dexterity 

• Inpatient psychiatric treatment 

• Abnormal renal function test results (calculated estimated glomerular 

filtration rate (eGFR) < 40 mL/min/1.73m2) 

• Liver cirrhosis 

• Abuse of alcohol or recreational drugs 

• Oral steroids 

• Regular use of the acetaminophen, beta-blockers or any other medication 

that the investigator believes is a contraindication to the participant’s 

participation. 
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Withdrawal criteria: 

• Loss of capacity to give informed consent 

• The subject has a serious event related to the study 

• Cessation of MDI of insulin as usual care for T1D 

• Severe hypoglycaemia 

• Diabetic ketoacidosis 

• Positive pregnancy test 

• Terminal illness 

• Investigators initiated discontinuation of study due to participant or 

equipment concerns.  

 

For participants withdrawn due to investigator-initiated discontinuation, or if 

participants withdrew their consent, any identifiable data already collected with 

consent was retained and used in the study. No further data was collected, nor any 

other research procedures carried out in relation to the participant. 

 

3.2.3 Procedures and visit schedule 

The study comprised of four visits over 8 weeks as outlined below:  

 

Visit 1: Screening and consent 

At study enrolment, participants gave a full medical and medication history, and 

underwent a physical examination and electrocardiogram. Venous bloods 

assessing HbA1c, creatinine, lipids, liver function, full blood count and thyroid 
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function were taken and sent to Imperial College Healthcare NHS Trust (ICHNT) 

laboratory for analysis. A urine sample was taken to measure albumin:creatinine 

ratio and women of child-bearing age additionally had a urinary pregnancy test. 

Participants meeting the inclusion criteria had a brief T1D education refresher. 

Eligible participants were provided with the PEPPER study handset, real-time 

CGM (Dexcom G5 transmitter and sensor) and an activity monitor. The PEPPER 

user app was integrated into the hand-held device.  

 

 Instructions were provided for rtCGM sensor change for the Dexcom G5 every 7 

days as per manufacturer’s guidance (or sooner in event of sensor failure). In 

addition, participants were instructed to test capillary blood glucose every 12 hours 

for calibration, if symptoms of hypo- or hyperglycaemia were present, or if the 

sensor glucose was out of the desired range (3.9 mmol/l - 13.3 mmol/l). RtCGM 

alarm thresholds were set at 3.9 mmol/l and 16.6 mmol/l. 

 

For the run-in period, the PEPPER safety system and adaptive bolus advisor were 

disabled. Standard rtCGM alarms were received through xDrip+, which ran in the 

background of the PEPPER app. Standard bolus calculator settings were used 

throughout this phase. Insulin pen devices with half-unit increments were provided 

to MDI users, as insulin bolus advice was provided to the nearest 0.5 units.  

 

Participants on CSII were switched to the Cellnovo pump and trained on its use. 

Differences from their own home pump were discussed including important 

aspects such as calculation of IOB and correction boluses. Additional topics for 

discussion included: site initiation, cartridge/priming procedures, setting up the 
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pump, changing batteries, navigation through menus and bolus procedures 

including stopping a bolus. User manuals were provided for the PEPPER handset, 

Cellnovo insulin pump and continuous glucose monitor.  

 

Participants were also asked to complete validated study questionnaires (Diabetes 

treatment satisfaction questionnaire (DTSQs), Gold Score, Problem Areas in 

Diabetes [PAID], and Diabetes Quality of Life (DQOL)) to assess psychosocial 

outcomes. Details on the questionnaire components can be found in Table 3.1. 

 

Each screening visit lasted for approximately 4-6 hours and, for UK participants, 

was conducted at the Imperial Clinical Research Facility.  

 

Participant accounts on the online PEPPER portal were created in advance of the 

study visit by myself, with corresponding serial code numbers of the handset and 

pump devices. Each anonymised participant account was paired with a handset and 

pump serial code, with details sent to Cellnovo for linkage on their server in 

advance of each visit. There were frequent technical issues during the set-up 

process of linking the equipment, particularly with the CSII participants (i.e. 

cartridge ejection issues – further details in Discussion Section 3.6). As a result, 

sessions lasted longer than anticipated. Where necessary, I requested support from 

the Imperial engineering team and our commercial collaborators. In some 

instances, participants were requested to attend again on another day.   
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Table 3.1: Psychosocial questionnaires used in the PEPPER clinical study 

Abbreviations: DTSQs, diabetes treatment satisfaction questionnaire; DQOL, diabetes quality of 
life; PAID, problem area in diabetes 

 

 

Questionnaire 
Tool 

Description Scoring 

 
Problem Area in 

Diabetes  
(PAID) 
(291) 

 

 
Covers a range of emotional 
states frequently 
reported in diabetes.  
It is primarily a measure 
of diabetes-specific emotional 
distress 

 
Each of 20 items scored from: 0=‘not a 
problem’ to 4=‘serious problem’. Total scores 
scaled out of 100 with higher scores indicating 
distress 
 
PAID summary score: 
0 to 39 – no distress,  
40 to 59 – mild distress, 
60 to 79 –moderate distress, 
80 to 100 – severe distress 
 

 
Diabetes 

Treatment 
Satisfaction 

Questionnaire 
(DTSQs) 

(292) 
 

 
Measures patient satisfaction 
with diabetes treatment 
 

 
DTSQs – Each item scores from 0=‘very bad’ 
to 6=‘very good’. All scores, except those 
from DTSQ items 2 and 3, (which assess 
glycaemic control rather than satisfaction 
through perceived hypo-/ hyperglycaemia), 
are added up to produce a DTSQ total score 
(range 0–36). Higher scores reflect higher 
satisfaction 
 
DTSQs perceived frequency of hypo- and 
hyperglycaemia are scored from 0 (none of the 
time) to 6 (most of the time) 
 

 
Diabetes Quality 

of Life  
(DQOL) 

(293) 
 

 
Assesses the relative burden of 
diabetes 

 
The DQOL measure consists of 46 items, 
forming 4 domains i.e. satisfaction, impact, 
worry: social/vocational; worry: diabetes 
related. Responses are ranked on a 5-point 
Likert scale with higher scores indicating 
dissatisfaction, frequent impact, or frequent 
worry  
 

  
GOLD Scale 

(28) 

 
Categorises awareness of having 
reduced awareness of 
hypoglycaemia in patients 
with diabetes 
 

 
One item with score on a scale from 
1=‘always aware’ to 7=‘never aware’ in 
response to the question: “Do you know when 
your hypos are commencing?”  
 
Impaired awareness if Gold score is ≥4 
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Visit 2: Safety System switched on 

Following the 2-week run-in period, the PEPPER safety system was switched on. 

The PEPPER CBR-based adaptive bolus calculator remained disabled throughout 

Phase 1 and the standard bolus calculator was used.  

 

RtCGM data was reviewed by the researcher with the participant and changes were 

made to the basal insulin/ISF/ICR if required at each of the visits. 

 

Visit 2 lasted for approximately 1 hour and took place at the clinical research 

facility. Where technical issues arose, often a whole system reset was required, 

resulting in longer session visits. Support from the engineering team was requested 

when required. 

 

Visit 3: Review  

At visit 3, participants attended the research unit and discussed any technical issues 

encountered between visits. Technical issues identified during the assessment were 

documented within a clinical and technical log of issues and fed-back to the 

relevant engineering teams, analysed and incorporated into system redevelopment. 

Any new software versions were made available to participants as required. 

 

This visit lasted for approximately 1 hour, however occasionally required further 

time to address any software updates or technical issues arising. 
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Visit 4: End of Study at 8 weeks 

The final visit lasted approximately 1 hour and was held at the clinical research 

facility. The PEPPER system was switched off and returned. Semi-structured 

interviews were conducted and participants completed the PAID, DQOL and 

DTSQs questionnaires. 

 

At each visit, the rtCGM data was reviewed by the researcher with the participant 

and changes were made to the basal insulin/ISF/ICR as required. Verbal feedback 

from participants was obtained regarding any technical issues encountered. 

Technical issues identified in the assessment were dealt with system 

redevelopment. 

 

The Phase 1 clinical study protocol is summarised in Figure 3.1. 

 

Figure 3.1: Summary of Phase 1 study visit attendances 

• Medical history
• BP, weight, ECG, bloods and urine tests
• CGM sensor insertion
• Psychological questionnaires
• Instructions on how to use the PEPPER handset

Visit 1: 

Screening & Consent
(Week 0)

• CGM data review
• Safety System switched on (CBR disabled)
• Review any technical difficulties

Visit 2: 

Safety System ON
(Week 2)

• CGM data review
• Review any technical difficulties

Visit 3: 

Review 
(Week 4)

• CGM data review
• Switch off PEPPER system
• Revert back to usual treatment
• Psychological questionnaires

Visit 4: 

End of study
(Week 8)
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3.2.4 Study outcomes 

The primary outcome was % time in hypoglycaemia <3.9mmol/l from baseline to 

endpoint. Secondary outcomes regarding glycaemic control included percentage 

(%) time in range (TIR) 3.9-10mmol/l, % time in hyperglycaemia >10mmol/l and 

% time in lower thresholds of hypoglycaemia (<3.3mmol/l and <3.0mmol/l).  

 

Secondary outcomes relating to the safety system included the incidence of 

predictive low and high glucose alarms and carbohydrate recommendations 

(number per week). The scores from the quality of life questionnaires (PAID, 

DQOL, DTSQ) at baseline and endpoint were compared to assess treatment 

satisfaction, social functioning, and factors important to quality of life.  

 

3.2.5 Statistical analysis 

All glycaemic outcomes from baseline (weeks 1 and 2) were compared with 

endpoint (weeks 7 and 8). Non-normally distributed data were analysed with the 

Wilcoxon matched-pairs signed-rank test. All outcomes are reported as median 

(interquartile range [IQR]), unless stated otherwise. P-values <0.05 were 

considered statistically significant.  

 

The glycaemia and safety system data for each participant were stored on the 

PEPPER clinical platform, which were exported and run on Matlab to calculate the 

primary and secondary outcomes for each week of the study. A formal power 

calculation was not performed for the Phase 1 pilot study assessing feasibility and 

safety of new technology.  
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3.2.6 Analysis deviation from protocol 

The study protocol was designed to analyse combined data from MDI and CSII 

participants recruited from UK and Spain for Phase 1 (total n=15; a sample size 

comparable to other technology pilot safety studies). This assumed that both 

clinical sites would be using the same hardware and software during the study.  

 

For MDI participants, I was able to analyse the combined outcomes from the two 

clinical sites using the maximum available participant numbers.  

 

However, there were several technical issues encountered with the Cellnovo pump, 

including frequent cartridge ejection and signal loss. The manufacturers attempted 

to resolve this with software and firmware updates. 

 

During this time, ICL paused the clinical study, whilst IDIBGI completed the 

clinical trial to meet project deadlines. In addition, it was initially planned that the 

predictive low glucose suspend system would run in the background for this phase, 

without being active, in order to ensure both groups received the same safety 

interventions. However, as part of the software updates to improve usability, the 

pump manufacturers inadvertently activated the predictive low glucose suspend for 

CSII participants at ICL. As a result, the two clinical sites had different features 

with two very different software versions.  
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For CSII analysis, in view of the aforementioned issues encountered with the 

Cellnovo pump, I restricted the dataset to participants recruited at the ICL site only. 

At this site, optimal pump software was used with the complete safety system, 

including the predictive low glucose suspend feature, which was functional from 

week 5 onwards only. The MDI and CSII groups are, therefore, presented 

separately.  

 

 

3.3 Results for Participants on MDI 

Eight participants were recruited between November 2017 and January 2018 at 

IDIBGI (n=4) and ICL (n=4). Participants (3 men and 5 female) had a median 

(IQR) age of 37.5 (31.8-53.5) years, body mass index (BMI) 23.8 (23.2-27.5) 

kg/m2, HbA1c 63.0 (57.4-66.1) mmol/mol and duration of diabetes 22.5 (18.0-

26.5) years (Table 3.2). Intact awareness of hypoglycaemia was present in all 

participants at baseline. 
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Demographics Median (interquartile 
range)/ n (%) 

 (n=8) 
Gender (female) 5 (62.5%) 

Age (years) 37.5 (31.8-53.3) 

BMI (kg/m2) 
Height (cm) 
Weight (kg) 

23.8 (23.2-27.5) 
164.5 (162.3-173.8) 

71.1 (61.3-74.7) 
Duration of diabetes (years) 22.5 (18.0-26.5) 

Hypoglycaemia awareness (i.e. Gold/Clarke score <4) 8 (100%) 

HbA1c (mmol/mol) 63.0 (57.4-66.1) 

Number of CBG measurements per day 3.5 (2.0-5.0) 

Previous episode of DKA  3 (37.5%) 

Previous episode of severe hypoglycaemia  0 (0.0%) 

Participants with: 
Diabetic retinopathy (background/ stable treated) 
Diabetic nephropathy 
Diabetic neuropathy 
Diabetic arteriopathy 

 
3 (37.5%) 
0 (0.0%) 
2 (25.0%) 
0 (0.0%) 

Participants with: 
Hypertension  
Dyslipidaemia 
IHD 
CVA 
Hypothyroidism 
Hyperthyroidism  
Liver disease 
COPD 
GI disease 
Anxiety  
Depression 

 
2 (25.0%) 
4 (50.0%) 
0 (0.0%) 
0 (0.0%) 
1 (12.5%) 
2 (25.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
2 (25.0%) 

TSH (mU/L) 1.75 (1.67-2.07) 

Total cholesterol (mmol/l) 4.4 (4.1-4.7) 

Table 3.2: Baseline characteristics for Phase 1 participants on MDI 

Results are expressed as median (IQR). Previous episodes of DKA/ severe hypoglycaemia refer to 
lifetime incidence, occurring any time prior to the 6 months before recruitment on the study.  

Abbreviations: BMI, body mass index; CBG, capillary blood glucose; DKA, diabetic 
ketoacidosis; IHD, ischaemic heart disease; CVA, cerebrovascular accident; COPD, chronic 

obstructive pulmonary disease; GI, gastrointestinal; TSH; thyroid stimulating hormone 

 

The 8-week Phase 1 study was completed by six participants. The reasons for two 

participants not included in the final analysis, were due to one drop-out for personal 

commitments and one participant having handset issues.  
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3.3.1 Glycaemic outcomes 

Glucose outcomes were derived from the run-in rtCGM data (baseline weeks 1 and 

2) and compared with endpoint (weeks 7 and 8; Table 3.3). For the primary 

outcome comparison (% time in hypoglycaemia <3.9mmol/l), no significant 

differences were observed between the two groups. However, reduction in median 

% time in hypoglycaemia <3.0 mmol/l was observed, from 0.8 (0.1-4.8)% during 

run-in (weeks 1 and 2) to 0.3 (0.0-0.9)% at endpoint (weeks 7 and 8; p=0.02). 

Reduction in %time <3.0mmol/l was seen as early as consecutive fortnightly weeks 

1 and 2, and weeks 3 and 4 (p=0.049).  

 

Percentage %TIR 3.9-10.0 mmol/l significantly increased with use of the PEPPER 

safety system compared to standard system (61.3 (47.5-71.7)% vs 52.8 (38.3-

61.5)% respectively; p=0.03). No significant difference for time in hyperglycaemia 

>10mmol/l was observed. 

 

No adverse incidents of DKA or severe hypoglycaemia requiring third-party 

assistance occurred during the study period. One participant was admitted to 

hospital following hyperglycaemia secondary to chest infection. There were no 

significant changes to basal insulin dosing between run-in and endpoint. 
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Table 3.3: Glycaemic outcomes in MDI users with safety system on.   

Median percentage time (and IQR) spent within various glucose ranges at baseline (weeks 1 and 
2) and endpoint (weeks 7 and 8). Data presented as median (IQR). * p<0.05 indicates 

significance. 

 

 

 

Figure 3.2: Change in glycaemic outcomes on a fortnightly basis 

Box plots showing the change in glycaemia over the eight-week study. (A) Change in percentage 
time in hypoglycaemia (<3.0 mmol/l). (B) Change in percentage time in range (3.9-10.0 mmol/l). 

(C) change in percentage time in hyperglycaemia (>10 mmol/l). *ANOVA p < 0.05 indicates 
significance.   

 

3.3.2 Safety system outcomes 

Whilst the safety system was not enabled during the run-in period, the algorithm 

was running in the background to allow comparisons to be made. The total 

incidence of PEPPER safety system outcomes (i.e. glucose alerts, alarms and 
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 Run-in (n=6) 
Weeks 1 and 2 

Endpoint (n=6) 
Weeks 7 and 8 

P-value 

% time in hypoglycaemia 
<3.9mmol/l (<70mg/dL) 
<3.3mmol/l (<60mg/dL) 
<3.0mmol/l (<54mg/dL) 

 

 
3.7 (1.6-6.4) 
1.8 (0.7-5.6) 
0.8 (0.1-4.8) 

 
2.7 (0.9-7.3) 
0.8 (0.0-1.5) 
0.3 (0.0-0.9) 

 
0.15 

   0.05 * 
   0.02 * 

% time in range 
3.9 – 10.0mmol/l (70 -180mg/dL) 

 

 
52.8 (38.3-61.5) 

 
61.3 (47.5-71.7) 

 
  0.03 * 

% time in hyperglycaemia 
>10mmol/l (>180mg/dL) 

 

 
44.3 (37.3-57.8) 

 
33.8 (27.5-49.2) 

 
0.09 
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carbohydrate recommendations) between run-in and endpoint are shown in Table 

3.4. The total incidence of glucose alerts significantly reduced by approximately 

one-third at endpoint compared to run-in (31.5 (24.5-38.8) vs 20.0 (12.8-25.3); 

p<0.05). However, when categorised into type of alert (i.e. hypoglycaemia/ 

hyperglycaemia), no difference was observed. The incidence of glucose alarms did 

not change.  

 

Carer alarms significantly decreased at endpoint from 14.5 (6.3-22.0) to 8.5 (3.3-

10.8), p=0.005. This was specifically associated with a reduction in carer alarms 

triggered for hypoglycaemia (p=0.004).  

 

 Run-in (n=6) 
Weeks 1 and 2 

Endpoint (n=6) 
Weeks 7 and 8 

P-value 

Incidence of all glucose alerts 
 

For hypoglycaemia 
For hyperglycaemia 

31.5 (24.5-38.8) 
 

7.0 (3.8-12.0) 
18.0 (10.0-26.0) 

20.0 (12.8-25.3) 
 

3.5 (2.00-14.0) 
10.5 (6.75-14.0) 

   0.03 * 
 

0.37 
0.06 

Incidence of all glucose alarms 
 

For hypoglycaemia 
For hyperglycaemia 

15.0 (7.25-23.5) 
 

5.5 (4.0-9.3) 
4.0 (0.8-6.3) 

12.0 (8.3-20.8) 
 

5.5 (3.0-8.3) 
3.5 (1.5-6.0) 

0.19 
 

0.42 
0.33 

Incidence of all carer alarms 
 

For hypoglycaemia 
For hyperglycaemia 

14.5 (6.3-22.0) 
 

5.5 (4.0-9.5) 
4.0 (0.8-6.5) 

8.5 (3.3-10.8) 
 

2.5 (1.8-5.3) 
2.0 (0.0-5.0) 

    0.01 * 
 

   0.004 * 
0.07 

Incidence of CHO recommendations 4.5 (1.0-88.3) 
 

0.0 (0.0-25.3) 
 

0.18 

Percentage of missing rtCGM data (%) 49.6 (6.6-52.8) 
 

19.1 (8.3-23.7) 
 

0.17 

Table 3.4: Safety system outcomes comparing run-in and endpoint 

Incidence refers to all glucose alerts/ alarms over the analysed 14-day periods (run-in vs 
endpoint). CHO recommendations refer to personalized oral dose of carbohydrates to revert 

hypoglycaemia and minimize rebound hyperglycaemia. Data presented as median (IQR).              
* p<0.05 indicates significance. Abbreviations: CHO, carbohydrate. 
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Carbohydrate recommendations were considered irrespective of whether the 

advice provided by the PEPPER system was acted upon by the user. By the study 

endpoint, the number of carbohydrate recommendations reduced to zero.  
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3.3.3 CGM data loss 

Data loss was observed for periods of time between the rtCGM device and handset. 

As part of ongoing development to the system, data loss was identified as a 

limitation and was addressed throughout the study period. During the initial run-in 

period, approximately 49.6% of missed signals were observed. This was reduced 

to 19.1% by endpoint (Figure 3.3).  

 

 

Figure 3.3: Percentage of missed rtCGM signal data, on fortnightly basis 

Data presented as median (IQR). 
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3.4 Results for Participants Using CSII  

Seven participants on CSII were recruited between December 2017 and January 

2018 at IDIBGI (n=3) and ICL (n=4). Data from the IDIBGI cohort (n=3) were not 

included in this analysis because the predictive low glucose suspend safety feature 

was not enabled during the study intervention period.  

 

The four participants recruited at ICL (2 men and 2 female) had a median (IQR) 

age of 45.5 (36.8-54.5) years, duration of diabetes 37.5 (30.3 – 43.5) years, BMI 

25.5 (22.8-27.2) kg/m2 and HbA1c 49.0 (48.5-51.3) mmol/mol (Table 3.5). All 

participants had intact awareness of hypoglycaemia with a Gold score of 2.0 (2.0-

2.3).  

 



A D A P T I V E  BO L U S  C A L C UL A T O R S  

P  A V A R I   134  

Demographics Median (IQR)/ n (%) 
(n=4) 

Gender (female) 2 (50.0%) 

Age (years) 45.5 (36.8-54.5) 

BMI (kg/m2) 
Height (cm) 
Weight (kg) 

25.5 (22.8-27.2) 
174.8 (155.8-193.6) 

72.4 (64.8-82.7) 
Duration of diabetes (years) 37.5 (30.3 – 43.5) 

Hypoglycaemia awareness (i.e. Gold score <4) 4 (100%) 

HbA1c (mmol/mol) 49.0 (48.5-51.3) 

Previous episode of DKA  0 (0.0%) 

Previous episode of severe hypoglycaemia  0 (0.0%) 

Participants with: 
Diabetic retinopathy (background/ stable treated) 
Diabetic nephropathy 
Diabetic neuropathy 
Diabetic arteriopathy 

 
4 (100.0%) 

0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

Participants with: 
Hypertension  
Dyslipidaemia 
IHD 
CVA 
Hypothyroidism 
Hyperthyroidism  
Liver disease 
COPD 
GI disease 
Anxiety  
Depression 

 
0 (0.0%) 

2 (50.0%) 
2 (0.0%) 
0 (0.0%) 

1 (25.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

TSH (mU/L) 1.7 (1.4-1.9) 

Total cholesterol (mmol/l) 4.0 (3.6-4.6) 

Table 3.5: Baseline characteristics for Phase 1 participants on CSII 

Results are expressed as median (IQR). Previous episodes of DKA/ severe hypoglycaemia refer to 
lifetime incidence, occurring any time prior to the 6 months before recruitment on the study 
(excluding diagnosis). Abbreviations: BMI, body mass index; CBG, capillary blood glucose; 
DKA, diabetic ketoacidosis; IHD, ischaemic heart disease; CVA, cerebrovascular accident; 

COPD, chronic obstructive pulmonary disease; GI, gastrointestinal; TSH; thyroid stimulating 
hormone. 

 

3.4.1 Glycaemic outcomes 

A comparison of glucose outcomes was derived from the run-in rtCGM data 

(baseline weeks 1 and 2) and compared with weeks 3 and 4 (with no predictive low 

glucose suspend) and weeks 7 and 8 (with predictive low glucose suspend). 
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Percentage time in hypoglycaemia <3.9 mmol/l significantly reduced from 

baseline at 3.8 (3.7–4.0)% to endpoint at 0.6 (0.6–1.9)% (p=0.04; Table 3.6; Figure 

3.4). No significant differences were observed for reduction in clinically more 

significant hypoglycaemia i.e. % times in hypoglycaemia <3.3 mmol/l and <3.0 

mmol/l. In addition, no significant differences were observed for %TIR and % time 

in hyperglycaemia.  

 

There were no significant differences in basal insulin between run-in (weeks 1 and 

2) and end-point (weeks 7 and 8); 17.4 (15.8-20.5) units vs 14.5 (10.3 – 20.9) units 

respectively (p=0.56).  

 

 Run-in 
Weeks 1 and 2 

(n=4) 
 

SS – PLGS 
Weeks 3 and 4 

(n=4) 
 

SS + PLGS 
Weeks 7 and 8 

(n=4) 
 

 
P-value 

% time in hypoglycaemia 
<3.9mmol/l (<70mg/dL) 
<3.3mmol/l (<60mg/dL) 
<3.0mmol/l (<54mg/dL) 

  
3.8 (3.7 – 4.0) 
0.9 (0.8 – 1.2) 
0.5 (0.4 – 0.9) 

  
1.4 (1.3 - 2.3) 
0.5 (0.5 – 0.8) 
0.4 (0.3 - 0.5) 

  
0.6 (0.6 – 1.9) 
0.4 (0.2 – 0.7) 
0.3 (0.2 - 0.5) 

  
   0.04 * 

0.08 
0.15 

 
% time in range  
3.9 – 10.0mmol/l (70 -180mg/dL) 

  
77.3 (75.6 – 85.4) 

  
74.3 (65.2 – 84.3) 

  

  
76.1 (66.1 - 84.7) 

  

  
1.00 

% time in hyperglycaemia 
>10mmol/l (>180mg/dL) 

  
18.5 (11.0 – 20.0) 

  
24.3 (14.4 – 32.5) 

  
23.3 (14.7 - 32.0) 

  
0.77 

Table 3.6: Glycaemic outcomes in CSII users with safety system on.   

Data presented as median (IQR) for baseline (weeks 1 and 2), with PEPPER safety system (no 
predictive low glucose suspend - weeks 3 and 4) and endpoint (with predictive low glucose 

suspend - weeks 7 and 8).  * p<0.05 indicates significance. 
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Figure 3.4: Times in range and hypoglycaemia amongst CSII users 

Median glycaemia for each adult during baseline (weeks 1 and 2), with PEPPER safety system 
(no predictive low glucose suspend - weeks 3 and 4) and endpoint (with predictive low glucose 
suspend - weeks 7 and 8). The diameter of each circle is proportional to the percentage of time 
that the participant spent with a low glucose value (red circles for run-in; black circles for end-

point). 

 

 

No adverse incidents of DKA or severe hypoglycaemia requiring third-party 

assistance occurred during the study period. However, use of the PEPPER software 

was temporarily suspended within the first few days of the study commencing as a 

precaution for technical and safety reasons (no serious adverse events occurred; 

see Discussion Section 3.6). During this time, participants reverted to their standard 

therapy. Two participants withdrew just before the end of the study. Sufficient data 

were collected to calculate percentage times in glucose ranges and their data has 

been included in the analysis. Reasons for withdrawal include missing signals from 

rtCGM to pump, and inactivation of pump.  
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3.5 Quality of Life Outcomes 

Quality of life outcomes in participants using the PEPPER safety system on MDI 

and CSII were combined for analysis. 4 out of the 15 participants recruited to Phase 

1 withdrew during the study (IDIBGI (n=2) and ICL (n=2)). In addition, the 3 

participants on CSII recruited at IDIBGI did not have the full safety system 

enabled, and have therefore not been included. Results from the remaining 8 

participants (MDI (n=6) and CSII (n=2)) are presented here.  

 

The baseline diabetes distress score for the PAID questionnaire was 21.9 (18.4-

36.9). No statistical difference was observed in psychosocial measures for diabetes 

distress, quality or life and treatment satisfaction (Table 3.7).  

 

Quality of Life 
questionnaire 

Baseline score 
(n=8) 

Endpoint score 
(n=8) 

P-value 

PAID 21.9 (18.4-36.9) 26.9 (12.8-41.9) 0.94 

DQOL (total) 2.1 (1.8-2.4) 1.9 (1.7-2.5) 0.78 

DTSQs global 28.0 (26.0-32.8) 33.0 (30.8-35.5) 0.11 

Table 3.7: Psychosocial outcomes using the PEPPER safety system  

Data combined for MDI and CSII users and presented as median (IQR). Abbreviations: PAID, 
problem areas in diabetes (scored out of 100 with higher scores indicating distress); DQOL, 
diabetes quality of life (based on Likert 5-point scale from 1 to 5 with high scores indicate 
dissatisfaction, frequent impact, or frequent worry). DTSQs, diabetes treatment satisfaction 

questionnaire (scored out of 36 indicating very satisfied). 
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3.6 Discussion  

This feasibility study has demonstrated safety and feasibility of the PEPPER safety 

system for use in people with Type 1 diabetes. For MDI participants, the results 

suggest that intervention with the PEPPER safety system for 6 weeks has the 

benefit in improving glycaemia by reducing % time in clinically significant 

hypoglycaemia (<3.0 mmol/l) and increasing time in range (3.9-10mmol/l).  

Similarly, in the CSII participants, the results are promising to suggest an 

intervention with the PEPPER safety system has the potential to reduce % time in 

mild hypoglycaemia (<3.9 mmol/l). 

 

The study was limited by a short follow‐up period, small numbers, and was not 

designed to show superiority. However, study design and population are 

comparable with previous reports for a feasibility study. For the CSII participants, 

there was the additional limitation of fewer study participants, as data from IDIBGI 

(n=3) was not included in this analysis. This was due to the software version 

available at the time not having the predictive low glucose suspend feature enabled. 

As a result, similar comparisons between ICL and IDIBGI data could not be made. 

Furthermore, the full safety system was not functional over the complete 

intervention period at ICL, hence, the CSII participants have been analysed and 

presented separately to the MDI cohort.  

 

Baseline data derived from weeks 1 and 2 (rtCGM without safety system), were 

compared to endpoint weeks 7 and 8 (with PEPPER safety system). For CSII 

participants, a reduction was observed in the primary endpoint (% time in 
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hypoglycaemia <3.9mmol/l). For MDI participants, no significance was observed 

in the primary endpoint, however the International Hypoglycaemia Study Group 

(IHSG) recommend using a cut-off of <3.0mmol/l to report ‘clinically important’ 

hypoglycaemia (294). This is of particular relevance to individuals with highest 

risk of hypoglycaemia, as those who are unaware at glucose levels <3.0mmol/l 

have a four-fold increased risk of severe hypoglycaemia (27). This study had 

originally defined the level of hypoglycaemia at <3.9mmol/l before this 

recommendation was published.  

 

As a single arm study, without a control group, another limitation includes part of 

the effect observed may be resultant from prolonged rtCGM use.  However, there 

are some key differences between the PEPPER safety system and standard alarms 

and alerts associated with rtCGM. These include predictive hypoglycaemia alerts, 

although it is important to note latest commercial rtCGM systems (Dexcom G6 and 

Medtronic Enlite Sensor with the Guardian 3 transmitter (295)) have introduced 

this feature. Other novel features include personalised carbohydrate 

recommendations, based on weight and blood glucose, to eliminate hypoglycaemia 

and avoid rebound hyperglycaemia. If potentially dangerous events are not 

properly addressed by the subject, automated alarms are sent via an SMS service 

to pre-selected family members/carers.  

 

The reduction in number of alerts and carbohydrate recommendations observed in 

the MDI cohort as the study progressed is consistent with the improved glycaemia 

whilst using the PEPPER safety system. A limitation of this analysis includes that 

the incidence of alerts/alarms were based on the safety system algorithm running 
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in the background, and hence it is difficult to establish whether these had been 

acted upon by the participant or whether the handset had been switched off. 

Additionally, alert thresholds were altered by participants due to “alarm fatigue”. 

The high frequency of alerts/alarms carry significant burden and as a result of this, 

predictive high glucose alerts were switched off. A suggestion from several users 

was to include a vibration feature, which was subsequently incorporated into the 

system design.  

 

Another consistent issue amongst most participants was signal loss between the 

rtCGM sensor and the PEPPER handset. The handset and rtCGM could only 

connect within a 5-metre range, and participants frequently reported this range was 

likely to be much lower than that. In order to address this problem, it was hoped 

that direct integration of rtCGM to the PEPPER handset may be available through 

contractual agreement with a rtCGM software provider (e.g. Dexcom G6). 

However, despite several negotiations, this was not possible. Data loss was 

addressed during the course of the study and remained a key focus for improvement 

within the system. One method of achieving this, was through ensuring the handset 

woke from “deep sleep” overnight.  

 

Additional technical issues were particularly experienced by the CSII participants. 

At ICL, the trial was initially held for over 1 month, from 11th January 2018 and 

later restarted on 27th February 2018. It was later put on hold again due to a 

significant issue of frequent insulin cartridge ejection from the pump. Users 

experienced insulin cartridge ejection during the initial phase of inserting the 

cartridge into the pump, or spontaneously, up to several times a day. Early 
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manufacture at Flex (Flex Ltd, Althofen, Austria) had greater cartridge variation 

and issues, which was reflected in frequent ejection of “faulty” insulin cartridges 

and in the alarm frequency experienced. Following change in manufacturing, the 

latest generation of insulin cartridges were significantly more consistent.  

 

No adverse events were reported due to the safety system. One participant on MDI 

was admitted to hospital following hyperglycaemia secondary to chest infection. 

Two CSII participants withdrew before the study ended, despite the change to more 

stable insulin cartridges. Reasons were due to missing signals from the rtCGM to 

pump, and inactivation of pump. Inactivation was of particular concern as this 

would prevent the user from administering a further bolus dose through the pump. 

During the study, clinical safety of the participants was of paramount importance 

and they were carefully monitored and supported during these occurrences. Where 

required, they were advised to return to their usual diabetes care.   

 

All participants that completed Phase 1 with the PEPPER system expressed a wish 

to continue using the system in to Phase 2 of the study.  The QOL questionnaires 

were used to identify whether using the PEPPER system had changed the 

participants’ view of living with and managing their diabetes. The lack of 

improvement in diabetes distress scores, diabetes quality of life scores and diabetes 

treatment satisfaction were possibly due to several reasons. Firstly, this is likely to 

be due to the small cohort of participants and short intervention time period. 

Additionally, participants were more likely to be aware of their glycaemia and 

glucose fluctuations when using the system, compared to prior to using rtCGM. 

Participants experienced and reported alarm fatigue on a regular basis. For this 
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reason, alterations were made to new feature releases, which include a vibration 

feature (instead of sound) and to downgrade hyperglycaemia alarms to alerts. 

 

Human factors play an important role in usability and acceptance of new 

technology (296). The major advantage of this study phase enabled the 

implementation of a more reliable and consistent system for users. Key issues 

outlined above were addressed through further software updates, which when 

required, were provided to the participants as soon as there were released.  

 

 

Software Version Issues/ Fixes addressed 
V1.5.3 
V1.5.4 
V1.6.0 

• Issues over missed rtCGM readings fixed. (The software would convert 
missing values as zero, taking the calculated postprandial minimum glucose 
as zero. Bolus advise would return as 0) 

• Carbohydrate and glucose values on bolus items in the event log fixed for 
MDI version 

• Code implemented to check validity of user information before passing to the 
safety system 

• More Spanish translations introduced 
V1.6.0 b • User notification to appear when rtCGM data lost 

• When bolus advice requested during missed rtCGM signal, lack of recent 
rtCGM reading made clear to the user 

• Alarms not received when handset asleep (at night) fixed 
• Basal profiles (including temporary basal) display graphs optimised  
• Carbohydrates and glucose levels added to “Event Log” list 
• Minimum temporary basal applied when safety says fully suspend 
• The date/time format in CBR was wrong format 
• The postprandial minimum glucose value was set to -1 if the handset doesn’t 

have any rtCGM data for the entire postprandial phase  
V1.7x (5 versions)  • The new safety system with predicted hyperglycaemia alerts disabled  

• Improved rtCGM connectivity for increasing glucose data inflow to the server 
• “Get Bolus advice” button enabled even if the database says a bolus is still 

running (previously could not obtain bolus advice whilst a bolus was running) 
• Postprandial phase minimum glucose reading fixed 
• Safety system alarms waking up the device (previous concerns the alarm 

would not be triggered overnight, but seen in the morning as notification) 
V1.7.4 • New safety system to fix ICR and ISF issue 

• Splash screen freeze fix 
• Physical activity display and storage improved 

V1.7.5 • Issues with timing of bolus recommendations recorded on server fixed. 
(System changed to use “system time”, rather than “user-time, in order to 
correct an inconsistency in the internal times used by the safety system) 
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V1.7.6 • Safety system alarms downgraded (in behaviour) to alerts except for 
hypoglycaemia alarm and pump suspension (both partially and fully)  

• Alerts muted with the ‘Mute Alerts’ setting. New vibrate setting for safety 
system alarms/alerts, which can be enabled/disabled in the Settings 

• Issues with safety system server sync fixed 
• Incorrect initial case base noted in system; removed 
• New improvements for rtCGM communication 
• Improvements to reduce chances of duplicate cases on the clinical platform 
• For CBR functioning, improved postprandial phase timer to ensure the case 

is closed at the correct time, even whilst device is asleep 

Table 3.8: Changelog for the software during Phase 1 and prior to Phase 2 

Abbreviations: CBR, case-based reasoning; ICR, insulin to carbohydrate ratio; ISF, insulin 
sensitivity factor; MDI, multiple daily injections; rtCGM, real-time continuous glucose 

monitoring 

 

 

3.7 Conclusion 

In conclusion, the PEPPER safety system is acceptable, safe and maintains 

improved glycaemia within an out-of-clinic environment. Despite the limitations 

of being a short study within a small pilot population, significant reduction in 

percentage time in hypoglycaemia was observed. These results are promising for 

the safe day-to-day use of PEPPER for managing diabetes in MDI and CSII users. 

The next chapter evaluates the safety system in combination with the adaptive 

bolus calculator.   
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4 Phase 2: Feasibility 

of an Adaptive 

Bolus Calculator 

and Safety System 

4.1 Introduction and Aims 

Standard automated insulin bolus calculators all lack the ability to automatically 

adapt over time to respond to an individual needs or changes in insulin sensitivity. 

It is hypothesised that a personalised and adaptive insulin advisory system will 

provide better glycaemic control than state-of-the-art standard bolus calculators. 

 

In Phase 1, we determined the PEPPER safety system was safe and feasible, with 

the potential in improving glycaemia in a small pilot population of MDI and CSII 

users. Several developments and improvements were made to optimise the safety 

system and the overall PEPPER application. To summarise, these include the 
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predictive hyperglycaemia alerts being disabled to prevent alarm fatigue, as well 

as hyperglycaemia notifications to carers being disabled to reduce alarm burden 

for carers. A new generation of Cellnovo handset (CE marked in 2017) was 

introduced and more stable insulin cartridges were provided following a change in 

manufacturing. Due to concerns over significant missed rtCGM data, a change in 

coding algorithms enabled improved connectivity between the PEPPER handset 

and rtCGM.  

 

In Phase 2 of the clinical assessment, the aim was to demonstrate safety and 

feasibility of the complete PEPPER system. This included the AI-derived adaptive 

bolus calculator with the optimised safety system in the participants’ own 

environment. 

 

The hypothesis of this stage was that the complete PEPPER system is safe and 

feasible for use in people with TID using MDI and CSII users. 

 

 

4.2 Methodology 

4.2.1 Study design and recruitment 

Phase 2 was a non-randomised, open-label study evaluating the complete PEPPER 

system (safety system and adaptive bolus calculator) over 8 weeks. Similar to 

Phase 1, recruitment was undertaken at Imperial College London (UK) and IDIBGI 

(Spain). Potential participants were identified through diabetes clinics at each 
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respective site, or from interested participants who contacted the research team 

through the NIHR Research Gateway. 

 

Ethics and device approvals were obtained from the relevant regulatory bodies at 

each of the sites. All participants provided verbal and written informed consent. 

 

4.2.2 Participants 

A full list of the inclusion and exclusion criteria can be found in Section 3.2.1. To 

summarise, participants aged >18 years with T1D for >1 year, on MDI or CSII 

(insulin pump) treatment for >6 months, and had HbA1c between 48mmol/mol and 

86mmol/mol were included. In addition, individuals had to have completed 

structured education (either in a group or 1:1 sessions) and were competent at 

carbohydrate counting, using ICR and ISF to calculate mealtime insulin boluses.  

 

Participants were excluded if, within the last six months, they had an episode of 

DKA or severe hypoglycaemia requiring third-party assistance. Participants were 

also excluded if pregnant, breastfeeding or intending to become pregnant during 

the trial, enrolled on other trials, under investigation for or have an active 

malignancy, have a suspected or diagnosed endocrinopathy, abnormal renal 

function or liver cirrhosis, or had a macrovascular complication in the past year.  

 

4.2.3 Procedures and visit schedule 

A detailed description of the study visits is outlined below and summarised in  

Figure 4.1. 
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Visit 1: Consent and training 

At study enrolment, participants gave a full medical and medication history, and 

underwent a physical examination and electrocardiogram. Venous bloods 

assessing HbA1c, creatinine, lipids, liver function, full blood count and thyroid 

function were taken. A urine sample was taken to measure albumin/creatinine ratio 

and women of child-bearing age had a urinary pregnancy test. 

 

Eligible participants were provided with the PEPPER study handset, rtCGM 

(Dexcom G5 transmitter and sensor), a standard bolus calculator (embedded within 

the study handset) and an activity monitor.  For rtCGM, instructions were provided 

for sensor change for the Dexcom G5 every 7 days as per manufacturer’s guidance 

(or sooner in event of sensor failure), and participants were instructed to test 

capillary blood glucose every 12 hours for calibration or if symptoms of hypo- or 

hyperglycaemia, in event of sensor failure or if the sensor glucose is out of the 

desired range (3.9 mmol/l - 13.3 mmol/l). RtCGM alarm thresholds were set at 3.9 

mmol/l and 16.6 mmol/l. 

 

Participants on insulin pump therapy were switched to the Cellnovo pump and 

trained on its use. Differences from their own home pump were discussed including 

important aspects such as calculation of IOB and correction boluses. Additional 

topics for discussion included: site initiation, cartridge/priming procedures, setting 

up the pump, changing batteries, navigation through menus and bolus procedures, 

including stopping a bolus. User manuals were provided for the PEPPER handset, 

Cellnovo insulin pump and continuous glucose monitor.  
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Participants were asked to complete validated study questionnaires including 

DTSQ, DQOL and PAID questionnaires.  

 

In Phase 2, during the run-in period, the PEPPER safety system was activated, with 

the adaptive bolus calculator disabled. Insulin bolus recommendations were based 

on a standard bolus calculator embedded within the handset. Each session lasted 

approximately 4-6 hours, unless participants were already familiar with the system 

through their participation in Phase 1. 

 

Participant accounts on the online PEPPER portal were created in advance of the 

study visit by myself. Each anonymised participant account was paired with a 

handset and pump serial code, with details sent to Cellnovo for linkage on their 

server in advance of each visit. 

 

Visit 2: Adaptive bolus advisor (CBR) switched on 

Following the 2-week run-in period, the PEPPER adaptive bolus calculator using 

CBR was switched on. RtCGM data was reviewed with the participant and changes 

were made to the basal insulin/ ISF/ ICR if required at each of the visits. 

 

Target blood glucose on the PEPPER bolus calculator was standardized to 5.5 

mmol/l, however this target could be individualised if required. 

 

Visit 2 lasted for approximately 1 hour and took place at the clinical research 

facility.  
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Visit 3: Review 

Visit 3 also required a visit to the clinical research facility, with each visit lasting 

approximately an hour. Participants discussed technical issues encountered 

between visits. Technical issues identified in the assessment were dealt with during 

system redevelopment.  

 

A clinical and technical log of issues faced by participants was maintained and 

communicated with the engineering team. Regular teleconference meetings were 

held once weekly with the engineers to ensure any issues were addressed.  

 

Software updates to the PEPPER application on the handset were required to be 

done manually, and in certain instances where there were technical issues, these 

required further time to address. 

 

Visit 4: End of study 

At visit 4, the PEPPER system was switched off and returned. Participants took 

part in a semi-structured interview and completed the PAID, DQOL and DTSQs 

questionnaires. 

 

Verbal feedback from participants was obtained regarding any technical issues 

encountered. The final visit took approximately 1 hour.  
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Figure 4.1: Summary of Phase 2 study visit attendances 

 

4.2.4 Study outcomes 

The study outcomes were similar to that of Phase 1 with the primary outcome being 

% time in hypoglycaemia <3.9mmol/l from baseline to endpoint. Secondary 

outcomes regarding glycaemic control include % TIR 3.9-10mmol/l, % time in 

hyperglycaemia >10mmol/l and % time in lower thresholds of hypoglycaemia 

(<3.3mmol/l and <3.0mmol/l). Secondary outcomes regarding the safety system 

were incidence of low and high glucose alarms, carbohydrate recommender and 

predictive low glucose suspend (CSII users only). The scores from the quality of 

life questionnaires (PAID, DQOL, DTSQ) at baseline and endpoint were 

compared. 

 

• Medical history
• BP, weight, ECG, bloods and urine tests
• CGM sensor insertion
• Psychological questionnaires
• Instructions on how to use the PEPPER handset

Visit 1: 

Screening & Consent
(Week 0)

• CGM data review
• Adaptive bolus advisor (with CBR) switched on
• Review any technical difficulties

Visit 2: 

Adaptive Bolus Advisor 
ON

(Week 2)

• CGM data review
• Review any technical difficulties

Visit 3: 

Review
(Week 4)

• CGM data review
• Switch off PEPPER system
• Revert back to usual treatment
• Psychological questionnaires

Visit 4: 

End of study
(Week 8)
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4.2.5 Statistical analysis 

All glycaemic outcomes from baseline (weeks 1 and 2) were compared with 

endpoint (weeks 7 and 8). Non-normally distributed data were analysed with the 

Wilcoxon matched-pairs signed-rank test. All outcomes are reported as median 

(interquartile range [IQR]), unless stated otherwise. P-values <0.05 were 

considered statistically significant.  

 

The glycaemic and safety system data for each participant were stored on the 

PEPPER Server Application. Data were exported to calculate the primary and 

secondary outcomes for each week of the study. A formal power calculation was 

not performed for the Phase 2 pilot study assessing safety and feasibility.  

 

4.2.6 Analysis deviation from protocol 

Similar to Phase 1, the study protocol was designed to analyse combined data from 

MDI and CSII participants recruited from UK and Spain for Phase 2 (total n=15; a 

sample size comparable to other technology pilot studies).  

 

During the early weeks of the clinical study with the MDI participants, I 

encountered several technical issues with the CBR; importantly, case revisions 

could not be made, so participants did not receive the intended adaptive bolus 

advisory function. This impacted the four participant cohorts (MDI vs CSII and 

ICL vs IDIBGI) differently. IDIBGI went ahead without the necessary fix and 

completed the clinical trial to meet project deadlines. Thus, for data analysis, 
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outcomes from participants at IDIBGI have not been included as the novel bolus 

calculator driven by the CBR was not active during the study period.  

 

Within the ICL cohorts, there was also variation in the duration of the CBR 

algorithm being active, hence I have reported outcomes from CSII and MDI users 

separately. Though I identified the aforementioned CBR issues during the early 

MDI weeks, our protocol did not allow for an extension to be able to repeat those 

weeks. I was able to successfully pause the study, allowing time for the fixes to be 

developed and tested. When we restarted, MDI users, had two weeks of fully 

functioning CBR, and CSII participants had the CBR functioning for the full 6-

week intervention period.  

 

 

4.3 Results for MDI Participants  

Four participants were recruited at ICL in March 2018. All participants were male 

and had a median (IQR) age of 43.5 (37.3-48.3) years, duration of diabetes 28 

(26.3-28.0) years, BMI 26.8 (24.9-27.4) kg/m2 and HbA1c 64.0 (63.0-64.5) 

mmol/mol (Table 4.1). All participants had intact awareness of hypoglycaemia at 

baseline. 

 

At ICL, the study was held from week 5 due to technical issues with the CBR. The 

study was later restarted in September 2018, with only weeks 7 and 8 remaining. 

Data from participants at IDIBGI (n=4) were not included in this analysis, as the 

CBR was not active during the intervention period.  
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Demographics Median (interquartile 
range)/ n(%) 

 (n=4) 
Gender (male) 4 (100%) 

Age (years) 43.5 (37.3-48.3) 

BMI (kg/m2) 
Height (cm) 
Weight (kg) 

26.8 (24.9-27.4) 
182.0 (176.5-184.8) 

83.3 (69.7-95.1) 
Duration of diabetes (years) 15.5 (9.3 – 22.0) 

Gold score 2.0 (1.8-2.0) 

HbA1c (mmol/mol) 64.0 (63.0-64.5) 

Previous episode of DKA  2 (50.0%) 

Previous episode of severe hypoglycaemia  0 (0.0%) 

Participants with: 
Diabetic retinopathy (background/ stable treated) 
Diabetic nephropathy 
Diabetic neuropathy 
Diabetic arteriopathy 

 
3 (75.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

Participants with: 
Hypertension  
Dyslipidaemia 
IHD 
CVA 
Hypothyroidism 
Hyperthyroidism  
Liver disease 
COPD 
GI disease 
Anxiety  
Depression 

 
2 (50.0%) 
3 (75.0%) 
0 (0.0%) 
0(0.0%) 

1 (25.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

TSH (mU/L) 1.7 (1.3-1.7) 

Total cholesterol (mmol/l) 4.1 (3.4-4.4) 

Table 4.1: Baseline characteristics for Phase 2 participants on MDI 

Results are expressed as median (IQR). Previous episodes of DKA/ severe hypoglycaemia refer to 
lifetime incidence, occurring any time prior to the 6 months before recruitment on the study. 

Abbreviations: BMI, body mass index; CBG, capillary blood glucose; DKA, diabetic 
ketoacidosis; IHD, ischaemic heart disease; CVA, cerebrovascular accident; COPD, chronic 

obstructive pulmonary disease; GI, gastrointestinal; TSH; thyroid stimulating hormone 

 

 

Four participants completed the 8-week Phase 2 study. However, data from one 

participant was not included in the final analysis as no adaptations were made due 

to low carbohydrate intake at mealtimes (<20g CHO).  
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4.3.1 Glycaemic outcomes 

A comparison of glucose outcomes were derived from the run-in rtCGM data with 

safety system (baseline weeks 1 and 2) and compared with endpoint, including the 

CBR (weeks 7 and 8). No statistically significant difference was observed for the 

primary endpoint % time in hypoglycaemia <3.9 mmol/l, nor <3.3 mmol/l and <3.0 

mmol/l (Table 4.2; Figure 4.2).  

 

No significant differences for %TIR 3.9-10.0 mmol/l were observed between the 

complete PEPPER system compared to the standalone safety system (p=0.83).   

 

 No adverse incidents of DKA or severe hypoglycaemia requiring third-party 

assistance occurred during the eight weeks. However, use of the PEPPER software 

was temporarily suspended for several months at Visit 3, due to non-functioning 

of the CBR system (no serious adverse events occurred; see Discussion Section).  

 

 Run-in (n=3) 
Safety System On 

Weeks 1 and 2 

Endpoint (n=3) 
Safety System and CBR On 

Weeks 7 and 8 
% time in hypoglycaemia 

<3.9mmol/l (<70mg/dL) 
<3.3mmol/l (<60mg/dL) 
<3.0mmol/l (<54mg/dL) 

 
1.5 (1.2 – 3.0) 
0.9 (0.5 – 1.2) 
0.6 (0.3 – 0.9) 

 
2.0 (1.6 – 4.6) 
0.7 (0.7 – 3.3) 
0.4 (0.2 – 2.7) 

% time in range  
3.9 – 10.0mmol/l (70 -180mg/dL) 

 
59.1 (50.9 - 66.4) 

 
55.4 (52.8 – 57.8) 

% time in hyperglycaemia 
>10mmol/l (>180mg/dL) 

 
39.4 (32.4 - 46.1) 

 

 
42.6 (37.6 – 45.6) 

 

 Table 4.2: Glycaemic outcomes in MDI users with safety system and CBR.   

Median (IQR) percentage time for baseline (weeks 1 and 2; safety system on) and endpoint 
(weeks 7 and 8; safety system and CBR on). CBR functioning for 2 weeks only. Abbreviations: 

CBR, case-based reasoning 
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Figure 4.2: Times in range and hypoglycaemia with CBR amongst MDI users 

Median glycaemia for each adult during run-in (safety system on) and endpoint (safety system 
and CBR on). The diameter of each circle is proportional to the percentage of time that the patient 
spent with a low glucose value (red circles for run-in; black circles for end-point). Abbreviations: 

CBR, case-based reasoning 
 

 

4.3.2  Insulin recommender (CBR) outcomes 

In view of the technical issues with the CBR, an assessment of the cases accepted 

by the user and by clinicians was made. One participant (P_001) had no cases 

accepted due to low carbohydrate intake (<20g CHO per meal). The median 

number of cases accepted by the user when bolus advice was presented on the 

handset was 90.0% (67.1% - 94.5%). The median number of cases accepted by the 

clinician to be reused as part of the learning algorithm was 14.1% (11.9% - 37.5%). 

Table 4.3 shows data from each participant whilst the CBR was active.  
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Participant CBR Start Date CBR End Date 
Cases accepted 

by the user 
Cases accepted 
by the clinician 

P_001 24/07/2018 14/08/2018 94.3%   0.0% 
P_002 17/09/2018 03/10/2018 44.2%   9.6% 
P_003 12/09/2018 10/10/2018 99.0% 14.1% 
P_004 05/09/2018 18/09/2018 90.0% 60.0% 

Table 4.3: CBR case acceptance by users and clinicians 

Cases of bolus advice accepted by the user and the cases accepted by the clinician for case re-use, 
for each participant. Abbreviations: CBR, case-based reasoning 

 

 

4.4 Results for CSII Users  

Four participants (75% male, median (IQR) age of 36.5 (34.5-43.0) years, duration 

of diabetes 22.0 (18.5 – 33.0) years, BMI 26.2 (24.3-27.7) kg/m2 and HbA1c 54.5 

(52.0-57.3) mmol/mol) on CSII were recruited at ICL in September 2018 (Table 

4.4). Two participants withdrew due to technical issues related to the system.  

 

Data from participants at IDIBGI (n=3) were not included in this analysis, as the 

CBR was not active during the intervention period.  
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Demographics Median (interquartile 
range) / n (%) 

 (n=4) 
Gender (female) 1 (25.0%) 

Age (years) 36.5 (34.5-43.0) 

BMI (kg/m2) 
Height (cm) 
Weight (kg) 

26.2 (24.3-27.7) 
172.0 (165.6-175.6) 

72.3 (67.1-79.2) 
Duration of diabetes (years) 22.0 (18.5 – 33) 

Gold score 2.0 (2.0-2.0) 

HbA1c (mmol/mol) 54.5 (52.0-57.3) 

Previous episode of DKA  0 (0.0%) 

Previous episode of severe hypoglycaemia  0 (0.0%) 

Participants with: 
Diabetic retinopathy (background/ stable treated) 
Diabetic nephropathy 
Diabetic neuropathy 
Diabetic arteriopathy 

 
4 (100%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

Participants with: 
Hypertension  
Dyslipidaemia 
IHD 
CVA 
Hypothyroidism 
Hyperthyroidism  
Liver disease 
COPD 
GI disease 
Anxiety  
Depression 

 
2 (50.0%) 
2 (50.0%) 
0 (0.0%) 
0 (0.0%) 
1 (25.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

TSH (mU/L) 1.2 (0.6-1.8) 

Total cholesterol (mmol/l) 4.7 (4.0-5.5) 

Table 4.4: Baseline characteristics for Phase 2 participants on CSII  

Previous episodes of DKA/ severe hypoglycaemia refer to lifetime incidence, occurring any time 
prior to the 6 months before recruitment on the study. Results are expressed as median (IQR). 

BMI, body mass index; CBG, capillary blood glucose; DKA, diabetic ketoacidosis, IHD, 
ischaemic heart disease; CVA, cerebrovascular accident; COPD, chronic obstructive pulmonary 

disease; GI, gastrointestinal; TSH; thyroid stimulating hormone 

 

4.4.1 Glycaemic outcomes 

Between the baseline run-in period (safety system on, without CBR) and endpoint 

(safety system with CBR on), no significant change in glycaemic outcomes were 

observed (Table 4.5; Figure 4.3).  
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 Run-in (n=2) 
Safety System On 

Weeks 1 and 2 

Endpoint (n=2) 
Safety System and CBR On 

Weeks 7 and 8 

% time in hypoglycaemia 
<3.9mmol/l (<70mg/dL) 
<3.3mmol/l (<60mg/dL) 
<3.0mmol/l (<54mg/dL) 

 
3.0 (2.7 – 3.3) 
1.2 (1.1 – 1.3) 
0.9 (0.9 – 0.9) 

 
5.2 (3.2 – 7.2) 
1.5 (0.9 – 2.2) 
0.7 (0.4 – 1.1) 

% time in target  
3.9 – 10.0mmol/l (70 -180mg/dL) 

 
62.3 (60.1 – 64.5) 

 
56.3 (55.3 – 57.2) 

 
% time in hyperglycaemia 

>10mmol/l (>180mg/dL) 
 

34.7 (32.2 - 37.2) 
 

 
38.5 (35.6 – 41.5) 

 

Table 4.5: Glycaemic outcomes in CSII users with safety system and CBR.   

Data presented as median (IQR) for baseline (weeks 1 and 2; safety system on) and endpoint 
(weeks 7 and 8; safety system and CBR on).  

 

 

 

 
Figure 4.3: Times in range and hypoglycaemia with CBR amongst CSII users 

Median (IQR) glycaemia for each adult during run-in (safety system on) and endpoint (safety 
system and CBR on). The diameter of each circle is proportional to the percentage of time that the 

patient spent with a low glucose value (red circles for run-in; black circles for end-point).  
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4.5 Quality of Life Outcomes 

Quality of life outcomes for both MDI and CSII participants using the complete 

PEPPER system were analysed using the PAID, DQOL and DTSQ questionnaires 

(Table 4.6). No difference in psychosocial outcome measures were observed.  

 

Quality of Life 
questionnaire 

Baseline score 
(n=6) 

Endpoint score 
(n=6) 

P-value 

PAID 32.5 (23.1-38.75) 26.3 (17.2-32.8) 0.47 

DQOL – total 2.5 (2.3-2.5) 2.2 (2.0-2.3) 0.07 

DTSQ 30.5 (28.0-31.5) 31.0 (29.8-32.8) 0.27 

Table 4.6: Psychosocial outcomes using the complete PEPPER system  

Data combined for MDI and CSII users and presented as median (IQR). Abbreviations: PAID, 
problem areas in diabetes (scored out of 100 with higher scores indicating distress); DQOL, 
diabetes quality of life (based on Likert 5-point scale from 1 to 5 with high scores indicate 
dissatisfaction, frequent impact, or frequent worry). DTSQ, diabetes treatment satisfaction 

questionnaire (scored out of 36 indicating very satisfied). 

 

 

4.6 Discussion  

This feasibility study optimised the adaptive bolus calculator (i.e. CBR algorithm) 

in participants with T1D using both MDI and CSII. Whilst no statistically 

significant differences in clinical outcomes were observed due to small participant 

numbers, no serious adverse events occurred during the study period, and was 

therefore deemed safe and feasible.  

 

During this phase, there were multiple issues associated with the integration of the 

CBR within the online clinician platform to enable case revision. Several bugs and 
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errors were fixed within the CBR code. As a result of this, ICL participants on the 

study were held till these issues were addressed. The completion date for ICL was 

18th December 2018, whilst participants in Spain were completed by 7th May 2018. 

As a result, none of the data collected from IDIBGI during this phase had a 

functioning adaptive insulin recommender, and therefore data from IDIBGI have 

not been included in the analysis (n=8).  

 

The overall results were limited by small numbers and a short duration for running 

the CBR algorithm. For the MDI participants, this was only 2 weeks due to 

technical issues, meanwhile for CSII participants this was 6 weeks but in only 2 

participants. This is likely to explain the lack of significance observed for 

glycaemic outcomes, as well as quality of life. Initial in-silico data showed that the 

time in glycaemic range increases over days with the CBR, and finally converges 

around a value after two weeks (285). However, in real world clinical studies, the 

duration of CBR required to facilitate glycaemic improvements is likely to be 

different due to the variability experienced by people, which cannot be mimicked 

by in-silico data. Furthermore, not all cases were clinically accepted for CBR 

revision, and due to the use of multiple parameters, this may result in a longer time 

required to populate the case base to achieve maximum time in range.  

 

In the case of the one MDI participant where no cases were accepted, this was due 

to low carbohydrate intake at mealtimes. Consequently, the error margin in the 

revised adaptation is too large. Future recruitment aimed to exclude participants if 

carbohydrate intake was significantly low (<20g) at each meal.  
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Most users followed the bolus advice provided by the PEPPER system, however it 

was noted that 1 participant only accepted 44% of the bolus recommendations 

(P_002). Participants had been advised to reject the bolus advise if they felt the 

recommendation was too aggressive or little. Future goals were to support 

participants to trust the advice as much as possible.  

 

During this phase, there were a number of design choices relating to the adaptive 

bolus calculator and its interplay within the PEPPER system. The further challenge 

with assessing the adaptive bolus calculator component within PEPPER, is that 

part of the effect in glycaemic outcomes may be resultant from the safety system 

component. In addition to the predictive alarms for hypoglycaemia and 

personalised carbohydrate recommendations, the dynamic bolus insulin constraint 

(DBIC) module, eliminates potentially dangerous insulin boluses that could be 

recommended to the user. Based on initial review of the constraints made on the 

insulin recommender, the engineering team believed it would be appropriate to 

relax these constraints to enable the CBR to adapt more effectively. The limits of 

ICR and ISF constraints were changed from ±25% to ±30%. This change was 

integrated into the next phase of the clinical trial. 

 

Additional learning from Phase 2 was to change the learning rate within the 

algorithm (from α=0.1 to α=0.3) to enhance greater adaptation to insulin dose 

recommendations. This has been incorporated into the final study prototype for 

Phase 3. The convergence time to optimise the time in range achieved within a 

period of time (i.e. number of days) can be adjusted with the learning rate of the 
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revise step. However, there is a trade-off between the convergence time and the 

variability around the optimal after convergence (285). 

 

Another issue that required addressing was that exercise did not appear to be 

correctly accounted for in the system, therefore activity levels corresponding to an 

individual’s step count (low, mild and intense) were modified prior to Phase 3 of 

the study. Another software functional issue uncovered was that of changing time-

zones between the mobile app and the servers. This was most notable when 

entering British Summer Time (BST) and/or Greenwich Mean Time (GMT) zones. 

This impacted the bolus advice, as an hour delay shifted the postprandial window. 

This issue was also addressed for the final study prototype. 

 

Table 4.7 summarises key changes in development of the PEPPER software 

application during Phase 2 and in preparation for the next clinical phase.   

 

Software version Issues 

V1.8.0 

 

• CBR overhaul to fix values of 0.0 for “icrreuse”  
• 3 new CBR jars released 
• Various logic changes in the handset 
• Creation, update, storage and syncing of the PepperCase object 
• Correct CaseBase now obtained from the server 
• Reinitialised the postprandial phase object and the CaseBase correctly if the app is 

restarted 
• Changed “Nonaerobic” to “Anaerobic” for on-screen use 
• Low glucose suspend duration increased to 90 minutes 
• Fixed crash on the Safety System Settings screen when pressing “Save” button 
• Low glucose suspension fixed to handle an error communicating with the pump 

V1.8.1 • Fixed issues with “NaN” returning from the CBR. (Occurred when a participant 
introduced cases with values of hormone cycle/fever/ digestive illness for the first time 
when there were no cases with these parameters in the case base yet) 

• New Safety System module with hyper alerts disabled  

V1.8.2  • Device failure to wake up for alerts/alarms (both Nexus and Cellnovo handset) 
• RtCGM calibration does not overwrite previous readings anymore, so the minimum 

postprandial phase glucose reading should be correct 
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V2.0.0 

 

Prototype 2 

• Graphics and icons updated (Home screen page, settings, event logs, screen for pump).  
Screen colours optimised for PEPPER handset. Charts added with scroll view to Home 
Page. Consistency applied to basal, bolus, carbohydrates and activity charts to ensure 
same height 

• Clearer graphics for user basal profiles (most notably, the appearance when a temporary 
basal is running) 

• Extra notifications and pop-ups for users to provide clarity on pump functioning: (i.e. 
“Pump found” when connecting, “Bolus stopped” on completion of bolus screen) 

• Duplicate Mute Alerts and Flight Mode checkboxes removed; update on 
enabling/disabling flight mode 

• Statistics screen updated with improvements in graph (times were wrong and trace line 
made thinner). Minimum and maximum values coded 

• Estimated HbA1c and number of hypo/ hyperglycaemic episodes removed (not working 
accurately) 

• Blood glucose circle shows “Low” or “High” when the last reading is < 2.2mmol/l (40 
mg/dL) or > 22.2mmol/l (400 mg/dL); i.e. outside the bounds of detected rtCGM glucose 

• Display of forecasted glucose values added as a green line on the home page screen 
• Pump button displays an icon with the temp basal percentage if the pump is 

partially/fully suspended or if the user has started a temp basal 
• Getting a glucose reading from the Bluetooth meter automatically calibrates the rtCGM 

readings 
• Ability to get a reading from the Bluetooth glucose meter on the Get Advice screen (click 

the + button next to the glucose reading and click the “Get From BGM” button on the 
popup). 

• New “Low Glucose Suspend” event log item 

V2.0.1 

 

• Fixed vibrate setting for alarms/alerts 
• Glucose reading timestamp on the recommendation screen corrected for all inputs  
• Menu button fixed on “Insulin” screen for CSII version 
• Home screen pump button now displays information for all temporary basal, not just low 

glucose suspension 
• Safety system rtCGM reading timestamps fixed (multiple readings with same timestamp 

occurring previously) 
• Separate “Add Bolus” page for recording additional insulin doses, - warning message 

playing saying that it does not go to the pump. (This is done on the “Get Bolus Advice” 
page) 

• Basal injections appear in the “Event Log” in the MDI version 
• Notes timestamps were displayed with system time, now it’s user-time 
• “Reused cases” added to the PepperCase object so that the PEPPER clinical platform 

can display the correct information for each case 
• Updated the clinical platform with aborted bolus information 
• Updated the clinical platform with temporary basal information 

V2.0.2 • New Safety System  
• Notes timestamp corrected 
• All notification pop-ups translated for Spanish 
• “Carbohydrate Event Log” item now displays the carbohydrate value in Spanish; 

previously missing 
• Safety System rtCGM readings given the correct timestamp; avoids multiple readings 

with the same timestamp 

V2.0.3 

V2.0.4 

• PepperCase sent to the server after device, or app, is restarted and the postprandial phase 
end time elapsed whilst the device/app was not running. 

• Minor changes made to the activity monitor screen; but no noticeable differences to the 
user 

• Home screen basal insulin chart total would sometimes show 0 units even with a valid 
profile running on pump – fixed 
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Table 4.7: Changelog for the software during Phase 2 and prior to Phase 3 

Abbreviations: BGM, blood glucose monitoring; CBR, case-based reasoning; CSII, continuous 
subcutaneous insulin infusion; ICR, insulin to carbohydrate ratio; ISF, insulin sensitivity factor; 

NaN, “not a number”; MDI, multiple daily injections; rtCGM, real-time continuous glucose 
monitoring 

 

 

4.7 Conclusion 

This feasibility study demonstrated proof of concept, safety and feasibility of the 

combine PEPPER safety system and adaptive bolus calculator in MDI and CSII 

participants with T1D. The advantage of the PEPPER insulin recommender is its 

ability to adapt its advisory function over time, making it dynamic and 

personalised. Despite the technological challenges, the system has been further 

optimised through iterative development. Further work in the form of evaluation is 

V2.0.5 • Fixed multiple Safety System syncs for Spanish MDI participants 
• New Safety System, 12th December 2018 
• Fixed CBR failure to provide a recommendation when it does not have a case base 

because the handset was not able to download it from the server due to no data 
connection. (i.e. 0 unit recommendations) 

V2.0.6 • Fixed missing (ghost) bolus issue (i.e. boluses which were not being recorded on the 
handset/event log despite the participant getting the insulin). Occurred when participants 
requested bolus advise and turned off screen; rather than pressing “ok” to confirm. – 
Issue fixed. 

• Implemented a warning dialogue displayed if the patient rejects a recommendation and 
enters a bolus value greater than, or equal to, the Max Bolus Setting 

V2.0.7 

 

(Final version) 

• The following are the finalised version:  
For standard rtCGM – xDrip+ alerts to produce alerts/alarms based upon its own 
thresholds. 
- Hyperglycaemia = alert. The volume profile can be set in xDrip+ to 

High/Med/Low/Vibrate or Silent. 
- Hypoglycaemia = alarm. The alert is audible and cannot be adjusted (xDrip+ default 

behaviour and logically safest).  
• During run-in/Control, the PEPPER safety system is off – xDrip+ has hyper- and 

hypoglycaemia limits set within xDrip+, and the volume level set as required by the 
clinician/ user. Participants thereafter have minimal interaction with xDrip+ beyond this 
set up (other than calibrations and volume changes). Alerts can be snoozed and or 
silenced from the xDrip+ settings 

• During PEPPER use with the safety system on – xDrip+ should have the volume profile 
set to silent. Hence no alarms/alerts formally triggered from xDrip+ during the PEPPER 
phase, and all alarms/alerts come from within the PEPPER safety system. 



A D A P T I V E  BO L U S  C A L C UL A T O R S  

P  A V A R I   165  

required and a powered, randomised controlled trial over 8 months assessed 

whether the PEPPER system is superior to a nonadaptive bolus calculator. 
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5 Phase 3: Clinical 

Evaluation of the 

PEPPER System 

5.1 Introduction and Aims 

Safety and feasibility of the PEPPER system has been demonstrated for people 

with T1D using MDI and CSII (Chapters 3 and 4). In addition, the safety system 

demonstrated potential to reduce percentage time in hypoglycaemia for CSII and 

MDI users.  

 

During the earlier feasibility studies, the system has been optimised and developed 

for use. Some of the integral changes include an increase in the learning rate of the 

algorithm (from α=0.1 to α=0.3) to enhance greater adaptation to insulin dose 

recommendations. Furthermore, the dynamic bolus insulin constraints were 

relaxed to enable the CBR component to greater adapt its insulin dose 

recommendations.  
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The aim of the work presented in this chapter was to assesses the efficacy and 

safety of the complete PEPPER system compared to standard therapy (standard 

bolus advisor and standard rtCGM).   

 

The hypothesis of this phase was that the complete PEPPER system is effective 

and safe for use in people with TID using MDI and CSII therapy.  

 

Results shared in this thesis chapter are currently under review with the journal 

Diabetes Technology and Therapeutics. I wrote the data analysis plan and analysed 

the data for both clinical sites, as well as wrote the first draft of the submitted 

manuscript (on which I am joint first author).  

 

 

5.2 Methodology 

5.2.1 Study design and recruitment 

Phase 3 of the PEPPER project was an 8 month prospective, randomised, multi-

centre, cross-over study designed to assess the safety and efficacy of the PEPPER 

system. This included the AI-derived adaptive bolus advisor (based on CBR) 

alongside the safety system.  The trial was conducted at two clinical sites; Imperial 

College London (UK) and IDIBGI (Spain). The study protocol was approved by 

the NHS Research Ethics Committee, UK and the Spanish Agency for Medicines 

and Healthcare Products in Spain. All individuals who participated in the study 

provided written informed consent at time of recruitment. 
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Potential participants were identified and recruited from the investigator’s 

established population in diabetes clinics at each respective site, or from interested 

participants who contacted the research team through the NIHR Research 

Gateway. 

 

5.2.2 Participants 

The study recruited adult participants with T1D using an intensified MDI regimen 

or CSII therapy. Key inclusion criteria included: aged ≥18 years of age; T1D using 

MDI or CSII therapy for >6 months; HbA1c between 48 - 86 mmol/mol; good 

hypoglycaemia awareness. In addition, all participants were required to be able to 

adjust meal insulin doses based on CHO content of the meal, and had to have 

completed a structured diabetes education programme (either in a group or 1:1 

sessions). 

 

Key exclusion criteria included having an episode of DKA or severe 

hypoglycaemia requiring third-party assistance within the last 6 months, use of 

regular paracetamol, were pregnant or intending pregnancy, breastfeeding, had 

active malignancy or endocrinopathy, liver cirrhosis or abnormal renal function, or 

had a macrovascular complication within the past year.  

 

5.2.3 Procedures and visit schedule 

A detailed description of the study visits is outlined below and summarised in 

Figure 5.1. All UK-based study visits took place face-to-face at the Imperial 

Clinical Research Facility. Participant accounts on the online clinical PEPPER 
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portal were created in advance of the study visit by myself. Each anonymised 

participant account was paired with a handset and pump serial code, with details 

sent to Cellnovo for linkage on their server in advance of study visits. 

 

Visit 1: Consent, training and study enrolment 

The first study visit entailed an enrolment session, where individuals confirmed 

their eligibility based on the above inclusion/ exclusion criteria. Written informed 

consent was recorded and demographic information collated alongside relevant 

medical and drug history. Participants were required to provide a urine sample for 

analysis and their height and weight measurements, alongside an ECG. The 

following laboratory tests were performed: full blood count, HbA1c and 

biochemistry panel with lipids. Pregnancy testing for women of child-bearing age 

was performed on the urine sample provided. Validated study questionnaires 

(DTSQs, PAID and DQOL) were also completed. 

 

All participants were provided with the PEPPER study handset and completed an 

initial 4-week run-in period using rtCGM (Dexcom G5), an activity monitor 

(MiBand) and a standard bolus calculator to familiarise themselves with the 

equipment. The standard bolus calculator was integrated into the PEPPER handset. 

As per manufacturing instructions, the Dexcom G5 sensor change was performed 

every 7 days, or earlier in the case of sensor failure. Study participants were 

required to calibrate once every 12 hours, or check their capillary glucose in the 

event of sensor failure, symptoms of hypo- or hyperglycaemia, or if the sensor 

glucose was out of the desired range (3.9 mmol/l - 13.3 mmol/l).  
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Participants using CSII (insulin pump therapy) were required to use the Cellnovo 

pump for the duration of the study and were trained on how to use it. The 

differences between their home pump and the Cellnovo pump were outlined, 

including fundamental features such as calculation of IOB and correction boluses. 

Additional points of discussion included: site initiation, setting up the pump, 

cartridge/priming procedures, navigation through menus and bolus procedures 

including stopping a bolus. User manuals for the PEPPER handset and the 

Cellnovo insulin pump were supplied.  

 

Participants were informed to obtain bolus advice (via the standard bolus 

calculator) using the PEPPER handset, as well as use it for any dose correction or 

additional carbohydrate intake. 

 

Target blood glucose levels as part of the CBR algorithm settings were 

standardised to 5.5 mmol/l, however this target could subsequently be 

individualised if deemed required by the clinician. Alert thresholds were 

standardised at 4.4 mmol/l for hypoglycaemia and 14.0 mmol/l for 

hyperglycaemia. These could subsequently be altered by the individual if required. 

Hypoglycaemia alarms were hard-coded at 3.9 mmol/l due to safety reasons.  

 

Each session lasted approximately 4-6 hours. For clinical and technical support, 

participants were able to contact the study team during visits. Where necessary, 

glucose data could be reviewed remotely by the PEPPER clinical team. 
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Visit 2: randomisation 

At visit 2, a selection technique was applied to enrolled participants (utilising the 

online randomisation tool; www.sealedenvelope.com) to randomise participants in 

a 1:1 ratio to PEPPER/Control or Control/PEPPER. The groups were stratified by 

insulin delivery modality i.e. CSII or MDI. Randomisation was done independently 

at each site. 

 

Participants in the intervention PEPPER group had algorithms activated on the 

PEPPER clinical server remotely. For participants in the control group, the 

standard bolus calculator was integrated into the PEPPER handset, which had the 

CBR algorithm disabled. The PEPPER safety system was also switched off, but 

standard rtCGM alarms remained active through xDrip+ (283,284). 

 

Visit 3: Review 

Technical issues reported by participants were reviewed at the visit, and 

adjustments to basal rates were made if necessary.  

 

Visit 4: end of first intervention period 

Once 3 months in the intervention phase were completed, each group went through 

3-4 weeks of wash-out period. During this time, participants reverted to their 

standard therapy. For participants completing the PEPPER group first, they were 

not aware of their ICR and ISF values from the adaptive PEPPER algorithm, and 

therefore reverted back to their initial parameters from the run-in period. 
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Venous bloods were obtained (non-fasting) for HbA1c levels, weight and basal 

insulin requirements were documented, and study questionnaires completed.  

 

Visit 5-7: start of second intervention period  

The same protocol structure applied for Visits 5-7, as they did for Visits 2-4. 

Participants were crossed over from Control/PEPPER to PEPPER/Control, or vice-

versa. For participants starting in the PEPPER intervention arm second, the CBR 

system was initialised at Visit 5. Thus, for each participant, the case-base was built 

up over the intervention period of 12 weeks only. 

 

At the end of the study (i.e. visit 7 at the end of 8 months), repeat venous blood 

tests were undertaken to obtain participants’ most recent HbA1c. Weight and basal 

insulin requirements were recorded, and psychological questionnaires similar to 

that at baseline and visit 4 were completed. Study equipment was returned, and 

individuals resumed back to their standard care.  
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Figure 5.1: Summary of Phase 3 study visit attendances 

Abbreviations: BP, blood pressure; ECG, electrocardiogram; CGM, continuous glucose 
monitoring 

 

• Medical history
• BP, weight, ECG, bloods and urine tests
• CGM sensor insertion
• Psychological questionnaires
• Instructions on how to use the system 

Visit 1: 
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(4-5 hours)

• CGM data review
• Adaptive Bolus Advisor and safety system 

switched on if allocated to PEPPER
• Instructions on how to use the system 
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Start of first 

intervention period
(1.5 hours)

• CGM data review
• Review any technical difficulties

Visit 3: 
Review
(1 hour) 

• CGM data review
• Switch off PEPPER system
• Revert back to usual treatment
• Psychological questionnaires

Visit 4: 
End of first 

intervention period
(1 hour) 

• Switch to second intervention phase
• Adaptive Bolus Advisor  and safety 

system switched on if allocated to 
PEPPER

Visit 5: 
Start of second 

intervention period 
(1 hour)

• CGM data review
• Switch off PEPPER system
• Review any technical difficulties

Visit 6: 
Review
(1 hour)

• CGM data review
• Switch off PEPPER system
• Revert back to usual treatment
• Psychological questionnaires

Visit 7: 
End of second 

intervention period 
(1 hour)

RANDOMIZED

WASHOUT

END OF STUDY
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5.2.4 PEPPER cased-base revision 

Whilst the algorithm was running, the study participants were provided with real-

time adaptive insulin dosing at mealtimes. All glucose data was automatically 

uploaded from the PEPPER handset to the secure PEPPER webserver. The case 

base was reviewed through a semi-automated process completed remotely by 

clinicians twice weekly during the intervention period (PEPPER with CBR). The 

criteria used by clinicians for revision of the CBR cases are outlined in Section 

2.4.6. 

 

5.2.5 Study outcomes 

A comprehensive data analysis plan was written by me for the PEPPER study 

group and has been included in Appendix 2. 

 

For Phase 3, the primary outcome was percentage time in range (3.9 – 10.0mmol/l) 

between the PEPPER intervention arm (safety system with adaptive bolus advise), 

and the control arm. Endpoint assessment was not blind to the study intervention 

arm allocated.  

 

Secondary outcomes include assessments of the variables listed below:  

• Percentage time in hypoglycaemia (< 3.9 mmol/l and <3.3 mmol/l)  

• Percentage time spent in hyperglycaemia (> 10.0 mmol/l) 

• Number of episodes of serious hypoglycaemia (defined as a sensor glucose < 

3.0 mmol/L (55 mg/dl) for > 20 min) 

• Episodes of hypoglycaemia within 5-hours post-prandially  
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• Postprandial mean area under the curve (AUC) at 5 hours 

• Glycaemic risk and variability measures 

• HbA1c 

• Change in weight (kg) 

• Basal insulin dose requirements 

• Psychosocial outcomes (PAID, DQOL and DTSQs Questionnaires) 

• Safety system outcomes: number of low and high glucose alarms, alerts, 

carbohydrate recommendations, and predictive low glucose suspend 

• CBR outcomes: number of CBR revision cases, number of bolus 

recommendations accepted by user, and usage of the case parameters 

 

5.2.6 Statistical analysis 

Glycaemic outcome measures were analysed at baseline and from each 

intervention period, using data from the last 28 days.  Changes from baseline 

between groups were assessed. The primary analysis was conducted using the 

intention-to-treat (ITT) principle, with further analysis completed with the per-

protocol population. The per-protocol population consisted of participants who 

completed the study without any significant deviation from the planned protocol 

procedures. Additional sub-analyses were conducted to evaluate differences in 

glycaemia between day (07.00 – 23.00hrs) vs night (23.00 – 07.00hrs), as well as 

pump and MDI users, and by site of recruitment (UK vs Spain).  
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Glycaemic variability  

Measures of GV were computed using EasyGV (v10.0) software (297). Evaluated 

GV measures included SD, CV, MAGE, CONGA, MODD, LI, MAG, GVP, PGS, 

M-Value, IGC, RI, GRADE, M-value, ADRR, J-Index, HBGI and LBGI.  GRADE 

score is also reported as %GRADEhypoglycaemia, %GRADEeuglycaemia, and 

%GRADEhyperglycaemia representing percentages of GRADE scores attributable 

to glucose values <3.9 mmol/l (<70 mg/dL), and between 3.9–7.8 mmol/l (70-140 

mg/dL) and >7.8 mmol/l (>140 mg/dL) respectively.  

 

Safety system 

Safety system measures were reported for the PEPPER and control groups. Whilst 

the safety system was not enabled in the control group, the algorithm was running 

in the background to allow comparisons to be made. Data from the run-in period 

for the safety system was not used in the analysis because the safety system was 

optimised using the run-in data itself.  

 

Statistical considerations 

The data were tested for normal distribution using normal distribution quantile 

plots and the Shapiro-Wilk test of normality. The result of the Shapiro-Wilk test 

for %TIR 3.9-10.0mmol/l was p < 0.05, indicating that the data were not normally 

distributed. The Wilcoxon Rank Sum test was used to test differences between 

groups in the ITT analysis. For the per-protocol analysis, the Wilcoxon matched-

pairs signed-rank was used for analysis for differences between each of the arms. 

Where appropriate the nonparametric Spearman rank tests (rs) was performed for 

correlation.  
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Data have been presented as medians (IQR), unless otherwise stated. Statistical 

tests were performed using Stata version 15 (StataCorp, College Station, Texas) 

and the results considered statistically significant if p < 0.05 (two-tailed).  

 

The secondary outcomes of the study were not powered to detect statistical 

differences between groups. 

 

 

5.3 Results 

5.3.1 Baseline demographics 

Of the 60 participants screened for the study, 58 participants were enrolled between 

November 2018 and March 2019. In total, 54 participants completed the run-in 

period (3 declined to participate and 1 did not meet inclusion criteria due to high 

HbA1c), thus making up the ITT study population (Figure 5.2; UK = 28 

participants; Spain = 26 participants). Participants were median (IQR) aged 41.5 

(32.3-49.8) years, with HbA1c of 61.0 (58.0-66.1) mmol/mol, and had a diabetes 

duration of 21.0 (11.5–26.3) years. Median BMI was 26.0 (23.8-29.2) kg/m2. 

Twenty-eight participants (51.8%) used an insulin pump and twenty-six 

participants (48.1%) were male. All participants had intact awareness of 

hypoglycaemia. Table 5.1 summarises the baseline characteristics of the 

participants. No differences were observed between the intervention groups at 

baseline.  
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Following the run-in period, an additional 4 participants declined to participate 

during the first intervention phase. Fifty participants were randomised to PEPPER 

(n=24) or Control (n=26). Four participants then withdrew (PEPPER (n=2) and 

Control (n=2)) and 1 was withdrawn due to a serious adverse event. Thus, the first 

crossover phase was completed by 45 participants (22 PEPPER, 23 Control).  

 

Subsequently, 10 participants were withdrawn after the first intervention phase due 

to loss of Cellnovo device support (PEPPER (n=5) and Control (n=5)). A further 

participant was withdrawn due to a serious adverse event. In total, 17 participants 

crossed-over to the PEPPER and Control arms each. All (n=34) completed the 

second intervention phase. In total, for the ITT, 39 participants allocated to 

PEPPER and 40 allocated to Control completed the intervention.  

 

For the per-protocol analysis, 1 participant was excluded for not using the PEPPER 

adaptive bolus advisor (n=1). Both intervention phases were fully completed, with 

the PEPPER adaptive insulin recommender system used, by 33 participants, 

making up the pre-protocol analysis. The flow diagram (Figure 5.2) summarises 

recruitment and withdrawals.  
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Figure 5.2: Consort flow diagram 

The ITT study population included 54 participants completing the run-in period.  For the PPP 
analysis, 33 participants were included. Reasons for exclusion from the PPP analysis include 

participants declining to participate (n=8), Cellnovo withdrawal from market resulting in early 
study termination (n=10), SAE (n=2), study completion without use of PEPPER adaptive bolus 

advisor (n=1). Abbreviations: ITT, intention-to-treat; PPP, per protocol population; SAE; serious 
adverse event 

Consented (n=60)

Withdrawn (n= 4)
• Not meeting inclusion criteria (n= 1)
• Declined to participate (n= 3)

Allocated to CONTROL (n= 17)
• Received allocated intervention (n= 17)

Allocated to PEPPER (n= 24)
• Completed allocated intervention (n= 22)
• Withdrawn from study (n=2). Reasons: 

- participant opted to withdraw (n=2) 

21-28 day washout period

Allocated to PEPPER (n= 17)
• Received allocated intervention (n=17 )

First 
intervention 

period

ITT Analysis

Washout

Randomized (n= 50)

Enrollment

Intention-to-treat (ITT) analysis: 
(Run-in n= 54; PEPPER n= 39; Control = 40)

Allocated to CONTROL (n= 26)
• Completed allocated intervention (n= 23)
• Withdrawn from study (n=4). Reasons: 

- participant opted to withdraw (n=2) 
- SAE, but completed intervention (n=1)
- SAE (n=1)

Second  
intervention 

period

Withdrawn (n= 10)
• Cellnovo administration (lack of  

pump supplies) 

Enrolled in RUN-IN (n= 58)

RUN-IN completed 
(n= 54)

Withdrawn (n= 4)
• Declined to participate (n= 4)

Per-protocol population (PPP) analysis: (n= 33) 

Excluded (n= 1)
• Did not use adaptive insulin 

recommender

PPP Analysis

Withdrawn (n= 2)
• Not meeting inclusion criteria (n= 1)
• Declined to participate (n= 1)
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Demographics 
 

ITT cohort 
(n=54) 

PEPPER/Control 
(n=24) 

Control/PEPPER 
(n=26) 

Gender (female) 28 (51.8%) 13 (54%) 13 (50.0%) 

Age (years) 41.5 (32.3-49.8) 42.0 (37.8-48.0) 41.0 (32.8-49.8) 

BMI (kg/m2) 
Height (cm) 
Weight (kg) 

26.0 (23.8-29.2) 
169.0 (162.4-177.4) 

72.9 (65.1-86.2) 

26.3 (23.9-28.0) 
169.3 (161.5-174.0) 

71.6 (64.9-83.0) 

25.8 (23.2-29.9) 
170.0 (163.1-178.3) 

74.2 (66.0-86.2) 

Duration of diabetes (years) 21.0 (11.5-26.0) 22.0 (13.0-27.5) 17.5 (11.0-24.0) 

Hypoglycaemia awareness (i.e. 
Gold/Clarke score <4) 

54 (100%) 24 (100%) 26 (100%) 

CSII: MDI users 28:26 11:13 13:13 

Baseline use of rtCGM 
CSII user  
MDI user 

 
3 (5.6%) 
1 (1.9%) 

 
1 (4.2%) 
0 (0.0%) 

 
2 (7.7%) 
1 (3.8%) 

Baseline use of Freestyle Libre 4 (7.4%) 2 (8.3%) 2 (7.7%) 
HbA1c (mmol/mol) 
HbA1c (%) 

61.0 (58.0-66.1) 
7.7 (7.5-8.2) 

61.0 (58.8-67.1) 
7.7 (7.5-8.3) 

59.3 (56.0-66.0) 
7.6 (7.3-8.2) 

Participants with previous DKA  10 (18.5%) 6 (25.0%) 4 (15.4%) 

Participants with previous severe 
hypoglycaemia episode 

11 (18.5%) 5 (20.8%) 4 (15.4%) 

TSH (mU/L) 1.7 (1.1-2.3) 1.8 (1.2-2.3) 1.7 (1.2-2.3) 

Total cholesterol (mg/dl) 
Total cholesterol (mmol/l) 

172 (158-194) 
4.4 (4.1-5.0) 

174 (159-200) 
4.7 (4.4-5.4) 

171 (151-190) 
4.5 (4.2-5.0) 

Table 5.1: Baseline demographics for ITT population 

The PEPPER/Control group started with the PEPPER intervention and Control/PEPPER started 
with Control. Results are expressed as median (IQR)/ n (%). BMI, body mass index; DKA, 

diabetic ketoacidosis; TSH, thyroid stimulating hormone. 

 

5.3.2 Glycaemic outcomes  

For the primary outcome, no significant differences were observed in glycaemia 

%TIR 3.9-10.0 mmol/l between the PEPPER system compared to Control ((62.5 

(52.1-67.8)% vs 58.4 (49.6-64.3)% respectively; p=0.27; Table 5.2). For % time in 

hyperglycaemia for thresholds >10.0 mmol/l (PEPPER 35.2 (29.8-43.9)% vs 

Control 38.6 (30.6-48.0)%; p=0.40) and >15 mmol/l (PEPPER 4.5 (2.2-7.5)% vs 
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Control 4.9 (2.7-9.4)%; p=0.50) no significance was observed. Similarly, for all 

ranges of % time in hypoglycaemia, there were no significant differences.  

 

The per-protocol analysis findings were similar to that of the ITT cohort (Table 

5.3). No significant difference in %TIR was observed with the PEPPER system 

+4.2 (-4.9 to 10.4) compared to Control +1.2 (-7.2 to 7.3), p=0.10. Similarly, % 

times in hypoglycaemia and hyperglycaemia did not reach statistical significance.  

 

Within the sub-analysis stratified by insulin delivery modality, participants using 

CSII therapy with the PEPPER system achieved a greater increase in %TIR 

compared to those on MDI, albeit significance between groups was not achieved 

(p=0.46). For analysis by day and night (Table 5.5) and when stratified by country 

of recruitment (UK vs Spain) no significant differences were observed (Table 5.6). 

Furthermore, the predictive low glucose suspend with PEPPER was not associated 

with improved nocturnal hypoglycaemia for CSII users. Nocturnal %TIR 3.9-10.0 

mmol/l with the PEPPER intervention was 60.8% (49.8 – 65.4) % vs Control 

55.6% (45.3 – 67.6) % (p=0.66).  
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Table 5.2: Intention-to-treat pooled analysis of glycaemic outcomes 

 

 RUN-IN 
(n=54) 

 

CONTROL 
(n=40) 

PEPPER 
(n=39) 

P-value 
(PEPPER vs 
CONTROL) 

PRIMARY ENDPOINT 
% time in range  

3.9-10mmol/l (70 -180mg/dL) 
 

55.0 (46.4-65.6) 
 

58.4 (49.6-64.3) 
 

62.5 (52.1-67.8) 
 

0.27 

SECONDARY ENDPOINTS 
% time in euglycaemia  

3.9-7.8mmol/l (70 -140mg/dL) 
 

30.5 (23.9-39.9) 
 

34.0 (24.0-40.1) 
 

34.7 (28.7-38.9) 
 

0.70 

% time in hypoglycaemia 
<3.9mmol/l (<70mg/dL) 
<3.3mmol/l (<60mg/dL) 
<3.0mmol/l (<54mg/dL) 

 
2.7 (1.6-5.5) 
1.4 (0.7-3.0) 
1.0 (0.4-1.9) 

 
2.3 (1.1-6.4) 
0.8 (0.4-3.3) 
0.4 (0.1-2.0) 

 
2.2 (1.5-3.3) 
0.8 (0.5-1.8) 
0.4 (0.2-1.1) 

 
0.64 
0.69 
0.84 

% time in hyperglycaemia 
>10mmol/l (>180mg/dL) 
>15mmol/l (>270mg/dL) 

 

 
42.8 (30.1-49.3) 

6.8 (3.0-12.6) 

 
38.6 (30.6-48.0) 

4.9 (2.7-9.4) 

 
35.2 (29.8-43.9) 

4.5 (2.2-7.5) 

 
0.40 
0.50 

Glycaemic variability measures 
Mean 

Standard deviation 
CV (%) 

CONGA 
LI 

JINDEX 
LBGI 
HBGI 

GRADE 
GRADE - % Hypo  
GRADE - % Eugly 
GRADE - % Hyper 

MODD 
MAGE 
ADDR 

M-VALUE 
MAG 
PGS 
IGC 

GVP 
 

 
9.6 (8.6-10.3) 
3.4 (3.0-3.9) 

35.9 (33.9-39.6) 
3.8 (3.2-4.3) 
9.2 (6.7-12.0) 

55.1 (44.3-65.0) 
0.7 (0.5-1.4) 
9.0 (6.4-11.6) 
9.9 (8.1-11.7) 
3.8 (1.5-8.2) 
5.7 (3.9-7.9) 

89.9 (85.2-93.6) 
3.9 (3.4-4.5) 
7.7 (7.0-9.0) 

49.3 (43.3-57.3) 
13.3 (10.7-18.5) 

3.5 (3.1-4.5) 
19.7 (16.7-23.7) 

3.1 (2.5-4.0) 
61.1 (48.5-86.5) 

 
9.2 (8.8-10.1) 
3.3 (2.9-3.9) 

35.6 (31.8-40.7) 
3.4 (2.9-4.0) 
7.9 (5.7-10.8) 

50.9 (43.9-60.0) 
0.6 (0.4-1.5) 
8.0 (6.3-10.5) 
9.3 (7.9-11.0) 
2.1 (1.1-8.5) 
6.3 (4.0-8.6) 

88.5 (84.0-93.5) 
3.7 (3.2-4.2) 
7.3 (6.5-9.1) 

44.3 (41.0-53.9) 
11.8 (9.1-17.0) 
3.5 (2.8-3.8) 

18.6 (15.3-21.7) 
2.8 (2.2-3.8) 

59.9 (43.1-70.1) 

 
9.0 (8.7-9.7) 
3.1 (2.8-3.6) 

34.6 (31.6-38.0) 
3.5 (3.0-4.0) 
8.1 (5.8-10.3) 

48.6 (43.7-56.5) 
0.6 (0.4-1.0) 
7.6 (6.2-9.8) 
8.7 (7.7-10.4) 
2.3 (1.4-4.8) 
7.5 (5.0-9.3) 

89.8 (85.2-92.1) 
3.5 (3.3-4.0) 
7.3 (6.5-8.3) 

42.0 (38.6-51.6) 
10.0 (8.1-13.6) 
3.3 (2.8-4.0) 

16.2 (14.3-21.1) 
2.4 (1.9-3.0) 

55.4 (44.4-74.2) 

 
0.56 
0.40 
0.43 
0.91 
0.91 
0.42 
0.71 
0.40 
0.32 
1.00 
0.25 
0.98 
0.58 
0.56 
0.38 
0.22 
0.87 
0.18 
0.21 
0.95 

Secondary Glycaemic Outcomes 
Mean Glucose 1hr (mmol/l)   
Mean Glucose 2hr (mmol/l)   
Mean AUC (min x mmol/l)  

 
 

Mean minimum glucose (mmol/l) 
 

Number of hypo episodes 
Postprandial hypo episodes (5hr) 

 
HbA1c (mmol/mol) 

HbA1c (%) 
Weight (kg) 

Basal insulin (units) 
 

 
10.3 (9.4-11.3) 
10.4 (9.2-11.3) 
2215.9 (2024.8-

2395.9) 
 

6.8 (6.1-7.5) 
 

4.5 (2.0-7.0) 
1.0 (0.0-2.0) 

 
61.0 (57.5-66.1) 

7.7 (7.5-8.2) 
72.9 (65.1-86.2) 
21.6 (18.0-27.7) 

 
9.9 (9.2-11.6) 
9.8 (9.1-11.4) 

2081.1 (2035.5-
2413.5) 

 
6.8 (6.1-7.5) 

 
2.0 (1.0-7.0) 
1.0 (0.0-1.0) 

 
58.5 (53.0-63.4) 

7.5 (7.0-7.9) 
73.9 (64.8-84.9) 
25.9 (18.0-29.2) 

 
10.0 (9.0-10.6) 
9.9 (9.9-10.7) 

2160.8 (1970.2-
2243.5) 

 
6.7 (6.0-7.3) 

 
2.0 (1.0-4.0) 
0.0 (0.0 -1.0) 

 
58.5 (54.0-61.9) 

7.5 (7.1-7.7) 
75.0 (66.7-85.0) 
25.0 (18.5-29.2) 

 
0.79 
0.84 
0.92 

 
 

0.75 
 

0.62 
0.75 

 
0.82 

- 
0.81 
0.76 
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Glycaemic outcome measures were analysed at baseline using data from the 28-day run-in period 
and data from the last 28 days of each intervention period. Results are expressed as median (IQR). 

Abbreviations: CV, coefficient of variation; CONGA, continuous overlapping net glycaemic 
action; LI, lability index; LBGI, low blood glucose index; HBGI, high blood glucose index; 

GRADE, glycaemic risk assessment in diabetes equation; MODD, mean of daily differences; 
MAGE, mean amplitude of glycaemic excursions; MAG, mean absolute glucose change; PGS, 

personal glycaemic status; IGC, index of glycaemic control; GVP, glycaemic variability 
percentage; AUC, area under the curve. 
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Run-in (Baseline)  

 
Control 

 
PEPPER 

Median change from baseline to endpoint 

∆ Control ∆ PEPPER P-value 
 

PRIMARY OUTCOME 

% time in range  
3.9-10mmol/l (70 -180mg/dL) 

 
55.1 (49.0-66.9) 

 
58.9 (50.9-64.3) 

 
62.5 (52.3-68.7) 

 
+1.2 (-7.2 to 7.3) 

 
+4.2 (-4.9 to 10.4) 

 
0.10 

SECONDARY OUTCOMES 
% time in euglycaemia  

3.9-7.8mmol/l (70 -140mg/dL) 
 

31.7 (26.0-43.8) 
 

33.9 (24.1-39.3) 
 

35.0 (29.1-38.7) 
 

-0.4 (-7.1 to 4.4) 
 

+2.1 (-4.7 to 6.9) 
 

0.27 

% time in hypoglycaemia 
<3.9mmol/l (<70mg/dL) 
<3.0mmol/l (<54mg/dL) 

 
3.5 (1.7-5.9) 
1.1 (0.4-2.1) 

 
2.4 (1.1-6.5) 
0.4 (0.1-1.9) 

 
2.2 (1.5-3.3) 
0.4 (0.2-1.0) 

 
-0.5 (-1.9 to 0.9) 
-0.1 (-0.9 to 0.2) 

 
-0.9 (-2.4 to 0.2) 
-0.2 (-1.0 to 0.1) 

 
0.30 
0.92 

% time in hyperglycaemia 
>10mmol/l (>180mg/dL) 
>15mmol/l (>270mg/dL) 

 

 
42.3 (27.9-47.5) 

4.9 (2.8-10.3) 

 
39.1 (30.6-47.1) 

4.3 (2.6-8.9) 

 
42.3 (27.9-47.5) 

4.3 (2.2-7.3) 

 
-1.0 (-7.1 to 8.9) 
-0.7 (-2.7 to 1.6) 

 

 
-3.9 (-10.5 to 5.2) 
-0.8 (-2.8 to 0.3) 

 

 
0.33 
0.54 

Glycaemic variability measures 
Mean 

Standard deviation 
CV (%) 

CONGA 
LI 

JINDEX 
LBGI 
HBGI 

GRADE 
GRADE - %Hypo  
GRADE - %Eugly 
GRADE - %Hyper 

MODD 
ADDR 

M-VALUE 
MAG 
PGS 
IGC 

GVP 
 

 
9.6 (8.5-10.0) 
3.3 (3.0-3.9) 

35.6 (33.8-40.3) 
3.8 (3.4-4.3) 
9.5 (7.5-12.0) 

52.7 (42.7-60.5) 
0.9 (0.5-1.6) 
8.7 (6.0-10.8) 
9.5 (7.7-11.4) 
4.9 (1.9-9.1) 
6.1 (4.2-8.8) 

89.3 (84.4-92.1) 
3.7 (3.3-4.2) 

49.6 (43.1-57.0) 
11.8 (10.2-16.0) 

3.6 (3.3-4.7) 
19.3 (17.2-24.0) 

2.9 (2.5-3.9) 
63.3 (55.6-88.3) 

 
9.3 (8.7-10.0) 
3.2 (2.9-3.6) 

34.9 (31.2-40.2) 
3.3 (2.9-4.0) 
7.0 (5.6-10.1) 

50.0 (43.8-58.6) 
0.6 (0.3-1.4) 
8.0 (6.2-10.0) 
9.2 (8.0-10.6) 
2.1 (1.0-8.1) 
6.5 (4.4-8.5) 

88.6 (84.4-93.4) 
3.5 (3.2-3.9) 

43.7 (40.7-49.7) 
11.1 (8.5-15.3) 
3.2 (2.8-3.8) 

18.2 (15.3-20.8) 
2.6 (2.2-3.6) 

52.1 (42.9-69.0) 

 
9.0 (8.7-9.6) 
3.0 (2.8-3.4) 

34.5 (31.8-38.0) 
3.5 (3.0-3.9) 
8.2 (5.9-10.1) 

48.6 (44.1-55.7) 
0.6 (0.4-0.9) 
7.6 (6.2-9.4) 
8.7 (7.7-10.2) 
2.6 (1.4-4.7) 
7.5 (5.1-9.4) 

89.6 (84.0-92.2) 
3.4 (3.3-4.0) 

42.0 (39.1-50.8) 
10.0 (8.1-13.1) 
3.3 (2.9-4.0) 

16.2 (14.7-20.4) 
2.4 (2.0-2.9) 

55.4 (45.7-73.9) 

 
-0.1 (-0.7 to 0.7) 
-0.2 (-0.4 to 0.1) 
-0.5 (-3.6 to 2.1) 
-0.3 (-0.9 to 0.0) 
-1.2 (-4.4 to 0.2) 
-1.5 (-9.6 to 6.2) 
0.0 (-0.4 to 0.3) 
-0.4 (-2.7 to 1.9) 
0.0 (-1.6 to 1.1) 
-0.6 (-3.8 to 1.9) 
+0.1 (-0.9 to 1.2) 
-0.2 (-3.3 to 3.9) 
-0.1 (-0.4 to 0.1) 

-4.5 (-10.0 to -1.2) 
-0.5 (-3.5 to 2.7) 
-0.4 (-1.1 to 0.2) 
-0.9 (-4.6 to 0.8) 
-0.3 (-0.8 to 0.3) 

-9.8 (-25.1 to 5.7) 

 
-0.2 (-0.8 to 0.4) 
-0.3 (-0.4 to 0.0) 
-1.1 (-4.6 to 1.1) 
-0.2 (-0.7 to 0.1) 
-1.2 (-3.5 to 0.1) 
-3.5 (-8.5 to 3.2) 
-0.2 (-0.4 to 0.1) 
-1.1 (-2.2 to 1.1) 
-0.3 (-1.7 to 0.8) 
-1.1 (-3.8 to 0.6) 
+0.9 (-0.6 to 2.1) 
+0.1 (-2.7 to 2.5) 
-0.1 (-0.5 to 0.2) 
-6.0 (-8.7 to 0.6) 
-2.5 (-4.4 to 1.4) 
-0.3 (-0.8 to 0.2) 
-3.0 (-5.0 to -0.4) 
-0.6 (-1.1 to 0.2) 
-7.3 (-19.2 to 4.8) 

 
0.61 
0.21 
0.48 
0.06 
0.06 
0.40 
0.33 
0.40 
0.08 
0.84 
0.06 
0.81 
0.88 
0.82 
0.07 
0.47 
0.06 
0.07 
0.56 

Secondary Glycaemic Outcomes 
Postprandial mean glucose 1hr (mmol/l)    
Postprandial mean glucose 2hr (mmol/l)   

Mean AUC (min x mmol/l)  
 

 
10.2 (9.1-11.2) 
10.3 (9.0-11.3) 

2117.7 (1977.6 -2330.3) 
 

 
9.8 (8.8-11.4) 
10.3 (9.0-11.3) 

2081.1 (2004.7-2400.1) 
 

 
9.9 (8.8-10.6) 
9.9 (8.6-10.6) 

2137.6 (1923.0 -2222.3) 
 

 
-0.2 (-0.8 to 0.8) 
-0.3 (-0.7 to 0.7) 

-35.7 (-142.2 to 119.2) 
 

 
-0.1 (-0.7 to 0.5) 
-0.1 (-0.8 to 0.3) 

-58.4 (-165.3 to 72.2) 
 

 
0.74 
0.80 
0.62 
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Table 5.3: Per-protocol analysis of glycaemic outcomes (n=33) 

Participants completing both intervention phases (Control and PEPPER) were included in the per-protocol analysis. One participant was excluded for not using the 
PEPPER bolus advisor. Results are expressed as median (IQR). Abbreviations: CV, coefficient of variation; CONGA, continuous overlapping net glycaemic action; LI, 

lability index; LBGI, low blood glucose index; HBGI, high blood glucose index; GRADE, glycaemic risk assessment in diabetes equation; MODD, mean of daily 
differences; MAGE, mean amplitude of glycaemic excursions; MAG, mean absolute glucose change; PGS, personal glycaemic status; IGC, index of glycaemic control; 

GVP, glycaemic variability percentage; AUC, area under the curve. 

Mean minimum glucose (mmol/l) 
Number of hypo episodes  

Postprandial hypo episodes (5hr) 

6.7 (6.1-7.4) 
5.0 (2.0-9.0) 
1.0 (1.0-4.0) 

 

6.8 (6.2-7.6) 
2.0 (1.0-7.0) 
1.0 (0.0-1.0) 

6.7 (5.9-7.2) 
2.0 (1.0-4.0) 
0.0 (0.0-1.0) 

+0.2 (-0.6 to 0.6) 
-1.0 (-4.0 to 0.0) 
-1.0 (-2.0 to 0.0) 

-0.2 (-0.6 to 0.6) 
-0.1 (-0.3 to 0.0) 
0.0 (-0.1 to 0.1) 

0.66 
0.77 
0.57 
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 CSII MDI 

 RUN-IN 
(n=28) 

 

Control 
(n=15) 

PEPPER 
(n=14) 

P-value 
(PEPPER vs 

Control) 

RUN-IN 
(n=26) 

 

Control 
(n=25) 

PEPPER 
(n=25) 

P-value 
(PEPPER vs 

Control) 

                                PRIMARY OUTCOME 
% time in range  

3.9-10mmol/l (70 -180mg/dL) 
 

55.0 (48.5-61.6) 
 

54.7 (47.4-65.6) 
 

64.1 (53.3-66.5) 
 

0.46 
 

52.0 (44.8-66.8) 
 

60.2 (50.5-64.3) 
 

61.4 (51.7-69.6) 
 

0.46 

                                SECONDARY OUTCOMES 

% time in euglycaemia 
3.9-7.8mmol/l (70 -140mg/dL) 

 
31.8 (24.8-39.3) 

 
33.9 (25.7-40.3) 

 
34.8 (30.4-38.1) 

 
0.83 

 
28.9 (23.6-42.1) 

 
34.6 (23.8-39.3) 

 
34.4 (28.3-41.8) 

 
0.72 

% time in hypoglycaemia 
<3.9mmol/l (<70mg/dL) 
<3.3mmol/l (<60mg/dL) 
<3.0mmol/l (<54mg/dL) 

 
2.6 (1.3-3.8) 
1.3 (0.5-2.0) 
0.7 (0.2-1.4) 

 
2.2 (1.6-4.7) 
0.7 (0.5-2.3) 
0.3 (0.2-1.5) 

 
1.9 (1.1-2.5) 
0.7 (0.3-1.0) 
0.3 (0.2-0.5) 

 
0.22 
0.38 
0.54 

 
3.4 (1.7-6.0) 
1.5 (1.1-3.6) 
1.1 (0.7-2.4) 

 
2.8 (1.1-6.5) 
0.9 (0.4-3.4) 
0.5 (0.1-2.0) 

 
2.7 (1.6-4.5) 
1.0 (0.5-2.4) 
0.7 (0.3-1.8) 

 
0.84 
0.85 
0.82 

% time in hyperglycaemia 
>10mmol/l (>180mg/dL) 
>15mmol/l (>270mg/dL) 

 

 
42.3 (31.7-49.3) 

7.6 (3.7-11.0) 

 
39.2 (32.8-46.6) 

6.4 (2.5-13.7) 

 
34.0 (31.3-43.0) 

4.8 (3.0-7.5) 

 
0.51 
0.54 

 
44.4 (28.9-49.2) 

6.3 (2.8-15.4) 

 
38.0 (30.6-48.3) 

4.9 (2.7-8.9) 

 
35.2 (29.0-43.9) 

4.5 (2.2-7.3) 

 
0.54 
0.57 

Glycaemic variability 
Mean 

Standard deviation 
CV (%) 

CONGA 
LI 

JINDEX 
LBGI 
HBGI 

GRADE 
GRADE - %Hypo  
GRADE - %Eugly 
GRADE - %Hyper 

MODD 
MAGE 
ADDR 

M-VALUE 
MAG 
PGS 
IGC 

GVP 
 

HbA1c (mmol/mol) 
HbA1c (%) 

 
9.6 (8.7-10.3) 
3.5 (3.1-3.9) 

35.8 (34.7-38.8) 
3.5 (2.9-3.8) 
8.1 (5.7-9.7) 

55.1 (49.1-63.9) 
0.7 (0.4-1.1) 
9.0 (7.2-11.2) 
9.8 (8.5-11.3) 
3.3 (1.1-5.3) 
6.0 (4.1-7.8) 

91.7 (85.3-93.8) 
3.9 (3.4-4.3) 
8.1 (6.9-8.6) 

48.1 (42.1-55.1) 
13.3 (11.2-17.1) 

3.2 (2.7-3.7) 
19.1 (16.4-21.5) 

2.9 (2.4-3.7) 
54.0 (42.4-65.6) 

 
61.0 (58.2-66.1) 

7.7 (7.5-8.2) 

 
9.3 (8.8-10.0) 
3.3 (2.8-4.1) 

35.7 (31.6-40.9) 
3.4 (2.8-3.7) 
7.7 (5.1-9.2) 

51.9 (46.7-65.1) 
0.6 (0.4-1.1) 
8.3 (6.8-10.9) 
9.7 (7.9-11.6) 
2.1 (1.2-4.2) 
5.4 (3.9-9.1) 

91.0 (86.9-92.9) 
3.7 (3.1-4.5) 
7.8 (6.4-9.2) 

46.7 (36.0-54.1) 
11.1 (9.0-21.3) 
3.0 (2.5-3.6) 

18.7 (13.5-23.1) 
2.3 (1.9-4.0) 

50.8 (37.0-64.2) 
 

57.4 (54.6-61.2) 
7.4 (7.2-7.7) 

 
9.0 (8.9-9.8) 
3.1 (2.8-3.4) 

33.9 (30.4-36.7) 
3.1 (2.8-3.5) 
6.4 (5.3-7.8) 

48.3 (44.3-57.3) 
0.5 (0.4-0.7) 
7.2 (6.4-9.9) 
8.3 (7.9-10.4) 
1.7 (1.0-2.8) 
8.2 (5.3-8.9) 

89.8 (88.6-91.6) 
3.4 (3.1-3.8) 
6.8 (6.3-7.7) 

41.1 (36.9-42.8) 
9.8 (7.9-13.5) 
2.8 (2.5-3.2) 

15.5 (14.1-19.0) 
2.1 (1.8-2.7) 

45.5 (37.7-53.) 
 
58.5 (57.4-61.9) 

7.5 (7.4-7.8) 

 
0.76 
0.41 
0.19 
0.63 
0.60 
0.46 
0.32 
0.57 
0.54 
0.51 
0.46 
0.73 
0.46 
0.31 
0.46 
0.34 
0.46 
0.49 
0.38 
0.57 

 
0.29 

- 

 
9.8 (8.6-10.6) 
3.3 (3.0-4.0) 

36.2 (33.5-40.2) 
4.1 (3.6-4.6) 

11.2 (8.8-13.8) 
55.8 (43.1-70.4) 

0.9 (0.5-1.6) 
9.5 (6.1-11.9) 

10.5 (7.8-12.1) 
5.2 (2.3-9.8) 
5.4 (3.7-8.6) 

88.7 (84.6-92.4) 
3.9 (3.4-4.6) 
7.5 (7.0-9.4) 

52.8 (44.4-60.4) 
13.3 (10.3-21.7) 

4.1 (3.5-5.0) 
20.5 (17.2-24.2) 

3.3 (2.7-4.1) 
75.8 (60.9-97.6) 

 
59.8 (56.5-66.1) 

7.6 (7.4-8.2) 

 
9.0 (8.7-10.1) 
3.2 (2.9-3.6) 

35.5 (32.1-40.5) 
3.4 (3.1-4.1) 
8.2 (6.3-11.7) 

50.7 (43.8-59.7) 
0.8 (0.3-1.5) 
7.7 (6.2-10.4) 
9.1 (8.0-10.6) 
2.9 (0.8-9.8) 
7.0 (4.0-8.1) 

88.4 (80.1-94.6) 
3.7 (3.3-4.1) 
7.3 (6.7-9.0) 

44.0 (41.9-53.9) 
12.0 (9.3-14.6) 
3.7 (2.8-4.1) 

18.4 (16.5-20.8) 
2.8 (2.3-3.3) 

66.1 (45.8-76.4) 
 

58.5 (51.0-64.2) 
7.5 (6.8-8.0) 

 
9.0 (8.4-9.6) 
3.1 (2.9-3.6) 

35.2 (32.5-38.5) 
3.6 (3.3-4.3) 
8.4 (7.2-12.4) 

49.7 (43.2-56.3) 
0.8 (0.5-1.2) 
7.7 (6.2-9.4) 
8.8 (7.6-10.2) 
3.6 (1.7-7.8) 
7.4 (4.9-9.6) 

89.6 (80.7-92.2) 
3.5 (3.3-4.1) 
7.3 (6.8-9.0) 

44.7 (40.6-53.5) 
10.6 (8.7-13.4) 
3.4 (3.2-4.2) 

16.6 (14.7-21.4) 
2.4 (2.0-3.7) 

58.9 (53.0-79.3) 
 

57.5 (52.0-64.2) 
7.4 (6.9-8.0) 

 
0.66 
0.71 
0.93 
0.76 
0.79 
0.69 
0.82 
0.66 
0.55 
0.76 
0.44 
0.84 
0.95 
0.83 
0.81 
0.34 
0.98 
0.29 
0.40 
0.92 

 
0.76 

- 
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Table 5.4: Glycaemic outcomes stratified by MDI and CSII users in intention-to-treat cohort 

Results are expressed as median (IQR). Abbreviations: CV, coefficient of variation; CONGA, continuous overlapping net glycaemic action; LI, lability index; LBGI, low 
blood glucose index; HBGI, high blood glucose index; GRADE, glycaemic risk assessment in diabetes equation; MODD, mean of daily differences; MAGE, mean 

amplitude of glycaemic excursions; MAG, mean absolute glucose change; PGS, personal glycaemic status; IGC, index of glycaemic control; GVP, glycaemic variability 
percentage; AUC, area under the curve. 

 

Weight (kg) 
Basal insulin (units) 

 

69.2 (63.2-88.2) 
20.8 (18.3-26.3) 

70.1 (62.9-84.3) 
23.0 (19.8-27.8) 

70.5 (64.9-88.8) 
23.8 (19.9-28.9) 

0.53 
0.59 

75.3 (67.3-84.7) 
25.0 (18.0-32.5) 

75.0 (67.5-85.9) 
26.0 (17.8-38.5) 

76.5 (67.5-84.1) 
26.0 (18.0-40.0) 

0.99 
0.98 
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 DAY (07.00hrs – 23.00hrs) NIGHT (23.00hrs – 07.00hrs) 

 RUN-IN 
(n=54) 

 

Control 
(n=40) 

PEPPER 
(n=39) 

P-value 
(PEPPER vs 

Control) 

RUN-IN 
(n=54) 

 

Control 
(n=40) 

PEPPER 
(n=39) 

P-value 
(PEPPER vs 

Control) 

                   PRIMARY OUTCOMES 
% time in range  

3.9-10mmol/l (70 -180mg/dL) 
 

57.4 (45.6-66.8) 
 

58.0 (48.0-67.6) 
 

63.1 (53.4-67.8) 
 

0.32 
 

51.8 (44.9-60.9) 
 

58.4 (45.5-65.3) 
 

61.0 (50.4-67.2) 
 

0.34 
                    SECONDARY OUTCOMES 

% time in euglycaemia 
3.9-7.8mmol/l (70 -140mg/dL) 

 
33.6 (23.2-39.1) 

 
33.7 (26.1-40.4) 

 
34.8 (27.7-39.2) 

 
0.71 

 
26.1 (20.6-37.7) 

 
31.4 (22.0-41.0) 

 
33.5 (27.5-39.8) 

 
0.38 

% time in hypoglycaemia 
<3.9mmol/l (<70mg/dL) 
<3.3mmol/l (<60mg/dL) 
<3.0mmol/l (<54mg/dL) 

 
3.0 (1.6-5.4) 
1.5 (0.8-2.6) 
0.9 (0.4-1.8) 

 
2.7 (1.3-6.4) 
0.9 (0.4-2.9) 
0.5 (0.1-1.7) 

 
2.5 (1.5-3.9) 
0.9 (0.5-2.1) 
0.5 (0.2-1.3) 

 
0.54 
0.84 
0.92 

 
1.8 (0.9-5.0) 
0.7 (0.2-3.1) 
0.4 (0.1-2.2) 

 
1.6 (0.8-4.9) 
0.6 (0.2-2.8) 
0.3 (0.0-2.4) 

 
1.5 (0.6-4.0) 
0.5 (0.1-1.0) 
0.3 (0.0-0.7) 

 
0.67 
0.60 
0.51 

 
% time in hyperglycaemia 

>10mmol/l (>180mg/dL) 
>15mmol/l (>270mg/dL) 

 

 
40.1 (30.3-49.5) 

5.8 (2.9-10.4) 

 
37.1 (28.4-47.6) 

5.1 (2.3-10.5) 

 
34.6 (28.6-44.3) 

3.6 (2.5-8.0) 

 
0.46 
0.59 

 
45.3 (29.7-53.8) 

7.0 (2.5-15.2) 

 
39.1 (31.6-50.5) 

5.4 (2.8-9.0) 

 
36.9 (30.5-46.7) 

5.5 (2.1-7.5) 

 
0.32 
0.52 

Glycaemic variability 
Mean 

Standard deviation 
CV (%) 

CONGA 
LI 

JINDEX 
LBGI 
HBGI 

GRADE 
GRADE - %Hypo  
GRADE - %Eugly 
GRADE - %Hyper 

MODD 
MAGE 
ADDR 

M-VALUE 
MAG 
PGS 
IGC 

GVP 

 
9.5 (8.5-10.3) 
3.3 (3.0-3.8) 

36.5 (33.2-39.0) 
4.4 (3.8-5.0) 

12.6 (9.4-15.9) 
53.0 (43.4-61.8) 

0.8 (0.5-1.3) 
8.7 (6.0-10.9) 
9.6 (7.9-11.4) 
4.2 (2.1-7.9) 
6.3 (3.8-8.9) 

90.2 (85.7-92.3) 
3.7 (3.3-4.3) 
7.6 (6.9-9.0) 

52.6 (44.3-59.6) 
12.8 (9.5-17.0) 
4.5 (3.7-5.5) 

19.0 (16.4-22.7) 
2.9 (2.4-3.7) 

86.6 (65.8-111.9) 

 
9.3 (8.5-10.1) 
3.2 (2.9-3.8) 

36.4 (32.2-40.1) 
4.1 (3.5-4.6) 

10.7 (8.0-14.4) 
51.2 (43.0-62.0) 

0.6 (0.4-1.5) 
7.9 (6.0-11.1) 
9.2 (7.8-11.3) 
2.5 (1.3-8.8) 
5.7 (4.1-9.0) 

88.1 (82.8-93.6) 
3.7 (3.3-4.2) 
7.2 (6.7-8.8) 

48.9 (40.6-55.4) 
11.9 (8.9-17.3) 

4.1 (3.4-4.9) 
19.5 (14.7-21.1) 

2.8 (2.2-3.6) 
75.5 (59.3-97.5) 

 
9.0 (8.5-9.8) 
3.1 (2.9-3.5) 

34.4 (32.7-37.8) 
4.1 (3.5-4.8) 

10.8 (7.7-14.6) 
47.0 (43.7-56.1) 

0.7 (0.5-1.1) 
7.0 (6.2-9.6) 
8.6 (7.6-10.0) 
2.7 (1.2-5.3) 
7.6 (5.3-9.5) 

89.6 (84.9-92.9) 
3.5 (3.3-4.0) 
7.4 (6.6-8.2) 

45.6 (40.7-55.1) 
9.5 (8.2-14.0) 
4.1 (3.5-5.0) 

16.6 (14.4-20.8) 
2.2 (2.0-3.1) 

77.1 (60.4-97.9) 

 
0.58 
0.43 
0.29 
0.96 
0.93 
0.45 
0.67 
0.46 
0.34 
0.95 
0.28 
0.88 
0.58 
0.82 
0.34 
0.23 
0.91 
0.25 
0.20 
0.91 

 
9.8 (8.5-10.9) 
3.5 (3.1-3.9) 

35.0 (33.1-40.3) 
3.4 (2.8-4.1) 
7.8 (5.3-11.8) 

55.2 (46.2-69.5) 
0.6 (0.3-1.4) 
9.3 (6.6-13.1) 
10.1 (9.1-12.4) 
1.9 (0.4-7.5) 
5.0 (3.1-7.5) 

92.8 (83.7-95.2) 
3.8 (3.6-4.3) 
8.0 (7.0-9.3) 

45.8 (36.8-54.6) 
14.6 (10.4-19.9) 

3.1 (2.7-3.7) 
19.3 (16.7-21.9) 

3.3 (2.5-4.2) 
55.3 (44.4-71.1) 

 
9.4 (8.6-10.2) 
3.2 (2.9-3.8) 

34.3 (31.8-38.8) 
3.2 (2.8-4.1) 
7.2 (5.3-11.5) 

51.0 (43.8-62.0) 
0.5 (0.3-1.2) 
8.2 (6.5-10.8) 
9.2 (8.1-11.6) 
1.3 (0.4-7.9) 
6.5 (3.7-8.6) 

91.3 (85.0-94.6) 
3.8 (3.3-4.5) 
7.3 (5.9-9.0) 

42.7 (37.0-55.3) 
12.3 (8.7-18.2) 

2.8 (2.5-3.9) 
17.8 (14.0-21.0) 

2.7 (2.1-4.2) 
49.3 (41.2-72.8) 

 
9.1 (8.6-9.9) 
3.1 (2.7-3.7) 

34.3 (30.9-38.1) 
3.1 (2.6-4.1) 
6.8 (4.5-11.3) 

50.8 (42.1-56.6) 
0.5 (0.2-1.1) 
7.6 (5.9-9.9) 
8.9 (7.8-10.5) 
1.5 (0.4-4.1) 
6.2 (4.5-9.1) 

89.6 (87.2-94.0) 
3.6 (3.0-4.1) 
7.5 (6.3-8.5) 

40.4 (33.7-49.8) 
11.3 (7.9-15.2) 
2.8 (2.3-3.6) 

16.0 (14.0-19.7) 
2.2 (1.9-3.6) 

47.7 (37.9-67.4) 

 
0.40 
0.49 
0.73 
0.37 
0.33 
0.45 
0.52 
0.37 
0.31 
0.83 
0.34 
0.63 
0.42 
0.85 
0.31 
0.36 
0.39 
0.31 
0.28 
0.34 

 

Table 5.5: Intention-to-treat analysis of glycaemic outcomes stratified by day and night 

Data presented as medians (IQR). Abbreviations: CV, coefficient of variation; CONGA, continuous overlapping net glycaemic action; LI, lability index; LBGI, low blood glucose index; 
HBGI, high blood glucose index; GRADE, glycaemic risk assessment in diabetes equation; MODD, mean of daily differences; MAGE, mean amplitude of glycaemic excursions; MAG, 

mean absolute glucose change; PGS, personal glycaemic status; IGC, index of glycaemic control; GVP, glycaemic variability percentage; AUC, area under the curve. 
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 UK SPAIN 

 RUN-IN 
(n=28) 

 

Control 
(n=16) 

PEPPER 
(n=16) 

P-value 
(PEPPER vs 

Control) 

RUN-IN 
(n=26) 

 

Control 
(n=24) 

PEPPER 
(n=23) 

P-value 
(PEPPER vs 

Control) 

                               PRIMARY OUTCOME 

% time in range  
3.9-10mmol/l (70 -180mg/dL) 

 
52.0 (44.7-67.2) 

 
62.5 (44.6-68.9) 

 
63.3 (47.9-69.7) 

 
0.97 

 
55.2 (49.1-62.7) 

 
54.8 (50.8-61.2) 

 
61.4 (52.6-65.6) 

 
0.14 

                               SECONDARY OUTCOMES 

% time in euglycaemia 
3.9-7.8mmol/l (70 -140mg/dL) 

 
28.2 (22.1-39.3) 

 
38.9 (26.6-41.2) 

 
35.0 (28.8-42.0) 

 
0.71 

 
31.8 (25.9-39.7) 

 
30.3 (23.9-38.9) 

 
34.6 (28.7-38.0) 

 
0.39 

% time in hypoglycaemia 
<3.9mmol/l (<70mg/dL) 
<3.3mmol/l (<60mg/dL) 
<3.0mmol/l (<54mg/dL) 

 
1.8 (1.0-3.7) 
1.2 (0.4-1.8) 
0.8 (0.2-1.3) 

 
2.5 (1.4-6.0) 
0.8 (0.6-3.3) 
0.5 (0.3-2.0) 

 
2.7 (1.7-4.6) 
1.0 (0.5-2.9) 
0.4 (0.1-2.4) 

 
0.91 
0.85 
0.79 

 
3.6 (2.4-5.9) 
1.8 (1.2-3.1) 
1.2 (0.6-2.0) 

 
2.1 (1.1-6.6) 
0.7 (0.4-3.1) 
0.4 (0.1-1.9) 

 
2.1 (1.3-3.1) 
0.6 (0.5-1.5) 
0.4 (0.2-0.9) 

 
0.69 
0.83 
0.86 

 
% time in hyperglycaemia 

>10mmol/l (>180mg/dL) 
>15mmol/l (>270mg/dL) 

 
44.3 (30.8-52.2) 

8.0 (3.0-16.3) 

 
32.3 (29.3-47.9) 

4.0 (2.6-16.2) 

 
34.4 (28.2-41.3) 

4.3 (1.9-13.4) 

 
0.76 
0.77 

 
42.6 (30.6-47.5) 

6.3 (3.0-10.4) 

 
39.4 (35.3-48.0) 

5.5 (2.8-9.1) 

 
36.2 (30.5-44.8) 

4.5 (2.8-7.2) 

 
0.23 
0.42 

Glycaemic variability 
Mean 

Standard deviation 
CV (%) 

CONGA 
LI 

JINDEX 
LBGI 
HBGI 

GRADE 
GRADE - %Hypo  
GRADE - %Eugly 
GRADE - %Hyper 

MODD 
MAGE 
ADDR 

M-VALUE 
MAG 
PGS 
IGC 

GVP 
 

 
9.9 (8.7-10.7) 
3.5 (2.9-4.0) 

35.6 (32.6-38.8) 
3.8 (3.2-4.4) 
9.4 (6.8-13.0) 

57.1 (44.3-72.0) 
0.6 (0.4-1.0) 
9.7 (6.4-12.7) 
10.5 (8.2-12.8) 
3.4 (1.1-6.1) 
5.4 (3.4-9.0) 

89.8 (85.2-94.0) 
3.9 (3.3-4.7) 
8.1 (6.7-9.6) 

50.0 (42.4-58.6) 
13.9 (10.0-23.1) 

3.8 (3.2-5.0) 
19.6 (15.8-22.1) 

3.0 (2.4-4.2) 
71.5 (54.8-97.1) 

 

 
8.8 (8.7-10.0) 
3.3 (2.9-4.1) 

36.7 (33.2-41.8) 
3.6 (3.1-4.2) 
8.6 (6.2-11.9) 

48.2 (43.1-72.9) 
0.7 (0.5-1.5) 
7.2 (6.1-12.7) 
8.4 (7.6-12.2) 
3.0 (1.2-9.7) 
7.7 (3.4-10.1) 

88.1 (82.2-90.4) 
3.6 (3.3-4.7) 
7.7 (6.8-9.4) 

48.2 (42.0-56.1) 
10.2 (8.0-22.2) 

3.8 (3.0-4.1) 
17.4 (15.0-21.9) 

2.9 (2.0-4.1) 
66.8 (47.5-76.5) 

 

 
8.9 (8.7-9.6) 
3.2 (2.8-4.2) 

36.0 (33.2-38.8) 
3.5 (2.8-4.4) 
8.1 (5.3-7.8) 

47.2 (42.9-63.6) 
0.7 (0.5-1.3) 
7.0 (6.0-10.3) 
8.2 (7.5-11.6) 
2.2 (1.7-8.9) 
7.8 (4.5-9.7) 

89.1 (84.7-90.8) 
3.5 (3.2-4.6) 
7.5 (6.5-9.0) 

44.2 (40.7-55.0) 
9.8 (8.0-20.5) 
3.4 (2.9-4.2) 

15.2 (14.1-21.9) 
2.3 (1.9-4.1) 

59.3 (45.3-78.8) 
 

 
0.50 
0.85 
0.60 
0.71 
0.76 
0.85 
0.88 
1.00 
0.94 
0.91 
0.97 
0.62 
0.88 
0.73 
0.50 
0.85 
0.82 
0.60 
0.97 
0.73 

  

 
9.6 (8.5-10.1) 
3.3 (3.1-3.9) 

36.6 (35.0-40.6) 
3.6 (3.2-3.9) 
8.6 (6.9-9.8) 

53.5 (45.0-60.3) 
0.9 (0.6-1.5) 
8.8 (6.5-10.7) 
9.7 (8.1-11.3) 
4.2 (2.3-9.0) 
6.0 (4.2-7.7) 

89.9 (84.6-92.1) 
3.9 (3.5-4.2) 
7.5 (7.1-8.4) 

48.9 (44.4-57.0) 
12.8 (11.1-16.6) 

3.4 (2.9-4.0) 
19.7 (17.4-23.7) 

3.1 (2.6-3.8) 
58.8 (45.6-71.5) 

 

 
9.3 (8.9-10.1) 
3.3 (2.9-3.6) 

34.8 (31.1-38.8) 
3.3 (2.9-4.0) 
7.0 (5.5-10.2) 

51.4 (47.5-59.7) 
0.6 (0.3-1.4) 
8.3 (7.2-10.1) 
9.6 (8.6-10.7) 
2.1 (0.9-7.8) 
5.6 (4.3-7.5) 

91.6 (86.2-94.0) 
3.7 (3.2-3.9) 
7.3 (6.4-8.5) 

43.8 (38.2-50.3) 
12.6 (9.9-15.5) 
3.1 (2.7-3.7) 

19.2 (16.6-21.5) 
2.8 (2.2-3.6) 

51.4 (41.7-66.4) 
 

 
9.2 (8.7-9.7) 
3.1 (2.9-3.4) 

34.3 (31.4-36.9) 
3.5 (3.0-3.9) 
7.8 (5.9-9.8) 

49.7 (44.2-54.9) 
0.6 (0.4-0.8) 
7.9 (6.3-9.3) 
9.0 (7.8-10.1) 
2.6 (1.4-3.8) 
7.5 (5.2-8.6) 

91.0 (86.8-92.4) 
3.5 (3.3-4.0) 
7.2 (6.5-7.9) 

41.9 (37.6-48.4) 
10.7 (8.3-12.9) 

3.2 (2.8-3.7) 
17.0 (14.7-19.8) 

2.4 (1.9-2.7) 
55.0 (44.4-65.8) 

 

 
0.34 
0.33 
0.55 
0.83 
0.83 
0.22 
0.77 
0.23 
0.15 
0.88 
0.07 
0.67 
0.59 
0.59 
0.62 
0.11 
0.88 
0.13 
0.09 
0.80  
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Table 5.6: Intention-to-treat analysis of glycaemic outcomes for UK and Spain cohorts 

Data presented as medians (IQR). Abbreviations: CV, coefficient of variation; CONGA, continuous overlapping net glycaemic action; LI, lability index; LBGI, low blood 
glucose index; HBGI, high blood glucose index; GRADE, glycaemic risk assessment in diabetes equation; MODD, mean of daily differences; MAGE, mean amplitude of 
glycaemic excursions; MAG, mean absolute glucose change; PGS, personal glycaemic status; IGC, index of glycaemic control; GVP, glycaemic variability percentage; 

AUC, area under the curve. 

 

 

 

HbA1c (mmol/mol) 
HbA1c (%) 
Weight (kg) 

Basal insulin (units) 
 

 61.0 (56.0-66.3) 
7.7 (7.3-8.2) 

75.0 (67.6-88.2) 
24.2 (18.3-27.0) 

53.0 (51.0-63.0) 
7.0 (6.8-7.9) 

74.8 (69.3-84.4) 
24.0 (19.4-31.4) 

57.0 (53.8-59.0) 
7.4 (7.1-7.6) 

79.6 (72.0-88.5) 
25.5 (19.7-29.6) 

0.49 
- 

0.37 
0.72 

60.8 (58.5-66.1) 
7.7 (7.5-8.2) 

71.0 (62.6-83.9) 
20.7 (18.0-28.0) 

58.5 (56.0-63.1) 
7.5 (7.3-7.9) 

71.6 (62.9-84.9) 
26.0 (17.0-28.5) 

59.6 (57.4-63.9) 
7.6 (8.9-8.0) 

68.8 (64.0-84.0) 
23.4 (17.0-29.3) 

0.89 
- 

0.83 
0.98 
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5.3.3 Glycaemic variability and other secondary outcomes 

For all measures of GV, no significant differences were observed between the 

PEPPER and Control groups in either the ITT analysis (Table 5.2) or the per-

protocol analysis (Table 5.3).  

 

A decline from baseline in the number of hypoglycaemic episodes was observed 

in both the PEPPER and Control groups, however no significant differences were 

observed between groups.  

 

For HbA1c, both groups showed a reduction from baseline, but no between group 

differences were observed. AUC and postprandial glucose also showed no 

difference between PEPPER and Control.  

 

Basal insulin and body weight remained constant throughout, with no differences 

between the intervention groups.  

 

5.3.4 Quality of life  

Overall, participants demonstrated a good quality of life without significant 

diabetes distress at baseline. At baseline, the median PAID score was 18.8 (11.3-

31.3) and a global DQOL score of 1.9 (1.5-2.4). 

 

With the PEPPER system, no significant differences were observed for diabetes 

distress, overall diabetes treatment satisfaction, the global quality of life, nor its 

subsections. However, there was an apparent increase in the frequency of 
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hypoglycaemia in the DTSQ questionnaire with PEPPER, in comparison to the 

Control group (p=0.03; Table 5.7). This signal persisted in the per-protocol 

analysis (p<0.01; Table 5.8) 

 

Data presented as medians (IQR). Abbreviations: PAID, problem areas in diabetes (scored out of 
100 with higher scores indicating distress); DTSQs, diabetes treatment satisfaction questionnaire 

(scored out of 36 indicating very satisfied); DTSQs perceived frequency of hypo- and 
hyperglycaemia are scored from 0 (none of the time) to 6 (most of the time); DQOL, diabetes 

quality of life (based on Likert 5-point scale from 1 to 5 with high scores indicate dissatisfaction, 
frequent impact, or frequent worry). +PAID questionnaire: run-in n=53, control n=40; PEPPER 

=39. ++DQOL questionnaire: run-in n=53, control n = 39; PEPPER n=39. * p<0.05 indicates 
significance. 

 
 

 RUN-IN 
(n=54) 

 

CONTROL 
(n=40) 

PEPPER 
(n=39) 

P-value 
(PEPPER vs 
CONTROL) 

 
PAID Questionnaire+ 
 

 
18.8 (11.3-31.3) 

 

 
15.6 (9.7-24.4) 

 

 
17.5 (10.0-28.8) 

 

 
0.44 

 
DTSQs 

Global Score 
Perceived hypoglycaemia  

Perceived hyperglycaemia  

 
 

26 (24-30) 
2 (1-3) 
2 (1-3) 

 
 

32 (28-33) 
2 (1-2) 
2 (1-2) 

 

 
 

31 (28-34) 
2 (2-4) 
2 (2-4) 

 
 

0.83 
  0.03* 
0.32 

 
 
DQOL++ 

Global Score 
Satisfaction 

Impact 
Worry: Social/Vocational 
Worry: Diabetes Related 

 

 
 

1.9 (1.5-2.4) 
2.1 (1.9-2.5) 
2.5 (1.6-3.3) 
1.3 (1.1-1.9) 
2.0 (1.5-2.5) 

 
 

1.7 (1.3-2.1) 
1.9 (1.6-2.3) 
2.0 (1.5-2.7) 
1.4 (1.1-1.9) 
1.8 (1.5-2.3) 

 
 

1.7 (1.4-2.0) 
1.8 (1.4-2.2) 
2.1 (1.6-2.9) 
1.4 (1.2-1.6) 
2.0 (1.5-2.4) 

 
 

0.80 
0.29 
0.49 
0.84 
0.29 

 

Table 5.7: Quality of life analysis in intention-to-treat cohort.  
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Table 5.8: Per-protocol analysis of quality of life questionnaires (n=33). 

Data presented as medians (IQR). Abbreviations: PAID, problem areas in diabetes (scored out of 100 with higher scores indicating distress); DTSQs, diabetes treatment 
satisfaction questionnaire (scored out of 36 indicating very satisfied); DTSQs perceived frequency of hypo- and hyperglycaemia are scored from 0 (none of the time) to 6 

(most of the time); DQOL, diabetes quality of life (based on Likert 5-point scale from 1 to 5 with high scores indicate dissatisfaction, frequent impact, or frequent worry). * 
p<0.05 indicates significance. 

 Run-in 
(Baseline) 

Control PEPPER Median change from baseline to endpoint 

∆ Control ∆ PEPPER P-value 
 
PAID Questionnaire  

 

 
18.8 (10.0-26.3) 

 
15.0 (8.8-23.8) 

 
17.5 (10.0-26.3) 

 

 
-2.5 (-6.3 to 2.5) 

 
-1.3 (-7.5 to 5) 

 
0.13 

 
DTSQs  

Global score 
Perceived hypoglycaemia  

Perceived hyperglycaemia  

 
 

26 (24-29) 
2 (1-3) 
2 (1-3) 

 
 

31 (28-33) 
2 (1-3) 
4 (2-4) 

 
 

31 (28-34) 
2 (2-4) 
3 (2-4) 

 
 

+4 (0 to 9) 
0 (-1 to 1) 
+1 (0 to 2) 

 
 

+5 (2 to 8) 
+1 (0 to 1) 
0 (0 to 1) 

 
 

0.72 
<0.01* 

0.08 
 
DQOL 

Global Score 
Satisfaction 

Impact 
Worry: Social/Vocational 
Worry: Diabetes Related 

 

 
 

1.7 (1.4-2.1) 
2.1 (1.7-2.3) 
1.9 (1.5-2.7) 
1.3 (1.1-1.5) 
1.8 (1.5-2.3) 

 
 

1.6 (1.4-2.1) 
1.9 (1.6-2.2) 
2.0 (1.6-2.8) 
1.3 (1.1-1.6) 
1.8 (1.5-2.3) 

 
 

1.7 (1.3-1.9) 
1.7 (1.4-2.1) 
2.0 (1.6-2.8) 
1.3 (1.2-1.6) 
1.8 (1.5-2.3) 

 
 

-0.1 (-0.1 to 0.0) 
-0.1 (-0.4 to -0.1) 
0.0 (-0.1 to 0.3) 
0.0 (-0.1 to 0.1) 
0.0 (-0.3 to 0.3) 

 

 
 

0.0 (-0.2 to 0.0) 
-0.2 (-0.5 to 0.0) 
0.0 (-0.2 to 0.1) 
0.0 (-0.1 to 0.3) 
0.0 (-0.3 to 0.3) 

 

 
 

0.26 
0.17 
0.66 
0.47 
0.54 
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5.3.5 Safety system outcomes 

No safety data was obtained from the handset of one participant. In order to 

evaluate the system, the Control group had the safety system disabled, however the 

algorithm was running in the background without effect.  

 

For the number of alerts, alarms, and carbohydrate recommendations, no 

significant differences were observed between groups. Similarly, there were no 

differences observed in the numbers of automated pump suspensions (total and 

partial) between the two groups for CSII users. The total bolus insulin per 

participant per day also remained similar in the two groups: 32.8 (23.9-53.5) 

units/day in the Control group vs 32.6 (22.1-51.0) units/day in the PEPPER group 

(p=0.96; Table 5.9). 

 

Table 5.9: Intention-to-treat pooled analysis of safety system outcomes.  

Data analysed as last 28 days of each intervention phase. Total and partial percentage (%) 
suspension time in pump participants reported as proportions of the total timeframe (the 

remaining time was not in suspension). CHO recommendations refer to personalized oral dose of 
carbohydrates to revert hypoglycaemia and minimize rebound hyperglycaemia. Data presented as 

medians (IQR). Abbreviations: CHO, carbohydrate. 

 CONTROL 
(n=39) 

PEPPER 
(n=38) 

P-value 
(PEPPER vs 

Control) 
 
Safety System  

Total bolus insulin (units/day) 
 

No. of alarms/day 
No. of hypo alarms/day 

No. of hypo alerts/day 
No. of CHO recommendations/day 

Mean CHO recommendation (g) 
 

For PUMP users 
Number of suspensions/day 

% of total time in partial suspension 
% of total time in total suspension  

 
 

32.8 (23.9-53.5) 
 

1.5 (0.9-2.4) 
0.9 (0.5-1.3) 
1.5 (1.0-1.9) 
3.2 (0.8-6.8) 

13.8 (10.4-17.0) 
 

(n=15) 
1.1 (0.9-1.4) 
2.7 (2.3-3.4) 
2.3 (1.9-3.7) 

 

 
 

32.6 (22.1-51.0) 
 

1.3 (1.0-2.0) 
0.9 (0.6-1.1) 
1.5 (1.1-2.0) 
2.6 (1.1-4.6) 

12.1 (9.9-14.5) 
 

(n=14) 
1.2 (1.0-1.5) 
2.5 (2.0-3.4) 
2.9 (2.2-3.5) 

 

 
 

0.96 
 

0.44 
0.53 
0.78 
0.74 
0.16 

 
 

0.54 
0.41 
0.63 
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The overall MARD between the forecasting algorithm and the actual sensor 

glucose was 14.4 (12.6-15.9)%. The root mean square error (RMSE) of the 30min 

predictive forecasting PEPPER algorithm was 1.6 (1.4-1.9) mmol/l (Table 5.10). 

 

 PEPPER 
(n=53) 

 
Forecasting Algorithm  

Coefficient of determination (R2) 
Root Mean Square Error (mmol/l) 

MARD (%) 
 

 
0.74 (0.70-0.74) 

1.6 (1.4-1.9)  
14.4 (12.6-15.9) 

Table 5.10: Performance of the PEPPER forecasting algorithm 

Data presented as medians (IQR). Abbreviations: MARD, mean absolute relative difference 

 

A total of 303 revisions were constrained and saturated by the safety system, i.e. 5 

(2 – 14)% of all proposed bolus recommendations. Of these, 85% were for 

hyperglycaemia.  

 

5.3.6 CBR outcomes 

During the PEPPER intervention period, a total of 14,723 cases of insulin bolus 

recommendations were imported to the revision platform, with an average of 4.0 

(3.3-5.5) cases per participant/day. No decay was observed in the number of bolus 

recommendations requested over the study period. 

 

Greater than two-thirds (87 (65 – 96) %) of bolus advice cases were accepted by 

the user. Only 4 (1 – 10) % of all proposed recommendations were constrained and 

saturated by the safety system.  
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For all cases uploaded to the online platform, 46 (26-58)% of cases were approved 

by the physician to be integrated in to the learnt case base. 47 (36 – 62)% of cases 

were manually rejected with 6 (4 – 8)% automatically rejected by the system (Table 

5.11). Reasons for the clinician rejecting the case include missing glucose sensor 

data or because of exclusion criteria relating to the adaptation metric (e.g. user had 

given additional insulin or consumed a snack shortly after the advice received).  

 

There was no correlation between the number of cases per participant and the 

%TIR spent by participants (r = 0.371, p=0.15). 
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Variable  Median (IQR) 
 (n=39) 

Total number of cases/ participant  
     Weekday  
     Weekend 
 
Average number of cases per day/participant  

334 (276 – 465)  
72 (70 – 73) % 
28 (27 – 30) % 

 
4.0 (3.3-5.5)  

Proportion of boluses saturated by safety system/ participant 
     For hyperglycaemia 
     For hypoglycaemia  

4 (1 – 10) % 
3 (0 – 8) % 
0 (0 – 1) % 

Bolus doses accepted by participant 
Bolus doses changed by participant  

87 (65 – 96) % 
13 (4 – 35) % 

Cases revised by clinician/ participant 
     Accepted cases 
     Manually rejected 
     Non-Eligible cases (automatic rejection by system) 

 
46 (26 – 58) % 
47 (36 – 62) % 

6 (4 – 8) % 
 

Case parameters/participant 
     Past physical activity 

- None 
- Low  
- Mild 
- Intense 

           
     Future physical activity 

- None  
- Low 
- Mild 
- Intense 
- Aerobic 

 
     Meal Absorption Rate  

- Slow 
- Medium  
- Fast 

 
     Alcohol  

- Moderate  
- High 

 
     Psychological Stress 
 
     Tiredness 
 
     Hormone cycle (females only) 

- Pre-menstruation 
- Menstruation 

 
 

48 (17 – 60) % 
48 (39 – 80) % 

1 (0 – 3) % 
0 (0 – 1) % 

 
 

94 (71 – 99) % 
4 (0 – 23) % 
1 (0 – 5) % 
0 (0 – 2)% 

100 (99 – 100) % 
 
 

3 (1 – 10) % 
88 (54 – 97) % 

3 (0 – 9) % 
 
 

5 (1 – 10) % 
0 (0 – 0) % 

 
0 (0 – 0) % 

 
1 (0 – 5) % 

 
 

0 (0 – 3) % 
3 (0 – 9) % 

 

Table 5.11: CBR outcomes in the intention-to-treat population 

Case usage and parameters recorded by participants using the PEPPER bolus calculator over the 
full intervention period (i.e. 12 weeks). Data presented as medians (IQR).  
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5.3.7 Adverse events 

Within the Control group, two serious adverse events occurred. One participant 

experienced an episode of severe nocturnal hypoglycaemia, whilst another 

participant experienced mild diabetic ketoacidosis precipitated by denatured 

insulin +/- urinary tract infection. Both resolved without adverse sequelae.  

 

Two other adverse events reported include appendicitis which required an 

appendicectomy and a fall resulting in a fractured fifth metatarsal, however these 

were not deemed to be linked to trial intervention with PEPPER safety system or 

AI algorithm. 

 

 

5.4 Discussion  

The PEPPER system with an AI-derived adaptive bolus calculator and safety 

system has overall been shown to be safe and feasible for people with T1D. Whilst 

all times in ranges in the intervention group moved towards improvement, none of 

the differences between the PEPPER and Control arms reached statistical 

significance.  

 

To date, this is the largest randomised controlled study reporting clinical outcomes 

of a personalised adaptive bolus calculator for use with both MDI and CSII therapy. 

Unfortunately, the main limitation of this clinical study has been the administration 

of Cellnovo and its withdrawal from market. Despite extensive discussions by the 

PEPPER Consortium, the administrators were not forthcoming to seek additional 
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sales of the pump supplies, rendering no availability of further supplies to complete 

the study. As a result, 10 CSII participants in the UK were prematurely withdrawn, 

limiting the power and study outcomes. Although no final conclusions about the 

impact of adaptive intervention can be drawn from the outcomes of this study, the 

move towards improvement in all outcome measures for glycaemia and glycaemic 

variability are encouraging. 

 

The initial drop-out rate, particularly in the UK participants, was noted to be high. 

One of the predominant reasons reported was the complexity of the system and the 

requirement for multiple components.  For example, participants were required to 

carry an extra handset (in addition to their own mobile handset), rtCGM, an activity 

monitor (which may be in addition to their own wearable device, for example an 

Apple watch recording step count) and a glucometer. Furthermore, CSII 

participants were also required to carry additional Cellnovo pump supplies. That 

said, the PEPPER app is a system that would ultimately be available for download 

on to one’s own mobile handset with easy and accessible integration with other 

wearable sensors. 

 

There was additionally a high early drop-out rate in participants using CSII due to 

challenges with the Cellnovo hardware, including frequent cartridge ejection or 

signal loss. For those participants continuing on the study, they did not appear to 

experience the high frequency of issues as those who chose to drop-out at the 

earlier stage. The 10% drop-out rate chosen for this study sample size was 

relatively conservative for technology studies.  
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In our usability study analysed by colleagues at Oxford Brookes University, the 

average time taken for participants to request bolus advice for a particular situation 

(45gram of carbohydrates, medium meal absorption, low intensity non-aerobic past 

exercise, no planned exercise, no hormone cycle info, low alcohol consumption. 

not stressed and good mood) was 62.0 (49.5 – 86.0) seconds. Although these times 

are likely to have improved with use of the app, as these were assessed on first use 

and intuitiveness of the system, long-term sustainability in app usage is an 

important factor to consider.  

 

For quality of life measures, there were no overall differences observed between 

the two arms. Differences emerging between the two groups may have been limited 

due to participants overall having a good quality of life without diabetes distress at 

baseline. Intriguingly, despite no objective difference in time spent in 

hypoglycaemia, participants reported higher perceived hypoglycaemia with the 

PEPPER system. Overall, this did not affect diabetes treatment satisfaction, 

however, may have been resultant from the additional forecasted alerts received 

when using the PEPPER system.  

 

To minimise the burden of carbohydrate counting and the physical entry of meals 

into the system, innovative strategies could be incorporated into the PEPPER app. 

These include smart technologies with machine learning capabilities, such as 

GoCARB (298), which enables estimation of carbohydrate content from plated 

meals for individuals with T1D. Integration of a food library app, such as 

MyFitnessPal (299), or the ability to select meal-size estimation (rather than actual 

carbohydrate amount) may aid sustained long-term use. For pump participants, this 
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is particularly advantageous as the control algorithm in clinically approved and 

experimental hybrid CL systems, may compensate to some extent for the bolus 

delivered.  

 

In terms of limitations associated with the PEPPER system, the CBR algorithm is 

likely to be most helpful to individuals maintaining a regular work pattern, rather 

than day/night shift workers. Also, the CBR algorithm only adapts for bolus 

insulin, and assumes that the basal insulin has been optimised. Furthermore, the 

system is dependent on meal scenarios where the user has not ingested a significant 

snack or taken an insulin bolus correction within 5 hours of a meal for revision. 

This may particularly be an issue for individuals tending to snack or eat their meal 

in phases. For CSII users, the bolus advisor is unable to make use of extended phase 

or dual wave bolusing, a feature incorporated into insulin pumps.   

 

Despite the limitations and constraints of this study, the data are promising and 

suggest that, in a powered study over a sufficient period of time, an adaptive bolus 

advisor may facilitate an improvement in glycaemia. There is significantly broad 

scope for integrating PEPPER into routine diabetes management for CSII and MDI 

users. The adaptation feature of the PEPPER algorithm also has potential for future 

implementation in artificial pancreas systems.  



A D A P T I V E  BO L U S  C A L C UL A T O R S  

P  A V A R I   202  

5.5 Conclusion 

In conclusion, the PEPPER system is acceptable, safe and maintains glycaemia in 

a diverse population. To confirm overall effectiveness, a larger powered 

randomised controlled trial is required. 
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6 Conclusions and 

Future Work 

6.1 Summary of the PEPPER Project 

Previous innovations in the management and treatment of people with T1D have 

significantly improved outcomes in long-term morbidity and mortality. However, 

disease burden remains considerable, with treatment targets often not met. 

Attaining adequate glycaemia requires significant effort by the individual. 

Furthermore, fear of hypoglycaemia and long-term complications often negatively 

impact quality of life. An adaptive bolus advisor is a system that provides 

personalised insulin decision support and holds promise to improve glycaemia by 

assisting people with calculating meal insulin doses and improving post-meal 

glucose excursions. Although not a cure, it may provide a practical solution for 

people with T1D, by standalone use with MDI or may be incorporated into insulin 

pump therapy or an artificial pancreas. 

 

The main objective of the clinical project outlined in this thesis was to evaluate 

proof of concept, safety, feasibility and efficacy of the PEPPER personalised 

decision support tool integrated with a novel adaptive bolus calculator and safety 
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system for adults with T1D. The novelty lies in the adaptive AI-derived algorithm, 

which is able to provide automated personalised bolus advise to the individual and 

is coupled with a safety system to reduce the incidence of hypoglycaemia. It 

extends existing research and is currently the most comprehensive clinical trial to 

date assessing standalone adaptive bolus calculators.  

 

In this thesis, the system has been assessed in three clinical phases. The initial pilot 

Phase 1 feasibility study evaluated the PEPPER safety system only. During this 

phase, there were several challenges faced particularly for the CSII participants, 

and thus the study was required to be put on hold till these issues were addressed. 

Early manufacturing at Flex (Flex Ltd, Althofen, Austria) resulted in significant 

insulin cartridge variation, causing frequent ejection of “faulty” insulin cartridges 

and increasing the alarm frequency experienced by users. As a result, the study had 

to be paused for the CSII participants to allow changes in manufacturing to enable 

the latest generation of insulin cartridges to be significantly more consistent.  

 

Another significant issue during this phase was the amount of data loss experienced 

between the rtCGM and xDrip+ software. This was particularly problematic for 

the CSII participants, as users occasionally found they would be unable to request 

bolus advice nor administer a bolus dose during this period of time. Whilst this did 

not affect safety system outcomes of Phase 1 (as participants continued receiving 

their basal insulin dose through the pump), it was of significant inconvenience to 

the user to be unable to administer a bolus dose at mealtimes. To address this, 

negotiations by the PEPPER Consortium were pursued to seek contractual 

agreement with Dexcom for rtCGM data to be directly integrated into the PEPPER 
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handset (bypassing xDrip+). Unfortunately, this was unsuccessful, as were 

attempts to upgrade software to Dexcom G6. As a solution, whilst the study was 

paused, the source code was refined by the PEPPER Consortium to minimise data 

loss.  

 

Glycaemic data from participants using CSII and MDI were analysed separately in 

view of the delays and changes made during iterative software development for the 

pump prototype. In addition, only CSII data from ICL site were used for analysis, 

as the system used by IDIBGI did not have the predictive low glucose suspend 

activated.  

 

Despite the challenges outlined above, the overall results for MDI and CSII 

participants were encouraging. For MDI users, the results showed a significant 

reduction in percentage time in clinically significant hypoglycaemia (<3.0mmol/l) 

and increased percentage time in range (3.9-10 mmol/l).  This was corroborated by 

a similar reduction in hypoglycaemia (<3.9mmol/l) observed in CSII users. One of 

the key limitations of this early stage feasibility study was that it was not designed 

to show superiority. This was a single arm study, without a control group, and 

therefore it was difficult to determine how much of the improvement was due to 

the safety system and how much to prolonged rtCGM use. Overall, the PEPPER 

system was deemed safe for use, including in CSII participants, following app 

refinements made in response to the issues outlined above. 

 

After confirming feasibility of the PEPPER safety system, an assessment of the 

adaptive bolus calculator was performed in Phase 2. The main challenges faced at 



A D A P T I V E  BO L U S  C A L C UL A T O R S  

P  A V A R I   206  

this stage related to the data flow for the CBR system. The study was paused at 

ICL whilst I and Dr Pau Herrero (ICL engineer) led the investigation to ensure the 

CBR component worked and actively adapted decision support in line with the 

algorithm. During this time colleagues at IDIBGI completed Phase 2 without a 

functioning CBR. As a result, only data from ICL were included in the analysis. 

No significant differences between baseline and endpoint were observed. We learnt 

that there was scope to enhance the learning rate of the algorithm, and this was 

subsequently incorporated into the final study prototype. This phase also enabled 

the algorithm and clinical interface for CBR revisions to be optimised prior to 

starting the randomised controlled crossover study. 

 

Many software design changes were integrated into the final design study 

prototype to improve the user experience, including enhancements to functionality 

and usability. As with many projects following agile development cycles, one of 

the key challenges experienced was a trade-off between introducing software 

changes and the risk of introducing bugs or errors. 

 

Finally, the 8-month crossover clinical study was completed to assess efficacy 

between the intervention cohort that received the PEPPER safety system with 

adaptive bolus advise, and the control cohort. Whilst all times in ranges moved 

towards improvement in the intervention group, none of the differences observed 

between the PEPPER and Control arms reached statistical significance.  

 

Participants did report higher perceived hypoglycaemia with the PEPPER system, 

however no objective difference in time spent in hypoglycaemic ranges were 
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observed. This is likely to be a result of the additional forecasted hypoglycaemia 

alerts (i.e. predictive low glucose suspend and carbohydrate recommendations) 

received whilst using the PEPPER system. More importantly, in our analysis of the 

psychosocial outcomes affecting participants, there was no equivalent rise in the 

worry subsections of diabetes quality of life. Overall diabetes treatment satisfaction 

was not affected.  

 

For the final validation phase, the main limitation to show a statistically significant 

improvement, was that the study population was smaller than intended and 

therefore was not sufficiently powered. Despite an adequate number of participants 

recruited, there were a high volume of drop-outs due to technical issues related to 

the Cellnovo pump hardware. This was later exacerbated by the requirement for 

early study termination in 10 CSII participants due to the withdrawal of Cellnovo 

from market and lack of pump supplies. Interestingly, our sub-analysis stratified 

by mode of insulin delivery showed CSII participants demonstrated greater benefit 

with the PEPPER system with increased time in range. It is possible that had the 

study been completed in the intended population size, a significant result may have 

been observed.  

 

The loss of a major commercial collaborative partner, Cellnovo, during the study 

had significant impact on securing sufficient quantities of pump supplies, but also 

in providing technical support for the CSII participants on a 24/7 basis. This 

resulted in full technical as well as clinical support for the UK participants being 

provided by the author. Additional challenges included that Cellnovo hosted the 

PEPPER source code and made the integration of the PEPPER system to the 
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specifics of their pumps. Thus, any modifications to the app required their support 

to integrate these.  

 

It is important to note however, that it is not uncommon for diabetes technology 

studies to experience challenges within software development. Many such 

publications have alluded to various challenges faced. For example, in the 

International Diabetes Closed Loop (iDCL) trial using the hybrid closed-loop 

system (Control-IQ), the study was paused for a safety-critical software rewrite 

(98). Another example is the recent DREAM-5 Study using the MD-Logic closed-

loop system (DreaMed GlucoSitter) for adaptive basal and bolus, a high rate of 

communication errors between the tablet computer running the algorithm and the 

insulin pump were noted (257). This was because the algorithm was not embedded 

within the pump itself, but rather used a communication device i.e. USB ComLink.  

In comparison, the PEPPER system algorithms have been successfully embedded 

within both a mobile handset for MDI users and an insulin pump.  

 

Another key strength of the PEPPER Study Group was that software engineering 

was under continuous integration and continuous deployment, with short release 

cycles. This allowed for improvements, feature upgrades and usability optimisation 

based on user and clinician feedback to be implemented. 
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6.2 PEPPER System Limitations  

Overall, no significant differences were observed between the intervention and 

control groups. Besides the study being underpowered, potential limitations have 

been discussed below in relation to the two key aspects of the PEPPER system: 1) 

the adaptive bolus calculator and 2) the safety system.  

 

6.2.1 Adaptive bolus calculator 

A key limitation with the adaptive algorithm included the level of user intervention 

and the time required for users to input their bolus information and the need for 

daily engagement with the app. This is required in a continuous cyclical manner to 

enable the case base to grow. As observed with one participant in the Phase 3 

clinical study, only a total of 11 cases were revised, compared to the median 

number of 334 (276-465) cases per participant. It was therefore deemed unlikely 

to be sufficient to provide robust adaptive insulin advice. Thus, their data was 

excluded from the per-protocol analysis. 

 

In two other cases, shift workers were included in the clinical study (a nurse in 

Spain and a paramedic in the UK). Although the algorithm takes into account the 

degree of exercise performed, insulin sensitivity is likely to vary at different times 

of the day in relation to working shift patterns and their day-night routine. At 

present, adaptation of the PEPPER system cannot manage shift work as it stands. 

To overcome this challenge, an additional parameter could be incorporated for 

individuals to record the type of working shift pattern (i.e. day vs night), which can 

be taken into consideration within the CBR algorithm. Other wearable technology 
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may be employed to determine physiological data, such as heart rate, 

accelerometery, sleep trackers and skin galvanometry. 

 

Analysis of the CBR system suggested that stratification by level of exercise based 

on the step count generated from the MiBand was too high. The majority of cases 

had past exercise classified as low 73 (44 – 89) %, with only very few cases labelled 

as mild or intense levels of exercise. This was despite the activity thresholds being 

reduced before the start of Phase 3. Overall within the literature, there is a lack of 

a “best” or uniform approach on the way activity signals are classified and 

employed in detection algorithms (300). There are various wearables and sensors 

that can record an individual’s physical activity load and duration. Some methods 

consider levels of activity as low, moderate, and high and other methods consider 

activity as a continuous variable with descriptive features by summarising the 

quantity, duration and intensity. The lack of consistency in recording activity also 

impacts consumer devices including Apple Watch, Samsung Gear S3 and Fitbit. In 

an evaluation comparing mainstream wearable devices, step count and distance 

were the only consistent measure, whilst activity duration, sleep quality, energy 

expenditure significantly varied between the wearable devices (301). Metabolic 

expenditure may be an another alternative method, calculated using heart rate and 

accelerometery (123). Hajizadeh et al (2018) employed an algorithm developed at 

the Illinois Institute of Technology, to calculate the “metabolic equivalent task” to 

express the energy cost of physical activity (i.e. the ratio of metabolic rate/ energy 

consumption to a reference metabolic rate during any specific physical activity) 

(302).  
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Additional algorithm limitations include that PEPPER assumes basal insulin is 

optimised and only adapts bolus insulin. It relies on meal scenarios where the user 

has not ingested a significant snack or taken an insulin bolus correction within 5 

hours of a meal for revision. Future developments would be useful to incorporate 

the use of basal adaptation. CBR has been proposed as a method to support basal 

rate adaptation and has been tested in-silico (303). Dassau et al (2017) clinically 

evaluated an adaptive artificial pancreas with adaptations made to basal insulin 

delivery settings, but only on a weekly basis, and every 4 weeks to carbohydrate 

ratios (268). Compared to sensor augmented pump therapy during run-in, a 

reduction in time spent in hypoglycaemia was observed during the day from 5.0% 

to 1.9% (-3.1, 95% CI -4.1 to -2.1, p< 0.001) and overnight from 4.1% to 1.1% (-

3.1, 95% CI -4.2 to -1.9, p< 0.001; (268)). Other methods for basal adaptation have 

been discussed in further detail in Section 1.5.5.  

 

There is also an inability for the CBR to provide adaptive learning with extended 

phase or dual wave bolusing. Standard therapy suggests the use of extended or dual 

wave boluses to cover meals with high fat and/or protein content, due to potential 

delayed gastric emptying and changes in insulin sensitivity (54,304). Thus, we 

would expect to see improvements in glycaemia with dual wave bolusing. An 

adaptive system with the ability to respond to differences in meals and incorporate 

the effect of macronutrients (fat and protein), would be particularly advantageous 

if the intended system were able to adapt its bolusing pattern with learning from 

previous cases.  
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Finally, the algorithm uses CBR to adapt the bolus advice. CBR is commonly 

referred to as a “lazy learning method” (305), as it can be time-consuming to build 

up a large set of cases. Consequently, this may reflect the degree of time taken to 

observe noticeable changes in the adaptive bolus advice, with certain participants 

potentially needing to remain on the CBR algorithm for longer than others. An 

advantage of such a method, however, was that the retrieved cases could be used 

to provide understandable explanations as to why the given solution is produced 

and thus does not suffer from the “black-box” label many machine learning 

solutions suffer from. This is particularly useful and important when assessing 

whether the system is working as intended (for example during Phase 2), and for 

building clinician and user confidence in the system. 

 

Besides using CBR, alternative methods have been proposed for an adaptive 

algorithm, such as fuzzy-logic (261), deep learning and neural networks (306). A 

key advantage of machine learning techniques is the ability to mine large databases 

of glucose and wearable sensor data to define domains in insulin bolus advice that 

are currently less well established. The challenge, common with all AI in T1D, will 

be to deploy the most appropriate algorithm for each given problem (i.e. to address 

meal detection, predictive glucose forecasting, as well as the environmental and 

physiological factors that affect insulin requirements at mealtimes). It is likely a 

combination of various AI algorithms may be required to address these multiple 

issues. For example, a system could use machine learning for the prediction and 

identification of meals and exercise through wearables (see Section 6.3) and 

subsequently integrate with CBR or fuzzy logic to determine the insulin dose 

required. Standard AI techniques have enabled short to medium-term glucose 
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forecasting for up to 15mins-2hours (231,232), however algorithms with extended 

prediction (233) could be integrated to support earlier detection of minimum 

postprandial glucose values. In addition to this, use of longer-term risk metrics over 

days or weeks may support algorithm learning.  

 

6.2.2 Safety system 

In terms of the PEPPER safety system, the predictive glucose forecasting algorithm 

had a RMSE of 1.6 (1.4-1.9) mmol/L and the overall MARD between the 

forecasting algorithm and the actual sensor glucose was 14.4 (12.6-15.9) %. Our 

engineering team at Imperial have since identified alternative AI-derived methods 

to enhance the accuracy of 30minutes predictive glucose forecasting using 

personalised deep learning forecasting algorithms, a system known as GluNet 

(307). GluNet reportedly has a forecasting performance in-silico of RMSE 19.2 ± 

2.7 mg/dL and a MARD 10.4 ± 1.5%, which is superior to other forecasting 

methods including the neural network for predicting glucose (NNPG), the support 

vector regression (SVR), the latent variable with exogenous input (LVX), and the 

auto regression with exogenous input (ARX) algorithm (307). Inclusion of such 

highly accurate forecasting algorithms would help enable better predictions of 

hypo and hyperglycaemia. Although the RMSE and MARD of the techniques 

within GluNet are better than the PEPPER algorithm, these may not have overall 

changed the final study outcomes. At the moment, these comparisons have only 

been in simulations, rather than within a real-world clinical context.  

 



A D A P T I V E  BO L U S  C A L C UL A T O R S  

P  A V A R I   214  

6.2.3 Other limitations 

Finally, as with many technology studies, due to the nature of the intervention, it 

can be difficult to blind the study participants or researchers. There is a possibility 

that the knowledge of being in a particular group may have affected certain lifestyle 

decisions. There can also be an unconscious bias by researchers when informing 

study participants. In this study, the PEPPER cohort were easily able to identify 

the group they were randomised to, due to the additional predictive glucose trace, 

predictive alarms and alerts, as well as the carbohydrate recommendations and 

varying bolus advise. 

 

Other challenges observed with adaptive decision support systems are similar to 

those faced in AP systems. These include the lag time of glucose monitoring 

sensors (up to 10 minutes) when measuring interstitial fluid, as well as the 

pharmacokinetics of rapid acting insulin analogues (relatively slow with onset of 

10–15 min) (101). Novel ultra-rapid insulins (including Fiasp and Liumjev) may 

support faster onset of action.  

 

 

6.3 Technology Integration and the Next Generation  

Currently the PEPPER software runs on Android handsets, either as a standalone 

application for MDI users or integrated within Cellnovo’s own handset, based on 

an Android OS build. Whilst the employed PEPPER algorithm is only coded to 

support use with a Cellnovo pump, the application can be easily integrated in the 

microcontroller of any insulin pump. Additionally, carrying four devices (handheld 
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handset, rtCGM, activity monitor, and pump/insulin pens) and their supplies is not 

an optimal user experience. The plan for future generations of the system would be 

to enable direct communication of PEPPER with commercially available devices 

(i.e. insulin pumps by different manufacturers, as well as for app integration into 

Android or iOS mobile handsets). This would enhance system usability and 

practicality for daily use, as well as reduce device burden, such as integrating the 

user’s own smartphone through a downloadable app with automated software 

updates available.  

 

Integration with smartwatches (e.g. Apple Watch), where the menu on the watch 

is controlled either via swipe or touch gestures, would enable users to easily view 

glucose values, or receive notifications and reminders. In-built sensors within these 

wearables (e.g. accelerometer, heart rate data, sleep tracking) can add to the range 

of input datapoints used for prediction and modelling, such as physical activity, 

stress and sleep patterns. Furthermore, geographical data may be automatically 

updated from location settings which can further provide a broader set of impacting 

factors (e.g. ambient temperature, humidity and atmospheric pressure). 

 

At present, besides the key parameters affecting insulin requirements, it is unclear 

which additional factors are most likely to be beneficial when adapting bolus 

advice. Further analyses may be extracted from the PEPPER CBR data to assess 

the effect of alcohol and exercise on postprandial minimum glucose and its 

correlation with the number of cases per participant. Hormone cycle in women can 

be reviewed more specifically within the women who recorded this on the app.  
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Next generations of the PEPPER system could be linked up with existing meal 

libraries, which contain detailed information about the composition of the meals. 

Examples include MyFitnessPal (299), MyNetDiary (308) and Fooducate (309). 

Alternatively, PEPPER users could create their own personalised meal library. The 

library can potentially be co-created personally or remotely with the help of a 

dietician in the set-up phase of the software. The integration of a meal library would 

allow consideration of parameters such as meal absorption, fat and protein content.  

 

Other systems that could ease physical entry of meals into the system include smart 

technologies with machine learning capabilities, such as GoCARB (228). The 

vision-based smartphone system enables the estimation of carbohydrate content 

from plated meals for individuals with T1D (229,298). Besides rapid entry of meal 

content, using technologies such as these may offer individuals easy, accurate, and 

real-time estimation of carbohydrate content in their meals, without the need for 

accurate carbohydrate counting (228,298). Other food image recognition and deep 

learning algorithms include NutriNet (310), GoFood (311), Calpal (312) and 

Calorie Mama (313). Whilst photographing food for management is burdensome 

and may be difficult when eating out or eating at other peoples’ homes, there is a 

long-trodden path for individuals to upload food photographs to social media, 

including Instagram and Facebook.   

 

Additional modifications and features that may promote and sustain long-term user 

engagement include gamification, personal goal setting, social and peer support. 

Gamification uses elements of game design, such as points, leader boards, levels, 

competitions, rewards, achievements and goals of experience. Such methods in a 
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health behaviour change programme may be a way to intrinsically motivate users 

to continually engage with such applications (314,315).  

 

Understanding individuals and their environments is critical to diabetes care. Both 

of these are seeing an explosion in potential data gathering. There are many areas 

which are being sensor enriched, from the individual to the home, which may 

further support diabetes management. Further accelerating this innovation, is the 

network effect brought about by an ecosystem of these solutions, where greater 

benefits are found through the interplay of multiple solutions; for example through 

analysing pillow sensors, bedroom lights, screen usage along with mealtimes and 

food, to build a better picture, not just of sleep patterns, but also on the influencers 

on sleep. Currently each of these solutions are sold separately, to solve their own 

niche, often from a separate company. However, these ecosystems are benefiting 

from a move towards common technology standards and an API driven business 

model making these interconnections easier.  

 

The long-term challenges of such integration, however, will be data governance, 

potential impact on medical insurance and interoperability between systems to 

exchange and use information. Furthermore, at present, these ecosystems are 

largely, albeit informally, controlled by the large tech companies, such as Google 

and Amazon, who through their size, often dictate the standards and technology 

that they will support (316). 
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6.4 Ongoing Future Studies  

In 2018, the DreaMed Advisor Pro (DreaMed Diabetes Ltd, Petah Tikva, Israel) 

artificial intelligence-based decision support system (AI-DSS) was approved by 

the FDA to provide insulin therapy adjustment recommendations to physicians for 

people with T1D using an insulin pump (not including hybrid closed loop). The 

system has been evaluated by healthcare professionals, which found the algorithm 

provided similar directional agreement to that of clinicians, with the magnitude of 

dosing change equal or less than that recommended by clinicians (165). In a six-

month, parallel, randomised controlled trial, 108 participants aged 10-21 

years were randomized 1:1 to receive remote insulin dose adjustment every three 

weeks guided by either an AI-DSS (n = 54) or by clinicians (n = 54). Percentage 

time within range (3.9–10.0 mmol/L) in the AI-DSS arm was statistically non-

inferior to the clinician arm (50.2 ± 11.1% versus 51.6 ± 11.3% respectively, 

p<1×10−7). Percentage time <3.0 mmol/L was also statistically non-inferior to the 

clinician arm (p < 0.0001).  It is important to note that insulin therapy adjustments 

(basal and bolus) were provided to clinicians on a three-weekly basis, with 

clinicians further able to make dose alterations in the AI-DSS arm. In contrast, the 

PEPPER system is designed to provide real-time advice directly to users, with 

optimised settings for different meals in different ambient scenarios. The potential 

implication of the DreaMed Advisor Pro is the ability to provide frequent 

adjustments to insulin therapy with similar levels of glucose control achieved by 

clinicians with diabetes expertise.  
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Two key clinical trials are underway by our group at Imperial College London, 

namely Phase 5 of the Advanced Bolus Calculator for Diabetes (ABC4D; 

NCT03963219) and the Adaptive, Real-time, Intelligent System to Enhance Self-

care of chronic disease (ARISES; NCT03643692) study. 

 

ABC4D is a decision support algorithm also based on CBR and has been 

implemented in a smartphone application for MDI users. An initial 6-week 

prospective non-randomised single arm pilot study with 10 adult participants 

showed more than a two-fold reduction in the number of postprandial 

hypoglycaemic episodes (167). Currently, an 8 month randomised non-inferiority 

clinical trial is underway (317). Whilst ABC4D lacks the integration of a combined 

safety system, it includes a more automated revision process. As safety was a 

priority in the PEPPER study, the research team approved ICR algorithmic changes 

on a weekly basis. However, frequent (e.g. weekly) manual revisions may not be 

practical for clinical adoption, and thus a more automated revision process to 

achieve similar performance would be beneficial.  

 

The ARISES study includes the use of multiple wearable sensors to capture a range 

of biological, environmental and behavioural data to provide real-time therapeutic 

and lifestyle decision support. The decision support is based on deep machine 

learning algorithms and will be evaluated in 12 participants over 8 weeks (306). 

The Dexcom G6 will be used for continuous glucose monitoring and physiological 

signals will be collected using the wearable Empatica E4 (Empatica Inc, 

Cambridge, MA). The ARISES interface also enables dynamic data visualisations.  
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One of the key features of ARISES is that it runs wholly on the smartphone without 

any requirements for a server or backend processing. At a commercial level, this 

has the potential benefits of better data privacy, less internet or data bandwidth 

usage, and improved reliability (not affected by internet connectivity required for 

the PEPPER cases to upload and sync with the server). In this thesis, the mobile 

application PEPPER required a central server for backend processing and currently 

this was optimised for use in the Android (Nexus) handset only. The benefits of a 

central server include potentially quicker diagnostic processes for users, ability to 

process updates within the server to support all users, as well the opportunity to 

train machine learning algorithms in real-time (318).  

 

 

6.5 Conclusion and Future Outlook 

Digital health technology, particularly digital and health applications with AI, have 

rapidly developed to help people manage their diabetes. However, few are licenced 

for use with an evidence base for safety and effectiveness. Currently there is no 

decision support system available to individuals for insulin dosing on the market 

that adapts itself based on real-time activity and glucose data for users on pump 

and MDI. 

 

The work outlined in this thesis showed that PEPPER is safe, acceptable, and 

maintains glycaemia in a diverse population. To our knowledge, this is the largest 

and first randomised controlled trial reporting clinical outcomes of a personalised, 

adaptive bolus calculator for use with both MDI and CSII therapy. Despite the 
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limitations and study being underpowered, all times in ranges moved towards 

improvement in the intervention group. Increased time in range was most notable 

in the pump cohort.  

 

 A larger powered randomised controlled trial is required to confirm overall 

effectiveness and would be particularly prudent to include CSII participants using 

a different pump provider. Since safety has been evaluated in this setting, other 

interesting cohorts would include children and people with poorer baseline 

glycaemia (HbA1c > 64mmol/mol), as well as individuals at highest risk of 

hypoglycaemia. One of the key challenges in engaging children and young adults 

in this group is missed boluses. Novel methods for user-directed support and 

motivation include gamification, rewards and peer or social support (Section 6.3).  

 

In terms of exploitation of the PEPPER system, the PEPPER integration source 

code belonged to Cellnovo and therefore it was not possible to exploit the system 

as a single integrated solution.  As a result, the PEPPER Consortium collaborators 

have developed multiple individual components in an independent way with 

application programme interfaces (API) to allow these components to be used by 

other future projects or commercial applications. The collection of these individual 

APIs comprise of the constituent parts of PEPPER i.e. (i) safety system (ii) insulin 

recommender and adaptive bolus calculator (iii) the web-based interface (iv) the 

graphic mobile interface implemented within the mobile application. The PEPPER 

APIs are currently available under different licencing agreements and its 

documentation are freely accessible online (www.pepper.eu.com/API). This 

provides a convenient way to integrate the variety of clinically validated software 
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modules outlined within this thesis, into an insulin decision support system or 

artificial pancreas.  
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9 Appendix 2 

Data Analysis Plan 

9.1  Study Objectives 

9.1.1 Primary Objective  

To assess safety and feasibility of the complete Patient Empowerment through 
Predictive PERsonalised decision support (PEPPER) system (i.e. safety system 
and adaptive bolus calculator) compared to a standard bolus calculator.  
 
9.1.2 Secondary objectives  

• To assess the safety system integrated within PEPPER. 
• To assess the adaptive bolus advisor within PEPPER.  
• To assess psychological outcomes of the PEPPER system using clinical 

questionnaire data.  

 

9.2 Endpoints 

9.2.1 Primary endpoint 

• The primary endpoint for the PEPPER clinical trial is the difference in 
percentage time in range (3.9 – 10mmol/l) between the intervention arm 
that receives the PEPPER system and the control arm. Endpoints 
assessment will not be blind to the study intervention arm allocated. 

 
9.2.2 Secondary endpoints 

• Secondary outcomes include between-group differences for the variables 
listed below: 
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1. Variables related to glycaemia:  
– Percentage time in hypoglycaemia (<3.9mmol/l)  
– Percentage time in hypoglycaemia (<3.0mmol/l) 
– Percentage time above range (>10mmol/l) 
– Number of episodes of serious hypoglycaemia (defined as 

sensor glucose < 3.0mmol/l for > 20 min 
– Episodes of hypoglycaemia within 4- and 6-hours post-

prandially  
– Post-prandial area under the curve (AUC) at 4 hours and 6 

hours 
– Post-prandial area under the curve (AUC) (<3.9) at 4 hours and 

6 hours 
– HbA1c 

 
2. Variables related to adverse events:  

– Event rates of severe hypoglycaemia  
– Event rates of diabetic ketoacidosis  
– Event rates of all adverse events  

 
3. Variables related to glycaemic variability:  

– Standard deviation (SD) 
– Coefficient of variation (CV) 
– Mean amplitude of glycaemic excursions (MAGE) 
– Continuous overall net glycaemic action (CONGA): 1hr and 

2hr 
– Mean of daily differences (MODD) 
– Lability index (LI) 
– Glycaemic variability percentage (GVP) 
– Mean absolute glucose change per unit time (MAG)  
– Glycaemic risk assessment diabetes equation (GRADE) 
– M-value  
– Average daily risk range (ADRR) 
– J-Index  
– Personal glycaemic status (PGS) 
– Index of glycaemic control (IGC) 
– Risk index (RI) 
– Low blood glucose index (LBGI)  
– High blood glucose index (HBGI)  

 
4. Variables related to anthropometric measurements:  

– Weight (kg) 
– Basal insulin dose (units) 

 
5. Psychological outcomes: 

– Problem Areas in Diabetes (PAID) Questionnaire 
– Diabetes Quality-of-Life (DQOL) Questionnaire 
– Diabetes Treatment Satisfaction Questionnaire (DTSQ) 
– Gold/Clarke score at baseline 

 
6. Variables related to safety system:  
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– Rate of change in number of hypoglycaemia alarms   
– Rate of change in number of hypoglycaemia alerts 
– Rate of change in number of hyperglycaemia alerts 
– Rate of change in number of low glucose suspend incidents (at 

50% and complete suspension) 
– Rate of change in number of carbohydrate recommendations 
– Rate of change in number of carer alarms 
– Rate of change in number of insulin dose saturations (low and 

high)  
– Accuracy of the glucose prediction algorithm 

 
7. Variables related to the adaptive bolus advise (using CBR 

technique):  
– Number of CBR revision cases 
– Number of bolus recommendations accepted by user 
– Incidence and usage of various case parameters:  

 Physical activity (past and future) 
 Meal absorption rate 
 Alcohol 
 Stress 
 Tiredness 
 Hormone cycle 
 Fever 
 Digestive illness 

 
 

9.3 Statistical considerations 

Analysis population 

- Intention to treat population (ITT) 
Primary analyses will be conducted following the intention to treat (ITT) principle. 
All participants who are randomised into the study will be included in the ITT 
analysis and the analysis is conducted according to the randomised treatment arm. 
 

- Per protocol population 
In addition, the primary endpoint will be analysed with the per protocol population, 
which consists of those participants in the ITT population who complete the study 
with no significant deviations from the planned protocol procedures. The exclusion 
will be as follows: 

• Significant protocol deviation such as recruitment outside of 
inclusion / exclusion criteria  

• Pregnancy during study 
• Participants who withdraw consent 
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Data Description 

Collected data will be summarised as follows:  

Quantitative data: median and interquartile range (IQR); maximum and minimum 
values 
Qualitative data: count (n) and proportion (%); 
In addition, for each variable, the proportion of missing data will be reported. 
 
Data review 

The distribution of the main variable (percentage time in range) will be assessed 
using a normal distribution and quantile-quantile plot. Skewness will be assessed 
for, and additional assessment of normality will be conducted using the Shapiro-
Wilk test. Boxplots may be used to detect outliers. 

Variables with outliers, missingness and/or problematic distribution will be 
reviewed with the some/all of the Study Team (where applicable). 

If required, data will be adjusted for their baseline value, participant age and sex. 
 
For variables showing strong departure from normality, the non-parametric Mann 
Whitney Wilcoxon rank sum test (two groups). 
 
 
Missing data 

Missing data will be handled by a last observation carried forward approach unless 
there is evidence against the assumption of data missing at random. For data 
computed in EasyGV, periods without glucose values that are longer than the 
defined ‘Max Gap’ are considered as gaps. The program will enable glucose 
interpolation when the time difference between consecutive samples is less than 
Max Gap. This point is important when the CGM recordings are large since 
calibration periods or sensor changes could add error to the calculations. The ‘Max 
Gap’ will be defined as 50 minutes (default setting of EasyGV 10). 
 
 
Analysis of the primary endpoint  

Derivation: 

Measurement. As per protocol, participants have CGM during the clinical study, 
through which ambulatory glucose profiles will be analysed. Data from each 
intervention period will be analysed from last 28 days of each phase 
(PEPPER/control). 

Data transformation. Raw glucose data will be exported from the Clinical Portal 
in to Excel.  
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Available data from previous studies suggest that percentage time in ranges may 
not be normally distributed (319). In the study by Avari et al (319), time in ranges 
showed significant departure from normality with significant skewness (Shapiro–
Wilk test of normality; p < 0.05).  

For this analysis, the preferred approach to handle departures from normality and 
outliers will be to use non-parametric statistical methods.  

 

Planned analysis: 

The primary analysis will be conducted under the ITT principle. Differences in 
percentage time in range (3.9 – 10.0 mmol/l) between the last 28 days of each 
intervention phase (PEPPER/control) and the 4 weeks of the run-in phase 
(baseline) will be calculated and between group differences will be presented as 
medians with IQR.  

The primary null hypothesis is of no difference in median percentage time in range 
between the intervention and the control arms. It will be tested against the 
alternative hypothesis of a difference between the two groups. The null hypothesis 
will be rejected if the statistical analysis indicates p<0.05.  

 

 

Power of the analysis: 

With 50 participants a 0.57 SD difference can be demonstrated as significant with 
α of 0.05 and 80% power (two-tailed). Based on a pilot study population mean 
(SD) % time in target (3.9-10mmol/l) of 61.6 (18.8) a 10.7 (=0.57x18.8) difference 
in % time in target can be demonstrated as significant between the intervention and 
control in this study.  To allow for a 10% drop-out 55 participants will be recruited. 

In the event of failure to recruit or collect sufficient completion data to meet the a 
priori sample size, a post-hoc assessment of achieved power may be undertaken. 
  
 
Secondary endpoints 
 
The same analyses (described above) will be computed for all of the continuous 
variables. The additional specific analyses are described in the section below. 
 

Time in 
ranges 

Baseline (median 
+/- IQR) 

∆ Control ∆ PEPPER p-value 

  Differences between the last 4 weeks of the 
intervention phase (Control/ PEPPER) 
and baseline 
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• Post-prandial area under the curve (AUC) at 4 hours and 6 hours 
– Derivation: CGM derived 
– Analysis: To be calculated using a statistical software package to 

compute trapezoidal approximation of glucose levels measured 
every 5 minutes by CGM. 
 

• Glycaemic variability measures  
– Derivation: Evaluated GV measures to include SD, CV, MAGE, 

CONGA, MODD, LI, MAG, GVP, PGS, M-Value, IGC, RI, 
GRADE, M-value, ADRR, J-Index, HBGI and LBGI.  GRADE 
score is also reported as %GRADEhypoglycemia, 
%GRADEeuglycemia, and %GRADEhyperglycemia representing 
percentages of GRADE scores attributable to glucose values 
<3.9 mmol/l, between 3.9–10.0 mmol/l and >10.0 mmol/l 
respectively. 

– Analysis: Measures of GV to be computed using EasyGV (v10.0) 
software. Between-group analyses and statistical tests to be 
conducted in similar manner to primary outcome.  

 
• Safety System measures  

– Derivation: Number of alerts/alarms (including carer alarms)/ 
carbohydrate recommendations/ low glucose suspend (50% and 
total suspension), and number of insulin dose saturations (low and 
high). Accuracy of glucose prediction algorithm. 

– Analysis: Number of safety system outcomes to be computed 
through Matlab. Number of safety system outcomes (median ± 
IQR) for each study week in the intervention phase (i.e. total 12 
weeks). For accuracy of the glucose prediction algorithm, the mean 
absolute relative difference (MARD), root mean square error 
(RMSE) at 30mins will be calculated.  

– Potential Additional Exploratory Analysis: Correlation of safety 
system outcomes with change in glycaemia from baseline.  

 
• CBR measures  

– Derivation: Number of case revisions, number of bolus 
recommendations accepted by user, number of individual parameter 
usage 

– Analysis: Number of case revisions to be computed. Number of 
CBR cases (median ± IQR) in the case base for each study week in 
the intervention phase (i.e. total 12 weeks). Rate of change to be 
subsequently calculated.  

– Potential Additional Exploratory Analysis: Correlation of number 
of CBR cases with change in glycaemia from baseline. Correlation 
of number of bolus recommendations accepted by the user with 
change in glycaemia from baseline. Number of individual 
parameter usage outcomes/correlation to be decided dependent on 
number of individual parameters used. Examples may include: 
 Effect of alcohol intake with meals and hypoglycaemia (e.g. 

post prandial AUCs or glycaemic variability measures)  
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Additional information: 

Significance level - All analyses will be conducted using a 5% significance level.  

Statistical software - Data management and statistical analyses will be performed 
using statistical software e.g Stata. Glycaemic variability will be analysed using 
EasyGV10.  

Publications - Clinical publications arising would have an author from ICL and 
IDIBGI as joint first authors. 
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