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Abstract: In this article, a neural integral sliding mode control strategy is presented for the finite-time
fault-tolerant attitude tracking of rigid spacecraft subject to unknown inertia and disturbances. First,
an integral sliding mode controller was developed by originally constructing a novel integral sliding
mode surface to avoid the singularity problem. Then, the neural network (NN) was embedded into
the integral sliding mode controller to compensate the lumped uncertainty and replace the robust
switching term. In this way, the chattering phenomenon was significantly suppressed. Particularly,
the mechanism of indirect neural approximation was introduced through inequality relaxation.
Benefiting from this design, only a single learning parameter was required to be adjusted online, and
the computation burden of the proposed controller was extremely reduced. The stability argument
showed that the proposed controller could guarantee that the attitude and angular velocity tracking
errors were regulated to the minor residual sets around zero in a finite time. It was noteworthy that
the proposed controller was not only strongly robust against unknown inertia and disturbances, but
also highly insensitive to actuator faults. Finally, the effectiveness and advantages of the proposed
control strategy were validated using simulations and comparisons.

Keywords: attitude tracking control; finite-time control; fault-tolerant control; integral sliding mode
control; indirect neural approximation

MSC: 37N35; 93C40; 93D15

1. Introduction

Attitude control is the premise and foundation for spacecraft to fulfill various space
missions, such as on-orbit servicing, space debris removal, and deep space exploration.
To meet the autonomy and intelligence trends, modern spacecraft are expected to have
the capability of producing rapid, exact, and reliable responses to different maneuvering
signals. On the one hand, a spacecraft is unavoidably affected by inertia uncertainty and
disturbances due to the complex space environment. Even worse, the inertia matrix of
the spacecraft may be fully unknown in some extreme cases. For example, after a space
manipulator grasps a non-cooperative target, the inertia matrix of the combined spacecraft
during the attitude takeover phase may be fully unknown. On the other hand, a spacecraft
frequently suffers from actuator faults during practical applications. Until recently, a large
number of control methods have been utilized in the design of spacecraft attitude control
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systems, including proportional–differential (PD) control [1–4], sliding mode control [5–8],
backstepping control [9,10], iterative learning control [11,12], and intelligent control [13–16].

The convergence property is an important performance index for the attitude control
of spacecraft. Nevertheless, the above controllers can only realize the asymptotic stability or
at best exponential stability of the closed-loop system. Alternatively, the finite-time control
can guarantee that the attitude and angular velocity tracking errors are regulated to zero or
the minor residual sets around zero in finite time. The finite-time control approaches for
the attitude tracking of spacecraft can be roughly classified into three types. They are the
homogeneous method [17–20], the technique of adding a power integrator [21–24], and the
terminal sliding mode control [25–32]. It should be pointed out that the finite settling time
of the homogeneous method is difficult to b estimate, and the technique of adding a power
integrator is unable to handle the inertia uncertainty and disturbances. From the above
analysis, the terminal sliding mode control was determined to be the best one among these
three approaches to the design of spacecraft attitude control systems.

Nevertheless, the terminal sliding mode control exhibits two main disadvantages. The
first disadvantage is the singularity problem, in which infinite control inputs are required
to exactly steer the system states to zero. Although several types of nonsingular terminal
sliding mode controllers have been developed, the singularity problem is avoided at the
expense of losing part of the convergence rate. It should be emphasized that the full-order
sliding mode controller in [33] and the integral sliding mode controller in [34] could realize
the finite-time attitude tracking of spacecraft with no singularity problem. The sliding mode
surfaces in these controllers were both designed based on the homogeneous method. The
second disadvantage is the chattering phenomenon inherently existing in the sliding mode
control. It is well recognized that neural networks (NNs) and fuzzy logic systems have a
powerful universal approximation capability [35–44]. Since the chattering phenomenon is
mainly caused by the robust switching term, an effective method for chattering suppression
is adopting an NN or fuzzy logic system to replace the robust switching term. In [45], a
finite-time attitude tracking control scheme for spacecraft was proposed by combining
a terminal sliding mode control and a Chebyshev neural network. Moreover, in [46], a
fuzzy nonsingular terminal sliding mode controller was designed for the finite-time attitude
tracking of spacecraft subject to actuator faults. However, these controllers are difficult to be
implemented in real time, since the conventional neural and fuzzy approximations require
a large number of adaptive parameters to be learned online, and thus the spacecraft attitude
control system inevitably suffers from a heavy computational burden. Consequently, the
finite-time attitude tracking of spacecraft is still an open problem that deserves to be
further addressed.

The above observations motivated our study. This article presents a neural integral
sliding mode control strategy for the finite-time fault-tolerant attitude tracking of rigid
spacecraft subject to unknown inertia and disturbances. The major novelties of this study
can be summarized as the following three aspects.

• A novel integral sliding mode surface was constructed by utilizing the technique of
adding a power integrator, based on which the integral sliding mode controller was
developed with no singularity problem existing in the conventional terminal sliding
mode control.

• The NN was embedded into the integral sliding mode controller to compensate the
lumped uncertainty and replace the robust switching term. In this way, the chattering
phenomenon was significantly suppressed. Particularly, the mechanism of indirect
neural approximation was introduced through inequality relaxation. Benefiting from
this design, only a single learning parameter was required to be adjusted online, and
thus the proposed controller was computationally simple, which made it suitable for
onboard implementations.

• The practical finite-time stability of the resulting closed-loop system was theoretically
achieved. The proposed controller could guarantee that the attitude and angular veloc-
ity tracking errors were regulated to the minor residual sets around zero in a finite time.
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It was noteworthy that the proposed controller was not only strongly robust against
unknown inertia and disturbances, but also highly insensitive to actuator faults.

The rest of this paper is outlined as follows. Section 2 describes the problem and
provides some preliminaries. Section 3 presents the control design and stability argu-
ment. Section 4 provides the simulations and comparisons. Lastly, Section 5 concludes
this research.

2. Problem Description and Preliminaries
2.1. Notations

The following notations will be used in this article. In denotes the n × n identity
matrix. ‖·‖ denotes the Euclidean norm of a vector or the induced norm of a matrix.
λmin(·) and λmax(·) stand for the minimum and maximum eigenvalues of a matrix, re-

spectively. For a vector x = [x1, x2, . . . , xn]
T and a fraction power p, xp =

[
xp

1 , xp
2 , . . . , xp

n

]T

and sigp(x) =
[
|x1|psgn(x1), |x2|psgn(x2), . . . , |xn|psgn(xn)

]T. (·)× denote the 3× 3 skew-
symmetric matrix of a vector. For a vector a = [a1, a2, a3]

T, a× can be expressed as:

a× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

. (1)

2.2. Problem Statement

The spacecraft was modeled as a rigid body with no momentum transfer devices. The
modified Rodrigues parameters (MRPs) were applied to represent the attitude motion of
the spacecraft with respect to the inertial frame, denoted as σ = ρ tan

(
θ
4

)
∈ R3, where ρ is

the unit vector of the Euler axis and θ ∈ (−2π, 2π) is the rotation angle around the Euler
axis. The attitude kinematics and dynamics of the spacecraft in the presence of actuator
faults can be described as [47]:

.
σ = G(σ)ω, (2)

J
.

ω = −ω×Jω + Γu + d, (3)

where ω = [ω1, ω2, ω3]
T ∈ R3 denotes the angular velocity of the spacecraft with respect

to the inertial frame and expressed in the body frame. J ∈ R3×3 is the inertia matrix of the
spacecraft, which may be fully unknown in some extreme cases. u ∈ R3 and d ∈ R3 are
the control torques and disturbances, respectively. Γ = diag{γ1, γ2, γ3} is the actuation
effectiveness matrix with 0 ≤ γi ≤ 1 (i = 1, 2, 3). The cases γi = 1, 0 < γi < 1, and
γi = 0 represent whether the corresponding control torque is healthy, partially faulty, or
completely failed, respectively. In this article, the spacecraft was supposed to be fully
actuated with 0 < γi ≤ 1 (i = 1, 2, 3). G(σ) ∈ R3×3 is the Jacobian matrix, denoted as:

G(σ) =
1
2

(
1− σTσ

2
I3 + σ× + σσT

)
. (4)

G(σ) has the properties σTG(σ) = 1+σTσ
4 σT and ‖G(σ)‖ = 1+σTσ

4 .
Let σd and ωd be the desired attitude and angular velocity of the spacecraft, respec-

tively. Then, the attitude and angular velocity tracking errors can be defined as:

σe = σ ⊗ σ−1
d =

(
1− σT

d σd
)
σ −

(
1− σTσ

)
σd − 2S(σd)σ

1 + σT
d σdσTσ + 2σT

d σ
, (5)

ωe = ω−R(σe)ωd, (6)
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where R(σe) ∈ R3×3 is the rotation matrix from the desired frame to the body frame,
denoted as:

R(σe) = I3 +
8σ×e σ×e − 4

(
1− σT

e σe
)
σ×e

(1 + σT
e σe)

2 . (7)

R(σe) has the property
.

R(σe) = −ω×e R(σe). Subsequently, the error attitude kinematics
and dynamics of the spacecraft can be derived as:

.
σe = G(σe)ωe, (8)

J
.

ωe = −ω×Jω + J
(
ω×e R(σe)ωe −R(σe)

.
ωd
)
+ Γu + d. (9)

The aim of this research was to develop a fault-tolerant controller for a spacecraft to realize
attitude tracking in a finite time even when subject to unknown inertia and disturbances.

2.3. Useful Lemmas

Consider a nonlinear system:

.
x = f(x), f(0) = 0, x ∈ Rn, (10)

where f(·) : Rn → Rn is a continuous vector field.

Lemma 1 ([48]). Suppose system (10); if there exists a positive definite function V(x) : Rn → R
satisfying

.
V(x) + κVp(x) ≤ 0, where κ > 0 and 0 < p < 1, then system (10) is globally finite-

time stable and V(x) can regulate to zero in finite time. Moreover, the finite settling time can be

estimated as T ≤ V1−p(0)
κ(1−p) .

Lemma 2 ([49]). Suppose system (10); if there exists a positive definite function V(x) : Rn → R
satisfying

.
V(x) + κ1V(x) + κ2Vp(x) ≤ ϑ, where κ1 > 0, κ2 > 0, 0 < p < 1, and ϑ > 0, then

system (10) is practically finite-time stable and V(x) can regulate to the following minor residual
set around zero in a finite time:

C =

{
V(x)

∣∣∣∣V(x) ≤ ϑ

(1− ς)κ1

}
, (11)

where 0 < ς < 1. Moreover, the finite settling time can be estimated as T ≤ 1
ςκ1(1−p) ln ςκ1V1−p(0)+κ2

κ2
.

Lemma 3 ([50]). For a nonlinear function f (Z), Z ∈ Rn, it can be approximated by a radial basis
function NN (RBFNN) as:

f (Z) = W∗TΦ(Z) + ε(Z), (12)

where W∗ ∈ RN is the ideal RBFNN weight, Φ(Z) = [ϕ1(Z), ϕ2(Z), . . . , ϕN(Z)]
T ∈ RN is the

basis function vector, ε(Z) is the approximation error with |ε(Z)| ≤ ε, ε > 0, and N is the number
of neurons. Moreover, ϕi(Z) is commonly chosen as the Gaussian function:

ϕi(Z) = exp
(
−‖Z− ci‖2/w2

i

)
, i = 1, 2, . . . , N, (13)

where ci = [ci1, ci2, . . . , cin]
T ∈ Rn and wi are the center and width of the Gaussian function, respectively.

Lemma 4 ([51]). For any x1, x2, and 0 < p = p1/p2 ≤ 1, where p1 and p2 are positive odd
integers, the following inequality holds:∣∣∣xp

1 − xp
2

∣∣∣ ≤ 21−p|x1 − x2|p. (14)
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Lemma 5 ([51]). For any x1, x2, p > 0, q > 0, and r > 0, the following inequality holds:

|x1|p|x2|q ≤
p

p + q
r|x1|p+q +

q
p + q

r−
p
q |x2|p+q. (15)

Lemma 6 ([51]). For any xi, i = 1, 2, . . . , n, and 0 < p < 1, the following inequality holds:

(|x1|+ |x2|+ · · ·+ |xn|)p ≤ |x1|p + |x2|p + · · ·+ |xn|p. (16)

3. Control Design and Stability Argument

In this section, the main results of this study are presented. First, an integral sliding
mode surface was constructed by utilizing the technique of adding a power integrator.
Then, based on the integral sliding mode surface, a neural integral sliding mode controller
was developed by adopting the NN to compensate the lumped uncertainty. Finally, the
practical finite-time stability of the resulting closed-loop system was theoretically achieved.

3.1. Integral Sliding Mode Surface Design

By utilizing the technique of adding a power integrator, the integral sliding mode
surface is constructed as:

s = ωe +
∫ t

0
h2

(
1 + σT

e (τ)σe(τ)

4

)(
ω

p
e (τ) + hp

1 σe(τ)
) 2

p−1
dτ, (17)

where 1 < p = p1/p2 < 2, and p1 and p2 are positive odd integers. Moreover, the design
parameters h1 and h2 should be selected to satisfy the following conditions:

h1 ≥
21− 1

p p + 3
1 + p

+ 2−
1+p
2p α, (18)

h2 ≥ 22− 2
p 3
(

2− 1
p

)
hp

1 +
21− 1

p

(1 + p)

(
2− 1

p

)(
21− 1

p + 3p
)

hp+1
1 + 21− 1

p

(
2− 1

p

) p−1
2p

h
p2−1

2p
1 α, (19)

where α > 0.

Remark 1. Different from the terminal sliding mode surface [25–32] and the full-order sliding mode
surface and the integral sliding mode surface designed based on the homogeneous method [33,34],
the integral sliding mode surface (17) was originally constructed by utilizing the adding a power
integrator technique. Based on the integral sliding mode surface, the integral sliding mode controller
could be developed with no singularity problem existing in the conventional terminal sliding
mode control.

Theorem 1. When the integral sliding mode surface s arrives at zero, the attitude and angular
velocity tracking errors σe and ωe can regulate to zero in finite time.

Proof. Define the variables ω∗e = −h1σ
1
p

e and ζ = ω
p
e −ω

∗p
e . When the integral sliding

mode surface arrives at zero, we have:{ .
σe = ωe,
.

ωe = −h2

(
1+σT

e σe
4

)
ζ

2
p−1.

(20)
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Introduce the following Lyapunov candidate function:

L = L0(σe) +
3

∑
i=1

Li(ζi), (21)

where
L0(σe) =

1
2

σT
e σe, (22)

Li(ζi) =
1

21− 1
p
(

2− 1
p

)
h1+p

1

∫ ωei

ω∗ei

(
vp −ω

p
ci

)2− 1
p dv. (23)

Employing Lemmas 4 and 5, the time differentiation of L0 can be evaluated as:

.
L0 = σT

e G(σe)ωe

=
(

1+σT
e σe

4

)(
σT

e ωe + σT
e (ωe −ω∗e )

)
=
(

1+σT
e σe

4

)(
−h1

3
∑

i=1
σei

1+ 1
p + σT

e (ωe −ω∗e )

)
≤
(

1+σT
e σe

4

)(
−h1

3
∑

i=1
|σei|

1+ 1
p + 21− 1

p
3
∑

i=1
|σei| · |ζi|

1
p

)
≤
(

1+σT
e σe

4

)(
−
(

h1 − 21− 1
p p

1+p

)
3
∑

i=1
|σei|

1+ 1
p + 21− 1

p

1+p

3
∑

i=1
|ζi|

1+ 1
p

)
.

(24)

Moreover, the time differentiation of Li can be evaluated as:

.
Li =

dω
∗p
ei /dt

21− 1
p h1+p

1

∫ ωei

ω∗ei

(
vp −ω

∗p
ei

)1− 1
p dv +

ζ
2− 1

p
i

.
ωei

21− 1
p
(

2− 1
p

)
h1+p

1

. (25)

The following inequality can be easily derived:

.
Li =

dω
∗p
ei /dt

21− 1
p h1+p

1

∫ ωei

ω∗ei

(
vp −ω

∗p
ei

)1− 1
p dv +

ζ
2− 1

p
i

.
ωei

21− 1
p
(

2− 1
p

)
h1+p

1

. (26)

Substituting (26) into (25) and employing Lemma 4, we have:

.
Li ≤

1

21− 1
p h1

(
1 + σT

e σe

4

)( 3

∑
j=1

∣∣ωej
∣∣)|ωei −ω∗ei||ζi|

1− 1
p +

ζ
2− 1

p
i

.
ωei

21− 1
p
(

2− 1
p

)
h1+p

1

. (27)

Moreover, employing Lemmas 4 and 5, we have:

1

21− 1
p h1

∣∣∣ωej

∣∣∣∣∣ωei −ω∗ei
∣∣|ζi|

1− 1
p ≤ 1

h1

∣∣∣ωej

∣∣∣|ζi|

≤ 1
h1
|ζi|
∣∣∣ωej −ω∗ej

∣∣∣+ 1
h1
|ζi|
∣∣∣ω∗ej

∣∣∣
≤

p
(

21− 1
p +h1

)
(1+p)h1

|ζi|
1+ 1

p + 21− 1
p

(1+p)h1

∣∣∣ζ j

∣∣∣1+ 1
p
+ 1

1+p

∣∣∣σej

∣∣∣1+ 1
p .

(28)
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Substituting (28) into (27), we have:

.
Li ≤

(
1+σT

e σe
4

) 3p
(

21− 1
p +h1

)
(1+p)h1

|ζi|
1+ 1

p + 21− 1
p

(1+p)h1

3
∑

j=1

∣∣ζ j
∣∣1+ 1

p + 1
1+p

3
∑

j=1

∣∣σej
∣∣1+ 1

p


+

ζ
2− 1

p
i

.
ωei

21− 1
p
(

2− 1
p

)
h1+p

1

.

(29)

Invoking (24) and (29), the time differentiation of L can be evaluated as:

.
L =

.
L0 +

3
∑

i=1

.
Li

≤
(

1+σT
e σe

4

)−(h1 −
21− 1

p p+3
1+p

)
3
∑

i=1
|σei|

1+ 1
p +

 21− 1
p +3p

1+p +
3
(

21− 1
p
)

h1

 3
∑

i=1
|ζi|

1+ 1
p


+

3
∑

i=1
ζ

2− 1
p

i
.

ωei

21− 1
p
(

2− 1
p

)
h1+p

1

.

(30)

Substituting (20) into (30), we have:

.
L ≤

(
1+σT

e σe
4

)(
−
(

h1 − 21− 1
p p+3

1+p

)
3
∑

i=1
|σei|

1+ 1
p

+

− 21− 1
p +3p

1+p −
3
(

21− 1
p
)

h1
+ h2

21− 1
p
(

2− 1
p

)
h1+p

1

 3
∑

i=1
|ζi|

1+ 1
p

.

(31)

On the other hand, employing Lemma 4 in (23), we have:

Li ≤ 1

21− 1
p
(

2− 1
p

)
h1+p

1

∣∣ωei −ω∗ei

∣∣ · |ζi|
2− 1

p

≤ 1(
2− 1

p

)
h1+p

1

ζ2
i .

(32)

Substituting (32) into (21) and employing Lemma 6, we have:

L
1+p
2p ≤ 1

2
1+p
2p

3

∑
i=1
|σei|

1+ 1
p +

1(
2− 1

p

) 1+p
2p h

(1+p)2
2p

1

3

∑
i=1
|ζi|

1+ 1
p . (33)

Invoking (31) and (33), when the conditions (18) and (19) are satisfied, we further have:

.
L + αL

1+p
2p ≤ 0. (34)

Then, using Lemma 1, the closed-loop system (20) becomes globally finite-time stable.
When the integral sliding mode surface s arrives at zero, the attitude and angular velocity
tracking errors σe and ωe can regulate to zero in finite time. Moreover, the finite settling
time of the sliding phase can be estimated as:

Tsliding ≤
2pL

p−1
2p (0)

α(p− 1)
. (35)

The proof is thus finished. �
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3.2. Neural Integral Sliding Mode Control Design

The time differentiation of s can be evaluated as:

J
.
s = J

.
ωe + h2

(
1+σT

e σe
4

)
J
(

ω
p
e + hp

1 σe

) 2
p−1

= −ω×Jω + J
(
ω×e R(σe)ωe −R(σe)

.
ωd
)
+ Γu + d

+h2

(
1+σT

e σe
4

)
J
(

ω
p
e + hp

1 σe

) 2
p−1

= Γu + F,

(36)

where F is the lumped uncertainty, denoted as:

F = −ω×Jω + J
(
ω×e R(σe)ωe −R(σe)

.
ωd
)
+ d + h2

(
1 + σT

e σe

4

)
J
(

ω
p
e + hp

1 σe

) 2
p−1

. (37)

Define the variable Z =
[
σT, ωT]T. According to Lemma 3, the lumped uncertainty

can be expressed as:
F = W∗TΦ(Z) + ε(Z), (38)

where W∗ ∈ RN×3 is the ideal RBFNN weight, Φ(Z) ∈ RN is the Gaussian basis function
vector, ε(Z) ∈ R3 is the approximation error with ‖ε(Z)‖ ≤ ε, ε > 0, and N is the number
of neurons. Substituting ‖W∗‖ ≤W into (38), we have:

‖F‖ ≤ ‖W∗‖‖Φ(Z)‖+ ‖ε(Z)‖
≤ BΦ,

(39)

where B = max
{

W, ε
}

is an unknown constant and Φ = ‖Φ(Z)‖+ 1 is a known function.
Then, the neural integral sliding mode controller is developed as:

u = −k1s− k2sigq(s)− B̂sΦ2s
2η2 , (40)

where k1 > 0, k2 > 0, 0 < q < 1, η > 0, B̂s is the estimation of Bs; and Bs = B2. Additionally,
the parametric adaptive learning law is designed as:

.
B̂s = −l1B̂s + l2

Φ2‖s‖2

2η2 , (41)

where l1 > 0 and l2 > 0.

Remark 2. For the conventional neural and fuzzy approximations [45,46], the number of the
adaptive parameters that were required to be learned online was 3N. Alternatively, the mechanism
of indirect neural approximation was introduced through inequality relaxation. Benefiting from this
design, only a single learning parameter was required to be adjusted online, and the computation
burden of the proposed controller was extremely reduced. The indirect neural approximation utilized
in this article is more suitable for practical engineering, especially when considering that the onboard
computer has a limited calculation capability.

Remark 3. In this article, the RBFNN was embedded into the integral sliding mode controller to
compensate the lumped uncertainty and replace the robust switching term. It should be pointed out
that the RBFNN utilized here can also be replaced by some other efficient approximation tools, such
as a Chebyshev NN, wavelet NN, recurrent NN, cerebellar model articulation controller, extreme
learning machine, or fuzzy logic system.

Theorem 2. Suppose the spacecraft system described as (2) and (3). When the neural integral
sliding mode controller (40) and the parametric adaptive learning law (41) are employed, the
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resulting closed-loop system is practically finite-time stable, and the attitude and angular velocity
tracking errors σe and ωe can regulate to the minor residual sets around zero in a finite time.

Proof. The proof of Theorem 2 involves two steps. In Step 1, we will prove that when the
proposed controller u is employed, the integral sliding mode surface s can regulate to the
minor residual set around zero in finite time. In Step 2, we will prove that when the integral
sliding mode surface s arrives at zero, the attitude and angular velocity tracking errors σe
and ωe can regulate to zero in finite time.

Step 1: Arriving phase. Introduce the following Lyapunov candidate function:

V1 =
1
2

sTJs +
1

2l2γmin
B̃2

s , (42)

where γmin = min{γ1, γ2, γ3} and B̃s = Bs − γminB̂s denotes the estimation error of Bs.
The time differentiation of V1 can be evaluated as:

.
V1 = sTJ

.
s− 1

l2
B̃s

.
B̂s

= sT(Γu + F)− 1
l2

B̃s

.
B̂s.

(43)

Substituting the neural integral sliding mode controller (40) and the parametric adap-
tive learning law (41) into (43), we have:

.
V1 = sT

(
Γ
(
−k1s− k2sigq(s)− B̂sΦ2s

2η2

)
+ F

)
− B̃s

(
− l1

l2
B̂s +

Φ2‖s‖2

2η2

)
= −k1γmin‖s‖2 − k2γmin‖s‖q+1 − BsΦ2‖s‖2

2η2 + sTF + l1
l2

B̃s B̂s.
(44)

The following inequalities can be easily derived:

sTF ≤ B2Φ2‖s‖2

2η2 +
η2

2
=

BsΦ2‖s‖2

2η2 +
η2

2
, (45)

l1
l2

B̃s B̂s =
l1

l2γmin
B̃s

(
Bs − B̃s

)
≤ l1

2l2γmin

(
B2

s − B̃2
s

)
. (46)

Substituting (45) and (46) into (44), we have:

.
V1 ≤ −k1γmin‖s‖2 − k2γmin‖s‖q+1 − l1

2l2γmin
B̃2

s +
l1

2l2γmin
B2

s +
η2

2

≤ −k1γmin‖s‖2 − l1
2l2γmin

B̃2
s +

l1
2l2γmin

B2
s +

η2

2

≤ −βV1 + ψ,

(47)

where β = min
{

2k1γmin
λmax(J)

, l1
}

and ψ = l1
2l2γmin

B2
s +

η2

2 . Solving (46), we further have:

V1 ≤
(

V1(0)−
ψ

β

)
e−βt +

ψ

β
. (48)

Combined with the definition of V1, it follows that B̃s is bounded. There exists an
unknown positive constant Bs such that:∣∣∣B̃s

∣∣∣ < Bs. (49)

Next, introduce another Lyapunov candidate function:

V2 =
1
2

sTJs. (50)
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Likewise, the time differentiation of V2 can be evaluated as:
.

V2 = sTJ
.
s

= sT
(

Γ
(
−k1s− k2sigq(s)− B̂sΦ2s

2η2

)
+ F

)
≤ −k1γmin‖s‖2 − k2γmin‖s‖q+1 + B̃sΦ2‖s‖2

2η2 + η2

2 .

(51)

Substituting (49) into (51), we have:

.
V2 ≤ −k1γmin‖s‖2 − k2γmin‖s‖q+1 + BsΦ2‖s‖2

2η2 + η2

2 .

≤ −
(

k1γmin − BsΦ2

2η2

)
‖s‖2 − k2γmin‖s‖q+1 + η2

2

= −κ1V2 − κ2V
q+1

2
2 + ϑ,

(52)

where κ1 =
2k1γmin− BsΦ2

η2

λmax(J)
, κ2 = 2k2γmin

λ
q+1

2
max (J)

, and ϑ = η2

2 . To ensure κ1 > 0, the design parameter

k1 should be selected to satisfy the following condition:

k1 >
BsΦ2

2η2γmin
. (53)

Then, using Lemma 2, the resulting closed-loop system becomes practically finite-time
stable, and V2 can regulate to the following minor residual set around zero in finite time:

C =

{
V2

∣∣∣∣V2 ≤
ϑ

(1− ς)κ1

}
, (54)

where 0 < ς < 1. Combined with the definition of V2, it follows that the integral sliding
mode surface s can regulate to the minor residual set around zero in a finite time. Moreover,
the finite settling time of the arriving phase can be estimated as:

Tarriving ≤
2

ςκ1(1− q)
ln

ςκ1V
1−q

2
2 (0) + κ2

κ2
. (55)

Step 2: Sliding phase. According to Theorem 1, when the integral sliding mode surface
s arrives at zero, the attitude and angular velocity tracking errors σe and ωe can regulate to
zero in finite time.

From the results of Steps 1 and 2, we can obtain that the resulting closed-loop system
is practically finite-time stable, and the attitude and angular velocity tracking errors σe and
ωe can regulate to the minor residual sets around zero in a finite time. Moreover, the total
finite settling time can be estimated as:

Ttotal = Tarriving + Tsliding ≤
2

ςκ1(1− q)
ln

ςκ1V
1−q

2
2 (0) + κ2

κ2
+

2pL
p−1
2p (0)

α(p− 1)
. (56)

In addition, it can be obtained from (54) that the minor residual sets around zero are
adjustable. If the design parameters k1 and k2 are selected as large as desired, the minor
residual sets can be made sufficiently minor. The proof is thus finished. �

Remark 4. A unified parameter selection approach for the proposed controller was carried out.
First, we determined p, h1, and h2 in the integral sliding mode surface (17); p should be selected
as a ratio of two positive odd integers satisfying 1 < p < 2, and h1 and h2 should be selected to
satisfy the conditions (18) and (19). In general, a small h1 and large h2 can increase the convergence
rate. However, the control torques become large at the same time. Then, we determined q, k1, and
k2 in the neural integral sliding mode controller (40); q should be selected to satisfy 0 < q < 1.
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In general, a large k1 and k2 can accelerate the convergence. However, they may in turn lead to
the relatively large control torques. Finally, we determined η, l1, and l2. In general, a small l1 and
large l2 can speed up the convergence. However, they may also result in a relatively poor transient
response performance. Therefore, to achieve an excellent tracking performance, the parameters of the
proposed controller must be appropriately selected through trial and error.

Remark 5. For convenience of the readers to reach a better understanding, the structure of the
proposed neural integral sliding mode control strategy is depicted in Figure 1.
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4. Simulations and Comparisons

In this section, simulations and comparisons are conducted to demonstrate the pro-
posed neural integral sliding mode control strategy. The inertia matrix of the spacecraft is
presented as [52]:

J =

20 1.2 0.9
1.2 17 1.4
0.9 1.4 15

 kg ·m2. (57)

The inertia matrix was fully unknown for the control design. The disturbances were
given as d = [0.04 sin(0.4t), 0.02 sin(0.8t), 0.03 sin(0.6t)]T Nm. The actuation effectiveness
matrix was chosen as:

Γ = diag{0.8 + 0.1 sin(1.8t), 0.7 + 0.1 cos(2.1t), 0.8 + 0.1 sin(2.4t)}. (58)

Moreover, the initial attitude and angular velocity of the spacecraft were provided as
σ0 = [0.3, 0.2,−0.2]T and ω0 = [0.01, 0.02,−0.02]Trad/s, respectively. The desired attitude
of the spacecraft was set as σd = 0.04[sin(0.21t), sin(0.24t), sin(0.18t)]T.

In addition to the proposed neural integral sliding mode controller (40), another two
finite-time model-free controllers were also employed for comparisons. They were the
finite-time controller designed based on the homogeneous method in [18] and the finite-
time controller developed by using the technique of adding a power integrator in [21].
Specifically, the finite-time controller in [18] was formulated as:

u = −k1G−1(σe)sigα1(σe)− k2sigα2(ωe), (59)

where k1 > 0, k2 > 0, 0 < α1 < 1, and α2 = 2α1/(1 + α1). Moreover, the finite-time
controller in [21] was carried out as:

u = −k2

(
1 + σT

e σe

4

)(
ω

p
e + kp

1 σe

) 2
p−1

, (60)

where k1 > 0, k2 > 0, and 1 < p = p1/p2 < 2, and p1 and p2 are positive odd integers.
The parameters of the proposed neural-enhanced integral TSM controller (39) were

selected as h1 = 1.2, h2 = 3, p = 101/99, k1 = 20, k2 = 20, q = 4/5, l1 = 1, l2 = 1,
and η = 0.1. Seven nodes were set for the hidden layer of the RBFNN. The parameters
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of the RBFNN were selected as ci = [−3,−2,−1, 0, 1, 2, 3]T and wi = 6. Moreover, the
parameters of the compared finite-time controller (59) were selected as k1 = 5, k2 = 12,
and α1 = 4/5. The parameters of the compared finite-time controller (60) were selected as
k1 = 1.2, k2 = 30, and p = 11/9.

Figures 2 and 3 show the profiles of the attitude and angular velocity tracking, respec-
tively. It can be clearly seen that the spacecraft could accomplish the attitude tracking task
successfully under the proposed and compared controllers. The profiles of the attitude
and angular velocity tracking errors are presented in Figures 4 and 5, respectively. The
proposed controller could achieve the excellent tracking performance even when sub-
ject to lumped uncertainty. By contrast, the tracking performances of the two compared
controllers were relatively poor due to the existence of actuator faults, unknown inertia,
and disturbances. Quantitatively, the steady-state attitude and angular velocity track-
ing errors under the proposed controller were within the ranges of

[
−5× 10−4, 5× 10−4]

and
[
−1× 10−3, 1× 10−3] rad/s, which could meet the requirements of most practical

space missions. However, the steady-state attitude and angular velocity tracking errors
under the two compared controllers were within the ranges of

[
−5× 10−3, 5× 10−3] and[

−6× 10−3, 6× 10−3] rad/s. Therefore, the proposed controller could realize a higher
steady-state attitude and angular velocity tracking accuracy than the two compared con-
trollers. This mainly benefited from the superior uncertainty attenuation capability of the
proposed controller by employing the NN for feedforward compensation. The profile of
the control torques is shown in Figure 6. It is not difficult to find that the control torques of
the proposed and compared controllers were always within the reasonable range during
the entire attitude tracking process. Figure 7 gives the profile of the adaptive parameter.
The convergence time of the adaptive parameter was about 14.5 s, which was nearly the
same as the convergence time of the attitude and angular velocity tracking. Moreover,
it should be emphasized that only one adaptive learning parameter was required to be
adjusted online for the indirect neural approximation, and the onboard calculation burden
of the proposed controller was extremely reduced. This distinctive feature of the proposed
controller gives it potential for practical applications.
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Furthermore, Figures 8 and 9 provide the norms of the attitude and angular velocity
tracking errors, respectively, under the proposed and compared controllers. The energy
consumptions of the three controllers are depicted in Figure 10, where the energy con-
sumption index is defined as Eu = 1

2

∫ t
0 ‖u(τ)‖dτ. As shown in Figures 8–10, it is obvious

that the proposed controller could achieve a more excellent tracking performance than
the two compared controllers, associated with faster convergence rate, higher tracking
accuracy, and less energy consumption. As discussed in the Introduction, the finite-time
controller designed based on the homogeneous method in [18] and the finite-time controller
developed by using the technique of adding a power integrator in [21] had difficulty han-
dling the unknown inertia, disturbances, and actuator faults. Alternatively, the proposed
controller was designed as a combination of integral sliding mode control and indirect
neural approximation. Benefiting from the indirect neural compensation, the proposed
controller was not only strongly robust against unknown inertia and disturbances, but also
highly insensitive to actuator faults.
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5. Conclusions

This article aimed to present a neural integral sliding mode control strategy for the
finite-time attitude tracking of uncertain spacecraft in the presence of actuator faults.
Based on the novel integral sliding mode surface, the proposed controller was developed
through integration with the indirect neural approximation to compensate the lumped
uncertainty. The practical finite-time stability of the resulting closed-loop system was
achieved through theoretical analysis. The proposed controller could ensure that the
attitude and angular velocity tracking errors were stabilized to the minor residual sets
around zero in a finite time. Moreover, the minor residual sets around zero were adjustable,
and could be made as small as possible by properly selecting the design parameters. It
should be pointed out that both the singularity problem and the chattering phenomenon
commonly existing in the conventional terminal sliding mode control were well addressed
through the proposed control design. Finally, the simulation results indicated the excellent
tracking performance and good uncertainty rejection capability of the proposed control
strategy. Future investigation of this work will be deployed by improving the proposed
control strategy with the fixed-time convergence property.

Author Contributions: Conceptualization, Q.Y., H.J., S.B., S.F.M. and N.D.A.; methodology, Q.Y., H.J.,
S.B., S.F.M. and N.D.A.; software, Q.Y., H.J., S.B., S.F.M. and N.D.A.; validation, Q.Y., H.J., S.B., S.F.M.
and N.D.A.; investigation, Q.Y., H.J., S.B., S.F.M. and N.D.A.; writing—original draft preparation,
Q.Y., H.J., S.B., S.F.M. and N.D.A.; writing—review and editing, Q.Y., H.J., S.B., S.F.M. and N.D.A.;



Mathematics 2022, 10, 2467 17 of 18

supervision, Q.Y., H.J., S.B., S.F.M. and N.D.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research work was funded by Institutional Fund Projects under Grant no. (IFPDP-231-
22). Therefore, the authors gratefully acknowledge technical and financial support from the Ministry
of Education and King Abdulaziz University (KAU), Jeddah, Saudi Arabia.

Informed Consent Statement: Not applicable.

Acknowledgments: This research work was funded by Institutional Fund Projects under Grant no.
(IFPDP-231-22). Therefore, the authors gratefully acknowledge technical and financial support from
the Ministry of Education and King Abdulaziz University (KAU), Jeddah, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wen, J.Y.; Kreutz-Delgado, K. The attitude control problem. IEEE Trans. Autom. Control 1991, 36, 1148–1162. [CrossRef]
2. Tsiotras, P. Further passivity results for the attitude control problem. IEEE Trans. Autom. Control 1998, 43, 1597–1600. [CrossRef]
3. Su, Y.; Zheng, C. Globally asymptotic stabilization of spacecraft with simple saturated proportional-derivative control. J. Guid.

Control Dyn. 2011, 34, 1932–1936. [CrossRef]
4. Su, Y.; Zheng, C. Velocity-free saturated PD control for asymptotic stabilization of spacecraft. Aerosp. Sci. Technol. 2014, 39, 6–12.

[CrossRef]
5. Lo, S.-C.; Chen, Y.-P. Smooth sliding-mode control for spacecraft attitude tracking maneuvers. J. Guid. Control Dyn. 1995, 18,

1345–1349. [CrossRef]
6. Yeh, F.-K. Sliding-mode adaptive attitude controller design for spacecraft with thrusters. IET Control. Theory Appl. 2010, 4,

1254–1264. [CrossRef]
7. Zhu, Z.; Xia, Y.; Fu, M. Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron.

2011, 58, 4898–4907. [CrossRef]
8. Lu, K.; Xia, Y.; Zhu, Z.; Basin, M.V. Sliding mode attitude tracking of rigid spacecraft with disturbances. J. Frankl. Inst. 2012, 349,

413–440. [CrossRef]
9. Kristiansen, R.; Nicklasson, P.J.; Gravdahl, J.T. Satellite attitude control by quaternion-based backstepping. IEEE Trans. Control

Syst. Technol. 2009, 17, 227–232. [CrossRef]
10. Ali, I.; Radice, G.; Kim, J. Backstepping control design with actuator torque bound for spacecraft attitude maneuver. J. Guid.

Control Dyn. 2010, 33, 254–259. [CrossRef]
11. Wu, B.; Wang, D.; Poh, E.K. High precision satellite attitude tracking control via iterative learning control. J. Guid. Control Dyn.

2015, 38, 528–534. [CrossRef]
12. Yao, Q. Robust adaptive iterative learning control for high precision attitude tracking of spacecraft. J. Aerosp. Eng. 2021, 34,

04020108. [CrossRef]
13. Leeghim, H.; Choi, Y.; Bang, H. Adaptive attitude control of spacecraft using neural networks. Acta Astronaut 2009, 64, 778–786.

[CrossRef]
14. Zou, A.-M.; Kumar, K.D. Adaptive fuzzy fault-tolerant attitude control of spacecraft. Control Eng. Pract. 2011, 19, 10–21. [CrossRef]
15. Li, M.; Hou, M.; Yin, C. Adaptive attitude stabilization control design for spacecraft under physical limitations. J. Guid. Control

Dyn. 2016, 39, 2176–2180. [CrossRef]
16. Huo, B.; Xia, Y.; Yin, L.; Fu, M. Fuzzy adaptive fault-tolerant output feedback attitude-tracking control of rigid spacecraft. IEEE

Trans. Syst. Man. Cybern. Syst. 2017, 47, 1898–1908. [CrossRef]
17. Du, H.; Li, S. Finite-time attitude stabilization for a spacecraft using homogeneous method. J. Guid. Control Dyn. 2012, 35, 740–748.
18. Su, Y.; Zheng, C. Simple nonlinear proportional-derivative control for global finite-time stabilization of spacecraft. J. Guid. Control

Dyn. 2015, 38, 173–178.
19. Gui, H.; Jin, L.; Xu, S. Simple finite-time attitude stabilization laws for rigid spacecraft with bounded inputs. Aerosp. Sci. Technol.

2015, 42, 176–186. [CrossRef]
20. Zou, A.-M.; de Ruiter, A.H.J.; Kumar, K.D. Finite-time output feedback attitude control for rigid spacecraft under control input

saturation. J. Frankl. Inst. 2016, 353, 4442–4470.
21. Du, H.; Li, S.; Qian, C. Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans.

Autom. Control 2011, 56, 2711–2717. [CrossRef]
22. Jiang, B.; Li, C.; Ma, G. Finite-time output feedback attitude control for spacecraft using “Adding a power integrator” technique.

Aerosp. Sci. Technol. 2017, 66, 342–354. [CrossRef]
23. Zhao, L.; Yu, J.; Yu, H. Adaptive finite-time attitude tracking control for spacecraft with disturbances. IEEE Trans. Aerosp. Electron.

Syst. 2018, 54, 1297–1305. [CrossRef]
24. Yao, Q. Robust finite-time control design for attitude stabilization of spacecraft under measurement uncertainties. Adv. Space Res.

2021, 68, 3159–3175. [CrossRef]

http://doi.org/10.1109/9.90228
http://doi.org/10.1109/9.728877
http://doi.org/10.2514/1.54254
http://doi.org/10.1016/j.ast.2014.08.005
http://doi.org/10.2514/3.21551
http://doi.org/10.1049/iet-cta.2009.0026
http://doi.org/10.1109/TIE.2011.2107719
http://doi.org/10.1016/j.jfranklin.2011.07.019
http://doi.org/10.1109/TCST.2008.924576
http://doi.org/10.2514/1.45541
http://doi.org/10.2514/1.G000497
http://doi.org/10.1061/(ASCE)AS.1943-5525.0001230
http://doi.org/10.1016/j.actaastro.2008.12.004
http://doi.org/10.1016/j.conengprac.2010.08.005
http://doi.org/10.2514/1.G000348
http://doi.org/10.1109/TSMC.2016.2564918
http://doi.org/10.1016/j.ast.2015.01.020
http://doi.org/10.1109/TAC.2011.2159419
http://doi.org/10.1016/j.ast.2017.03.026
http://doi.org/10.1109/TAES.2017.2780638
http://doi.org/10.1016/j.asr.2021.06.017


Mathematics 2022, 10, 2467 18 of 18

25. Jin, E.; Sun, Z. Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci.
Technol. 2018, 12, 324–330. [CrossRef]

26. Li, S.; Wang, Z.; Fei, S. Comments on the paper: Robust controllers design with finite time convergence for rigid spacecraft
attitude tracking control. Aerosp. Sci. Technol. 2011, 15, 193–195. [CrossRef]

27. Zhu, Z.; Xia, Y.; Fu, M. Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 2011,
21, 686–702. [CrossRef]

28. Lu, K.; Xia, Y. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 2013, 49, 3591–3599.
[CrossRef]

29. Song, Z.; Li, H.; Sun, K. Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique. ISA Trans.
2014, 53, 117–124. [CrossRef]

30. Pukdeboon, C.; Siricharuanun, P. Nonsingular terminal sliding mode based finite-time control for spacecraft attitude tracking.
Int. J. Control Autom. Syst. 2014, 12, 530–540. [CrossRef]

31. Han, Z.; Zhang, K.; Yang, T.; Zhang, M. Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode.
IET Control Theory Appl. 2016, 10, 1991–1999. [CrossRef]

32. Shao, S.; Zong, Q.; Tian, B.; Wang, F. Finite-time sliding mode attitude control for rigid spacecraft without angular velocity
measurement. J. Frankl. Inst. 2017, 354, 4656–4674. [CrossRef]

33. Song, Z.; Duan, C.; Su, H.; Hu, J. Full-order sliding mode control for finite-time attitude tracking of rigid spacecraft. IET Control
Theory Appl. 2018, 12, 1086–1094. [CrossRef]

34. Guo, Y.; Huang, B.; Song, S.; Li, A.; Wang, C. Robust saturated finite-time attitude control for spacecraft using integral sliding
mode. J. Guid. Control Dyn. 2019, 42, 440–446. [CrossRef]

35. Jahanshahi, H.; Yousefpour, A.; Munoz-Pacheco, J.M.; Moroz, I.; Wei, Z.; Castillo, O. A new multi-stable fractional-order four-
dimensional system with self-excited and hidden chaotic attractors: Dynamic analysis and adaptive synchronization using a
novel fuzzy adaptive sliding mode control method. Appl. Soft Comput. 2020, 87, 105943. [CrossRef]

36. Wang, S.; Bekiros, S.; Yousefpour, A.; He, S.; Castillo, O.; Jahanshahi, H. Synchronization of fractional time-delayed financial
system using a novel type-2 fuzzy active control method. Chaos Solitons Fractals 2020, 136, 109768. [CrossRef]

37. Xiong, P.-Y.; Jahanshahi, H.; Alcaraz, R.; Chu, Y.-M.; Gómez-Aguilar, J.F.; Alsaadi, F.E. Spectral entropy analysis and synchroniza-
tion of a multi-stable fractional-order chaotic system using a novel neural network-based chattering-free sliding mode technique.
Chaos Solitons Fractals 2021, 144, 110576. [CrossRef]

38. Li, J.-F.; Jahanshahi, H.; Kacar, S.; Chu, Y.-M.; Gómez-Aguilar, J.F.; Alotaibi, N.D.; Alharbi, K.H. On the variable-order fractional
memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust
control. Chaos Solitons Fractals 2021, 145, 110681. [CrossRef]

39. Bekiros, S.; Jahanshahi, H.; Bezzina, F.; Aly, A.A. A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial
systems. Chaos Solitons Fractals 2021, 146, 110878. [CrossRef]

40. Wang, Y.-L.; Jahanshahi, H.; Bekiros, S.; Bezzina, F.; Chu, Y.-M.; Aly, A.A. Deep recurrent neural networks with finite-time
terminal sliding mode control for a chaotic fractional-order financial system with market confidence. Chaos Solitons Fractals 2021,
146, 110881. [CrossRef]

41. Yao, Q. Adaptive fuzzy neural network control for a space manipulator in the presence of output constraints and input
nonlinearities. Adv. Space Res. 2021, 67, 1830–1843. [CrossRef]

42. Yao, Q. Adaptive trajectory tracking control of a free-flying space manipulator with guaranteed prescribed performance and
actuator saturation. Acta Astronaut 2021, 185, 283–298. [CrossRef]

43. Yao, Q. Neural adaptive learning synchronization of second-order uncertain chaotic systems with prescribed performance
guarantees. Chaos Solitons Fractals 2021, 152, 111434. [CrossRef]

44. Alsaade, F.W.; Yao, Q.; Al-zahrani, M.S.; Alzahrani, A.S.; Jahanshahi, H. Indirect-neural approximation-based fault-tolerant
integrated attitude and position control of spacecraft proximity operations. Sensors 2022, 22, 1726. [CrossRef]

45. Zou, A.-M.; Kumar, K.D.; Hou, Z.-G.; Liu, X. Finite-time attitude tracking control for spacecraft using terminal sliding mode and
Chebyshev neural network. IEEE Trans. Syst. Man. Cybern Part B Cybern 2011, 41, 950–963.

46. Huo, B.; Xia, Y.; Lu, K.; Fu, M. Adaptive fuzzy finite-time fault-tolerant attitude control of rigid spacecraft. J. Frankl. Inst. 2015,
352, 4225–4246. [CrossRef]

47. Hughes, P.C. Spacecraft Attitude Dynamics; John Wiley and Sons: New York, NY, USA, 1986.
48. Bhat, S.P.; Bernstein, D.S. Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 2000, 38, 751–766.

[CrossRef]
49. Yao, Q. Adaptive finite-time sliding mode control design for finite-time fault-tolerant trajectory tracking of marine vehicles with

input saturation. J. Frankl. Inst. 2020, 357, 13593–13619. [CrossRef]
50. Sanner, R.M.; Slotine, J.-J.E. Gaussian networks for direct adaptive control. IEEE Trans. Neural. Netw. 1992, 3, 837–863. [CrossRef]
51. Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, MA, USA, 1952.
52. Ahmed, J.; Vincent, T.C.; Bernstein, D.S. Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identifica-

tion. J. Guid. Control Dyn. 1998, 21, 684–691. [CrossRef]

http://doi.org/10.1016/j.ast.2007.08.001
http://doi.org/10.1016/j.ast.2010.11.005
http://doi.org/10.1002/rnc.1624
http://doi.org/10.1016/j.automatica.2013.09.001
http://doi.org/10.1016/j.isatra.2013.08.008
http://doi.org/10.1007/s12555-013-0247-x
http://doi.org/10.1049/iet-cta.2016.0044
http://doi.org/10.1016/j.jfranklin.2017.04.020
http://doi.org/10.1049/iet-cta.2017.0583
http://doi.org/10.2514/1.G003520
http://doi.org/10.1016/j.asoc.2019.105943
http://doi.org/10.1016/j.chaos.2020.109768
http://doi.org/10.1016/j.chaos.2020.110576
http://doi.org/10.1016/j.chaos.2021.110681
http://doi.org/10.1016/j.chaos.2021.110878
http://doi.org/10.1016/j.chaos.2021.110881
http://doi.org/10.1016/j.asr.2021.01.001
http://doi.org/10.1016/j.actaastro.2021.05.016
http://doi.org/10.1016/j.chaos.2021.111434
http://doi.org/10.3390/s22051726
http://doi.org/10.1016/j.jfranklin.2015.05.042
http://doi.org/10.1137/S0363012997321358
http://doi.org/10.1016/j.jfranklin.2020.10.015
http://doi.org/10.1109/72.165588
http://doi.org/10.2514/2.4310

	Introduction 
	Problem Description and Preliminaries 
	Notations 
	Problem Statement 
	Useful Lemmas 

	Control Design and Stability Argument 
	Integral Sliding Mode Surface Design 
	Neural Integral Sliding Mode Control Design 

	Simulations and Comparisons 
	Conclusions 
	References

