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Graphite‑oxide hybrid multi‑degree 
of freedom resonator metamaterial 
for broadband sound absorption
F. Bucciarelli, G. P. Malfense Fierro, M. Rapisarda & M. Meo*

Low frequency broadband sound absorption for thin structures is still a great challenge. A new 
concept of a stackable hybrid resonator metamaterial is proposed which exhibits super broadband 
low-frequency sound absorption. The proposed metamaterial is based on micrometric scale thickness 
Graphene Oxide (GO) embedded in a stacked structure or used as external skin in a designed 
honeycomb (HC) structure. The stackable nature of the proposed structure allows the GO-HC cores 
to be embedded within micro-perforated panels (MPP) providing enhanced stiffness/strength to the 
structure and high absorption characteristics. We demonstrate how the exploitation of the GO elastic 
and mass properties result in multiple hybrid structural–acoustic resonances. These resonances are 
tailored to occur in a frequency range of interest by the theoretical calculation of the sound absorption 
coefficient. The theoretical model combines the mutual interaction between the structural dynamic of 
the GO foil and acoustic higher modes of the HC core cell as well as stacked MPP-HC/GO-HC cores. The 
result is a multi-degree of freedom hybrid resonator which provides subwavelength scale broadband 
sound absorption in low frequency range between 300 and 2500 Hz.

Acoustic metamaterials are engineered materials with periodic structure which have wide range of capabili-
ties in sound wave manipulations, enabling phenomena such as acoustic cloaking1, sound insulation2,3 and 
sound absorption4–7. This new class of materials show unusual physical behaviours such as negative effective, 
modulus8,9, negative effective density10,11 and both the negative effects simultaneously12. Focusing on the sound 
absorption, the development of acoustic metamaterials are trying to meet the growing and challenging need for 
broadband sound absorption at low frequencies while maintaining sub-wavelength thickness. Porous absorbers 
need considerable thickness to maximize the absorption performance at low frequencies since the minimum 
thickness required is usually one order of magnitude smaller than the incident wavelength13–15. Based on localised 
resonances10,16–18 and monopolar/dipolar resonances19,20, several membrane-type metamaterials have been pro-
posed in last few years which can fully absorb low frequency sound waves with a deep subwavelength. However, 
most of these devices behave as a single degree of freedom resonator, thus as the wavelength increases relative to 
the size of the absorber, the narrower the frequency band21. Metamaterials based on the space-coiling approach22 
are suitable for full low frequency absorption. This class of metamaterial allow for the design of ultrathin struc-
tures and overcome the 1/4 wavelength (λ) limitation of resonators using coplanar coiled chambers23–25. The 
effective absorption frequency band of metamaterials can be increased by combining multiple single resonators 
or multiple Fabry–Perot channels in series or parallel26,27. An effective approach for reducing the size of the 
structure and ensuring broadband absorption is by combining the effect of a microperforated panel (MPP) with 
a coiled up Fabry–Perot channels28 or honeycomb structure29. In particular, Tang30 proposed a hybrid metama-
terial where a MPP was combined with a perforated honeycomb-corrugation hybrid core achieving an absorp-
tion level over 50% in a frequency range between 29 and 1000 Hz with a structural thickness of 60 mm. Gao31 
combined MPP with cavity, porous material (melamine polymer) and four lateral plates in order to assembly an 
optimized three units composite structure which allows broadband sound absorption from 200 Hz up 1.6 kHz 
with global thickness of 123.5 mm.

However, the problem of expanding the low frequency band of subwavelength metamaterial absorber remains 
relevant and crucial for acoustic engineering.

Recently, Graphene Oxide (GO). has attracted interest in acoustic engineering for sound absorption applica-
tions. Nine et al.32 used a melamine foam as structural support to create a lamella network of self-assembled GO 
micro-sheets obtained by dipping the support foam in an aqueous GO solution. This 26 mm GO lamella network 
increased the air-flow resistance and tortuosity consequently enhancing sound absorption coefficient resulting in 

OPEN

Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK. *email: m.meo@
bath.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-14415-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14611  | https://doi.org/10.1038/s41598-022-14415-3

www.nature.com/scientificreports/

60% absorption over 800 Hz. Good sound absorption performance was achieved by Oh et al.33,34 who proposed a 
periodically self-aligned and hierarchically porous graphene-polyurethane foam. The 3D graphene microstruc-
ture into the open cell of existing polyurethane foam was achieved by hybrid physical–chemical crosslinking of 
graphene oxide liquid crystal-like structure. The result is a broadband absorption over 60% between 1000 and 
6300 Hz. Recently, Lu et al.35 developed a 60 mm thickness bubbled graphene monolith, obtained via the freeze-
casting of a GO dispersion, with a normalized absorption coefficient of 0.9 from about 60–6300 Hz.

In this report, a new class subwavelength hybrid metamaterial suitable for low frequencies broadband sound 
absorption by exploiting plate-like resonator properties of GO combined with a microperforated honeycomb 
core is proposed. Starting from designed and machined Honeycomb core structure (HC) with millimetre scale 
square unit cells; the micrometric thickness GO foil embedded on the HC core and the external skin is a mil-
limetric Microperforated Panel (MPPHCGOHC). This defines a plate-type resonator metamaterial, where the 
GO foil is studied as a vibrating plate and the HC core unit cell represents the acoustic resonator chamber. This 
plate-type effect of the GO-HC structure is combined with the MPP absorber properties where the HC core unit 
cell is still the resonator chamber of the MPP absorber. We demonstrate how the proposed GO based metama-
terials behave as a multi degree of freedom resonator, generating hybrid structural–acoustic resonances due to 
the mutual interaction of GO foil vibration resonances and higher acoustic resonance modes which contribute 
to the dissipation energy of the incoming sound wave.

As a results the proposed hybrid metamaterial provide a high broadband sound absorption in a frequency 
range 300–2500 Hz.

Theoretical framework
The proposed hybrid metamaterial is a periodic structure defined by its unit cell shown in Fig. 1. Based on 3D 
geometrical model of one unit cell, an analytical model is developed and experimental validated to describe the 
acoustic performances in terms of sound absorption for the different proposed configurations of the GO hybrid 
resonator metamaterial.

The normal sound absorption is calculated by the acoustic impedance definition of the single unit cell. 
Regarding the plate covered cavity configuration (GOHC structure), the acoustic impedance is estimated solving 
coupled acoustic-structural problem, while the MPP absorber configuration (MPPHC structure) is described by 
the equivalent electric circuit approach36.

The GOHC structure can be considered a plate covered cavity. A modal coupling theory based on fluid–struc-
ture interaction was used to calculate the coupled vibro-acoustic response. This information was then used to 
determine the absorption of the evaluated system. Membrane sound absorbers generally consist of rigid sides 
and back, covered with limp lightweight fronts and are used for low frequency absorption applications (but not 
limited to this). Predicting the response of these structures provides a quick tool to evaluate and design for spe-
cific acoustic conditions. In this case, the model was used to provide an analytical solution which was validated 
by the experimental results. The analytical model used in this work follows that outlined in37, where equations 
for determining the coupled structural–acoustic displacement response of a system are described38:

where: m and n are the structural and acoustic modes, wm is a vector of all structural modal participation factors, 
pn is a vector of all the acoustic modal participation factors. Qn is the modal volume acceleration, S is the total 
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Figure 1.   (a) Schematic of honeycomb (HC) structure which is either composed of a micro-perforated 
panel (MPP) as a top facesheet or a graphite oxide (GO) layer, (b) unit cell of MPP-HC and GO-HC. Sound 
absorption of the metamaterial is investigated from a plane acoustic wave normally incident to the top facesheet.
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surface area of the structure in contact with the acoustic fluid, Cnm is the dimensionless coupling coefficient, Fm is 
the force acting on the structure, �m is the modal mass and �n the modal volume, ω is the structural displacement 
at a given frequency, ωm structural modal participation factor, ωn natural frequencies of the cavity, ρ0 density of 
the fliud, c0 speed of sound of sound in the fluid.

The acoustic impedance of the plate covered cavity ( ZGO−HC ) was calculated as follows:

where P is the external uniformly distributed sound pressure acting on the panel, v velocity at depth of D.
The acoustic impedance of the MPPHC structure is calculated according with electric equivalent model 

proposed by Maa36, where the acoustic impedance for an MPP absorber is expressed as a series of the acoustic 
impedance related to the panel (ZMPP) and the acoustic impedance related to the enclosed cavity (ZHC). Moreover, 
the complex impedance for the MPP can be expressed in terms of real and imaginary part. The real part, named 
acoustic resistance (RMPP) represent the energy radiation and the viscous losses of the acoustic wave propagat-
ing through the perforations. The imaginary part, named acoustic reactance (MMPP) refers the mass of the air 
moving inside the perforation.

where p is the panel perforation ratio.
The acoustic impedance associated to the honeycomb core cell, which represents the enclosed cavity for the 

MPP absorber, depends on the mass of air behind the panel which is a function of the cavity depth,

where k the wavenumber.
Then the acoustic impedance for the MPP absorber is expressed as follow:

The sound absorption of the hybrid structure, considering a normal incidence plane wave, can be calculated 
theoretically by determining the total acoustic impedance ( ZT ) of the structure. The hybrid MPPHC and GOHC 
structures require two separate approaches in order to calculate the total acoustic impedance. The structure 
can be considered as a series–parallel connection system when considered in the format: MPPHCGOHC or 
GOHCGOHC 39,40. The absorption coefficient ( α)41 can then be calculated from the equations below:

Results and comments
Broadband sound absorption at low frequencies for proposed HGO.  In order to achieve broad-
band sound absorption at low frequencies the influence of the thickness was investigated. Keeping constant the 
geometry of the HC unit cell (l1 and l2), the GO foil thickness and the geometrical characteristic of the MPP 
(panel thickness, perforation ratio and perforation diameters), the proposed hybrid structures behave different 
varying the HC core thickness. In particular, we compared the absorption properties of hybrid structures with 
three different global thickness 30 mm, 50 mm and 70 mm for GOHCGOHC and MPPHCGOHC structures 
with the design parameters summarized in Tables 1 and 2.

A good agreement between the experimental results and the analytical ones is shown in Fig. 2 except for the 
boundary frequency regions of the plot where the discrepancies are mainly due to the limit working frequency 
range of the experimental test rig. A broadband sound absorption is achieved with all the different thickness 
configurations. In particular 15 mm thickness of the single HC core and 30 mm global structure thickness allows 
a broadband absorption from 550 Hz with global sound absorption over 50% and over 90% from 1400 Hz. A 
50 mm global thickness result the best configuration in terms of broadening sound absorption with absorption 
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Table 1.   Design parameters of proposed GOHCGOHC with different HC thickness.

Sample Structure GO foil thickness (μm) HC core thickness (mm) Total thickness (mm)

GOHCGOHC-30 GO foil + HC + GO foil + HC 30 15 30

GOHCGOHC-50 GO foil + HC + GO foil + HC 30 25 50

GOHCGOHC-70 GO foil + HC + GO foil + HC 30 35 70
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properties over 50% from 300 Hz and over 90% from 700 Hz. Increasing the global thickness to 70 mm, the 
maximum absorption is moving at lower frequencies but with a reduction of the broadening properties com-
pared with the 50 mm thickness. In this case we can guarantee a sound absorption over 90% from 400 Hz but 
we reduce the capability of sound absorption over 1500 Hz. Moreover, we demonstrate how, keeping constant 
the thickness and all the other geometrical parameters, using an MPP with high perforation ratio as external 
skin for the hybrid resonator the same sound absorption properties are guaranteed compared with a GO foil as 
external skin. The discrepancies between the numerical and measurement results for both MPPHCGOHC and 
GOHCGOHC are mainly related to small geometrical errors of the 3D printed parts (so the HC core structures) 
like for example small error on the millimeter wall thickness of the HC cell. Furthermore, errors occur relating 

Table 2.   Design parameters of proposed GOHCGOHC and MPPHCGOHC structures with different HC 
thickness.

Sample Structure GO foil thickness (μm) HC core thickness (mm) MPP thickness (mm)
MPP perforation ratio 
(%) Total thickness (mm)

GOHCGOHC-30 GO foil + HC + GO 
foil + HC 30 15 30

MPPHCGOHC-30 MPP + HC core + GO 
foil + HC core 30 15 1.5 6.0 30

GOHCGOHC-50 GO foil + HC + GO 
foil + HC 30 25 50

MPPHCGOHC-50 MPP + HC core + GO 
foil + HC core 30 25 1.5 6.0 50

GOHCGOHC-70 GO foil + HC + GO 
foil + HC 30 35 70

MPPHCGOHC-70 MPP + HC core + GO 
foil + HC core 30 35 1.5 6.0 70

Figure 2.   Absorption coefficient for the proposed MPPHCGOHC and GOHCGOHC structures with different 
thickness compared with the analytical results.
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to the size of the circumferential cells. In the numerical model, a square unit cell is considered and the absorp-
tion properties are estimated solving the series–parallel arrangement of n-cells with identical geometrical size. 
However, the tested prototype has a circular shape to fit into the testing apparatus (impedance tube) which 
means the circumferential cells are not perfectly square. So there were a small discrepancy in terms of size of 
the circumferential cells between the numerical model and the tested prototype. Moreover, the circumferential 
edge of the embedded GO foil is free because of the circular shape of the sample, while in the numerical model 
all the edge of the square unit cell are assumed clamped. Such difference on the boundary conditions on the 
circumferential edge can justified the small mismatched between numerical and experimental results of Fig. 2.

To investigate the effect of the perforation ratio on the sound absorption properties, two different perforation 
ratios were compared in Fig. 3. In particular the MPPGOHCGO structure with 2% and 6% of MPP perforation 
ratio are compared with equivalent GOHCGOHC with 50 mm thickness.

As shown in Fig. 3 the sound absorption properties of the MPPGOHCGO structure is strictly related to the 
entity of perforation because depending on the perforation ratio the effect of GO embedded foil will be con-
siderable or not. For small grade of perforation, the absorption profile shows a unitary peak at 620 Hz which 
is due to the main resonance of the preceding MPP absorber. In fact comparing the absorption profile of the 
MPPHCGOHC and the equivalent MPPHC structure with same perforation ratio, we can identify the same trend 
with single absorption peaks at same frequency 620 Hz. In other words, the effect of the GO embedded foil is 
negligible for low perforation ratio. So for the MPPHCGOHC structure with 2% of perforation, the GO induce a 
small contribution to increase the absorption level at higher frequencies, but the absorption properties are mainly 
dominated by the preceding MPP structure because the dynamic of the GO is not excited by the incoming sound 
wave due to the low porosity. However, increasing the perforation ratio to 6%, there is a complete superposition 
principle, so the net absorption performances of MPPHCHOHC structure is the combination result between 
the low frequency absorption due the resonance plus the viscous loss of the preceding MPP and the broadening 
effect associated to the embedded GO foil.

To demonstrate the advantages induced by the GO on the absorption performances, the proposed GOHCG-
OHC and MPPHCGOHC are compared with equivalent commonly used MPP absorber backed by air cavity and 
MPP backed by HC core. The compared structures, reported in Table 3, are tested keeping constant the global 
thickness of the structure 50 mm. The compared structures present the same HC core unit cell geometry and 
the same geometrical parameter for the MPP.

Figure 3.   Comparison of GOHCGOHC structure with the MPPHCGOHC structure with different perforation 
ratio (2% and 6%) and the MPPHC structure. The global thickness of the structures is 50 mm.

Table 3.   Design parameters for the proposed metamaterial structure and the equivalent commonly used 
absorber based on MPP. The global thickness for all the tested structure is 50 mm.

Sample Structure GO foil thickness (μm) HC core thickness (mm) MPP thickness (mm) MPP perforation ratio (%) Air-gap (mm)

GOHCGOHC-50 GO foil + HC + GO foil + HC 30 25

MPPHCGOHC-50 MPP + HC core + GO 
Foil + HC core 30 25 1.5 6.0

MPP MPP + air-gap 1.5 6.0 50

MPPHC MPP + HC core 50 1.5 6.0

MPPHCMPPHC MPP + HC core + MPP + HC 
core 25 1.5 6.0
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In Fig. 4 are plotted the absorption coefficient measured for the 5 tested structures. As expected the MPP 
absorber realized by micro perforated panel with submillimetre perforation comparable with the boundary layer 
thickness resonant enclosed air cavity, is characterized by a single absorption peak around the resonance fre-
quency f = c

2π

√

S
VL  42, where c is the speed of sound, S is the perforation area and V is the cavity volume. In 

fact, the MPP absorber behave as a mass spring single degree of freedom system where the mass is the mass 
moving into the perforation and the stiffness is related to volume of air in the resonant cavity, so the absorption 
present only one peaks related to the system resonance around 1100 Hz. The designed honeycomb core does not 
affect the absorption performances of the MPP in terms of broadening or shifting in frequency the absorption 
peak. Because of the regularity of the core size, no fluctuation or changes in the perforation ratio between the 
core unit cells could affect the sound absorption. As a result the single core cell of the MPPHC structure acts as 
a single MPP absorber with the same perforation ratio and an equivalent cavity volume, which is characterized 
by the same resonance frequency. However a small enhancement in the absorption level is measured due to the 
contribution of all the core cell to the sound absorption. Considering now the MPPHCMPPHC where the 
embedded Go foil is replaced by a second MPP. As demonstrated in previous work43, the effect on the sound 
absorption of a MPP series is to sum the single MPP contribution. Then the absorption profile is characterized 
by two main absorption peaks, the first one at same frequency of the MPPHC structure associated to the first 
MPP backed by 50 mm thickness of acoustic resonant volume, and the second one related to second MPP which 
is backed by a smaller resonator acoustic volume (25 mm).

Therefore the proposed GOHCGOHC and MPPHCGOHC metamaterial resonator show the best low-fre-
quency and broadband sound absorption properties. Such metamaterials represent a powerful subwavelength 
1
14
� solution for broadband sound absorption at low frequencies.

GO based metamaterial as multi degree of freedom hybrid resonator.  In Fig. 2 the proposed 
GOHCGOHC structure metamaterial show that the unit cell of the proposed metamaterial does not behave as a 
single degree of freedom resonator, as the common MPP absorbers of the membrane-type metamaterial, but as 
multi degree of freedom resonator and the absorption broadening characteristics are then associated to multiple 
hybrid resonances. We demonstrated in a previous work44 how considering the fluid–structure interaction of 
thin plate with the enclosed airgap, the plate does not behave as a piston system as the other membrane-type 
acoustic metamaterials10,17,20. Considering the single HC core unit cell, it acts as a senator acoustic cavity covered 
by the GO foil behaving as a plate fixed supported on the HC cell edges. There is a mutual interaction between 
the GO foil and the HC core cavity. The vibration of GO foil is perturbed by the fluid pressure loading and the 
acoustic filed in the cavity is influenced by the dynamic response of the foil itself. In particular, the non-uniform 
pressure distribution due to higher acoustic modes of the HC core cavity will act on the GO foil which, on the 
other hand will react according with its intrinsic mode shapes related to its structural resonances excited by the 
incoming sound wave excitation. This interaction between the higher acoustic modes and structural modes 
generated multiple hybrid resonances which dissipate the sound energy associated to the incoming sound wave. 
As a consequence, the multiple hybrid resonances generated from the interaction between the high orders vibra-
tion modes of the GO foil and the non-uniform pressure distribution on the HC cavity guarantees a broadband 
sound absorption. To achieve a higher absorption at lower frequencies two GOHC structures are stuck together 
forming the GOHCGOHC structure. In this case, the interaction between the high order structural modes of 

Figure 4.   Comparison between the proposed metamaterial structure GOHCGOHC and MPPHCGPHC, the 
MPP absorber, the MPPHC structure and MPPHCMPPHC structure. All the tested structure present the same 
global thickness (50mmm) and the same geometrical parameter (MPP thickness 1.5 mm, perforation ratio 6% 
GO foil thickness 30 μm).
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the GO foil and the higher acoustic modes of the cavity are still on introducing multiple hybrid resonances and 
ensuring a broadband absorption. Moreover, for the GOHCGOHC the first GO layer see a global acoustic vol-
ume of 50 mm thickness due to the two stuck HC core which means moving a lower frequencies the acoustic 
mode of the HC cavity.

The absorption performances of metamaterial are usually strictly related to the acoustic impedance and 
acoustic reactance in order to achieve an impedance matching. The class of resonator metamaterial in par-
ticular are characterize by zero acoustic reactance (Im(ZT) = 0) which indicates the resonance frequency of the 
acoustic chamber and unitary acoustic resistance (Re(ZT) = 1) which indicates impedance matching with the 
impedance of air24,30. In Fig. 5 we plot the acoustic reactance and the acoustic resistance for the proposed hybrid 
metamaterial structure. Starting from the MPPHCGOHC with 2% of perforation ratio structure (green line), 
the acoustic resistance cross 1 at 600 Hz and at same frequency the acoustic reactance is zero. The combination 
of zero reactance and unitary resistance confirms that for this structure the GO effect is negligible and the high 
absorption at 600 Hz is due to the acoustic resonance of the HC core cell (Im(ZT) = 0) and impedance matching 
(Re(ZT) = 1) due to the MPP as for other resonator metamaterials. Increasing the perforation ratio, the effect of 
the GO becomes important on the absorption characteristic. In fact for the MPPHCGOHC structure with 6% 
of perforation ratio, the reactance is zero around 1600 Hz which the frequency where the preceding MPPHC 
structure presents the main acoustic resonance of the HC core cell but the acoustic resistance is never equal 
1 in the frequency range of interest. Together with GOHCGOHC structure is analysed also the single GOHC 
structure which show and completely different behaviour compared with the usual resonator metamaterials. 
The acoustic resistance is never assume unitary value but is constant around zero which means that the great 
absorption properties of this structure are not related to impedance matching with the incoming sound wave. 
However, the acoustic reactance is always positive and assume an asymptotic behaviour to zero but it is never 
zero in the frequency range of interest. This confirm the hypothesis that the broadband absorption for the GOHC 
structures is associated to the multiple hybrid resonances not only associated to the acoustic resonance of the 
HC cavity but to the mutual interaction between the structural dynamic response for the GO foil and the higher 
acoustic modes of the HC cell, as discussed above. The better acoustic performances is also confirmed from the 
acoustic reactance plot, where moving from GOHC to GOHCGOHC structure the reactance is more important 
because it has a larger quantity in the low frequency range.

Discussions
Recently introduced and studied acoustic metamaterials, such as membrane-type metamaterials, Helmholtz’s 
resonator-type metamaterials and MPP-type metamaterials allow good sound absorption properties at low fre-
quencies, but broadband sound absorption at low frequencies with relative thin structure is still challenging. In 
this report, we proposed a novel acoustic Hybrid Multi-Degree of Freedom resonator Metamaterial based on a 
lightweight honeycomb core structure (HC) with skin and embedded submillimetre Graphite Oxide (GO) foils. 
Two main configurations are proposed; GOHCGOHC and MPPHCGOHC, which provide broadband high sound 
absorption while maintaining excellent mechanical stiffness/strength properties related to the HC core structure. 
Making use of the electro-acoustical equivalent circuit theory for the MPP and the coupled acoustic-structural 
motion equation for the GO and HC structure, we developed an analytical model to compute the absorption 
properties through the evaluation and combination of the acoustic impedance. The analytical and experimental 
results show good agreement, demonstrating that the proposed metamaterial with GOHCGOHC and MPPHCG-
OHC structures achieve a nearly perfect broadband absorption at low frequencies. We demonstrated how the 

Figure 5.   Acoustic Reactance (Im(ZT)) and Acoustic Resistance (Re(ZT)) for the proposed Hybrid metamaterial 
structures: GOHC, GOHCGOHC, MPPHCGOHC with 2% of perforation ratio and MPPHCGOHC with 6% of 
perforation ratio.
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broadband characteristic is mainly due to multiple hybrid structural–acoustic resonances that arise because of 
mutual interaction between the high order structural and acoustic vibration modes. The proposed Hybrid GO 
based metamaterial with a structure of 50 mm thickness represents a subwavelength acoustic metamaterial with 
outstanding nearly perfect absorption over a broadband low frequency range from 300 to 2500 Hz. In Table 4 the 
sound absorption property for the proposed GOHCGOHC-MPPHCGOHC metamaterials with other relevant 
acoustic metamaterials-absorber.

Methods
GO hybrid metamaterial manufacturing.  The proposed metamaterial consisted of various combina-
tions of MPP-HC and GO-HC as outlined in Fig. 1. The HC core structure was 3d printed using stereolitho-
graphic technology using Formlabs Tough Resin (refer to Method for detail) which has good mechanical stiff-
ness and strength, thus it is considered acoustically rigid in the theoretical model. An aluminium facesheet was 
used as the backing of the structure when tested in an Impedance Tube test rig. The HC core has a square cross-
section with an inner side length l1 (6 mm) and a unit cell side length l2 (6.5 mm, refer to Fig. 1a). The thickness 
of the MPP and GO top facesheets are tMPP (tMPP = 1.5 mm) and tGO (tGO = 30 μm). The depth of the HC core is D 
(25 mm, if not otherwise specified), with multiple cores stacked to increase this depth. This design of the meta-
material combines the effects of the MPP resonator with that of a membrane covered cavity.

The GO micro-sheets were manufactured starting from Graphite Oxide (GtO) powder through sonication 
treatments (Fig. 6). GtO powder (TOB-2430, Xiamen TOB New Energy Co., LTD) was added to distilled water 
and gently stirred for 30 min to obtain a dispersion with a concentration of 8 mg ml−1. The GtO dispersion was 
then exfoliated to GO thanks to the mechanical excitation provided by a probe sonicator (UP100H, Dr. Hiels-
cher GmbH) for 1 h with 100% amplitude and continuous power discharge, under an ice bath to prevent the 
temperature to raise and with gentle stirring to ensure a homogeneous exfoliation process. The obtained slurry 
was then casted in PTFE moulds, exploiting its low surface free energy for an easy release of the foils, with a 
circular shape of 8 cm diameter. The thickness of each sample was controlled by adjusting the volume of the GO 
suspension poured inside the mould. The GO Foils were finally obtained, peeling them off the PTFE moulds 
after 24 h of oven drying at 40 °C, and cut to the desired size.

Graphite‑oxide characterization.  First microscopic characterization of GO foil was performed through 
scanning electron microscopy (SEM) analysis and X-Ray diffraction analysis.

The surface of a GO Foil specimen imaged via scanning electron microscopy (SEM) shows a distinctive chain-
like pattern in the low magnification image, attributable to the stress induced by the surface tension between 
the liquid suspension and the sides of the mould during the drying process (Fig. 7a). In the high magnification 
image, it’s worth noting that during the self-assembly of the foil a wrinkled morphology is obtained (Fig. 7b), 
made by the non-ordered overlapping of GO layers. The cross-section images of a cryogenically fractured GO 

Table 4.   Comparison of sound absorption characteristic for the proposed GOHCGOHC-MPPHCGOHC and 
other relevant acoustic metamaterial-absorber.

Metamaterial type Absorption level Frequency range (Hz) Thickness (mm)

Membrane-type16 Over 60% 190 Hz—single peak 56

Membrane-type17 Over 60% 250 Hz—single peak 30

Single MPP Over 60% 620 Hz—single peak 50

MPP multilayers43 Over 60% 500–2700 Hz broadband 66

Hybrid MPP-coil up channel28 Over 60% 300–550 Hz broadband 50

Hybrid MPP-perforated honeycomb corrugation30 Over 60% 350–1000 Hz broadband 60

MPPHCGOHC—GOHCGOHC Over 60% 350–2000 Hz broadband 50

Figure 6.   Manufacturing process scheme of GO micro-sheets.
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Foil confirmed the non-ordered overlapping of GO layers and revealed a nanolayered structure where each layer, 
having a thickness of few nanometres, is well distinguishable (Fig. 7c).

The X-Ray diffraction patterns of the pristine GtO powder and GO Foil are shown in Fig. 8a. The (001) reflec-
tion peak, typical in GtO and useful to characterize the interplanar spacing (d-spacing) between the oxidised 
graphene layers45, is found at 2θ = 11.20° with its amplitude strongly reduced and its position slightly shifted to 
2θ = 11.59° after the exfoliation and casting process. The application of Bragg’s law allowed the calculation of 
d-spacings in in GtO powder and GO Foil, with results of respectively d = 7.89 Å and d = 7.63 Å. These findings 
confirm a successful exfoliation of GtO in GO and that no restacking happened during the foil manufacturing 
process, in accordance with Kashayap et al. work46.

The Raman spectra in Fig. 8b presents the typical D and G bands of carbon materials at respectively 1352 cm−1 
and 1604 cm−1. The first arises from breathing modes of sp2 atoms in rings while the second is characteristic of 
primary in plane vibrations mode, their intensity ratio (D/G ratio) can be used to describe the order of the system: 
in single layer graphene it approaches zero while higher values are associated to more disordered structures47. 
A D/G ratio of 0.88 was found for the GO Foil, confirming the existence of structural defects introduced after 
the oxidation of Graphite.

Macroscopic characterization was also performed to investigate the elastic properties of the GO foil. In par-
ticular the Elastic Modulus of manufactured GO foil was measured using a non-destructive approach based on 
the resonances of the foil (Fig. 9). The used non-destructive approach is based on the plate’s theory. According 

Figure 7.   (a) Low-magnification SEM image of GO foil. (b) High magnification (×10,000) SEM image of GO 
foil. (c) Cross section SEM image of GO foil with onset at higher magnification (top100k, bottom 270 k).

Figure 8.   (a) XRD patterns of GtO powder and GO Foil. (b) Raman spectra of the GO Foil.
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with6 the natural frequencies are function of the indices associated with the number of flexural half-waves in the 
two plate dimensions. Moreover, they are related to the material properties following the equation

where �ij is a dimensionless which is function of the mode indices, a is the characteristic dimension of the plate, 
h is the plate thickness, ν is the Poisson’s ration, E the Young modulus and γ is the mass per unit area of the 
plate. So the Eq. (8) can be solved in term of E when the i–j-th natural frequency is known. So the GO foil of 
35 µm thickness (h) and 0.0254 m radius (a) is placed in one end of an impedance tube and a plane wave gener-
ated into the tube is used to excite the foil. The structural dynamic response of the plate is measured focusing 
a laser-vibrometer on a grid of points on the downstream surface of the foil. Since a plane wave can excite only 
the symmetric bending modes of the foil, from the measured frequency response function, the frequencies of 
i–j-th bending mode can be estimated.

Considering a circular plate under clamped edges boundary conditions and normal distributed load, the 
dimensionless parameter �01 = 39.77 for i = 0 and j = 1 (according with6), and the natural frequency for such 
mode is 160 Hz (according with Eq. (8)). So for the proposed GO foil the elastic modulus is E = 2.9 e + 09 Pa. 
This result was confirmed by Dynamic Mechanical Analysis (DMA, Tritec 2000 DMA, Tryton Technology Ltd) 
in tension mode with ramp loading of 0.02 N min−1 applied on GO specimen cut in stripes (20 mm × 5 mm). 
The Elastic Modulus extracted from the measured stress–strain curve was 2.84 GPa (Fig. 10).

(8)fij =
�
2
IJ

2πa2

[

Eh3

12γ
(

1− ν2
)

]2
{
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j = 1, 2, 3, . . .

Figure 9.   Frequency response function of graphene-oxide foil (h = 35 µm, a = 0.0254 m, ρ = 1800 kg/m3), and 
mode shape (i = 0, j = 1) measured by laser-vibrometer rig.

Figure 10.   Stress–strain curve for GO foil (20 mm × 5 mm and 35 µm thickness) measured by DMA.
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Acoustic properties measurement test rig.  The acoustic performance in terms of normal sound 
absorption was characterized with an in-house impedance tube test rig, consisting of an aluminium impedance 
tube with circular cross section and internal dimeter of 50.8 mm, a full range speaker (2″, BMS 4592 Compres-
sion Driver), pressure-field microphones (1/4″, 10 mV/Pa, GRAS 40PL-CCP Free-field Array Microphones), 
audio power amplifier (model: Behringer: NU1000, High-Density 1000-W Power Amplifier), data acquisition 
device (24-bit, 105.4 kS/s/ch, model: DT9837C Dynamic Signal Analyser, Data Translation). The standardized 
Transfer Function Method was used to measure the normal sound absorption coefficient staring from the stand-
ing wave pressure measured at two microphone stations. The measured pressure signals were processed with 
LabView user interface implemented in the test rig.

Honeycomb structures were printed with Formlabs Form 348 (XY resolution 25 μm, layer thickness 25 μm, 
250 mW Laser Power) using Formlabs Tough Resin49.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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