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Abstract

This thesis presents a range of mathematical and computational models for use in transient nuclear

criticality safety assessment. A mathematical model for quantifying the uncertainty in the wait-time

probability distributions of criticality excursions initiated in the presence of weak intrinsic neutron

sources is presented. This model is used to demonstrate the potential influence of parametric uncer-

tainty on the wait-time probability distributions of the 1958 Y-12 criticality accident and experiments

on the Caliban reactor.

Also presented in this thesis is a new mathematical and computational model of radiolytic gas

production and evolution in fissile liquids. This model has been validated against nuclear criticality

safety benchmark experiments on fissile solution reactors and has been shown to accurately predict

features of the fission power profiles related to the appearance and advection of radiolytic gas voids

in the solution. The model has also demonstrated efficacy in predicting the timing and magnitude of

secondary peaks in the fission power output. The purpose of this new mathematical and computational

radiolytic gas model was to improve the simulation of fissile liquid criticality transients while removing

the need for the adjustable heuristic parameters used by existing fissile liquid simulation codes. These

parameters, which must be appropriately adjusted to criticality safety benchmark experiments, are

dependent on the geometry and composition of the system being analysed. The need for these heuristic

parameters therefore precludes the use of these codes as predictive modelling and simulation tools.

The new mathematical and computational model, presented in this thesis, offers valuable insights into

the behaviour of radiolytic gas in fissile liquid systems.
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Nomenclature

αc A mass transfer rate constant characterising the rate of change in the concentration of dissolved

gas due to mass transfer to or from the gaseous phase

αT Thermal reactivity feedback coefficient

αV Void reactivity feedback coefficient

ν̄p Average number of prompt neutrons emitted per fission

ν̄ Average number of neutrons per fission

n̄ Expected (mean) neutron population

Z̄ Expected (mean) cumulative detector count

β Total delayed neutron fraction

βi Proportion of fission neutrons which appear as delayed neutron precursors in group i

5 The del operator

χ Energy spectrum of fission neutrons

∆Hr Enthalpy of reaction

∆Hvap Enthalpy of vaporisation

δ Extrapolation distance

Ė Linear energy transfer
(
= dE

dx

)
ε Energy released per fission

ε The fast fission factor

η The number of fission neutrons produced per neutron absorbed in fissile material
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Γ(x) The gamma function

γ(x, y) The lower incomplete gamma function

Λ Neutron generation time

λi Decay constant of delayed neutron precursors in group i

µ Mean value

µ Solution dynamic viscosity

φ Neutron scalar flux

φw An energy-dependent weighting flux

ψ Neutron angular flux

ρ System reactivity
(

= keff−1
keff

)
ρi Partial density of component i in the solution

ρs Solution or liquid density

ρv Vapour density

σ Standard deviation

σ(E) Microscopic neutron cross-section at energy E

Σa Transport macroscopic neutron cross-section

Σf Fission macroscopic neutron cross-section

σg Collapsed microscopic neutron cross-section for energy group g

Σs Scattering macroscopic neutron cross-section

σs Solution surface tension

Σt Transport macroscopic neutron cross-section

σS−B The Stefan-Boltzmann constant

τ Prompt neutron lifetime

τi Characteristic lifetime of a delayed neutron precursor in group i
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~Ω An angular vector

~r A position vector

Ab Bubble surface area

Avessel Surface area available for heat transfer between the vessel and the surrounding air

B2
g Geometric buckling

B2
m Material buckling

CD Drag coefficient of a bubble

Ci Power contribution of delayed neutron precursors in group i

CN Molar concentration of nitric acid

Cp Heat capacity at constant pressure

CU Molar concentration of uranyl nitrate

Ccrit Critical concentration of dissolved H2 for the appearance of radiolytic gas voids

Ci(aq) Concentration of dissolved component i

ci,0 Probability that an absorption event leads to the creation of i prompt neutrons no delayed

neutron precursors

Ci,eq Equilibrium concentration of component i

ci,j Probability that an absorption event leads to the creation of i prompt neutrons and a delayed

neutron precursor in group j

D Neutron diffusion coefficient (neutronics) or mass diffusivity (molecular diffusion)

Di Mass diffusivity of component i

DFS Solution mixing coefficient

E Energy

E(tsat) Fission energy absorbed by the solution since the start of the transient or since the solution

last become unsaturated with radiolytic gas

E[X] Expected value of X
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E0 Eötvös number

Eb Bubble energy of formation

Ek,fiss Combined kinetic energy of the fission fragments following fission

Esat Energy required to saturate the solution with radiolytic gas

F Fission rate

f The thermal utilisation factor

fi Mass fraction of component i

g Acceleration due to gravity

Gi Radiolytic gas generation coefficient for component i

Gr Grashof number

hboil Boiling heat transfer coefficient

Hv Vessel height

hext Heat transfer coefficient between the vessel and the surrounding air

hint Heat transfer coefficient between the solution and the vessel

Hi,sol Henry’s law constant of component i in the solution

k Thermal diffusivity

kb Constant of proportionality relating the maximum stable number density of bubbles in solution

to the fission power density

k′b Constant of proportionality relating the constant kb to the mass diffusivity of dissolved gas and

the radiolytic gas generation coefficient of the solution

kc Constant of proportionality relating the rate of bubble collapse to the degree of departure from

the equilibrium number density of stable bubbles

kD Gas/liquid interface mass transfer coefficient

kH2O2
Reaction rate constant for the decomposition of H2O2

k∞ The infinite multiplication factor
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keff The effective multiplication factor

L Track length associated with the formation of a bubble

l Mean neutron lifetime

L2 Diffusion length

Mi Molecular weight of component i

Mvessel Vessel mass

Msol Solution mass

n Neutron population

n∗ Neutron population corresponding to the wait-time threshold

Nb Number of bubbles

Ni Number of moles of component i

Nfiss Number of fissions

NRG Number of moles of radiolytic gas

Nu Nusselt number

P Fission power output

P (n,m, t) Probability of having n neutrons and m delayed neutron precursors at time t

P (x) Absolute probability of x

Pb Bubble pressure

Pl Hydrostatic pressure

Pw(t) Probability density of crossing the wait-time threshold at time t

PH2
Partial pressure of H2 gas

PfNL Fast non-leakage probability

PNL Total non-leakage probability

PthNL Thermal non-leakage probability
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Pr Prandtl number

Q Rate of heat transfer

Q(x) Probability that X < x (cumulative probability of x)

Qsol Mass flow rate of solution

R Universal gas constant

r Radius

rb Bubble radius

re Expanded bubble radius or radius of a bubble which has achieved equilibrium with its sur-

roundings by consuming excess dissolved gas through expansion

rv Vessel radius

R$,(T+V ) Combined thermal and void reactivity feedback in units of dollars

R$,T Thermal reactivity feedback in units of dollars

Rex External (inserted) reactivity during a criticality transient

rnucl Characteristic radius of the available bubble nucleation sites

Re Reynolds number

Ri Richardson number

Ro Roshko number

S Intrinsic neutron source strength

T Solution temperature in Kelvin

t Time

TAv Mass-weighted mean solution temperature

Tc Solution temperature in degrees Celsius

Text External temperature

Tsat Saturation temperature

tsat Time at which the concentration of dissolved H2 exceeds the critical concentration
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tsat Time at which the solution becomes saturated with radiolytic gas

Usurface Heat transfer coefficient between the solution and the gas above its surface

v Neutron velocity

vb Bubble velocity

VRG Volume of radiolytic gas

X Separation distance in the direction of the x axis

yH2
Mole fraction of H2 in the gaseous phase

Z Cumulative detector count

Z∗ Cumulative detector count corresponding to the wait-time threshold

amu Atomic mass units

CFD Computational Fluid Dynamics

DNP Delayed Neutron Precursor

eV Electron volt

HTC Heat Transfer Coefficient

LET Linear Energy Transfer

MIPR Medical Isotope Production Reactor

MOC Method of Characteristics
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Chapter 1

Introduction

Aqueous fissile solutions are created in a wide variety of important processes throughout the nuclear

industry and pose a particular set of hazards with respect to nuclear criticality safety. Fissile liquids

are common in nuclear fuel fabrication and reprocessing, where solid fuels are dissolved in aqueous

solutions containing acid for the purpose of homogeneous chemical processing. Fissile liquids also

occur in Aqueous Homogeneous Reactors (AHR), a type of reactor in which the fuel solution and

moderator comprise an aqueous solution of a uranium-containing salt, typically uranyl nitrate or

uranyl sulphate. These reactors are expected to become an important future source of radionuclides

for medical applications.

This thesis presents new mathematical and computational models for the analysis of nuclear crit-

icality transients in aqueous solutions of fissile material. This begins with a method for quantifying

the degree of uncertainty in the initiation time of fission power bursts in the presence of weak neutron

sources, followed by examination of the mechanics of bubble formation in fissile liquids and the evo-

lution of bubble growth during saturation of a fissile solution with radiolytic gas. Finally, this thesis

presents a point kinetics model which incorporates a new set of equations for predicting the number

and size of bubbles formed during nuclear criticality transients. This model is validated against crit-

icality benchmark experiments with close agreement between the predicted and measured transient

variables.

1.1 Introduction to Criticality Accidents

A criticality accident occurs when a critical mass or volume of fissile material is assembled inadver-

tently, resulting in an uncontrolled and unplanned nuclear chain reaction. These accidents can occur
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in any type of operation handling fissile material, including liquid and solid systems. Liquid systems

are particularly vulnerable to criticality accidents due to several factors, including the fact that the

geometry of the fissile material can be changed simply by transferring the solution to another vessel.

There are also many physical and chemical processes that can take place in aqueous solutions of fissile

material, such as precipitation, evaporation and sedimentation, which can contribute to increasing the

overall reactivity. In some circumstances, these processes can be difficult to foresee and have led to

unplanned and uncontrolled nuclear criticality excursions.

1.1.1 Definition of Criticality

Criticality of a fissile system is defined as the state in which the rate of production of neutrons from

fission equals the rate of removal of neutrons from the system from one generation of neutrons to the

next. In an infinite system, neutrons can only be removed by absorption and the system is critical

when the infinite multiplication factor (k∞) is equal to unity:

k∞ =
rate of neutron production

rate of neutron absorption
. (1.1.1)

In a real system, neutrons can also be lost from the system by leaking into the surroundings. In this

case, the infinite multiplication factor is replaced by the effective multiplication factor:

keff =
rate of neutron production

rate of neutron absorption + leakage
. (1.1.2)

It is noted by Glasstone and Sesonske (1994) that the infinite multiplication factor is a function of

the material properties only, whereas the effective multiplication factor is a function of the material

properties and the system geometry.

These multiplication factors can be thought of as the product of the probabilities of various events

which determine whether or not a neutron born in a fission event will go onto induce another such

event in a fissile nucleus. The four-factor formula describes the infinite multiplication factor:

k∞ = ηfεp, (1.1.3)

keff = k∞PNL, (1.1.4)

where η is the number of fission neutrons produced per neutron absorbed in fissile material, f is the

thermal utilisation factor which corresponds to the fraction of absorbed neutrons which are captured

by the fuel as opposed to non-fissile nuclides, ε is the the fast fission factor or the fraction of fission

neutrons causing fission before thermalisation, and p is the resonance escape probability. This last

factor represents the probability that a fast neutron will reach a thermal energy level without being
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absorbed in the resonance region where neutron capture cross-sections are highest. The non-leakage

probability (PNL) is included to convert the infinite multiplication factor to the effective multiplication

factor for finite systems. This is sometimes split into a fast and thermal non-leakage probability

resulting in an expression known as the six-factor formula (Knief et al. (1985)):

keff = ηfεpPfNLPthNL, (1.1.5)

where PfNL and PthNL are the fast and thermal non-leakage probabilities, respectively.

A description of the four-factor formula in Stacey (2007) discusses the effect by which separation

(or “lumping”) of the fuel and moderator into a heterogeneous configuration can increase the value of

p and therefore keff. This may also be an important phenomenon for fissile solutions, where the fuel

and moderator may initially comprise a homogeneous mixture before separating due to precipitation

or sedimentation, potentially leading to an increase in reactivity.

The four and six factor formulae serve to illustrate the important phenomena at the scale of

neutrons and nuclei that contribute to establishing criticality. This translates, at the larger scale, to a

range of macroscopic properties that influence the criticality of a fissile system. Clayton (1974) makes

the following observation when discussing these factors:

“Criticality, then, depends not only on the quantity of fissile material present, but on the

size, shape, and material of any containment vessel which may be used, on the nature of

any solvents or diluents, and on the presence of any adjacent material which may possibly

return neutrons through scattering back into the fissile material.”

The factors which influence the criticality of a fissile system are summarised by the well-known

mnemonic MAGICMERV which stands for: Mass, Absorbers, Geometry, Interaction, Concentration,

Moderation, Enrichment, Reflection, Volume (NNSA (2008)). Many of these factors are somewhat

interdependent, which can lead to complex and unpredictable behaviour. This is highlighted in Clayton

(1974) and Clayton (2010) which explore so-called “anomalies of criticality”, where the changes in the

keff of a fissile system may be particularly unintuitive.

Clayton details many examples of complex and unpredictable changes in the reactivity of a fissile

system. In one example, it is shown how the presence of 240Pu in a fissile solution containing a mixture

of 239Pu and 240Pu leads to a situation where a solution with a given size and shape can be critical

at three different plutonium concentrations. This is due to the relatively high thermal capture cross-

section, and negligible thermal fission cross-section, of 240Pu. A change to the dilution of the system

effects the mass and concentration of fissile material, but it also affects the degree of moderation
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and therefore the neutron energy spectrum. A shift towards thermal energies increases the chance of

fission in 239Pu but it also increases the chance of capture in 240Pu, leading to a complex relationship

between keff and solution concentration. In other cases, Clayton shows that it is theoretically possible

to have a system with k∞ < keff in which criticality can be achieved with k∞ < 1.

1.1.2 Examples of Criticality Accidents

It is useful to give a brief summary of some of the better known criticality accidents. The aim of this

section is to demonstrate the consequences of criticality accidents and the broad range of circumstances

in which unplanned criticality excursions have occurred in the past.

1.1.2.1 1958 Accident at the Y-12 National Security Complex

A very well-known criticality accident occurred on 16th June 1958 at the Y-12 National Security

Complex in Oakridge, Tennessee. This accident resulted in significant radiation exposure to 8 workers.

The exact radiation doses received by the workers are not known. However, estimates have been made

indicating that at least 5 workers received doses in excess of 2 Sv. Knief et al. (1985) reports an

absorbed dose of 365 Rads (∼3.7 Sv) for the worker in closest proximity at the time of the accident,

while McLaughlin et al. (2000) reports that this worker received a dose of 461 Rem (∼4.6 Sv).

The accident occurred in a 208 litre drum that was being used to collect water drained from

pipework during a leak test. In a report on the incident, issued at the time by the plant operator

Union Carbide, Patton et al. (1958) states that the water used for leak testing was to be transferred to

the drum via a system of pipes, however a leaking valve meant that these pipes had become filled with

a solution of 90% highly enriched uranium (HEU) in the form of uranyl nitrate. The solution of HEU

in the pipework was deposited in the drum and was followed by water from the leak testing. Initially,

the HEU deposited in the drum remained subcritical, however as water from the leak test flowed into

the drum, the degree of moderation was increased, causing the solution to become critical. Water from

the leak test continued to flow, making the solution more dilute, and eventually the system became

subcritical once again. The total yield was estimated at 1.3× 1018 fissions, a particularly large yield

relative to other criticality accidents.

A deterministic point kinetics model of the Y-12 accident has been presented by Zamacinski et al.

(2014) and a stochastic treatment, of the initial phase of the accident, is presented in Chapter 2.
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1.1.2.2 1999 Accident at the JCO Fuel Fabrication Plant in Tokaimura

A more recent criticality accident occurred in 1999 at a JCO fuel fabrication plant in the town of

Tokaimura, Japan. The accident resulted in two fatalities due to radiation exposures reported (IAEA

(1999)) to be in excess of 6 GyEq. The same report notes that a third plant worker received a dose

in the range 1.2 to 5.5 GyEq and survived. Gamma and neutron dose rates as high as 0.84 and

4.5 mSv/hr, respectively, were measured outside the confines of the facility which is believed to have

resulted in doses as high as 9.1 mGyEq among members of the public (IAEA (1999)). Doses as high

as 119 mGyEq were also received by the workers who intervened to bring the accident under control.

The Tokaimura accident is classified at Level 4 on the International Nuclear and Radiological Event

Scale (INES).

The events of the accident are described in McLaughlin et al. (2000). The accident occurred while

three workers were preparing a solution of 18.8% enriched uranyl nitrate. The workers deviated from

the approved procedure by preparing the solution in a precipitation vessel, rather that the storage

columns intended for that purpose. The cause of the accident was the geometry of the precipitation

vessel, which was wider than the storage columns and resulted in a more compact configuration,

providing the conditions for criticality once a sufficient volume of solution had been added to the

vessel. If the solution had been prepared in the storage columns, the tall narrow geometry of these

vessels would have prevented criticality from occurring.

The Tokaimura accident was a prolonged excursion lasting approximately 20 hours. This was

largely due to the presence of a cooling jacket surrounding the precipitation vessel, which removed

heat from the fissile liquid, lowering the temperature and reducing thermal reactivity feedback (Liem

and Naito (2015)), as well as acting as a neutron moderator and reflector. The accident was eventually

brought to an end when the cooling jacket was drained by plant operators.

A model of the Tokaimura accident using the TRACE code was presented in Yamane et al. (2000)

and cited in Liem and Naito (2015). Pain et al. (2003) also present a model of the Tokaimura accident

using the FETCH code.

1.1.3 Need for Accurate Modelling

In the UK, the conditions of the nuclear site licence require that nuclear sites regularly review their

criticality safety measures, as well as assessing the risk of criticality each time a new facility is designed,

or the design of an existing facility is changed (ONR (2016)). In order to make a useful assessment

of criticality risk and safety measures in place, it is necessary to be able to predict the potential
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consequences of any accidents that might occur. A number of simplified methods exist for predicting

the consequences of criticality accidents and a review of these methods can be found in Nakajima

(2003). However, these methods are associated with large uncertainties, leading to a requirement

for increased safety margins, which can place severe restrictions on plant operations, and may make

certain operations altogether unviable. The purpose of advanced criticality safety models is to provide

criticality safety assessors with more precise estimates of the worst case accidents, as well as support

emergency preparedness, safety and evacuation planning. This can contribute to the safe reduction

of unnecessary safety margins and a more accurate assessment of criticality risk, as well as providing

improved emergency safety and evacuation plans.

Modelling and simulation tools for aqueous fissile solutions also have a potential future use in

the production of medical isotopes such as Technetium-99m (99mTc). The aqueous homogeneous

reactor (AHR) is a nuclear reactor where the fuel and moderator comprise an aqueous solution of the

fissile material, such as uranyl nitrate or uranyl sulphate. These types of reactor are currently under

investigation as a potential technology for the production of short-lived radioisotopes, such as 99mTc,

for medical applications (IAEA (2009)).

1.2 Predicting Criticality

There are many different methods for estimating the effective neutron multiplication factor of a fissile

system. These methods vary widely in their accuracy and the complexity and computational expense

of the calculation. At one end of the scale, hand calculation methods can provide a rapid estimate for

criticality safety assessment purposes. These calculations can be performed on a simple calculator but

may be subject to significant margins of error. At the other end of the scale is the neutron transport

equation, which can provide an extremely accurate prediction of keff but requires the use of advanced

numerical methods and computational techniques to arrive at a solution efficiently.

The criticality of a fissile system consists of an eigenvalue problem, where the effective multipli-

cation factor represents the eigenvalue of the fundamental mode of the system, and the neutron flux

shape represents the eigenvector. The neutron scalar flux distribution corresponding to the funda-

mental eigenvector is determined using the neutron transport or neutron diffusion equations described

below.
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1.2.1 The Neutron Transport Equation

The neutron transport equation is a linearised form of the Boltzmann transport equation for the

balance on the population of particles in a medium. In the case of neutron transport, the particles are

neutrons and the assumption is made that the neutron density is small enough compared to atomic

densities in the medium that neutron-neutron interactions can be neglected. The neutron transport

equation was originally derived by Ornstein and Uhlenbeck (1937), and is discussed in numerous

sources, including Beckurts and Wirtz (1964), Amaldi et al. (1959), Hébert (2009) and CEA (2015).

It is shown below in its partial integro-differential form without delayed neutrons:

1

v

∂

∂t
ψ(~r,E, ~Ω, t) + ~Ω · 5ψ(~r,E, ~Ω, t) + Σt(~r,E)ψ(~r,E, ~Ω, t) (1.2.1)

=

∫∫
Σs(~r,E

′ → E, ~Ω′ → ~Ω)ψ(~r,E′, ~Ω′, t)dE′dΩ′

+
χ(E)

4π

∫∫
ν̄Σf (~r,E′)ψ(~r,E′, ~Ω′, t)dE′dΩ′

+ S(~r,E, ~Ω, t)

where ψ is the angular neutron flux, E is neutron energy, ~r is a position vector defining a particular

location in phase space, ~Ω is vector defining a particular direction, Σt is the total macroscopic neutron

cross-section and the sum of the scattering and absorption macroscopic neutron cross-sections, Σs is

the macroscopic neutron scattering cross-section, Σf is the macroscopic neutron fission cross-section,

ν̄ is the average number of neutrons per fission, χ is the energy spectrum of prompt fission neutrons,

v is neutron velocity and S is an extraneous (or fixed) prescribed neutron source.

The neutron transport equation is computationally expensive to solve due to the large number of

dimensions (location, energy, direction). Approximations are required to discretise the equation in

each of these dimensions, introducing a discretisation error into the solution.

The neutron transport equation can be solved stochastically, using Monte Carlo codes such as the

Monte Carlo N-Particle Transport Code (MCNP, LANL (2017)), MONK, TRIPOLI-4 and SERPENT,

or using deterministic solvers such as Winfrith Improved Multigroup Scheme (WIMS), EVEn Parity

Neutral particle Transport (EVENT, de Oliveira (1986)), APOLLO2 and CRONOS2. A detailed

review of these methods can be found in CEA (2015). An advantage of stochastic solvers is that they

have the potential to model the location, angle and energy dimensions continuously, without the need

to introduce a discretisation error. However, this comes at the price of a statistical error which is

inherent to the Monte Carlo method. One major advantage of Monte Carlo methods is that they

can model most geometries exactly using combinatorial geometry of conic sections in 2D and quadric
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surfaces in 3D. However, this can now be achieved using the very latest innovations in deterministic

transport theory methods based on isogeometric analysis (IGA). IGA enables much more general non-

uniform rational B-spline (NURBS) geometries, utilised in CAD software, to be used for the spatial

and geometric discretisation of the neutron transport equation. Hall et al. (2012) demonstrated the

use of this method to solve the diffusion equation and Owens et al. (2016) demonstrated its use for a

first-order solution of the neutron transport equation.

In deterministic transport theory solvers, energy is typically treated using multiple discrete energy

groups. A very large number of energy groups is required to accurately capture the effects of spatial

and energy resonance self-shielding on the microscopic neutron cross-sections. Using lattice codes,

these energy groups can be collapsed into a smaller number of broader groups. Methods for resolving

the resonances include the Livolant-Jeanpierre Method (Livolant and Jeanpierre (1974)) and the Sub-

Group Method (Cullen (1974)). A description of lattice codes can be found in Hébert (2009). Collapsed

group microscopic neutron cross-sections take the following form (CEA (2015)):

σg =

∫
g
σ(E)φw(E)dE∫
g
φw(E)dE

, (1.2.2)

where σ is the microscopic neutron cross-section and φw is a weighting-flux that depends on the

energy spectrum of the neutrons in the system.

Deterministic transport theory solvers also require a method for discretisation of the angle repre-

senting the direction of travel of neutrons. This has been achieved using methods such as spherical

harmonics (PN method), the method of characteristics (MOC) and discrete ordinates (SN method).

1.2.2 Neutron Diffusion

The neutron diffusion equation is derived from the neutron transport equation by making the assump-

tion that angular variation in the angular flux is linearly anisotropic. The behaviour of neutrons can

then be approximated to the diffusion of chemical species in a continuous medium, i.e. that they tend

to move down a concentration gradient from areas of high concentration to areas of low concentration.

The steady-state neutron diffusion equation for a single energy group is shown below:

5D(~r)5 φ(~r)− Σa(~r)φ(~r) + ν̄Σf (~r)φ(~r) = 0, (1.2.3)
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which can also be expressed in multiple energy groups:

5D(~r,E)5 φ(~r,E)− Σt(~r,E)φ(~r) +

∫
Σs(~r,E

′ → E)φ(~r,E′)dE′ (1.2.4)

+ χ(E)

∫
ν̄Σf (~r,E′)φ(~r,E′)dE′ = 0,

where D is the neutron diffusion coefficient of the medium.

The single and two-energy group formulations have analytical solutions for various simple geome-

tries, including spheres and cylinders (Meem (1964)). These analytical solutions form the basis of

several hand calculation methods for criticality safety assessment (Bowen and Busch (2006)) which

are discussed below. The multi-energy group formulation provides relatively accurate results for many

systems and has been widely used for reactor physics calculations (Lamarsh (1975)). It is still used

in modern reactor physics codes today, such as PANTHER (“PANTHER - An Advanced 3D Nodal

Code for Reactor Core Analysis”, 2018). In many cases, the use of neutron diffusion is enhanced by

the application of neutron transport to parts of the problem where the diffusion approximation would

lead to unacceptable errors.

The advantage of the neutron diffusion equation compared to neutron transport is that the number

of dimensions is reduced by eliminating the angular dependence. However, Stacey (2007) highlights

that the absorption cross-section is assumed much less than the scattering cross-section. Where this

is not the case, in or close to strongly absorbing materials, the diffusion approximation will result in

an inaccurate result. This is also true in cases where scattering may be particularly anisotropic, such

as close to neutron sources, or close to discontinuities in the medium, such as vacuum boundaries.

1.2.3 Hand Calculation Methods

Numerous hand calculation methods exist for quickly determining the approximate keff of a fissile

system. Reviews of these techniques can be found in Bowen and Busch (2006), Knief et al. (1985) and

Thomas and Abbey (1973).

The one-group diffusion equation discussed above (see Equation 1.2.3) can be solved analytically

for systems with simple geometries. A detailed summary of this method can be found in Bowen

and Busch. The method is based around two properties of a fissile system known as the geometrical

buckling and the material buckling. When these two quantities are equal, the system is critical with

keff = 1. The material buckling is given by the expression:

B2
m =

k∞ − 1

L2
; L2 =

D

Σa
, (1.2.5)

45



where B2
m is the material buckling and L2 is ratio of the diffusion coefficient to the absorption cross-

section and is known as the diffusion length. The expression for the geometrical buckling depends on

the geometry of the particular system in question. The geometrical buckling for various geometries

can be found in Knief et al. (1985). For a sphere it is given by:

B2
g =

(
π

r + δ

)2

; δ = 2D, (1.2.6)

where r is the radius of the sphere and δ is the extrapolation distance. The critical radius of the

sphere is the value of r for which B2
g = B2

m.

Bowen and Busch warn that the one energy group diffusion based method described above should

not be applied to thermal systems where the effect of the slowing down of neutron cannot be ignored. In

thermal systems, modified diffusion theory offers an alternative via a two energy group approximation.

Another method related to neutron diffusion is the method of shape conversion. This technique

converts the dimensions of one system to the dimensions of another system with known critical di-

mensions. The critical dimensions must be known for the particular material in the target geometry.

Critical dimensions for various system materials and geometries can be found in Paxton and Pruvost

(1987). For example, the geometric buckling of a cuboid is given by the following expression (Knief

et al. (1985)):

B2
g =

(
π

a+ 2δ

)2

+

(
π

b+ 2δ

)2

+

(
π

c+ 2δ

)2

, (1.2.7)

where a, b and c are the dimensions of the cuboid. If the critical radius of a sphere made of the same

material as the cuboid is known, then by equating Equations 1.2.6 and 1.2.7 the radius of an equivalent

sphere can be determined for the cuboid. If this radius is greater than or equal to the critical radius

of the sphere, the cuboid will be critical.

For more complex geometries the diffusion based methods described above would be impractical.

The surface density method can provide an indication of criticality for complex geometries or even

interacting arrays of loosely-coupled units. The method is based on the surface density of the system

or array, which represents the amount of material that be in one unit area if the array were collapsed

into the floor. The keff of the system is less than 0.9 if its surface density is less than σ (Knief et al.

(1985)), where:

σ = 0.54σ0(1− 1.37f). (1.2.8)

σ0 is the surface density of a critical water-reflected infinite slab and f is the ratio of the mass of the

system (or one unit in the array) to the critical mass of a sphere, known as the fraction critical.

These methods represent a small number of examples of the numerous hand calculation methods
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that exist for estimating the criticality of a fissile system. While these methods are too imprecise to

be used for detailed design or risk assessment calculations, they can provide a useful tool for rapidly

estimating the criticality of a system and through their simplicity they highlight the extent to which

the geometric parameters of a system contribute to criticality.

1.3 Transient Nuclear Reactor Kinetics of Fissile Solutions

The nuclear reactor kinetics of a criticality excursion transient in a fissile solution depend on the

reactivity of the system and the evolution of the reactivity over time. Transient nuclear criticality

excursions may be initiated by any event which increases the reactivity of the system to a supercritical

state. Initiating events may include:

� the addition of fissile material to a vessel;

� the removal of a neutron absorber, such as a control rod;

� a change in geometry, for example by agitating the liquid or by transferring it to a different

vessel;

� the mass transfer of fissile material from one phase to another.

1.3.1 Reactivity Feedbacks

Once a nuclear criticality excursion transient is initiated, physical processes associated with the tran-

sient itself will begin to affect the system reactivity. These processes are referred to as reactivity

feedbacks and the two most important for a fissile solution are void feedback and thermal feedback.

Void feedback can be due to radiolytic gas bubbles, or steam in the case of a boiling fissile solution.

The density of the gas or steam inside the bubbles is so low compared to the surrounding liquid that

they are typically treated as voids, neglecting the small possibility of an interaction between a gas

molecule and a neutron traversing the bubble. Voids effectively reduce the reactivity of a fissile

solution by reducing the solution density. This reduces the total macroscopic neutron cross-section of

the solution and increases the chance of neutron leakage.

Thermal feedback in aqueous fissile solutions acts through three mechanisms:

� solution density,
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� Doppler broadening of neutron cross-sections,

� changes to thermal scattering cross-sections.

As the temperature of the solution increases, the liquid expands and its density decreases. This reduces

the density of the solution which reduces system reactivity in the same manner as void feedback.

Doppler broadening refers to the phenomenon whereby the chance of an interaction between a

neutron and a nucleus depends on the relative energy of the neutron with respect to the nucleus

(Cacuci (2010)). At certain relative energies, known as resonances, the probability of interaction

becomes extremely high. In a medium with temperature T > 0 K, the atoms within the medium have

a distribution of energies and this distribution becomes broader with increasing temperature. This

has the effect of broadening the range of neutron energies which are susceptible to a given resonance

energy, thereby increasing the effective microscopic neutron cross-section.

Whether the effect of Doppler broadening is to increase or decrease the reactivity of the system

depends on composition. The cross-section for all potential interactions is increased by Doppler

broadening. Therefore, the effect will be positive if the increase in fission cross-section dominates,

whereas the effect will be negative if the increase in capture cross-section dominates. The effect is

negative for low-enriched uranium but it can be positive for high-enriched, heterogeneous systems, as

demonstrated by Shiroya et al. (1996).

The temperature of the medium also affects the microscopic cross-sections for neutron scattering.

Scattering of neutrons at high energies is usually treated as a collision between unbound particles,

ignoring the wave-like properties of the neutron. However, at thermal neutron energies, the wavelength

of the neutrons approaches the length scale of molecular bonds and the effects of chemical bonds

within the scattering medium become significant. A description of the theory of neutron scattering

and thermalisation can be found in Williams (1966).

1.3.2 Quasi-Steady-State Method

The quasi-steady-state method of criticality transient analysis was presented by Schulenberg and

Döhler (1986) and was further developed by Nakajima et al. (2002a). The method works by calculating

for each instant in time, the amount of thermal and void reactivity feedback that would be present

due to the amount of fission energy deposited in the system. The method uses a pseudo-steady-state

assumption in that the feedbacks are assumed to appear immediately so that the system remains in

an exactly critical state at all times. The method cannot predict the detail of short-lived transient
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effects, such as oscillations in reactivity due to the appearance and advection of gas voids. However,

the method has been shown to be effective at estimating the average fission power output over longer

timescales.

1.3.3 Deterministic Point Nuclear Reactor Kinetics

The point kinetics equations are based on the simplifying assumption that the space, energy and

time-dependent neutron flux can be factorised into an amplitude function that varies only in time and

a shape function that varies in space and energy. The shape function may also vary in time, however

this variation is orders of magnitude slower than the variation in the amplitude function. This method

is described in numerous sources, including Lamarsh (1975) and Ott and Neuhold (1985). The flux

factorisation can be represented as follows:

φ(~r,E, t) = N(t)ψ(~r,E, t), (1.3.1)

where φ is the neutron flux, N is the amplitude function and ψ is the shape function. By making this

assumption it is possible to derive an equation of the following form:

dP (t)

dt
=
ρ(t)− β(t)

Λ(t)
P (t) +

∑
i

λiCi(t), (1.3.2)

dCi(t)

dt
= −λiCi(t) +

βi
Λ
P (t), (1.3.3)

where P is the fission power output, ρ is the system reactivity in dimensionless form, Λ is the generation

time, Ci is the fission power worth of delayed neutron precursors in group i, λi is the decay constant

of delayed neutron precursors in group i and βi is the fraction of all neutrons that appear as delayed

neutrons precursors in group i.

The point kinetics method can derived from the neutron diffusion equation (Ott and Neuhold

(1985)) or the neutron transport equation (Cacuci (2010)). It is capable of providing highly accurate

results, even for systems with complex geometry such as full scale reactor cores, provided the point

kinetics parameters (Λ, β) are appropriately weighted. This can be achieved by means of adjoint flux

weighting. The method also requires the time-dependent reactivity of the system (ρ(t)) to be supplied

as an input. This must be determined a priori using methods based on neutron transport or neutron

diffusion.

The point kinetics method is particularly well suited to criticality safety problems involving con-

tainers of fissile liquid, where the geometry of the system may be relatively simple. In these cases,

the neutron flux distribution can be well characterised using a shape function ψ based on an analyt-
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ical solution to the neutron diffusion equation. Indeed, this is the method employed by many of the

criticality safety code discussed in Section 1.3.5.

1.3.4 Stochastic Point Nuclear Reactor Kinetics

In many criticality safety problems it is necessary to consider the stochastic nature of branching

fission chains. This is because the processes that lead to the branching and growth of neutrons chains

(fission, capture, scattering) are inherently random events. When the neutron population is large, the

combined effect of these random events is predictable and can be treated as deterministic. However,

criticality accidents often occur in situations where the neutron population in the fissile material prior

to the start of the accident is very small. In these cases, the likelihood of significant deviations from

deterministic behaviour is relatively large and needs to be taken into account.

Equation 1.3.4 shows the forward probability balance for the neutron population in a point nuclear

reactor model using the notation of Bell (1963):

P (n,m, t+ dt) =

(
1− ndt

l
−

I∑
i=1

midt

τi
−

K∑
k=1

SKdt

)
P (n,m, t) (1.3.4)

+
J∑
j=0

(n− j + 1)
cj,0(t)dt

l
P (n− j + 1,m, t)

+
J∑
j=0

I∑
i=1

(n− j + 1)
cj,i(t)dt

l
P (n− j + 1,m− δi, t)

+

I∑
i=1

mi

τi
dtP (n− 1,m+ δi, t) +

K∑
k=1

Sk(t)dtP (n− k,m, t),

where P (n,m, t) is the probability of having n neutrons and m precursors in the system at time t,

where I is the number of delayed neutron groups and m is a vector of size I, l is the mean neutron

lifetime, ci,j is the probability that an absorption event (capture or fission) produces i prompt neutrons

and a delayed neutron precursor of group j, or no delayed neutron precursor if j = 0, and Skdt is the

probability that a neutron source S produces k neutrons in the time interval dt.

Equation 1.3.4 constitutes an infinite system of equations where the probability of a having n

neutrons in the system is a function of the probabilities of all other possible neutron population

numbers. This equation can produce useful information for systems with small neutron populations

where the infinite series can be truncated, but rapidly becomes too expensive to solve for systems with

larger neutron populations. Another important property of Equation 1.3.4 is that the probabilities

determining the next state of the system depend purely on the current state of the system and not

the system history. This type of system is known as a Markov chain (Grinstead and Snell (2012)).

50



Application of the generating function to Equation 1.3.4 allows the infinite system of equations to

be replaced with a single ODE, the generating function to the forward probability balance equation

for a single energy group point model, shown in Equation 1.3.5:

∂G

∂t
=

1

l

−x+

J∑
j=0

xjcj,0(t) +

J∑
j=0

i∑
i=0

xiyicj,i(t)

 ∂G
∂x

+

I∑
i=1

1

τi
(x−yi)

∂G

∂yi
+

K∑
k=1

Sk(t)(x
k−1)G, (1.3.5)

where G(x,y, t) is the generating function for the probability distribution P (n,m, t), l is the mean

neutron lifetime, τi is the mean lifetime of a delayed neutron precursor in group i and the other

symbols are as defined in Equation 1.3.4.

The forward probability balance equation was originally proposed by Feynman (1946) and further

developed by Courant and Wallace (1947). It is generally used for single energy group point models,

however it can be extended to derive a multi-energy group, spatially-dependent form which was first

derived by Govorkov (1963a, 1963b). Detailed discussions of the forward probability balance equation

can be found in Osborn and Natelson (1965) and Williams (2009).

A backward form of the probability balance equation also exists and is known as the Pál-Bell

Equation, after Pál (1958) and Bell (1965) who derived it independently. The Pál-Bell Equation

constitutes an adjoint form of the forward probability balance equation discussed above. The Pál-Bell

Equation is mathematically less complicated to solve with spatial and energy dependence than the

forward form, and is widely applied for this purpose. Humbert (2003) used the PANDA neutron

transport code to solve for the neutron survival probability and the first and second moments of

the neutron number probability distribution using the spatially-dependent Pál-Bell Equation. Saxby

et al. applied the energy-dependent Pál-Bell Equation to a point model examining the influence of

neutron energy on survival probability (2016), later applying neutron diffusion theory with a single

energy group (2017), and neutron transport theory with multiple energy groups (2018) to spatially-

dependent models of subcritical spheres. Williams and Eaton (2018) also applied the Pál-Bell Equation

with spatial dependence to a study of reactor start-up for slab, cylindrical and spherical geometries.

The generating functions of the probability balance equations are often relatively easy to compute,

however a new challenge is created in the form of extracting useful information about the underlying

probability distributions. Several techniques have been demonstrated for inverting the generating

function to extract useful information, notably by Bell (1963), Hurwitz et al. (1963), Abate and Whitt

(1992), Authier et al. (2014) and Williams and Eaton (2017). Some of these methods are discussed

further and applied in Chapter 2.

A thorough survey of the mathematics governing the branching of neutron chains, can be found
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in Pázsit and Pál (2008).

1.3.5 Current and Historical Codes used for Modelling and Simulating Transient

Nuclear Criticality Excursions in Aqueous Fissile Solutions

One of the earliest examples of a fissile liquid code dates back to the 1960s, with the AIREK code of

Atomics International (Blue et al. (1964)). Specially modified versions of the code were also designed,

such as AIREK-KEWB to simulate a series of experiments known as the Kinetic Experiments on Water

Boilers (KEWB). The complexity of these codes was limited by the computational power available at

the time and the need for mathematical efficiency was a factor that strongly influenced their design.

The AIREK code coupled point reactor kinetics with a zero-dimensional model of thermal and void

feedback. Radiolytic gas production was assumed to occur once a threshold energy had been reached.

This was based on observations showing a delay between the initiation of a criticality transient and

the appearance of radiolytic gas.

The CRITEX code was developed in the 1980s as a computer code for simulating reactivity tran-

sients in fissile liquids. A description of the code can be found in Mather and Shaw (1986). It was the

product of a collaboration between the Commissariat à l’Energie Atomique (CEA) in France and the

United Kingdom Atomic Energy Authority (UKAEA). Experiments were carried out on the SILENE

aqueous fissile solution reactor for the purpose of determining appropriate values for adjustable pa-

rameters contained in the empirical radiolytic gas model within CRITEX. These empirical parameters

are adjusted to a particular set of experimental conditions. Therefore, they cannot be used for pre-

dictive purposes for aqueous fissile solutions with arbitrary solution composition and geometry. The

details of these models are described in a joint CEA-UKAEA report (Barbry et al. (nd)). The thermal

hydraulics model in CRITEX includes one-dimensional (1D) discretisation in the vertical direction.

The fission rate in each region of the solution is determined from a point kinetics calculation and a

shape function representing the fundamental mode of the neutron scalar flux. Neither AIREK nor

CRITEX include models of solution boiling and steam production. CRITEX includes a model for

the advection of bubbles leading to a decrease in the system voidage based on a user-specified bubble

velocity, while AIREK models the creation of radiolytic gas voids but not their advection.

Simulation codes for fissile liquids developed more recently have built upon the methods of AIREK

and CRITEX. A point kinetics code for simulation of the Medical Isotope Production Reactor (MIPR)

was developed by Cooling (2014). Like CRITEX, it combines point reactor kinetics with a 1D ther-

mal hydraulics model to calculate void and thermal feedback. However, it includes many significant

advances in the thermal hydraulics models, removing the need for user-specified parameters. Cool-
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ing’s code also includes models of solution boiling, mixing and heat transfer to the surroundings. The

AGNES model also combines point reactor kinetics with 1D thermal hydraulics (Yamane et al. (2005),

Basoglu et al. (1998)) while the TRACE code combines point reactor kinetics with 2D (radially and

axially discretised) thermal hydraulics. The thermal hydraulics model of TRACE is based on the

radiolytic gas model of CRITEX (Liem and Naito (2015)).

The INCTAC code differs from those described above by including a spatially-dependent neutron-

ics model based on the time-dependent neutron transport equation. The neutronics model is used to

determine reactivity coefficients for point reactor kinetics based on a quasi-steady-state method, thus

removing the need for external reactivity calculations and permitting the reactivity feedback coeffi-

cients to be time-dependent. A detailed description of this code is reported by Mitake et al. (2003)

alongside benchmark results using experiments carried out on the TRACY aqueous fissile solution

reactor.

The FETCH code comprises the neutron transport solver EVENT loosely coupled with a compu-

tational multiphase fluid dynamics (CMFD) code. A description of the FETCH code can be found

in Pain et al. (2001) and an analysis of the 1999 Tokaimura criticality accident using FETCH can be

found in Pain et al. (2003). The advantage of the detailed spatially-dependent multiphysics approach

is the ability to model the multidimensional evolution, movement and transport of materials, including

radiolytic gas bubbles and delayed neutron precursors, throughout the problem domain. In addition,

such codes can also model the time and spatially-dependent variations in the fission power profile over

the duration of the nuclear criticality excursion. However, the use of detailed multiphysics codes for

criticality safety problems, often does not yield any additional information beyond that which phe-

nomenological models can provide in a small fraction of the run time. The complex nature of codes of

this type also makes it difficult to quantify the impact of each input parameter on the model output.

Many of the codes discussed above, including CRITEX and FETCH, are now relatively old and

no longer represent the state-of-the-art. In particular, there have been major advances in the fields of

CFD (Yeoh and Tu (2019)), neutronics (Owens et al. (2016)) and thermal hydraulics of aqueous fissile

solutions (Cooling (2014)) since these codes were developed. The CRITEX, TRACE and FETCH

codes all require calibration of their radiolytic gas models against experimental information of gas

evolution. The code described in Cooling (2014) does not require calibration of its radiolytic gas

model, however the model is a simplification of the physical reality and cannot capture some important

effects of radiolytic gas in fissile solutions. The improvement of the radiolytic gas model was therefore

identified by Cooling as an area for future development. The radiolytic gas model presented in this

thesis is based on a mechanistic model of bubble formation, which allows it to capture important
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effects resulting from radiolytic gas formation during nuclear criticality transients in fissile solutions,

without the need for calibration against experimental data.
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Chapter 2

Power Excursions in the Presence of a

Weak Neutron Source

2.1 Introduction

Much of the work presented in this chapter, including tables and figures, is reproduced from Winter

et al. (2018).

In a fissile system, the fluctuations in neutron population over time are driven by the branching of

neutrons chains, an inherently random process. When the neutron population is large, the law of large

numbers determines that the outcome of the many branching processes taking place in the system, will

tend towards the average (or “expected”) behaviour; the likelihood of significant deviations from the

expected behaviour is small and can often be neglected. However, it is well known that the behaviour

of a fissile system when the neutron population is small, such as a reactor start-up in the presence of

a “weak” neutron source, cannot be accurately modelled without considering the stochastic nature of

the growth in these neutron chains. In these cases, significant deviations from the average behaviour

are to be expected and a different modelling approach is required.

2.1.1 Relative Strength of an Intrinsic Neutron Source

A useful qualitative indication of the relative strength of a given neutron source was derived by Hansen

(1960) who noted that a source should be considered weak if,

2Sτ

ν̄Γ2
<< 1, (2.1.1)
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where S is the neutron source strength, τ is the prompt neutron lifetime, ν̄ is the average number of

neutrons released per fission, and Γ2 = ν(ν − 1)/ν̄2. This expression is approximately equivalent to

the more simple inequality,

Sτ << 1. (2.1.2)

2.1.2 The Wait-Time

The implications of a low neutron population are well documented and have been demonstrated

experimentally, by Hansen (1960) and Authier et al. (2014), amongst others. In both examples, a

fast burst reactor, GODIVA (Hansen) or Caliban (Authier et al.), was brought multiple times from a

subcritical state to a delayed supercritical state, and the time taken to reach a pre-defined fission rate

threshold was measured. The time taken to reach the threshold is known as the wait-time and it was

shown to vary significantly between each realisation of the experiment, despite identical experimental

conditions.

In a delayed supercritical system, the neutron population at any given moment consists of prompt

neutrons emitted from fission and delayed neutrons emitted from those fission fragments which are

delayed neutron precursors. In a delayed supercritical system, the population of delayed neutron

precursors increases over time. This leads to an increase in the number of prompt neutron chains

initiated and a corresponding increase in the fission rate and the prompt neutron population. The

wait-time is the time taken for this build up in the neutron population to occur. It varies because

the growth rate in the neutron population depends on the different events which can happen to each

neutron emitted in the system (absorption, scattering, leakage, etc.) and these events are inherently

random. The sequence of events can never be identical for two realisations of the same experiment

and this can be observed on the macroscopic scale as variation in the wait-time.

The wait-time is an important concept that can have significant implications for the severity of

accidental power excursions and for the safe start-up of nuclear reactors. During reactor startup,

for example, control rods may be withdrawn to increase the reactivity of the system. Assuming

the reactor behaves in a deterministic manner, the reactor power will begin to increase as soon as

the system reactivity increases, and once the system is critical, an exponential increase in power

should be observed. This will cause a rise in temperature, leading to negative reactivity feedback

through material expansion and Doppler broadening, limiting the overall reactivity of the system

and preventing an excessive increase in power. However, if the neutron source is too weak, or the

withdrawal of the control rods too fast, there is likely to be a delay between reaching positive reactivity

and any significant rise in reactor power. Meanwhile the reactivity of the system continues to rise
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in the absence of any negative temperature feedback. When the power output does finally begin to

rise, the system reactivity may already be large enough to produce a dangerous power excursion. One

potential objective in seeking to characterise the wait-time is to know at what rate the control rod

can be withdrawn so the probability of a dangerous power excursion remains below a specified “safety

probability”, e.g. 10−8.

2.1.3 Methods for Predicting the Wait-Time Probability Distribution

Methods for determining the wait-time probability distribution include Hansen’s method (Hansen

(1960)), the Fourier series method (see Abate and Whitt (1992)) and the saddlepoint method of

Hurwitz et al. (1963). Hansen’s method is approximative and based on neutron survival probabilities.

Hansen’s method considers that the wait-time consists of two parts: the time taken before a persistent

neutron chain is initiated and the time for the neutron population due to the first persistent chain

to build up to the wait-time threshold. Persistent chains sponsored after the first are not considered

to influence the wait-time significantly, because prompt neutron chains grow very rapidly; and unless

the delay between the initiation of the first and second persistent chains were on the order of the

generation time, the neutron population due to the second chain would be insignificant compared to

that due to the first. Hansen notes that the initiation of a second persistent chain on this timescale is

unlikely in a weak source scenario.

The Fourier series and saddlepoint methods rely on inversion of probability generating functions to

obtain the probability distribution of the neutron population. This approach is more rigorous but also

far more computationally expensive. These methods do not rely on the concept of the first persistent

chain and are therefore able to account for the possibility of overlapping chains (initiated by different

source neutrons) contributing to the neutron population at the moment the wait-time threshold is

exceeded. This is important in delayed supercritical systems, where persistent fission chains consist of

finite prompt chains linked by delayed neutron precursors. Since the delayed neutron precursors decay

on a long timescale, compared to the generation time, overlapping fission chains become a significant

possibility. The generating function methods can be applied to point models or space-dependent

models. They can also be used with single or multiple energy groups.

A less expensive alternative to the generating function approach is to approximate the wait-time

probability distribution using the gamma distribution method. This method was first proposed by

Harris (1964) and relies on the fact that the neutron population in a multiplying system will tend

towards a gamma distribution. There are cases when the neutron population does not conform to the

gamma distribution so this method does not work for all scenarios, however it can be highly accurate
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and fast when applied to certain problems. Authier et al. (2014) derived a mathematical basis for

the use of the gamma distribution to model the wait-time in delayed supercritical systems. Using

fitted parameters they showed that the distribution of wait-times observed during their experiments

on the Caliban reactor conformed to a gamma distribution. Analysing the same experiments on

Caliban, Williams (2016) showed that the probability distribution of the wait-times could be accurately

predicted without the need for fitted parameters, using a gamma distribution characterised by the

mean and standard deviation of the neutron population - see Section 2.1.5.

2.1.4 Types of Uncertainty

For the purposes of the discussion that follows, it will be useful to distinguish between aleatoric

uncertainty and parametric uncertainty. Aleatoric uncertainty will hereafter refer to uncertainty

resulting from the random, stochastic nature of the build-up of neutron chains in fissile systems, and

parametric uncertainty will refer to that resulting from epistemic uncertainty in the input parameters.

When calculating the wait-time probability distribution using any method, there will inevitably be

some epistemic uncertainty in the input parameters, particularly when simulating accidental excursions

where the exact chain of events may be unknown. The uncertainty in input parameters adds to the

uncertainty already present due to aleatoric uncertainty.

This chapter presents a method for quantifying the impact of epistemic uncertainty in the input

parameters. Uncertainty quantification (UQ) will be carried out using the Monte Carlo approach,

which requires a fast method for determining the wait-time probability distribution, so that many

calculations can be performed for a range of randomised sets of input parameters. The gamma distri-

bution method will be used for this purpose, with verification of the predicted probability distribution

using the saddlepoint method.

The ability to quantify the impact of epistemic uncertainty in the input parameters on the resulting

wait-time probability distribution has important implications for criticality safety and safe reactor

start-up.

2.1.5 Objectives

The method of uncertainty quantification presented in this chapter makes use of the gamma distribu-

tion using the method presented in Williams (2016). In his paper, Williams shows that the wait-time

probability distributions observed during the experiments of Authier et al. (2014) on the Caliban re-

actor, can be accurately predicted using the gamma distribution method. Starting from the forward
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form of the generating function equation, Williams derives equations for the mean neutron popula-

tion, precursor group populations, detector counts and their corresponding covariances. These same

equations will be used here as the basis for the gamma distribution method.

The purpose of this work is to incorporate the gamma distribution method demonstrated by

Williams into a Monte Carlo algorithm, for the purpose of uncertainty quantification. The gamma

distribution method for determining the wait-time probability distribution is particularly amenable

to Monte Carlo uncertainty quantification due to its excellent computational efficiency compared to

alternative, more rigorous methods.

The gamma distribution method has been shown to produce accurate results for certain scenarios,

however it will be shown in Section 2.2.3 that the neutron population does not always conform to

a gamma distribution. The parameters influencing the accuracy of the gamma distribution method

will be examined in order to establish the range of transients to which this method of uncertainty

quantification can be applied.

2.2 Methodology

The methods outlined in this section were solved numerically, using a new code developed in FOR-

TRAN. The numerical solution of the saddlepoint method is readily amenable to parallelisation, which

was exploited using OpenMP in order to minimise required execution times.

2.2.1 Gamma Distribution Method

The neutron population, n, is modelled by the following probability density function (the Gamma

Distribution) in which n is approximated as a continuous random variable, with the time, t, as a

parameter.

P (n, t) =
η(t)

n̄(t)Γ(η(t))

(
η(t)n

n̄(t)

)η(t)−1

exp

(
−η(t)n

n̄(t)

)
, (2.2.1)

The function Γ(z) is the complete gamma function, defined as follows

Γ(z) =

∫ ∞
0

xz−1e−xdx. (2.2.2)

Two incomplete gamma functions also exist: the lower and upper incomplete gamma functions, where

the upper or lower limit of integration, respectively, is replaced with a finite limit. The lower incomplete
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gamma function, for example, is defined as follows

γ(z, y) =

∫ y

0
xz−1e−xdx. (2.2.3)

The time-dependent parameter η(t) is the ratio of the squares of the mean and standard deviation,

η(t) =
n̄(t)2

σn(t)2
. (2.2.4)

The methodology described here for calculating the wait-time probability distribution from the

gamma distribution is based on that described in Williams (2016) with some minor modifications. The

probability distribution, Pw(t), of the wait-time may be determined by differentiating the cumulative

probability density function Q(n∗, t), where n∗ is the instantaneous neutron population corresponding

to the wait-time threshold fission rate, with respect to time.

Pw(t) = −dQ(n∗, t)

dt
(2.2.5)

The values of Q(n∗, t) are obtained directly from the ratio of incomplete and complete gamma func-

tions, as follows,

Q(n∗, t) =
γ(η(t), η(t)n∗/n̄(t))

Γ(η(t))
, (2.2.6)

where γ(x, y) and Γ(x) are the lower incomplete and complete gamma functions discussed above.

The wait-time may also be calculated with respect to the cumulative detector count (Z∗), as in

Williams (2016). In this case, the wait-time probability is obtained by differentiating the cumulative

probability density function, Q(Z∗, t), for the detector count, Z∗, corresponding to the wait-time

threshold fission rate.

Pw(t) = −dQ(Z∗, t)

dt
, (2.2.7)

Q(Z∗, t) =
γ(ηz(t), ηz(t)Z

∗/Z̄(t))

Γ(ηz(t))
. (2.2.8)

The parameter η(t) is replaced by ηz(t),

ηz(t) =
Z̄(t)2

σz(t)2
. (2.2.9)

The value of n∗ or Z∗ is determined from the pre-defined wait-time fission rate threshold by

calculating the expected fission rate, F̄ (t), using the following equation from Williams (2016),

F̄ (t) =
keff(t)

ν̄τ
n̄(t), (2.2.10)

where keff(t) is the time-dependent neutron multiplication factor, ν̄ is the mean number of neutrons
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released per fission, τ is the prompt neutron lifetime and n̄(t) is the time-dependent neutron popula-

tion. The value taken for n∗ is the value of n̄(t) at the moment F̄ (t) crosses the wait-time threshold.

Likewise, if the wait-time is calculated based on cumulative detector count, then the value of Z∗ is

the value of Z̄(t) when F̄ (t) crosses the fission rate threshold. The mean neutron population, cumu-

lative detector count and their standard deviations were calculated by solving the system of ordinary

differential equations found in Williams (2016) using the ODE solver of Shampine and Gordon (1975).

The model is zero-dimensional, one-speed and without thermal feedback. It is derived by differ-

entiating the one-speed, point model forward equation (Bell (1963)), for the probability generating

function.

2.2.2 Saddlepoint Method

2.2.2.1 Method Overview

The wait-time probability distributions calculated by the gamma distribution method were compared

against calculations using the saddlepoint method to confirm their accuracy. A detailed description

of the saddlepoint method can be found in Williams and Eaton (2017) and only a brief summary will

be presented here. The cumulative probability density function Q(n∗, t|s) is obtained from Equation

2.2.11. It represents the probability that the neutron population has not exceeded n∗ at time t if a

source was present since time s. It is equivalent to the Q(n∗, t) of Equation 2.2.6 if s is equal to the

start time.

Q(n∗, t|s) ≈ 1

2πσ0

GS(z0, t|s)
zn

∗
0 (1− z0)

(2.2.11)

where GS(z0, t|s) is the backward form of generating function for the probability distribution of the

neutron population at time t, given a source present since time s, and σ0 is given by,

σ0 =
n∗

z2
0

+
1

(1− z0)2
−
(
G′S(z0, t|s)
GS(z0, t|s)

)2

+
G′′S(z0, t|s)
GS(z0, t|s)

(2.2.12)

where G′S and G′′S are the first and second derivatives of the generating function GS with respect to

z. Finally, z0 is the value of z which satisfies the equation,

n∗

z0
=

1

1− z0
+
G′S(z0, t|s)
GS(z0, t|s)

, (2.2.13)

where n∗ is the neutron population corresponding to the wait-time fission rate threshold. The backward

generating functions for a point model were obtained from Williams and Eaton (2017) and solved using

the ODE solver of Shampine and Gordon (1975).

The saddlepoint method is actually an approximation, albeit a very accurate one, because it relies
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on the method of steepest descents to approximate a line integral before arriving at the expression in

Equation 2.2.11. The error in the method does, however, become significant for values of Q(n∗, t|s)

close to unity, and Hurwitz notes that for values of n∗ >> n̄, Q(n∗, t|s) tends to e√
2π

= 1.08444.... This

results in a wait-time probability distribution whose integral is ∼ 1.08 and it is therefore necessary to

renormalise the distribution to have an integral of 1.0.

Notwithstanding these limitations, which result in a small, quantifiable error in the saddlepoint

method’s predictions, the accuracy of the saddlepoint method has been evaluated by Williams and

Eaton (2017) who compared it to the exact Fourier series method, details of which can be found in

Abate and Whitt (1992). Williams and Eaton found that the values of Q(n∗, t|s) calculated using the

saddlepoint method were within 0.5% of the exact values calculated using the Fourier series method,

in all the cases they tested. It is therefore assumed throughout this chapter that the results of

the saddlepoint method are close to the true wait-time probability distribution, and any significant

discrepancies between the probability distributions predicted by the two methods are attributable to

error in the gamma distribution method.

The reason that the saddlepoint method is valid in all cases, whereas the gamma distribution is

not, is that the saddlepoint method inverts the generating function to obtain the neutron population

probability distribution directly from known quantities (such as neutron cross-sections). The gamma

distribution method, on the other hand, assumes a probability distribution for the neutron population

based on its mean and standard deviation. While this method is accurate in many cases, it is known

that the probability distribution for the neutron population can deviate significantly from the assumed

distribution.

As an additional check to confirm the accuracy of the saddlepoint method, one set of data, for

a situation where the gamma distribution method fails to give accurate results, was also compared

against a Monte Carlo simulation. Details of this comparison can be found in Section 2.2.3.1.

2.2.2.2 Finding the Value of z0

The value of z0 required by Equation 2.2.12 is determined by finding the roots of Equation 2.2.13.

Because the generating functions GS and G′S are functions of z0 whose values can only be determined

by solving a system of ODEs, the roots cannot be found analytically and an iterative solution is

necessary. Determining the value of z0 for all time steps can therefore be an expensive task. Hurwitz

et al. (1963) provided the following approximation for z0 which can be used as a starting guess for
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iterations,

z0 ≈
n∗

1 + n∗
. (2.2.14)

The method of bisection is a reliable technique for finding the roots of Equation 2.2.13, and thereby

determining z0. Nonetheless, this method requires a relatively large number of iterations to achieve

the required accuracy in z0, leading to long computing times, particularly when modelling fast systems

where the system of ODEs for the generating functions tends to be particularly stiff. A more efficient

solution is proposed by Williams and Eaton (2017) who suggest that the roots of the equation could be

found using Newton-Raphson iterations. This was found to reduce the number of required iterations

dramatically; a typical simulation requiring approximately 20−30 iterations with bisection was found

to need only 4− 8 iterations using Newton-Raphson.

The Newton-Raphson method allows the roots of an equation f(x) = 0 to be determined through

a series of iterations. In each iteration, an estimate for the value of the root xn is calculated based

on the value of the previous estimate xn−1. In most cases, the estimate converges rapidly on the true

value of the root. Each new estimate of the root xn is determined from the following relation,

xn = xn−1 −
f(xn−1)

f ′(xn−1)
, (2.2.15)

where f ′(x) is the first derivative of f(x) with respect to x.

In order to implement the Newton-Raphson method to find z0 it is necessary to express it in the

form f(z0) = 0 and this can be done in many ways. The form given in Equation 2.2.16 was chosen,

from which the derivative in Equation 2.2.17 immediately follows.

f(z0) =
z0

1− z0
+
G′S
GS

z0 − n∗, (2.2.16)

f ′(z0) =
1

1− 2z0 + z2
0

+
(G′′Sz0 +G′S)GS − (G′S)2z0

(GS)2
. (2.2.17)

The second derivative of the generating function G′′S is already required in Equation 2.2.12 to determine

σ0 so no extension is required to the system of ODEs.

2.2.3 Range of Applicability of the Gamma Distribution Method

The gamma distribution method works well for simulating fissile systems in which the neutron popu-

lation conforms to a gamma distribution. However, if this is not the case then the predicted wait-time

probability distribution will not be correct. Therefore, it is necessary to determine the range of appli-

cability of the gamma distribution method if it is to be used with confidence. This was achieved by
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verifying the results of the gamma distribution method against the saddlepoint method for a range of

different scenarios, varying the magnitude and rate of the reactivity insertion, as well as the prompt

neutron lifetime and the neutron source strength. All calculations in this section include 6 groups of

delayed neutrons.

Figure 2.2.1 shows mean wait-times and standard deviations predicted by the gamma and saddle-

point methods for a 0.7$ step insertion over a range of different intrinsic neutron source strengths. The

means and standard deviations predicted by the two methods converge as the neutron source strength

is increased, showing that the accuracy of the gamma distribution method improves with increasing

neutron source strength. The relative offset in the mean predicted wait-time converges to a value

around 1.2%, indicating that the mean value predicted by the gamma distribution method is 1.2%

larger than that predicted by the saddlepoint method. This is likely due to the previously mentioned

weakness in the saddlepoint method, where the cumulative probability distribution for n̄ << n∗ tends

to a value greater than unity. This skews the distribution towards lower values of n and leads to a

slight underestimate of the overall mean of the wait-time probability distribution.
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Fig. 2.2.1. Comparison of mean wait-times and standard deviations predicted by the gamma and sad-
dlepoint methods for a 0.7$ reactivity step insertion over a range of intrinsic neutron source strengths.

Figure 2.2.2 shows the wait-time probability distributions calculated using both the saddlepoint

and gamma distribution methods for a range of reactivity step insertions in the presence of a neutron

source emitting 30 n/s. The agreement between the two methods is very close for the 0.1$ reactiv-

ity step insertion, however the gamma distribution method becomes progressively less accurate as

the magnitude of the reactivity insertion increases. For the larger reactivity insertions, the gamma

distribution method overestimates the likelihood of longer wait-times, resulting in higher means and

standard deviations than those predicted by the saddlepoint method (see Table 2.1).

The accuracy of the gamma distribution method improves when the neutron source strength is
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Fig. 2.2.2. Wait-time probability distributions predicted by the saddlepoint (dashed) and gamma
distribution (solid) methods for reactivity step insertions of 0.1$, 0.2$, 0.3$ and 0.5$, with a neutron
source strength of 30 n/s.

Reactivity Insertion [$]
Mean (& St. Dev.) [s]
Gamma Saddlepoint

0.1 1138 (117) 1122 (108)

0.2 456 (66) 445 (53)

0.3 242 (52) 230 (34)

0.5 101 (44) 82 (19)

TABLE 2.1
Mean wait-times and standard deviations predicted by the gamma and saddlepoint methods for a
neutron source strength of 30 n/s.

increased to 90 n/s (see Figure 2.2.3). Significant inaccuracies are still observed, however, in the

wait-times predicted for larger reactivity insertions.

Figure 2.2.4 shows the minimum source strengths required for the gamma distribution method to

achieve acceptable accuracy over a range of reactivity step and ramp insertions. The system modelled

in this figure has a prompt neutron lifetime of 45 µs. Acceptable accuracy was defined as a mean

wait-time predicted by the gamma distribution method that was within 2% of the mean wait-time

predicted by the saddlepoint method. No criterion was imposed on the standard deviation because it

was found that the standard deviations converged with the predicted means (see Figure 2.2.1).

Figure 2.2.4 shows that the minimum required source strength for the gamma distribution method

to be close to the saddlepoint method increases with the magnitude of the reactivity insertion for step

insertions and 1 s ramp insertions. The required minimum source strength also increases for a 10 s

ramp insertion but the effect is smaller. For a 30 s ramp insertion, there is no correlation between the

magnitude of the reactivity insertion and the minimum source strength required for accurate wait-time

prediction by the gamma distribution method.

65



0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

 10  100  1000  10000

P
ro

b
a
b
ili

ty
 D

e
n
si

ty
 [

s-
1

]

Time [seconds]

gamma: 0.1$
gamma: 0.5$

saddlepoint: 0.1$
saddlepoint: 0.5$

Fig. 2.2.3. Wait-time probability distributions predicted by the saddlepoint (dashed) and gamma
distribution (solid) methods for reactivity step insertions of 0.1$ and 0.5$, with a neutron source
strength of 90 n/s.

Fig. 2.2.4. Minimum source strengths required for the gamma distribution method to predict a mean
wait-time within 2% of the value predicted by the saddlepoint method. Results shown for varying
reactivity insertion rates and a constant prompt neutron lifetime of 45 µs. The reactivity insertion
rate is the total insertion size divided by the insertion time stated.

The minimum required source strength was also found to be a function of the prompt neutron

lifetime. Figure 2.2.5 shows how the required minimum source strength varied with the magnitude

of the reactivity insertion and the prompt neutron lifetime. The source strength corresponding to

2% accuracy initially increased with decreasing prompt neutron lifetime, however for prompt neutron

lifetimes shorter than ∼10 µs, no significant further increase in the minimum required source strength

was observed.

Figure 2.2.5 includes markers to show the source strength and reactivity insertion size correspond-
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Fig. 2.2.5. Minimum source strengths required for the gamma distribution method to predict a mean
wait-time within 2% of the value predicted by the saddlepoint method. Results shown for a reactivity
step insertion with a range of prompt neutron lifetimes.

ing to two sets of burst wait-time experiments: the Caliban experiments of Authier et al. (2014) and

the GODIVA experiment of Hansen (1960). From the figure it would be expected that the gamma dis-

tribution method would prove accurate for the Caliban experiments but not for Hansen’s experiment

on GODIVA. Indeed this is the case: it has already been shown by Williams (2016) that the Caliban

experiments can be modelled accurately using the gamma distribution method. Hansen’s experiment,

on the other hand, requires a more rigorous method due to the combination of a relatively large and

rapid reactivity insertion and a weak neutron source.

2.2.3.1 Verification with Monte Carlo Simulation

A 0.7$ step insertion case was simulated using a Monte Carlo code and the results are shown in

Figure 2.2.6. The Monte Carlo simulation was performed using the code described in Cooling et al.

(2016). The code performs a large number of realisations (5,000 in this case), each with the same

input parameters, and within each realisation, randomly determines the fate of each neutron produced

at each time step according to the physical probabilities of different events.

The results match well with those of the saddlepoint method but not the gamma distribution

method, which supports the hypothesis that the saddlepoint method works well even for scenarios

where the gamma distribution method is not valid. The probability distribution generated by the

Monte Carlo code is based on a relatively small number of data points compared to the distributions

generated by the gamma distribution and saddlepoint codes. This is because the Monte Carlo code

works by calculating the wait-times for a large number of system histories. In order to construct a
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continuous probability distribution, it is necessary to group similar wait-times together into ‘bins’.

The probability corresponding to each wait-time bin is then inferred from the proportion of system

histories whose wait-time falls within each bin. Each data point in the Monte Carlo code therefore

represents a relatively expensive calculation compared to the cost of calculating data points by the

gamma distribution or saddlepoint methods.
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Fig. 2.2.6. Wait-time probability distributions predicted by the gamma distribution method, saddle-
point method and a Monte Carlo simulation (5,000 realisations), for a reactivity step insertion of 0.7$
and neutron source strength of 90 n/s.

It was also attempted to use the code of Cooling et al. (2016) to simulate the 0.1$ and 0.5$ step

insertion cases, however it was found that the value of Nthresh (see Cooling et al. (2016) for details)

required to converge the resultant probability distribution was too large to allow the calculations to

be run in a reasonable time. Essentially, the low reactivity in these cases allowed a large number

of delayed neutron precursors to build up before the power increased to a level where its behaviour

could be considered deterministic. Simulating the decay of such a large number of delayed neutron

precursors proved too expensive in terms of computing time.

Reactivity Insertion [$]
Mean (& St. Dev.) [s]
Gamma Saddlepoint Monte Carlo

0.1 998 (72) 991 (55) –

0.5 70.7 (15) 66.7 (8.9) –

0.7 33.4 (16.7) 25.0 (5.8) 25.2 (5.8)

TABLE 2.2
Mean wait-times and standard deviations predicted by the gamma distribution and saddlepoint meth-
ods for a neutron source strength of 90 n/s.
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2.2.4 Uncertainty Quantification

2.2.4.1 Types of Uncertainty

Monte Carlo uncertainty quantification was carried out in two case studies to examine the impact of

parametric uncertainty on the predicted wait-times. Four different wait-time probability distributions

are presented:

� Deterministic: This probability distribution is a delta function, representing the expected wait-

time when all uncertainty (both aleatoric and parametric) is neglected. The deterministic wait-

time is the time at which the mean (or expected) fission rate crosses the fission rate threshold.

� Aleatoric: This is the distribution of wait-time probabilities resulting from the stochastic nature

of the processes leading to the growth and branching of neutron chains. No uncertainty in input

parameters is taken into account.

� Parametric: This is the distribution of deterministic wait-time probabilities when uncertainty

is applied to one or more of the input parameters. No aleatoric uncertainty is taken into account.

� Aleatoric-Parametric: This is the wait-time probability distribution when aleatoric and para-

metric uncertainty are both taken into account. It is expected that the distribution incorporating

the combined aleatoric and parametric uncertainties will be broader and less peaked than either

the aleatoric or parametric distributions.

2.2.4.2 The Monte Carlo Code

A new version of the FORTRAN code was developed to implement Monte Carlo uncertainty quan-

tification making use of the Message Passing Interface (MPI) to run multiple instances of the gamma

wait-time code in parallel. In each instance, the Monte Carlo code randomised the variable to be made

uncertain, before passing this to the gamma wait-time code, which returned either the deterministic

wait-time or the calculated wait-time probability density function.

The parametric only probability distribution was then constructed by establishing wait-time bins

of equal width across the range of expected wait-times. The MPI code was used to calculate 100,000

values of the deterministic wait-time by running 100,000 realisations of the wait-time code. These

values were then sorted into the wait-time bins, and the probability distribution inferred from the

proportion of values returned in each bin.
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For the aleatoric-parametric probability distribution, the MPI code was used to calculate 10,000

aleatoric wait-time probability density functions by running 10,000 realisations of the gamma wait-

time code. The combined probability density function was determined by calculating the sum of all

10,000 distributions and renormalising, so that for a given time t,

Pw(t) =
1

Nrn

Nrn∑
i=1

Pw,i(t), (2.2.18)

where Pw(t) is the probability of exceeding the wait-time threshold at time t, Nrn is the number

of Monte Carlo realisations and Pw,i(t) is the probability of exceeding the wait-time threshold at

time t according to distribution i. Note that Pw(t) is the wait-time probability across all realisations

representing the full range of input parameters, whereas Pw,i(t) is the wait-time probability for a single

realisation with a single set of input parameters.

A larger number of realisations is required to obtain the parametric-only distribution than the

parametric-aleatoric distribution. This is due to the need to sort the calculated deterministic wait-

times into bins so that the continuous probability distribution can be approximated. The total number

of realisations must be sufficiently large that the number of wait-time values in each bin is large

compared to the standard deviation. The total number of realisations required depends on the number

of bins used. On the other hand, each realisation of the parametric-aleatoric simulation produces a

continuous probability distribution, therefore no binning is required and the number of realisations can

be smaller. Nonetheless, it is important to run a sufficient number of realisations to ensure that the

Monte Carlo simulation has fully captured the uncertainty in the resulting probability distribution.

Convergence was verified by examining the evolution of the distribution mean and standard deviation

as the number of Monte Carlo realisations was increased (see Section 2.4.7).

Execution times depended strongly on the scenario simulated. The simulations presented in the

next section take approximately 60 minutes each, running on a 20-core desktop computer. This

corresponds to 0.4 seconds per realisation for the aleatoric-parametric calculation and 0.04 seconds for

the parametric only calculation. Individual realisations of the parametric only calculation are faster

than the aleatoric-parametric calculation because only a single wait-time value is returned, whereas

in the aleatoric-parametric calculation, gamma functions must be evaluated in order to construct

the wait-time probability distribution for each realisation. Since the Monte Carlo method is easily

parallelised, execution time decreases in inverse proportion to the number of cores available.

The prompt neutron lifetime has a particularly significant impact on the required computation

time, as shorter prompt neutron lifetimes increase the stiffness of the ODEs that must be computed

in order to calculate the gamma distributions. Williams (2016) observed that the wait-time proba-
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bility distribution is sometimes insensitive to the prompt neutron lifetime; in cases where the relative

standard deviation in the neutron population (or detector count) reaches a constant value before the

probability of reaching the threshold value has risen above a negligible value. In these cases, the

execution time can be reduced by selecting a longer prompt neutron lifetime, thereby reducing the

stiffness of the system of ODEs. This technique was used to accelerate the execution of the simulations

presented in Section 2.4.2.

2.2.4.3 Mean and Standard Deviation of the Distributions

The means and standard deviations were calculated for each of the wait-time probability density

functions obtained from the Monte Carlo uncertainty quantification. The method used to calculate

these values depended on the type of distribution.

For the aleatoric and aleatoric-parametric distributions, which are continuous distributions, the

mean wait-times and standard deviations were calculated by numerically integrating the following

expressions using Simpson’s rule,

µ =

∫
t′P (t′)dt′, (2.2.19)

σ2 =

∫
t′2P (t′)dt′ − µ2, (2.2.20)

where µ is the mean wait-time, σ is the standard deviation in the wait-time and P (t) is the absolute

probability of exceeding the wait-time threshold at time t.

For the parametric only distributions, which are discrete, the mean wait-times and standard devi-

ations were calculated from the following expressions,

µ =
1

Nrn

Nrn∑
i=1

ti, (2.2.21)

σ2 =
1

Nrn

Nrn∑
i=1

(ti − µ)2, (2.2.22)

where Nrn is the number of Monte Carlo realisations and ti is the wait-time calculated in the ith

realisation.

2.3 Case Study I: The Y-12 Accident

The gamma distribution method was applied to predict the timing of the first power excursion in

the criticality accident that occurred in 1958 at the Y-12 National Security Complex in Oak Ridge,
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Tennessee. As with most criticality accidents, there is some uncertainty around the exact conditions

(flow rates, concentrations, etc.) prior to the accident. The impact of uncertainty in the flow rate of

the uranium-rich solution will be examined by means of Monte Carlo uncertainty quantification.

2.3.1 Description of the Accident

Descriptions of the 1958 Y-12 accident can be found in Patton et al. (1958), Knief et al. (1985)

and McLaughlin et al. (2000), among other sources, and a brief summary of the accident is given in

Section 1.1.2.1. A description of the accident will not be repeated here, except to note an observation

of McLaughlin et al. (2000) that the fissile liquid at Y-12 may have already reached a prompt critical

configuration by the time of the first power peak. This feature makes an analysis using the method

presented in this chapter highly relevant.

2.3.2 Model Parameters

The aim of the model is to obtain the probability distribution of the wait-time between the system

reaching criticality and the fission rate exceeding some pre-defined threshold. It is estimated in

Zamacinski et al. (2014) that the maximum fission rate during the first power peak was between 1016

and 1017 fissions per second. Preliminary calculations indicate that this fission rate is likely to have

occurred after prompt criticality was reached. The gamma distribution method has not been validated

in the prompt critical region so the threshold value will be set several orders of magnitude lower than

the peak power level so that the delayed supercritical phase of the excursion may be examined.

The equations for the mean and covariances, derived in Williams (2016) from the forward form of

the probability generating function, will be used to determine the time-dependent mean and standard

deviation of the neutron population which characterise the gamma function. These equations do not

include thermal-hydraulic feedback so they are only valid for the period before the fission power output

rises to a level at which feedback becomes significant. This is another reason to set the wait-time fission

rate threshold at a relatively low level so that the power output is low enough that thermal-hydraulic

feedback may be neglected.

Delayed neutron precursors are represented in 6 groups using the same parameters as those used

by Zamacinski et al. (2014) for their point kinetics model of Y-12. The reactivity profile as a function

of time is also taken from Zamacinski et al. (2014), as is the mass and concentration of 235U in the

fuel solution. Zamacinski et al. determined that the prompt neutron lifetime varied approximately

linearly from 4.1 × 10−5s at the start of the transient, to 5.5 × 10−5s at the end. Equation 54 from
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Zamacinski et al. (2014) was used to model the prompt neutron lifetime in this analysis.

The probability distribution for the number of neutrons released per fission was taken from Table

1 of Zucker and Holden (1986).

An analysis of the various phenomena contributing to the intrinsic neutron source in uranium-

fuelled reactors with non-irradiated fuel can be found in Harris (1960). The report identifies three

main sources of neutrons,

1. spontaneous fission of 235U and 238U,

2. (α,n) interactions where α particles emitted in radioactive decay of 238U induce neutron emission

in light nuclei,

3. cosmic ray induced emission of neutrons from within the fuel solution.

Experimental measurements of the intrinsic neutron source of solutions of uranyl nitrate can be

found in Hankins (1966) and Seale and Anderson (1991). Hankins measured the intrinsic neutron

source of a flask containing one litre of uranyl nitrate, with a concentration of 53 gU dm−3 and an

enrichment of approximately 93%. The intrinsic neutron source measured was 5.6 n/s for the one

litre volume of solution. Seale and Anderson measured the intrinsic neutron source of a much more

concentrated solution of uranyl nitrate containing 420 gU dm−3. The uranium enrichment was the

same at 93%. The resulting intrinsic neutron source measured was equivalent to 21.4 n/s for a one

litre volume of solution.

Of the two experiments, the concentration and enrichment of the Hankins experiment is far closer

to the conditions of the Y-12 accident, as reported in Zamacinski et al. (2014): the concentration of

uranium at the start of the accident is predicted to be approximately 40.1 gU dm−3 and the uranium

enrichment was approximately 90%. Extrapolating the results of Hankins to the volume of solution

at the start of the Y-12 accident (V = 56.2 dm3) gives a total intrinsic source of 315 n/s.

It should be noted that there is considerable uncertainty in this figure as it relates to the Y-

12 accident. Firstly, it is not clear whether or not the uranyl nitrate solution present at the Y-12

accident had been previously irradiated. If it had been, there would be a higher concentration of

radioactive isotopes, whose decay would contribute to an increased intrinsic neutron source through

(α,n) reactions. Secondly, as noted above, the actual uranium concentration was slightly lower than

the value in Hankins’ experiment, which would be expected to reduce the intrinsic source due to

reduced alpha emission from 238U as well as reduced spontaneous fission.
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Due to the uncertainty in the intrinsic neutron source, results will be presented for two intrinsic

source strengths: 30 n/s and 315 n/s, so that the degree of sensitivity to the intrinsic source strength

can be examined.

2.3.3 Parametric Uncertainty

In order to examine the impact of uncertainty in the fuel solution flow rate on the resulting wait-

time probability distribution, uncertainty was applied to the reactivity insertion rate. The reactivity

insertion rate was modelled using Equation 2.3.1, based on Equation 53 from Zamacinski et al. (2014),

who calculated the reactivity as a function of time from the available hydraulic and geometric data

using MCNP. The randomly varying parameter α was included to make the reactivity insertion rate

uncertain. Its value was randomly varied between 0.9 and 1.1 according to a uniform probability

distribution. The time axis of the equation has also been modified so that the system reaches criticality

at t = 0.

Rex(t) = 1.8636× 10−2αt− 5.5338× 10−5(αt)2 + 6.8570× 10−8(αt)3 (2.3.1)

Figure 2.3.1 shows the system reactivity as a function of time, including the non-randomised

reactivity profile corresponding to α = 1, as well as minimum and maximum values corresponding

to α = 0.9 and α = 1.1. Considering, for example, the effect of a value of α > 1, two effects are

notable. Not only does it result in the system reactivity rising faster, making shorter wait-times more

likely, it also means the system is more deeply subcritical during the time before criticality is achieved.

The latter effect offsets the first to some degree, because at the moment of criticality is reached, the

population of delayed neutron precursors will be smaller in a system with large α than in a system

with small α.

2.3.4 Deterministic Wait-Time and Aleatoric Uncertainty

The deterministic wait-time can be obtained by solving the system of ODEs referred to in Section

2.2.1 for the moment at which the expected fission rate F̄ (t) crosses the wait-time threshold of 2×109

fissions per second. The value obtained is 45.7s for an intrinsic source strength of 30 n/s, and 43.0s

for an intrinsic source strength of 315 n/s. Unsurprisingly, the stronger intrinsic source results in a

shorter wait-time.

Figure 2.3.2 shows the aleatoric uncertainty associated with these wait-times; that is uncertainty

due to the stochastic nature of fission chain growth, assuming certain input parameters. Wait-time
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Fig. 2.3.1. Reactivity as a function of time, showing maximum and minimum values corresponding to
alpha=0.9 and alpha=1.1.

probability distributions, calculated using the gamma distribution method and saddlepoint method,

are shown for comparison. The predicted distributions are similar: for the 30 n/s case, the gamma

distribution method gives a mean (and standard deviation) of 47.0s (2.1s) and the saddlepoint method

predicts 47.1s (2.6s). For the 315 n/s case, the gamma distribution method gives a mean (and standard

deviation) of 43.1s (0.8s) and the saddlepoint method predicts 43.0 (0.8s).

2.3.5 Parametric Uncertainty Quantification

Figure 2.3.3 shows the four probability distributions (deterministic, aleatoric, parametric and aleatoric-

parametric) for the wait-time to reach 2× 109 fissions per second in the Y-12 accident. Figure 2.3.3a

shows the probability distributions for the case where the intrinsic neutron source strength is 30 n/s

and Figure 2.3.3b shows the distributions for the 315 n/s case.

Despite the uniform probability distribution adopted for the randomisation of the reactivity in-

sertion rate, the parametric wait-time probability distributions are slightly biased in favour of shorter

wait-times. The is because the impact of varying alpha on the wait-time predicted by the deterministic

model is not linear.

The parametric uncertainty makes the overall combined (aleatoric-parametric) probability distri-

butions broader, compared to the aleatoric probability distributions, however, in both cases, there

is no significant change in the mean. For 30 n/s case, the mean (and standard deviation) of the

aleatoric-parametric wait-time probability distribution is 47.1s (2.9s) compared to 47.0s (2.1s) for the

aleatoric distribution. For the 315 n/s, the aleatoric-parametric distribution has a mean (and standard

deviation) of 43.3s (2.0s) compared to 43.1s (0.8s) for the aleatoric distribution.

75



����

����

����

����

����

����

�� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

���

���

���

���

�
��
�
�
�
���
��

�
�
�
�
�
���

�
��
��
�

�
�
�
�
���
���

�
��
�

��������

���������������
���������������������

����������

(a) Intrinsic Source, S = 30 n/s

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

 0  10  20  30  40  50  60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
a
b
ili

ty
 D

e
n
si

ty
 [

s-
1
]

R
e
a
ct

iv
it

y
 [

$
]

Time [s]

Gamma Wait-Time
Saddlepoint Wait-Time

Reactivity

(b) Intrinsic Source, S = 315 n/s

Fig. 2.3.2. Wait-time probability distributions for the time taken between reaching criticality and the
fission rate exceeding 2× 109 fissions per second in the Y-12 accident.

The parametric uncertainty has a greater impact on the standard deviation of the probability

distribution in 315 n/s case. This is because there is less aleatoric uncertainty, so the parametric

uncertainty is more significant by comparison. This effect is clearly visible in Figure 2.3.3b, where the

combined aleatoric-parametric uncertainty is dominated by parametric uncertainty, whereas in Figure

2.3.3a, the combined aleatoric-parametric distribution is influenced in approximately equal parts by

the aleatoric and parametric uncertainties.

These results show that a small degree of uncertainty in the reactivity insertion rate results in a

significant increase in the overall uncertainty in the wait-time.
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Fig. 2.3.3. Wait-time probability distributions for the Y-12 accident comparing the deterministic
wait-time with models including parametric uncertainty in the reactivity insertion rate, aleatoric
uncertainty, and combined parametric-aleatoric uncertainty.

2.3.6 Summary of Results

The mean wait-times and standard deviations discussed in this section are summarised in Table 2.3.

Deterministic Aleatoric Parametric Aleatoric-
Parametric

Y-12 (S=30 n/s) 45.7s 47.0s (2.1s) 45.8s (2.0s) 47.1s (2.9s)

Y-12 (S=315 n/s) 43.0s 43.1s (0.8s) 43.1s (1.9s) 43.3s (2.0s)

TABLE 2.3
Summary of calculated wait-times to reach a fission rate 2 × 109 s−1 for the simulation of the Y-12
accident. Mean values shown with standard deviation in brackets.
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2.4 Case Study II: The Caliban Experiments

The Caliban reactor is a fast burst reactor constructed of solid metal disks of uranium/molybdenum

with a 235U enrichment of 93.5%. Authier et al. (2014) describe a series of experiments in which varying

amounts of reactivity were inserted into the reactor so that the wait-time could be measured. It has

already been demonstrated in Williams (2016) that the gamma distribution method to determine the

wait-time probability distribution is accurate for these experiments and it is clear from Figure 2.2.5

that these experiments fall within the range of applicability of the gamma distribution method. A

photograph of the Caliban reactor is shown in Figure 2.4.1.

superprompt critical burst, the cooling being performed
from 15uC nitrogen gas. The cooling time, *2 h, limits
the burst rate to two superprompt bursts per day.

A full description of the Caliban reactor and its
environment is available in the handbook of the Inter-
national Criticality Safety Benchmark Evaluation Project.1

I.B. Instrumentation

The nuclear instrumentation is based on BF3 counters
for the low-flux regime and on fission chambers for the
high-flux regime. The second part is essentially used for
burst operation and must be thought as record instru-
mentation for the burst parameters. It includes the
following:

1. A synchronization unit generating a signal when
the instantaneous power of the reactor reaches 1 kW: This
signal supplies the safety block scram system (whose
response time is within the 100-ms range).

2. Radiation pulse recorders: The detectors are
vacuum photodiodes coupled to plastic scintillators. Such
detectors are principally gamma sensitive, and it was
checked out that prompt gamma detection was character-
istic for the neutron emission. The current from the
photodiodes supplies digital recorders that have time
resolution set to 1 ms.

The nonnuclear instrumentation is composed of the
following devices:

1. Remote positioning of all mobile elements (i.e.,
safety block and control rods) is done with an uncertainty
of 10 mm.

2. A specific micrometric Tesatronic sensor reports
the relative position of the safety block to full contact with
the upper block with precision of 1 mm.

3. Temperature elevation is measured at two points
in the core using chromel-alumel thermocouples; they are
placed at the ‘‘hot point’’ of the core to give the maximum
temperature elevation.

4. Gauges record surface displacement and give
details of the stress at the fuel surface boundary.

I.C. Nuclear Core Constants

Periods of the core are estimated using the fast 235U
six delayed neutron group constants of Keepin2 intro-
duced in the classical Inhour equation. It has been proved2

that for such a highly enriched alloy, the estimate is not
sensitive to omission of the fast 238U delayed neutron
parameters. The effective delayed neutron fraction beff has
been estimated as 659| 10{5, and the prompt neutron
lifetime and generation time are known to be 10 ns
(Ref. 3) and 12 ns, respectively.

Given the weight of 112.8 kg and the composition of
the alloy of the core, we find a total rate of fission of 75.6
fissions/s unmultiplied,4,5 which leads to the rounded
value of 200 n/s in everyday use. This result is in agree-
ment with the experimental demonstration in Ref. 6.

II. EXPERIMENTAL PROCEDURE
AND DATA

The Caliban core is made critical (specific procedures
exist depending on the nature of the experiment) by
driving up the safety block until it makes contact with the
fixed block, and then three control rods and eventually a
burst rod are inserted up to definite positions to achieve
the required reactivity.

II.A. Multiple Delayed Critical Divergence Sequence

A low-power run is produced with the help of a
constant external starting neutron source of PuBe placed
in the middle plane of the core (Fig. 1). This source is
then removed and compensated by an additional insertion
of a control rod. The estimation of the critical height is
done conventionally at a plateau power of 30 to 40 mW,
the criterion for stabilization being a period of w104 s,
estimated with BF3 ionization counters installed in the
reactor cell.

When the critical height has been determined, the
desired delayed supercritical state is obtained just by a last
insertion of the third control rod, based on its calibration
reactivity curve. The divergence starts, and we let the
power build up to 650 mW. When this level is reached,
the safety block is withdrawn, with the control rods left at

Fig. 1. Core of Caliban fast burst reactor with B4C cover
shroud taken away. The yellow-taped tube (color online) in
front is the starting source tube that serves for the source bullet,
when used, to stand in the middle plane of the core when it is
assembled.

170 AUTHIER et al.

NUCLEAR SCIENCE AND ENGINEERING VOL. 177 JUNE 2014

Fig. 2.4.1. Photograph of the Caliban reactor. Reproduced from Authier et al. (2014) with permission
of the rights holder, Taylor & Francis (www.tandfonline.com).

2.4.1 Description of the Experiments

Full details of the experimental set-up can be found in Authier et al. (2014). Reactivity control in the

Caliban reactor is achieved in part by means of calibration rods and a safety block. The calibration

rods are set so that the desired degree of supercriticality is achieved when the safety block is lifted to

its maximum position. The reactor is also equipped with a burst rod but this was not used for the

delayed supercritical experiments modelled here.

Each delayed supercritical excursion was initiated by raising the safety block progressively closer

to the reactor until it was in its maximum position. According to Figure 3 of Authier et al. (2014)

the safety block is moved in 17 small movements over a period of 62 seconds until the block is in the
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desired delayed supercritical position. In the model described here it was chosen to lump together

some of these movements and the 17 movements of the safety block were approximated by 6 small

ramp reactivity insertions (see Equation 2.4.1).

Authier et al. count the wait-time from the moment the safety block reaches its maximum position

to the time at which the neutron detector indicates a fission rate of 2×109 fissions per second. Accord-

ing to Table I of Authier et al. (2014) the reactor reaches a supercritical configuration approximately

4 seconds before the safety block arrives at its maximum position.

2.4.2 Model Parameters

The experiment selected for uncertainty quantification was the 0.272$ reactivity insertion. The wait-

time threshold was set to 2 × 109 fissions per seconds, the same value used by Authier et al. (2014).

Delayed neutron precursors are represented in 6 groups using the parameters for fast fission of 235U

from Keepin (1965).

Rex(t) =



−16.7$ for t ≤ −62.1s

−16.7$ + t+62.1s
16.7s × 1.7$ for − 62.1s < t ≤ −45.4s

−15.0$ + t+45.4s
16.7s × 3.6$ for − 45.4s < t ≤ −28.8s

−11.5$ + t+28.8s
16.7s × 6.6$ for − 28.8s < t ≤ −12.1s

−4.93$ + t+12.1s
8.1s × 4.9$ for − 12.1s < t ≤ −4.0s

0.066$ + t+4.0s
4.0s × 0.206$ for − 4.0s < t ≤ 0.0s

0.272$ for t > 0.0s

(2.4.1)

The reactivity profile is shown in Equation 2.4.1. It was constructed using data from Table 1 of

Authier et al. (2014). The final reactivity increase in the table was omitted, as this corresponds to the

insertion of the burst rod (prompt critical experiments only), and the reactivity values were adjusted

by +0.077$ so that the final reactivity corresponded to 0.272$. The beta effective used in the model

was 0.00659. For the intrinsic neutron source of the Caliban reactor, Authier et al. (2014) used a value

of 200 n/s in their model, so the same value will be used for this analysis. No external source was

present during the experiments.

The prompt neutron lifetime in the Caliban reactor has been evaluated as 1.2× 10−8 s (see Casoli

et al. (2009)). Attempting to model the reactor with such a short prompt neutron lifetime results

in a stiff set of ODEs, which increases the computational expense of the Monte Carlo analysis and
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limits the maximum number of realisations achievable. It is noted however, in Williams (2016), that

the relative standard deviation in the cumulative detector count reaches a constant value, becoming

insensitive to prompt neutron lifetime within 100 seconds of reaching criticality. This implies that the

wait-time probability distribution is also insensitive to prompt neutron lifetime after this point. Since

the expected wait-time is much longer than 100 seconds, it should be possible to increase the prompt

neutron lifetime to reduce the execution time of the computational model, without any impact on the

predicted wait-time probability distribution.

This hypothesis was tested by comparing the wait-time probability distribution predicted with a

prompt neutron lifetime of 12 ns to a simulation with a prompt neutron lifetime of 65 µs. The results,

shown in Figure 2.4.2, confirm the insensitivity of the wait-time probability distribution predicted for

the Caliban experiment to the prompt neutron lifetime.
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Fig. 2.4.2. Wait-time probability distribution for a cumulative detector count corresponding to a
fission rate of 2× 109 fissions per second with prompt neutron lifetimes of 12 ns and 65 µs.

2.4.3 Parametric Uncertainty

Two areas of parametric uncertainty were examined for the Caliban experiments: time taken to move

the safety block and the yields of the delayed neutron precursor (DNP) groups.

Equation 2.4.1 shows the reactivity profile representing the movement of the safety block in the

Caliban experiments. The final ramp insertion lasts 4.0 seconds and takes the reactor from a slightly

supercritical state (0.066$) to the target reactivity of 0.272$, for a reactivity insertion rate of 5.15×10−2

$/s. The duration of this step was varied between 0 and 20 seconds according to a uniform probability

distribution so that the reactivity insertion rate varied from a step to a ramp of 1.03× 10−2 $/s.
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Group
Half-Life Yield (βi) St. Dev. Lower Bound Upper Bound

[s] dim. [s] dim. dim.

1 54.5 2.50× 10−4 0.003 2.16× 10−4 2.85× 10−4

2 21.8 1.40× 10−3 0.005 1.35× 10−3 1.46× 10−3

3 6.00 1.24× 10−3 0.016 1.06× 10−3 1.42× 10−3

4 2.23 2.68× 10−3 0.007 2.60× 10−3 2.76× 10−3

5 0.496 8.44× 10−4 0.008 7.52× 10−4 9.35× 10−4

6 0.179 1.71× 10−4 0.003 1.37× 10−4 2.06× 10−4

TABLE 2.4
Upper and lower bounds of randomised delayed neutron precursor yields.

The yields of the delayed neutron precursor groups are subject to some experimental uncertainty

in their measurement. Table I of Keepin et al. (1957) states the standard deviation associated with

each yield. From this value, an upper and lower bound (see Table 2.4) was calculated by assuming

a uniform probability distribution. The values of each yield were then varied randomly within these

ranges.

The total delayed neutron fraction, β, was calculated for each realisation as the sum of all precursor

group yields. Its value therefore also varied, with a minimum of 0.00611 and a maximum of 0.00707.

The reactivity profile was fixed before randomisation of the delayed neutron precursor yields so that

the time-dependent keff was the same for each realisation. The reactivity of the reactor measured in

dollars therefore varied with the changing value of β. For the safety block in its final position, the

reactivity in dollars varied between a minimum of 0.254$ and a maximum of 0.293$.

2.4.4 Deterministic Wait-Time and Aleatoric Uncertainty

The deterministic wait-time for the system to reach 2 × 109 fissions per seconds is 207s. This value

ignores both aleatoric, and any parametric uncertainty. When aleatoric uncertainty was modelled using

the gamma distribution method, a probability distribution was obtained, with mean (and standard

deviation) of 211s (12.8s). The distribution obtained is shown in Figure 2.4.3.

2.4.5 Parametric Uncertainty Quantification

2.4.5.1 Safety Block Manipulation Time

Adding parametric uncertainty to the timing of the safety block movement in the deterministic wait-

time model produces the parametric probability distribution shown in Figure 2.4.4. The parametric

probability distribution has mean (and standard deviation) of 202s (5.0s).
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Fig. 2.4.3. Deterministic wait-time and aleatoric wait-time probability distributions for a cumulative
detector count corresponding to a fission rate of 2×109 fissions per second in the Caliban experiment.
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Fig. 2.4.4. Wait-time probability distributions for the Caliban experiment comparing the deterministic
wait-time with models including parametric uncertainty in the timing of the safety block movement,
aleatoric uncertainty, and combined parametric-aleatoric uncertainty.

The results confirm that the uncertainty applied to the timing of the final movement of the safety

block has a significant impact on the resulting wait-time. This is because the system reaches criticality

before the safety block reaches its final position. During this time the population of delayed neutron

precursors in the system is increasing exponentially. The time taken to carry out this movement

therefore will determine the delayed neutron precursor population at the start of the experiment with

a resulting impact on the wait-time observed.

The aleatoric-parametric distribution shown in Figure 2.4.4 shows the impact of the parametric

uncertainty when it is combined with the aleatoric uncertainty inherent in the neutron population

growth rate. The aleatoric-parametric probability distribution has a mean (and standard deviation)

of 205s (13.4s) so the effect of the parametric uncertainty is to make the probability distribution
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broader and shift it slightly in favour of shorter wait-times.

2.4.5.2 Delayed Neutron Precursor Yields

The uncertainty applied to the yields of the delayed neutron precursor groups results in the parametric

probability distribution shown in Figure 2.4.5. This parametric uncertainty applied to the determinis-

tic wait-time (without aleatoric uncertainty) results in a mean (and standard deviation) of 207s (5.2s).
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Fig. 2.4.5. Wait-time probability distributions for the Caliban experiment comparing the deterministic
wait-time with models including parametric uncertainty in the delayed neutron precursor group yields,
aleatoric uncertainty, and combined parametric-aleatoric uncertainty.

The aleatoric-parametric distribution shown in Figure 2.4.5 shows the impact of the parametric

uncertainty when it is combined with the aleatoric uncertainty inherent in the neutron population

growth rate. The aleatoric-parametric probability distribution has the same mean value of 211s as

the aleatoric-only distribution but the standard deviation is increased slightly from 12.8s to 13.8s.

The uncertainty in the measurement of the delayed neutron precursor yields therefore has a small but

non-negligible impact on the overall wait-time probability distribution.

2.4.6 Summary of Results

The mean wait-times and standard deviations discussed in this section are summarised in Table 2.5.
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Deterministic Aleatoric Parametric Aleatoric-
Parametric

Caliban (safety block)
207s 211s (12.8s)

202s (5.0s) 205s (13.4s)
Caliban (DNP yields) 207s (5.2s) 211s (13.8s)

TABLE 2.5
Summary of calculated wait-times to reach a fission rate 2× 109 s−1 for the simulation of the Caliban
experiments. Mean values shown with standard deviation in brackets.

2.4.7 Convergence of the Monte Carlo Method

The convergence of the aleatoric and aleatoric-parametric distributions was tested by observing the

evolution in the mean and standard deviation of the combined distribution as the number of realisations

was increased. A sufficient number of realisations must be run so that the mean and standard deviation

of the distributions become relatively constant, without any upwards or downwards trend.

Figure 2.4.6a shows the convergence of the mean and standard deviation for the aleatoric-parametric

distribution predicted for the Y-12 accident. Significant variations are observed in the mean and stan-

dard deviation of the aleatoric-parametric distribution over the first 5,000 realisation and there is a

notable downward trend in the standard deviation between 1,000 and 5,000 realisations. Beyond 5,000

realisations, the mean and standard deviation remain relatively constant, indicating that the Monte

Carlo simulation has reached an acceptable degree of convergence.

The parametric distribution was calculated based on 100,000 realisations. Figure 2.4.6b indicates

the degree of convergence in the mean and standard deviation for the Y-12 simulation.
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Fig. 2.4.6. Evolution of the mean and standard deviation of the aleatoric-parametric wait-time proba-
bility distribution and the parametric probability distribution, with increasing number of Monte Carlo
realisations, for the Y-12 accident simulation. Points shown at intervals of 25 realisations.

2.5 Conclusions

A non-intrusive method has been demonstrated for quantifying the impact of parametric uncertainty

on the probability distribution for the wait-time in a delayed supercritical system. The method makes

use of the computational efficiency of the gamma distribution method to determine the wait-time

probability distribution which makes uncertainty quantification feasible via the Monte Carlo method.

This method of uncertainty quantification has been applied to the criticality accident that occurred

in 1958 at the Y-12 National Security Complex in Oak Ridge, Tennessee. Uncertainty in the flow

rate of liquid into the drum was modelled by varying the reactivity insertion rate, and the resulting

uncertainty in the predicted wait-time probability distribution was evaluated. Simulations were run
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with two different values of the intrinsic neutron source strength in order to demonstrate the sensitivity

of the wait-time probability distributions (aleatoric, parametric and combined aleatoric-parametric)

to this parameter.

The method has also been applied to a model of an experiment on the Caliban reactor where

two areas of uncertainty were examined. In the first case, the method was used to quantify the

impact of uncertainty in the timing of the movement of the reactor safety block on the predicted wait-

time probability distribution. The results show significant sensitivity of the wait-time probability

distribution to the timing of the safety block movement. In the second Caliban case, the model was

used to quantify the impact of epistemic uncertainty in the yields of delayed neutron precursor groups

on the predicted wait-time probability distribution. The results show that reported uncertainty in the

measurement of the delayed neutron precursor group yields is sufficient to have a small but significant

impact on the wait-time probability distribution.

The range of applicability within which the gamma distribution method can be relied upon to

produce an accurate prediction of the wait-time probability distribution has been examined. A range of

applicability for a reactivity insertion in a hypothetical system is presented in terms of the magnitude

and rate of the reactivity insertion, the strength of the neutron source and the lifetime of prompt

neutrons in the system.

Wait-time probability distributions predicted by the gamma distribution method have been ver-

ified against predictions made using the more rigorous saddlepoint method. A method for rapid

solution of the saddlepoint method using Newton-Raphson iterations to accelerate convergence has

been demonstrated.
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Chapter 3

Linear Energy Transfer (LET) of

Fission Fragments of 235U and

Nucleation of Gas Bubbles in Aqueous

Solutions of Uranyl Nitrate

3.1 Introduction

Much of the work presented in this chapter, including tables and figures, is reproduced from Winter

et al. (2020a).

When the nucleus of a fissile atom undergoes nuclear fission in aqueous solution, the fully ionised

fission fragments are emitted at high velocity from the site of fission. Except for a very small number

of ternary and quaternary fissions (Gönnenwein (2004)), each fission event results in the creation of

two charged fission fragments. These fragments travel in opposite directions to each other, creating

tracks of radiolysis products in their wake. Lane et al. (1958) notes that the quantities and proportions

of radiolysis products created depends on the linear energy transfer (LET) of the fission fragments.

3.1.1 Nucleation of Bubbles in Aqueous Fissile Solutions

Much work was done in the fifties, sixties and seventies to examine the mechanics of fission tracks in

aqueous fissile solutions and their role as nucleation sites for bubbles of radiolytic gas and steam.

87



Ghormley (1958) of Oak Ridge National Laboratory exposed aqueous solutions of uranyl sulphate

to fission recoil particles and measured the maximum superheat that could be applied before the

appearance of stable bubbles. The purpose was to test the hypothesis that water vapour created due

to the energy transfer from the fission recoil particles to the water would create tiny bubbles that

could act as nucleation sites for boiling. It was noted that a significant superheat was required before

visible bubbles appeared, from which it was concluded that bubbles measuring approximately 1.4 µm

in diameter were generated along the fission tracks and that visible bubbles would only be observed

if the liquid superheat was sufficient for water to vaporise at the interface of bubbles of this size. The

1.4 µm diameter of the fission track steam bubbles was inferred from the degree of superheat required

for bubble nucleation. It was calculated that approximately 28 MeV would be required to vaporise

enough water to create the bubble and that this amount of energy would be deposited by a fission

recoil particle over approximately 4 µm of track.

Ghormley’s work was based on the thermal spike theory of bubble nucleation in fissile liquids. This

work was extended by Norman and Spiegler (1963) who, using an energy balance for the creation of

vapour bubbles in fissile aqueous solutions, predicted the size of bubbles deposited along the fission

track as a function of LET. Norman and Spiegler notably extended the theory, previously concerned

only with steam bubble generation in superheated solutions, to the formation of hydrogen gas bubbles

in subcooled aqueous solutions.

Spiegler describes their theory of gas bubble formation in subcooled aqueous solutions in a technical

report (Spiegler et al. (1962)). The theory can be summarised as follows:

� a jet of vapour is formed along the track of a fission fragment as energy is transferred from the

fission fragment to the water surrounding it;

� the jet of water vapour breaks up into sections which become distinct vapour bubbles;

� if the solution is subcooled the water vapour condenses on a timescale of the order 10−8 seconds;

� a bubble of hydrogen is left which, in a solution where the dissolved gas concentration is relatively

low, will collapse on a timescale of the order ∼10−6 seconds.

It is noted in Spiegler et al. (1962) that if the lifetime of the bubbles had been any longer than those

indicated above, then a detectable rise in pressure would have been observed before the appearance

of visible gas voids during their experiments on fissile solutions. The bubble lifetimes indicated are

therefore inferred from the absence of a detectable rise in pressure.

The hydrogen bubble that remains will collapse unless the concentration of dissolved gas in solution
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is sufficient to establish a net flow of gas into the bubble. At this “critical concentration”, the bubble

will grow, leading to the appearance of voids due to radiolytic gas. The critical concentration of

hydrogen in the liquid phase depends on the partial pressure of hydrogen gas in the bubble and the

solubility of hydrogen in the fuel solution. Where no other gases are presented, it can be determined

from:

Ccrit = HH2,solPH2
= HH2,sol

(
Pl +

2σs
rb

)
yH2

(3.1.1)

where Ccrit is the critical concentration of hydrogen gas in the fuel solution, HH2,sol is the Henry’s law

constant for the solubility of hydrogen in the solution, PH2
is the partial pressure of hydrogen inside

the bubble, Pl is the liquid pressure, σs is the fuel solution surface tension, rb is the bubble radius and

yH2
is the mole fraction of hydrogen gas inside the bubble.

Up until this point, the discussion has been limited to hydrogen gas only. However, nitrogen gas

is also produced as a direct product of radiolysis of uranyl nitrate solutions and will also influence the

size of the gas bubbles deposited in the tracks of fission fragments. However, Bidwell et al. (1956)

showed the amount of nitrogen gas produced to be two orders of magnitude less than the quantity of

hydrogen produced. Any effect on the size of bubbles produced is therefore expected to be negligible

and will not be considered here.

Oxygen gas is also produced during radiolysis of aqueous fissile solutions. However, it is not

a direct radiolysis product but a product of ancillary reactions which take place later. Therefore,

oxygen gas production will not affect the initial size of radiolysis bubbles but it will affect the critical

concentration at which these bubbles begin to grow. Critical concentrations quoted in this chapter are

calculated with the assumption that the solution contains no dissolved oxygen. However, the effect of

oxygen on the critical concentration will be examined in Chapter 5.

The work of Norman and Spiegler was examined in a study by Deitrich and Connolly (1973).

Their experiments supported the hypothesis that particle LET is the factor determining the size of

bubbles generated along fission tracks. However, they noted that the values predicted by the theory

of Norman and Spiegler overestimated the superheat required to nucleate steam bubbles in their own

experiments, and they proposed a modification to the characteristic track length over which bubbles

are formed (see Section 3.2.1).

The theory described above relies on the assumption that hydrogen gas will nucleate on the bubbles

created by fission fragments at a lower concentration than that required for homogeneous nucleation.

It is well known that homogeneous nucleation in certain gas/liquid systems tends to occur at lower

concentrations than current theory predicts, and it is therefore useful to consider whether homoge-

neous nucleation might occur in the case of a fissile liquid at concentrations lower than the critical
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concentration discussed above.

An extensive review by Lubetkin (2003) of numerous theories to explain the discrepancy between

the predictions of the classical theory and the relative ease with which homogeneous nucleation seems

to occur, concluded that dissolved gas molecules act as surfactants, reducing the liquid surface tension,

which in turn, reduces the concentration required to bring about homogeneous nucleation. Lubetkin

notes that the surfactant effect is smallest for helium and also very small for hydrogen. For example,

carbon dioxide has been shown to undergo homogeneous nucleation at concentrations as low as 5.4

times its atmospheric saturation concentration, whereas Lubetkin (2003) reports that hydrogen gas

was found to require a concentration of at least 80 times saturation.

According to data from Norman and Spiegler (1963) and Spiegler et al. (1962), the critical concen-

tration required for heterogeneous nucleation of hydrogen bubbles on fission tracks is approximately

28 times the saturation concentration of the solution. This is well below the concentration required

for homogeneous nucleation to occur. Homogeneous nucleation can therefore be ruled out as a factor

in the formation of gas voids in fissile solutions, lending further credibility to the thermal spike model.

3.1.2 Linear Energy Transfer of Charged Particles

The size of bubbles created on the tracks of fission fragments depends on the LET of the fragments

as this determines the quantities of water vapour and hydrogen gas created. This was confirmed

experimentally by Deitrich and Connolly (1973).

The LET of a fission fragment varies along the fission track and is a complex function of particle

velocity, the stopping power of the medium with respect to that particle and the charge of the ionised

particle (Tavernier (2010)). Unlike smaller charged particles which tend to retain their charge until

they are almost stopped, Chadderton (1988) notes that fission fragments, which have an exceptionally

large initial charge, de-ionise continuously along the track.

While there is a relatively large body of experimental data available in the literature for protons,

electrons and alpha particles, there is relatively less for larger charged particles. This motivated

Northcliffe and Schilling (1970) to look at ways of predicting stopping powers for larger particles by

extrapolation of the experimental data available at the time. While more recent stopping power tables

have been compiled for some ions, those of Northcliffe and Schilling remain unmatched in the open

literature for the range of charged particles and media covered.

A 2003 review by Helmut and Schinner (2003) of available data and models for calculating the

stopping powers of heavy ions found that the Northcliffe and Schilling tables provided good accuracy
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at reproducing the general trends in stopping power, while failing to reproduce the Z1- and Z2-

oscillations in stopping power observed as a function of particle (Z1-) and target medium (Z2-) atomic

numbers. This is not surprising, since Northcliffe and Schilling extrapolated their values by assuming

that the stopping power was a smooth function of the atomic numbers of the particles and target

media. For this reason it was chosen to model the fission fragment LET using the software package

SRIM (Ziegler et al. (2010)). SRIM is capable of predicting the Z1- and Z2- oscillations noted by

Helmut and Schinner. For comparison, the LET profiles of the 6 highest-yielding fission fragments of

235U were calculated using both SRIM and the tables of Northcliffe and Schilling. The comparisons

can be found in Section 3.4 and confirm a relatively close agreement with some notable differences

between the two methods.

The LET of a heavy charged particle, such as a fission fragment, is quite different from that of

smaller charged particles. With electrons, protons and alpha particles, the LET often starts relatively

low, remaining relatively constant for most of the length of the particle track, before increasing sharply

to a peak, then dropping to zero. This peak, known as the Bragg peak, occurs because, even as the

particle is losing energy towards the end of the track, its reduced velocity increases its ability to

interact with passing matter, leading to an increase in the rate of energy transfer from the particle to

the medium.

Fission fragments may be emitted with energy on the same order of magnitude as an alpha particle,

however, fission fragments have much greater mass, and therefore much lower velocities. Since it is

velocity which determines the ability of the particle to interact with, and transfer energy to, the matter

surrounding it, the LET of fission fragments starts close to its maximum, and Bragg peaks in the LET

profiles are either absent or very small (see Section 3.3). A notable difference between the LET profiles

calculated using Northcliffe and Schilling compared to SRIM was that plateaus or peaks due to the

Bragg peak effect were significantly less pronounced in the LET profiles predicted by SRIM.

3.2 Methodology and Data

The following section presents the methodology used to predict values for fission fragment LET and

the resulting distribution of bubble sizes created along the fission track. The methods are applied as

indicated in the literature, subject to some modifications which are described below.
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3.2.1 Predicting the Size of Bubbles on Fission Tracks

In a subcooled aqueous solution, free from dissolved gas, the collapse of the bubbles generated along

the tracks of fission fragments is expected to take place in two stages: steam condensation followed by

hydrogen dissolution in the liquid (see Section 3.1.1). The condensation of steam is expected to take

place much faster than the mass transfer of hydrogen gas into the dissolved phase; thermal diffusivity

in water is typically of the order ∼ 10−7 m2 s−1 whereas the diffusivity of dissolved hydrogen gas is of

the order ∼ 10−9 m2 s−1. Furthermore, the partial pressure of hydrogen gas inside the steam bubble

will be relatively low, limiting the rate at which hydrogen escapes the bubble, until most of the steam

has condensed.

For this reason, the two processes can be considered to happen sequentially. This is important

because it means that the nucleation of steam in a superheated solution will depend on the size of

steam bubbles generated along the fission tracks, whereas the nucleation of gas bubbles in a solution

saturated with dissolved gas will depend on the size of the much smaller gas bubbles left behind once

the steam has condensed.

3.2.1.1 Steam Bubbles Before Condensation

Norman and Spiegler (1963) proposed that the radius of steam bubbles generated along the tracks

of fission fragments in an aqueous solution could be predicted by means of an energy balance on the

bubble. Equation 3.2.1 is based on their equation, with some minor adaptations to include the energy

consumed by the radiolysis reaction, and an adjustment to account for the volume of hydrogen gas

generated at the same time as the steam. The adapted energy balance equation is,

Eb =
4

3
πr3

vρv∆Hvap + 4πr2
b

(
σs − T

dσs
dT

)
+

4

3
πPlr

3
b +NH2

∆Hr, (3.2.1)

where Eb is the energy required to create the bubble, rb is the radius of the bubble consisting of water

vapour and hydrogen, rv is the radius this bubble would have if it contained no hydrogen, ρv is the

vapour density, Pl is the liquid pressure, σs is the liquid surface tension, NH2
is the number of moles

of hydrogen gas generated along with the water vapour and ∆Hr is the enthalpy of this reaction, per

mole of hydrogen gas created.

The first term on the right-hand side of Equation 3.2.1 represents the energy required to vaporise

the liquid water contained in the bubble. The second term represents the energy required to create

the gas-liquid interface around the bubble.

The third term of Equation 3.2.1 gives the work done against the pressure of the liquid during
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expansion of the bubble. This term was taken from a version of the energy balance equation used by

Das and Sawamura (2004), among others. It is derived by integrating the force required to overcome

the liquid pressure, over the distance of expansion, i.e. the radius of the bubble,

E =

rb∫
0

Pl4πr
2dr =

4π

3
Plr

3
b (3.2.2)

where rb is the radius of the bubble following expansion and Pl is the liquid pressure. This expansion

term differs from that used by Norman and Spiegler (1963), as well as some other researchers (Deitrich

and Connolly (1973) El-Nagdy and Harris (1971)), who instead seek to estimate the kinetic energy

imparted to the liquid during bubble expansion. They estimate the kinetic energy as follows,

Ek = 2πρsr
3
b Ṙ

2, (3.2.3)

where Ṙ is the rate of change in the bubble radius. This is determined from the rate of heat flow

towards the bubble,

Ṙ =
dR

dt
=

4D

δ
, (3.2.4)

where δ is the thermal film thickness. The difficulty with this approach is that the value of Ṙ is

relatively sensitive to the thermal film thickness, which is difficult to predict with accuracy. Norman

and Spiegler (1963) point out that the fission fragment would initially leave a track of superheated

liquid, through which heat must be transferred to the surrounding liquid. They point out that the

thickness of this liquid can be determined as follows from the ratio of liquid and vapour densities:

Rl = R

(
ρv
ρs

)1/3

, (3.2.5)

where Rl is the radius of the cylindrical track of superheated liquid. According to Norman and Spiegler

(1963), this value represents the minimum thermal film thickness, the maximum value being the final

radius of the bubble. However, it seems equally possible that the expansion of the bubble would

lead to a thinning of the thermal film, in which case Rl would be the maximum film thickness. This

expression also neglects energy imparted to the liquid in other forms, such as compression.

It therefore seems likely that applying the kinetic energy expression (Equation 3.2.3) with δ = Rl

will lead to an underestimate of the bubble formation energy. Since the kinetic energy imparted can

only come from the work done against pressure during bubble expansion, the expression selected in

Equation 3.2.1 is expected to provide a better estimate. In any case, the difference is expected to

be small since the majority (> 80%) of energy consumed during formation of the bubble is due to

vaporisation of the liquid water, so the energy of formation of the bubble is not particularly sensitive

to these assumptions.
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The radius of the steam bubble generated is determined by equating the energy required to form

the bubble, with the amount of energy transferred from the fission fragment to the liquid along the

fission track. The total energy available depends on the LET of the fission fragment,

Eb = ĖAv.L (3.2.6)

where L is the length of track over which all water vapour and radiolysis products coalesce to form a

single bubble, and ĖAv is the mean LET of the fission fragment over the track length L. The LET will

hereafter be represented in equations as Ė in order to simplify notation. The stopping power
(
dE
dx

)
is

the same quantity measured with respect to the medium and is essentially interchangeable.

It was suggested by Norman and Spiegler (1963) that the track length should be approximately

equal to the circumference of the bubble created, L = 2πR, citing a study by Rayleigh (1945) where

this track length was found to correspond to a critical wavelength for break up of the vapour jet.

However, Deitrich and Connolly (1973) conducted experiments to determine the characteristic radius

for nucleation of steam bubbles in aqueous solutions and found that a value of L = 3πR matched

their results more closely. Citing Rayleigh’s study, they noted that a value of L = 4πR was also

found to have physical significance as the track length corresponding to the most rapid break up of

the vapour jet. They concluded that there is physical justification for a value of L that lies in the

range 2πR ≤ L ≤ 4πR.

Substituting Equation 3.2.6 into 3.2.1 gives,

4

3
r3
vρv∆Hvap + 4(σs − T

dσs
dT

)r2
b +

4

3
Plr

3
b + 3Ė

(
GH2

∆Hr − 1
)
rb = 0, (3.2.7)

where L = 3πR is the length of track contributing water vapour and radiolysis products to the bubble.

It is possible to simplify this equation without significant loss of accuracy by making the observa-

tion,

rb =

(
r3
v +

3

4π

RT

Pl
ĖLGH2

) 1
3

. (3.2.8)

The first term in the brackets is approximately 38 times larger than the second, and in practice rb ≈ rv.

Substituting rv for rb and cancelling reduces the equation from a cubic to a quadratic

4

3
(ρv∆Hvap + Pl) r

2
v + 4

(
σs − T

dT

dt

)
rv + 3Ė

(
GH2

∆Hr − 1
)

= 0. (3.2.9)

Unfortunately this equation cannot simply be solved using the quadratic formula because the

vapour density is a function of the bubble radius. Equation 3.2.9 was therefore solved iteratively using

a Newton-Raphson algorithm.
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3.2.1.2 Gas Bubbles Remaining Following Steam Condensation

The amount of gas remaining following condensation of the water vapour can be determined quite

simply as the product of the radiolytic gas generation coefficient and the energy deposited during

creation of the bubble,

NH2
= GH2

ĖAvL (3.2.10)

where the average LET (ĖAv) and track length (L) are those values previously determined for the

steam bubble. The radiolytic gas generation coefficient must be modified from its standard meaning

to reflect the fact that not all fission energy is imparted to the fission fragments as kinetic energy.

Further details can be found in Section 3.2.3.

The radius of the bubble that would contain this quantity of hydrogen gas can be determined from

the ideal gas law,

NH2
=
PbVb
RT

, (3.2.11)

where Pb is the pressure inside the bubble, Vb is the bubble volume, R is the universal gas constant

and T is the gas temperature.

The bubble pressure depends on the liquid surface tension as well as the external liquid pressure,

Pb = Pl +
2σs
rb

(3.2.12)

where σs is the liquid surface tension and rb is the radius of the bubble. This equation is valid for

rb 6= 0, which poses no problem for the method presented in the current chapter where no bubbles

are collapsing. However, it will be important to consider this possibility in the next chapter, which

includes a model of bubble collapse.

Equating Equations 3.2.10 and 3.2.11 and substituting Equation 3.2.12 for the internal pressure

of the bubble results in a cubic equation,

4π

3RT
Plr

3
b +

8π

3RT
σsr

2
b −GH2

ĖL = 0, (3.2.13)

where rb is the radius of the hydrogen gas bubble. This equation was solved iteratively using a

Newton-Raphson algorithm.

Here we make the assumption that the bubble contains only hydrogen, with no other non-condensible

gases present. This assumption is justified on the basis that hydrogen gas is known to be a direct prod-

uct of radiolysis whereas oxygen gas is generated later through various side reactions, most notably

the decomposition of hydrogen peroxide, both by thermal decomposition and the action of free radical
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species (Lane et al. (1958), Allen (1961)). These reactions take place on a much longer timescale than

the formation of the bubble.

3.2.1.3 Experimental Basis

Deitrich and Connolly (1973) used a method very similar to that set out in Section 3.2.1.1 to predict

the superheat required to nucleate steam bubbles in a bubble chamber exposed to fission fragments.

Their experimental results, along with their theoretical model, are shown in Figure 3.2.1.
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Fig. 3.2.1. Superheat required for nucleation of steam bubbles by fission fragments in water. Exper-
imental results and model predictions of Deitrich and Connolly (1973) shown with values predicted
using Equations 3.2.7 and 3.2.17.

Dietrich and Connolly concluded from these results that their theory of vapour bubble nucleation

by fission fragments produced accurate predictions at lower temperatures and pressures, but noted that

it appeared to lose accuracy in solution temperatures in excess of 210◦C. The theory would therefore

appear to offer a high degree of accuracy for the conditions encountered in most fissile liquid systems,

where the system is at atmospheric pressure and boiling would be expected to occur at temperatures

well below 210◦C.

The theory may in fact be accurate at temperatures outside of this range as the discrepancies
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noted at higher temperature may be explained by a significant decrease in the bubble growth rate as

the liquid pressure increases. Dietrich and Connolly took a single photograph of the bubble chamber

during each experiment, then examined the photograph for visible bubbles to determine whether or

not nucleation had taken place. The photograph was taken a period of time following each application

of the superheat (by depressurisation) which varied from one experiment to another. They report that

bubbles were visible on the photographs once they reached a radius of 4× 10−5 m.

The results shown on the left-hand side of Figure 3.2.1 were carried out at lower pressures, where

surface tension effects still account for a significant proportion of the total pressure inside the small

vapour bubble nuclei. This has the effect that once a bubble begins to expand, its internal pressure

drops, leading to an increase in the rate of evaporation and the rate of expansion. These bubbles

therefore reach a visible size relatively quickly.

Results on the right-hand side of Figure 3.2.1 were taken at pressures where surface tension effects

are negligible compared to the external liquid pressure. Therefore, under experimental conditions

close to the nucleation point, bubbles will expand extremely slowly. Dietrich and Connolly provide

the oscillograph records for two of the experiments and it can be observed from these that the waiting

times between depressurisation and taking the photograph were ∼20ms and ∼40ms for these two

experiments. The data point corresponding to the 40ms case is indicated with an arrow in Figure 3.2.1.

There are also two other data points taken at almost exactly the same temperature and superheat.

In two of the three cases, no nucleation was observed, but in the other, visible bubbles did appear.

The rate of bubble growth due to evaporation is determined by the surface area available for boiling

and the heat transfer coefficient at the gas/liquid interface. The latter parameter characterises the

degree of resistance to heat transfer, which in a superheated liquid results from the formation of a

film of subcooled liquid between the phase interface and the bulk liquid. The subcooled film occurs

due to the latent heat of the evaporating liquid at the interface and it increases the resistance to

heat transfer because heat from the liquid bulk must cross the subcooled film by conduction. Cooling

(2014) calculated a boiling heat transfer coefficient of 12.8 kW m−2 K−1 for boiling heat transfer in

fissile solutions. This heat transfer coefficient is based on data from Greenfield et al. (1954) for a

boiling liquid, so it may be somewhat higher than the heat transfer coefficient for a single stationary

bubble in an undisturbed environment. This is because the turbulent environment in a boiling liquid

will help to prevent the build-up of the cool liquid film surrounding the bubbles. Nonetheless, it can

be used to obtain an estimate of the minimum waiting time necessary to observe a bubble.
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Starting with the rate of change in the number of moles of water vapour inside the bubble,

dnH2O

dt
=

Q

∆HvapMH2O
=
hboil4πr

2
b (T − Tsat)

∆HvapMH2O
, (3.2.14)

where nH2O is the number of moles of water vapour in the bubble, Q is the rate of heat transfer into

the bubble, ∆Hvap is the enthalpy of vaporisation of the fuel solution, MH2O is the molecular weight

of water, hboil is the boiling heat transfer coefficient, rb is the bubble radius and T and Tsat are the

bulk temperature and saturation temperature of the fuel solution.

The rate of change in the bubble radius with respect to the number of moles of water vapour

contained in the bubble can be obtained from the ideal gas law, taking into account the effect of

surface tension on the bubble pressure,

nH2O =
1

3RT

(
4πPlr

3
b + 8πσsr

2
b

)
, (3.2.15)

dnH2O

drb
=

1

3RT

(
12πPlr

2
b + 16πσsrb

)
, (3.2.16)

where the symbols have the same meanings as in previous equations. The rate of change in the bubble

radius with respect to time can therefore be deduced from the chain rule,

drb
dt

=
hboilrb (T − Tsat) 3RT

∆HvapMH2O (3Plrb + 4σs)
. (3.2.17)

Using Equation 3.2.17, lines were added to Figure 3.2.1 indicating the degree of superheat required,

as a function of solution temperature, for a visible bubble to appear within 10ms, 12ms or 14ms of

depressurisation. The indicated data points fall just above the 14ms line, and since the oscillograph

record shows that Dietrich and Connolly took their photograph approximately 40ms after depressuri-

sation of the bubble chamber, these results would seem to suggest the waiting time was sufficient, at

least for the 40ms case shown in the oscillograph record.

However, Figure 3.2.1 confirms that the anomalous results occurred in a region where bubble

growth is slow; where experimental waiting times on the order of tens of milliseconds may not always

be sufficient. On the left of the plot, where the results were in agreement with the theory, any waiting

time greater than a few milliseconds would be sufficient to observe a bubble. Given the uncertainty

previously noted in the boiling heat transfer coefficient of the bubbles, and the fact that oscillograph

records confirm that Dietrich and Connolly varied the waiting time between experiments, and that

these waiting times were relatively close to the minimum required values, it seems plausible that

differences in bubble growth rates may explain the unexpected results observed at higher temperatures

and pressures.
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This observation provides further validation in support of the model of bubble nucleation, since

not only does the model predict the required superheat for nucleation accurately over the range of

temperatures 190◦C to 210◦C, as concluded by Dietrich and Connolly, it may also explain the behaviour

observed at higher temperatures and pressures.

3.2.2 Predicting the Linear Energy Transfer of a Fission Fragment

Using tables of stopping power data it is possible to estimate the LET profile (LET with respect

to distance travelled) of any fission fragment in any typical fissile aqueous solution. The objective

is to obtain the particle energy (E) as a function of displacement (x) from the site of fission. This

was achieved by solving the following ODE using an algorithm based on the 4th order Runge-Kutta

method,

E(x) = −
x∫

0

dE

dx
dx, (3.2.18)

where dE
dx is the stopping power of the medium with respect to the charged particle, obtained from

tables generated using SRIM. Since the medium consists of three covalently bonded species; water,

UO2
2+ and NO –

3 , it is necessary to calculate a combined stopping power for the medium by adding

together the individual contribution of each constituent, i.e.(
dE

dx

)
medium

=
∑
i

(
dE

dx

)
i

, (3.2.19)

where
(
dE
dx

)
i

represents the stopping power contribution of component i.

The initial condition is determined by the amount of total kinetic energy (Ek,fiss) shared between

the fission fragments and the mass of each fragment (M). The total fission energy released in the form

of kinetic energy of the fission fragments is approximately 169 MeV (Madland (2006)). This energy

was assumed to be split so that momentum was conserved, resulting in the following equation for the

initial kinetic energy (E0) of the particle,

E0 =
Ek,fiss

1 + M
236−νp−M

, (3.2.20)

where νp is the number of prompt neutrons emitted in the fission event that created the fission

fragment. Since the prompt neutrons are emitted on a very short timescale compared to the travel

time of the fission fragment, these are treated as being emitted instantly at the moment of fission. An

average value of νp = 2.43 has been applied to calculate the initial particle energies throughout this

paper.
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The stopping power of the medium with respect to a charged particle varies as a function of the

energy of that particle. SRIM was used to generate tabulated values corresponding to 167 particle

energies ranging from 1.1×10−6 to 2.5 MeV amu−1. These values were interpolated linearly to obtain

the stopping powers required to solve Equation 3.2.18.

Stopping powers are tabulated in units of MeV mg−1 cm2. These values are multiplied by the

partial density of each component in the medium to obtain at a stopping power value in units of

energy per distance travelled. The partial density is the product of the total solution density and the

mass fraction of each component, e.g.

ρNO3 = fNO3ρs, (3.2.21)

where ρNO3 is the partial density of nitrate in the solution, fNO3 is the mass fraction of nitrate and

ρs is the total solution density.

Stopping power depends on the ionic charge so values tabulated for one isotope can be applied to

other isotopes of the same element, provided the mass is adjusted appropriately in the calculation.

The same is true for isomers with the same mass and atomic number but different energy states.

3.2.3 Input Parameters

3.2.3.1 Enthalpy of Reaction

The enthalpy of reaction for the radiolysis of water was estimated from the enthalpies of formation

of water and hydrogen peroxide, and the enthalpy of vaporisation of water, resulting in a value of

2.958× 105 Joules per mole of hydrogen gas produced.

3.2.3.2 Fuel Solution Density

The density of the fuel solution was estimated using an empirical correlation derived from experi-

mental data presented in Grant et al. (1948) and densities reported for the fuel solutions of various

experimental reactors. The correlation is shown below and its justification is given in Appendix E:

ρs(Tc, CU , CN ) = 0.31635CU − 3.5898× 10−3T 2
c − 4.7024× 10−2Tc (3.2.22)

+ 3.4663× 10−2CN + 1001.0,

where ρs is the density of the solution in kg m−3, CU and CN are the concentrations of uranyl

nitrate and nitric acid in mol m−3 and Tc is the solution temperature in ◦C. This expression is

based on experimental data covering a range of uranyl nitrate concentrations up to 1650 mol m−3 and
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temperatures ranging from 0◦C to 100◦C.

3.2.3.3 Fuel Solution Surface Tension

Surface tension was also estimated using an empirical equation derived from the data of Grant et al.

(1948). The equation for surface tension was,

σs(Tc, CU ) =− 1.7160× 10−7T 2
c − 1.4427× 10−4Tc + 2.0163× 10−6CU (3.2.23)

+ 7.5725× 10−2,

where σs is the surface tension of the solution in N m−1, the symbols have the same meaning as in

Equation 3.2.22.

The derivative of the surface tension with respect to temperature, required by Equation 3.2.1, was

determined by differentiating Equation 3.2.24 as follows,

dσs
dTc

(Tc) = −3.4320× 10−7Tc − 1.4427× 10−4. (3.2.24)

The expressions are based on experimental data from Grant et al. (1948) covering a range of uranyl

nitrate concentrations up to 830 mol m−3 and temperatures ranging from 0◦C to 100◦C.

3.2.3.4 Enthalpy of Vaporisation

The enthalpy of vaporisation of water is widely available as tabulated data. The following correlation

was used to estimate its variation with temperature,

∆Hvap(T ) = −2.4367T + 3168.0, (3.2.25)

where T is the solution temperature in Kelvin. This correlation is based on data for temperatures

ranging from 0◦C to 100◦C.

3.2.3.5 Radiolytic Gas Generation Coefficient

The radiolytic gas coefficient is an important factor determining the size of gas bubbles deposited

along fission fragment tracks. It has previously (Cooling (2014), Forehand (1981)) been estimated for

solutions of uranyl nitrate based on data from Lane et al. (1958), which put the value of GH2
for pure

water at 1.8 molecules of H2 per 100 eV of energy deposited, decreasing with increasing concentration

of uranyl nitrate. The following correlation is based on the data from Lane et al. (1958) for the value
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Fig. 3.2.2. Experimental data from Lane et al.
(1958) showing GH2

as a function of uranyl nitrate
concentration with correlation based on Equation
3.2.26.

of GH2
as a function of uranyl nitrate concentration:

GH2
= 1.8− 1.94451× 10−3CU + 1.04343× 10−6C2

U − 1.94375× 10−10C3
U , (3.2.26)

where GH2
is in units of molecules per 100 eV, CU is the concentration of uranyl nitrate in mol m−3.

Equation 3.2.26 was obtained by fitting a curve through the reported data and forcing the y-

intercept to a value of 1.8, since this value for pure water is expected to constitute the maximum

value (Forehand (1981)). The experimental data is for uranyl nitrate concentrations up to 1770 mol

m−3. At concentrations in excess of this, Figure 3.2.2 appears to show that the value of GH2
loses its

sensitivity to the uranyl nitrate concentration, although further data at higher concentrations would

be required to confirm this.

It is possible that the nitric acid concentration may also affect the value of GH2
, independently

of the concentration of uranyl nitrate. In general the concentration of nitric acid in a given fuel

solution tends to increase with the concentration of uranyl nitrate because higher acid concentrations

are needed to dissolve larger concentrations of uranyl nitrate. However, according to Youker et al.

(2013), a range of nitric acid concentrations is possible, provided a pH of less than 3.0 is maintained

to prevent the precipitation of uranium and fission products.

The concentrations of nitric acid corresponding to the data shown in Figure 3.2.2 are shown in

Table 3.1. These have been estimated from the pH values quoted in Lane et al. (1958), using an acid

dissociation constant Ka = 35.5 obtained from Levanov et al. (2017).

Unfortunately, there is insufficient data available in Lane et al. (1958) for a correlation that accounts

for the concentration of both uranyl nitrate and nitric acid. It is therefore possible that the value of

GH2
may deviate from that predicted by Equation 3.2.26 where the concentration of nitric acid in the

fuel solution differs significantly from the values listed in Table 3.1. The concentrations of nitric acid

shown in Table 3.1 are significantly lower than the concentrations of the order 2000 mol m−3 which

were typical of fissile solution reactors such as CRAC and TRACY (Barbry et al. (1973), Nakajima
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Uranyl Nitrate Concentration Nitric Acid Concentration pH GH2

mol m−3 mol m−3 – molecules per 100eV

0 0 7.0 1.8

18.0234 UNKNOWN UNKNOWN 1.63

179.809 17.8 2.05 1.5

1335.97 186.9 1.03 0.6

1766.71 504.2 0.6 0.55

TABLE 3.1
GH2

for aqueous solutions of varying uranyl nitrate and nitric acid concentrations. Data from Lane
et al. (1958) with nitric acid concentrations estimated based on solution pH.

et al. (2002c)). It is not clear to what degree these significant differences in the concentration of nitric

acid would be expected to influence the value of GH2
, or whether this influence would be negative or

positive.

A more recent study by Yoshida et al. (2019) examining the radiolytic gas generation coefficient

highlights the level of complexity required to accurately estimate the quantity of hydrogen gas produced

during criticality transients in fissile liquids. In Yoshida et al. (2019), an advanced technique is used to

estimate the amount of hydrogen gas produced during a transient on the TRACY reactor. Comparing

these results to the data of Lane et al. (1958) appears to indicate that the amount of hydrogen gas

produced was underestimated in the older data, highlighting considerable uncertainty in the true value

of this parameter. Based on the findings of Yoshida et al. (2019), the values of GH2
are expected to

be at least as high as that predicted by Equation 3.2.26, and possibly higher.

Given the uncertainty highlighted above, Equation 3.2.26 will be used to illustrate the influence

that solution composition may have on the size of radiolytic gas bubbles, via its influence of the value

of GH2
. However, more up-to-date values of GH2

should always be chosen when available.

3.2.3.6 Adjustment of GH2
for Fission Tracks

The radiolytic gas generation coefficient represents number of moles of hydrogen gas produced per

unit of observable fission energy. Kopeikin et al. (2004) referred to the observable energy release

as the effective fission energy, including the kinetic energy of the fission fragments and the energy

of neutrons captured in the medium, but excluding the energy carried away by antineutrinos, beta

particles and photons. They calculated the effective fission energy of 235U to be 193.37 MeV. Since

radiolysis in fissile liquids is due almost entirely to the kinetic energy of the fission fragments Lane

et al. (1958) (approximately 169.0 MeV) and not significantly associated with neutron capture events,

the radiolytic gas coefficient applied in the calculations that follow must be multiplied by a factor

F = 193.37/169.0 = 1.14.
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3.2.3.7 Henry’s Law Constant

A Henry’s law constant of 6.5 × 10−6 mol m−3 Pa−1 was assumed for dissolved H2 gas in the uranyl

nitrate solution. This is slightly lower than the value for pure water, chosen to reflect the fact that the

presence of uranyl nitrate in the solution will reduce the solubility of hydrogen gas. In this chapter,

the Henry’s law constant is used only to provide an indication of the critical concentration resulting

from a given bubble nucleation radius. A more detailed examination of the sensitivity of the Henry’s

law constant to solution temperature and concentration can be found in Appendix C.

3.3 Results

In this section results are presented for the LET of fission fragments in aqueous fissile solutions and

the size of hydrogen gas bubbles deposited along those tracks. The size of vapour bubbles deposited

along the fission tracks has already been thoroughly examined in the literature, as discussed in previous

sections, and no further examination will be presented here. This section is concerned with the creation

of hydrogen gas bubbles, along fission fragment tracks, and their potential to act as nucleation sites

for the appearance and growth of gas voids in the solution.

Also examined in this section is the critical concentration of dissolved gas; that is the concentra-

tion of dissolved gas which must be reached before voids can be observed in a fissile solution. This

quantity is directly related to the size of gas bubbles generated by fission fragments, as discussed in

previous sections, and is a key parameter in criticality safety due to its importance in the kinetics

of many nuclear criticality excursions. The size of the largest hydrogen gas bubble deposited by any

fission fragment (that which determines the critical concentration) will hereafter be referred to as the

nucleation bubble radius.

Except where indicated, all values shown in this section are calculated for the conditions shown in

Table 3.2. The calculations are based on pure water, containing no uranyl nitrate. However, correction

factors presented later (see Equation 3.3.3) allow the nucleation bubble radius to be adjusted as

a function of the concentration of uranyl nitrate or the radiolytic gas generation coefficient of the

solution.

3.3.1 Sensitivity of Nucleation Bubble Radius to Solution Properties

Equations 3.2.9 and 3.2.13 indicate that the nucleation bubble radius is a function of the properties

of the fuel solution, notably its surface tension, density, pressure and temperature. It is also strongly
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Mean LET (ĖAv) 8 MeV µm−1

Solution Temperature 298 K
Liquid Pressure 1 atm
Concentration of Uranyl Nitrate 0 mol m−3

Concentration of Nitric acid 0 mol m−3

Henry’s Law Constant for H2 6.5× 10−6 mol m−3 Pa−1

TABLE 3.2
Standard calculation conditions, applied to all calculations in Section 3.3.1, except where otherwise
indicated.

influenced by the radiolytic gas generation coefficient. These factors therefore also influence the critical

concentration at which growing bubbles can be nucleated along the fission tracks.
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Fig. 3.3.1. Radius of bubble nucleus as a function of fission fragment LET and solution temperature

The influence of LET and temperature on the predicted size of gas bubbles nucleated is shown in

Figure 3.3.1. The model predicts that the bubble size increases with the LET of the particle or fission

fragment. This is consistent with the conclusions of Norman and Spiegler (1963) who present a plot

of LET as a function of gas bubble size in their report.

The influence of temperature is due to two factors. Increasing the temperature reduces the latent

heat of vaporisation of the liquid water, resulting in a larger vapour bubble. Because the model

predicts the length of track along which the vapour bubble is formed is a function of the radius of

the bubble formed (L = 3πR), a larger bubble means a longer track with more energy available to

produce hydrogen gas.

Another factor is the solution surface tension, which decreases with increasing temperature. The

surface tension contributes the majority of the pressure inside the bubble. A decrease in solution
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surface tension therefore results in a larger bubble for the same quantity of hydrogen gas.
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Fig. 3.3.3. Bubble nucleation radius and critical concentration of dissolved hydrogen gas as a function
of solution temperature for a fission fragment with maximum LET of 8 MeV µm−1

These results indicate that the critical concentration of hydrogen gas at which voids will appear

in fissile aqueous solution will decrease with increasing solution temperature. Figure 3.3.2 shows the

critical concentration predicted as a function of temperature and maximum particle LET. The values

shown are based on a Henry’s law constant for hydrogen of 6.5×10−6 mol m−3 Pa−1. For a maximum

particle LET of 8 MeV µm−1, the model predicts a critical concentration of 15 mol m−3 at 273K,
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decreasing to 8 mol m−3 at 373K.

2.0E-08

3.0E-08

4.0E-08

5.0E-08

6.0E-08

7.0E-08

8.0E-08

9.0E-08

0.0 0.5 1.0 1.5 2.0 2.5

G
a
s 

B
u
b
b
le

 R
a
d
iu

s 
[m

]

G(H2) [molecules per 100eV]

Fig. 3.3.4. Bubble nucleation radius as a function of the radiolytic gas generation coefficient

The sensitivity of the radius of hydrogen bubbles to the radiolytic gas generation coefficient is

shown in Figure 3.3.4. It is not surprising that the size of bubbles produced is relatively sensitive to

this parameter since it determines the quantity of hydrogen present. Since the radiolytic gas generation

coefficient is affected by the concentration of uranyl nitrate, this also explains most of the sensitivity,

shown in Figure 3.3.5, of the bubble radius and critical concentration to the concentration of uranyl

nitrate in the solution. The sensitivity to uranyl nitrate concentration is also partly due to the increase

in surface tension of the fuel solution as the concentration of uranyl nitrate increases, which would

increase the internal pressure of the bubbles leading to a smaller bubble size. However, this effect

is very small compared to the effect of the radiolytic gas generation coefficient, since the solution

surface tension changes only by a relatively small degree with varying uranyl nitrate concentration

(see Equation 3.2.23).

Figure 3.3.6 shows the influence of pressure on the predicted bubble size. A higher pressure

compresses the bubbles, leading to a decrease in the size of hydrogen gas bubbles created. This would,

in turn, lead to higher critical concentrations of hydrogen gas, potentially delaying the appearance of

gas voids during a criticality transient.
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Fig. 3.3.5. Variation of predicted gas bubble radius with changing concentration of uranyl nitrate
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Fig. 3.3.6. Radius of bubble nucleus as a function of liquid pressure

3.3.2 Empirical Correlation for the Gas Bubble Nucleation Radius as a Function

of Solution Temperature and Particle LET

It was observed in the last section that the model predicts that the radius of gas bubbles deposited

along the tracks of a fission fragment in an aqueous solution of uranyl nitrate would be a strong

function of the fission fragment LET, the solution temperature, the liquid pressure and the radiolytic

gas generation coefficient (GH2). It is also affected by the concentration of uranyl nitrate in the fuel

solution, mostly due to the effect this has on GH2 .
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Limiting the analysis to pure water systems at atmospheric pressure, an empirical correlation can

be derived for the gas bubble nucleation radius as a function of temperature and LET. This results in

Equation 3.3.1

rb,0 =
(
−2.8632× 10−15T 2 + 7.3996× 10−13T − 9.9925× 10−11

)
Ė2

Av (3.3.1)

+
(
8.7907× 10−14T 2 − 9.7928× 10−13T + 3.4558× 10−9

)
ĖAv

+
(
9.7683× 10−14T 2 − 4.0125× 10−11T + 4.9092× 10−9

)
,

where T is the temperature in Kelvin, rb,0 is the bubble radius in metres for a pure water system,

ĖAv is the rate of energy transfer from the particle to the medium, in units of MeV µm−1, averaged

over the distance L. This was calculated using

ĖAv =
1

L

L∫
0

Ėdx, (3.3.2)

where L is the length of track over which the original vapour bubble was formed.

The coefficients of Equation 3.3.1 were derived for pure water. However, because the value of GH2

is affected by the composition of the solution, and particularly concentration of uranyl nitrate (see

Equation 3.2.26), the value of rb would also be expected to depend on solution composition (see Figure

3.3.5). In a solution with lower GH2
, the vapour bubbles formed along the fission tracks will contain

less hydrogen gas, and therefore collapse to smaller hydrogen gas bubbles upon condensation.

The following correction factor can be applied to predict the bubble nucleation radius in aqueous

solutions of uranyl nitrate. This correction factor uses Equation 3.2.26 to predict the change in GH2

as a function of uranyl nitrate concentration:

Fcorr = 1.0− 5.23× 10−4CU + 1.53× 10−7C2
U , (3.3.3)

where CU < 1770 mol m−3. Alternatively, the correction factor can be formulated in terms of GH2
, thus

removing the reliance on Equation 3.2.26, which as previously noted, is associated with a significant

degree of uncertainty. The alternative formulation is as follows:

Fcorr = 0.3554 + 0.4264GH2
− 0.0400G2

H2
, (3.3.4)

where 0.5 < GH2
< 4.5 molecules per 100eV.

The value of rb for a solution of uranyl nitrate is obtained using:

rb = rb,0Fcorr. (3.3.5)
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3.3.3 Predicted LET Profiles of Fission Fragments in Uranyl Nitrate

(a) Group 1: isotopes with mass number 79 ≤ A ≤ 109

(b) Group 2: isotopes with mass number 126 ≤ A ≤ 155

Fig. 3.3.7. LET profiles at 298K for pure water, calculated using data from SRIM for the stopping
power of fission fragments with the 250 highest yields from fission of 235U.
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(a) Group 1: isotopes with mass number 79 ≤ A ≤ 109

(b) Group 2: isotopes with mass number 126 ≤ A ≤ 155

Fig. 3.3.8. LET profiles at 298K for an aqueous solution containing 1000 mol m−3 of uranyl nitrate,
calculated using data from SRIM for the stopping power of fission fragments with the 250 highest
yields from fission of 235U.
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LET profiles were calculated for the tracks of the 250 highest yielding fission products of 235U.

The list of fission products by yield was obtained from National Nuclear Data Center (2011) on the

website of Brookhaven National Laboratory. The data show that these fission fragments account for

more than 99.5% of the total fission yield. Some of the 250 fission products listed are different isomers

of the same isotope. These can be treated identically for the purposes of calculating an LET profile

so the original list of 250 fission products was reduced to a list of 215 distinct fission product isotopes.

The LET was calculated in the first instance for a pure water system, containing no uranyl nitrate

or nitric acid. The results are shown in Figure 3.3.7 along with the yield-weighted mean. Figure 3.3.8

shows the same LET profiles calculated for an aqueous solution containing 1000 mol m−3 of uranyl

nitrate with a 235U enrichment of 90%.

Fission of 235U usually results in the creation of two fission fragments; one larger fragment with

mass number 125-155 atomic mass units (amu) and a smaller fragment with mass number 79-110amu.

These two groups, corresponding to this bimodal distribution of fission fragments yields, have distinctly

different LET profiles and are shown separately in Figures 3.3.7 and 3.3.8.

The lighter group of nuclei shown in Figures 3.3.7 and 3.3.8 has higher velocity at the start of the

track and a few fission fragments in this group have not yet reached peak LET, although they are very

close to it. The LET of a small proportion of the fission fragments in this group remains constant or

increases slightly for the first 5-10 µm before it starts to decrease. The heavier group of nuclei has

lower velocity at the start of the track and the LET of fission fragments in this group is already well

past its peak. Their LET decreases monotonically for the entire length of the track.

The effect of uranyl nitrate concentration is indicated by comparing Figures 3.3.7 and 3.3.8. The

LET of the fission fragments is increased by approximately 0.5 MeV µm−1 in the uranyl nitrate

solution compared to pure water, with a corresponding reduction in the range of the particles. This

is due mainly to the increase in density of the fuel solution, which is a key parameter determining the

LET of the fission fragments.

3.3.4 Bubble Size Distribution in Aqueous Fissile Solutions

The size of the largest bubble created by each fission fragment was determined using Equations 3.3.1

and 3.3.3 and the LET profiles generated using stopping power data from SRIM. Smaller bubbles

formed at lower LET along the same fission track as larger bubbles are not of interest, since the

presence of larger bubbles in close proximity means that these are not significant as nucleation sites

for the appearance of gas voids.
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273K 323K 373K

rb ĖAv rb ĖAv rb ĖAv
[m] x 10−8 [MeV µm−1] [m] x 10−8 [MeV µm−1] [m] x 10−8 [MeV µm−1]

Median 5.3 5.7 6.6 5.6 7.8 5.3
90th Percentile 5.6 6.0 6.9 5.9 8.3 5.6
95th Percentile 5.6 6.1 7.0 6.0 8.4 5.7
99th Percentile 5.8 6.3 7.2 6.2 8.7 6.0
Maximum 6.4 7.0 7.8 6.7 9.2 6.3

TABLE 3.3
Predicted bubble sizes and associated fission fragment LET using Equation 3.3.1 for pure water at
atmospheric pressure.

Table 3.3 summarises the predicted bubble sizes for pure water across a range of temperatures.

The lower temperature was chosen so that the results could be compared with those of Spiegler et al.

(1962), who estimated from experimental measurements that hydrogen gas bubbles were nucleated

with a maximum radius of 5 × 10−8 m at 273K. This appears to agree closely with the gas bubble

radii predicted by the model, which gives a median bubble radius of 5.3× 10−8m and a maximum size

of 6.4× 10−8 at this temperature in pure water.

0 mol m−3 500 mol m−3 1000 mol m−3

rb ĖAv rb ĖAv rb ĖAv
[m] x 10−8 [MeV µm−1] [m] x 10−8 [MeV µm−1] [m] x 10−8 [MeV µm−1]

Median 6.0 5.7 4.7 5.8 3.9 5.9
90th Percentile 6.2 5.9 5.0 6.2 4.2 6.4
95th Percentile 6.3 6.0 5.0 6.2 4.2 6.5
99th Percentile 6.5 6.3 5.2 6.5 4.4 6.7
Maximum 7.1 6.9 5.6 7.0 4.6 7.2

TABLE 3.4
Predicted bubble sizes and associated fission fragment LET using Equation 3.3.1 for aqueous solutions
of uranyl nitrate across a range of concentrations at atmospheric pressure and 298K.

Spiegler posited that the radius of the gas bubbles would be insensitive to pressure and solution

composition. He also noted, however, that this gas bubble size was at the limit of detection of the

equipment used, so it is possible they were not able to measure the relatively small changes that the

model predicts as a result of varying these parameters.

The results show that the gas bubble size increases significantly with increasing solution temper-

ature. This has implications for the kinetics of nuclear criticality transients, because a larger gas

bubble size means that gas voids will appear at lower dissolved gas concentrations. Void feedback may

therefore appear earlier in solutions at higher temperatures compared to lower temperatures.

Tables 3.3 and 3.4 show the 90th, 95th and 99th percentile, as well as the maximum, gas bubble

radius for each solution. These values are likely to have greater significance than the median or mean

value since it is the largest bubbles that will determine the critical concentration of the solution.
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3.3.5 Empirical Correlation for the Gas Bubble Nucleation Radius Based on the

Maximum LET of Fission Fragments in Uranyl Nitrate

Using the data presented in the last section, which combines the LET profiles of Section 3.3.3 with

the empirical correlation presented in Section 3.3.2, it is possible to derive a correlation for the bubble

nucleation radius specific to fission of 235U in uranyl nitrate solution. The correlation can be used

to estimate the bubble nucleation radius directly from the solution temperature and uranyl nitrate

concentration.

rb =
(
−2.0281× 10−19T 2 + 1.6824× 10−16T − 2.1277× 10−14

)
C2
U (3.3.6)

−
(
1.2003× 10−13T − 7.1969× 10−13

)
CU

+ 2.7697× 10−10T − 1.1858× 10−8

where T is the solution temperature in Kelvin, CU is the concentration of uranyl nitrate in mol m−3

and GH2
is assumed to vary with uranyl nitrate concentration in accordance with Equation 3.2.26. This

correlation is valid for solution temperatures in the range 273 ≤ T ≤ 373, uranyl nitrate concentrations

in the range 0 ≤ CU ≤ 1770 mol m−3, and nitric acid concentrations close to those shown in Table

3.1.

Equation 3.3.6 assumes that the radiolytic gas generation coefficient varies in accordance with

Equation 3.2.26, which is associated with some significant uncertainty. In order to avoid this depen-

dence, the following correlation can instead be used to obtain the expected fission fragment LET.

Equation 3.3.1 can then be used to predict the resulting gas bubble radius:

ĖAv(CU , T ) =
(
1.3387× 10−6T − 3.4319× 10−5

)
CU (3.3.7)

−
(
6.6431× 10−3T − 8.8142

)
,

where CU is in units of mol m−3 and T is in units of Kelvin.

Equation 3.3.7 does not consider the effect of nitric acid concentration on the LET of the fission

fragments, however this influence is expected to be small compared to the influence of uranyl nitrate

because one mole of nitric acid has a much smaller effect on the density of the solution than one mole

of uranyl nitrate (see Equation 3.2.22) and this is the primary means by which the addition of uranyl

nitrate increases the stopping power of an aqueous solution.
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3.3.6 Estimates of Uncertainty in the Bubble Nucleation Radius

Uncertainty in the predicted bubble nucleation size derives primarily from two parameters: the length

of track (L) which contributes water vapour and gas during formation of vapour bubbles along a fission

track and the predicted LET of the fission fragment in the water or uranyl nitrate solution.

3.3.6.1 Fission Track Length

The most significant source of uncertainty in the predicted size of gas bubbles produced is the length of

track contributing gas and steam to form a single bubble. As discussed in Section 3.2.1, there is some

uncertainty around this parameter, with values ranging from L = 2πR to L = 4πR reported in the

literature (Norman and Spiegler (1963), El-Nagdy and Harris (1971)). This wide range corresponds

to a significant uncertainty in the predicted bubble size, however it should be noted that a strong

experimental basis (Deitrich and Connolly (1973)) exists for the value chosen (L = 3πR) and large

deviations from this value are therefore considered unlikely.
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Fig. 3.3.9. Predicted bubble radius as a function of the vapour track length

One factor that determines the track length may be the rate of change in the particle LET during

formation of the vapour bubble. Figures 3.3.7 and 3.3.8 show that lighter fission fragments in uranyl

nitrate solution remain at or close to their maximum LET for up to 10 µm of track, whereas heavier

fission fragments have monotonically decreasing LET profiles. If the lighter fragments leave a cylin-

drical region of superheated steam in their wake (while their LET is relatively constant), the heavier

fragments would leave a tapered, conical region. It is possible this may explain the observed variation
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in the track length, however without any experimental data relative to specific fission fragments it is

not possible to conclude with any certainty.

Figure 3.3.9 shows the bubble radius predicted for a fission fragment with average LET, ĖAv = 8

MeV µm−1, at atmospheric pressure, fuel solution temperature 298K and a uranyl nitrate concentra-

tion of 500 mol m−3. The predicted bubble radius varies from 4.4×10−8 m for L = 2πR to 8.0×10−8

m for L = 4πR. Figure 3.3.9 also shows the difference this variation would make to the critical

concentration of fuel solution with a Henry’s law constant of 6.5 × 10−6 mol m−3 Pa−1. The critical

concentration is 22 mol m−3 in the case where L = 2πR, reducing to 16 mol m−3 if L = 3πR and 12

mol m−3 if L = 4πR.

Taking into account the uncertainty highlighted, it is possible to conclude that the critical concen-

tration at which voids will appear in a fissile solution is at least 20 times the saturation concentration

for hydrogen gas at atmospheric pressure.

3.3.6.2 Fission Fragment LET

Figure 3.3.10 shows the uncertainty in the predicted bubble radius due to a 7.3% uncertainty in

the LET of the fission fragment that created it. This uncertainty corresponds to the random error

estimated by Helmut and Schinner (2003) for SRIM stopping powers in the energy range of fission

fragments.
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Fig. 3.3.10. Predicted bubble radius at atmospheric pressure and 298K for a fission fragment LET of
8 MeV µm−1 ±7.3%.
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The LET of the fission fragment has a linear relationship with the radius of the resulting gas

bubble, producing a bubble size of 5.9 × 10−8m at a LET of 7.4 MeV µm−1 and 6.6 × 10−8m at a

LET of 8.6 MeV µm−1. Assuming a Henry’s law constant of 6.5× 10−6 mol m−3 Pa−1, the variation

in bubble radius corresponds to a critical concentration ranging from 15 mol m−3 to 17 mol m−3.

3.3.6.3 Interpolation Error

The radiolytic gas bubble radius was calculated using Equations 3.3.7, 3.3.1 and 3.3.4 and the results

were compared to the values computed directly by solution of the equations presented in Section 3.2.

A total of forty-eight values were compared, for uranyl nitrate concentrations ranging from 0 to 1750

mol m−3 and solution temperatures ranging from 0 to 100◦C. The maximum absolute error in the

predicted bubble radius due to the correlations was 3.0 × 10−9 m and the root mean square (RMS)

error was 1.4× 10−9 m.

3.4 Comparison of LET Profiles Calculated Using SRIM and the

Tables of Northcliffe and Schilling

LET profiles were calculated using data from SRIM and from the tables of Northcliffe and Schilling

(as described in Section 3.2.2), both for pure water and an aqueous solution containing 1000 mol m−3

of uranyl nitrate.

SRIM does not include uranyl nitrate in the compound library, however it is possible to build

target compounds from their elemental constituents. For the uranyl nitrate solution, separate SRIM

calculations were run to predict the stopping power of water, UO2 and NO3 species, with each contri-

bution then added to arrive at a value for the uranyl nitrate solution. The calculation was carried out

in this way because the software makes adjustments for the covalent bonds between atoms, whereas

no such bonds exist between the water and the ionic constituents of the uranyl nitrate. The data from

Northcliffe and Schilling were used to estimate stopping powers for U, H2O, N and O; adding each

contribution to arrive at the total stopping power for the uranyl nitrate solution. This method cannot

account for the effects of covalent bonds, except those found in the water molecules.

It is not, as far as the authors are aware, possible to simulate the effect of ionic charges on the

stopping power of uranyl nitrate using either Northcliffe and Schilling or SRIM. By attracting or

repelling the fission fragment it is possible that ionic charge may increase or decrease the stopping

power of a chemical species, however this effect is not accounted for in any of the results presented
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Fig. 3.4.1. LET profiles at 298K for pure water, calculated using the tables of Northcliffe & Schilling
and the software package SRIM.

here.

The calculations of SRIM take into account both the electronic and the nuclear stopping power of

the medium, whereas only the electronic stopping power is accounted for in the profiles calculated using

Northcliffe and Schilling. The impact of nuclear stopping power is not significant to the objectives of

this study, namely for predicting bubble sizes in the wake of fission fragments, because it is negligible

118



0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

LE
T 

[M
eV

 µ
m

-1
]

Distance [µm]

Te-134 (N&S)
Te-134 (SRIM)

(a) Te-134

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

LE
T 

[M
eV

 µ
m

-1
]

Distance [µm]

Xe-138 (N&S)
Xe-138 (SRIM)

(b) Xe-138

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

LE
T 

[M
eV

 µ
m

-1
]

Distance [µm]

Sr-94 (N&S)
Sr-94 (SRIM)

(c) Sr-94

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

LE
T 

[M
eV

 µ
m

-1
]

Distance [µm]

Sr-95 (N&S)
Sr-95 (SRIM)

(d) Sr-95

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

LE
T 

[M
eV

 µ
m

-1
]

Distance [µm]

Zr-100 (N&S)
Zr-100 (SRIM)

(e) Zr-100

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

LE
T 

[M
eV

 µ
m

-1
]

Distance [µm]

Kr-90 (N&S)
Kr-90 (SRIM)

(f) Kr-90

Fig. 3.4.2. LET profiles at 298K for a solution containing 1000 mol m−3 of uranyl nitrate, calculated
using the tables of Northcliffe & Schilling and the software package SRIM.

compared to the electronic stopping power, except at the very end of the particle track. The effect is

visible in Figures 3.4.1 and 3.4.2 as a small increase in the LET in the last 1-2 µm of track, before the

particle energy falls to zero.

The agreement between the two methods is relatively close for 138Xe, 94Sr, 95Sr and 90Kr, while

significant differences are noted between the two data sets for 134Te and 100Zr. It is possible that
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these differences result from the Z1- oscillations, noted by Helmut and Schinner Helmut and Schinner

(2003), and discussed earlier in Section 3.1.2.

3.5 Conclusions

The LET profiles of fission fragments in aqueous solutions of uranyl nitrate have been calculated and

used to predict the distribution of bubble sizes generated along the tracks of these fragments as they

travel through the solution. The critical concentration at which hydrogen gas appears as voids in a

fissile solution is determined by the size and availability of nucleation sites where dissolved gas may

come out of solution. The bubbles created in the wake of fission fragments can serve as nucleation

sites and they are believed to be instrumental in the appearance of gas voids during nuclear criticality

transients.

Stopping power data from SRIM have been used to predict the LET profiles of fission fragments

constituting over 99.5% of the total fission yield of 235U. Using a model adapted from those previously

described in the literature, an empirical correlation is presented relating the fission fragment LET and

solution properties to the size of gas bubble generated in an aqueous fissile solution. This correlation

has been used to predict the distribution of bubble sizes, and therefore the critical concentration of

dissolved hydrogen gas.

The critical concentration has been shown to vary significantly with the solution temperature and

the concentration of uranyl nitrate in the solution. For pure water at 298K, the maximum predicted

bubble radius was 7.1 × 10−8m, associated with a particle LET of 6.9 MeV µm−1. From this data

it is possible to estimate a critical concentration of 14 mol m−3 of hydrogen gas, based on a Henry’s

constant of 6.5×10−6 mol m−3 Pa−1. Adding uranyl nitrate to the solution to achieve a concentration

of 500 mol m−3 is predicted to reduce the maximum gas bubble radius to 5.6× 10−8m, increasing the

critical concentration of dissolved hydrogen to 17 mol m−3.

These findings reveal significant sensitivity of the critical concentration of dissolved gas to the

properties of the fuel solution. The sensitivity is due to the impact of solution properties on the LET

of fission fragments, as well as the effect of solution properties on the mechanics of bubble formation.

This has implications for criticality safety assessment, since the critical concentration often plays an

important role in determining the timing and magnitude of the first power peak in accidental criticality

transients.

Finally, a correlation has been presented combining the calculated LET profiles with the model of
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bubble formation to predict the maximum fission track bubble radius based on solution composition

and temperature.
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Chapter 4

Phenomenological Model Simulating

the Dynamics of Bubble Formation

Along Fission Tracks and Saturation of

a Fissile Solution with Dissolved

Radiolytic Gas

4.1 Introduction

Much of the work presented in this chapter, including tables and figures, is reproduced from Winter

et al. (2020b) (submitted for publication).

The process of radiolysis was described at the scale of individual bubble formation in Chapter 3.

This chapter will explore the interaction between the bubbles formed in the context of a reactivity

transient, the growth and collapse of these bubbles, how they interact with each other and how these

processes influence the reactivity of the system.

Radiolysis takes place in all nuclear reactors but is of particular importance in Aqueous Homoge-

neous Reactors (AHR) or other fissile solutions due to the fact that, unlike solid-fuel reactors, fission

fragments are in direct contact with water. By contrast, in a typical solid fuel reactor, any water

would be separated from the fuel by cladding, which the fission fragments cannot penetrate. Accord-

ing to Neeb (1997), radiolysis in light water reactors is primarily due to collision of fast neutrons with
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hydrogen atoms, producing recoil protons which then cause radiolysis of water molecules. Radiolysis

in AHRs is quite different, being almost entirely due to fission fragments.

As explored in the previous chapter, the tendency of a particle to cause radiolysis depends on the

rate of kinetic energy transfer, or LET, from the moving particle to the molecules of water. Fission

fragments carry with them the vast majority (∼87%) of the energy of fission and have a very high

LET compared to other particles emitted during fission; they therefore account for the vast majority

of all hydrogen gas produced by radiolysis in fissile solutions, approximately 96% according to Lane

et al. (1958), the remaining 4% being due, in roughly equal parts, to neutrons and gamma rays.

Radiolytic gas production contributes to the overall voidage in a reactor or fissile solution and often

has a major impact on the kinetics of the system. It is therefore necessary in most cases to account

for the production of radiolytic gas when modelling reactivity excursions in fissile solutions. However,

the formation and growth of bubbles in fissile solutions is an inherently spatial problem which is not

easily represented with accuracy in typical criticality safety codes based on zero dimensional neutronics

(point kinetics) coupled with one-dimensional thermal hydraulics. The aim of this chapter is to derive

expressions that make it possible to achieve a good approximation of bubble formation and growth

within a criticality safety code of this type.

4.1.1 Radiochemical Considerations

It is useful to begin by a brief summary of the principle chemical reactions involved in the formation

of radiolytic gas in fissile solutions. The primary reaction leading to the production of gas is,

3H2O −→ H · + ·OH + H2 + H2O2, (4.1.1)

where a water molecule is broken up to form some combination of hydrogen gas, hydrogen peroxide

and hydrogen and hydroxyl free radicals (see Lane et al. (1958)).

Radiolytic gas consists mostly of hydrogen and oxygen. Hydrogen gas is produced directly via

the reaction shown in Equation 4.1.1 and oxygen gas is produced later from the decomposition of

hydrogen peroxide via a series of subsequent reactions. The most straight-forward of these is thermal

decomposition,

H2O2 −→ H2O +
1

2
O2. (4.1.2)

The previous chapter focussed on the formation of hydrogen gas, however radiolysis may also result

in the production of other gases. Bidwell et al. (1956) measured the production of nitrogen gas during

reactivity transients in solutions of uranyl nitrate. The amount of nitrogen gas produced was shown to
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increase with increasing concentrations of uranyl nitrate. The total amount produced was on the order

of 10−3 molecules per 100 eV compared to ∼1 molecule per 100 eV typically expected of hydrogen

gas. Since the quantity of nitrogen gas expected is very small compared to the quantity of hydrogen

gas, nitrogen gas formation is not expected to significantly impact the formation of gas bubbles.

The population of free radical chemical species present in the fuel solution may be important in

predicting the rate of production of oxygen gas. This is because these free radical chemical species are

involved in a number of alternative routes leading to the decomposition of hydrogen peroxide. Free

radicals are chemical species which have an unpaired electron, making them extremely reactive. They

are identified in chemical equations by a dot next to the chemical symbol.

H2O2 + H · −→ H2O + ·OH (4.1.3)

H2O2 + ·OH −→ H2O + HO2 · (4.1.4)

H2O2 + HO2 · −→ H2O + O2 + ·OH (4.1.5)

The free radical species HO2 · is formed from the decomposition of hydrogen peroxide by the ·OH free

radical and also by the interaction of the H · free radical with diatomic hydrogen, H2. Both diatomic

hydrogen and oxygen can be broken down by interaction with free radical species.

H2 + ·OH −→ H2O + H · (4.1.6)

O2 + H · −→ HO2 · (4.1.7)

Hydrogen peroxide can also be reformed by the interaction of two HO2 · free radicals. This reaction

also produces a molecule of diatomic oxygen.

2HO2 · −→ H2O2 + O2 (4.1.8)

The amount of oxygen present in the radiolytic gas depends on the timescale of the transient.

This is because hydrogen gas is produced immediately, whereas oxygen is produced through a series

of reactions and thus takes longer to appear. Therefore, it follows that the radiolytic gas may be

assumed to consist entirely of hydrogen if the transient is fast, or a mixture of hydrogen and oxygen

gases in stoichiometric proportions if the transient is slow. The pure hydrogen assumption will be

adopted throughout this chapter because the processes modelled are on a short timescale, however

the role of oxygen will be considered in Chapter 5.
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4.1.2 Theories and Mathematical Models of Bubble Growth

At the start of a transient, the fuel solution will typically contain very little dissolved hydrogen, so

when radiolytic gas bubbles are produced, they will tend to collapse as the hydrogen gas dissolves.

One model, initially proposed by Ghormley (1958) and developed by Norman and Spiegler (1963) was

discussed in Chapter 3, however other mechanisms have also been proposed. For instance, Gamble

(1959) proposed a model of bubble growth in which bubbles which are unsaturated with respect to

their surroundings are assumed to have a lifetime in excess of 20 ms. This contrasts with the model

of Norman and Spiegler, who used the equations of Epstein and Plesset (1951) to predict a bubble

lifetime less than 10 µs, for hydrogen gas concentrations up to 50% saturation.

The lifetime of unsaturated bubbles is important in determining models of void growth during

transients in fissile solutions. Gamble concludes that bubble growth by diffusion would be too slow to

explain the rapid negative reactivity feedback attributed to voidage in experiments they analysed on

the KEWB-A reactor. In their model, bubble growth occurs, not by diffusion of dissolved gas from

the fuel solution into the bubbles, but by collisions between fission tracks and existing bubbles in the

solution. Bubbles intersected by fission tracks expand rapidly by consuming some of the gas left in

the wake of the fission fragment. This model requires that bubbles in unsaturated solution collapse

on the order of milliseconds, otherwise the probability of collisions between fission tracks and existing

bubbles is insufficient to explain the observed rate of void growth.

The equations of Epstein and Plesset are based on a diffusion controlled model of bubble growth

and shrinkage, whereas the model of Gamble (1959) posits that the surfactant effect, discussed in the

previous chapter, leads to the creation of a relatively stable bubble, due to an accumulation of ions

on the gas-liquid interface. The bubble created, sometimes referred to as a “nano-bubble” (Bunkin

et al. (2016), Duval et al. (2012)), would remain stable or collapse far more slowly than diffusion

theory predicts. However, as discussed in the previous chapter, data from Lubetkin (2003) shows that

the surfactant effect is extremely weak in the case of hydrogen gas bubbles; only helium gas had a

weaker effect among the gases studied. Furthermore, the hypothesis of a long lifetime for bubbles in

unsaturated fissile solutions would appear to contradict experimental observations. In particular, the

observations of Spiegler et al. (1962) during experiments on the KEWB-B reactor core, testing fission

rates as high as 1019 fissions per second and observing no detectable rise in pressure before reaching

the critical concentration of dissolved hydrogen in solution, they calculated that the bubble lifetime

must have been on the order of microseconds, otherwise an observable rise in pressure would have

occurred. The theory of Gamble (1959) is also incompatible with the experimental work of Deitrich

and Connolly (1973), which showed that the growth of steam bubbles in superheated water exposed
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to energetic particles was subject to a minimum superheat threshold.

It will be demonstrated in this chapter that bubble growth by diffusion, as proposed by Norman

and Spiegler (1963), can indeed account for the rapid bubble growth, and resultant strong negative

void feedback, observed during transients in fissile solutions and AHRs, such as KEWB-A, and indeed

many other fissile solution reactors.

4.1.3 Bubble Nucleation Sites

The saturated (or “critical”) concentration of hydrogen in the fuel solution is the concentration at

which hydrogen gas may come out of solution at the available nucleation sites. In a fissile solution,

nucleation sites are provided by fission track bubbles (radiolytic gas bubbles formed along the fission

tracks), imperfections on the surfaces of the vessel, and possibly on the surface of solid contaminants in

the fuel solution. Nucleation sites reduce the activation energy required to form an interface between

the gas and liquid phases. Gas bubbles may form in the absence of nucleation sites but this requires

much larger concentrations of dissolved gas, as discussed in Chapter 3. The nature of the available

nucleation sites is therefore the factor which determines the critical concentration of the solution.

Souto (2002) notes that the relative importance of fission track bubbles compared to surface

imperfections as nucleation sites depends on the timescale of the transient. For slow transients,

the concentration of dissolved gas builds slowly and there may be time for it to migrate towards

imperfections on the vessel surfaces. For fast transients, the concentration of dissolved gas builds very

rapidly until it is high enough to nucleate bubbles on the fission tracks bubbles.

The concentration at which bubbles can nucleate along the fission tracks is often referred to as the

critical concentration. It can be determined using Henry’s law from the partial pressure of hydrogen

inside a newly formed radiolytic gas bubble,

Ccrit = HH2,solPH2
, (4.1.9)

where HH2,sol is the Henry’s law constant for hydrogen in the fuel solution. PH2
is the partial pressure

of hydrogen in the gas bubble, found by taking the product of the bubble pressure and the hydrogen

mole fraction in the gas phase (yH2
). The bubble pressure is dependent on the surface tension of the

liquid (σs) and the bubble radius (rb), as well as the external liquid pressure (Pl),

PH2
=

(
2σs
rb

+ Pl

)
yH2

. (4.1.10)

Therefore, the critical concentration depends on the radius of the gas bubbles acting as nucleation
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sites. As shown in the previous chapter, the maximum bubble size created in the wake of a fission

fragment depends on the solution properties, temperature and pressure, and is typically in the region

rb = 5× 10−8 m. For a typical solution at atmospheric pressure, with a surface tension of 6.2× 10−2

N m−1, the pressure inside a newly formed bubble will be 2.58 MPa (25 times atmospheric pressure).

Assuming a Henry’s law constant equal to that of hydrogen gas in pure water (7.698× 10−6 mol m−3

Pa−1) the critical concentration would be 19.9 mol m−3. The critical concentration therefore refers to

the concentration of hydrogen at which there is equilibrium between the gas and aqueous phases at

the interface of the largest newly formed radiolytic gas bubbles.

As the concentration of dissolved hydrogen in the fuel solution approaches the critical concentra-

tion, the net flow of gas out of the bubble decreases and the lifetime of the collapsing bubbles increases.

Assuming constant power, the rate of appearance of new bubbles remains the same, therefore, since

their rate of disappearance is reducing, the number of bubbles in the system begins to increase. Once

the concentration of dissolved hydrogen gas exceeds the critical concentration, the bubbles no longer

collapse; instead they grow, taking in hydrogen from the solution around them. At this point, it is

useful to define a new quantity, the equilibrium concentration. This is the concentration of hydrogen in

the aqueous phase which is at equilibrium with the partial pressure of hydrogen in the gaseous phase.

At first it is the same as the critical concentration, however as the bubbles grow in size, their internal

pressure tends towards ambient pressure, and the concentration of dissolved gas tends towards the

concentration in equilibrium with that pressure (∼0.78 mol m−3, assuming the same values listed in

the previous paragraph). The equilibrium concentration differs from the critical concentration, which

is always defined with respect to the properties of newly formed radiolytic gas bubbles.

As the dissolved gas concentration drops below the critical concentration, new radiolytic gas bub-

bles are once again too small to act as nucleation sites, so they collapse. A population of larger

bubbles in equilibrium with the concentration of dissolved gas in the fuel solution remains until they

are removed by advection.

4.1.4 Existing Approaches to Radiolytic Gas Models in Point-Kinetics Calcula-

tions

Current models of radiolytic gas production in fissile solutions typically fall into one of two cate-

gories: models that assume instant saturation of the fuel solution, and models that assume a constant

equilibrium concentration. In the latter case, the equilibrium concentration may be set at the value

for atmospheric pressure (e.g. Souto (2002)), or the pressure inside a newly formed radiolytic gas

bubble (e.g. Cooling (2014)). The value chosen will determine the delay between criticality and the
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appearance of radiolytic gas; typically making a difference of several seconds for reactivity insertions

up to a dollar in magnitude. Where the equilibrium concentration is assumed constant, at the value

corresponding to atmospheric pressure, the total amount of gas produced will be accurate but the

delay in its appearance will be underestimated. If the equilibrium concentration is assumed constant

at the internal pressure of a radiolytic gas bubble, the amount of gas will be underestimated but the

delay in its appearance will be closer to reality.

There is currently no way for models of fissile liquids based on point kinetics with one-dimensional

thermal hydraulics to predict the number and size distribution of bubbles in a fissile solution. Without

knowing the number and size of bubbles present, it is not possible to know exactly how much negative

reactivity is induced per mole of gas produced. This is due to the surface tension effect (see Equation

4.1.10) which contributes to elevated internal pressure inside small bubbles compared to the external

pressure.

Models of this type also neglect the influence of the bubble population on the rate of appearance

of radiolytic gas. When the number of bubbles per unit volume (hereafter referred to as the “number

density” of bubbles) is large, dissolved radiolytic gas has less distance to diffuse before it can come

out of solution, resulting in a relatively fast rate of appearance of radiolytic gas voids. On the other

hand, if the bubble number density is low, dissolved gas must diffuse further through the solution to

find a bubble where it may come out of solution, resulting in a slower rate of appearance of radiolytic

gas.

The work presented in this chapter aims to provide the information necessary to improve on the

existing approaches to the handling of radiolytic gas and apply this new information in point kinetics

simulations of criticality transients. The model should accurately predict the delay between criticality

and the appearance of a radiolytic gas, as well as the quantity of gas produced, the volume it occupies,

and its rate of appearance upon saturation of the fuel solution.

4.2 A Numerical (Monte Carlo) Model of Bubble Nucleation

4.2.1 Concept and Overview

The purpose of this chapter is to explore the mechanisms involved in saturation of a fissile solution

with radiolytic gas and derive expressions which can be incorporated into a point kinetics model.

The modelling of these processes using a point kinetics, or even one-dimensional approach, is not

trivial because the formation and growth of bubbles from the microscopic gas bubbles deposited along
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the tracks of fission fragments is a complex three dimensional process. The model presented in this

chapter comprises a numerical simulation of bubble growth in a fissile solution during saturation of

the solution with hydrogen gas from radiolysis. The results of Chapter 3 will be used to predict the

fission track bubbles generated in the numerical simulation.

The numerical model simulates a small cube of fissile solution (hereafter referred to as “the simu-

lated domain”) which represents a small volume within a larger volume of the solution, such as within

an aqueous homogeneous reactor (AHR) or a container of fissile solution undergoing an unplanned

criticality excursion (see Figure 4.2.1). Within this volume, the history of every bubble is simulated,

from its birth by radiolysis, through growth and/or shrinkage to its possible collapse. The purpose

of the numerical model is to simulate the many physical processes taking place at the centre of a

fissile solution while the solution becomes saturated with radiolytic gas. The model is not intended

to reproduce the behaviour of a full-scale fissile liquid system, but to provide the necessary inputs for

such a model, which will be presented in Chapter 5.

The dimension of the simulated domain is variable, typically 1×10−4m in the x- and y- dimensions,

and up to 3 × 10−3m in the z- (vertical) dimension, with a volume ranging from 2 × 10−12m3 to

3 × 10−11m3. The reason for making the simulated domain larger in the vertical direction was to

allow sufficient distance for bubbles to advect. Simulations were also run with different dimensions to

confirm a lack of sensitivity to these parameters.
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Fig. 4.2.1. Model of bubbles inside a small volume within a larger vessel of fissile solution.

Advection of the bubbles is calculated based on their size and the dimension of the simulated

domain is determined so that the bubbles do not advect more than 50% of their way across it during

the simulation time. Periodic boundary conditions are applied so that bubbles or molecules of gas,

travelling out of the domain in one direction, re-enter the domain on the opposite side. The simulated

region resembles an infinite system in the sense that no limits are set on the distance moved by bubbles

of gas molecules in any direction. The probability of fission is uniform throughout the simulated region
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since the volume simulated is very small and any influence of a non-uniform neutron flux shape is

therefore negligible at the scale modelled.

The domain is subdivided into smaller regions (or “subcells”). The change in concentration of

dissolved hydrogen gas in each subcell, due to bubble growth, shrinkage and collapse, is tracked, as well

as the rate of diffusion between subcells. This makes it possible to model variations in concentration

across the domain, resulting from stochasticity in the number, location and direction of fission tracks.

The subcell dimension was fixed at 5× 10−6m in all directions (V = 1.25× 10−16m3) and the number

of subcells was determined according to the dimensions of the simulated domain. Simulations were

also performed with different subcell dimensions to confirm the lack of any significant sensitivity to

this parameter. If the selected subcell dimension were too large then a significant discretisation error

would be introduced. The magnitude of the error would depend on the size of the subcells, which

would result in sensitivity of the simulation results to the subcell dimension.

The simulation is relatively expensive and not easily amenable to parallelisation. The high com-

puting cost is due to tracking the histories of a very large number of bubbles from birth to collapse.

Execution time required to run the simulation increases with the volume of the simulated domain due

to the resulting increase in the number of bubbles to be simulated and the number of liquid subcells.

Total time required for a single simulation ranges from hours to days depending on the scenario.

The model resembles an Eulerian-Lagrangian scheme (Yeoh and Tu (2019)) in the sense that it

consists of a continuous liquid phase (the solution) coupled to a dispersed phase (the bubbles). The

continuous liquid phase is modelled on a fixed mesh whereas the bubbles are tracked individually as

they move within the domain. The dispersed phase can exchange hydrogen gas with the continuous

liquid phase, which is also exchanged between different volumes of the continuous phase by diffusion.

Unlike computational fluid dynamics (CFD), this model does not track the movement of mass, mo-

mentum or energy within the continuous phase, only the local concentrations and diffusion of dissolved

hydrogen gas.

4.2.2 Point Kinetics Model

A point kinetics model determines the power density of the fissile solution from a reactivity profile.

The calculated power density determines the expected number of fission events occurring within the

simulated domain in any given time step. The expected value defines a Poisson distribution which is

sampled to determine the actual number of fissions in the time step.
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The point kinetics equations were applied as follows,

dP (t)

dt
=

6∑
i=1

λiCi(t) +
βP (t)

Λ
(Rex(t) + αT (T (t)− T0) + αV (VRG(t)− VRG,0)− 1) (4.2.1)

dCi(t)

dt
= −λiCi(t) +

βi
Λ
P (t), (4.2.2)

dT (t)

dt
=

P (t)

MsolCp
, (4.2.3)

where P (t) is the fission power, β is the total delayed neutron fraction and βi is the fraction of all

neutrons in delayed neutron group i, Λ is the generation time, T is the temperature , V is the voidage,

αT and αV are temperature and void feedback coefficients, respectively, λi is the decay constant of

delayed neutron group i, Msol is the mass of the fuel solution, Cp is the heat capacity of the fuel

solution at constant pressure, T is the solution temperature and VRG is the volume of radiolytic gas.

A subscript zero indicates initial values.

The purpose of Equation 4.2.1 is to provide a power profile for simulations of the process of

saturation with radiolytic gas, as well as bubble formation and growth. It uses feedback coefficients

which have been adjusted for the size of the simulated domain (see Section 4.2.10), however it is not

intended to provide an accurate model of a criticality transient in a full scale system.

The delayed neutron groups shown in Tables 4.2 to 4.4, as well as other parameters, were adapted

from four reactor configurations from the literature: the SILENE reactor with uranyl nitrate con-

centrations of 300.9 mol m−3 (“SOL-A”) and 926.3 mol m−3 (“SOL-B”), the TRACY reactor with

a uranyl nitrate concentration of 1632.8 mol m−3 (“SOL-C”) and the CRAC reactor with a uranyl

nitrate concentration of 860.2 mol m−3 (“SOL-D”).

SOL-A

ith Group βi λi [s−1]

1 2.6934× 10−4 0.0124

2 1.7271× 10−3 0.0305

3 1.5908× 10−3 0.111

4 3.1059× 10−3 0.301

5 9.3428× 10−4 1.13

6 3.1263× 10−4 3.00

Source Barbry (1994)

TABLE 4.1
Delayed neutron group yields (βi) and decay constants (λi) for fuel solution SOL-A.

The void volume is calculated by summing over the volume of all bubbles in the simulated domain.

This is described in more detail Section 4.2.5. No expression is included for heat loss to surroundings
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SOL-B

ith Group βi λi [s−1]

1 2.8980× 10−4 0.0124

2 1.8487× 10−3 0.0305

3 1.7010× 10−3 0.111

4 3.3768× 10−3 0.301

5 9.9900× 10−4 1.13

6 3.1200× 10−4 3.00

Source Barbry (1994)

TABLE 4.2
Delayed neutron group yields (βi) and decay constants (λi) for fuel solution SOL-B.

SOL-C

ith Group βi λi [s−1]

1 2.5448× 10−4 0.0127

2 1.6498× 10−3 0.0317

3 1.4918× 10−3 0.1152

4 3.0008× 10−3 0.3116

5 8.8928× 10−4 1.4003

6 3.2365× 10−4 3.8939

Source Miyoshi et al. (2009)

TABLE 4.3
Delayed neutron group yields (βi) and decay constants (λi) for fuel solution SOL-C.

SOL-D

ith Group βi λi [s−1]

1 2.5× 10−4 0.01249

2 1.47× 10−3 0.03182

3 1.33× 10−3 0.10938

4 3.83× 10−3 0.31700

5 1.08× 10−3 1.35395

6 3.9× 10−4 8.63760

Source Cooling (2014)

TABLE 4.4
Delayed neutron group yields (βi) and decay constants (λi) for fuel solution SOL-D.

because the rate of heat loss from a volume of liquid near the centre of the reactor is assumed to be

negligible over the timescales considered.

The void and thermal feedback coefficients, and the generation time for each fuel solution are

shown in Table 4.5.

The values of specific heat capacity (Cp) were estimated using the Equation 4.2.4, originally derived

by Sugikawa et al. and cited in Yamane (2015),

Cp = 4186
(
0.998− 9.630× 10−4CU − 4.850× 10−2CN

)
. (4.2.4)
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SOL-A SOL-B SOL-C SOL-D

Generation Time (s) 3.6× 10−5 1.3× 10−5 4.906× 10−5 1.279× 10−5

Thermal Feedback ($ K−1) -6.4× 10−2 -2.2× 10−2 -3.3× 10−2 -1.1× 10−2

Void Feedback ($ m−3) -2281 -2753.1 -387.67 -1200

C(UO2(NO3)2) (mol m−3) 300.9 926.3 1632.8 860.2

C(HNO3) (mol m−3) 2000 2840 580 2180

Cp (J kg−1 K−1) 3598 2893 2495 2920

GH2
(molecules per 100eV) 1.30 0.74 0.56 0.78

ρs(25◦C) (kg m−3) 1218.8 1469.6 1550.7 1407.1

VFS (m3) 3.93× 10−2 2.44× 10−2 1.196× 10−1 7.09× 10−2

TABLE 4.5
Point kinetic parameters and properties for fuel solutions based on SILENE, TRACY and CRAC.

The radiolytic gas generation coefficient was estimated using Equation 3.2.26 based on the concen-

tration of uranyl nitrate in the fuel solution. These values are shown in Table 4.5. The fuel solution

density was calculated using Equation 3.2.22 and the surface tension was calculated dynamically by

the model using Equation 3.2.23.

The fuel solution compositions based on the SILENE reactor were obtained from Barbry (1994),

while the generation times, fuel solution volumes and thermal and void feedback coefficients were

estimated based on data from Kornreich (1993). The feedback coefficients for the solution based on

TRACY were obtained from Miyoshi et al. (2009) and those values for the solution based on CRAC,

as well as the generation time, were obtained from Cooling (2014).

The purpose of selecting the four fuel solutions and corresponding input parameters summarised

in Table 4.5 is not to determine anything in particular about the SILENE, CRAC or TRACY reactors.

The purpose is to choose a broad and representative range of different fuel solution properties so that

the influence of these properties on the results of the numerical model can be examined.

4.2.3 Initial Conditions

Simulations were started from steady-state (ρ=0) with a total reactor power output of 1 × 10−6W,

scaled to the volume of the simulated domain. For example, the SILENE reactor typically contains

24.4 L of fuel solution when running with the particular composition used here. For a simulated

domain with dimensions 1×10−4m x 1×10−4m x 5×10−4m and total volume 5×10−12m3, Equation

4.2.1 would be initialised with a steady-state power level of 2.05× 10−16 W.
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4.2.4 Advection

Bubbles are assumed to reach terminal velocity instantly so that their advection velocity is assumed to

equal their terminal velocity at all times. This assumption is tested in Section 5.1.7 and the associated

error is shown to be small: e.g. for a bubble of radius 10−5 m, the error in the predicted displacement

is < 10−8 m.

The terminal velocity of a bubble is calculated by equating the drag and buoyancy forces acting

on the bubble. The buoyancy force acting to accelerate the bubble upwards is the product of the mass

of water displaced by the bubble (ml) and the gravitational field strength (g):

Fbuoyancy = mlg, (4.2.5)

where the mass of liquid displaced by the bubble is given by,

ml =
4

3
πr3

bρs. (4.2.6)

The drag force acting on the bubble can be determined using the following expression obtained

from Celata et al. (2007):

Fdrag =
ρsv

2
bCDπr

2
b

2
, (4.2.7)

where CD is the drag coefficient, which for a spherical bubble can be approximated as CD = 24/Reb.

This is valid for small bubbles with low terminal velocities, where the surface tension of the solution

is sufficient to maintain a spherical bubble shape. On the other hand, larger bubbles advect at higher

terminal velocities and require a more complex formulation for the drag coefficient due to the effect

of deformation in their shape.

For the purposes of the numerical simulation presented in this chapter, where the period of interest

is a very short time during which the fissile solution becomes saturated with radiolytic gas, the bubbles

are not expected to grow to sizes at which significant deformation of their shape would occur. However,

this effect is expected to be significant for the simulations presented in the next chapter, and a more

complex model of bubble advection is discussed in Section 5.1.7.

Substituting CD = 24/Reb into Equation 4.2.7, and setting Equation 4.2.7 equal to Equation 4.2.5,

results in the following expression for the terminal velocity of a bubble,

vb =
2r2
bρsg

9µ
, (4.2.8)

where vb is the velocity of the bubble presumed equal to the terminal velocity, µ is the dynamic

viscosity of the fuel solution, ρs is the density of the fuel solution and g is the acceleration due to
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gravity.
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Fig. 4.2.2. Stokes’ Law advection velocity as a function of bubble radius.

Terminal velocity as a function of bubble radius, calculated using Equation 4.2.8, is shown in

Figure 4.2.2 for a solution of density 1218.8 kg m−3 and dynamic viscosity 8.9× 10−4 Pa s. It shows

that a bubble of radius 1× 10−5m would travel approximately 300 µm in one second, which is why in

some simulations it is necessary to make the simulated domain significantly taller than it is wide, as

indicated in Figure 4.2.1.

4.2.5 Bubble Growth and Collapse

The volume of radiolytic gas at any time is calculated by summing over the volume of all bubbles in

the simulated domain,

V (t) =

Nb(t)∑
i=1

4

3
πr3

b,i, (4.2.9)

where Nb(t) is the number of bubbles in the simulated domain at time t and rb,i is the radius of bubble

i. The radius of a single bubble is calculated from the number of moles of radiolytic gas it contains.

This is done using a Newton-Raphson algorithm to solve the following expression, which was derived

by substituting Equation 4.1.10 into the ideal gas law,(
Pl +

2σs
rb

)
4

3
πr3

b −NRGRT = 0, (4.2.10)

where Pl is the liquid pressure around the bubble, σs is the liquid surface tension, rb is the bubble

radius, NRG is the number of moles of radiolytic gas in the bubble and R is the universal gas constant.
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The value of NRG is calculated by the ODE solver, for each bubble individually, by tracking the rate

of diffusion of gas into and out of the bubble. This is dependent on the concentration of dissolved gas

in the region surrounding each bubble, the resistance to mass transfer across the gas/liquid interface at

the bubble surface, and the partial pressure of gas inside the bubble, which determines the equilibrium

concentration. The rate of mass transfer is given by,

dNRG

dt
= kDAb(CH2(aq) − CH2,eq), (4.2.11)

where kD is the mass transfer coefficient characterising the rate of mass transfer at the bubble

gas/liquid interface, Ab is the surface area of the bubble, CH2(aq) is the concentration of dissolved

hydrogen in bulk liquid phase and CH2,eq is the liquid phase concentration that would be in equilib-

rium with the partial pressure of hydrogen gas inside the bubble.

Equation 4.2.11 assumes a homogeneous gas inside the bubble with no significant resistance to

mass transfer within the bubble. This is certainly justified in the case of radiolytic gas bubbles due to

their small size. Resistance to mass transfer across the interface is presumed to behave in accordance

with two-film theory, where resistance to mass transfer is assumed to reside in a stagnant liquid film

on the liquid side of the interface.

Under steady-state conditions, it has been shown by Epstein and Plesset (1951) that the mass

transfer coefficient is proportional to the diffusivity of the dissolved component in the liquid phase,

and inversely proportional to the radius of the bubble and the thickness of the stagnant film:

kD = Di

[
1

rb
+

1

δ

]
= Di

[
1

rb
+

1√
πDiτ

]
, (4.2.12)

where rb is the bubble radius, Di is the diffusivity of component i in the liquid phase, δ is the thickness

of the stagnant film and τ = rb/vb is the contact time of the bubble with the surrounding fluid as it

moves by advection.

The Epstein-Plesset equation is a quasi-static approximation which may underestimate the mass

transfer coefficients for rapidly expanding or shrinking bubbles. Peñas-López et al. (2016) propose

a modified version of the Epstein-Plesset equation, incorporating a so-called “history term”, which

accounts for the disruption to the stagnant film surrounding the bubble as the bubble itself expands

or contracts. This work confirms that the Epstein-Plesset equation does indeed provide a conservative

estimate of the mass transfer coefficient during the phase where the bubbles are growing rapidly.

However, it will be shown later that, due to the large concentration of dissolved gas at the moment of

saturation, the rate of bubble growth during this phase is so rapid that further increases in the mass

transfer coefficient would have no discernible effect. The quasi-static version of the Epstein-Plesset
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equation is therefore considered adequate.

4.2.6 Bubble Generation Due to Radiolysis

Fissions are assumed to occur at random locations within the simulated domain. The expected number

of fissions is determined from the volume of the simulated domain and the reactor power density,

E[Nfiss] =
P (t)∆t

ε
, (4.2.13)

where ε is the energy released per fission and ∆t is the length of the time step. The actual number of

fission events within each timestep is determined by randomly sampling a Poisson distribution whose

mean is Nfiss. The location of each fission event within the simulated domain is assumed random and

determined by sampling a uniform probability distribution for the x, y and z coordinates.

Fission fragments are modelled at the site of each fission, leaving tracks of radiolytic gas in opposite

directions from one another. The axis of the fission tracks is selected at random according to an

isotropic distribution. Periodic boundary conditions are applied at the boundaries of the simulated

domain so that fission tracks exiting on one side re-enter on the opposite side.

The size of the bubbles is determined by randomly assigning a fission fragment to each track from

the 250 highest-yielding fission fragments of 235U, according to data from the Brookhaven National

Nuclear Data Center (2011). The LET of each fission fragment is estimated using the technique

described in Section 3.2.2 and this is used to determine the size of bubbles produced in the fission

fragment wake by applying Equation 3.3.1. The contents of any bubble with a radius less than

1× 10−8m is assumed to dissolved instantly into the fuel solution.

The LET profiles of the 250 fission fragments are calculated according to the method detailed in

Chapter 3. The profiles vary as a function of the system conditions, including uranyl nitrate concen-

tration, system pressure and solution temperature. Since the solution temperature is varying during

the transient, the LET profiles are updated for every 1◦C increase in the fuel solution temperature.

4.2.7 Mass Transfer of Hydrogen Within the Aqueous Solution

The movement of dissolved hydrogen is assumed to take place by diffusion only and any convective

transport is assumed insignificant. This is justified by the small length scale of the simulated domain,

which means that relative movements within the simulated domain as a result of convection currents

are likely to be small.
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The diffusion of dissolved hydrogen between one subcell and its neighbours is calculated as follows,

∂CH2(aq)(~r, t)

∂t
= DH2

(t)∇2CH2(aq)(~r, t) (4.2.14)

where CH2(aq)(~r, t) is the concentration of dissolved hydrogen at a given point in space and time and

DH2
(t) is the temperature-dependent diffusion coefficient for hydrogen in the fuel solution. The system

of PDEs was discretised using a second-order finite volume method, in which the derivative terms were

estimated using the central difference approximation.

The diffusion coefficient for hydrogen in pure water has been used in the absence of any data

specific to a given fuel solution composition. Its variation with temperature has been modelled using

the following correlation (Yaws (2009)):

log10DH2
= A+

B

T
, (4.2.15)

where T is the temperature of interest in units of Kelvin and A = −1.46551 cm2 s−1 and B =−8.4259×

102 cm2 K s−1 are constants specific to hydrogen in water.

An indication of the error induced by neglecting the effect of fuel solution composition on the

diffusion coefficient for hydrogen can be obtained by considering the available data for hydrogen

diffusivity in salt water. Jähne et al. (1987) measured the diffusion coefficient of dissolved hydrogen

at 25◦C in pure water and in sea water, measuring values of 5.13 × 10−9 m2 s−1 for pure water and

4.91× 10−9 m2 s−1 for sea water, a difference of approximately 4%. Sea water typically has a salinity

of 600 mol m−3.

4.2.8 Solubility of Hydrogen in Aqueous Salt Solutions

No data was found in the literature for the Henry’s law constant specific to hydrogen gas in solutions of

uranyl nitrate. It is not known whether or not this has been experimentally determined. The Henry’s

law constant for hydrogen gas in aqueous solutions of uranyl nitrate, at any given temperature, will

decrease with increasing concentrations of uranyl nitrate. According to Engel et al. (1996), this is due

to the “salting out” effect, which describes the tendency of an ion in solution to reduce the solubility

of an another solute in the same solution. Engel et al. note that the salting out potential of an ion

increases with ionic charge and reduces with ionic radius.

Figure 4.2.3a shows data from Washburn (2003) for the Henry’s law constant of hydrogen gas in

aqueous solutions of various salts across a range of salt concentrations. Details of the unit conversions

carried out can be found in Appendix A. Two groups clearly emerge from the data: salts with mono-
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valent anions (shown with solid lines) and those with divalent anions (shown with dashed lines). This

is because the divalent anions have a greater affinity for water molecules than the monovalent anions

which means they compete more strongly with the hydrogen molecules.

(a) H2 solubility in aqueous solutions of various salts

(b) H2 solubility in aqueous solutions of uranyl sulphate and uranyl fluoride at elevated temperature and pressures

Fig. 4.2.3. Henry’s law constants for hydrogen gas in aqueous solutions of various salts Washburn
(2003), Pray and Stephan (1953), Pray and Stephan (1954).

Pray and Stephan measured the solubility of hydrogen in solutions of uranyl sulphate and uranyl

fluoride (Pray and Stephan (1953, 1954)), at temperatures greater than 100◦C and pressures in the

range 20 to 100 atmospheres. Figure 4.2.3b shows the Henry’s law constants, calculated using these
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data, for hydrogen gas in uranyl sulphate and uranyl fluoride solutions. The Henry’s law constants

for other salts are included in grey for comparison.

The Henry’s law constants calculated for uranyl sulphate and uranyl fluoride do not fit into the

two groups identified in Figure 4.2.3a. One reason for this might be the pressure, since as explained

above, these values are based on data for elevated pressures. However, examination of the data

presented by Pray and Stephan shows a linear increase in liquid phase concentration with increasing

hydrogen partial pressure across the full range of pressures tested, which would suggest the liquid phase

concentration is not high enough in this pressure range to have a significant impact on solubility. A

more likely explanation is temperature, since the Henry’s law constant for hydrogen gas in pure water

is significantly lower at 373K compared to 288K. Another explanation specific to the case of uranyl

fluoride may be the small ionic radius of the fluoride ion, which would increase the salting out potential

of uranyl fluoride relative to salts consisting of larger monovalent ions, such as nitrates.
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Fig. 4.2.4. Henry’s law constant for hydrogen gas in various salts over concentrations ranging from 0
to 2.0 mol dm−3.

Figure 4.2.4 shows concentrations ranging from 0 to 2000 mol m−3 and the Henry’s law constant

in this range varies between 5.0× 10−6 and 8.3× 10−6 mol m−3 Pa−1 for the nitrate salts. Appendix

C explores the variation of hydrogen and oxygen solubility as a function of temperature and solute

concentration for solutions of some of these salts and uses the data to derive a correlation which

could be used to estimate a likely approximation to the Henry’s law constant based on the limited

data available. However, given the uncertainty due to the lack of specific experimental data, and the

fact that effects due to variation in the uranyl nitrate concentration are not of interest to the model
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presented in this chapter, a single constant value of 6.5×10−6 mol m−3 Pa−1 (shown in figure) around

the middle of the range for the nitrate salts has been selected.

4.2.9 Radiolytic Gas Generation Coefficient

Equation 3.2.26 in the previous chapter provides a correlation for the radiolytic gas generation co-

efficient for hydrogen (GH2
) in uranyl nitrate solution, as a function of the concentration of uranyl

nitrate. The correlation does not consider nitric acid, although it is possible this may also have an

impact on the value of GH2
. Souto (2002) notes that the presence of uranyl nitrate in the solution

reduces the yield of hydrogen gas by destroying the free radical species which are products of the

primary radiolysis reaction. In the case of hydrogen this would reduce the yield by preventing the

recombination of H. free radicals in the fission track into molecular hydrogen.

The value of GH2
in this model will affect both the rate of build-up of hydrogen gas in the fuel

solution and the critical concentration at which hydrogen gas begins to move from the dissolved phase

back into the gas phase. It affects the critical concentration because Equation 3.2.13 predicts that a

higher GH2
would result in the formation of larger gas bubbles along the fission tracks.

4.2.10 A Note on System Reactivity and Feedback Coefficients

Void and thermal reactivity feedback coefficients are required by Equation 4.2.1 in order to determine a

power profile for each simulation. However, it is not the purpose of the numerical model to determine

accurate reactivity and fission power profiles for a particular transient in a particular reactor; the

purpose is to examine the process of bubble formation and growth during saturation of a fissile liquid

with radiolytic gas.

The void and thermal reactivity coefficients have been based on values calculated for fuel solutions

of the SILENE, TRACY and CRAC reactors. This was done in order to ensure that realistic values

were chosen, however the exact values of these parameters are not particularly important since the

objective is not to learn anything about these reactors in particular. Furthermore, the reactivities

calculated in the numerical model should not be extrapolated to a larger system, since there are

aspects of a full-scale system, such as mixing, convection and non-uniform flux distribution, which

are not applicable on the scale of the simulated domain and therefore not included in the numerical

model.

Since the model simulates only a small volume and not the entire volume of fissile solution, it

is necessary to adapt the void feedback coefficient by applying it on a fractional basis, so that 1%
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voidage in the simulated domain produces the same feedback as 1% voidage in the full scale system.

For example, the SILENE reactor typically contains 24.4 L of fuel solution, resulting in a void feedback

coefficient of −2.7531 × 103 $ m−3. For a simulated domain of volume 2 × 10−12 m3, this gives an

equivalent void reactivity feedback coefficient of −3.36× 1013 $ m−3 for use in Equation 4.2.1.

4.2.11 A Note on Convection, Coalescence and Break-Up

The numerical model presented in this chapter does not include convection because the simulated

domain is small compared to the likely length-scale of a convection current or eddy. The effect of

mixing within the fuel solution is, however, examined in Chapter 5 where the methods derived in this

chapter are integrated into a point kinetics model of a full-scale system.

The numerical model does not include models of bubble coalescence or break-up because these

phenomena are not expected to affect the behaviour of the type of system studied. Further justification

of this is given in Section 5.1.3.3.

4.2.12 Algorithm Summary

Starting from the pre-defined start-time, t0, the model steps forward in time, taking even time steps.

The time step selected must be shorter than the fastest collapse time of a radiolytic gas bubble in an

unsaturated fuel solution, as this was found to produce the best numerical stability. The time step

chosen was 10−6 s. The model proceeds as follows:

1. The ODE solver of Shampine and Gordon (1975) is called to step the system of point kinetics

equations forwards by one time step. This includes Equations 4.2.1 to 4.2.3 from Section 4.2.2,

Equation 4.2.11 from Section 4.2.5 and Equation 4.2.14 from Section 4.2.7.

2. Bubbles whose size has dropped below the pre-defined gas bubble cut-off radius (1 × 10−8 m)

are removed from the system and the remaining radiolytic gas they contain is added to the

dissolved gas concentration of the local subcell. This is important since it avoids the singularity

in Equation 3.2.12 which could occur as rb → 0.

3. The expected number of fissions within the simulated domain, during the current time step, is

calculated from Equation 4.2.13. A Poisson distribution is constructed with this value as its

mean and this distribution is randomly sampled to obtain the actual number of fissions for the

time step.
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4. Each fission is given a random location with fission tracks extending in opposite directions along

an axis whose orientation is randomly selected. Bubbles are added to the simulated domain

along these fission tracks, their sizes and locations along the fission tracks determined according

to the method described in the previous chapter.

5. The location of all bubbles is updated to reflect the distance advected during the time step.

Bubble velocities are calculated using Equation 4.2.8.

6. Steps 1 - 5 are repeated until the pre-defined simulation end-time is reached.

A graphical summary of the algorithm is shown in Figure 4.2.5.
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4.3 Numerical Results

The numerical model produces a very large volume of data and it is useful to begin by analysing the

data for a smaller number of cases in the first instance. This permits the key features and findings to

be analysed before moving on to examine the trends across the full set of cases. Therefore, throughout

this section the analysis will be begin by examining one or two cases which demonstrate the particular

phenomena being discussed, before presenting the trends across the full set of data.

This section will examine two cases in particular: the 2.0$ step insertion case in the SOL-C fuel

solution and the 3.5$ step insertion case in the SOL-B fuel solution. These cases, hereafter referred

to as the “focussed cases”, have been chosen because they highlight quite different sets of behaviour.

Labels used on figures throughout this section ((1), (2), (A), (B), etc.) indicate notable features

referred to in the text. These labels are not re-used within the section so when the same labels appear

on a subsequent figures it indicates the influence of the same phenomenon on a different simulation

variable.

4.3.1 Power Density and Reactivity

Figure 4.3.1 shows the simulated power density profiles for the two focussed cases. The 3.5$ SOL-B

case has a single peak (1) followed by a sharp decrease in fission power density, whereas the 2.0$ case

in SOL-C has an initial peak (2), followed by a plateau preceding a second sharp drop (3) in power

density.

Figure 4.3.2 shows the simulated thermal and void reactivity feedback due to the rise in solution

temperature and the rapid expansion of radiolytic gas bubbles. The reactivity feedback explains the

observation in the power profiles that the 3.5$ SOL-B case has a single peak, whereas the 2.0$ SOL-C

case has one peak followed by a second drop in power density. In both cases, thermal feedback appears

earlier than void feedback, since thermal feedback emerges as soon as the solution temperature starts

to rise, whereas void feedback only becomes significant once the critical concentration is reached. In

the 3.5$ SOL-B, the amount of thermal feedback at the moment the gas voids appear is still relatively

small and insufficient to stop the power rising. A single peak is therefore observed as void feedback

appears resulting in a sudden drop in reactivity. In the 2.0$ SOL-C case, thermal feedback alone is

sufficient to stop the rise in power, producing the first power peak (2). The power density then drops

a second time once the critical concentration is reached resulting in the appearance of voids (3).

The power density and reactivity feedback profiles shown here do not represent those of a full-
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Fig. 4.3.1. Simulated fission power profiles for the 2.0$ step insertion case in the SOL-C fuel solution
and the 3.5$ step insertion case in the SOL-B fuel solution.
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Fig. 4.3.2. Simulated void and thermal reactivity feedback for the 2.0$ step insertion case in the
SOL-C fuel solution and the 3.5$ step insertion case in the SOL-B fuel solution.

scale system, rather they are local values for the fission power density and reactivity feedback in a

microscopic volume of fuel solution, such as might exist at the centre of a larger fissile liquid system.

It is possible that the power density may fall locally while the power density in wider system is rising.

The impact of these local effects within a full-scale system will be examined in Chapter 5 while the

current chapter will examine these local effects in detail.

The fission power density profiles for all transients simulated in the four different fuel solutions
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are shown in Figure 4.3.3. As already noted above, the profiles of the larger reactivity insertions are

defined by a single power peak coinciding with the appearance of voids due to radiolytic gas, whereas

the smaller reactivity insertions produce an initial peak due to thermal feedback, followed by a plateau,

then a secondary drop in power coinciding with the appearance of voids due to radiolytic gas.
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Fig. 4.3.3. Fission power density as a function of time.

Following the appearance of radiolytic gas voids, all the systems simulated become deeply sub-

critical, and the total power output becomes dominated by the decay of delayed neutron precursors.

An interesting feature of Figure 4.3.3 is that the fission power due to precursor decay after saturation

is similar for all cases within the same fuel solution. This can be explained by considering Equation

4.3.1 which gives the population of delayed neutron precursors at the moment of saturation:

Ci(tsat) =
βi
Λ

tsat∫
0

P (t′)dt′ − λi

tsat∫
0

Ci(t
′)dt′, (4.3.1)

where the symbols have the same meaning as in Equation 4.2.2. The first integral represents the

fission energy deposited in the fuel solution up to the moment of saturation (saturation energy, Esat).

This is a function of the radiolytic gas generation coefficient and the solubility of hydrogen gas in the

solution, and is therefore a function of the properties of a particular fuel solution. The second term
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represents the decay of delayed neutron precursors during the time leading up to saturation. This

latter term is close to zero for all cases shown in Figure 4.3.3 because the saturation time is very short.
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(d) Fuel Solution - SOL-D

Fig. 4.3.4. Total fission energy released as a function of time.

Figure 4.3.4 shows the total fission energy released for all simulations. It confirms that the total

energy released during saturation of the fuel solution is approximately constant for all transients within

the same solution. However, there are small differences even within the same solution and this is due

to the fact that the fuel solution does not saturate uniformly. Instead, the saturated region starts in

one or two regions, which then draw dissolved gas away from other parts of the solution. The exact

kinetics of this process will determine the precise energy required to saturate the fuel solution, but in

general the value will be close to:

Esat ≈
V

GH2

(
Pl +

2σs
rnucl

)
HH2,sol, (4.3.2)

where V is the volume of solution to be saturated, GH2
is the radiolytic gas generation coefficient, σs is

the fuel solution surface tension, rnucl is the maximum characteristic radius of the available nucleation

sites (fission track bubbles in this case) and HH2,sol is the Henry’s law constant for hydrogen gas in

the fuel solution.
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4.3.2 Reactivity Feedback as a function of Total Energy

Both thermal and void feedback increases with the amount of fission energy released into the solution.

It is therefore possible, for a given reactivity transient, to predict the total fission energy released by

that transient before the applied reactivity is cancelled out by feedback mechanisms. This was the

basis of a fissile liquid model by Schulenberg and Döhler (1986) who used this technique to successfully

predict the average fission power profiles of criticality transients in the CRAC reactor.

Figure 4.3.5 shows this relationship between energy released and reactivity feedback for the simu-

lated domain, using the the fuel solution properties based on TRACY (SOL-C). The thermal feedback

line on Figure 4.3.5 was derived from the thermal feedback term in the standard point kinetics equa-

tions (see Equation 4.2.1). Isolating the thermal feedback term from the point kinetics equation,

R$,T = αT (T (t)− T0), (4.3.3)

where R$,T is the thermal reactivity feedback at a given temperature, T . A substitution for T (t)− T0

can be found by integrating Equation 4.2.3. The following expression neglects heat loss from the

solution since this is only significant for long transients:

dT

dt
=

P (t)

MsolCp
, (4.3.4)

MsolCp

∫ T (t)

T0

dT =

∫ t

0
P (t)dt, (4.3.5)

T (t)− T0 =
E(t)

mfsCp
. (4.3.6)

Substituting this into Equation 4.3.3, an expression is derived relating the fission energy deposited,

E, to the thermal reactivity feedback, R$,T ,

E = −MsolCp
αT

R$,T . (4.3.7)

The lines corresponding to combined thermal and void feedback were derived in a similar way, starting

with the temperature and void feedback terms from Equation 4.2.1,

R$,(T+V ) = αT (T (t)− T0) + αV (VRG(t)− VRG,0), (4.3.8)

and substituting as above for T (t)− T0, also substituting for VRG(t)− VRG,0 using the ideal gas law,

VRG(t)− VRG,0 =
NRG(t)RT (t)

Pb
, (4.3.9)

where NRG(t) is the number of moles of radiolytic gas present and Pb is the pressure inside a radiolytic
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gas bubble. The pressure inside a bubble is determined from the bubble radius using,

Pb = Pl +
2σs
rb(t)

. (4.3.10)

where rb is the average radius of saturated radiolytic gas bubbles and Pl is the liquid pressure. This

leads to the expression for the voidage VRG(t)− VRG,0 due to radiolytic gas,

VRG(t)− VRG,0 =
NRG(t)RT

Pl + 2σs
rb(t)

. (4.3.11)

The number of moles of radiolytic gas, NRG(t), can be expressed as the product of the energy deposited

and the radiolytic gas generation coefficient,

VRG(t)− VRG,0 =
E(t)GH2

RT

Pl + 2σs
rb(t)

. (4.3.12)

Substituting Equations 4.3.6 and 4.3.12 into Equation 4.3.8, and rearranging in terms of fission energy

deposited, E, yields the following equation for the combined thermal and void feedback lines,

E = −
R$,(T+V )

αT
MsolCp

+
αV GH2

RT

Pl+
2σs
rb(t)

. (4.3.13)
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These lines are plotted in Figure 4.3.5 for the simulated domain based on the SOL-C fuel solution,

with thermal feedback coefficient -0.03295 $ m−3 and void feedback coefficient -387.67 $ m−3 (adjusted

for volume). The time-dependent reactivity feedback curve calculated by the numerical model for the

SOL-C 2.0$ step case is shown. The SOL-C 2.8$ step case is included for comparison (the 3.5$ SOL-B

focussed case cannot be shown on the same plot because the fuel solution properties are not the same).

The line showing the reactivity curve for the SOL-C 2.0$ step case (solid purple) indicates that

reactivity feedback is initially driven by the rise in temperature of the fuel solution, then after satura-

tion of the solution with radiolytic gas, reactivity feedback is driven by bubble expansion. The second

phase of reactivity feedback requires no additional energy input as bubbles expand by consuming dis-

solved gas from the surrounding solution. This is shown by the fact that the reactivity feedback line

for the SOL-C 2.0$ case traces the energy threshold line without rising above it. In the SOL-C 2.8$

step case, some additional energy input is required, as shown by the fact that the reactivity feedback

line (solid green) departs from the energy threshold line as reactivity feedback increases. This is an

interesting observation because it suggests that a different energy input is required to produce the

same reactivity feedback for slightly different excursions in identical solutions. The reason that the

2.8$ case requires more energy than the 2.0$ case for the same reactivity feedback is that the 2.8$ pro-

duces a larger number of bubbles, resulting in a smaller bubble size and a higher bubble pressure. The

radiolytic gas is therefore more compressed and more of it is required to produce the same reactivity

feedback as in the 2.0$ case.

This effect is highlighted by the black dashed lines which show combined thermal and void feedback

for various bubble radii, calculated using Equation 4.3.13. The energy required to negate a given

reactivity insertion by void feedback depends strongly on the size of the radiolytic gas bubbles, with

larger bubbles producing more reactivity feedback for the same energy deposition. This makes the size

(and therefore number) of radiolytic gas bubbles an important parameter determining the magnitude

of the first power peak during a criticality excursion.

Figure 4.3.5 shows that for the particular fuel solution modelled, transients resulting from reactivity

insertions of less than ∼2.5$ would reach a peak due to thermal feedback only. In these cases, voids

may still appear some time later but void feedback will not affect the kinetics of the first power peak.

In transients resulting from larger reactivity insertions, the timing of the first power peak in this fuel

solution would be expected to coincide with the appearance of gas voids. This is consistent with the

observation made in Section 4.3.1 that the first power peak in the SOL-C 2.0$ step insertion case is

due to thermal feedback alone.
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4.3.3 Formation of Stable Bubbles at Saturation

When analysing the number of bubbles present in the fuel solution, it is useful to distinguish between

collapsing bubbles and stable bubbles. Collapsing bubbles may be present whenever the fission power

density is greater than zero, as small bubbles are constantly added to the solution by radiolysis. The

number of collapsing bubbles at a given time depends on the fission power density, which determines

the rate at which new bubbles are created, and the degree of saturation of the fuel solution, which

determines the time it takes for them to collapse. Stable bubbles (or growing bubbles) are only present

once the fuel solution has become saturated.

A bubble can grow if it satisfies the inequality in Equation 4.3.14, i.e. if the local concentration

of dissolved hydrogen is greater than or equal to that which would be in equilibrium with the partial

pressure of hydrogen inside the bubble:

rb ≥
2σs(T )

CH2,local

HH2,sol
− Pl

, (4.3.14)

where σs(T ) is the liquid surface tension, CH2,local is the bulk liquid concentration of hydrogen in the

subcell containing the bubble, HH2,sol is the Henry’s law constant for hydrogen gas in the fuel solution

and Pl is the bulk liquid pressure. The majority of the collapsing bubbles which do not satisfy this

inequality are so small that they do not contribute significantly to the total voidage, and have no

discernible impact on the behaviour of the system.

The number of stable bubbles as a function of time for the two focussed cases is shown in Figure

4.3.6 and the concentration of dissolved hydrogen gas in the fuel solution is shown in Figure 4.3.7.

A notable difference between the cases shown is that in the 2.0$ SOL-C case, the number density

of bubbles rises to a value at which it remains relatively constant, whereas in the 3.5$ SOL-B case,

the number density rises to a peak value before declining sharply. The reasons for this are explored

in Section 4.3.3.2.

There are four orders of magnitude difference in the peak bubble densities predicted for the two

cases. In the 2.0$ SOL-C case, the bubbles are separated by relatively large distances so it takes a

relatively long time for dissolved gas to diffuse between them. In the 3.5$ SOL-B case, the bubbles

are more densely packed and diffusion times between adjacent bubbles are much shorter. In the latter

case, the smallest bubbles collapse as large bubbles, which expand the most quickly, consume the

dissolved gas in their surroundings until the smaller bubbles in the same region are no longer stable

and start to collapse.
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Fig. 4.3.6. Number of bubbles per cubic metre for the 2.0$ step insertion case in the SOL-C fuel
solution and the 3.5$ step insertion case in the SOL-B fuel solution.
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Fig. 4.3.7. Concentration of dissolved hydrogen gas for the 2.0$ step insertion case in the SOL-C fuel
solution and the 3.5$ step insertion case in the SOL-B fuel solution.

In both cases, a large number of stable bubbles emerges extremely rapidly once the critical concen-

tration of dissolved hydrogen is reached and a proportion of the fission track bubbles is able to grow.

When the bubbles expand, they consume gas from the surrounding solution, resulting in a drop in

the dissolved gas concentration (see Figure 4.3.7). Once the dissolved gas concentration has dropped

back to a level below the critical concentration, the fission track bubbles are no longer large enough to

grow and they begin to collapse once more. This means there is a relatively short saturation period
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during which the local concentration exceeds the critical concentration, and new stable bubbles can

form from the fission track bubbles. The numerical model indicates that saturation period lasts from

a few microseconds up to a millisecond.

The number of stable bubbles formed during the saturation period depends on the number of

available fission track bubbles of sufficient size deposited by fission fragments during the same period.

This number depends on the total number of fission events occurring during the saturation period,

which is proportional to the fission energy deposited. It is therefore useful to examine the relationship

between the number of stable bubbles formed, and the fission energy deposited during the saturation

period. This is shown in Figure 4.3.8 for the SOL-C 2.0$ step case.
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Fig. 4.3.8. Number of stable bubbles formed as a function of fission energy deposited during the
saturation period for the 2.0$ step insertion case in the SOL-C fuel solution.

The flat region marked (A) on Figure 4.3.8 is an artefact of the modelling technique. The number

density of bubbles shown in this region corresponds to a single bubble present in the simulated domain.

However, beyond this point it can be seen in region (B) that the number of stable bubbles increases

steadily with the fission energy deposited. The line is straight on this part of the plot, indicating a

power law relationship (since the scales are logarithmic).

Further to the right in region (C) of Figure 4.3.8, the number of stable bubbles appears to level off as

the fission energy deposited continues to increase. This corresponds to the period during which bubble

growth in certain areas of the simulated domain has reduced the concentration to below the critical

concentration. The proportion of the simulated domain in which new stable bubble formation is still

possible decreases to the extent that further addition of energy to the solution produces diminishing
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returns in terms of the number of stable bubbles.

Figure 4.3.9 shows the number density of bubbles as a function of time for all transients simu-

lated. As previously noted, the number of stable bubbles present evolves differently depending on the

magnitude of the reactivity insertion. For the smaller reactivity insertion cases, a smaller number of

stable bubbles is created during the saturation period but this number remains relatively constant

after saturation. Let this type be called “Type A”. For the larger reactivity insertion cases, the num-

ber of stable bubbles rises to a peak, then decreases rapidly after saturation as the smallest bubbles

collapse. Let this type be called “Type B”.
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(b) Fuel Solution - SOL-B
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(d) Fuel Solution - SOL-D

Fig. 4.3.9. Number of stable bubbles per unit volume as a function of time.

An interesting feature of the Type B cases, is that the number of stable bubbles per unit volume

converges after saturation to approximately the same value. This can be explained by the observation

already made in Section 4.3.1 that the fission power densities converge for all cases in the same fuel

solution after saturation. The convergence in the stable bubble densities would therefore suggest that

the density of stable bubbles after saturation is determined by the fission power density for Type B

cases.
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4.3.3.1 Number of Stable Bubbles Produced

The number of stable bubbles is a key parameter determining the rate of appearance of radiolytic gas

voids, the extent to which these voids are compressed and the time taken for them to leave the system

by advection. It would therefore be useful to be able to predict the number of stable bubbles created

as a function of the conditions during saturation of the fuel solution.

It was shown in Figure 4.3.8 that the number of bubbles created during the saturation period

increases with the amount of fission energy deposited in the fuel solution. The same data are shown

in Figure 4.3.10 for all the transients simulated.
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Fig. 4.3.10. Number of bubbles per unit volume as a function of fission energy deposited per unit
volume.

Different fuel solutions in Figure 4.3.10 are indicated by different coloured lines but the purpose of

the figure is not to examine individual transients or fuel solutions but to determine the general trend

for all the data. The data is centered around a trendline with equation,

Nb(t)

V
= 0.05

(
E(t)− E(tsat)

V

)2.5

, (4.3.15)

where E(tsat) is the energy released up to the point at which the first stable bubble appears. This

equation is shown in Figure 4.3.10 as a solid black line.

There is a significant number of data points on either side of Equation 4.3.15. This is largely due

to the fact that the trend for individual transients follows a S-shaped curve (as discussed in Section

4.3.3). The reason for the dip (D) in the centre of the figure is believed to be related to spatial effects
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which are particularly prominent in transients in the intermediate intensity range. The effect is related

to the appearance and subsequent merger of multiple regions of bubble growth within the simulated

domain, leading to deviations from the behaviour that would be expected for a single region of bubble

growth. These effects are discussed in Section 4.4.1.

Almost all the data points fall within one order of magnitude (region shaded in grey) of the value

predicted by Equation 4.3.15 so this equation can provide a reasonable prediction of the number of

bubbles created as a function of total energy deposited during the saturated period.

The outlying data points (E) on the left of Figure 4.3.10 are artefacts of the calculation method

where there is only one stable bubble in the simulated domain, as explained previously. This could be

tested by re-running the simulations with a larger domain size, in which case the trend highlighted by

the grey region would be expected to extend further towards lower values of E-E0.

4.3.3.2 A Model of Bubble Stability

It was noted in Section 4.3.3 that the number of stable bubbles in the fuel solution tends to remain

relatively constant after saturation (for less powerful transients) or decrease after saturation (for

more powerful transients), and that in the latter case where bubbles collapse after saturation, the

total number of bubbles present tends towards a value determined by the fission power density. To

understand this phenomenon, it is useful to consider an analytical model of bubble stability.
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q
)

x

A
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B
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S.1

S.2

Fig. 4.3.11. One-dimensional model of bubble collapse by diffusion. Growing bubbles are shown in
blue while red indicates a collapsing bubble.
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For simplicity, the analytical model will consist of a one-dimensional system, containing only two

adjacent bubbles, as shown in Figure 4.3.11. The two bubbles are located a certain distance, X, apart

from each other. There exists a region between the two bubbles where the concentration of dissolved

gas is influenced by ongoing radiolysis and the growth and/or collapse of the bubbles. In this region,

the rate of change in the concentration profile due to diffusion is proportional to the second derivative

of the concentration gradient (Fick’s second law) and the rate of change due to radiolysis is equal to

the product of the fission power density and the radiolytic gas generation coefficient,

∂CH2(aq)(x, t)

∂t
= D

∂2CH2(aq)(x, t)

∂x2
+GH2

(P (t)/V ) , (4.3.16)

where CH2(aq)(x, t) is the concentration of dissolved hydrogen at a location x along the domain and

P (t)/V is the fission power density.

The two bubbles can co-exist if a steady-state solution to Equation 4.3.16 exists in which both

bubbles are growing. This is indicated by Scenario S.1 in Figure 4.3.11. In this case, the dissolved gas

consumed by the growing bubbles is replaced by ongoing radiolysis, allowing both bubbles to grow

at the same time. Alternatively, the generation of dissolved gas by radiolysis may be insufficient to

replace the gas consumed by the growing bubbles. In this case, the smaller bubble will collapse, as

shown in Scenario S.2 of Figure 4.3.11.

To solve for a steady-state, the time derivative on the left hand side of Equation 4.3.16 is set to

zero. Robin boundary conditions applied at each end of the domain make use of Fick’s first law, which

relates the mass flux to the concentration gradient:

� on the left (x=0): J = −D ∂CH2(aq)

∂x

∣∣∣
x=0

= −kD(CH2(aq)(0)− Cb1:eq),

� on the right (x=X): J = −D ∂CH2(aq)

∂x

∣∣∣
x=X

= kD(CH2(aq)(X)− Cb2:eq).

where Cb1:eq is the equilibrium concentration corresponding to the size of the bubble at location x = 0,

Cb2:eq is the equilibrium concentration corresponding to the size of the bubble at location x = X and

kD is the mass transfer coefficient at the bubble interface. This equation has the following analytical

solution,

CH2(aq)(x) = −
P (t)GH2

2DV
x2 + Y1x+ Y2 (4.3.17)

where Y1 =
1

1 + 2D
kDX

(
Cb2:eq − Cb1:eq

X
+
P (t)GH2

DV

(
X

2
+

2D

kD

))
Y2 =

D

kD
Y1 + Cb2:eq

Because larger bubbles have lower equilibrium concentrations, unless all bubbles have identical

159



size, the population of bubbles in a solution with no source of dissolved gas will tend to one (Nb → 1),

as the growth of the largest bubbles tends to lower the concentration of dissolved gas below the

equilibrium concentration of the smaller bubbles, leading them to collapse until there is only a single

bubble remaining. A pair of adjacent bubbles of different sizes can coexist if there is a dissolved gas

source, e.g. from radiolysis. The density of bubbles of different sizes that the solution can support

depends on the fission power density, corresponding to the rate at which new radiolytic gas is required

to meet the demands of the largest bubbles without reducing the concentration below the equilibrium

concentration of the smaller bubbles. The required fission power density can be determined in the 1D

model by differentiating Equation 4.3.17 and setting the derivative of the concentration to zero at the

boundary on the side of the smaller bubble. This results in the following stability condition,

P

V
=

Cb1:eq − Cb2:eq

GH2
X
(
X
2D + 1

kD

) (4.3.18)

where P/V is the fission power density in equilibrium with the number of bubbles present, ∆C =

|Cb1:eq − Cb2:eq| is the modulus of the difference in equilibrium concentrations for each of the two

bubbles.

If the fission power density is known, then Equation 4.3.18 can be rearranged to give a quadratic

expression for the bubble separation distance, X. This results in the following expression,

X = − D

kD
±

√ 2D∆C

GH2 (P/V )
+

(
D

kD

)2
 . (4.3.19)

The negative root can be discounted since it would result in a negative bubble separation. In most

cases, the resistance to mass transfer at the bubble interface will be small compared to the resistance

due to diffusion of dissolved gas through the solution: applying Eq. 4.2.12 it can be shown that

limrb→0
D
kD

= rb and limrb→∞
D
kD

= 0. The resistance to mass transfer at the bubble interface can be

neglected by taking the limit as kD →∞, resulting in the following expression,

X =

√
2D∆C

GH2 (P/V )
. (4.3.20)

The equation can be used to find the stable bubble number density by substituting,

X = 3

√
V

Nb
, (4.3.21)

where Nb/V is the stable bubble number density. This results in a relatively simple expression for the

stable bubble number density as a function of the fission power density,(
Nb

V

)
eq

=

(
GH2P (t)

2D∆CV

)3/2

. (4.3.22)
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The difficulty with Equation 4.3.22 is that the parameter ∆C is not easily obtained, even for the

1D scenario described. In a 3D system the value of ∆C would depend on the distribution of dissolved

gas concentration within the fuel solution. Its value would tend to increase with increasing fission

power density, since stochasticity in the timing and location of fission events creates heterogeneity in

the dissolved gas concentration, while diffusion of dissolved gas and mixing would make the solution

more homogeneous.

Instead, using the results of the numerical model it is possible to estimate a constant of propor-

tionality (let this be called kb), which incorporates the ∆C parameter, and links the stable bubble

number density to the fission power density. Equation 4.3.22 then becomes,(
Nb

V

)
eq

= kb

(
P

V

)3/2

(4.3.23)

Equation 4.3.22 would suggest that the constant of proportionality kb is a function of the radiolytic

gas generation coefficient and the dissolved gas diffusion coefficient,

kb = k′b

(
GH2

D

)3/2

. (4.3.24)

Figure 4.3.12 shows the values of (Nb/V ) / P 3/2 as a function of time, predicted by the numerical

model for a range of transients across all four simulated fuel solutions. From these figures it appears

that kb tends towards a constant value, which appears to be a function of the fuel solution properties,

since different values emerge for each of the four simulated fuel solutions.

The values of kb are shown in Table 4.6 along with the average saturation temperatures and

dissolved gas diffusion coefficients for the four simulated fuel solutions. Also shown is the value of k′b

or kb/(GH2/D)3/2 since Equation 4.3.22 suggests that this value should be a constant.

Fuel Solution kb [W3/2] GH2
[mol J−1] T[sat]Av [K] D [m2 s−1] kb / (GH2/D)3/2

SOL-A 1.58× 1015 1.35× 10−7 323 8.43× 10−9 2.47× 1013

SOL-B 3.79× 1014 7.67× 10−8 361 1.59× 10−8 3.57× 1013

SOL-C 1.23× 1014 5.80× 10−8 371 1.83× 10−8 2.19× 1013

SOL-D 6.01× 1014 8.08× 10−8 354 1.43× 10−8 4.45× 1013

Average – 3.172× 1013

TABLE 4.6
Values of the constant of proportionality kb determined from the results of the numerical model,
radiolytic gas generation coefficients and average diffusion coefficients for each of the four simulated
fuel solutions.

By taking the average value of k′b it is possible to derive the following expression for the constant
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(b) Fuel Solution - SOL-B
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(c) Fuel Solution - SOL-C
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(d) Fuel Solution - SOL-D

Fig. 4.3.12. Number of stable bubbles per unit volume as a function of fission power density raised to
the power of 3/2.

of proportionality kb:

kb = 3.172× 1013

(
GH2

D

)3/2

. (4.3.25)

It is clear from Table 4.6 that there is some variation in the values of k′b derived for the four different

fuel solutions. To evaluate the influence of this variation on the predicted value of kb, Equation 4.3.25

was used to predict kb for all fuel solutions and these values are compared to those obtained from the

numerical model in Figure 4.3.13.

Figure 4.3.13 shows that there is reasonable agreement between the values of the kb obtained from

the numerical model and the values predicted using Equation 4.3.25. This finding lends credibility

to the proposed one-dimensional model of bubble stability and the validity of Equation 4.3.22 which

indicates that the equilibrium number density of stable bubbles is related to the fission power density

raised to the power of 3/2. It also confirms that the variation in the values of the equilibrium number

density from one fuel solution to another results largely from differences in the values of GH2
and D.

Caution should be exercised when applying Equation 4.3.25 more widely to a range of different

transients, especially when the fission power density remains high after saturation. This is because, as
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Fig. 4.3.13. Equilibrium constant kb obtained from the numerical model (yellow) and estimated using
Equation 4.3.25 (blue).

noted earlier, the parameter ∆C is expected to be sensitive to the fission power density, which suggests

that the fission power density after saturation may have some influence on the value of the constant

k′b in Equation 4.3.25. In this case, higher fission power densities may increase the heterogeneity in

the dissolved gas concentration in the fuel solution, reducing the value of k′b and reducing the number

of stable bubbles the fuel solution can support. Nevertheless, this effect is likely to be relatively weak

compared to the influence of the fission power density on the rate of radiolytic gas production, which

is accounted for in Equation 4.3.23.

Figure 4.3.14 shows the stable bubble densities for the 2.0$ SOL-C and 3.5$ SOL-B cases, simulated

by the numerical model and predicted based on Equations 4.3.23 and 4.3.25. In the 2.0$ SOL-C case,

the number of stable bubbles formed during saturation is less than the number of stable bubbles that

the fuel solution can support at the fission power density after saturation, so the number of stable

bubbles remains constant (F). In the 3.5$ SOL-B case, the number of stable bubbles formed during

saturation exceeds the number that the fuel solution can support once the fission power density has

dropped following saturation. This leads to bubble collapse as the number of bubbles present in the

fuel solution tends towards the stable equilibrium value predicted by Equation 4.3.23 (G).

There is one anomaly in Figure 4.3.14 where the number of stable bubbles in the 3.5$ SOL-B

fuel solution initially drops (H) while the equilibrium value predicted by Equation 4.3.25 is greater

than the number actually present. This is likely to be due to spatial effects, where the bubbles formed

during saturation are initially distributed in a non-uniform manner, so that the bubble number density
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Fig. 4.3.14. Stable bubbles per unit volume (solid line) and predicted stable bubble number density
(dashed line) based on Equations 4.3.23 and 4.3.25 for the 2.0$ SOL-C and 3.5$ SOL-B cases.

is higher in some places and lower in others, leading to bubble collapse when, on average, the system

appears stable.

4.3.3.3 Rate of Bubble Collapse

Section 4.3.3.2 presents a method for predicting the number of stable bubbles that a fuel solution

can support, as a function of the fission power density. As shown in Figure 4.3.14, the numerical

model predicts that, when the number of stable bubbles per unit volume exceeds this value, bubbles

will collapse so that the number of bubbles in the fuel solution tends towards the equilibrium value.

The aim of this section is to provide an estimate for the time constant characterising this movement

towards the equilibrium value.

The collapse of bubbles is driven by the fact that the density of stable bubbles (Nb/V ) exceeds

the value which would be in stable equilibrium with the current fission power density according to

Equation 4.3.23. Collapse of the bubbles is due to diffusion, as dissolved gas diffuses towards larger

expanding bubbles and away from smaller bubbles which then start to collapse. Since the rate of

change in concentration due to diffusion is proportional to the second derivative of the concentration

with respect to distance (Fick’s Second Law), a reasonable approximation would be expected using
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Fig. 4.3.15. Number of stable bubbles per unit volume simulated by the numerical model (solid line)
with collapse rate predicted using Equation 4.3.26.

an expression of the following form:

dNb

dt
=


− kc
S(t)2

[
Nb(t)
V − kb

(
P (t)
V

)3/2
]
V when Nb(t)

V > kb

(
P (t)
V

)3/2
,

0 otherwise,

(4.3.26)

where all the symbols are as previously defined. This equation results in a collapse time constant kc

with the same units as the diffusion coefficient, i.e. m2 s−1. Equation 4.3.26 provides a reasonable fit

to the results of the numerical model. A comparison showing four examples of transient simulations

is shown in Figure 4.3.15.

One feature that Equation 4.3.26 cannot reproduce was already discussed in the previous section

(see note (H) on Figure 4.3.14), where non-uniformity in the spatial distribution of bubbles immediately

after saturation may lead to some immediate bubble collapse, even before the power has dropped such

that the average bubble number density is below that required by Equation 4.3.26 for bubble collapse.

This effect can be seen in Figure 4.3.15 as a short plateau (marked (J) and (K)) before the number of

bubbles starts decreasing.

The time constant kc was determined by calculating the value for each simulation which minimises
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the following error indicator:

ERR =

tf∫
0

(t− tsat)
(
Nb(t)

V
−
Nb,pr(t)

V

)2

dt, (4.3.27)

where Nb(t) is the number of bubbles at time t predicted by the numerical model and Nb,pr(t) is

the number of bubbles at time t predicted by Equation 4.3.26. The factor (t − tsat) was included in

Equation 4.3.27 in order to give preference to values of kc that produce the best convergence, rather

than favouring values which best matched the initial rate of collapse.

The average of all kc values calculated was 5× 10−10 m2 s−1 and this value was used to calculate

the estimated bubble collapse rates shown in Figure 4.3.15. The value of this parameter corresponds

to the rate at which bubbles will collapse due to diffusion when the density of bubbles in a volume of

fuel solution exceeds that which is sustainable at the current fission power density.

4.3.4 Bubble Growth and Size Distribution

The numerical model produces snapshots of the distribution of bubble radii at fixed time intervals

throughout the simulation. These snapshots can be used to observe the change in the bubble size

distribution before, during and after the saturation period. Figure 4.3.16 shows the bubble size

distribution during the moments before and after saturation of the SOL-C fuel solution during the

SOL-C 2.2$ step insertion case.

The bubble size distribution before saturation consists of a peak around rb = 5.0× 10−8m, which

corresponds to the approximate size of the first and largest bubble created along each fission track.

There are no bubbles larger than rb = 5.5 × 10−8m radius before saturation because the critical

concentration of dissolved hydrogen has not yet been reached and all bubbles present in the simulated

domain are collapsing. There is a population of bubbles with radius less than rb = 5.0×10−8m. These

bubbles are collapsing as their gas dissolves into the surrounding solution. This is a relatively fast

process with collapse times on the order of 10 µs (in agreement with Spiegler et al. (1962)).

Figure 4.3.17b shows the bubble size distribution 0.2ms after saturation has occurred. A distribu-

tion of larger bubble sizes has appeared with radii up to 2.5×10−6m. These bubbles result from fission

events depositing bubbles in areas where the local dissolved gas concentration exceeds the critical con-

centration, leading to rapid expansion of these bubbles as they consume gas from their surroundings.

There is still a large peak around rb = 5 × 10−8m (truncated in the figure) as bubbles appearing in

regions of low concentration continue to collapse.
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(a) 0.8ms before saturation (b) 0.2ms after saturation

(c) 0.7ms after saturation (d) 1.2ms after saturation

Fig. 4.3.16. Bubble size distribution moments before and after saturation of the SOL-C fuel solution
with radiolytic gas during a 2.2 $ reactivity step insertion case. Saturation occurs at t = 79.1ms

In Figure 4.3.16c, 0.7ms after saturation, the number of expanding bubbles has increased and a

peak is beginning to form around rb = 1.6 × 10−6m. The second peak consists of growing bubbles

which are expanding as they consume dissolved gas from the fuel solution. The peak continues to

become more pronounced in Figure 4.3.16d.

The numerical model can also produce snapshots of the distribution of dissolved gas concentrations

at set time intervals. Bubbles will tend to expand until the partial pressure of hydrogen gas inside

the bubble is in equilibrium with the concentration of dissolved hydrogen in the surrounding solution.

The distribution of dissolved gas concentrations is therefore closely linked to the distribution of bubble

sizes.

Figure 4.3.17 shows the evolution in the distributions of bubble radius and dissolved gas concen-

tration for the SOL-C 1.8$ step case. The bubble size distribution shifts towards larger bubble sizes
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(a) Distribution of bubble radii (b) Distribution of dissolved gas concentrations

Fig. 4.3.17. Distributions of bubble radius and dissolved gas concentration during the moments after
saturation of the SOL-C fuel solution following a 1.8$ reactivity step insertion at tcrit.

while the distribution of dissolved gas concentrations shifts towards lower values.

The evolution in the size of stable bubbles can take different courses depending on the type of

transient. Figure 4.3.18 shows the average stable bubble radius over time for the two focussed cases.

In the 3.5$ SOL-B case, the bubbles increase in size rapidly at first, their average radius rising almost

two orders of magnitude from ∼5 × 10−8m to ∼1 × 10−6m in less than one millisecond. This initial

rapid increase is followed by a much more gradual increase. In the 2.0$ SOL-C case, the average

radius of stable bubbles rises rapidly to a much larger size than in the SOL-B case, reaching a radius

of ∼2 × 10−5m in just a few milliseconds. However, their expansion stops and their size remains

relatively constant after that point.

In both cases, the fission power density has dropped to a very low level after the appearance of

stable bubbles so the rate of addition of radiolytic gas to the solution is very small. The continued

expansion after saturation of the stable bubbles in the 3.5$ SOL-B case cannot therefore be explained

by continued addition of gas to the solution by radiolysis. This secondary growth phase is instead due

to bubble collapse.

Figure 4.3.6 showed that the number of bubbles in the 3.5$ SOL-B case peaked at saturation

before declining rapidly, whereas the number of stable bubbles in the 2.0$ SOL-C case remained

relatively constant. The expansion of stable bubbles in the SOL-B case is driven by the collapse of

smaller bubbles in the solution, which release their gas back into the solution for the larger bubbles

to consume.

In both cases, the initial rapid increase in stable bubble size is due to the consumption of dissolved
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Fig. 4.3.18. Average radius of stable bubbles for the 2.0$ step insertion case in the SOL-C fuel solution
and the 3.5$ step insertion case in the SOL-B fuel solution.

gas in the solution surrounding each bubble. This is why stable bubbles in the 2.0$ SOL-C case are

larger after the initial expansion phase than stable bubbles in the 3.5$ SOL-B case - because the SOL-

C case has fewer bubbles among which to share the available dissolved gas. The size of the bubbles

after this initial expansion phase can be estimated, by considering that the concentration of dissolved

gas after expansion is simply the critical concentration after deducting the number of moles of gas

contained in the expanded bubbles. The radius of the bubble in equilibrium with this concentration

(let this be called the “expanded bubble radius”, re) can therefore be found by solving,

CH2,eq = Ccrit −
Nb

V

PbVb
RT

, (4.3.28)

where CH2,eq is the equilibrium concentration of the bubble, Ccrit is the critical concentration, Nb/V is

the number density of bubbles at saturation, Pb is the internal pressure of the bubble, Vb is the bubble

volume, R is the universal gas constant and T is the temperature of the fuel solution. The second

term on the right-hand side should strictly include a term to subtract the gas contained in the critical

bubble nucleus at the moment of saturation. However, this term has a negligible impact on the radius

of the expanded bubble (∆re < 1% for re > 5× 10−7m) and has therefore been omitted for simplicity.

Substituting expressions for the bubble pressure and volume in terms of the bubble radius, and

for the critical concentration in terms of the nucleation radius, results in the following expression:(
Pl +

2σs
re

)
HH2,sol =

(
Pl +

2σs
r0

)
HH2,sol −

4πNb

3V RT

(
Pl +

2σs
re

)
r3
e , (4.3.29)

where r0 is the radius of the fission track bubble which nucleated the expanding bubble and the other
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Fig. 4.3.19. Average radius of stable bubbles dur-
ing a 3.5$ step reactivity insertion in the SOL-B
fuel solution. Prediction of the numerical model
compared to the value predicted by Equation
4.3.29.
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Fig. 4.3.20. Average radius of stable bubbles
during the 2.0$ step reactivity insertion in the
SOL-C fuel solution. Prediction of the numerical
model compared to the value predicted by Equa-
tion 4.3.29.

symbols are as previously defined.

By calculating the value of re using Equation 4.3.29 it is possible to confirm the above hypothesis

regarding the mechanisms of bubble expansion. Figures 4.3.19 and 4.3.20 compare the values of re

obtained using Equation 4.3.29 to the evolution in the stable bubble radius predicted by the numerical

model. The values of re were calculated using the peak values for the number density of bubbles at

saturation which can be found in Tables 4.7 to 4.10.

The expanded bubble radius coincides precisely with the maximum stable bubble radius in the

SOL-C 2.0$ case, confirming that in this case the expansion of the bubbles is due entirely to the

consumption of excess dissolved gas in the fuel solution surrounding the bubbles. In the 3.5$ SOL-B

case, the bubbles continue to grow far beyond the value predicted using Equation 4.3.29, confirming

that other processes (bubble collapse in this case) are also playing an important role.

4.3.5 Rate of Appearance of Radiolytic Gas Voids

The change in gas void fraction (voidage) in the simulated domain is shown as a function of time in

Figure 4.3.21. The rates of increase in the voidage evolve differently for the two transients shown.

In the 3.5$ SOL-B case, the voidage increases rapidly from zero to ∼0.20, after which it continues to

increase at a more gradual rate. In the 2.0$ SOL-C case, the voidage increases at a slower rate which
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it maintains until a voidage of ∼0.42 is reached, at which point the voidage stops increasing.
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Fig. 4.3.21. Total void fraction due to the presence of radiolytic gas voids for the 2.0$ step insertion
case in the SOL-C fuel solution and the 3.5$ step insertion case in the SOL-B fuel solution.

The voidage in the fissile solution is affected by two factors: the size of the gas bubbles and the

number of moles of gas present. Both factors can be seen in the 3.5$ SOL-B case where the initial rapid

increase in the voidage coincides with a sudden drop in the dissolved gas concentration as hydrogen

is transferred to the gaseous phase. The secondary, slower increase in voidage is due to the growth of

radiolytic gas bubbles. As discussed in the previous section, this is primarily driven by the decrease

in the total number of stable bubbles (mechanism described in Section 4.3.3) which leads to a smaller

number of larger bubbles containing the same radiolytic gas. The bubbles are less compressed by

surface tension effects due to their larger size which leads to an increase in voidage.

The voidage is therefore a relatively complex function of the number of moles of radiolytic gas

produced and the number of bubbles present per unit volume. Figure 4.3.22 shows the amount of

dissolved gas in the fuel solution as a function of time for the two focussed cases. This figure provides

an indication of the rate at which radiolytic gas is transferred from the dissolved phase to the gaseous

phase, where it can contribute to the growth of gas voids.

The evolution of the dissolved gas concentration after saturation of the fuel solution is a very close

fit to an exponential decay of the form:

dCH2(aq)(t)

dt
= −αc

(
CH2(aq)(t)− CH2,eq

)
, (4.3.30)

where CH2(aq)(t) is the concentration of dissolved hydrogen gas at time t and CH2,eq is the concentration
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Fig. 4.3.22. Rate of disappearance of dissolved hydrogen gas for the 2.0$ step insertion case in the
SOL-C fuel solution and the 3.5$ step insertion case in the SOL-B fuel solution.

of dissolved hydrogen gas in equilibrium with partial pressure of hydrogen gas inside the bubble. This

is given by,

CH2,eq = yH2

(
Pl +

2σs
rb

)
HH2,sol, (4.3.31)

where the symbols are as defined previously.

By comparing the values of αc, shown in Figure 4.3.22 for the 2.0$ SOL-C and 3.5$ SOL-B cases, it

is clear that there is a substantial difference between the two cases in the rates at which dissolved gas

moves from the dissolved phase into the gaseous phase. This difference can be explained by comparing

the stable bubble densities in the two cases. Since dissolved gas can only come out of solution when

it encounters an expanding bubble, and the bubble number density in the 3.5$ SOL-B case is four

orders of magnitude larger than in the 2.0$ SOL-C case, it takes longer for dissolved gas in the latter

case to reach a bubble and come out of solution.

The evolution of the dissolved hydrogen concentration for all simulated transients is shown in Figure

4.3.23. The general trend across all simulations is similar to that described above, starting with an

exponential rise in concentration resulting from the exponential rise in the fission power, followed by

a sudden drop in concentration once the critical concentration has been reached. It is worth noting

that the average dissolved gas concentration never actually exceeds the critical concentration; instead

the critical concentration is exceeded in one, or possibly several, regions.

Figure 4.3.23 reinforces the observation that the rate of mass transfer of hydrogen gas from the

dissolved phase to the gaseous phase varies substantially between different transients. The drop in
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(c) Fuel Solution - SOL-C
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(d) Fuel Solution - SOL-D

Fig. 4.3.23. Dissolved hydrogen gas concentration as a function of time.

dissolved gas concentration after saturation, from the critical concentration to a value less than ∼1

mol m−3 can be seen to take place in a time period ranging from a few microseconds up to a second.

It was previously hypothesised that the difference in the mass transfer rate was due to the difference

in the number of bubbles per unit volume, since the presence of bubbles is required for dissolved gas to

come out of solution. This hypothesis is confirmed by Figure 4.3.24 which shows the rate constant αc

(as defined by Equation 4.3.30) as a function of the peak bubble number density during the saturated

period.

Figure 4.3.24 shows that the rate constant αc increases with increasing bubble number density.

The properties of the fuel solution do not appear to have a significant influence on the value of αc

since there is no clear difference between the sets of data for the different simulated solutions. The

trendline shown in Figure 4.3.24 has the equation,

αc = 1.9436× 10−10

(
Nb

V

)0.78926

, (4.3.32)

where Nb/V is the peak bubble number density to occur during the saturated period. The values of αc

shown where obtained by fitting Equation 4.3.30 to each set of results and adjusting αc to minimise
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Fig. 4.3.24. Mass transfer rate constant αc as a function of peak bubble number density during
saturation of the fuel solution.

the error, as defined by the following indicator:

ERR =

tf∫
0

(
CH2(aq)(t)− CH2,pr(t)

)2
dt, (4.3.33)

where CH2,pr is the dissolved gas concentration predicted using Equation 4.3.30.

4.3.6 Summary of Selected Data

Table 4.9 provides a summary of some of the key parameters determined by the numerical model for

each reactivity transient. The results corresponding to the time of saturation have been determined by

taking the values which coincide with the peak concentration of dissolved hydrogen gas. However, it is

not actually possible to define a single instant of saturation, since various regions within the simulated

domain would often saturate at different times. The values listed therefore coincide with the moment

at which the number of bubbles which are stable with respect to their local concentration is sufficient

for rate of mass transfer from dissolved phase to gas phase to exceed the rate at which new dissolved

radiolytic gas is deposited into the solution due to collapsing bubbles.
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Transient N◦ 1 2 3

Reactivity Inserted 1.5$ 2.0$ 2.5$

Insertion Rate [$ s−1] STEP STEP STEP

C(H2)max [mol m−3] 13.49 13.81 14.02

Time to C(H2)max [s] 1.1200 0.0548 0.0371

Power Density at C(H2)max [W m−3] 1.892 × 107 5.737 × 109 1.699 × 1010

Bubble Number Density at C(H2)max [m−3] 2.000 × 1012 5.324 × 1015 4.898 × 1016

Peak Power Density [W m−3] 1.934 × 109 7.594 × 109 1.702 × 1010

Time to Peak Power Density [s] 0.0807 0.0499 0.0369

Peak Bubble Number Density [m−3] 1.150 × 1013 1.432 × 1016 6.829 × 1016

Time to First Stable Bubble [s] 1.1103 0.0542 0.0368

Energy [J] at EOS1 1.026 × 108 1.107 × 108 1.200 × 108

TABLE 4.7
Summary of selected data for simulations in the SOL-A fuel solution.

Transient N◦ 1 2 3

Reactivity Inserted 1.5$ 2.0$ 2.5$

Insertion Rate [$ s−1] STEP STEP STEP

C(H2)max [mol m−3] 15.17 15.39 15.38

Time to C(H2)max [s] 0.0359 0.0196 0.0138

Power Density at C(H2)max [W m−3] 3.077 × 1010 9.458 × 1010 1.566 × 1011

Bubble Number Density at C(H2)max [m−3] 3.854 × 1016 1.569 × 1017 8.497 × 1016

Peak Power Density [W m−3] 3.084 × 1010 9.458 × 1010 1.632 × 1011

Time to Peak Power Density [s] 0.0358 0.0196 0.0139

Peak Bubble Number Density [m−3] 4.812 × 1016 1.780 × 1017 3.093 × 1017

Time to First Stable Bubble [s] 0.0357 0.0195 0.0138

Energy [J] at EOS 2.059 × 108 2.263 × 108 2.465 × 108

TABLE 4.8
Summary of selected data for simulations in the SOL-D fuel solution.

1End of Simulation
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4.4 Further Observations

Throughout this section the term “predictive correlations” will be used to refer to the expressions

derived in the previous section to predict the bubble number density, bubble collapse rate, dissolved

gas concentration, and other parameters relating to the saturation of a fuel solution with dissolved

radiolytic gas. This includes Equations 4.3.15, 4.3.23, 4.3.26 and 4.3.30.

4.4.1 Effects of Non-Uniform Spatial Distribution of Bubbles

In some cases, there are differences between the numerical model and the predictive correlations

developed in the previous section due to 3D spatial effects, which cannot be accounted for in the

correlations because they approximate the saturated region to a single homogeneous region. For

example, the trends in the stable bubble number density for the 2.4$ SOL-C step case predicted by

the numerical model and the correlations are shown in Figure 4.4.1. The numerical model predicts a

bubble number density which peaks, followed by a decline (L) much more rapid than that predicted

by the correlations. This is then followed by a short-lived recovery (M) in the bubble number density

before the population proceeds to decrease at a rate closer to that predicted by the correlations.
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Fig. 4.4.1. Change in bubble number density over time predicted by the numerical model of the 2.4$
SOL-C step case, showing results of a Monte Carlo simulation and results of the predictive correlations.

Analysis of the distribution of local concentrations predicted by the numerical model confirms this

is indeed due to spatial effects. Figure 4.4.2 shows the distributions of dissolved gas concentrations

around the moment of saturation for the same simulation in the SOL-C fuel solution. Moments before
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saturation there is a single peak in the concentration distribution, however during saturation the

distribution breaks up into two distinct peaks, corresponding to regions of the simulated domain with

different concentrations of dissolved gas. A few moments later these two peaks merge as diffusion

between the regions of the simulated domain evens out the dissolved gas concentration.
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Fig. 4.4.2. Distribution of dissolved hydrogen gas concentrations within the simulated domain moments
before and after saturation of the fuel solution for the 2.4$ SOL-C case, showing two saturated regions
which eventually merge into one.

In the case shown in Figure 4.4.2, the bubble number density is non-uniform, creating a region of

low dissolved gas concentration where the bubble number density is highest and areas of high dissolved

gas concentration where the bubble number density is lowest. This results in higher than expected

rates of bubble collapse in the areas of high bubble number density and a higher than expected overall

rate of bubble collapse. However, once the regions start to become more homogeneous due to the

effects of diffusion and bubble collapse, the results of the numerical model converge towards those

predicted by the correlations.

This effect appears to be less pronounced for cases of larger reactivity insertions. It is not visible

at all in the SOL-B 3.5$ simulation shown in Figure 4.4.3. This may be because the dissolved gas

concentration rises faster in the more reactive transients. In these cases, a larger proportion of the
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Fig. 4.4.3. Change in bubble number density over time predicted by the numerical model of the 3.5$
SOL-B step case, showing results of a Monte Carlo simulation and results of the predictive correlations.

simulated domain has time to saturate before the growth of bubbles in other regions leads to a drop

in the dissolved gas concentration below the critical concentration for bubble formation. The number

density of bubbles is therefore more uniform across the simulated domain and the system behaviour

more closely resembles that predicted by the correlations based on homogeneous parameters.

4.4.2 Effects of Statistical Variation in the Monte Carlo Model

It is necessary to examine the extent to which some of the phenomena attributed to spatial variations

may in fact be due to statistical variation in the numerical model. The numerical model uses a Monte

Carlo simulation technique and so it is possible to observe some statistical variation in the results.

However, the number of fission events simulated in each model is very large. For example, despite the

simulated domain having a volume of only 2×10−12 m3, the 2.4$ SOL-C case discussed in Section 4.4.1

involves over 18 million fission events. Any statistical variation in the simulation results is therefore

expected to be small.

In Section 4.4.1 it was discussed that regions with large differences in dissolved gas concentration

can appear and then merge during the course of saturation. To examine the possibility that this

phenomenon may be subject to statistical variation due to stochasticity in the frequency and location

of fission events, the 2.4$ case in the SOL-C fuel solution was run an additional four times for the

time period 0-0.5 seconds. Another simulation was also run with a smaller simulated domain volume

to see if the phenomenon might be an artefact of the simulated domain size. The results of both tests
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are shown in Figure 4.4.4.
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Fig. 4.4.4. Change in bubble number density over time predicted by the numerical model of the 2.4$
SOL-C step case, showing 5 independent Monte Carlo simulations with two different simulated domain
volumes.

The fact that the identical runs of the 2.4$ SOL-C simulation yield similar results indicates that the

previously noted heterogeneity in the dissolved gas concentration is not a chance occurrence subject

to statistical variation but a product of the saturation process at certain fission power densities.

4.5 Conclusions

A model has been presented that tracks the number, size and growth or shrinkage of all bubbles

formed in a small volume of fissile solution, contained somewhere within a larger volume, during a

reactivity excursion. The aim of the model is to examine the competing processes taking place as the

solution becomes saturated with dissolved radiolytic gas, with the aim of predicting the number and

size of bubbles that survives saturation for a range of different reactivity excursions. The model is

most relevant to conditions at the centre of a volume of fissile solution, far away from internal surfaces,

where the voids have their largest effect on reactivity, yet void formation is most suppressed, due to

the sparsity of nucleation sites.

The results presented have significant implications for accurate modelling of transients in fissile

solutions. In particular, they show that there is a significant variation in the size and number of bubbles

appearing upon saturation of a fissile solution, and this variation is sufficient to have a substantial
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impact on the degree of reactivity feedback produced by a given number of moles of radiolytic gas.

A set of empirical and semi-empirical correlations has been presented which can be used to predict

the number of stable bubbles present in a given volume of fissile solution, following saturation with

dissolved radiolytic gas. These correlations will be used as the basis for a new radiolytic gas treatment

in a point kinetics model to be presented in the next chapter.

The size of the stable bubbles that appear after saturation of the fuel solution depends on the

number of bubbles that survives the saturation process. The average radius of stable bubbles and

the separation distance between these bubbles is therefore dependent on the density of stable bubbles

after saturation. In general, cases where the fission power density is lower at the moment of saturation

produce larger bubbles. The negative reactivity induced by one mole of radiolytic gas is therefore

greater for these cases because larger bubbles have lower internal pressure due to surface tension

effects. For smaller reactivity insertions, the average radius of stable bubbles was found to increase

with decreasing inserted reactivity, whereas for larger reactivity insertion cases, the average radius of

stable bubbles was found to be independent of the inserted reactivity, determined instead by the rate

of collapse of the bubbles present.

The concentration of dissolved gas in the model increased to a concentration (the critical concen-

tration) at which the largest of the small bubbles formed along the tracks of fission fragments were

able to serve as nucleation sites. Once this concentration is reached, the bubbles expand and the con-

centration of dissolved gas drops very rapidly. The rate of change in the dissolved gas concentration,

and the rate of appearance of voids due to radiolytic gas, depends on the number density of stable

bubbles, which determines the diffusion time required for dissolved gas to reach a bubble interface

where it can come out of solution. The number density of stable bubbles is therefore a key factor

determining the rate of appearance of gas voids.

If the critical concentration in a fissile solution could be reduced by providing nucleation sites

for the formation of bubbles, it would result in a smaller power peak, increased void feedback due

to a larger average bubble size, and a reduction in the total amount of fission energy released. It

may therefore be useful to consider the inclusion of additional nucleation sites, designed to reduce

the critical concentration, as one means to mitigate against the risk posed by unplanned criticality

excursions in containers used for the storage of fissile solutions.
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Chapter 5

A Point Kinetics Model with Physical

Representation of Bubble Formation,

Growth and Removal

Much of the work presented in this chapter, including tables and figures, is reproduced from Winter

et al. (2020b) (submitted for publication).

The following chapter presents a new point kinetics code for the simulation of nuclear criticality

transients in aqueous fissile solutions. The new code is developed in FORTRAN and implements a

novel model of radiolytic gas, based on the findings presented in Chapters 3 and 4. The code also

features a novel treatment of the critical concentration for void formation and a multi-component

treatment of radiolysis products. Models of mixing and gas advection have been taken from the

literature. A stochastic-deterministic analysis of the 1958 Y-12 accident is presented by combining

the results of the new code with the methods presented in Chapter 2.

The purpose of the work presented in the previous chapter was to develop techniques which can be

used to improve the accuracy of point kinetics models with respect to radiolytic gas production. The

correlations proposed will now be integrated into a point kinetics model to permit the modelling of an

entire fuel solution. This will allow the correlations developed to be evaluated against experimental

data from experimental criticality transients in fissile solutions to determine their validity.

In Chapter 4 it was shown that the magnitude and timing of void reactivity feedback depends

strongly on the mechanics of bubble formation. In particular, the timing is affected by the concentra-

tion at which bubbles are able to nucleate, either on the tiny bubbles of hydrogen gas deposited by
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fission fragments as they tear through the fuel solution, or on the surface of contaminants in the fuel

solution or vessel internals. The magnitude of the reactivity feedback produced depends strongly on

the size of the bubbles which form during saturation of the fuel solution. This is due to surface tension

effects, which make the internal pressure of the bubbles, and resulting compression of the radiolytic

gas, a function of the bubble size. Current models of radiolytic gas often ignore the effect of surface

tension on the molar volume of radiolytic gas in a fissile solution. This will result in an over-estimate

of the radiolytic gas volume and the resulting reactivity feedback.

Not only does bubble size influence the volume of radiolytic gas voids, it also determines the speed

with which these voids advect out of the solution. The number and size of bubbles produced during

saturation of a fuel solution is therefore a key factor determining the occurrence and timing of any

subsequent rises in fission power following the initial power peak.

It was further shown in Chapter 4 that the number density (and therefore size) of bubbles produced

during saturation of a fuel solution is a predictable function of the fission energy deposited during

saturation of the solution. The survival of the bubbles formed during saturation was also shown to be

a predictable function of the solution properties and the fission power density. This makes it possible

to propose a new method for modelling radiolytic gas, in which the formation, growth and removal

of stable bubbles is modelled in an attempt to produce a more physically realistic representation of

radiolytic gas behaviour.

5.1 Model Description

The model is adapted from that presented in Cooling (2014) and borrows many of the same assump-

tions and physical representations. It is a point kinetics model coupling zero-dimensional neutronics

with one-dimensional thermal hydraulics. Most of the key differences between the model presented

here and that of Cooling (2014) relate to the treatment of radiolytic gas and are set out in detail

below. Except where indicated, physical properties have been modelled using the same correlations

as in Chapters 3 and 4.

The model presented in this chapter does not include boiling and the analysis will therefore be

limited to cases where the fuel solution temperature remains below its saturation temperature.
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5.1.1 Point Kinetics Equations and Flux Shape

The fission power density is modelled using Equation 4.2.1 where the void and thermal feedback terms

have been adapted to calculate global feedback based on the properties of each reactor section.

The rate of change in the temperature of fuel solution in each section is determined using,

∂T (t, z)

∂t
=

P (t)ψ(t, z)

Msol(t, z)Cp
, (5.1.1)

where ψ(t, z) is a function representing the shape of the neutron flux and the other terms have the

same meaning as in Equation 4.2.1. The shape of the flux is determined using the following equation

adapted from Cooling et al. (2014a),

ψ(t, z) =
f(t, z)∫
f(t, z)dz

; f(t, z) =
π sin

(
π(z+δb)
Hext

)
fliq(t, z)

Hext

(
cos
(
πδb
Hext

)
− cos

(
π(δb+Hl)
Hext

)) , (5.1.2)

where Hl is the height of the fuel solution surface, δb and δs are the base and surface extrapolation

distances, respectively, Hext = Hl + δb+ δs is the cosine period comprising the sum of the fuel solution

height and extrapolation distances and fliq is the local non-void fraction. The latter term has been

added to the original equation from Cooling et al. (2014a) to account for the local reduction in fission

rate due to the appearance of radiolytic gas voids. The thermal feedback is evaluated using the

mass-weighted average solution temperature,

R$,T (t) = αT (TAv(t)− T0) , (5.1.3)

where T0 is a reference temperature where R$,T = 0 and the mass-weighted average solution temper-

ature is evaluated using,

TAv(t) =
1

Msol(t)

∑
z

Msol(t, z)T (t, z), (5.1.4)

where Msol(t) is the total mass of the fuel solution and Msol(t, z) therefore represents the mass of fuel

solution in a discretised volume. Void feedback is evaluated as the sum of feedback contributions from

each section of the solution,

R$,V (t) =
∑
z

αV (z)VRG(t, z), (5.1.5)

where αV is the void feedback coefficient and may be a constant or a function of z.

5.1.2 Vertical Discretisation

The model has vertical discretisation to permit a 1D representation of the physical processes important

in determining the degree of reactivity feedback. The discretisation works by dividing the fuel solution
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into disk-shaped sections of equal mass at the start of the simulation.

The vertical discretisation uses a Lagrangian scheme in which the height and volume of each

section is allowed to vary as the fuel solution expands and contracts due to thermal expansion and the

appearance of voids. This approach differs from the Eulerian discretisation scheme used in Cooling

(2014) where the entire reactor is divided into disk-shaped sections of equal volume and fuel solution

is transferred from one section to the next, keeping the volume of each section constant while the fuel

solution expands and contracts.

An advantage of Lagrangian discretisation over Eulerian schemes is that the expansion and con-

traction of each region is fully characterised by the system of ODEs. Conversely, the region size in

Eulerian schemes is assumed fixed for each step of the ODE solver, requiring an adjustment to be

made where material is redistributed between the regions. This leads to a discretisation error that

cannot easily be controlled by the ODE solver and may create a need for small time steps when the

solution is rapidly expanding or contracting.

One dimensional vertical discretisation is required as a minimum to capture the saturation of the

fuel solution, as regions closer to the centre of the solution (where fission density is highest) saturate

first, leading to a saturation front which expands outwards until the consumption of gas by growing

bubbles exceeds the rate at which new gas is deposited in the solution by radiolysis.

5.1.3 Bubble Population and Size

The population of bubbles is determined using the equations derived in Chapter 4. Only stable

(growing) bubbles are considered, since the results of the numerical model in Chapter 4 indicated that

bubbles collapse rapidly once the process of collapse has started, meaning that collapsing bubbles have

relatively little influence on the total voidage of the system.

The number of stable bubbles in each section of fuel solution is influenced by the stabilisation and

growth of fission track bubbles, mixing within the solution and advection. The collapse of bubbles due

to diffusion was a process highlighted by the numerical simulation and Equation 4.3.26 was proposed

in Chapter 4 as a means to predict this effect. However, preliminary analysis of criticality excursions

in the CRAC, SILENE and TRACY reactors indicates that the extremely high number density of

bubbles required for collapse due to diffusion will not occur. The total rate of change in the number

of bubbles in a given section at time t is therefore given by,

∂Nb(t, z)

∂t
=

[
∂Nb(t, z)

∂t

]
stabilisation

+

[
∂Nb(t, z)

∂t

]
mixing

+

[
∂Nb(t, z)

∂t

]
advection

. (5.1.6)
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Bubble break-up and coalescence are not thought to have a significant effect on the number of

bubbles in the solution for transients without boiling. The reasons for this are discussed in Section

5.1.3.3.

5.1.3.1 Stable Bubble Formation

Bubbles are continuously added to the solution by radiolysis, in which tiny bubbles are deposited

along the tracks of fission fragments travelling through the fuel solution at high velocity (see Chapter

3). These bubbles usually collapse in a time period on the order of microseconds but a proportion

of them will be stabilised (and grow to larger size) whenever the local concentration exceeds the

critical concentration. The model determines the critical concentration from the local temperature

and radiolytic gas generation coefficient (using Equations 3.3.1 and 3.3.7). These parameters affect

the size of the largest fission track bubbles and therefore the dissolved gas concentration required to

allow these bubbles to grow.

When the local concentration exceeds the critical concentration in a given section of the fuel

solution, the model adds stable bubbles to that section of the solution at a rate determined by Equation

4.3.15. The equation is differentiated so that it can be incorporated into the full set of coupled ODEs:[
Nb(t)

V

]
stabilisation

= kf

(
E(t)− E(tsat)

V

)α
, (5.1.7)[

∂Nb(t, z)

∂t

]
stabilisation

= αV (t, z)(1−α)kf (E(t, z)− E(tsat, z))
(α−1) P (t, z), (5.1.8)

where kf = 0.05, α = 2.5, E(t, z) is the total fission energy deposited at time t and height z in the

fuel solution, E(tsat, z) is the value of E(t, z) at the moment the concentration of dissolved gas in that

region exceeded the critical concentration. P (t, z) is the fission power density at time t and height

z within the fuel solution. Equation 5.1.8 is only applied while the local concentration of dissolved

hydrogen in the fuel solution exceeds the critical concentration.

5.1.3.2 Mixing and Advection

The rates of change due to mixing and advection are calculated in the manner described in Cooling

et al. (2014a) for calculating the effect of mixing and advection on the composition of each discretised

portion of the fuel solution. In Cooling’s model, the number of bubbles was not a variable tracked

by the ODE solver, however the equations are easily adapted to the mixing and advection of bubbles.
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The mixing term is given by, [
∂Nb(t, z)

∂t

]
mixing

= DFS
∂2Nb(t, z)

∂z2
, (5.1.9)

where DFS is a mixing coefficient corresponding to the rate of mixing between adjacent sections of

the fuel solution. The advection term is given by,[
∂Nb(t, z)

∂t

]
advection

= −vb(t, z)
∂Nb(t, z)

∂z
, (5.1.10)

where vb(t, z) is the velocity of bubbles in a given section of fuel solution at time t. The bubble velocity

is determined from its radius using the correlations of Celata et al. (2007) as presented in Cooling

et al. (2014a).

Bubble sizes are treated as uniform within each section of the fuel solution. The size of bubbles

in each section is determined by calculating the number of moles of gas per bubble, then determining

the bubble size using Equation 4.2.10. Treating all bubbles within a single section as having the same

size is not without physical justification, since bubbles in close proximity to each other will tend to

exchange gas by diffusion. This will result in all bubbles in the local region tending towards a radius

where the partial pressure of gas inside the bubbles is in equilibrium with the local dissolved gas

concentration.

5.1.3.3 Break Up and Coalescence

Bubble break-up would influence the behaviour of radiolytic gas in a fissile solution by increasing the

number of bubbles in the system and reducing the average bubble size. Bubble coalescence would

influence the behaviour of radiolytic gas by having precisely the opposite effect. Krepper et al. (2008)

use the models of Prince and Blanch (1990) to predict the rates of bubble break-up and coalescence

in their model of bubbles for multiphase polydispersed flow in pipes. They note that bubble break-up

tends to occur close to the edge of the pipe, where there is a significant differential in the superficial

velocity of the fluid with respect to the radial direction. The velocity differential creates a shear stress

across the bubble, providing the force necessary for break-up.

To predict the rate of bubble break-up with accuracy would require a model of the turbulent flow

of the fuel solution so that shear rates that promote bubble break up could be evaluated. This type

of fluid modelling is not desirable in a criticality safety code of this type since these calculations are

expensive and have only a modest effect on the kinetics of the criticality transient. It is therefore

not practical to model the rate of bubble break-up precisely, however it is unlikely that significant

error is introduced by neglecting this process for a non-boiling fissile liquid. Prince and Blanch (1990)
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demonstrated that the rate of bubble break-up increases with increasing bubble size, and that the rate

is close to zero for bubbles whose volume is less than 0.01 cm3 (rb ∼ 10−3 m). Since bubbles even a

fraction of this size would advect very quickly (see Figure 4.2.2), they are likely to have left the system

before having a reasonable chance of breaking apart.

Bubble coalescence can occur whenever bubbles collide and remain in contact for long enough for

the film separating them to break down to a critical thickness. Once this critical thickness is reached,

the separating film breaks down and the bubbles coalesce. The rate at which this occurs depends on

the collision rate between bubbles and the proportion of collisions leading to coalescence, the latter

quantity being known as the collision efficiency. Bubble coalescence is of particular importance for

processes in air-sparged columns, where bubbles are injected into a flowing liquid. In these cases,

an increase in the liquid flow rate leads to an increase in bubble coalescence due to a corresponding

increase in the bubble collision frequency (Prince and Blanch (1990), Marrucci and Nicodemo (1967)).

In a fissile solution undergoing a criticality transient, the liquid phase is not flowing, however there

will be movement in the fluid due to thermal expansion and the effect of expanding gas voids.

The coalescence of bubbles in the absence of fluid flow was examined by Kim and Lee (1987),

who also examined the effect of adding surface active solutes. They found that the presence of

surfactant solutes (which reduce the surface tension of the solution) had an inhibiting effect on the

rate of breakdown in the film separating the two bubbles. This led to longer coalescence times and

the complete inhibition of coalescence at high solute concentrations. Marrucci and Nicodemo (1967)

showed that bubble coalescence is also inhibited by the presence of inorganic solutes that increase

surface tension.

Both Kim and Lee (1987) and Marrucci and Nicodemo (1967) found that solutes with the greatest

influence on surface tension (with the highest dσs/dC) were found to have the greatest inhibiting effect,

regardless of whether the effect on surface tension was positive or negative. Uranyl nitrate in aqueous

solutions has a positive effect on solution surface tension; the surface tension increases with increasing

uranyl nitrate concentration at a rate of approximately 2.9 × 10−3 N m−1 mol−1 m3 (Grant et al.

(1948)). This value of dσs/dC is higher than any of the solutes tested by Marrucci and Nicodemo

(1967). The closest solute reported in their data was CuSO4 with a value dσs/dC =1.83 × 10−3 N

m−1 mol−1 m3. In their experiments, CuSO4 was found to inhibit bubble coalescence completely at

a concentration of less than 100 mol m−3 in an experiment where the liquid superficial velocity was

0.5 cm s−1. Increasing the liquid superficial velocity would increase the concentration required to

completely inhibit bubble coalescence, however in an experiment using KCl (a weaker surface active

solute), bubble coalescence was completely inhibited at a concentration of 250 mol m−3, with liquid
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superficial velocities up to 1.48 cm s−1.

As with bubble break-up, accurate determination of the rate of bubble coalescence would require a

model of turbulent flow within the fuel solution in order to determine the collision frequency between

bubbles, and this is not practical for a criticality safety code of the type presented here. However,

experimental studies of the effect of solutes on bubble coalescence in aqueous solutions indicate that

the relatively large concentrations of uranyl nitrate present in a typical fuel solution would strongly

inhibit bubble coalescence.

In the absence of experimental data examining the rates of bubble break-up and coalescence in

fuel solutions of uranyl nitrate it is not possible to rule out with complete certainty some influence

due to these processes. However, based on the evidence summarised above it seems likely that these

processes can be neglected without introducing significant error into the model, due to the relatively

small size of bubbles expected to form in non-boiling fissile solutions and the presence of inorganic

solutes in high concentration.

5.1.4 Dissolved Gas Production

Hydrogen gas and hydrogen peroxide are produced through the radiolysis reaction (see Equation 4.1.1)

and the model adds these directly to the dissolved phase. In reality, hydrogen gas appears first in the

gaseous phase as tiny gas bubbles deposited along the tracks of fission fragments, however these gas

bubbles collapse extremely rapidly (on a timescale ∼10−6 seconds) at which point the hydrogen gas

they contain is added to the dissolved phase.

The rates of hydrogen gas and hydrogen peroxide production are determined from the radiolytic

gas generation coefficient as a function of the fission power:

dCH2(aq)(t, z)

dt
=
P (t, z)GH2

V (t, z)
;

dCH2O2(aq)(t, z)

dt
=
P (t, z)GH2O2

V (t, z)
, (5.1.11)

where the radiolytic gas generation coefficient for hydrogen (GH2
) may be estimated using Equation

3.2.26. The generation coefficient for hydrogen peroxide depends on the degree of recombination of

the free radical species produced during radiolysis. Its maximum value is equal to the radiolytic gas

generation coefficient for hydrogen (Lane et al. (1958)) so these coefficients will be set as equal in the

point kinetics model.

Hydrogen peroxide decomposes to produce water and diatomic oxygen. The rate at which this

happens is modelled using the following correlation based on data from Lane et al. (1958). It has been
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noted by Cooling (2019) that the data of Lane et al. fits an expression of the following form:

kH2O2
(t, z) = 1.578× 10−20 exp

(
1.066× 10−1T (t, z)

)
, (5.1.12)

where the rate of disappearance of H2O2 is determined by,

∂CH2O2(aq)(t, z)

∂t
= −kH2O2

(t, z)CH2O2(aq)(t, z), (5.1.13)

where CH2O2(aq) is the local concentration of hydrogen peroxide in solution.

The decomposition of hydrogen peroxide is catalysed by a wide range of chemical species which

may be present in the solution. The above correlation is a conservative estimate based on the minimum

decomposition rates listed in Lane et al. (1958) for the decomposition of hydrogen peroxide in uranyl

sulphate. No data has been found in the literature for the rate of thermal decomposition of hydrogen

peroxide in uranyl nitrate solutions however experimental data are available for pure water.
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Fig. 5.1.1. Selected rate constants for the decomposition of hydrogen peroxide in pure water and
uranyl sulphate solution.

Figure 5.1.1 compares Equation 5.1.12 to the range of maximum and minimum rate constants

listed in Lane et al. (1958) for the decomposition of hydrogen peroxide in uranyl sulphate. The figure

also shows rate constants experimentally determined by Hiroki and LaVerne (2005) and Takagi and

Ishigure (1985) for the decomposition of hydrogen peroxide in pure water. The reason for the range

of values from Takagi and Ishigure is that the rate of decomposition is expected to increase from its

initial value to a maximum of twice the initial rate once a steady-state concentration of intermediate

decomposition products is reached. These data indicate a significant degree of uncertainty in predicting
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the rate of decomposition of hydrogen peroxide and confirm that solutes present in solutions of uranyl

sulphate act as a catalyst for this process.

One route via which the presence of uranyl sulphate solution may catalyse the decomposition of

hydrogen peroxide is by the following reaction noted by Lane et al. (1958):

UO2
2+ + H2O2 −−⇀↽−− UO4 + 2 H+. (5.1.14)

The presence of the uranyl ion provides a decomposition route with reduced activation energy

compared to uncatalysed thermal decomposition. If this is the reason for the rapid decomposition of

hydrogen peroxide in uranyl sulphate then the same effect would be expected for solutions of uranyl

nitrate. For this reason, Equation 5.1.12 which is based on the decomposition rate for hydrogen

peroxide in uranyl sulphate solution, will be used to model the rate of hydrogen peroxide decomposition

in the point kinetics model.

5.1.5 Dissolved Gas Mass Transfer

It was shown in Chapter 4 that the rate of mass transfer of dissolved gas from the dissolved phase into

the gaseous phases is determined by the number of bubbles available per unit volume of fuel solution.

This is because dissolved gas must diffuse towards bubbles where it can come out of solution at the

bubble interface, and the time required for diffusion is the rate-limiting step in this process.

The rate of appearance of gas will be modelled using the following equation adapted from Equation

4.3.30 in the previous chapter,

∂Ci,(aq)(t, z)

∂t
= −αc(t, z)

(
Ci,(aq)(t, z)− Ci,eq(t, z)

)
, (5.1.15)

where Ci,eq is determined from:

Ci,eq(t, z) = yi(t, z)

(
Pl +

2σs(t, z)

rb(t, z)

)
Hi,sol(t, z), (5.1.16)

where yi is the mole fraction of component i in the gas phase, σs is the fuel solution surface tension and

Hi,sol is the Henry’s law constant for component i in the fuel solution. The local bubble radius rb(t, z)

is determined from the amount of gas present and the number of bubbles using Equation 4.2.10.

This equation is similar to that used in the CRITEX code (Barbry et al. (nd)) to model the rate

of appearance of radiolytic gas, except that in CRITEX the rate constant is a user-specified constant,

whereas the constant αc is time-dependent and evaluated as a function of the local bubble number
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density using an equation based on Equation 4.3.32 from the previous chapter.

αc(t, z) = 1.9436× 10−6

(
Nb(t, z)

V (t, z)

)0.78926

DFS
0.5 (5.1.17)

Equation 5.1.17 has been modified from Equation 4.3.32 to adjust the mass transfer rate to account

for the rate of convective mass transport within the solution. The adjustment is necessary because the

numerical simulation of Chapter 4 included mass transport by gaseous diffusion only, whereas a model

of a full-scale solution must account for convection. In the current model, this is achieved through the

mixing coefficient, DFS (see Section 5.1.9).

Applying two-film theory (see Equation 4.2.11) it can be shown that the mass transfer parameter

αc is related to the interface mass transfer coefficient (kD) as follows:

αc ≡
kDAb
V

, (5.1.18)

where Ab/V is the interfacial area concentration.

The interfacial area concentration is unaffected by the rate of mass transport of dissolved gas

within the solution. However, Equation 4.2.12 predicts that the interface mass transfer coefficient is

affected by this parameter, and that in cases where
√
πDi(rb/vb) >> rb (i.e. rb > 10−6), the interface

mass transfer coefficient will vary with the square root of the diffusion coefficient: kD ∼ f
(
D0.5
i

)
.

An appropriate adjustment to Equation 4.3.32 can therefore be made by multiplying by (DFS/DNS)0.5

where DNS is the diffusion coefficient applied in the numerical simulation of Chapter 4. The value of

DNS was temperature-dependent and therefore varied from one simulation to another, however the

average value was approximately 1 × 10−8 m2 s−1. Multiplying Equation 4.3.32 by this correction

factor results in Equation 5.1.17 as shown above.

5.1.6 Critical Concentration with Multiple Dissolved Gases

The critical concentration of dissolved gas in a fissile solution has been defined in previous chapters

as the concentration at which dissolved gas can come out of solution at the available nucleation sites.

While this is true at the macroscopic scale, a definition which more accurately describes the critical

concentration at a microscopic scale is the concentration of dissolved gas at which there is zero net

flow between the dissolved and gaseous phases at the available nucleation sites.

For a fuel solution containing only a single dissolved gas (e.g. hydrogen), the net flow of gas
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between the dissolved and gaseous phases is given by:

dCH2(aq)

dt
= −αc

[
CH2,(aq)

−
(
Pl +

2σs
rnucl

)
HH2,sol

]
, (5.1.19)

where the first term on the right-hand side is the concentration of dissolved gas in the aqueous phase

and the second term is the equilibrium concentration, given by the product of the partial pressure of

the gas inside a radiolytic gas bubble and the Henry’s law constant characterising the solubility of

that gas in the fuel solution. The parameter rnucl is the maximum size of fission track bubbles, to be

determined from Equation 3.3.6.

In the case of zero net flow between the dissolved and gaseous phases, Equation 5.1.19 can be set

to zero and rearranged to give the critical concentration of dissolved gas:

CH2crit = Ccrit =

(
Pl +

2σs
rnucl

)
HH2,sol. (5.1.20)

The situation is similar if there are multiple gases present. The critical concentration still occurs

when there is zero net flow of gas between the dissolved and gaseous phases.

∑
i

dCi,(aq)

dt
= −αc

[∑
i

Ci,(aq) −
(
Pl +

2σs
rnucl

)∑
i

Hi,solyi

]
= 0, (5.1.21)

where i represents all the dissolved gases present (H2, O2, etc.), Hi,sol is the Henry’s law constant of

component i in the fuel solution and yi is the mole fraction of component i in the gas phase.

Rearranging this equation for the critical concentration of dissolved hydrogen results in the fol-

lowing expression for a solution containing multiple dissolved gases:

Ccrit =

(
Pl +

2σs
rnucl

)∑
i

Hi,solyi −
∑
j

Cj,(aq); j 6= H2, (5.1.22)

where i represents all the dissolved gases present and j represents all dissolved gases present except

hydrogen. Since fission track bubbles contain (almost) no gases other than hydrogen, Equation 5.1.22

can be further simplified:

Ccrit =

(
Pl +

2σs
rnucl

)
HH2,sol −

∑
j

Cj,(aq); j 6= H2. (5.1.23)

Equation 5.1.22 shows that the presence of other dissolved gases in the fuel solution can reduce the

critical concentration. This is because the fission track bubbles consist of almost pure hydrogen gas

with only a negligible amount of other gases. The partial pressure of gases other than hydrogen inside

the radiolytic gas bubbles is therefore very low, which makes it easy for these gases to diffuse into the

bubbles, even if they are only present at low concentrations in the fuel solution. While other gases
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diffuse into the bubbles, hydrogen gas diffuses out and dissolves into the fuel solution. The critical

concentration is the concentration at which the net flow of these gases between the bubble and the

solution is zero.

5.1.7 Bubble Velocity

Bubbles formed within the fuel solution will begin to advect upwards due to their buoyancy. Cooling

et al. (2014b) used the model of Celata et al. (2007) to predict the velocity of bubble advection in

their model of the medical isotope production reactor (MIPR). In doing so, they assumed that the

bubbles formed in the reactor reached their terminal velocity rapidly so that acceleration time could

be neglected. Let this assumption be referred to as the “terminal velocity assumption”.

The terminal velocity assumption is expected to result in a very small error since the initial

acceleration of the bubbles (a0 = 9.81 m s−2) is large compared to the terminal velocity and the

acceleration time is therefore expected to be very short. This was confirmed using the equations of

Celata et al. (2007) to calculate the net force acting on bubbles of various sizes in order to determine

the time taken for these bubbles to reach their terminal velocity.

The buoyancy and drag forces acting on a bubble can be calculated from Equations 4.2.5 and

4.2.7, respectively. In the previous chapter, a simple relation for the value of CD was applied which

assumes that the bubble remains spherical as it moves through the liquid. Initially, this assumption is

valid, as surface tension forces act to minimise surface area. However, as the bubble becomes larger in

size it starts to deform, an effect which starts to have a significant impact on the net force calculated

for bubbles larger than ∼1× 10−5 m in radius. This effect is captured using the following expression

for the drag coefficient. This expression is proposed by Celata et al. (2007) for a fully contaminated

solution and was applied by Cooling et al. (2014b) in a model of MIPR:

CD = max

(
24
(
1 + 0.15Re0.687

b

)
Reb

,
8

3

E0

E0 + 4

)
. (5.1.24)

The dimensionless Eötvös number is defined by,

E0 =
4gr2

b (ρs − ρg)
σs

, (5.1.25)

and represents the ratio of viscous, surface tension and inertial forces acting on the bubble. The gas

density is determined from the ideal gas law using:

ρg =
MH2

Pb
RT

, (5.1.26)
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where MH2
is the molecular weight of hydrogen gas, Pb is the pressure inside the bubble and R is the

universal gas constant. The acceleration of the bubble can be determined from the above equations

using a = F/m as follows:

a =
Fbuoyancy − Fdrag

ml
. (5.1.27)

The terminal velocity of the bubbles is the velocity at which the net force acting on the bubble is zero.

This can therefore be determined by finding the velocity at which the buoyancy and drag forces are

equal,
4

3
πr3

bρsg −
ρsv

2
bCDπr

2
b

2
= 0. (5.1.28)

This expression is solved in the point kinetics model using a Newton-Raphson algorithm.

When the model is run using Equation 5.1.27 to determine the velocity of bubbles it results in a

very high degree of stiffness in the system of ODEs. This is due to the very large initial acceleration

rate of the bubbles. It is therefore desirable to use the terminal velocity assumption and calculate

bubble velocities instead using Equation 5.1.28 provided the error introduced is acceptable.

Figure 5.1.2 shows the rates of acceleration over time, calculated by solving Equation 5.1.27 using

the forwards Euler method, for a range of bubbles sizes in an aqueous solution containing 932 mol

m−3 of uranyl nitrate at 298 K and atmospheric pressure.
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Fig. 5.1.2. Acceleration rate of bubbles as a function of time for bubbles of various radii in uranyl
nitrate solution at 298 K. Values calculated using Equation 5.1.27.

Figure 5.1.2 shows that the time to reach terminal velocity increases with the size of the bubble.

The error inherent in the terminal velocity assumption also increases with the acceleration time since
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Fig. 5.1.3. Error resulting from the use of the ter-
minal velocity assumption in the case of a radiolytic
gas bubble with radius 5×10−3 m in uranyl nitrate
solution of concentration 932 mol m−3 at 298 K.

�������

�������

�������

�������

�������

�������

�������

�������

�������

������� ������� ������� ������� �������

�
�
�
��
�
��
�
��
��
�

�����������������

Fig. 5.1.4. Maximum error resulting from the use
of the terminal velocity assumption for bubbles of
different sizes in uranyl nitrate solution of concen-
tration 932 mol m−3 at 298 K.

the error arises from the fact that the velocity of the bubble is overestimated during the period of

acceleration. One measure of the error is the difference in the calculated distances advected by the

two methods. This value reaches a maximum once the bubble reaches terminal velocity, as shown in

Figure 5.1.3.

For newly formed radiolytic gas bubbles measuring approximately 5 × 10−8 m in radius, the

calculated terminal velocity is 5.9×10−9 m s−1 and bubbles are predicted to reach 95% of this velocity

in less than 2× 10−9 s. In this case, the acceleration time is extremely short and no appreciable error

is expected to result from the use of the terminal velocity assumption. However, the error increases

for larger bubbles with longer acceleration times.

Figure 5.1.4 shows how the maximum error in the predicted displacement, due to the terminal

velocity assumption, varies for bubbles of different sizes in uranyl nitrate solution. The error is shown

to increase with increasing bubble size. The increase in the maximum error begins to slow for bubbles

with radius >5× 10−4 m. This is because the increase in the terminal velocity with increasing bubble

size also slows at this point due to the effects of bubble deformation.

Given the computational advantages of using the terminal velocity assumption, and the small size

of the error introduced by this assumption, the point kinetics model will use this assumption when

calculating the velocities and distances advected by bubbles in the fuel solution.
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5.1.8 Heat Loss

The temperature of a fissile solution during a criticality transient depends on the balance of fission

energy added to the solution and heat lost to the reactor materials and surroundings. A high rate of

heat loss will tend to increase the intensity of the transient by reducing the solution temperature and

reducing the amount of thermal feedback.

Later in this chapter, the point kinetics code will be validated against experimental results from the

aqueous homogeneous reactors CRAC, SILENE and TRACY. The heat loss processes examined in this

section will therefore focus on those which are likely to be significant for these reactors. The sensitivity

of transient characteristics to the rate of heat transfer between the solution and its surroundings is

relatively modest. Furthermore, exact environmental conditions that may effect the rate of heat

transfer are not known in most cases, e.g. the rate of air circulation within the room surrounding

the vessel. A rigorous model of heat transfer is therefore not justified for the purposes of the present

study. Instead, the following section seeks to obtain a reasonable order of magnitude estimate for the

relevant heat transfer coefficients.

5.1.8.1 From the Reactor to the Surroundings

Heat is lost from the external surfaces of an aqueous homogeneous reactor by radiation and natural

convection. The maximum rate of heat loss due to radiation can be evaluated by modelling the reactor

as a black body, i.e. a perfect absorber and emitter of energy by radiation.

Coulson et al. (1996) describes how the rate of black body radiation can be determined as a

function of temperature using the Stefan-Boltzmann equation:

Eb = σS−BT
4, (5.1.29)

where Eb is the energy emitted per unit area, σS−B = 5.67×10−8 W m−2 K−4 is the Stefan-Boltzmann

constant and T is the temperature of the radiating body. Assuming that the radiation emitted by the

reactor at ambient temperature was balanced by the radiation it absorbed, Equation 5.1.29 can be

modified to estimate the net increase in radiative heat loss as the temperature of the reactor vessel

rises:

Eb = σS−B
(
T 4

vessel − T 4
0

)
. (5.1.30)

The maximum surface temperature for an aqueous homogeneous reactor operating at atmospheric

pressure is limited by the boiling point of water. The maximum rate of heat loss due to radiation can

therefore be determined by evaluating Equation 5.1.30 at 100◦C and an ambient temperature of 20◦C.
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This gives a maximum heat flux of 680 W m−2.

The radiative heat loss from a black body can be used to estimate the radiative heat loss from a

real object by multiplying by the emissivity. The emissivity (0 < e < 1) gives the ratio of radiative

heat transfer from a real surface to that from an idealised black body surface. Typical emissivity

values are given by Coulson et al. (1996) with a value of 0.657 listed for sheet steel. Multiplying the

heat flux calculated above by this value for the emissivity of steel results in a maximum heat flux of

447 W m−2 at the external reactor surface.

The rate of heat loss due to natural convection from the reactor surfaces can be estimated using

an equation of the form:

Nu = f(Gr, Pr), (5.1.31)

where Nu = hL/k is the Nusselt number, Gr = βg∆T l3ρ2s/µ2 is the Grashof number and Pr = Cpµ/k is

the Prandtl number. In the definitions of these groups, h is the convective heat transfer coefficient

(HTC), l is the characteristic length (e.g. material thickness), k is thermal conductivity, β is the

thermal coefficient of expansion and all other symbols are as previously defined.

Evaluating the Grashof number at the external surface of a typical aqueous homogeneous reactor

yields a value of 1.1× 1010 based on a reactor height of 1 m, air of density 1.225 kg m−3 and viscosity

1.85 × 10−5 Pa s, an air temperature of 298 K and a surface temperature of 373 K. Evaluating the

Prandtl number for typical properties of air gives a value of 0.63, based on a heat capacity of 1008 J

kg−1 K−1, a thermal conductivity of 0.0297 W m−1 K−1 and the same viscosity as above.

A review of experimental studies in the field of convective heat transfer was conducted by Coulson

et al. (1996), who recommended the following Equation by Hiroharu et al. (1968) for vertical cylinders

where Gr > 109:

Nu = 0.138Gr0.36
(
Pr0.175 − 0.55

)
. (5.1.32)

This equation gives a convective HTC, hext=6.29 W m−2 K−1 for the typical Grashof and Prandtl

numbers calculated above. At a reactor temperature of 100◦C and an ambient temperature of 20◦C

this amounts to a heat transfer rate of 503 W m−2. The rate of heat loss due to natural convection is

therefore on a similar scale to the expected rate of radiative heat loss.

5.1.8.2 From the Fuel Solution to the Reactor Vessel

Heat generated in the fuel solution is transferred to the reactor vessel walls by convective heat transfer.

The convective HTC characterises the rate of this process and depends on many factors, in particular
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the speed of any circulating currents within the solution. The HTC can be estimated using correlations

based on experimental data. A very large number of correlations have been developed over the years

for estimating the convective HTC for different systems. None of these correlations apply directly to

the case of an aqueous homogeneous reactor, however it is possible to estimate the HTC for the current

model based on similarities to systems for which a heat transfer correlation has been determined.

A correlation by Evans and Stefany (Equation 5.1.33) was used by Pérez et al. (2015) to model

the HTC due to natural convection in the aqueous homogeneous reactor ARGUS. Natural convection

results from differences in fluid density that occur when a fluid is subject to a temperature gradient.

Warmer, less dense fluid rises to the top of the vessel, displacing cooler fluid and setting up a current

which keeps the fluid circulating. To assume that convective heat transfer within a fissile solution

reactor is entirely due to natural convection is likely to underestimate the true rate of heat transfer

but provides a good indication of the minimum possible value for the HTC.

NuD =
hD

k
= 0.55 (GrLPr)

1/4 (5.1.33)

The HTC due to natural convection is a function of the liquid level in the vessel, since higher

liquid levels are conducive to the formation of stronger convection currents. The values predicted

using Equation 5.1.33 are shown in Figure 5.1.5. The HTC depends on the temperature difference

between the bulk solution and the vessel wall. The figure shows estimated HTCs due to natural

convection for temperature differences of 10 K and 75 K.
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Fig. 5.1.5. Convective heat transfer coefficients for heat transfer between the fuel solution and the
vessel wall, calculated using Equation 5.1.33.
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Figure 5.1.5 indicates that the heat transfer coefficient between the fuel solution and the vessel

walls due to natural convection alone (hint) would be 232 W m−2 K−1 for a reactor similar to SILENE

with a liquid depth of 0.24 m (as in the 218 gU/L configuration) or 337 W m−2 K−1 for a liquid depth

of 0.38 m (as in the 71 gU/L configuration) for a temperature difference of 10 K.

In an aqueous homogeneous reactor it is likely that the degree of agitation will be significantly

greater than that due to natural convection, particularly in transients involving the appearance and

rapid expansion of radiolytic gas bubbles. In their CFD model of the ARGUS reactor, Pérez et al.

(2015) modelled the average fluid velocity with and without accounting for the appearance of radiolytic

gas voids. They determined an average fluid velocity of 0.016 m s−1 in the absence of gas voids and

0.104 m s−1 when gas voids were included. Using these velocities to calculate the Richardson number

(Ri) for the fuel solution gives an indication of the relative importance of forced and natural convection

in the heat transfer characteristics of the system. The Richardson number is discussed by Laguerre

et al. (2017) who note that a value Ri < 0.1 indicates that forced convection is dominant, a value

Ri > 10 indicates that natural convection is dominant, and an intermediate value indicates that both

forced and natural convection are significant.

Ri =
Gr

Re2
(5.1.34)

Calculating the Richardson number for the fluid velocities above gives Ri = 38.7 for the fluid ve-

locity without gas voids and Ri = 0.92 for the fluid velocity with gas voids. These results indicate that

natural convection is dominant up to the point at which gas voids appear, after which a combination

of natural and forced convection contribute to the heat transfer between the solution and the vessel

wall.

An indication of the influence of forced convection on the HTC in an aqueous homogeneous reactor

can be gained by considering heat transfer correlations for an agitated vessel with a cooling jacket.

The following correlation is proposed by Chilton et al. (1944):

Nu

(
µs
µ

)0.14

= 0.36Ro0.67Pr0.33, (5.1.35)

where Ro = L2Nρs/µ is the Roshko number, L is the length of the impeller blade and N is the

vortex shedding rate, equivalent to the number of revolutions per second made by the impeller. Using

Equation 5.1.35 it is possible to predict the change in the convective HTC as a function of the agitation

in the liquid. Figure 5.1.6 shows the calculated HTCs as a function of the impeller revolution rate and

impeller size relative to the reaction vessel diameter. The calculated values are for a cylindrical vessel

of radius 0.176 m, which was chosen because a circle of this radius has the same area as an annulus
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with internal and external radii equal to those of the annular SILENE reactor.
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Fig. 5.1.6. Convective heat transfer coefficients for heat transfer between the fuel solution and the
vessel wall, calculated using Equation 5.1.35 for stirred reactor vessels with cooling jackets.

Figure 5.1.6 shows that the degree of agitation in the reactor vessel strongly influences the heat

transfer coefficient between the fluid and the vessel wall. The degree of agitation in the fuel solution

is likely to vary significantly during the course of a transient, due to spikes in the fission rate leading

to sudden expansion of the fluid, and the appearance of bubbles which agitate the solution as they

expand and advect.

Without the use of a coupled CFD code it is not feasible to model the variation with time in

the HTC. Instead an average value will be selected corresponding to a relatively low impeller speed.

Figure 5.1.6 shows a selected value hint of 1250 W m−2 K−1. This value would be expected for a

stirred tank containing a relative large impeller (L=1.5RV ) turning at a very slow pace ∼0.3 s−1, or

alternatively a small impeller (L=0.5RV ) turning at a faster pace ∼3.2 s−1. These agitation rates

correspond to average impeller blade velocities of 0.12 m s−1 and 0.44 m s−1, respectively, which is of

the same order of magnitude as the fluid velocity predicted by the CFD model of Pérez et al. (2015)

for systems containing gas bubbles.

5.1.8.3 From the Fuel Solution Surface to the Plenum Gas

A study by Laguerre et al. (2017) examined the heat transfer coefficient between the liquid surface of

a hot drink and the surrounding air. In some respects this system is similar to situation at the fuel

solution surface in an aqueous homogeneous reactor, in particular the geometries and temperature
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concerned are very similar. Laguerre et al. examined correlations for the liquid/air HTC in a system

where air flows over and around a cylindrical object. They also examined correlations for a flat plate

which is cooled by the air above it.

The same question exists with regards to the HTC at the solution surface as to whether the heat

transfer is driven by natural or forced convection. Aqueous homogeneous reactors must be equipped

with gas removal systems to prevent an explosive mixture of hydrogen and oxygen forming over in

the plenum gas. There must therefore be some degree of forced convection as air is removed from

the plenum and treated before returning to the reactor. However, no information on the gas removal

rate could be found for the CRAC, SILENE or TRACY reactors. Instead, a sensitivity study will be

carried out to determine the potential influence of the plenum gas velocity on the surface heat transfer

coefficient.

Laguerre et al. (2017) use two correlations from Incropera and DeWitt (1996) to determine the heat

transfer coefficient due to natural and forced convection in the laminar flow regime. Both correlations

treat the surface of the liquid as a flat plate. The correlation for natural convection is as follows:

NuL = 0.54 (GrLPrL)
1/4 ; for 104 < GrLPrL < 107, (5.1.36)

where the characteristic length L in this case is the area of the flat surface divided by its perimeter.

The product of the Grashof and Prandtl numbers for the surface of a reactor similar to SILENE was

found to be 5.7× 106, within the range of validity of Equation 5.1.36. The HTC using this correlation

was evaluated at 7.80 W m−2 K−1.

The correlation for forced convection is as follows:

NuL = 0.664Re
1/2
L Pr

1/3
L ; for ReL ≤ 2500. (5.1.37)

The surface HTC resulting from Equation 5.1.37 is plotted in Figure 5.1.7 for a range of gas velocities

and Reynolds numbers up to 2500. The results indicate that the HTC due to forced convection is not

substantially greater than the HTC due to natural convection, even at gas velocities of 45 cm s−1.

The model will therefore use the value calculated above for heat transfer due to natural convection.

The value discussed above was the HTC for heat transfer between the fuel solution surface and

the plenum gas. Calculating the overall rate of heat transfer between the fuel solution and the plenum

gas requires the overall HTC (Usurface) which accounts for the resistance to heat transfer from the

solution bulk to the surface and the resistance to heat transfer from the solution surface to the gas.
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Fig. 5.1.7. Convective heat transfer coefficients for heat transfer between the surface of the fuel solution
and the plenum gas, calculated using Equation 5.1.37 based on heat transfer to the air from a flat
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The overall HTC is evaluated as follows:

1

Usurface
=

1

hint
+

1

hsurface
, (5.1.38)

where hint is the HTC between the liquid bulk and the surface.

The value of hint will be close to the HTC calculated in Section 5.1.8.2. Using this value to

determine the overall heat transfer coefficient results in Usurface = 7.75 W m−2 K−1.

5.1.9 Mixing

The simulation uses the mixing model described in Cooling (2014) with some adaptations to account

for the Lagrangian discretisation scheme used in this point kinetics code, and also to permit the

movement of bubbles between discretised slices of the fuel solution due to mixing. The equations for

mixing are included in the summary of equations given in Section 5.1.13.

The rate of mixing in the model of Cooling is characterised by a constant mixing coefficient

(DFS). The mixing coefficient has units of m2 s−1 and is analogous to the diffusion coefficient or mass

diffusivity in gaseous diffusion. It is related to the velocity and radius of a typical eddy as follows:

DFS =
veddyreddy

π
, (5.1.39)

where veddy is the velocity of those eddies and reddy is their radius.
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Both the velocity and characteristic size of eddies for a given system and transient are subject

to significant uncertainty. The value of this parameter is assumed constant, however in reality the

rate of mixing will actually vary over time and will be affected significantly by solution heating, the

appearance and advection of bubbles and the addition of solution to the vessel. Cooling estimated

a value of 3.34 × 10−3 m2 s−1 for the Medical Isotope Production Reactor (MIPR) based on a CFD

simulation (Buchan et al. (2012)) of the SUPO fissile solution reactor. Given the difficulty in estimating

an accurate value for this parameter, and the similarities between MIPR, SUPO and the fissile solution

reactors simulated in this chapter, the value estimated by Cooling will be adopted in the present study.

5.1.10 Modelling the Addition of the Fuel to the Solution

One method of initiating a criticality excursion in benchmark experiments is to increase the volume

of fuel solution in the reactor vessel. The addition of fuel solution in this way will have a number of

physical effects, including increasing the total mass of fuel solution, changing the temperature of the

fuel solution and contributing to mixing of the fuel solution. While the fuel solution will typically

be added at the top or bottom of the reactor vessel, the momentum of the inflowing fluid would

contribute to mixing in the fuel solution and the additional solution is expected to spread out very

quickly. The model will therefore simulate inflowing fuel solution as evenly distributed throughout

the reactor vessel.

A fraction of the added fuel solution is added to the mass of fuel solution in each vertically

discretised section of the reactor:
∂M(t, z)

∂t
= Qsol(t, z), (5.1.40)

where M(t, z) is the mass of fuel solution at location z at time t and Qsol is the mass flow rate of the

fuel solution. The temperature of the fuel solution was modified in order to account for the difference

in temperature between the incoming fuel solution and the fuel solution in the vessel. The temperature

was modified as follows:
∂T (t, z)

∂t
=
Qsol(t, z)

M(t, z)
(Text − T (t, z)) , (5.1.41)

where Text is the temperature of the solution added, assumed equal to the room temperature. This

last expression assumes that the heat capacity of the incoming fuel solution is the same as the heat

capacity of the solution already in the reactor vessel. Since the exact room temperature is rarely noted

in the experimental reports, a value of 15◦C will be assumed.
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5.1.11 Solubility of Dissolved Gases

In Chapter 4 it was shown that the the presence of various solutes in aqueous solutions affected the

solubility of hydrogen gas. A single value of the Henry’s law constant for hydrogen gas was selected by

choosing a value in the middle of the range for solution types and concentrations. This approach was

suitable for the model presented in Chapter 4 where dynamic variation in the solubility of hydrogen gas

was not of interest, however the model presented in the current chapter would benefit from the ability

to estimate the Henry’s law constants on a time-dependent basis. A crude method for estimating the

Henry’s law constant for hydrogen gas in solutions of aqueous nitrate salts is presented in Appendix

C. This model will be used for estimating hydrogen and oxygen solubility for the point kinetics model.

5.1.12 Radiolytic Gas Generation Coefficient

The radiolytic gas generation coefficients (GH2
) can be estimated using Equation 3.2.26, However, as

previously discussed in Section 3.2.3.5, this equation is based on a limited set of relatively old data

from Lane et al. (1958) and a more recent study by Yoshida et al. (2019) indicates that radiolytic gas

generation coefficients may in fact be somewhat greater than those indicated by Equation 3.2.26.

Further evidence for this can by found in a report (Miyoshi et al. (2009)) comparing the per-

formance of criticality safety codes in reproducing the observed behaviour of the criticality safety

benchmark experiments. For pulse experiments on the TRACY reactor, this report recommends a

value of GH2
= 1 × 10−7 mol J−1 where the inserted reactivity is less than one dollar and GH2

=

3 × 10−7 mol J−1 where the inserted reactivity is greater than one dollar. The second of these is

significantly higher than the maximum possible value indicated in Lane et al. (GH2
= 1.87×10−7 mol

J−1 for pure water), but has been shown by Miyoshi et al. (2009), and also Liem and Naito (2015), to

result in excellent agreement between simulation and experiment.

There is therefore some significant uncertainty in the true value of GH2
for solutions of uranyl

nitrate, due in part to a lack of any recent experimental data. The value of GH2
will therefore be

selected case-by-case based on the most appropriate available literature estimates or using Equation

3.2.26 where no literature values are available.

5.1.13 Summary of Principal Governing Equations

The following equations are solved using the ODE solver of Shampine and Gordon (1975).

dP (t)

dt
=
βP (t)

Λ
(Rex(t) + αT (T (t)− T0) + αV (VRG(t)− VRG,0)− 1)
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+

6∑
i=1

λiCi(t) +
S(t)ε

ν̄Λ
, (5.1.42)

dE(t)

dt
= P (t), (5.1.43)

dCi(t)

dt
= −λiCi(t) +

βi
Λ
P (t), (5.1.44)

∂T (t, z)

∂t
=
P (t)ψ(t, z)

M(t, z)Cp
− (T (t, z)− Tvessel(t))hintA(t, z)

M(t, z)Cp
+DFS

∂2T (t, z)

∂z2
,

+
Qsol(t, z)(Text − T (t, z))

M(t, z)
, (5.1.45)

∂T (t, 0)

∂t
= 0, (5.1.46)

∂T (t,Hl)

∂t
=

(T (t,Hl)− Text)UsurfaceAsurface

M(t, z)Cp
, (5.1.47)

∂Tvessel(t)

∂t
=

(T (t, z)− Tvessel(t))hintA(t, z)

MvesselCp,vessel
− (Tvessel(t)− Text)hextAvessel

MvesselCp,vessel
, (5.1.48)

∂Ni(g)(t, z)

∂t
= αc(t, z)

(
Ci(aq)(t, z)− Ci,eq

)
V (t, z)− vb

∂Ni(g)(t, z)

∂z
+DFS

∂2Ni(g)(t, z)

∂z2
; (5.1.49)

i = H2,O2, (5.1.50)

∂NH2(aq)(t, z)

∂t
= P (t)ψ(t, z)GH2

− αc(t, z)
(
CH2(aq)(t, z)− CH2,eq

)
V (t, z) +DFS

∂2NH2(aq)(t, z)

∂z2
, (5.1.51)

∂NO2(aq)(t, z)

∂t
=

1

2
kH2O2

(t, z)CH2O2(aq)(t, z)− αc(t, z)
(
CO2(aq)(t, z)− CO2,eq

)
V (t, z)

+DFS

∂2NO2(aq)(t, z)

∂z2
, (5.1.52)

∂NH2O2(aq)

∂t
= P (t)ψ(t, z)GH2O2

− kH2O2
(t, z)NH2O2(aq)(t, z) +DFS

∂2NH2O2(aq)(t, z)

∂z2
, (5.1.53)

∂Esat(t, z)

∂t
= P (t)ψ(t, z) when CH2,(aq)(t, z) ≥ Ccrit(t, z), (5.1.54)

Esat = 0 otherwise,

∂Nb(t, z)

∂t
= δ1αV (t, z)(1−α)kfEsat(t, z)

(α−1)P (t)ψ(t, z)− vb
∂Nb(t, z)

∂z
+DFS

∂2Nb(t, z)

∂z2
;

α = 2.5, kf = 0.05, (5.1.55)

δ1 =

0 when CH2,(aq)(t, z) < Ccrit(t, z),

1 otherwise.

(5.1.56)

(5.1.57)

Equations 5.1.42 and 5.1.44 are the standard point kinetics equations. Equation 5.1.45 tracks the

change in temperature of the fuel solution based on the rate of heat generation from fission, heat

transfer between the fuel solution and the reactor vessel (see Section 5.1.8.2), heat transfer within

the fuel solution due to mixing (model of Cooling (2014)) and the temperature difference of any

incoming fuel solution (see Section 5.1.10). Equations 5.1.50 to 5.1.52 track the movement of gas

between the aqueous and gaseous phases. The rate of mass transfer is based on the parameter αc

which is determined using the correlation developed in Section 4.3.5. Equation 5.1.53 tracks the
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rate of formation and decomposition of hydrogen peroxide and the rate of formation of oxygen (see

Section 5.1.4). Equation 5.1.54 calculates the amount of fission energy deposited in a given region of

the fuel solution while the solution is saturated with dissolved radiolytic gas. This value is used by

Equation 5.1.55 to determine the number of bubbles formed during saturation. The formation term

in this equation is based on the model described in Section 4.3.3.1 and the collapse term is based

on the model described in Section 4.3.3.2. The mixing and advection terms are based on the models

described in Cooling (2014).

The following equations are evaluated as required as a function of the current system state:

VRG(t, z) =
∑
i

Ni(g)(t, z)
RT (t, z)

Pl + 2σs(t,z)
rb(t,z)

; i = H2,O2, (5.1.58)

rnucl(t, z) = rb0(t, z)Fcorr, (5.1.59)

rb0(t, z) =
(
−2.8632× 10−15T (t, z)2 + 7.3996× 10−13T (t, z)− 9.9925× 10−11

)
ĖAv(t, z)2

+
(
8.7907× 10−14T (t, z)2 − 9.7928× 10−13T (t, z) + 3.4558× 10−9

)
ĖAv(t, z)

+
(
9.7683× 10−14T (t, z)2 − 4.0125× 10−11T (t, z) + 4.9092× 10−9

)
; (5.1.60)

ĖAv(t, z) =
(
1.3387× 10−6T (t, z)− 3.4319× 10−5

)
CU

−
(
6.6431× 10−3T (t, z)− 8.8142

)
, (5.1.61)

Fcorr = 0.3554 + 0.4264GH2
− 0.0400G2

H2
, (5.1.62)

Ccrit(t, z) =

(
Pl +

2σs(t, z)

rnucl(t, z)

)
HH2,sol(t, z)− CO2(aq)(t, z), (5.1.63)

vb(t, z) =


2r2b (t,z)ρs(t,z)g

9µ(t,z) ; rb(t, z) < 1× 10−5m(
8rb(t,z)g
3CD(t,z)

)1/2

; rb(t, z) ≥ 1× 10−5m

, (5.1.64)

CD(t, z) = max

(
24(1 + 0.15Re(t, z)0.687)

Re(t, z)
,

8E0(t, z)

3(E0(t, z) + 4)

)
, (5.1.65)

E0(t, z) =
4gr2b (t, z)(ρs(t, z)− ρg(t, z))

σs(t, z)
, (5.1.66)

Re(t, z) =
2ρs(t, z)vb(t, z)rb(t, z)

µ(t, z)
, (5.1.67)

µ(t, z) = 2.411× 10−3 − 2.887× 10−4 (T (t, z)− 273.15)
0.4478

, (5.1.68)

αc(t, z) = 1.9436× 10−6
(
Nb(t, z)

V (t, z)

)0.78926

DFS
0.5 , (5.1.69)

Ci,eq(t, z) = yi(t, z)Hi,sol(t, z)

(
Pl +

2σs(t, z)

rb(t, z)

)
. (5.1.70)

Equation 5.1.58 uses the ideal gas law to calculate the volume of radiolytic gas. The pressure

of these gases is determined from the bubbles size and liquid surface tension which is estimated as a

function of temperature using Equation 3.2.23. Equation 5.1.59 sets the minimum bubble radius at the

estimated size of fission track bubbles (see Section 3.3.5). Equation 5.1.62 is the correction factor due

to variation in the radiolytic gas generation coefficient (see Section 3.3.2). Equation 5.1.63 determines
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the critical concentration based on the size of fission track bubbles, the solubility of hydrogen gas in the

fuel solution and the concentration of dissolved oxygen (see Section 5.1.6). The Henry’s law constants

for hydrogen and oxygen are calculated using Equations C.2 and C.3. Equation 5.1.64 determines

the advection velocity of gas bubbles using the model of Celata et al. (2007). Equation 5.1.68 is a

correlation derived by Cooling (2014) from the experimental data of Grant et al. (1948). Equation

5.1.69 was derived in Section 4.3.5 of the previous chapter. The bubble radius is determined by solving

Equation 4.2.10.

5.2 Simulation of the SILENE S3-258 Experiment

The SILENE reactor was commissioned in 1974 to continue the work carried out on CRAC at the

CEA’s Valduc facility in France. The SILENE reactor is annular rather than cylindrical which allowed

space for a control rod in the centre of the reactor, useful for rapid reactivity insertion studies. Further

details regarding the characteristics and operations of the SILENE reactor can be found in numerous

reports, including Barbry et al. (1973), Barbry (1987), Barbry (1993), Barbry (1994) and Barbry et al.

(2009).

5.2.1 Reactivity and Delayed Neutrons

Experiment S3-258 was one of the “pulsed” type experiments carried out on SILENE. These exper-

iments were initiated by rapid removal of the control rod. In S3-258 this was done to achieve a

reactivity insertion of 1.836$ in 0.2s (Barbry (1994)). There was no external neutron source used in

the experiment so the initiation of the transient can be considered stochastic. For this reason, the

model will treat the rapid insertion of the control rod as a step insertion occurring at t=0.2s. The

control rod is reinserted approximately 10s before the end of the experiment. This does not appear

to be detailed in the experimental results although the timing is easily inferred from the fission power

profile.

Rex[$] =



0.0 t ≤ 0.2s

1.836 0.2 < t ≤ 410.8s

1.836
(
1− t−409.8

0.2

)
409.8s < t < 410.0s

0.0 t ≥ 410.0s

(5.2.1)

The delayed neutron precursor parameters are shown in Table 5.1. These are based on data

from Barbry (1994) with the values of βi renormalised so that
∑

i βi = βeff. The generation time is
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determined to be 3.55× 10−5 s based on the prompt neutron lifetime given by Barbry (1994).

SILENE 71 gU/L

ith Group βi λi [s−1]

1 2.693× 10−4 0.0124

2 1.727× 10−3 0.0305

3 1.591× 10−3 0.111

4 3.106× 10−3 0.301

5 9.343× 10−4 1.13

6 3.126× 10−4 3.0

βeff = 0.00794

TABLE 5.1
Delayed neutron group yields (βi) and decay constants (λi) for the SILENE fuel solution with a
concentration of 71 gU/L based on data from Barbry (1994).

5.2.2 Reactivity Feedback Coefficients

The thermal and void reactivity feedback coefficients for the SILENE reactor with a uranium concen-

tration of 71 gU/L are based on experimental data from Kornreich (1993). These values are -6.4×10−2

$ K−1 for the thermal feedback coefficient and -2281 $ m−3 for the void feedback coefficient.

5.2.3 Intrinsic Neutron Source and Initiation Time

The strength of the intrinsic neutron source in the SILENE fuel solution is subject to some uncertainty

since its exact value depends, not only on the composition of the solution, but on its irradiation history,

which is not known, and on the geometry of the container.

Using the same approximations as those adopted in Section 2.3.2, the data of Hankins (1966)

and Seale and Anderson (1991) can be used to obtain an approximate estimate. The fuel solution

examined by Hankins had a uranium concentration of 53 gU/L and that of Seale and Anderson had

a concentration of 420 gU/L, compared to a concentration of 71 gU/L for the SILENE S3-258 fuel

solution. Hankins measured a neutron emission rate of 5.6 n/s, and Seale and Anderson measured

21.4 n/s, for 1 L samples of their respective fuel solutions. Both solutions were enriched to 93% 235U,

similar to the SILENE S3-258 fuel solution. Interpolating linearly between these two data points

would suggest a neutron emission rate of 6.4 n/s L−1, and extrapolating this to the volume of the fuel

solution in experiment S3-258 would result in a value of 250 n/s.

The data provided in Hankins (1966) and Seale and Anderson (1991) are experimentally measured

values for the rate of neutron emissions from 1 L volumes of uranyl nitrate solution. The measured rate
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Fig. 5.2.1. Probability distribution of the time to reach a power level of 1 Watt during the SILENE
S3-258 experiment assuming an intrinsic neutron source strength of 250 n/s.

of neutron emission will be slightly larger than the true intrinsic neutron source, since the measured

value includes some neutron multiplication due to induced fissions, adding further uncertainty to the

estimate. However, these data provide a useful indication of the likely order of magnitude.

Figure 5.2.1 shows the probability distribution for the time required for SILENE experiment S3-

258 to reach a power level of 1 Watt based on the method described in Section 2.2.2. An intrinsic

neutron source of 250 n/s has been assumed for illustrative purposes. Figure 5.2.1 indicates that the

fission burst initiated relatively late compared to the deterministic wait-time of 0.2 s. The cumulative

probability of the power level having reached 1 W at the experimentally observed time of 1.4 s is 90%

for the assumed intrinsic neutron source strength.

Since the burst initiation occurred significantly later in this experiment than a purely deterministic

calculation would predict, the intrinsic neutron source strength applied in the point kinetics model will

be set to an arbitrarily small value in order to delay the predicted initiation to match that observed

during the experiment.

5.2.4 Summary of Inputs

Table 5.2 summarises the input parameters passed to the point kinetics model.

1The model uses the radius to determine the cross-sectional area, assuming cylindrical geometry. The SILENE
reactor is annular so the radius specified has the same cross-sectional area as the area of the SILENE annulus.
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Parameter Symbol Value or Eq. N◦ Units

Intrinsic Neutron Source S0 10−60 neutrons
per second

Initial Temperature T0 293.6 K

External Temperature Text 293.6 K

Vessel Pressure Pl 1.01325× 105 Pa

Generation Time Λ 3.548× 10−5 s

Thermal Feedback Coefficient αT -6.4× 10−2 $ K−1

Void Feedback Coefficient αV -2281.0 $ m−3

Energy per fission ε 3.09813× 10−11 J

Neutrons per fission ν̄ 2.43 –

Uranyl Nitrate Concentration CU 300.89 mol m−3

Nitric Acid Concentration CN 2000 mol m−3

Uranium Enrichment – 92.7% –

Fuel Solution Mass M 45.54 kg

Solution Heat Capacity Cp 3442 J kg−1 K−1

Heat Transfer Coefficient (internal) hint 1250.0
W m−2

K−1

Heat Transfer Coefficient (external) hext 6.29
W m−2

K−1

Heat Transfer Coefficient (surface) Usurface 7.74
W m−2

K−1

Vessel Radius rv 0.1761 m

Vessel Height Hv 1.0 m

Vessel Mass Mvessel 90.5 kg

Vessel Surface Area Avessel 1.41 m2

Flux Extrapolation
δb 0.03 –
δs 0.03 –

Solution Mixing Constant DFS 3.34× 10−3 m2 s−1

Radiolytic Gas Generation GH2
Eq. 3.2.26 –

Fuel Solution Density ρs Eq. E.2 kg m−3

TABLE 5.2
Summary of model inputs and initial values.

5.2.5 Model Results

The fission power profile predicted by the model is compared to the experimental results in Figure

5.2.2. The results show very close agreement between experiment and prediction. The peak power

predicted by the model was 2.03 × 108 W whereas the peak power observed during the experiment

was 1.66 × 108 W. The timing of the power peak is offset by approximately one quarter of a second

in the model compared to the experiment. This is due to stochasticity resulting from the weakness

of the intrinsic neutron source, as discussed in Section 5.2.3. Total energy release at the end of the

experiment predicted by the model was 7.53× 106 J whereas the total energy release measured during

the experiment was 7.61 × 106 J. The model accurately predicts the timing and magnitude of the

secondary power peak. This is predicted by the model to have a magnitude of 5.80 × 104 W and
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to occur at t=61.6s, while the experimental results show the peak occurring with a magnitude of

5.60× 104 W at t=65.1s.
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Fig. 5.2.2. Experimental and predicted fission power profiles for SILENE S3-258. Experimental power
profile digitised from Barbry (1994).

Figure 5.2.3 shows the concentration of dissolved hydrogen and oxygen in the fuel solution, as well

as the critical concentration of hydrogen at which the fission track bubbles become viable nucleation

sites. The multiple red lines represent the concentration of dissolved hydrogen in the different discre-

tised regions of the fuel solution. These lines are not intended to be distinguishable and are included to

indicate the range of concentrations predicted by the model. The concentration of dissolved hydrogen

initially increases sharply as a result of the rapidly rising fission rate. A reduction in the predicted

critical concentration occurs at the same time due to the rising solution temperature. When these

values meet, bubbles are produced (see Figure 5.2.4) and the concentration of dissolved hydrogen

begins to fall as the bubbles grow. The dissolved hydrogen concentration drops most rapidly at the

centre of the solution where the number of growing bubbles is greatest, and relatively slowly far away

from the centre where the number of growing bubbles is smaller.

Oxygen gas is only produced in small quantities towards the end of the experiment. Oxygen

therefore has little effect on the kinetics of the transient, however when it does appear it contributes

to decreasing the critical concentration for hydrogen. The concentration of hydrogen begins to rise

a second time around t=50s, as gas bubbles advect from the system and the hydrogen produced by

radiolysis no longer has a gas/liquid interface at which to come out of solution. However, the concen-

tration of dissolved hydrogen remains below the critical concentration for the rest of the experiment
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and the solution does not saturate a second time.
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Fig. 5.2.4. Number of bubbles predicted by the model for SILENE experiment n◦S3-258.

The average radius of stable bubbles in each vertically discretised section of the fuel solution is

shown in Figure 5.2.5. The average bubbles size increases sharply when the fuel solution becomes

saturated with dissolved hydrogen. Once the fuel solution has saturated, the size of the radiolytic gas

bubbles evens out across the solution at around rb=1.3 × 10−4 m. This is due to the evening out of

the dissolved gas concentration due to mixing. The size of the gas bubbles begins to increase again
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around t=50s as the concentration of dissolved hydrogen begins to increase.
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Fig. 5.2.5. Radius of bubbles predicted by the model for SILENE experiment n◦S3-258. Multiple lines
shown to indicate the range of bubble sizes across each discretised section of the fuel solution.

Figure 5.2.6 compares the fuel solution temperature predicted by the model to the temperature

measured during the experiment. There is relatively good agreement between the model and the

experiment, providing validation for the choice of heat transfer coefficients in Section 5.1.8. The

temperature initially rises very rapidly due to the peak in the fission power output. The experimental

measurement peaks at 55◦C whereas the model predicts a peak temperature of 44◦C. This difference

may be due to direct heating from the intense gamma radiation emitted during the fission power

peak. Following the initial increase, the temperature remains relatively stable until approximately

t=50s before increasing again due to the secondary rise in fission power output.

Figure 5.2.7 shows the various factors contributing to the reactivity, predicted by the point kinetics

model. The reactivity initially rises due to rapid removal of the control rod. The overall reactivity

then remains relatively constant until the first power peak, except for a small amount of thermal

reactivity feedback due to the rise in fuel solution temperature. The appearance of radiolytic gas

induces a large negative reactivity, causing the fission power output to peak. This negative reactivity

gradually decreases as the bubbles produced during saturation advect from the system, leading to the

second increase in fission power when the overall reactivity becomes slightly positive once again. This

small positive reactivity is offset by thermal feedback to bring the reactivity back to zero once again.
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5.3 Simulation of the CRAC-29 Experiment

The CRAC experiments were performed at the Valduc facility of the French Commissariat à l’Energie

Atomique between 1967 and 1972. The experiments were performed on two reactor cores, both

cylindrical open topped vessels, one with an internal diameter of 300 mm, and the other 800 mm

in diameter. The CRAC-29 experiment was performed on the 300 mm reactor core. Details of the

geometry and composition of this vessel assumed for purposes of MCNP modelling can be found in
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Appendix B.

A review covering some of these experiments as well as some performed on the SILENE reactor

was published by Barbry et al. (2009). Details of the CRAC-29 experiment, including the fuel solution

composition and the experimental procedure are described in a summary document by Barbry et al.

(1973).

5.3.1 Delayed Neutrons and Reactivity

The delayed neutron parameters were simulated using MCNP. These values are shown in Table 5.3.

The generation time was also modelled using MCNP resulting in a value of 2.707× 10−5 s.

CRAC-29

ith Group βi λi [s−1]

1 3.50× 10−4 0.01334

2 1.46× 10−3 0.03274

3 1.39× 10−3 0.12078

4 3.24× 10−3 0.30278

5 1.45× 10−3 0.84951

6 5.80× 10−4 2.85309

βeff = 0.00848

TABLE 5.3
Delayed neutron group yields (βi) and decay constants (λi) for the CRAC-29 fuel solution modelled
using MCNP.

The reactivity insertion that initiated the CRAC-29 experiment was achieved by adding additional

solution to the reactor vessel. The initial liquid level in the reactor core was 0.101 m, increasing

steadily to 0.635 m over a period of 267 seconds. The experimental reports give a critical solution

height of 0.4227 m. A marker on the experimental power profile shows the end of the reactivity ramp

at experimental time t = 103.4s, suggesting that the reactor reached the critical solution height at

t = −2.76s.

MCNP was used to determine that the reactivity of the reactor as a function of the fuel solution

level in the vessel. The MCNP model predicted a critical height of 0.440 m, slightly higher than the

critical height noted in the experimental report. This may be the result of differences between the

true geometry and that represented in the MCNP model. In particular, the MCNP model does not

include the reactor supports or surroundings, which could slightly increase the reactivity of the system

due to neutron reflection.

The reactivity profile used for simulation purposes was obtained by shifting the x-axis (liquid level)
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Fig. 5.3.1. MCNP simulation to determine the reactivity of CRAC29 as a function of the fuel solution
level in the vessel.

in Figure 5.3.1 so that criticality and the end of the reactivity ramp both occur at the time reported

in the experimental report. The resulting reactivity profile is given by Equation 5.3.1:

Rex[$] =



0.0 t ≤ −2.76s,

0.08969(t+ 2.76) − 2.76s < t ≤ 1.31s,

0.37 + 0.07398(t− 1.31) 1.31s < t ≤ 11.3s,

1.11 + 0.06917(t− 11.3) 11.3s < t ≤ 24.0s,

1.98 + 0.05867(t− 24.0) 24.0s < t ≤ 41.3s,

3.00 + 0.04187(t− 41.3) 41.3s < t ≤ 59.3s,

3.75 + 0.04375(t− 59.3) 59.3s < t ≤ 71.3s,

4.28 + 0.03572(t− 71.3) 71.3s < t ≤ 81.3s,

4.64 + 0.02370(t− 81.3) 81.3s < t ≤ 103.4s,

5.11 t > 103.4s.

(5.3.1)

5.3.2 Void Feedback Coefficient

The void feedback coefficient was estimated using MCNP. The estimated value was -3344.2 $ m−3 at

the critical liquid level and -2265.2 $ m−3 at the final liquid level. The model interpolates linearly

between these two values for the time period during which fuel solution is being added to the reactor,
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as indicated by Equation 5.3.2.

αV [$ m−3] =


−3344.2 t ≤ −2.76s,

−3344.2 + 10.16(t+ 2.76) − 2.76 < t ≤ 103.4s,

−2265.2 t > 103.4s.

(5.3.2)

5.3.3 Thermal Feedback Coefficient

The thermal feedback coefficient is a key parameter determining the kinetics of the criticality tran-

sient. It is affected by reactor geometry, as well as fuel solution composition and liquid level. The

thermal feedback coefficient can be estimated using MCNP, however a study by Kornreich (1993)

highlights limitations to this method, showing that Monte Carlo simulations frequently underestimate

the magnitude of the thermal feedback coefficients for fissile solutions. This may be due in part to

the limited number of cross-section libraries available in the temperature range of interest for fissile

liquids, for example neutron cross-sections are typically available at temperature intervals of 300 K,

and thermal scattering libraries at intervals of 50 K, creating a need for interpolation. This problem

is compounded by the possibility that the thermal feedback coefficient may itself be a function of

solution temperature, increasing as the temperature of the solution increases. This phenomenon was

observed by Yamane (2015) who showed that the thermal feedback coefficient of the TRACY reactor

was best characterised as a quadratic function of the solution temperature.

Despite the reservations noted above, an MCNP model (see Appendix B) was constructed to es-

timate the thermal feedback coefficient for the reactor configuration corresponding to the CRAC-29

experiment at maximum liquid level. The model evaluates the individual contributions due to Doppler

broadening, liquid expansion and changes to thermal scattering cross-sections. This simulation pre-

dicted a total thermal feedback coefficient αT = -6.7 × 10−2 $ K−1. Kornreich (1993) provides a

list of experimentally determined void and thermal feedback coefficients for various aqueous homoge-

neous reactors, including three configurations of CRAC. Unfortunately, this list does not include the

particular configuration of the CRAC-29 experiment.

The thermal feedback coefficient can be estimated from data in the CRAC-29 experimental report.

Figure 5.3.2 shows the temperature and power profiles for the CRAC-29 experiment. There is an

initial peak (t = 13s) in the fission power, followed by a series of oscillations (13s< t < 180s) which

eventually die out. The temperature increases sharply with the initial power peak and continues to

increase as the power oscillates, tending towards a constant value towards the end of the experiment.

The reactivity inserted by addition of new fuel solution during the experiment is counterbalanced
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by void and thermal reactivity feedbacks. Voids are constantly removed from the solution due to

advection of the gas bubbles (unless new voids are being created) whereas thermal feedback dissipates

very slowly due to the low rate of heat transfer between the reactor and its surroundings. Figure

5.3.3 shows the amount of reactivity feedback per Kelvin of temperature rise since the start of the

experiment. The feedback per Kelvin is determined using:

FK =
Rins(t)

T (t)− T0
, (5.3.3)
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where FK is reactivity feedback per Kelvin of temperature rise, Rins is inserted reactivity due to control

rod withdrawal and T0 is the solution temperature at the start of the experiment. If the system was

critical and contained no voids, FK would be equal to the thermal feedback coefficient, however FK

is initially a function of thermal and void feedback. Figure 5.3.3 shows that the value of FK tends

towards a constant towards the end of the experiment. Unless there is another source of reactivity

accounting for the rise in temperature leading up to this period, this fall in the value of FK must

be due to the advection of voids from the system. The final constant value of FK therefore gives an

indication to the thermal feedback coefficient of the reactor. The resulting value is compared to the

MCNP estimate in Table 5.4.

MCNP Experimental Units

Estimated αT -6.7× 10−2 -7.3× 10−2 $ K−1

TABLE 5.4
Thermal feedback coefficients for CRAC-29 at maximum liquid level estimated using MCNP and from
experimental data.

5.3.4 Summary of Inputs

Table 5.5 summarises the input parameters for the point kinetics model.

5.3.5 Model Results

Figure 5.3.4 shows the fission power profile for the CRAC-29 experiment and compares it to the

predictions of the point kinetics model. The first power peak experimentally observed had a magnitude

of 2.09× 106 W and occurred at 13.0s. The point kinetics model predicts a peak power of 2.76× 106

W in magnitude occurring at 10.6s. The timing of the initial peak may be subject to some stochastic

effects due to the absence of any external neutron source during the experiment, however these are

expected to be minimal due to the slow reactivity insertion rate.

The model correctly predicts the appearance of fission power oscillations due to the repeated

saturation of the fuel solution followed by advection of radiolytic gas voids. The oscillations observed

are too slow to be the result of liquid sloshing (see Appendix D).

Figure 5.3.5 shows the predicted concentrations of dissolved hydrogen and oxygen in the fuel

solution, as well as the critical concentration at which gas voids can nucleate on the fission track

bubbles. The data show a repeating pattern in which dissolved hydrogen accumulates in the fuel

solution, reaches the critical concentration, drops sharply as the bubbles expand and take hydrogen
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Parameter Symbol Value or Eq. N◦ Units

Intrinsic Neutron Source S0 1.0
neutrons
per second

Initial Temperature T0 295.0 K

External Temperature Text 288.2 K

Vessel Pressure Pl 1.01325× 105 Pa

Generation Time Λ 2.707× 10−5 s

Thermal Feedback Coefficient αT -7.3× 10−2 $ K−1

Void Feedback Coefficient
αV at t=
-2.76s

-3344.2 $ m−3

αV at t=
103.4s

-2265.2 $ m−3

Energy per fission ε 3.09813× 10−11 J

Neutrons per fission ν̄ 2.43 –

Uranyl Nitrate Concentration CU 344.31 mol m−3

Nitric Acid Concentration CN 2150 mol m−3

Uranium Enrichment – 93% –

Fuel Solution Mass
M at t=
-2.76s

34.23 kg

M at t=
103.4s

51.25 kg

Solution Heat Capacity Cp 3370 J kg−1 K−1

Heat Transfer Coefficient (internal) hint 1250.0
W m−2

K−1

Heat Transfer Coefficient (external) hext 6.29
W m−2

K−1

Heat Transfer Coefficient (surface) Usurface 7.74
W m−2

K−1

Vessel Radius rv 0.147 m

Vessel Height Hv 2.090 m

Vessel Mass Mvessel 45.68 kg

Vessel Surface Area Avessel 3.35 m2

Flux Extrapolation
δb 0.03 –
δs 0.03 –

Solution Mixing Constant DFS 3.34× 10−3 m2 s−1

Radiolytic Gas Generation GH2
3.0× 10−7 mol J−1

Fuel Solution Density ρs Eq. E.2 kg m−3

TABLE 5.5
Summary of model inputs and initial values.

out of the solution, before increasing again once the bubbles formed have had time to advect from the

solution.

The number of stable bubbles predicted to be in the fuel solution as a function of time is shown

in Figure 5.3.6 and the predicted bubble radius is shown in Figure 5.3.7. The appearance of bubbles

coincides with the dissolved gas concentration reaching the critical concentration, and the observed

increases in the dissolved gas concentration coincide with the disappearance of bubbles from the
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Fig. 5.3.4. Experimental and predicted fission power profiles for the CRAC-29 experiment. Experi-
mental power profile digitised from Barbry et al. (1973).
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system. The bubbles are predicted to grow rapidly from the size of fission track bubbles, approximately

5× 10−8 m, to a size on the order of 10−4 - 10−3 m. This is because the advecting bubbles continue

to consume dissolved gas from the fuel solution as they move towards the surface.

Figure 5.3.8 shows the predicted temperatures of the fuel solution and reactor vessel, as well as the

measured values recorded in the experimental report. The temperatures predicted by the model rise
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slightly faster than the temperature observed during the experiment, however there is relatively close

agreement between the model and experiment, and the model is successful in reproducing many of the

qualitative features of the experimental results. In particular, the model correctly predicts that the

solution temperature increases in a stepwise manner, due to the fission power oscillations discussed

above. The model also correctly predicts that the stepwise increase eventually dies out, leading to a

plateau at approximately 91◦C.
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Fig. 5.3.9. Individual contributions and total reactivity predicted by the model for the CRAC-29
experiment.

Figure 5.3.9 highlights that, while thermal reactivity feedback increases smoothly, void reactivity

feedback is produced in pulses, which cause oscillations in the fission power output. These power

oscillations begin to die away once the temperature has risen to a point at which almost all the

inserted reactivity is cancelled out by thermal feedback alone. The experimental data shows that the

oscillations die away faster than the model predicts.

The amplitude of the fission power oscillations reflects the amount of radiolytic gas and the number
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of bubbles produced, each time the solution becomes saturated with radiolytic gas, before the solution

returns to an unsaturated state. This depends partly on the rate at which dissolved gas is transported

from the aqueous phase into the bubbles; this rate being characterised in the model by the parameter

αc. It also depends on the rate at which radiolytic gas is generated in the fuel solution, which in turn

depends on the current power level and radiolytic gas generation coefficient. The frequency of the

fission power oscillations depends on the time taken for the bubbles to advect from the fuel solution.

This in turn depends on the number and size of the bubbles produced. The frequency and amplitude

are also affected by the amount of oxygen present in the fuel solution, since the presence of dissolved

oxygen reduces the critical concentration of hydrogen at which bubbles can appear.

5.3.6 Sensitivity to the Mixing Coefficient

The period of the fission power oscillations due to radiolytic gas effects was found to be influenced by

the rate of mixing in the solution. Figure 5.3.10 shows the power profiles for two simulations run with

different solution mixing coefficients. Figure 5.3.10a was run with a mixing coefficient of 3.34× 10−3

m2 s−1 and Figure 5.3.10b was run with a mixing coefficient of 0.1 m2 s−1.

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e+04

1.0e+05

1.0e+06

1.0e+07

 0  10  20  30  40  50  60  70  80

Po
w

e
r 

[W
],

 E
n
e
rg

y
 [

J]

Time [s]

Power (EXP)
Power (MOD)
Energy (EXP)

Energy (MOD)

(a) DFS = 3.34 × 10−3 m2 s−1

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e+04

1.0e+05

1.0e+06

1.0e+07

 0  10  20  30  40  50  60  70  80

Po
w

e
r 

[W
],

 E
n
e
rg

y
 [

J]

Time [s]

Power (EXP)
Power (MOD)
Energy (EXP)

Energy (MOD)

(b) DFS = 0.1 m2 s−1

Fig. 5.3.10. Predicted power profiles simulated with two different mixing coefficients.

The reason for the observed sensitivity is that fission track bubbles can only serve as nucleation

sites in regions where the dissolved hydrogen concentration exceeds the critical concentration. When

the rate of mixing is high, dissolved hydrogen is moved more quickly from areas of high concentration

to areas of lower concentration. This delays the time at which the critical concentration is reached

and increases the total volume of fuel solution that will reach saturation. These two factors lead to an

increase in the total number of bubbles produced during saturation, and because the total amount of

226



radiolytic gas produced is the same, a reduction in the average bubble size. This affects the period of

fission power oscillations because the smaller bubbles advect more slowly leading to a longer period of

oscillation. It is possible that the rate of mixing is higher than predicted in the CRAC-29 experiment

due to the influence of inflowing fuel solution.

The rate of mixing is an important parameter determining the dynamics of fissile solutions whose

behaviour is dominated by radiolytic gas formation. It would be useful to replace the user-defined

mixing coefficient with a time-dependent model of turbulent mixing which accounts for agitation of the

fuel solution induced by heating, bubble formation and inflow of additional solution. A model which

tracks the solution kinetic energy of the fluid may be possible based on the Kolmogorov turbulent

cascade theory, a description of which can be found in Cusham-Roisin (1974).

5.4 Simulation of the TRACY R76 Experiment

TRACY is an aqueous homogeneous reactor which was operated by the Japan Atomic Energy Agency.

TRACY used a fuel solution comprising uranyl nitrate and nitric acid in aqueous solution, however

unlike CRAC and SILENE which used high-enriched uranium (HEU) fuel, the TRACY reactor used

low-enriched uranium (LEU). Details of the TRACY reactor, and in particular the R76 experiment,

can be found in Miyoshi et al. (2009), Liem and Naito (2015) and Nakajima et al. (2002c).

5.4.1 Reactivity and Delayed Neutrons

The TRACY experimental databook (Nakajima et al. (2002c)) gives details of the reactivity insertion

which was achieved by addition of fuel solution to the reactor vessel. The databook provides the

following equation for the dependency of the reactivity on the solution height inside the reactor:

ρ[$] = −C
2

(
1

(h+ λ)2
− 1

(Hc + λ)2

)
(5.4.1)

where C = 7.67× 1010 $ mm−2 and λ = 102 mm is the vertical extrapolation distance.

Nakajima et al. (2002c) reports that the reactivity ramp began at t =4.25 s and ended at t =115.1

s. The flow rate of fuel solution into the reactor for this experiment is reported in Liem and Naito

(2015) as 20 litres per minute. These values and Equation 5.4.1 were used to construct the reactivity

profile with respect to time shown in Figure 5.4.1.

The delayed neutron parameters were estimated using a MCNP model of the TRACY R76 experi-

ment with the liquid level at the critical height and the results are shown in Table 5.6. The generation
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Fig. 5.4.1. Calculated time-dependent reactivity profile for TRACY R76.

time was also estimated using MCNP resulting in a value of 4.84× 10−5 s.

TRACY R76

ith Group βi λi [s−1]

1 0.00031 0.01334

2 0.00147 0.03273

3 0.00131 0.12081

4 0.00274 0.30310

5 0.00116 0.85086

6 0.00048 2.85781

βeff =0.00747

TABLE 5.6
Delayed neutron group yields (βi) and decay constants (λi) for the TRACY fuel solution estimated
using MCNP.

5.4.2 Reactivity Feedback Coefficients

The thermal feedback coefficient was obtained from Yamane (2015) and given by the quadratic function

shown in Equation 5.4.2. The coefficients shown are the values for TRACY R72 which had a fuel

solution composition almost identical to experiment n◦76; the uranium concentration was slightly

lower at 393.5 gU/L compared to 396.2 gU/L and the nitric acid concentration was the same.

αT [$] = −0.039∆T − 5.1× 10−4 (∆T )2 , (5.4.2)

where ∆T is the change in temperature since the start of the transient.

228



The void feedback coefficient was obtained from Liem and Naito (2015) who used a value equivalent

to -765.1 $ m−3 in their model of TRACY R76.

5.4.3 Radiolytic Gas Generation Coefficients

A value of GH2
= 1.2 × 10−7 mol J−1 has been determined by Yoshida et al. (2019) for experiments

on TRACY.

5.4.4 Summary of Inputs

Table 5.7 summarises the input parameters passed to the point kinetics model.

5.4.5 Model Results

All experimental results in this section were digitised from plots presented in Liem and Naito (2015).

The power profile predicted by the model is compared to the experimental power profile in Figure 5.4.2.

The peak power predicted by the model was 1.10 × 107 W compared to an experimentally observed

peak power of 3.80 × 106 W. The peak power is therefore overestimated by the model. The power

peak appears to occur before the appearance of radiolytic gas voids, indicating that the overestimate

may reflect an underestimate in the degree of thermal feedback in the model. The total energy is

overestimated as a result of the error in the initial power peak, with a predicted energy release of

4.50× 107 J compared to an observed energy release of 1.68× 107 J.

Despite the errors noted above, the model succeeds in capturing many of the qualitative features

of the fission power profile. The fission power initially oscillates due to repeated cycles of saturation

with dissolved radiolytic gas followed by advection of bubbles from the system. The predicted period

of the oscillations is approximately correct while the amplitude is slightly overestimated. The model

correctly predicts that the amplitude of the fission power oscillations decreases from t ∼120 s onwards,

leading to their eventual disappearance.

The dissolved gas concentrations shown in Figure 5.4.3 indicate that the concentration of dissolved

hydrogen reaches the critical concentration shortly after the initial power peak. The concentration

then decreases as bubbles grow and consume the gas from the solution. This cycle repeats several times

leading to the fission power oscillations discussed above. After t ∼140 s the oscillations in the dissolved

hydrogen concentration cease and the concentration then remains relatively stable at a value close to

the critical concentration. The model predicts the accumulation of small quantities of dissolved oxygen
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Parameter Symbol Value or Eq. N◦ Units

Intrinsic Neutron Source S0 1.0
neutrons
per second

Initial Temperature T0 298.1 K

External Temperature Text 298.1 K

Vessel Pressure Pl 1.01325× 105 Pa

Generation Time Λ 4.841× 10−5 s

Thermal Feedback Coefficient αT
-0.039 -5.1 ×
10−4(∆T)

$ K−1

Void Feedback Coefficient αV -765.1 $ m−3

Energy per fission ε 3.09813× 10−11 J

Neutrons per fission ν̄ 2.43 –

Uranyl Nitrate Concentration CU 1666.48 mol m−3

Nitric Acid Concentration CN 740.0 mol m−3

Uranium Enrichment – 9.98% –

Fuel Solution Mass
M at t=0s 119.2 kg
M at
t=110s

294.2 kg

Solution Heat Capacity Cp 2648 J kg−1 K−1

Heat Transfer Coefficient (internal) hint 1250.0
W m−2

K−1

Heat Transfer Coefficient (external) hext 6.29
W m−2

K−1

Heat Transfer Coefficient (surface) Usurface 7.74
W m−2

K−1

Vessel Radius rv 0.247 m

Vessel Height Hv 1.875 m

Vessel Mass Mvessel 587.9 kg

Vessel Surface Area Avessel 3.52 m2

Flux Extrapolation
δb 0.03 –
δs 0.03 –

Solution Mixing Constant DFS 3.34× 10−3 m2 s−1

Radiolytic Gas Generation GH2
1.2× 10−7 mol J−1

Fuel Solution Density ρs Eq. E.2 kg m−3

TABLE 5.7
Summary of model inputs and initial values.

in the fuel solution. The oxygen concentration remains low during the cycles of saturation/advection

as the growing bubbles remove dissolved oxygen from the solution. The concentration of dissolved

oxygen is predicted to rise more steeply after these oscillations have ceased.

Also shown in Figure 5.4.3 is the critical concentration for the nucleation of new radiolytic gas

voids from the fission track bubbles. The critical concentration is initially predicted to be 13.6 mol

m−3 of dissolved hydrogen at the start of the experiment but its value decreases over time due to the

increase in the solution temperature. The concentration of dissolved gas in each region of the fuel

solution oscillates due to the competing effects of radiolysis and bubble growth. Radiolysis increases
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Fig. 5.4.2. Experimental and predicted fission power profiles for the TRACY R76 experiment. Exper-
imental power profile digitised from Nakajima et al. (2002c).
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Fig. 5.4.3. Predicted concentrations of dissolved hydrogen and oxygen, as well as the critical concen-
tration, for the TRACY R76 experiment.

concentration of dissolved gas until the critical concentration is reached, at which point the appearance

of new radiolytic gas bubbles allows dissolved gas to pass into the gaseous phase, leading to a decrease

in the dissolved gas concentration.

Figure 5.4.4 shows the average predicted bubble radius and Figure 5.4.5 shows the total number

of bubbles in each vertically discretised region of the fuel solution. A step change in phenomena

is noticeable, coinciding with the end of the fission power oscillations. During the fission power
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duration of the experiment (left) and after the end of fission power oscillations (right). Regions are
numbered from the bottom of the fuel solution (Region 1) to the top (Region 15).

oscillations, the model predicts that the entire solution undergoes cycles of saturation followed by

advection of gas bubbles. During this phase, the formation of new bubbles between power spikes is

effectively suppressed due to the consumption of dissolved gas by the growth of the bubbles formed

during the previous spike. However, after approximately t = 140 s, this behaviour enters a new

phase where the number of bubbles created during saturation is relatively small and the dissolved

gas concentration varies relatively less between power spikes. During this period, the formation of

bubbles becomes localised to the regions just below the centre of the solution. Small oscillations

in the number and size of bubbles are predicted in regions 1 to 6, whereas in regions 7 to 15 a

steady-state is established and the number and size of bubbles remains relatively constant. Once this

second “steady-state” phase of bubble formation is reached, the amount of reactivity feedback due to
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radiolytic gas voids remains small and relatively constant over time (see Figure 5.4.6), which explains

the disappearance of the fission power oscillations observed in the experimental power profile.

The predicted oscillations in the local average bubble radius and the number of bubbles in each

region are expected to be largely physical in nature and not purely numerical artefacts of the sim-

ulation. This is because new bubbles can only form when the concentration of dissolved gas in the

fuel solution exceeds the critical concentration. This leads to repeated bursts of bubble creation, and

sharp fluctuations in the interfacial area available for mass transfer of gas from the dissolved phase

into the gaseous phase. This, in turn, leads to fluctuations in the size of bubbles, due to rapid growth

occuring when the interfacial area is highest, followed quickly by the advection of larger bubbles into

the region above or out of the solution altogether.
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Fig. 5.4.6. Individual contributions and total reactivity predicted by the model for the TRACY R76
experiment.

Figure 5.4.7 compares the temperature profile measured by one of the TRACY reactor thermocou-

ples (TC-C) and the average solution temperature predicted by the model. Thermocouple TC-C is

located 250 mm from the reactor bottom and 40 mm away from the wall of the central channel. The

maximum liquid level during the experiment is 588 mm so the thermocouple is located just below the

centre of the solution. The predicted temperature profile is offset from the experimented profile during

the difference in timing and magnitude of the initial power peak, however the qualitative features of

the temperature profile are reproduced with step increases in the solution temperature coinciding with

spikes in the fission power.
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Fig. 5.4.7. Experimental and predicted temperature of the fuel solution for the TRACY R76 experi-
ment. Experimental temperature profile digitised from Nakajima et al. (2002c).

5.5 Application to the Y-12 Accident

The point kinetics code presented in this chapter was applied to a simulation of the Y-12 accident.

This accident was described in Chapter 1 and analysed in Chapter 2 where a Monte Carlo uncertainty

quantification technique was used to evaluate the influence of uncertainty in the reactivity insertion

rate on the resulting wait-time probability distribution of the criticality transient. In this section, the

saddlepoint method presented in Chapter 2 will be combined with the point kinetics code presented in

this chapter to examine the influence of stochastic uncertainty on the course of the resulting criticality

transient.

The input data for the simulations presented below have been taken from Zamacinski et al. (2014),

subject to some exceptions and adaptations outlined in Section 5.5.2. The purpose of the work

presented here is to build upon the work of Zamacinski et al. by bringing new insights into the

influence of stochastic uncertainty and radiolytic gas evolution on the course of the Y-12 criticality

accident.

5.5.1 Methodology

Stochastic uncertainty in the initiation time is evaluated using the saddlepoint method described in

Section 2.2.2. The fission rate threshold is set at a level equivalent to 1 Watt of power output. The

intrinsic neutron source is set at the lower estimate given in Section 2.3.2 of 30 n/s based on the
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experimental measurements of Harris (1960). These stochastic calculations will be used to determine

the times at which the cumulative probability of exceeding the fission power threshold is equal to 0.05

and 0.95, respectively.

The point kinetics code was set up to simulate the Y-12 criticality transient, using the input data

derived by Zamacinski et al. (2014). This includes the time-dependent reactivity profile, reactivity

feedback coefficients, radiolytic gas generation coefficient, delayed neutron parameters and generation

time.

The initiation time of the simulated transient will need to be adjusted so that the fission power

output reaches 1 Watt at the desired moment. This will be achieved by varying the intrinsic neutron

source strength to produce a deterministic realisation with the desired initiation time. Using this

technique ensures that the populations of the delayed neutron precursors will match their expected

values at the moment the fission power output crosses the threshold.

5.5.2 Input Data

The thermal feedback coefficient is adapted from Equation 56 of Zamacinski et al. (2014) which is

based on MCNP simulations and gives the thermal feedback coefficient as a function of the absolute

temperature of the solution. This equation has been adapted to the following form which returns the

thermal feedback coefficient as a function of the rise in temperature since the start of the transient:

αT [$K−1] =− 2.4208× 10−2(∆T )− 1.74598× 10−4(∆T )2 + 4.82338× 10−7(∆T )3 (5.5.1)

− 4.95197× 10−21(∆T )4.

The void feedback coefficient is assumed to vary linearly between -597.2 $ m−3 at minimum liquid

level and -430.4 $ m−3 at maximum liquid level. These values are taken from Figure 13 of Zamacinski

et al. (2014) which shows predicted void feedback coefficient as a function of liquid level based on

MCNP simulations.

αV [$ m−3] =


−597.2 + 0.1668t 0s < t ≤ 1000s,

−430.4 t > 1000s.

(5.5.2)

The solution composition in Zamacinski et al. (2014) is based on data from Buchan et al. (2013)

who estimated an initial uranium content of 38.16 gU/L, equivalent to 171.0 mol m−3 of uranyl nitrate,

decreasing to 26.48 gU/L by the end of the transient. The point kinetics code takes a fixed uranium

concentration, from which it determines the solution density, radiolytic gas generation coefficient and
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fission fragment LET. The small effect of the change in the uranyl nitrate concentration on these

parameters over the course of the transient was therefore neglected.

The change in the fuel solution mass over time was modelled according to the values given in

Table 1 of Zamacinski et al. (2014). The heat capacity was estimated based on the initial solution

composition using the Equation 4.2.4 and the radiolytic gas generation coefficient was estimated using

Equation 3.2.26.

The model inputs are summarised in Table 5.8.

5.5.3 Results

5.5.3.1 Effects of Initiation Time

Using the saddlepoint method to solve the backward form of the generating function for the probability

distribution of the neutron population as a function of time, the wait-time was determined for a

fission power threshold of 1 W in the presence of an intrinsic neutrons source of 30 n/s. The resulting

probability distribution is shown in Figure 5.5.1 alongside the time-dependent reactivity profile.
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Fig. 5.5.1. Wait-time probability distribution for the fission power during the Y-12 accident to exceed
a threshold value of 1 Watt.

The probability distribution was used to determine the times at which the fission power had a 5%

and 95% probability, respectively, of having exceeded the fission power threshold. These times were

determined to be -10.8 s and -4.6 s. These times are based on the timescale of the reactivity profile
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Parameter Symbol
Value, Eq. N◦ or
Ref.

Units

Intrinsic Neutron Source
S0

(Q=0.05)
3070

neutrons
per second

S0

(Q=0.95)
1.10× 10−2 neutrons

per second

Initial Temperature T0 293.0 K

External Temperature Text 293.0 K

Vessel Pressure Pl 1.01325× 105 Pa

Generation Time Λ 4.1008× 10−5 s

Thermal Feedback Coefficient αT Eq. 5.5.1 $ K−1

Void Feedback Coefficient
αV at t=0s -597.2 $ m−3

αV at
t=1000s

-430.4 $ m−3

Energy per fission ε 3.09813× 10−11 J

Neutrons per fission ν̄ 2.43 –

Uranyl Nitrate Concentration CU 170.98 mol m−3

Nitric Acid Concentration CN 0.0 mol m−3

Uranium Enrichment – 90% –

Fuel Solution Mass M
Table 1 of Zamacin-
ski et al. (2014)

kg

Solution Heat Capacity Cp 4050 J kg−1 K−1

Heat Transfer Coefficient (internal) hint 1250.0
W m−2

K−1

Heat Transfer Coefficient (external) hext 6.29
W m−2

K−1

Heat Transfer Coefficient (surface) Usurface 7.74
W m−2

K−1

Vessel Radius rv 0.286 m

Vessel Height Hv 0.869 m

Vessel Mass Mvessel 8.8 kg

Vessel Surface Area Avessel 3.35 m2

Flux Extrapolation
δb 0.03 –
δs 0.03 –

Solution Mixing Constant DFS 3.34× 10−3 m2 s−1

Radiolytic Gas Generation GH2
1.55× 10−7 mol J−1

Fuel Solution Density ρs 1052.7 kg m−3

TABLE 5.8
Summary of model inputs and initial values.

derived by Zamacinski et al. (2014) who predicted that the solution reached a critical configuration

at t = -62.72 s.

Figure 5.5.2 compares the fission rate and total number of fissions predicted by the model as a

function of time for the early and late initiated transients. The peak fission rates and total number of

fissions for each transient are shown in Table 5.9 and compared to the values obtained by Zamacinski

et al. (2014) and those reported in the original accident report of Patton et al. (1958). The predicted
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Fig. 5.5.2. Predicted fission power profile of the Y-12 accident.

peak fission rate is 44% higher in the late initiation case than in the early initiation case, however the

total energy released up to the power peak is slightly less in the late initiation case. The total energy

released at the end of the transient is the same in both cases.

Early Initiation Late Initiation Accident Report Units

Peak Fission Rate 6.344× 1016 9.346× 1016 – s−1

Total Fissions at Peak Power 6.538× 1016 4.471× 1016 6× 1016 –

Total Fissions at tf 8.741× 1017 8.741× 1017 1.3× 1018 –

Time from 1W to 1016 Fissions 6.3 3.0 – s

TABLE 5.9
Peak fission rate and total number of fissions, values predicted by the point kinetics code compared
to those reported in the literature.

Table 5.9 also shows the time taken for the transient to release 1016 fissions after crossing the

threshold 1W power level. This figure is included to give an indication of the influence of initiation

time on the effectiveness of operator evacuation measures upon hearing the Criticality Accident Alarm

System (CAAS). If the CAAS would be triggered at a fixed fission rate (e.g. 1 Watt) then this figure

indicates the time available before a given radiation dose would be received. The results of this

calculation indicate that a modest improvement in the effectiveness of evacuation measures could be

expected in the early initiation case compared to the late initiation case, providing a few extra seconds

as long as operators evacuated the area promptly upon hearing the alarm.

The initiation time of the transient has very little effect on the temperature of the solution, as

shown in Figure 5.5.3. This is because the initiation time has little effect on the course of the transient

238



 10

 20

 30

 40

 50

 60

 70

 80

-20 -10  0  10  20  30  40  50  60

Te
m

p
e
ra

tu
re

 [
K

]

Time [s]

(a) -20s ≤ t ≤ 60s

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  200  400  600  800  1000  1200

Te
m

p
e
ra

tu
re

 [
K

]

Time [s]

Q=0.05, TMAX
Q=0.95, TMAX

(b) -20s ≤ t ≤ 1200s

Fig. 5.5.3. Predicted solution temperature as a function of time during the Y-12 criticality accident.

beyond the initial power peak, after which the two transients tend to converge.
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5.5.3.2 Predictions of the Radiolytic Gas Model

The power profile predicted by the new code is similar to that presented in the paper of Zamacinski

et al. (2014), however the new code predicts small oscillations in the fission power due to the appearance

and advection of radiolytic gas voids. The predicted number of bubbles produced due to radiolysis

within the fissile solution is shown in Figure 5.5.4 for the early initiation case.
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Fig. 5.5.4. Number of bubbles predicted in each vertically discretised region as a function of time
during the Y-12 criticality accident. Regions are numbered from the bottom of the fuel solution
(Region 1) to the top (Region 15).

The model predicts that the total number of bubbles oscillates between approximately 104 and

106 during most of the transient. There is a corresponding oscillation in the average bubble radius

predicted in each vertically discretised region of the fissile solution. The size of the bubbles oscillates

between approximately 0.4 mm and 0.9 mm during most of the transient.

Unlike the CRAC-29 and TRACY R76 benchmark experiments, the repeated cycles of saturation

of the fuel solution followed by bubble advection do not contribute to large oscillations in the fission

power. This is due to the smaller value of αV associated with the Y-12 scenario which means that the

bubbles produced have a smaller reactivity worth than those produced in the benchmark experiments

presented earlier.
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Fig. 5.5.5. Average bubble radius predicted in each vertically discretised region as a function of time
during the Y-12 criticality accident. Regions are numbered from the bottom of the fuel solution
(Region 1) to the top (Region 15).

5.6 Conclusions

This chapter presents a new method for modelling the formation and behaviour of gas voids in point

kinetics models of criticality transients in fissile liquids. The point kinetics code presented includes:

� a new model to predict the number of bubbles produced during saturation of the fuel solution

with radiolytic gas based on work presented in previous chapters;

� a model for the rate of mass transfer of gas molecules from the dissolved phase to the gaseous

phase based on the number of bubbles per unit volume;

� a basic model of bubble collapse due to simple diffusion;

� prediction of the critical concentration for gas bubble formation based on the solution tempera-

ture and its composition, including the presence of any dissolved oxygen.

The model also incorporates a correlation for predicting the Henry’s law constants for hydrogen and

oxygen gas in solutions of uranyl nitrate, necessary for the accurate prediction of the critical concen-

tration for gas void formation, and a model of oxygen production from the decomposition of hydrogen

peroxide.

The models summarised have been incorporated into a point kinetics code and validated against
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three criticality benchmark experiments, demonstrating close agreement between the model and the

experimental results. A particular feature of the new method is the ability to predict the number and

size of radiolytic gas bubbles produced during saturation of a fissile solution with radiolytic gas. This

permits an accurate prediction of the rate of gas advection from the system, which in turn allows an

accurate prediction of the timing and magnitude of secondary power peaks. This predictive capability

has been demonstrated by comparison to an experiment on the SILENE reactor in which a secondary

power peak occurs.

The model currently incorporates a mixing model in which the rate at which material is transported

between regions of the fuel solution is characterised by a mixing coefficient. The mixing coefficient is

assumed constant and estimated based on literature values for average fluid velocities in fissile liquids

and the geometry of a particular fuel solution. The value of this coefficient has been shown to have

a strong influence on the behaviour of radiolytic gas within the fissile solution and the need for a

time-dependent mixing coefficient has been identified as an area of further work required to improve

the predictive capabilities of the new point kinetics code.

The new code lends support to the importance of nucleation sites in the timing and rate of appear-

ance of radiolytic gas during nuclear criticality transients in fissile solutions, confirming the role of

fission track bubbles in providing suitable nucleation sites. This phenomenon can explain the fission

power oscillations observed in many criticality benchmark experiments where the concentration of

dissolved radiolytic gas in the fuel solution oscillates about the level at which gas can come out of

solution on the fission track bubbles.

The code has been applied, along with stochastic methods presented in an earlier chapter, to an

analysis of the Y-12 accident. This analysis examines the importance of transient initiation time on

the rate of energy release during the Y-12 criticality accident, indicating that stochastic effects may

play a significant role in determining the radiation dose received by workers, as well as the effectiveness

of Criticality Accident Alarm Systems (CAAS) in mitigating the consequences of such an accident.
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Chapter 6

Conclusions and Future Work

6.1 Thesis Summary

This thesis presents the development of mathematical and computational models for simulating tran-

sient nuclear excursions in aqueous fissile solutions. The aim of this research was to develop more

fundamentally based, mechanistic, high-fidelity models of the underlying physical phenomena; and as

a consequence eliminate some of the assumptions and approximations that have been used to model

such systems in the past. As discussed in Chapter 1, there is a need to develop aqueous fissile solution

models with predictive capabilities for use in nuclear criticality safety assessment. Currently available

models for aqueous fissile solutions require the tuning of adjustable model parameters in order to

match the predictions of the model to experimental profiles, thus removing much of their usefulness

as predictive tools. Other models that don’t require the tuning of parameters rely on simplified ap-

proaches that cannot hope to reproduce the complex behaviour of real systems. This is especially true

of models of radiolytic gas, which are extremely important in determining the time-dependent charac-

teristics of a criticality transient. Another important area of criticality safety is the quantification of

uncertainty when transients are initiated in the presence of a weak intrinsic neutron source. This thesis

presents a new method for quantifying the uncertainty in the wait-time probability distributions for

criticality transients, including stochastic uncertainty with uncertainty due to epistemic uncertainty

in the input parameters.

Chapter 1 presents an overview of the fundamental physics of criticality transients in aqueous

fissile solutions as well as setting out the motivation for the work presented in the chapters that

follow. Chapter 2 presents the method of uncertainty quantification for criticality transients initiated

in the presence of a weak intrinsic neutron source. Chapter 3 goes on to examine the mechanics of
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radiolysis in fissile solutions at the level of individual gas bubble formation, resulting in a method to

estimate the size and number of gas bubbles deposited along the tracks of fission fragments. This

information is used in Chapter 4 to develop a model of bubble growth and collapse in a fissile solution

as it becomes saturated with radiolytic gas. Finally, the results of this model are incorporated in

Chapter 5 into a point kinetics model of a full scale fissile liquid system which is then successfully

validated against the results of three benchmark experiments.

Some of the principal findings of the work are summarised below:

� The gamma distribution method can be used for rapid quantification of uncertainty in wait-time

probability distributions for nuclear criticality excursions initiated in the presence of a weak

neutron source. The method reduces the calculation time for the wait-time probability distri-

bution for certain scenarios to a fraction of a second, opening up the possibility of uncertainty

quantification via the Monte Carlo method.

� An uncertainty of ±10% in the flow rate of the fissile solution in the Y-12 accident would

result in a significant broadening of the effective wait-time probability distribution, increasing

its standard deviation from 2.1 to 2.9 seconds in the presence of an intrinsic source emitting

30 n/s. A similar effect has been demonstrated for experiments on the Caliban reactor.

� The number, size and location of bubbles containing vapour and radiolytic gas, deposited along

the tracks of fission fragments during nuclear criticality transients in aqueous fissile solutions,

can be estimated by means of an energy balance over the bubble formation process. Combining

this method with LET profiles calculated for the 250 highest-yielding fission fragments of 235U,

empirical correlations are presented for rapid determination of maximum bubble size as a function

of the temperature and composition of uranyl nitrate solutions. These correlations can be used

to estimate the critical concentration of the solution at which gas voids will appear during a

nuclear criticality transient.

� The number of bubbles produced during saturation of a fissile solution with radiolytic gas can

be estimated as a function of the fission energy deposited in the solution during the saturation

process. Correlations are presented that permit the rapid estimation of the bubble number

density for use in point kinetics models of fissile solutions.

� The rate of mass transfer of soluble gas between the dissolved and gaseous phases in a fissile

solution depends on the number density of bubbles present in the solution. A correlation is

presented for the rate constant based on the results of a numerical simulation of the saturation

and bubble growth processes.
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� A new expression is presented for the critical concentration of dissolved hydrogen gas that

must be reached before the appearance of radiolytic gas voids in a fissile solution. The new

expression depends on the size of the largest fission track bubbles, which can be estimated from

the correlations discussed above, and the concentration of any other dissolved gases present in

the solution. The critical concentration, which is often presumed constant, is predicted to vary

significantly as a function of solution composition and temperature.

� A novel model of radiolytic gas in aqueous fissile solutions in presented and validated against

experimental data. The new model has been shown capable of predicting the onset of fission

power oscillations due to radiolytic gas effects in the CRAC-29 and TRACY R76 experiments.

It can also predict the approximate timing and magnitude of secondary fission power peaks, as

demonstrated by a simulation of experiment S3-258 on the SILENE fissile solution reactor.

� A deterministic-stochastic analysis of the Y-12 accident has shown that the stochastic uncertainty

in the initiation time of the excursion can have an important impact on the kinetics of the

resulting criticality excursion. In the case of the Y-12 accident, early initiation was found to add

valuable seconds between the start of the excursion and the time to peak power. Early initiation

also reduced the magnitude of the first power peak compared to late initiation, however the total

accident yield remained unchanged.

The model presented in Chapter 5 does not require the tuning of adjustable parameters to experi-

mental results and can therefore be said to have genuine predictive capabilities. However, some areas

of additional research have been identified that would improve the reliability of the model across the

broadest range of applications. In particular, the need for experimental data permitting the accurate

prediction of the radiolytic gas generation coefficient, and the development of a mixing model for fissile

solutions that is capable of adjusting the rate of mixing as a function of time.

6.2 Insights Gained

The quantification of uncertainty in the input parameters to calculations of the wait-time probability

distribution has demonstrated that relatively small uncertainties in those input parameters can have a

significant impact on the resulting probability distribution. The relative importance of a given degree

of parametric uncertainty depends on the amount of stochastic uncertainty and therefore the intrinsic

neutron source strength of the system.

The models developed in Chapters 3 to 5 offer insights into the physical processes contributing
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to the time-dependent behaviour of aqueous fissile solutions during nuclear criticality transients. The

number of bubbles produced per unit volume during saturation of a fissile solution has been shown to

vary with the amount of fission energy deposited during the saturation process. Furthermore, the rate

at which gas is transferred from the dissolved phase to the gaseous phase has been shown to depend on

the number density of bubbles in the solution. This insight has permitted the removal of a parameter

which is an important tunable user-prescribed input in criticality safety codes such as CRITEX.

Incorporating the saturation model into a point kinetics model of a full scale system has helped

to elucidate the mechanisms by which radiolytic gas contributes to oscillations in the fission power

produced by a fissile solution. During benchmarking, the model has been shown to successfully predict

the timing and appearance of a secondary power peak, thanks to accurate prediction of the number

(and therefore size and advection velocity) of bubbles produced during saturation of the solution

during the initial power peak.

6.3 Future Work

It has been previously highlighted in Chapter 5 that a time-dependent mixing model would be required

in order to accurately predict the period of fission power oscillations due to cycles of saturation/de-

saturation of the fuel solution with radiolytic gas. Such a model may be possible by means of an

energy balance, tracking the addition and dissipation of kinetic energy within the fuel solution. As

noted in Chapter 5, kinetic energy will be added to the fuel solution due to the advection of gas

bubbles. The addition of fuel solution will also add kinetic energy due to the momentum imparted by

the incoming solution. The Kolmogorov cascade theory (Cusham-Roisin (1974)) of energy dissipation

in fluid systems could provide the starting point for such a model.

The work presented in Chapters 3 to 5 of this thesis provides new models for accurately charac-

terising the behaviour of homogeneous aqueous fissile solutions. This corresponds to a need of the

nuclear industry where aqueous solutions of fissile material have widespread applications. There is also

a strong industrial need to develop similar models for more complex, heterogeneous systems, consisting

of sludges, slurries, cakes, emulsions and wetted powders. Heterogeneous systems consisting of one or

more liquid or solid phases dispersed within a liquid phase are also widespread throughout the nuclear

fuel cycle (IAEA (2014)). One example is the processing of uranium ore, where the ore is crushed into

a powder, mixed with leaching agents and then filtered to produce an insoluble uranium-rich powder

known as yellowcake.

The addition of water to a bed of dry insoluble powder (such as uranium oxides or yellowcake)
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involves complex physical processes governing the rate of infiltration of the water. Once wet, the

water acts as a moderator, shifting the energy spectrum of neutrons towards thermal energy levels.

Whether or not this is sufficient to lead to a criticality excursion will depend on the packing fraction

of the material which will determine the H/U ratio achievable. If an excursion where to occur, the

action of fission fragments in the aqueous phase would lead to the creation of gases due to radiolysis

and the heat produced may lead to steam generation. Unlike in homogeneous liquids, where gas

bubbles are free to advect from the system, gas bubbles produced within a wetted particle bed may

become trapped in the particle matrix. The infiltration of water in powders has been examined in an

experiment on the SILENE reactor (Rozain et al. (1991)) but there is a need to develop methods for

simulating these phenomena during nuclear criticality excursions.

An example of a criticality accident in a complex heterogeneous system which has already occurred

is the 1970 Windscale criticality accident, descriptions of which can be found in Knief et al. (1985) and

McLaughlin et al. (2000). This accident involved the formation of an organic phase rich in plutonium

which, unbeknown to the operators, accumulated inside a solution transfer vessel. The partition

coefficient for the plutonium compound between the aqueous and organic phases was strongly in

favour of the organic phase, leading to the accumulation over months or years of high concentrations

of plutonium in the organic phase, and eventually resulting in a criticality excursion. The Windscale

accident demonstrates the subtle importance of diverse physical processes in the causation of criticality

accidents, in this case, the partitioning and mass transfer of a plutonium compound between separate

aqueous and organic phases in direct contact.

The heterogeneous nature of the systems described above may require a move away from point

reactor kinetics towards multi-point kinetics, where two or more distinct regions exist, or for more

complex geometrical configurations, 2D or 3D spatially-dependent neutronics coupled to phenomeno-

logical models of thermal hydraulics.

Another important area of future work is the problem of interacting arrays of fissile material. The

majority of advanced techniques for evaluating the consequences of nuclear criticality transients are

concerned with events that occur within a single vessel or unit. However, the storage of fissile materials

requires that individual units be placed in close proximity to each other. The distance between each

unit is determined to minimise the risk of criticality while making efficient use of the available space.

However, unforeseen circumstances such as a criticality transient in one of the units, or the flooding

of the area containing the units, could lead to a number of storage vessels acting as an interacting

array. The problem of interacting arrays could be examined by incorporating the point kinetics code

presented in this thesis into a multi-point kinetics model for an arbitrary number of loosely-coupled
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units using coupling coefficients based on the theory of Avery (1958).

Stochastic effects may become extremely important in arrays of interacting units, where the in-

trinsic source of each individual unit will often be weak. A possible extension to the uncertainty

quantification technique demonstrated in Chapter 2 would be a space-dependent or multi-point model

capable of quantifying the influence of stochastic and parametric uncertainty in an interacting ar-

ray. By computing neutron number probability distributions for a spherical system using a model

that included energy and spatial dependence, Saxby et al. (2018) demonstrated the emergence of

complex features in calculated neutron number probabilities that would not have been revealed by a

zero-dimensional approach.

The effect of one unit in an array undergoing a criticality transient will be to provide an extrinsic

source of neutrons to the other units in the array. Where this extrinsic neutron source is strong

enough this could lead to other units in the array behaving as accelerator driven systems (ADS) as

the extrinsic neutrons induce fissions within them. The secondary induced transients will also produce

bursts of neutrons, potentially leading to oscillatory interactions between the units. The potential for

instability in coupled systems has been demonstrated by Murray et al. (1966). Calculation methods

which could provide the basis for models of interacting arrays can be found in Ackroyd et al. (1961)

and Thomas and Abbey (1973).
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Nucléaire.
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Appendix A

Solubility Unit Conversions

The solubility data in Section 4.2.8 are from Washburn (2003). The original data are expressed in

terms of the Bunsen coefficient, α, with salt concentrations expressed as normality, Nc, or molality,

Mc. Definitions of these units are provided in Washburn (2003).

The Bunsen coefficient is the volume of gas, reduced to standard temperature and pressure (STP:

0◦C and 1 atm), that dissolves in one volume of the solvent when the partial pressure is 1 atm,

α =
Vgas,STP

Vsolvent
. (A.1)

The Bunsen coefficient varies with temperature so it is important to know the temperature of the

experiment. In Washburn (2003) this is indicated by a subscript, for example, α20 is the Bunsen

coefficient at 20◦C. Using the ideal gas law (V = nRT / P) to substitute for the volume of gas at STP,

the Bunsen coefficient can be expressed as follows, in terms of the number of moles of gas dissolved,

α =
ngasRTSTP

PSTPVsolvent
. (A.2)

The Henry’s law constant is the concentration of dissolved gas in the liquid phase, per unit partial

pressure in the gas phase (Çengel and Boles (2015)). Henry’s law is valid for partial pressures where

the liquid phase concentration is directly proportional to the gas phase partial pressure (this ceases

to be the case at high partial pressures).

Provided Henry’s law is valid at standard pressure (PSTP) for a particular gas-solvent combination,

the Henry’s law constant can be obtained from the Bunsen coefficient by dividing by RTSTP,

Hcp =
ngas

PVsolvent
=

α

RTSTP
, (A.3)
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where Hcp is the Henry’s law constant in [mol m−3 Pa−1], R is the universal gas constant in [J K−1

mol−1] and TSTP is standard temperature in Kelvin (273.15 K).

The normality of a solution is the number of gram-equivalents of solute per litre of solution. A

gram-equivalent is the mass of a substance adjusted for its valency so that, for example, one gram-

equivalent of any reducing agent will react with one gram-equivalent of any oxidising agent. For

monovalent ions the normality is the same as the molarity.

The molality of a solution is the number of moles of solute per kilogram of solvent. This was

converted to molarity as follows,

M =
McMw

1 +McMw
ρ, (A.4)

where M is the molarity in units of [mol dm−3], Mc is the molality in [mol kg−1], Mw is the molecular

weight of the solute in [kg mol−1] and ρ is the solution density in units of [kg m−3] (supplied in

Washburn (2003)).
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Appendix B

Details of MCNP Inputs Used to

Model the CRAC and TRACY

Experimental Reactors

This appendix provides details of the assumed geometry and compositions, and cross-section libraries

used for the MCNP models of the benchmark reactors discussed in Chapter 5. The geometries shown

represent simplifications compared to the true geometries of the CRAC and TRACY reactors.

B.1 CRAC 300 mm

B.1.1 Geometry and Compositions

The CRAC reactor was modelled as a simple cylinder with a shallow elliptical base. The internal

radius of the cylindrical section was 0.147 m and the steel thickness was 3 mm. These dimensions

were obtained from Barbry et al. (1973). The base was modelled as a hemiellipse with major radius

equal to that of the cylindrical section and a minor radius 0.035 m.

The modelled composition of the fuel solution is shown in Table B.I and is based on a uranium

concentration of 81 gU/L, a 235U enrichment of 93% and a density of 1180.8 kg m−3. The vessel

material was modelled as Stainless Steel SUS304L and its composition is shown in Table B.II.
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300 mm

3 mm

2090 m
m

38 m
m

†

Fig. B.1. Geometry of the CRAC 300 mm core as modelled in MCNP based on dimensions shown in
Barbry et al. (1973). †Assumed value.

Isotope Atom Fraction
1H 0.62128515
14N 0.01708136
16O 0.35956159
235U 0.00192857
238U 0.00014333

TABLE B.I
Fuel solution composition by atom fractions used for MCNP models of CRAC-29.

Isotope Atom Fraction
12C 0.00136945
28Si 0.01950421
52Cr 0.20015790
55Mn 0.01994123
56Fe 0.65587556
58Ni 0.10263913
32S 0.00051252

TABLE B.II
Composition of stainless steel SUS304L by atom fractions used for MCNP models.
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B.1.2 Thermal Feedback Coefficient

The thermal feedback coefficient was calculated by taking the sum of contributions from Doppler

broadening, thermal scattering and the change in density of the solution. The contribution of each of

these phenomena is listed in Table B.III.

Thermal Effect αT [$ K−1]

Doppler Broadening -0.00010

Thermal Scattering -0.01164

Density Change -0.05553

Total -0.06727

TABLE B.III
Thermal feedback coefficient using MCNP for the CRAC-29 experiment.

The contribution of Doppler broadening was estimated by comparing the value of keff using the .70c

(293.6 K) and .71c (600 K) cross-section libraries. Thermal scattering was evaluated by comparing

the predicted keff using S(α,β) libraries lwtr.20t (293.6 K) and lwtr.23t (450 K). The effect of solution

density was evaluated by adjusting the fuel solution density and liquid level to values corresponding

to 365 K and 375 K, using Equation E.2 to predict the change in density due to temperature.

B.2 TRACY

B.2.1 Geometry and Compositions

The TRACY reactor was modelled as an annulus of stainless steel. The steel was 80 mm thick in

the base, 10 mm thick in the external wall and 3 mm thick in the internal wall. The internal radius

of the outer cylinder was 250 mm and the internal radius of the inner cylinder was 38.15 mm. The

geometry as modelled in MCNP is shown in Figure B.1. It is based on drawings of the TRACY reactor

presented in Nakajima et al. (2002c).

The modelled composition of the fuel solution is shown in Table B.IV and is based on a uranium

concentration of 396.2 gU/L, a 235U enrichment of 9.98% and a density of 1553.1 kg m−3. The vessel

material was modelled as Stainless Steel SUS304L of the same composition shown in Table B.II.
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Fig. B.1. Geometry of the TRACY reactor as modelled in MCNP based on dimensions shown in
Nakajima et al. (2002c).

Isotope Atom Fraction
1H 0.58142607
14N 0.02489199
16O 0.38349710
235U 0.00102814
238U 0.00915671

TABLE B.IV
Fuel solution composition by atom fractions used for MCNP models of TRACY R76.
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Appendix C

Estimating the Solubility of H2 and O2

in Solutions of Uranyl Nitrate

The solubility of a solute in aqueous solution is generally a function of the composition and temperature

of the solution. A correlation presented by Harvey (1996) and Fernández-Prini et al. (2003) permits

the Henry’s law volatility constants for hydrogen and oxygen gases in pure water to be evaluated as a

function of the water temperature. Equation C.1 shows the correlation with some minor adaptations

to convert the Henry’s law volatility constants to solubility constants. The value of the constants A,

B and C are shown in Table C.I.

H =
ρH2O

MH2O

(
p∗exp

(
1

TR

[
A+B(1− TR)0.355

]
+ CT−0.41

R exp(1− TR)

))−1

, (C.1)

where H is the Henry’s law solubility constant in units of mol m−3 Pa−1, ρH2O is the density of water

and MH2O is its molecular weight, TR = T/Tc is the relative temperature, p∗ is the vapour pressure

of water and A, B and C are constants specific to each solute. The results of this correlation for

H2 O2

A -4.73284 -9.44833

B 6.08954 4.43822

C 6.06066 11.42005

Source: Fernández-Prini et al. (2003)

TABLE C.I
Constants for use in Equation C.1 to evaluate the Henry’s law solubility constants for hydrogen and
oxygen in pure water.

hydrogen and oxygen are shown in Figure C.2.1

1Mole fractions have been converted to concentrations assuming a constant water density of 997.0 kg m−3.
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Fig. C.1. Solubility of H2 and O2 as a function of temperature in pure water using the correlation of
Harvey (1996) and the constants of Fernández-Prini et al. (2003).

The solubility of hydrogen in water passes through a minimum of 7.06 × 10−6 mol m−3 Pa−1 at

62◦C. Apart from this it varies relatively little for liquid water at atmospheric pressure. The solubility

of oxygen varies relatively more over the temperature change shown and passes through a minimum

of 7.89× 10−6 mol m−3 Pa−1 at 94◦C.

Despite the smaller degree of variation, changes in the solubility of hydrogen will likely be more

significant for the kinetics of a criticality transient in a fissile solution than any changes in the solubility

of oxygen. This is because the solubility of hydrogen, through its influence on the critical concentration,

directly influences the amount of energy that must be absorbed by the solution before gas voids can

appear. The presence of oxygen gas also affects the critical concentration of hydrogen gas but this

is not affected by its degree of solubility (see Equation 5.1.22). However, the solubility of oxygen in

the fuel solution will have some influence on the kinetics of the transient through its effect on the

equilibrium concentration of dissolved oxygen and the rate at which dissolved oxygen passes into the

gaseous phase.

Figure C.2 shows the influence of nitric acid on the solubility of hydrogen and oxygen using data

from International Critical Tables (Washburn (2003)). The data suggest that nitric acid reduces the

Henry’s law constant for hydrogen by -3.1543× 10−10 mol m−3 Pa−1 for every mol m−3 of nitric acid

present. The Henry’s law constant for oxygen is reduced by -7.6603× 10−10 mol m−3 Pa−1 for every

mol m−3 of nitric acid present.

Unfortunately no data was found in the literature for the influence of uranyl nitrate on the solubility
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Fig. C.2. Solubility of H2 and O2 in nitric acid based on data from International Critical Tables
(Washburn (2003)).

of hydrogen or oxygen in aqueous solutions. Data for the influence of other nitrate salts are available

for hydrogen but not for oxygen. These data are shown in Figure C.3.
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Fig. C.3. Solubility of H2 in nitrate salts based on data from International Critical Tables (Washburn
(2003).

The data in Figure C.3 show that NaNO3 and KNO3 have a very similar effect on the solubility

of hydrogen, reducing the Henry’s law constant for hydrogen by 1.4 × 10−9 mol m−3 Pa−1 per mol

m−3 of salt present in the solution (trend represented by line “EQ H2”) up to a concentration of

approximately 2500 mol m−3, after which the effect becomes smaller. The NH4NO3 salt was found to
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be less effective at reducing the solubility of hydrogen, possibly due to its effect on the solution pH.
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Fig. C.4. Solubility of H2 and O2 in chloride based on data from International Critical Tables (Wash-
burn (2003).

Figure C.4 shows the effect of NaCl on the solubility of both hydrogen and oxygen. The effect of

NaCl on hydrogen solubility is very similar to that of NaNO3 and KNO3, as indicated by the line “EQ

H2” which also fits the data for NaCl. The presence of NaCl has a greater effect on the solubility of

oxygen, reducing the solubility of oxygen by 2.5× 10−9 mol m−3 Pa−1 per mol m−3 of NaCl present.

Also shown in Figure C.4 is the effect of CaCl2 on the solubility of hydrogen. This salt also has almost

an identical effect on the solubility of hydrogen compared to NaNO3, KNO3 and NaCl, despite the

presence of two chloride anions rather than one.

Given the very similar effects of all the salts examined, apart from NH4NO3, on the solubility of

hydrogen in solution, it seems reasonable, in the absence of any data specific to uranyl nitrate, to use

the values obtained for the nitrate and chloride salts to adjust the Henry’s law constants for hydrogen

and oxygen in the model of the fuel solution. This results in the correlations given by Equations C.2

and C.3.

H(T )H2,sol = H(T )H2,H2O − 3.15× 10−10CHNO3
− 1.4× 10−9CUO2(NO3)2

, (C.2)

H(T )O2,sol = H(T )O2,H2O − 7.66× 10−10CHNO3
− 2.5× 10−9CUO2(NO3)2

, (C.3)

where CHNO3
and CUO2(NO3)2

are less than 2500 mol m−3, H(T )i,sol is the Henry’s law solubility

constant for component i in the solution in units of mol m−3 Pa−1, H(T )i,H2O is the solubility of

component i in pure water at temperature T given by Equation C.1. While this method makes a
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number of assumptions which result in a high degree of uncertainty in the predicted value, in the

absence of any experimental data for the solubility of hydrogen and oxygen in solutions of uranyl

nitrate, the use of these correlations is preferable to ignoring the influence of solute concentrations

altogether.
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Appendix D

A Note on Sloshing

Liquid sloshing is sometimes discussed as a suspected factor contributing to the fission power os-

cillations observed in the results of a great number of criticality benchmark experiments. Indeed,

Suzaki and Miyoshi (1986) demonstrated that the type of geometric deformation caused by sloshing

would result in a significant change in the reactivity of a fissile solution. Yamamoto (1995) used

time-dependent neutron diffusion to quantify the effect of sloshing on solutions of uranyl nitrate and

plutonium nitrate, and demonstrated that significant reactivity effects are possible. The predicted

magnitude of the effect amounted to a few dollars of reactivity. In the simulations of uranyl nitrate,

the reactivity effect of sloshing was entirely negative, while the simulations of plutonium nitrate so-

lutions predicted a reactivity profile oscillating from slightly positive to negative, leaving open the

possibility of a criticality accident due to sloshing.

Where sloshing occurs it would be expected to produce oscillations in the fission power output. It

is also expected that the behaviour of radiolytic gas bubbles may also lead to fission power oscillations,

and it is therefore important to be able to distinguish between the two phenomena. One way way in

which sloshing phenomena may be identified is by the period of oscillations it produces. The natural

frequency of sloshing vessels containing liquid has been extensively studied. Simple expressions have

been derived for the natural frequency of sloshing in cylindrical vessels, for example, the model of

Housner (1963):

τslosh = 2π

√
R

1.8g tanh1.8H/R
, (D.1)

where R and H and the radius and height of the cylinder, respectively, g is the acceleration due to

gravity and τslosh is the natural period of sloshing.

Figure D.1 shows the natural period of sloshing predicted by Equation D.1 for liquids in a partially
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filled cylindrical tank. The natural period varies as a function of the height-to-radius ratio of the

cylinder. For benchmark experiments performed on the CRAC reactor with 300 mm internal diameter,

the natural period of sloshing would not be expected to exceed one second.
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Fig. D.1. Period of sloshing predicted using a correlation from Housner (1963) for liquids in a partially
filled cylindrical tank.

While no model of sloshing will be included in the point kinetics model, it is useful to characterise

the qualitative effects of sloshing for the interpretation of the results of the benchmark experiments

so that the observed behaviour may be linked to the correct underlying physical processes. The

oscillations in the fission power profile for the CRAC-29 experiment, shown in Figure 5.3.2, cannot be

attributed to sloshing because the period of the observed oscillations is an order of magnitude greater

than the natural frequency of sloshing in the CRAC reactor.
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Appendix E

Density Correlation for Aqueous

Solutions of Uranyl Nitrate

Experimental data presented in Grant et al. (1948) gives the measured densities of aqueous solutions

of uranyl nitrate across a range of uranyl nitrate concentrations and solution temperatures. These

data are shown in Figure E.1.
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Fig. E.1. Density of aqueous solutions of uranyl nitrate at various temperatures and uranyl nitrate
concentrations, Grant et al. (1948)
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The data span a range of concentrations from 150 to 800 mol m−3 of uranyl nitrate and a range

of temperatures from 0◦C to 100◦C. The concentration of nitric acid in each solution is not reported

and it is not known whether or not the solutions tested contained significant quantities of nitric acid.

Using the data shown in Figure E.1 it is possible to derive a correlation for the density of uranyl

nitrate solution as a function of temperature and uranyl nitrate concentration. This correlation is

shown in Equation E.1.

ρ(T,CUrN) = 0.31635CUrN − 3.5898× 10−3T 2 − 4.7024× 10−2T + 1001.0, (E.1)

The presence of nitric acid is expected to increase the density of the solution by adding to its mass

but it will also change the volume of the solution, which makes the resulting change in density complex

to predict. However, if the effect of nitric acid concentration on the solution density can be assumed

to have a linear relationship, as is the case for uranyl nitrate, then a coefficient can be determined by

fitting to other experimental data.
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Fig. E.2. Comparison of measured solution densities from fissile solution experiments on CRAC,
SILENE and TRACY with densities predicted using Equations E.1 and E.2.

Figure E.2a shows the difference between measured solution densities from fissile solution exper-

iments on CRAC, SILENE and TRACY compared to values predicted using Equation E.1. Adding

an additional term to the equation to adjust the predicted density for nitric acid concentration and

adjusting the coefficient to minimise the error between measured and predicted density results in

Equation E.2.

ρ(T,CUrN, CHNO3) = 0.31635CUrN − 3.5898× 10−3T 2 − 4.7024× 10−2T (E.2)

+ 3.4663× 10−2CHNO3 + 1001.0,
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Figure E.2b shows the difference between measured and predicted densities using Equation E.2.

The results show close agreement between the measured and predicted solution densities except for

the SILENE 218 gU/L fuel solution which appears as an anomaly.

Experiment Name Uranyl Nitrate
Concentration

Nitric Acid
Concentration

Temperature Reported Den-
sity

Predicted Den-
sity

mol m−3 mol m−3 ◦C kg m−3 kg m−3

CRAC-29 344.3 2150 22.0 1180.8 1181.7
CRAC-43 858.7 2110 22.0 1345.0 1343.0
TRACY-R72 1655.1 740 24.99 1550.0 1550.4
TRACY-R76 1666.5 740 25.07 1553.1 1534.2
TRACY-R203 1632.8 580 25.01 1536.9 1546.8
SILENE (71 gU/L) 300.9 2000 20.0† 1161.0 1163.1
SILENE (218 gU/L) 926.3 2840 20.0† 1356.2 1390.1

TABLE E.I
Composition and density data for various reactor fuel solutions with predicted densities using Equation
E.2. Measured data obtained from Barbry et al. (1973), Barbry (1994), Nakajima et al. (2002b) and
Nakajima et al. (2002c). †Assumed value.

The solution compositions of the experimental reactor fuel solutions are shown in Table E.I. The

data span a range of nitric acid concentrations from 580 to 2150 mol m−3 (excluding SILENE 218

gU/L). The close agreement between the measured and predicted densities over this range lends cred-

ibility to the assumption that nitric acid affects the solution density according to a linear relationship.

The uranyl nitrate concentrations shown in Table E.I are significantly higher than those of the

solutions examined by Grant et al. (1948). The accuracy of the predicted solution densities for the

CRAC, SILENE and TRACY fuel solutions therefore lends confidence in extrapolating the data of

Grant et al. (1948) to higher concentrations.

It has not been possible to evaluate the influence of temperature on solution densities at uranyl

nitrate concentrations higher than those examined by Grant et al. (1948) because the densities reported

for the experimental reactor fuel solutions are all given at ambient conditions. In the absence of

any experimental data, it will be assumed that the effect of temperature on the solution density is

independent of the solution composition.
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