
1

Classifying negative and positive points by optimal box clustering

Paolo Serafini
Università di Udine, Dipartimento di Matematica e Informatica

Via delle Scienze 206. 33100 Udine, Italy

Abstract. In this paper we address the problem of classifying positive and negative data with the technique known
as box clustering. A box is homogeneous if it contains only positive (negative) points. Box clustering means finding a
family of homogeneous boxes jointly containing all and only positive (negative) points. We first consider the problem
of finding a family with the minimum number of boxes. Then we refine this problem into finding a family which
not only consists of the minimum number of boxes but also the points are covered as many times as possible by
the boxes in the family. We call this problem the maximum redundancy problem. We model both problems as set
covering problems with column generation. The pricing problem is a maximum box problem. Although this problem
is NP-hard, there is available in the literature a combinatorial algorithm which performs well. Since the pricing has
to be carried out also in the branch-and-bound search of the set covering problem we consider also how the pricing
has to be modified to take care of the branching constraints. The computational results show a good behavior of the
set covering approach.

1 Introduction

A fundamental task in data analysis is the classification of data. Most often the information gathered from
an individual (whatever it may be) is a set of real numbers and the classification consists in deciding whether
the data related to this individual belongs to one class or to a complementary class. We may denote these
two classes as ‘positive’ and ‘negative’. There is a wide range of applications which can be framed into a
model of this type.

Since the data related to an individual is an array of numbers, it is natural to associate to the individual
a point in a vector space. If the data are meaningful for the investigation for which they are collected, it is
expected that the points in the same class are more or less clustered and separated from the points of the
other class, thus defining two regions of space. An initial known ‘training’ set of data is used to identify these
regions of space. Then new data are classified on the basis of the defined regions.

One of the oldest classification methods is based on the idea that the positive and negative points can be
separated by a hyperplane [10]. If this is the case the hyperplane is first identified from the training set via
mathematical programming techniques and then used for further classification of new data. The idea is simple
and powerful. However, it is quite frequent that the data are not linearly separable. The use of nonlinear
surfaces to separate points can be pursued (see again [10]). However, the choice of a suitable nonlinear
function seems not only technically hard but also difficult to be justified. A piecewise linear separation has
been proposed in [1] when the data are not linearly separable, but the method does not always produce
satisfactory results.

Instead of defining a region of space according to the sign of a function (analytically or algorithmically
defined), a different approach consists in defining a region as the union of simple and similar sets. In other
words, a family of similar sets is defined such that each positive data of the training set is covered by at least



2

one member of the family while no negative data of the training set is covered by any set of the family. An
analogous family is defined for the negative data.

For this approach to be useful some requirements have to be considered. For instance, a trivial family
consists of very small sets each one covering exactly one point of the training set. Obviously, new data could
be classified only if they are a replica of some data in the training set and this situation is meaningless for
the investigation. Intuitively, we would like to have large sets covering many points, so that new data which
are close to some point in the training set can easily fit into the set. At the same time the sets should be
‘essential’, in the sense that it is worth extending a set only if new points have to be covered. Having a
family of large and essential sets is close to have a family with few sets. Hence we may consider the problem
of covering the points with the minimum number of sets. However, it seems useful for the classification to
have available some measure of ‘trust’ for the new data. To this aim not only we would like to cover the
points with the minimum number of sets, but we would like also to have many points, i.e., many regions
of space covered by more than one box. This kind of redundancy can constitute a measure of trust for the
classification of new data.

The idea of covering the training set of points can in principle work with any family of subsets. However,
subsets which would seem most suited for this analysis, like ellipsoids, present relevant computational prob-
lem. Perhaps the best family from the computational point of view is the family of boxes. Although boxes
are far from being smooth sets (smoothness seems a natural requirement for identifying a region) they can
be represented with a minimum amount of information and this simplicity can lead to viable algorithms.
Box clustering has been proposed and described in [9].

Moreover, there is a strong rationale behind the idea of using boxes. If we think of medical data, the
result of an analysis is usually framed as a number belonging to some interval. The interval represents a set
of values denoting a healthy status. Considering all data together, an individual is declared healthy if the
point representing all measurements is within the high dimensional box given by the euclidean product of
the single intervals. This is a simplified picture since it assumes the data are not correlated. In case they are,
more than one box may be needed to cover the points. A more complex picture can be called for the data
referring to sick individuals since we do not expect these data to fit into one box.

In this paper we want to find a covering of the positive (or the negative) points with the minimum
number of boxes and also with maximum redundancy. The problem is modeled as a set covering problem
with column generation, where each column is associated to a particular box. It turns out that the pricing
problem consists in finding a single box of maximum weight. This last problem has been fully investigated
in [6] and a viable combinatorial algorithm has been proposed. We base the set covering problem on this
pricing algorithm. The problem of finding a minimum cardinality box cover in the bidimensional case has
been investigated in [2] providing interesting complexity and algorithmic results.

In Section 2 we define formally the problem and provide some computational complexity results. In
Section 3 we develop the set covering model with column generation. The corresponding pricing problem
is described in Section 4 and the problem of introducing branching constraints in the pricing is dealt with
in Section 5. In Section 6 we report some computational results applied to artificial data and to real data.
Finally in Section 7 we provide some conclusions.



3

2 Statement of the problem

There are given p positive points Xi ∈ Rn (i ∈ [p]) and q negative points Y i ∈ Rn, (i ∈ [q]). We use
the notation [h] := {i ∈ Z : 1 ≤ i ≤ h}. We are interested in sets covering either only positive points or
only negative points. In this paper we consider only boxes as possible covering sets. Although models with
different types of sets can be envisaged in general, we do not pursue this direction which, very likely, entails
considerable difficulties. A box B(`, u) is the set

{X ∈ Rn : `k ≤ Xk ≤ uk, k ∈ [n]} .

A box is positive (negative) if it covers, i.e., it contains, only positive (negative) points. A box which is
either positive or negative is called homogeneous. With abuse of notation we denote by |B| the number of
points contained in the homogenous box B.

A family of boxes {Bj}j∈J is positive (negative) if every positive (negative) point is contained in at least
one positive (negative) box, i.e., a positive family {Bj}j∈J satisfies

Xi ∈
⋃
j∈J

Bj , i ∈ [p], Y i /∈
⋃
j∈J

Bj , i ∈ [q],

and a negative family {Bj}j∈J′ satisfies

Xi /∈
⋃
j∈J′

Bj , i ∈ [p], Y i ∈
⋃
j∈J′

Bj , i ∈ [q].

Positive and negative families are called homogeneous.
For a given subset S of points, the box-closure of S, denoted as [S], is the smallest box containing all

points in S, i.e.,

[S] :=
{
Z ∈ Rn : min

X∈S
Xk ≤ Zk ≤ max

X∈S
Xk, k ∈ [n]

}
A box is essential if no upper box coordinate can be decreased and no lower box coordinate can be increased
without reducing the number of covered points. Clearly, a box-closure is essential. It makes sense to limit
the search to essential boxes. The coordinates (both lower and upper) of an essential box take values in{
X1
k , X

2
k , . . . , X

p
k

}
, for k ∈ [n] (but not vice-versa, boxes with these coordinates are not necessarily essential).

As a consequence the total number of positive boxes is upper bounded by (p (p− 1)/2)n. For a fixed n (and
in particular for n = 2) this is a polynomial number of boxes.

An essential homogeneous box is maximal if it is not properly contained in any other essential homogenous
box.

Among the homogeneous families we may wish to find a family with some special properties. Since the
problems for positive and negative families are equivalent (it is only matter of exchanging the roles of positive
and negative) we simply present the problems for the positive families.

The positive family is built with the purpose of classifying future data with the highest accuracy and
therefore we would like the family to have the property that all future positive points are covered by the



4

family and that all future negative points do not fall in the family. Clearly, this is a goal that in general
cannot be fulfilled and also cannot be pursued directly because future points are not known in advance.
However, it can be pursued indirectly under the reasonable assumption that future points are similar to the
training set (i.e., the points Xi and Y i).

A first simple desirable property for a family is to consist of the smallest number of boxes. The motivation
for such a property does not come from minimality itself, although one could argue that pursuing a minimum
amount of information to explain the data is just an application of Occam’s Razor principle (see for instance
the discussion in [8] supporting the choice of minimality). Rather it relies on the fact that, in general, a
small number of boxes corresponds to large boxes and having large boxes is preferable than small ones for
the subsequent classification of new data. We call the problem of finding a minimum cardinality family the
cardinality problem. The cardinality problem has been also proposed in [9] together with a heuristic procedure
for its solution.

In addition, we may consider a desirable property for a family if there are many points covered by many
boxes. Hence we want to find a positive family of boxes with minimum cardinality such that the total number
of positive points covered by the boxes and counted with multiplicity is maximized. We may call redundancy
ri of the point i the number of boxes covering i and redundancy R of the family the sum of the redundancies
over all points, i.e.,

R =
∑
i∈[p]

ri =
∑
j∈J
|Bj |

We call the problem of finding a minimum cardinality family with maximum redundancy the max redundancy
problem.

Actually, since each point must be covered by at least one box, the redundancy of the point i would be
more correctly defined as ri − 1. Given the fixed number of boxes the two definitions differ by a constant
and so there is no real difference in using either one.

Note that a max redundancy family has the property that any box of the family is maximal. In fact, if
it were not so, we could increase a non-maximal box by adding points to the box, thereby improving the
redundancy. Another property shared by optimal families is that for each box there is at least one point
covered by that box only, otherwise the box could be dropped from the family thereby violating the minimum
cardinality property.

We may further extend the redundancy problem by assuming that each point has a weight 0 ≤ wi ≤ 1
and the weighted redundancy W is defined as the sum of the weights over all boxes and all covered positive
points, i.e.,

W =
∑
j∈J

∑
i∈Bj

wi =
∑
i∈[p]

wi · | {j : i ∈ Bj} |.

We call the problem of finding a family with minimum cost the max weighted redundancy problem.
The stated problems are all NP-hard. This result can be inferred by the result in [2] which proves NP-

hardness for the case n = 2. Here we provide a simple alternative proof for general n.

Theorem 1. The cardinality problem is NP-hard.



5

Proof: We use the same tools as in [6]. We reduce the problem of finding the chromatic number of a graph
G = (V,E) to the problem of finding a minimum cardinality positive family. Given a graph G = (V,E) with
V = {v1, . . . , vn} we define points in Rn as follows. To each vertex vi we associate the positive point Xi ∈ Rn

with coordinates

Xi
k =

{
1 if k = i
0 if k 6= i

and to each edge (vi, vj) we associate the negative point Y ij with coordinates

Y ijk =
{ 1 if k = i or k = j

0 otherwise
A positive box cannot cover two positive points Xi and Xj for which there exists the edge (i, j) in G. Hence
a positive box covers points corresponding to a stable set in G. Conversely, the box closure of a stable set
in G gives raise to a positive box. Hence there is a one-to-one correspondence between stable sets in G and
positive boxes. Hence the problem of finding a minimum cardinality family is the exact counterpart of finding
a covering of the nodes by a minimum cardinality family of stable sets, i.e., finding the chromatic number
of G.

Theorem 2. The max redundancy problem is NP-hard.

Proof: A max redundancy family is also one of minimum cardinality. Hence the thesis follows from the
previous theorem.

Theorem 3. The max weighted redundancy problem is NP-hard.

Proof: The max redundancy problem is just a particular case of the max weighted redundancy problem.

We mention that a two-dimensional box covering problem can be rephrased as a coloring problem on a
so called incompatibility graph. An incompatibility graph (for the positive points) has vertices associated to
the positive points and an edge (i, j) if and only if the box closure [

{
Xi, Xj

}
] contains at least one negative

point. In dimension two the box closure of an independent set in the incompatibility graph is a positive box
(this property is not true for n > 2; take for instance X1 = (0, 0, 0), X2 = (1, 1/2, 1/2), X3 = (1/2, 1, 1) and
Y = (3/4, 3/4, 1/4); we have Y /∈ [

{
Xi, Xj

}
] for any i, j ∈ {1, 2, 3}, so the incompatibility graph is given by

three vertices without edges; however, Y ∈ [
{
X1, X2, X3

}
]).

Hence for n = 2 finding a minimum cardinality family corresponds to finding the chromatic number of
the incompatibility graph. For the max redundancy problem we have to allow a vertex to be colored with
more than one color and a multi-coloring is feasible if two adjacent vertices do not share any of their colors.
A max redundancy family is given by a multi-coloring with no more colors than the chromatic number and
the maximum possible number of extra colors for all vertices. Rephrasing the problem in terms of graphs,
stable sets and coloring allows to translate some graph properties to the box clustering problem. Indeed as
observed in [4] the minimum cardinality problem for some special instances with n = 2 can be solved in
polynomial time. However, as already remarked, the result in in [2] shows that NP-hardness holds also for
n = 2.



6

3 A set covering model

Let us assume that all positive boxes are indexed by the finite index set J . Any family of boxes is in a one-
to-one correspondence with a particular subset J ⊂ J . As such we identify families of boxes with subsets of
J and say that a set J is feasible if and only if the corresponding family is positive.

In order to build a 0-1 LP model we define

aji =
{

1 if box Bj covers Xi

0 otherwise

and
xj =

{ 1 if box Bj is in the positive family to be found
0 otherwise.

Then the cardinality problem can be formulated as

V = min
∑
j∈J

xj∑
j∈J

aji xj ≥ 1, i ∈ [p]

xj ∈ {0, 1} j ∈ J .

(1)

For the max redundancy problem we should maximize R(x) =
∑
j

∑
i a
j
i xj and add to the constraints in (1)

the constraints
∑
j xj = V to impose the minimum cardinality requirement. However, it is more convenient

to tackle the problem directly by defining for the box Bj a cost

cj = K −
∑
i∈[p]

aji = K − |Bj | (2)

and minimizing
∑
j∈J cj xj over the same constraints of (1). In (2) K is a suitably large constant so that the

solution is guaranteed to be one of minimum cardinality. To this purpose we prove the following theorem.

Theorem 4. If K ≥ p2, a family J∗ ⊂ J of boxes minimizing∑
j∈J

cj = K |J | −
∑
j∈J
|Bj |

for all feasible J ⊂ J has minimum cardinality and maximum redundancy.

Proof: Let J∗ be a family minimizing
∑
j∈J cj . Then for any other feasible family J we have

K |J∗| −
∑
j∈J∗

|Bj | ≤ K |J | −
∑
j∈J
|Bj |. (3)

We may assume |J∗| > 1 since |J∗| = 1 already implies minimum cardinality of J∗. Note that |Bj | ≤ p, for
any box. Furthermore, only one box of the family J∗ can have |Bj | = p otherwise the family would consist



7

of the same essential box covering all points replicated many times and this family could not be optimal for
the cost. Hence we derive from (3)

K |J∗| − p |J∗| < K |J | −
∑
j∈J
|Bj |. (4)

Among the feasible families of boxes there is a trivial one consisting of p boxes covering single points. Its
cost is K p− p. Hence we have

K |J∗| − p |J∗| < K p− p,

i.e.,

|J∗| < p
K − 1
K − p

.

For any K ≥ p2 we derive the bound

|J∗| < p
p2 − 1
p2 − p

= p+ 1. (5)

Note that
∑
j∈J |Bj | ≥ p for any feasible J since each point must be covered. Then we derive from (4) by

using also the bound (5)
K |J∗| − p (p+ 1) < K |J | − p,

i.e.,

|J∗| < |J |+ p2

K
,

which, for K ≥ p2 implies |J∗| ≤ |J |.
Among all subsets of minimum cardinality the term K |J | is constant so that minimizing

∑
j∈J cj is

equivalent to maximizing
∑
j∈J |Bj |, i.e., to maximize the redundancy.

For the max weighted redundancy model the cost of the box j is cj = K −
∑
i∈[p] a

j
i wi, where K can be

again chosen larger than p2 to guarantee a solution of minimum cardinality since we have assumed wi ≤ 1
(we leave to the reader rephrasing the proof of Theorem 4 for this case). The 0-1 LP problem for the max
redundancy problem (both unweighted and weighted) is therefore

min
∑
j∈J

cj xj∑
j∈J

aji xj ≥ 1, i ∈ [p]

xj ∈ {0, 1} j ∈ J .

(6)

The relaxation of (1) and (6) can be solved via column generation. The dual pricing constraints for (1)
are (note that xj ∈ {0, 1} can be relaxed as xj ≥ 0)

p∑
i=1

aij yi ≤ 1 j ∈ J (7)



8

with yi ≥ 0 dual variables, and for (6)

p∑
i=1

aij yi ≤ cj j ∈ J

which can be rewritten for the unweighted case as

p∑
i=1

aij (1 + yi) ≤ K j ∈ J (8)

and for the weighted case as
p∑
i=1

aij (wi + yi) ≤ K j ∈ J (9)

In all three cases finding a violated dual constraint can be carried out by solving a Maximum Box problem
with weights Wi, respectively, Wi := yi, Wi := (1+yi) and Wi := (wi+yi). The Maximum Box problem is NP-
hard for general n. It can be solved either via Integer Linear Programming or via a specialized combinatorial
algorithm as shown in [6]. The combinatorial algorithm exhibits reasonable computing times and therefore
can be used in the pricing problem.

4 The pricing problem

Both the ILP and the combinatorial formulations are described in detail in [6]. Clearly both approaches
can be used for the pricing problem. Since the pricing problem has to be solved within a branch-and-bound
method, thus with possibly additional constraints, we need to shortly recall here the approaches proposed
in [6] (with a different notation). As already remarked, the k-th coordinate of a positive box can be assumed
to take values in the set

V k :=
p⋃
i=1

{
Xi
k

}
, k ∈ [n] .

So in order to define a box we need assigning `k to exactly one value in V k and similarly for uk. For the ILP
model let

ζkv =
{

1 if `k = v ∈ V k
0 otherwise ,

ξkv =
{

1 if uk = v ∈ V k
0 otherwise .

The assignment is realized through the constraints∑
v∈V k

ζkv = 1,
∑
v∈V k

ξkv = 1, k ∈ [n] . (10)

We need counting the points covered by the box. To this aim let

ηi =
{

1 if Xi is covered
0 otherwise



9

subject to the constraints

ηi ≤
∑
v≤Xi

k

ζkv, ηi ≤
∑
v≥Xi

k

ξkv, k ∈ [n], i ∈ [p] . (11)

For a box not to cover negative points the following constraints must be introduced

n∑
k=1

( ∑
v>Y i

k

ζkv +
∑
v<Y i

k

ξkv
)
≥ 1, i ∈ [q] . (12)

Then the pricing problem consists in maximizing∑
i∈[p]

Wi ηi

subject to (10), (11) and (12).
The combinatorial algorithm is based on a branching scheme where a non-homogeneous box is split

into 2n smaller boxes ‘around’ a negative point contained in the box. We present here a slightly simpler
version than the one in [6]. For each coordinate the box is split into two boxes, one above the corresponding
coordinate of the negative point and the other one below, all other coordinates remaining the same. In more
detail, let B(`, u) be the non-homogeneous box and let Y be the negative point in B(`, u), i.e., `k ≤ Yk ≤ uk,
k ∈ [n], and let

I :=
{
i : Xi ∈ B(`, u)

}
the index set of the points in the box B(`, u). For each coordinate k we compute

I−k :=
{
i ∈ I : Xi

k < Yk
}
, I+

k :=
{
i ∈ I : Xi

k > Yk
}
, k ∈ [n]

and the 2n box-closures [ ⋃
i∈I−

k

{
Xi
} ]
,

[ ⋃
i∈I+

k

{
Xi
} ]
, k ∈ [n] .

It can be proved that any positive box contained in the box is also contained in at least one of these 2n
boxes. This branching scheme is accompanied by an effective upper bound function which is also used to
select the best (in term of bound) negative point in the box. According to [6] this combinatorial algorithm
is much faster than the ILP formulation. We support this statement after extensive computational tests.

In order to speed-up the pricing phase, especially in the first column generations, we have also devised
a heuristic algorithm for the Maximum Box problem. The pricing is first carried out by the heuristics and
the exact algorithm is run only if a violated dual inequality is not found by the heuristics. The heuristics is
a greedy one and is based on the following idea: preliminarily for all pairs of positive points Xi, Xj , the L1

distances

dij :=
n∑
h=1

|Xi
h −X

j
h|



10

are computed. We remark the the computation of the distances dij is carried out only once. Then, for each
point Xi such that its weight Wi is strictly above a fixed threshold (that we have chosen equal to 1 for the
max redundancy problem, i.e., all points with dual variable yi = 0 are excluded) the other points Xj are
sorted in order of decreasing values Wj/dij . A box is built starting from each point Xi by adding one point
at a time according to this order and discarding points whose inclusion would yield a non homogeneous
box. The order of the starting points is given by decreasing weights Wi. As soon as a box violating a dual
inequality is found the procedure is stopped. A similar procedure is done for the negative points.

5 Pricing and branching

Both exact pricing methods can be used as such only at the root node of the branch-and-bound tree. At
other nodes we must take care also of branching constraints. If branching is carried out by imposing either
xj = 0 or xj = 1 in case of a fractional variable xj corresponding to the box Bj , these constraints must be
embedded in the pricing problem.

Imposing xj = 0 means that in the pricing problem we don’t want the box Bj as a possible solution.
Since only maximal boxes can be considered for an optimal solution, this means that we don’t want also any
box contained in Bj .

To this aim it is enough in the ILP model that at least one of the assignment variables ζkv`
and ξkvu

identifying Bj and the boxes in Bj must be zero, which can be accomplished by

n∑
k=1

( ∑
`j

k
≤v`≤uj

k

ζkv`
+

∑
`j

k
≤vu≤uj

k

ξkvu

)
≤ 2n− 1 . (13)

Therefore in the ILP model we need only adding constraints of the type (13) for each variable fixed to zero.

In the combinatorial model the box Bj must be considered infeasible, like any other non-homogeneous
box. As observed, also the boxes contained in Bj have to be considered infeasible. Hence the only action
to take, as soon as the box Bj (or some of its included boxes) appears at a node of the search tree of
the combinatorial algorithm is to directly fathom that node. We just need to add to the algorithm some
bookkeeping scheme to easily identify ‘forbidden’ boxes.

This method to avoid generating forbidden boxes can be generalized to avoid the generation of boxes
with undesirable features, e.g., boxes covering less than a fixed amount of points.

Imposing xj = 1 is equivalent to cover all positive points in Bj . Therefore we might think of reformulating
the problem by simply dropping these points. However, we have to be careful. Some of the dropped points
could be fruitfully covered also by other boxes to increase the redundancy. Hence all points must be retained
in the computation. Let us consider the following three problems, labeled as (14)-(a), (b) and (c), where, for



11

the sake of notation, the variable to be fixed to one is x1.

(a)

min
∑
j

cj xj∑
j

āji xj ≥ 1

xj ≥ 0

(b)

min
∑
j

cj xj∑
j

aji xj ≥ bi

xj ≥ 0

(c)

min
∑
j

cj xj∑
j

aji xj ≥ 1

x1 ≥ 1

xj ≥ 0

(14)

In problem (14)-(a) the matrix āji is the matrix aji without the rows such that a1
i = 1 (hence the first column

ā1 has all zeros). In other words, all points covered by box 1 are dropped from the problem. Let x1 and y1

be primal and dual variables of problem (14)-(a). In problem (14)-(b) bi = 1 − a1
i . In other words, points

already covered by box 1 need not to be covered in problem (14)-(b), but they are present. Let x2 and y2 be
primal and dual variables of problem (14)-(b). In problem (14)-(c) there is an explicit constraint imposing
x1 = 1. Let x3 and (y3, t) be primal and dual variables of problem (14)-(c), where t refers to the constraint
x1 ≥ 1.

Proposition 1. There are dual optima such that y1
i = y2

i = y3
i for each row i in āji and y2

i = y3
i = 0

otherwise (note that y3
i = bi y

2
i ) and t = c1.

Proof: It is immediate that there are optima such that x1
j = x2

j = x3
j for j > 1, x1

1 = x2
1 = 0 (assuming

c1 > 0) and x3
1 = 1. Let y1 be dual optimum for problem (14)-(a). Define y2

i = y3
i = y1

i for each row i in āji
and y2

i = y3
i = 0 otherwise. Then y2 is dual feasible for problem (14)-(b). Similarly, (y3, t) is dual feasible

for problem (14)-(c) for all j > 1 and for j = 1 we have
∑
i a

1
i y

3
i + t = 0 + c1, i.e., (y3, t) is feasible. We also

have, by exploiting strong duality for x1 and y1,∑
j

cj x
2
j =

∑
j

cj x
1
j =

∑
i

y1
i =

∑
i

bi y
2
i

which establishes strong duality for x2 and y2, so that y2 must be optimal. Moreover, by exploiting strong
duality for x2 and y2, ∑

j

cj x
3
j =

∑
j

cj x
2
j + c1 =

∑
i

bi y
2
i + c1 =

∑
i

y3
i + t

which establishes strong duality between x3 and y3 and optimality of y3.

In conclusion, the dual optima for pricing can be computed by problem (14)-(a), which has the advantage
to be smaller than the others. However, since the cost cj are computed by taking into account all points, the
pricing must be done on the totality of positive points.

The type of branching we have considered is the usual branching on fractional variables. On our compu-
tational experiments we have observed a different behavior of the computation on the two branches. While
setting a variable to 1, i.e., forcing a box to be chosen, is quite effective in terms of increasing the lower



12

200 400 600 800 1000

200

400

600

800

1000

Fig. 1. A cardinality optimal family of boxes

bound, on the contrary, setting a variable to 0, i.e., forbidding a particular box, is not as effective. What
happens is that the computation tries to ‘fix’ the prohibition to use that particular box by finding a slightly
different one. Since there may be many almost equal boxes, especially with high dimensional boxes, the
lower bound increases very slowly on the paths of the B&B tree with variables fixed to 0. Finding a better
branching is matter of future investigation.

6 Computational results

We have carried out two types of tests. The first one is based on random artificial instances with points
generated to form clusters of some preassigned form. The second one is based on real data. A first set
contains data from healthy and sick individuals who have been medically tested at the Rome University
Hospital for carpal tunnel syndrome [11] and a second set is the Breast Cancer Wisconsin data set available
at the UCI Machine Learning Repository [14].

The first artificial test is two dimensional. There are 200 positive points and 200 negative points in a
square. They have been generated randomly so as to be separated by a cubic function. The points can be
seen in Figure 1, where blue and red points are positive and negative respectively. We have carried out four
different computations, according to the pricing method (either ILP or the combinatorial algorithm) and to
the initial solution (either one very large cost non-homogeneous giant box covering all positive points or 200
homogeneous degenerate boxes each one covering a single positive point).



13

200 400 600 800 1000

200

400

600

800

1000

Fig. 2. Redundancy optimal families of boxes

The set covering problem with ILP pricing method has been tested with the commercial LP solver Lingo,
whereas the problem with the combinatorial pricing method has been tested with Mathematica 5.1. Clearly
CPU time comparisons cannot be done because Mathematica is designed to be very flexible and not very
fast. In addition all computations have been carried out in exact arithmetic. Yet, the two computations with
Mathematica required much less time than the two with Lingo. The sequences of columns priced out by the
two procedures are different although starting from the same data. This has to be ascribed to the fact that
optimal solution of the pricing problem are in general non-unique and thus the pricing can generate different
columns. It turned out that the pricing with the combinatorial algorithm has required much less column
generations than the ILP method. Due to the very poor performance of the ILP pricing all our tests have
been carried out with the combinatorial pricing computed with Mathematica.

In general we have observed a better performance if the initial solution consists of boxes covering single
points. Almost half column generations are needed with respect to starting with the giant non-homogeneous
box.

To solve the cardinality problem for the positive points of the two dimensional example of Figure 1,
13 column generations were needed with a minimum of 7, a maximum of 40 and an average of 30.3 B&B
nodes of the combinatorial pricing algorithm. The cardinality optimal solution requiring 9 boxes (shown in
the figure) was integral at the root node of the B&B tree. The time to find this solution was 13 minutes.
We stress that the algorithm has run within the Mathematica software. We may consider a speed-up of two
orders of magnitude with a compiled code calling a fast LP solver.



14

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 3. Optimal family of boxes for random data

For the max redundancy problem we have chosen K = p instead of the theoretical value K = p2. We have
observed that by choosing K = p, so that the cost of a box is the number of points not covered by the box,
the solution was always one of minimum cardinality. Solving the max redundancy problem for the positive
points of the same instance has required 16 column generations, with a minimum of 6, a maximum of 56
and an average of 32.5 B&B nodes of the combinatorial pricing algorithm. The solution consists of 9 boxes
and has redundancy 584. The max redundancy for the negative points has required 15 column generations
with a minimum of 14, a maximum of 38 and an average of 26.6 B&B nodes. Also this solution consists of
9 boxes and its redundancy is 719.

In Figure 2 both positive and negative families are depicted. The point size has been chosen roughly
proportional to the redundancy of the point. By comparing the max redundancy positive covering with the
min cardinality in Figure 1 we may appreciate how the max redundancy provides a better covering of the
points. We may note that there are regions, in fact boxes, where positive and negative boxes overlap. Of
course no point can belong to these regions. However, new points to be analyzed could fall within these
regions and their classification would require additional tests. Also there are regions not covered by any box.
Also in this case further testing would be needed.

As a second artificial test we have generated 100 positive random points and 50 negative random points in
a square (see Figure 3). Due to the mixing of positive and negative points we expect this test to be severe for
the algorithm. We have run the algorithm with objective function the maximum redundancy for the positive
points (K = p = 100). At the root node of the B&B tree the solution was fractional with value 1,487.25. This
solution has fractional cardinality 16.125 and fractional redundancy 125.25. During the column generation



15

process an integral solution of value 1566 with cardinality 17 and redundancy 134 has been produced. This
solution is cardinality optimal as it has been possible to check by separately running the cardinality objective
function. The combinatorial pricing algorithm at the root node has been called 49 times with minimum and
maximum number of B&B nodes 24 and 265 respectively, and an average of 126.6 nodes.

Then the B&B search for the optimal redundancy family has been stopped after having generated 200
nodes in the B&B tree. In one of the earliest subproblems (level 3 by imposing three boxes) a better solution
with value 1,549, 17 boxes and redundancy 151 was found. This is the solution shown in Figure 3. The blue
points are reproduced with size proportional to their redundancy.

Finally we have generated a higher dimensional test with n = 4 and points almost linearly separable.
A random point X was generated uniformly within the unit box. Then it was accepted as a positive point
with probability e−α t with t := max {0,

∑
iXi − n/2} and α a parameter tuned to the value 104. Similarly

a random point Y was generated uniformly within the unit box and accepted as a negative point with
probability e−α t with t := max {0,−

∑
iXi + n/2}. The instance has 103 positive points and 118 negative

points and we have solved the max redundancy problem for the positive points (K = p = 103). After 37
column generations a fractional solution of value 468.33 has been found. Since during the process a solution
with value 469 was found, this solution is optimal. This solution has 7 boxes with redundancy 252. The
number of B&B nodes of the pricing problems ranged from a minimum of 43 nodes to a maximum of 531
with an average of 242.5. On Mathematica the overall computation time has been quite high, about one
hour. However, we recall again that this value is not significant due the characteristics of Mathematica.

As already remarked we have observed a very modest increasing of the lower bound in the B&B tree
when a variable is set to the value 0, for the reasons already explained. It is indeed this slow increasing that
prevented a faster computation.

The second type of data are based on real observation. The first test is based on ultrasonic and elec-
tromyography measurements taken on 102 individuals, 64 of them healthy and 38 sick of carpal tunnel
syndrome. There are in total 7 different measurements for each individual. The detailed explanation of these
data can be found in [11]. The 38 data referring to the sick persons are the positive data and the 64 data
referring to the healthy persons are the negative data.

It has to be observed that this set of data turns out to be an easy one for the box covering problem.
Indeed one box is enough to cover all negative points, and two boxes only are needed to cover the positive
points. These two boxes are largely overlapping so that the redundancy is 68 (i.e. 30 points out of 38 are
covered by both boxes). The computation is immediate for both positive and negative covers and therefore
this test is obviously successful from the point of view of the computational performance.

From this data set we have randomly selected half positive and half negative data to be used as a training
set. This data has been covered by positive and negative boxes, respectively, and the remaining data has
been used as test data. For each positive (negative) test point four outcomes are possible: it belongs to at
least one positive (negative) box and to no negative (positive) box, thus being correctly identified as positive
(negative); it belongs to no box, neither positive nor negative, and so its status cannot be detected; it belongs
to both a positive and a negative box and so its status is again undetected; it belongs to at least one negative
(positive) box and to no positive (negative) box, thus being wrongly identified as negative (positive).



16

In the first case we have the true positive (true negative) points, labeled TP (TN) in Table 1. In the
second case we have a lack of information from the training set, likely due to too few points in the training
set. This situation is labeled as “?” in the table. In the third case the training set has conveyed some sort
of contradictory information. We recall that positive and negative boxes may overlap but clearly in their
intersection no point of the training set must be present. New points may fall in the intersection. This
situation is labeled as “!” in the table. This kind of uncertainty should be considered more critical than the
previous one. Finally in the fourth case we face the undesirable situation of misclassified points. Positive
points are wrongly detected as negative, so called false negative (labeled FN) and negative points are wrongly
detected as positive, so called false positive (FP).

Although it is possible to further refine the classification by taking into consideration other parameters
like the proximity of a point to other boxes (see for instance [12, 13]), we have not pursued this line here
because we consider these aspects not central to this paper.

We have carried out 25 random selections of the training sets. Each row in Table 1, except the last two,
reports the results of each random selection. In particular the numbers refer to the number of points which
fall into one of the situations described above. The last two rows report the average values of the 25 tests and
their percentages respectively. It is noteworthy to mention that only one false positive and no false negative
case has been observed by box clustering.

The second test of real data comes from the UCI benchmark instances. We have chosen the Breast
Cancer Wisconsin (Diagnostic) data set [14]. This data comprises 699 instances with 9 attributes each. Each
attribute is measured as an integer number between 1 and 10. Since there are missing values we have left out
all instances with some missing value, thus obtaining 682 points, of which 238 are positive (malignant) and 444
negative (benign). Due to the higher number of points and the higher dimensionality this is computationally
a more severe test than the previous data set.

We have first found a max redundancy cover both for the 444 negative points and for the 238 positive
points. For the negative points the number of generated boxes by the pricing procedures has been 36, of
which 14 have been generated by the heuristics (almost all at the beginning) and 26 by the exact procedure.
The 26 runs of the exact combinatorial pricing have required the following number of B&B nodes

204, 185, 204, 194, 261, 491, 493, 315, 302, 384, 433,

501, 565, 573, 574, 662, 655, 424, 701, 729, 734, 757,

with an average of about 400 B&B nodes for each box generation.

The best solution found at the root node of the B&B tree consisted of the following five boxes (identified
by the ` and u values) for which the redundancy is 1124 (on the average roughly 2.5 boxes cover a single



17

point and a box covers about 225 points, i.e., almost half the test size)(
{1, 1, 1, 1, 2, 1, 1, 1, 1} , {5, 4, 4, 10, 5, 10, 7, 2, 8}

)(
{1, 1, 1, 1, 1, 1, 1, 1, 1} , {8, 4, 6, 6, 5, 3, 7, 3, 2}

)(
{3, 3, 2, 2, 3, 1, 1, 2, 1} , {8, 4, 4, 6, 7, 10, 7, 8, 3}

)(
{1, 1, 1, 1, 1, 1, 1, 1, 1} , {4, 4, 5, 6, 10, 4, 7, 8, 8}

)(
{4, 1, 4, 1, 1, 1, 1, 1, 1} , {6, 9, 8, 5, 8, 8, 7, 7, 1}

)
For the positive points the number of generated boxes by the pricing procedures has been 54, of which 38

have been generated by the heuristics and 16 by the exact procedure. The 16 runs of the exact combinatorial
pricing have required the following number of B&B nodes

256, 390, 123, 501, 632, 877, 582, 799,

632, 863, 669, 619, 925, 565, 1440, 1409

with an average of about 705 B&B nodes for each box generation.

The best solution found at the root node of the B&B tree consisted of the following eight boxes for which
the redundancy is 633 (on the average roughly 2.6 boxes cover a single point and a box covers about 79
points, i.e., almost one third of the test size, note the difference with respect to the negative points)(

{1, 1, 3, 1, 3, 1, 2, 9, 1} , {10, 10, 10, 10, 10, 10, 10, 10, 10}
)(

{1, 5, 2, 2, 2, 1, 2, 3, 1} , {10, 10, 10, 10, 10, 10, 10, 10, 10}
)(

{5, 1, 1, 1, 2, 3, 2, 1, 1} , {10, 6, 8, 4, 8, 10, 7, 6, 8}
)(

{9, 1, 1, 1, 2, 1, 1, 1, 1} , {10, 10, 10, 10, 10, 10, 10, 10, 10}
)(

{1, 4, 2, 6, 2, 1, 2, 1, 1} , {10, 10, 10, 10, 10, 10, 10, 10, 10}
)(

{1, 5, 2, 1, 2, 1, 5, 1, 1} , {10, 10, 10, 10, 10, 10, 10, 10, 10}
)(

{3, 2, 2, 1, 5, 1, 1, 1, 1} , {10, 10, 6, 10, 6, 10, 6, 10, 4}
)(

{2, 1, 1, 2, 1, 4, 2, 1, 1} , {10, 8, 10, 9, 5, 10, 10, 6, 2}
)

Then, as for the carpal tunnel data case, we have randomly selected a training set to test the other data.
In this case we have selected 100 positive and 100 negative instances out of the whole data set. We have
found a max redundancy cover (both negative and positive) of these points and used these boxes to test the
remaining 138 positive and 344 negative points. We have run this test 25 times. The results are reported in
Table 2 with the last two rows reporting the average and the percentage values respectively.

We have noted that in all cases only two boxes were necessary to cover the negative points to confirm
the observation that healthy individuals tend to have the attribute measures within an interval and these
intervals are little correlated. On the contrary four/five boxes were needed to cover the positive data.



18

7 Conclusions

In this paper we have considered a box-clustering classification method for positive and negative data. In
particular we have developed a column-generation integer linear programming model to find both a positive
and a negative box family covering of the data. The box family can be chosen to be one of minimum cardinality
and, among the many minimum cardinality families, we may prefer the ones that maximize coverage. To this
purpose we have introduced the concept of redundancy. The problems we want to solve are NP-hard and the
method we propose for their solution is exact, although clearly suffers from the fact that the pricing itself is
NP-hard. Further investigation is needed to develop a reliable heuristics for pricing in order to speed-up the
pricing process and to devise a better branching scheme in presence of fractional solutions.

The method is flexible enough to introduce particular constraints, like for instance allowing only suffi-
ciently large boxes (this can be achieved in the pricing procedure) and/or requiring at least a specified number
of boxes (this can be achieved by simply adding one row constraint to (6) with very little modifications).

Acknowledgments

I am indebted to Federica Ricca and Vincenzo Spinelli for providing the carpal tunnel syndrome data.

References

1. K.P. Bennett and O.L. Mangasarian: Robust linear programming discrimination of two linearly insep-
arable sets. Optimization methods and software, 1, 23–34, (1992).

2. S. Bereg, S. Cabello, J. M. Dı́az-Báñez, P. Pérez-Lantero, C. Seara, and I. Ventura: The class cover
problem with boxes. Computational Geometry, 45, 294–304, (2012).

3. E. Boros, P.L. Hammer, T. Ibaraki and A. Kogan: Logical analysis of numerical data. Mathematical
Programming, 79, 163–190, (1997).

4. E. Boros, V. Spinelli and F. Ricca: Incompatibility graphs and data mining, in: Proceedings of the 10th
Cologne-Twente Workshop on Graphs and combinatorial optimization, Frascati, June 14-16, 2011,
http://ctw2011.dia.uniroma3.it/ctw proceedings.pdf (2011).

5. Chunhui Chen and O.L. Mangasarian: Hybrid misclassification minimization. Advances in Computa-
tional Mathematics, 5, 127–136, (1996).

6. J. Eckstein, P.L. Hammer, Y. Liu, M. Nediak, and B. Simeone: The maximum box problem and its
application to data analysis. Computational Optimization and Applications, 23, 285–298, (2002).

7. G. Felici, B. Simeone and V. Spinelli: Classification Techniques and Error Control in Logic Mining,
in: Data Mining: special issue in Annals of Information Systems, 8, 99–119, R. Stahlbock, S.F. Crone
and S. Lessmann (eds), (2010).

8. B.J. Gao, M. Ester, H. Xiong, J. Cai and O. Schulte: The Minimum Consistent Subset Cover Problem:
A Minimization View of Data Mining. IEEE Transactions on Knowledge and Data Engineering, 99, ,
(2011).



19

9. P.L. Hammer, Y. Liu, S. Szedmák and B. Simeone: Saturated systems of homogeneous boxes and the
logical analysys of numerical data. Discrete and Applied Mathematics, 144, 103–109, (2004).

10. O.L. Mangasarian: Linear and nonlinear separation of patterns by linear programming. Operations
Research, 13, 444–451, (1965).

11. M. Maravalle, F. Ricca, B. Simeone and V. Spinelli: Carpal Tunnel Syndrome Automatic Classification:
Electromyography vs. Ultrasound imaging. Dipartimento di Scienze Statistiche, Sapienza, Università
di Roma, Serie A - Ricerche, n. 11/2011. (2011).

12. S. Salzberg: A nearest hyperrectangle learning method. Machine Learning, 6, 251–276, (1991).
13. D. Wettschereck and T.G. Dietterich: An experimental comparison of the nearestneighbor and nearest-

hyperrectangle algorithms. Machine Learning, 19, 5–27, (1995).
14. W.H. Wolberg: Wisconsin Diagnostic Breast Cancer (WDBC), visited on: June 5, 2012,

http://archive.ics.uci.edu/ml/datasets/Breast+Can cer+Wisconsin+%28Original%29 (1991).



20

positive test points negative test points

TP ? ! FN TN ? ! FP

10 9 0 0 23 9 0 0

4 15 0 0 24 8 0 0

8 11 0 0 28 4 0 0

13 6 0 0 24 8 0 0

10 9 0 0 25 7 0 0

9 10 0 0 23 9 0 0

10 9 0 0 21 11 0 0

10 9 0 0 23 9 0 0

6 13 0 0 22 10 0 0

13 6 0 0 26 6 0 0

10 9 0 0 22 10 0 0

12 7 0 0 23 9 0 0

9 10 0 0 20 11 0 1

8 11 0 0 29 3 0 0

13 6 0 0 31 1 0 0

8 11 0 0 22 10 0 0

13 6 0 0 20 11 1 0

6 13 0 0 29 3 0 0

11 8 0 0 23 9 0 0

6 13 0 0 19 13 0 0

8 11 0 0 28 4 0 0

11 8 0 0 22 10 0 0

9 10 0 0 24 8 0 0

12 7 0 0 26 5 1 0

12 7 0 0 21 11 0 0

9.64 9.36 0.00 0.00 23.92 7.96 0.08 0.04

50.73 49.27 0.00 0.00 74.75 24.87 0.25 0.13

Table 1. Carpal tunnel syndrome data. TP: true positive; TN: true negative - positive and negative points detected
as such; ?: undecided - not belonging to any box; !: overdecided - belonging to both positive and negative boxes; FP:
false positive; FN: false negative



21

positive test points negative test points

TP ? ! FN TN ? ! FP

127 8 3 0 317 10 6 11

109 19 5 5 328 11 3 2

127 8 1 2 319 11 3 11

132 3 2 1 320 7 4 13

129 6 2 1 309 15 8 12

126 9 2 1 318 13 3 10

128 6 3 1 306 19 5 14

117 15 1 5 317 19 3 5

116 17 5 0 312 6 16 10

126 7 3 2 330 5 3 6

120 10 4 4 325 7 7 5

125 12 1 0 318 10 5 11

128 7 0 3 321 12 1 10

126 4 2 6 323 7 3 11

125 12 1 0 318 10 5 11

130 7 0 1 313 11 9 11

124 9 4 1 309 14 4 17

133 4 1 0 315 8 9 12

133 4 0 1 309 7 11 17

119 15 2 2 318 17 1 8

117 18 1 2 324 7 5 8

115 12 8 3 327 8 2 7

134 4 0 0 314 7 9 14

129 6 2 1 306 19 9 10

125 7 3 3 321 13 2 8

124.80 9.16 2.24 1.80 317.48 10.92 5.44 10.16

90.44 6.64 1.62 1.30 92.29 3.17 1.58 2.96

Table 2. Wisconsin diagnostic breast cancer data. TP: true positive; TN: true negative - positive and negative points
detected as such; ?: undecided - not belonging to any box; !: overdecided - belonging to both positive and negative
boxes; FP: false positive; FN: false negative


