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In e-commerce warehouses, online retailers increase their efficiency by using a mixed-shelves (or scattered

storage) concept, where unit loads are purposefully broken down into single items, which are individually

stored in multiple locations. Irrespective of the stock keeping units a customer jointly orders, this storage

strategy increases the likelihood that somewhere in the warehouse the items of the requested stock keeping

units will be in close vicinity, which may significantly reduce an order picker’s unproductive walking time.

This paper optimizes picker routing through such mixed-shelves warehouses. Specifically, we introduce a

generic exact algorithmic framework that covers a multitude of picking policies, independently of the under-

lying picking zone layout, and is suitable for real-time applications. This framework embeds a bidirectional

layered graph algorithm which provides the best known performance for the simple picking problem with a

single depot and no further attributes. We compare three different real-world e-commerce warehouse settings

that differ slightly in their application of scattered storage and in their picking policies. Based on these,

we derive additional layouts and settings that yield further managerial insights. Our results reveal that the

right combination of drop-off points, dynamic batching, the utilization of picking carts, and the picking

zone layout can greatly improve the picking performance. In particular, some combinations of policies yield

efficiency increases of more than 30% compared with standard policies currently used in practice.

Key words : mixed-shelves warehouse, order picking policies, picking zone layout, dynamic programming

History :

1. Introduction

A paradigm change in the retail business, caused by rapidly growing e-commerce (Statista 2017,

Cui et al. 2019), makes today’s warehouses the focus of efficient operations in business-to-customer

(B2C) markets. While warehouses have traditionally been viewed as remote, negligible, and cost-

efficient planning components, today’s warehouses have evolved into technology-enriched logistics
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facilities that play a key role in retail supply chains. For companies of any significant size, the

warehouse of today and of the future performs several of the functions that conventional stores have

previously managed. Consequently, firms’ attention to innovative concepts and efficient warehouse

operations is steadily increasing, as warehouses are seen as a key success factor in the highly com-

petitive e-commerce market. In these warehouses, efficient daily operations are central to running a

profitable e-commerce business and to fulfilling customer expectations such as same-day deliveries,

such that efficiently routing pickers constitutes a crucial determinant of profitability.

In e-commerce warehouses, two fundamentally different concepts dominate: robotized parts-to-

picker warehouses, where (KIVA) robots bring man-high shelves to stationary pickers (Azadeh et al.

2018), and human-operated picker-to-parts warehouses, in which pickers traditionally walk through

the shelves and collect stock keeping units (SKUs). These two concepts entail a trade-off between

investment costs, scalability, and efficiency. Parts-to-picker warehouses have high investment costs

that increase significantly with the number of robots but are highly efficient when operated at their

maximum throughput. They are hardly scalable to rare events during which the workload increases

significantly, e.g., on Black Friday or for Cyber Monday sales. Picker-to-parts warehouses have

low investment costs and are less efficient than robotized systems. In contrast, these warehouses

allow—by hiring additional temporary staff—the necessary flexibility in peak times. Hence, major

players in the industry agree that picker-to-parts warehouses should remain in parallel to robotized

warehouses to provide flexibility.

With standardized third-party robotized warehouse solutions across companies, increasing the

efficiency of picker-to-parts warehouses becomes even more crucial for online retailers who vie to

derive a competitive advantage. In traditional picker-to-parts warehouses (with unit loads kept

together), the storage assignment plans result in excessive unproductive walking for the pickers,

corresponding to as much as 50% of their working hours (De Koster et al. 2007). Many online

retailers in the B2C segment apply the mixed-shelves or scattered storage concept (Weidinger and

Boysen 2018) to increase the efficiency of such warehouses. Under this storage assignment policy,

incoming loads of SKUs are purposefully broken down into single items scattered over all parts of

the warehouse, thus increasing the likelihood that, given the volatile demands of the final customers,

items finally ordered together will be in close vicinity somewhere in the warehouse (Boysen et al.

2019a). However, competitive routing algorithms that determine picker paths to collect SKUs

remain crucial to an efficient exploitation of the scattered storage in e-commerce warehouses, and

to the reduction of unproductive picker walking time. In particular, large e-commerce warehouses

subdivide their order fulfillment process into three stages, i.e., order picking, intermediate storing

of picked bins, and order accumulation and packing (see Section 2.1). While the latter two stages
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are rather standardized and can largely be automated, order picking remains the most crucial and

labor-intensive stage and is, therefore, the focus of this paper.

Today’s e-commerce warehouses consist of picking zones, i.e., limited blocks of shelves in which

pickers operate (see Figure 1). These zones have a rectilinear layout, which means that the pickers

always move according to a Manhattan metric, with shelves placed along parallel aisles and one or

several drop-off points at which pickers can hand over items. Online retailers apply batch picking,

i.e., they unify multiple picking orders into a single picklist (Boysen et al. 2019a) which is then

processed by a picker in a dedicated zone. The picker starts with a manual picking cart and a

picklist at a drop-off point and returns to it once the picklist is completed. Despite the regular

rectilinear layout and the rather simple picking process, picking zones may differ in the number

of cross-aisles and aisles they contain. Although most companies rely on the scattered storage

principle and agree on efficient picking as a key to successful operations, there is no consensus

on which general attributes a good picking policy and a picking zone layout should possess. This

paper focuses on four main attributes which have been identified as most frequently implemented

in practice in the recent survey of Boysen et al. (2019a):

i) a variable multi-block layout which differs in terms of the number of aisles and cross-aisles;

ii) multiple drop-off points which increase the number of points in a picking zone where completed

bins can be handed over to a central conveyor system;

iii) dynamic batching policies which allow to drop a finished picklist early while processing several

picklists in parallel by equipping the picking cart with multiple bins; and

iv) cartless subtours which allow pickers to intermediately park their clumsy cart in order to pick

a few items on a subtour much faster.

Several site visits that we have made in European e-commerce warehouses have confirmed that

these policies and layout options are applied in various combinations (see Section 2.2), and benefits

can be achieved through optimization. However, performance gains come at the price of additional

investments, which may differ for each setting. Hence, we evaluate the performance impact of

the picking policy and layout options, which allows us to quantify each measure’s improvement

potential without relating it to varying and hence hardly assessable investment costs. To set our

depot

storage position

cross-aisle

sub-aisleaisle

picking zone

sub-cross-aisle

Figure 1 Example of the storage area of an e-commerce warehouse and a picking zone.



Schiffer et al.: Optimal picking policies for e-commerce warehouses
4 Article submitted to Management Science; manuscript no. MS-OPT-18-01682.R4

study apart from recent research, we first briefly review the related literature in Section 1.1, before

further detailing the contributions of our work in Section 1.2.

1.1. Literature review

Efficient order processing in warehouses and distribution centers has been vividly discussed in recent

years. For an overview of the rich body of literature on traditional picker-to-parts warehouses,

modern robotized warehouses, and the peculiarities of warehousing in the e-commerce era, we refer

to the surveys of De Koster et al. (2007), Azadeh et al. (2018), and Boysen et al. (2019a). In the

following, we only survey the picker routing literature related to the planning tasks outlined above.

Picker routing starting and ending at a central drop-off point corresponds to the traveling sales-

man problem (TSP). In their seminal paper, Ratliff and Rosenthal (1983) showed that in single-

block warehouses consisting of parallel aisles with cross-aisles at the front and back, the particular

structure of the distance matrix allows solving the resulting TSP in polynomial time by dynamic

programming. Roodbergen and De Koster (2001) extended this approach to two-block warehouses

with an additional middle aisle, and De Koster and Van der Poort (1998) considered a handover

of complete orders at the start and end of each aisle. Recently, Pansart et al. (2018) generalized

the approach of Ratliff and Rosenthal (1983) to multi-block warehouses using the polynomial-time

algorithm of Cambazard and Catusse (2018) for rectilinear Steiner tree problems in the plane. As

can be seen, exact algorithms for the picker routing problem are rare and limited to special cases.

Several heuristics have been proposed for the picker routing problem itself and for some of its

variants, e.g., picker routing combined with selecting pick positions or with zoning and batching

policies. For a rich overview of these heuristics, we refer the reader to De Koster et al. (2007). While

fundamental work including performance analysis was carried out by Hall (1993) and Petersen

(1997), De Koster and Van der Poort (1998) provided comparisons between exact and heuristic

algorithms for specific layouts. The more recent approximate algorithms adapt competitive TSP

heuristics to the picker routing problem (Theys et al. 2010). Gue et al. (2006), Hong et al. (2012a),

and Chen et al. (2013) have all focused on blocking aspects in narrow aisles. Given the dedi-

cated zoning policy and layout of modern e-commerce warehouses, this blocking issue is negligible

nowadays. Only one publication (Goetschalckx and Ratliff 1988) exists on pickers with different

travel modes, i.e., pickers who are allowed to park their cart and perform cartless subtours on

foot. However, that paper assumes that a picker moves the vehicle along a single aisle, but starting

and stopping the vehicle to retrieve items on foot consumes additional time. As can be seen, no

heuristic exists that captures the generic nature of our problem.

Weidinger et al. (2019) showed that the integrated selection of pick positions for a specific

demand in a mixed-shelves warehouse makes the picker routing problem strongly NP-hard, even
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in elementary block-shaped warehouses with parallel aisles. Algorithms for this problem class were

proposed by Daniels et al. (1998), Weidinger (2018), and Weidinger et al. (2019). These authors

decompose the problem by fixing the pick positions’ selection and treating the second-stage routing

problem heuristically. Overviews of zoning and batching policies can be found in De Koster et al.

(2007) and Boysen et al. (2019a). Recent contributions to this field by Bozer and Kile (2008), Henn

and Wäscher (2012), Hong et al. (2012b), and Zulj et al. (2018), have focused on heuristics for a

static batching policy. In practice, the two planning tasks of selecting pick positions and batching

and zoning are decoupled from the picker routing decision. Recently, Weidinger (2018) gave proof

to this common practice and showed that solutions derived in this fashion yield optimality gaps

well below one percent compared to integrated planning. Hence, we exclude these problems from

our real-world study, and assume respective decisions to be made at an upstream decision stage.

Concluding, no exact or heuristic algorithm exists that captures the generic nature of our prob-

lem, namely i) a variable multi-block layout, ii) multiple drop-off points, iii) dynamic batching

policies, and iv) cartless subtours. In particular, requirements ii)–iv) have not yet been incorporated

in any exact or heuristic algorithm to the best of our knowledge.

1.2. Contributions

In this paper, we close the gap in the literature outlined in Section 1.1 by developing the first generic

exact algorithm that can handle the four features just mentioned. Its computational requirements

must be sufficiently low to allow for real-time application in practical settings. Given this, the

methodological and managerial contribution of this paper is threefold. First, we develop an exact

algorithm for picker routing capable of capturing the four main attributes identified by Boysen

et al. (2019a). Second, we provide additional preprocessing techniques that allow the real-time use

of this algorithm in real-world applications. Third, based on this methodological framework, we

conduct different experiments to benchmark several picking policies and layout options on realistic

data sets extracted from three corporate case studies.

Our algorithm provides a new state of the art for picker routing problems. In particular, we

outperform the previously best known exact algorithm (Pansart et al. 2018) for single picklists in

multi-block warehouses in terms of computational time, and we obtain better scalability for large-

size instances with up to 11 cross-aisles. Besides, our algorithm is significantly more general as it can

solve picker routing problems with multiple picklists, dynamic batching strategies, multiple drop-off

points, and cartless subtours. We use this algorithm to identify the benefits of all considered picking

policy design options utilizing a full-factorial experiment. Specifically, we show that the level of

picklist dispersion, i.e., a picklist’s warehousing area which results from the selection of more or less

dispersed picking positions during upper level planning tasks, strongly influences strategic design

and operational decisions.
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1. At the strategic level, we show that increasing the number of cross-aisles can yield efficiency

increases of more than 20% in the case of dispersed picklists. However, for clustered picklists,

the reduction potential is much smaller, and increasing the number of cross-aisles may even

increase the total picker walking time. The deployment of multiple drop-off points shows

decreasing marginal utilities for large numbers of drop-off points.

2. At the operational level, we show that dynamic batching yields significant efficiency improve-

ments of up to 9% for clustered picklists but has only negligible effects in the case of dispersed

picklists. In contrast, cartless subtours yield efficiency improvements of up to 11% for dispersed

picklists but have a negligible effect in the case of clustered picklists.

3. Combining the right operational and strategic design decisions can lead to efficiency improve-

ments of up to 31% for clustered picklists and of up to 11% for dispersed picklists.

1.3. Organization of the paper

The remainder of this paper is structured as follows. Section 2 further details the fulfillment process

in an e-commerce warehouse, details the settings of picking policies we have observed in practice,

and provides a formal definition of the planning problems at hand. Section 3 develops our algorithm.

We present extensive computational results in Section 4. Section 5 concludes this paper and provides

several managerial insights. All proposition proofs are provided in Appendix A.

2. Problem description

This section introduces our planning problem. We first detail the order fulfillment process in e-

commerce warehouses to show the integration of our planning problem into daily operations. We

then discuss the settings of picking policies that we have observed in practice, before formally

introducing the generalized order picking problem (GOPP).

2.1. Order fulfillment process

For conciseness, we exclude the ingoing flow of the warehouse and focus on the outgoing flow.

Once items are stored and scattered around the warehouse, the order fulfillment process in a

mixed-shelves warehouse consists of three basic steps.

Order picking: First, customer orders must be picked from their respective storage positions.

Human pickers, each equipped with a small picking cart that carries small bins, collect items into

these bins. A picker receives empty bins and picklists, each associated with a bin, at a drop-off

point, strides (directed by a hand-held scanner or a pick-by-voice system) through the warehouse,

collects the requested items from the shelves, and puts them into their respective bin on the cart.

Once the picker has completed one or multiple bins, she hands the bins over to the central conveyor

system at a drop-off point and starts processing the next picklists. This process is typically executed
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under a zoning and batching policy (De Koster et al. 2007). Instead of storing all items in a single

monolithic area, online retailers subdivide their vast shop floors into multiple zones to allow for

parallel processing of customer orders. A picker operates exclusively in one of these zones and only

picks the part of an order stored in her assigned zone. By parallelizing the picking process in this

fashion, order pickers traverse smaller areas of the warehouses to reduce their unproductive walking

time. A further reduction of unproductive walking time can be achieved by unifying multiple orders

into batches that are jointly retrieved on the picker’s tour through her zone. This results in bins

filled with partial orders for multiple customers.

In e-commerce, customer orders have different priorities and varying deadlines as some customers

may participate in priority delivery programs. Directly considering these priorities leads to unre-

alistically long planning horizons of several hours that may even exceed the time needed to handle

the orders known beforehand. In practice, warehouse operators consider the priority of orders in

line with the order batching and picklist sequencing at an upstream planning stage before giving a

picklist sequence, which comprises the most urgent orders for a short planning horizon, to a picker.

This sorted list sequence comprises the picklists for the most urgent orders. The order waves that

are not yet included in this planning horizon are more likely to be timely processed if the current

set of picklists is assembled as fast as possible.

Intermediate storing of picked bins: Once handed over to the central conveying system at a

drop-off point, these bins are intermediately stored until all those belonging to the same wave

of customer orders have arrived from all zones. Different storage devices exist. Some operators

apply lane-based systems where bins of a wave are channeled in a conveyor queue. Others apply

automated storage and retrieval systems, where bins are stored in crane-operated aisles of high-bay

storage racks (Boysen et al. 2018). In smaller warehouses, loop-based systems where bins circle

until a wave is complete may be applied (Gallien and Weber 2010).

Order accumulation and packing: Finally, a wave of bins released from intermediate storage

arrives in the order accumulation area. Here, the incoming items are sorted according to customer

orders. Some operators apply so-called put walls for this task, where human logistics workers place

items on small shelves, each temporarily dedicated to a specific customer order (Boysen et al.

2019b). On the other side of the wall, packers receive completed orders, pack them into their

shipping cartons, and forward them via conveyors to their dedicated trailers. Other warehouses

apply automated belt sorters, e.g., tilt-tray or cross-belt sorters, where items are collected in

packing stations arranged along the belt (Boysen et al. 2018).

Both intermediate storing and packing are process steps that can easily be standardized and

organized efficiently. However, order picking includes unpredictable components because it depends
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on incoming customer orders and requires the largest fraction of the workforce. Therefore, an

efficient routing algorithm plays a crucial role in ensuring efficient order fulfillment.

The inputs needed for creating route plans are the picklists, a picklist sequence, and the assign-

ment of SKUs to picklists. Integrated problems that combine order batching or sequencing with

picker routing have been discussed (Weidinger et al. 2019), but while they provide challenging

research questions, their solutions are less relevant in practice. Indeed, operators typically solve

the batching and sequencing problems at an upper level, decoupled from the picker routing, for the

following reason: both problems heavily depend on the incoming orders’ priorities. Those orders

with the closest due date of their associated outbound trucks are selected as the wave of orders

to be processed next. Therefore, all orders of the current wave are urgent, and there is no need

to further differentiate between their priorities during order picking. Recent research has corrobo-

rated this common practice. Weidinger (2018) has shown that in practice selecting the shelves from

which each item is to be picked in a scattered storage warehouse can be solved independently of the

picker routing problem. Indeed, selecting shelves such that the current picklist’s warehousing area

is minimal and handing these pick positions over to picker routing leads to near-optimal solutions

with optimality gaps well below one percent (Weidinger 2018).

2.2. Picking policies

In this paper, we develop a generalized exact algorithm for picker routing in e-commerce ware-

houses. We create different settings based on different order-picking policies that we have observed

in practice in mixed-shelves warehouses.

Amazon Europe: In Amazon’s distribution centers in Bad Hersfeld (Germany) and Poznan

(Poland), we have observed the following setting. Amazon uses multiple drop-off points to a central

conveyor system to hand over completed bins. Pickers often pass by these local drop-off points

during a tour, which offers the additional flexibility of dynamic batching. Instead of picking batch

after batch with intermediate returns to a central drop-off point in a static manner, pickers can

hand over just a subset of completed bins at a local drop-off point and retrieve new empty bins for

subsequent orders. Thus, Amazon’s picker routing procedure additionally considers the dynamic

batching of an order set by inserting visits at different drop-off points in the tour where the picker

hands over subsets of completed bins and starts handling new orders.

Hermes Group: This is Germany’s second-largest postal service provider. Its distribution center

in Haldensleben (Germany) operates full-service order fulfillment for one of Europe’s largest online

and catalog fashion retailers. Hermes’s order picking process is as follows. Each picker is equipped

with a picking cart with up to four bins, each having a capacity of about 20 to 30 items. Pickers

operate in fixed zones, each having a single drop-off point where new bins and the next picklist
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are retrieved and, finally, completed bins are handed over to the central conveyor system. Hence,

each picker tour starts and ends at a central drop-off point, and for a given batch of (four) picking

orders, one seeks a tour through the respective zone of the warehouse, such that all items on the

picklist can be retrieved, and the length of the tour is minimal.

Zalando: The online fashion retailer Zalando uses a different system at its distribution center

in Erfurt (Germany). It applies static batching with a single drop-off point in each picking zone.

Since the bins are relatively large and heavy when filled, picking carts are clumsy and inflexible.

Hence, the pickers are much faster without the cart. Thus, a picker may park her cart, pick up to

six items from close-by shelves, and carry them back to the cart. An optimization procedure for

the Zalando case must determine whether a walk between two successive visits of a picker tour

should be executed with or without a cart. This decision has to consider the limited capacity of

items a picker can carry on her arms and the varying walking speeds with and without a cart.

Based on these observations, we classify picking policies according to three characteristics:

i) static vs. dynamic batching, ii) single vs. multiple drop-off points, and iii) single vs. multiple travel

modes (i.e., cartless subtours). Certain combinations of these characteristics reflect the real-world

picking policies detailed above. In our computational studies, we aim at a full factorial design to

evaluate each degree of freedom’s potential in designing picking policies. Hence, we add missing

policies even if we have not yet observed them in practice. Table 1 shows the different picking

policies with increasing degrees of freedom from left to right. As can be seen, the Amazon (A)

policy already covers most degrees of freedom, while the Hermes (H) and the Zalando (Z) policy

remain at the bottom line with respect to degrees of freedom.

2.3. A generalized order picking problem

Given the multitude of picking policies described in Section 2.2, we now formally introduce the

GOPP.

Solution representation and notation: To represent a solution Π, we model positions in the pick-

ing zone (Figure 1) as vertices, such that a vertex is either a drop-off point (c ∈ D), a crossing

between an aisle and a cross-aisle (c ∈ C), or a storage position (c ∈ P) that contains varying

amounts of different SKUs. We note that a solution will include only a subset of storage position

vertices P ′ ⊆ P, that correspond to positions where items have to be picked. Analogously, only

Table 1 Picking policies resulting from different attributes.

Policy i (H) ii (Z) iii iv v vi vii (A) viii

static (SB) / dynamic (DB) batching SB SB SB SB DB DB DB DB
single (SD) / multiple (MD) drop-off points SD SD MD MD SD SD MD MD

no cartless subtours (NS) / cartless subtours (CS) NS CS NS CS NS CS NS CS
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drop-off point vertices and cross-aisle vertices necessary to complete a tour are included in the

respective solution. At the operational level, an ordered set L of picklists l denotes which position

c ∈ P must be visited to pick up SKUs. Recall that the size and pick-up position of a given SKU

is decided at a preceding planning level to efficiently split customer orders into picklists and avoid

double picking by competing pickers. Hence we represent a single picklist l= {c1, ..., cn} as a finite

set of n storage positions that must be visited. Across multiple picklists, n can vary as, for example,

prioritized lists might be designed with fewer items on an upper planning level.

Besides, we use the set La
i to track active picklists at each position i of a route. Depending on

the picking policy, a picker processes a single picklist or multiple picklists in parallel such that |La
i |

is limited. Each picklist must be collected in a separate bin. Thus, we can measure the picking

cart capacity κ, i.e., the number of possible parallel-processed picklists, by the number of bins. In

practice, standardized bins are a prerequisite for fail-safe transport on picking carts and conveyors.

Note that our assumption remains valid even for cases with differently sized bins since the upstream

planning stage avoids conflicting bins while defining the sequence of picklists.

A picker is accompanied by a cart equipped with standardized bins to collect orders. For certain

picking policies, the picker may temporarily leave her cart to pick a certain number of SKUs during

a cartless subtour.

Definition 1 (cartless subtour). A cartless subtour of the picker starts at the ith stop of

the tour where the picker leaves her cart and ends at stop k where she picks up her cart again at

the same position such that ci = ck. In addition, a cartless subtour is limited to a certain number

of items K, i.e., the maximum number of items a picker can carry without cart support. A picker

may start a subtour at the end of or at any position in a sub-aisle. A subtour may not span across

more than one sub-aisle.

A solution Π is an ordered set that defines the successive visits of the picker in V =D∪C ∪P.

Each element of Π is a pair πi = (ci,La
i ). The pair π0 = (c0,La

0) at the very first sequence position

refers to the initial position of the picker, such that c0 is fixed to the picker’s starting point. This

ordered set defines a route through the picking zone such that a sequence of picklists L is completed.

Objective function: The main factor influencing the total picking time at this operational stage

is the picker walking time as most other parts of the picker’s time, e.g., the time to retrieve items

from a shelf is fixed once a picklist is given. Hence, the GOPP’s objective minimizes the total picker

walking time, considering the picker’s walking time τci−1,ci between consecutive vertices in Π

Z(Π) =
∑

i∈{1,...,|Π|−1}

τci−1,ci . (1)
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Constraints: To properly define all constraints for the GOPP, which differ depending on the type

of batching, on the available travel modes, and on the number of drop-off points, we introduce the

notion of active intervals.

Definition 2 (active interval). Given a solution Π, a picker starts a not yet processed pick-

list l at a drop-off point preceding the first storage position visit related to l. Analogously, she hands

over a completed picklist l at a drop-off point succeeding the last storage position visit related to

l. During the time between these two drop-off point visits, we refer to a picklist as active and to

the complete time span during which a picklist is active as its active interval.

Then, the constraints for the GOPP are as follows:

i) The cart capacity κ is limited and |La
i | ≤ κ must hold for any pair πi.

ii) Once a list starts being processed by a picker, it must be finished before a new picklist can be

processed in the respective bin, i.e., each picklist has exactly one coherent active interval.

iii) A picklist l cannot be completed before all visits of l are covered in its active interval.

iv) L is processed in its given order.

iv.s) For static batching, the active intervals of picklists either completely overlap or are completely

disjoint.

iv.d) For dynamic batching, (iv.s) is relaxed. This allows handing over merely a subset of already

completed active orders when stopping at a drop-off point.

v) Bins can only be handed over at a drop-off point if the cart carrying them is also at the drop-off

point, i.e., no drop-offs during cartless subtours are allowed.

vi) All picklists must be completed, which is fulfilled when each picklist has exactly one active

interval.

vii) If cartless subtours are allowed, only feasible subtours occur, such that the picker’s capacity

for carrying items is not exceeded, leaving and returning of hand-carried items refer to the

same parking position of the cart, and the subtour occurs within one sub-aisle.

Among all feasible solutions fulfilling these constraints, the GOPP seeks a solution Π∗ that mini-

mizes the objective function (1).

3. Methodology

In Appendix B we prove that the GOPP is strongly NP-hard. However, a special case of the GOPP

can be solved in polynomial time. Specifically, for a setting with a single picklist, a single travel

mode, and a single drop-off point, the rectilinear layout characterizing the GOPP (Figure 1) limits

the number of possible ways to traverse a sub-aisle (see Section 3.1). Accordingly, after summarizing

the findings of previous work (Section 3.1), we first develop a skeleton for our algorithmic framework

that efficiently solves the GOPP, limited to a single picklist, travel mode, and drop-off point, by
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using a layered graph algorithm (LGA) (Section 3.2). We present a complementary integer linear

program (ILP) based skeleton in Appendix C. We then derive a unified framework where we

incorporate this specific version of the GOPP as a subproblem such that we can incorporate the

skeletons to solve all variants of the GOPP based on branching and pruning rules (Section 3.3).

3.1. State of the art

A reduced version of the GOPP constitutes a special case of the rectilinear TSP which allows us to

exploit some properties of this problem. Hence, for the sake of completeness, we summarize state-of-

the-art developments in two fields: exact algorithms for picking problems and recent enhancements

of exact algorithms for the rectilinear TSP.

Exact algorithms for order picking are still rare (cf. Section 1.1). To the best of our knowledge,

only three algorithms exist, all based on the work of Ratliff and Rosenthal (1983) who presented

a first polynomial algorithm for a specified warehouse layout, namely a warehouse without inter-

spersed cross-aisles. In a nutshell, the NP-hardness of the general TSP is removed since it can be

proven that at most two arcs between adjacent vertices exist in a solution. This algorithm scales

linearly with the number of sub-aisles since its complexity is significantly reduced by Proposition 1,

which introduces the concept of transitions to denote a picker’s movement through a sub-aisle (a, b).

Example 1 (Using transitions to model picker movements in sub-aisles). Given a

sub-aisle (c, c′) that starts at c and ends at c′, a transition denotes a possible way for a picker to

travel through (c, c′) in order to collect all items that she must pick in this sub-aisle. Figure 2

shows examples of such transitions for a sub-aisle (c, c′).

Proposition 1. [adapted from Ratliff and Rosenthal (1983)] Let G= (V,A) be a graph repre-

sentation of a rectilinear picking zone. Then, an optimal picker tour, i.e., the shortest tour that

covers every position with an item that must be picked, can be represented by using only six different

transitions for a sub-aisle (c, c′) and three different transitions for a sub-cross-aisle.

Figure 3 illustrates the transitions of Proposition 1 for a general representation of (c, c′) with

two (optional) stops in the sub-aisle. Besides the transitions already detailed in Figure 2, these

transitions contain an empty transition (I), as some sub-aisles that do not contain items that must

(b) (c) (d) (e)(a)

c′

c

Figure 2 Examples of transitions for a sub-aisle.

(III) (IV) (V) (VI)(II)(I)c

c′

Figure 3 Sub-aisle transitions for optimal paths in G.
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be picked may not be visited in an optimal solution. Summarizing, the complete set of transitions

contains a non-traversed sub-aisle (I) and a complete traversal in one (II) or two (III) directions.

Furthermore, a sub-aisle may be partially traversed with slopes from one (IV ,V ) or both (V I)

directions. For transition (V I), the split between both slopes is always given by the longest distance

between two stops in the same sub-aisle if more than two stops are present in the sub-aisle. Although

this split criterion may not be unique, it does not affect the solution’s global optimality since all

split options have the same cost. For cross-aisles in which the picker does not pick up items, only

transitions I–III, from here on referred to as standard transitions, are necessary.

Based on this rationale, Roodbergen and De Koster (2001) and Pansart et al. (2018) have

proposed exact algorithms for warehouse layouts with three or more cross-aisles. However, these

algorithms are limited in their applicability to the GOPP since multiple picklists, parallel processing

of picklists, multiple drop-off points, and multiple travel modes are still not considered.

Cambazard and Catusse (2018) proposed an exact algorithm based on finding an optimal tour

for a rectilinear TSP with a set of customers V, by solving a Steiner variant of this problem on the

Hanan graph H(V) with terminal vertices V. Based on Proposition 2, they decompose the problem

and develop a layered graph algorithm that uses a dynamic program to explore H(V) iteratively

to find an optimal tour.

Definition 3 (Hanan graph). Let U be a finite set of vertices in a plane. We first construct a

grid, made up of vertical and horizontal lines through each point of U , commonly known as a Hanan

grid (Hanan 1966). The resulting intersections define a second set of vertices S which includes U .

The Hanan graph H(U) = (S,E) formally defines this grid and consists of the vertex set S and

an edge set E , which contains all edges linking two consecutive vertices of S in the horizontal or

vertical direction.

Proposition 2. [adapted from Cambazard and Catusse (2018)] Let T ∗ be an optimal tour in

H(V). Then, there exists a planar separator S of H(V) that decomposes T ∗ into two partial tours

T ∗l and T ∗r .

Definition 4 (planar separator). For a Hanan graph H(U) = (S,E), we refer to a subset

of its vertices S ⊂S as a planar separator if the removal of these vertices partitions the graph into

two disjoint subgraphs. We call S a vertical planar separator, if |S|= h and χh(S) = {1, ..., h}, with

h denoting the number of different horizontal positions {1, ..., h} in H, and χh(S) being a function

that denotes the set of horizontal positions for each vertex in S.

This algorithm has a computational complexity of O(nh7h), where n represents the number of

customers and h denotes the number of horizontal lines in the Hanan graph H(V).
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3.2. A bidirectional layered graph algorithm for a single picklist

In the following, we develop a bidirectional layered graph algorithm for a specific case of the GOPP

with a single picklist and a single drop-off point. We first sketch the general idea of our algorithm

in Section 3.2.1, before we detail its main components in Section 3.2.2, and show in Section 3.2.3

how the algorithm’s performance can be further enhanced via an improved graph representation.

3.2.1. Algorithm sketch: Our algorithmic idea is based on four fundamental steps, which

we outline in the following, before we formalize our algorithm.

i) We first introduce a compact graph representation for our physical planning problem: Figure 4a

depicts a picking zone layout with a single drop-off point and one picklist. Here, the drop-off point

is the gray rectangle, and the shelves that must be visited are highlighted in orange. Figure 4b

shows its corresponding graph representation. We define a Hanan graph H(C) = (C,E) based on

the intersections C of the picking zone and note that its edges E span all storage positions.

ii) We then note that the transitions defined by Ratliff and Rosenthal (1983) still hold in our

setting so that we can use these transitions to describe a picking tour in H(C).

iii) Then, our algorithm’s main rationale is to solve a modified Steiner TSP in H(C). This Steiner

TSP remains modified from its original definition since instead of a set of terminal vertices, a set

of terminal edges Em ⊆ E and the depot vertex must be covered by the tour in its solution. These

edges represent sub-aisles that the picker has to visit to pick all items on her list. Here, we use

the transitions mentioned above to explore edge traversals and introduce the definition of a path

subgraph to describe a solution of this Steiner TSP.

iv) In this setting, we use a planar separator to split a path subgraph into partial path subgraphs.

This allows us to design a problem specific LGA algorithm to solve the modified rectilinear Steiner

TSP and thus the GOPP with a single picklist, a single travel mode, and a single drop-off point.

Definition 5 (path subgraph). A subgraph T = (VT ,AT ) of G is a path subgraph if it is

connected and its degree deg v > 0, and deg v mod 2 = 0 for v ∈ VT .

(a) Physical layout. (b) Graph representation.

Figure 4 Example of a storage layout.
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Definition 6 (partial path subgraph). Let T = (VT ,ET ) be a subgraph of L = (VL,EL)

which is a subgraph of G= (VG,EG). Then, T is an L partial path subgraph of G if there exists at

least one subgraph F = (VF ,EF ) with EF ⊂EG \ EL so that T and F form a path subgraph in G.

Compared to a standard LGA implementation as in Cambazard and Catusse (2018), we make the

following extensions to derive an algorithm suitable to solve the GOPP with a single picklist and

depot: as indicated above, we introduce Em ⊆ E as the subset of edges that must be visited, from

here on referred to as mandatory edges, to ensure that we visit all pick positions where items must

be picked. Moreover, we develop a bidirectional algorithm that splits H(C) into two subgraphs,

explores these subgraphs individually, and then merges the partial solutions to a complete solution.

Although the worst-case complexity of bidirectional algorithms often remains the same as that

of their monodirectional counterparts or even gets worse due to an additional merge procedure,

empirical evidence for various problems showed superior performance of bidirectional approaches,

e.g., in branch-and-price algorithms. Assuming a computationally efficient merge procedure, a

bidirectional algorithm does not perform worse than a monodirectional algorithm. It may even be

better because exploring the solution space from different directions in two separate searches may

reduce the number of states that must be explored, partially by detecting additional dominance

relations. As our merge procedure remains computationally efficient (see Appendix E), it seems

promising to develop a bidirectional search. While this algorithm was developed for the picking

problem, it also appears to be the first that can readily be adapted to the rectilinear Steiner TSP.

3.2.2. Algorithmic Components: To formalize our algorithm, we first label vertical posi-

tions v and horizontal positions h in H(C) = (C,E). Here, h∈ {1, . . . , h} refers to the hth horizontal

line, that is, in our specific setting, to the hth cross-aisle. We label horizontal lines from the lower

left corner (h = 1) to the upper left corner (h = h). Analogously, v ∈ {1, . . . , v} refers to the vth

vertical line, that is, in our specific setting, to the vth aisle. We label vertical lines from the lower

left corner (v = 1) to the lower right corner (v = v). We then uniquely identify a vertex c ∈ C by

its location on the hth horizontal and the vth vertical line of H(C) = (C,E). Let χh(c) denote the

horizontal position of a vertex with χh(c)∈ {1, ..., h} and let χv(c) denote the vertical position of a

vertex c with χv(c)∈ {1, ..., v}. We use both functions for single vertices as defined above but also

for sets of vertices, then returning a set of positions.

With this notation, we define a central planar separator Ŝ, which allows to define two subgraphs

B and U of H(C) as shown in Figure 5. Here, B consists of all vertices in Ŝ and to the left of Ŝ

and its corresponding edges, whereas U consists of all vertices in Ŝ and to the right of Ŝ and its

corresponding edges. In each of these subgraphs, we define additional subgraphs Bhv / Uhv, where

the edges of Bhv are induced by all vertices c ∈B for which (χv(c)< v)∨ (χv(c) = v ∧ χh(c)≤ h)
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holds, and the edges of Uhv are induced by all vertices c ∈ U for which (χv(c) > v) ∨ (χv(c) =

v∧χh(c)≥ h) holds. Then, let Rhv / Lhv be the planar separators that define Bhv / Uhv in B / U .

Figure 6 shows an example of a subgraph B34 with its separator R34 in B and a subgraph U46 with

its separator L46 in U .

Definition 7 (central planar separator). We refer to a planar separator S of a Hanan

graph H(U) = (S,E) as central, if:

1. S is a vertical planar separator according to Definition 10.

2. For all ci, cj ∈ S it holds that χv(cj)≤ χv(ci) if χh(cj)>χ
h(ci) and |χv(S)|= 2.

3. ||E ′| − |E ′′|| is minimal for the resulting subgraphs H ′ = (S ′,E ′) and H ′′ = (S ′′,E ′′), with H ′

being induced by all vertices in or to the left of S and H ′′ being induced by all vertices in or

to the right of S.

Recall that Proposition 2 suggests that we can explore B and U independently to find a cost-

minimal path subgraph in H(C), i.e., a shortest tour for the Steiner TSP. Then, the main rationale

of our algorithm is to propagate partial path subgraphs in B and U in order to complete these to

a cost-minimal path subgraph. To propagate these partial path subgraphs, we use a transition set

Te which denotes all aforementioned possible transitions t∈ Te for each edge e= (c, c′)∈ E .

We develop a bidirectional LGA that iteratively explores subgraphs Bhv, Uhv in B, U to identify

partial path subgraphs. As each subgraph Bhv/Uhv can contain multiple partial path subgraphs,

we identify each partial path subgraph by a state α. Each state α = {r,u} consists of a vector

r = (r1, . . . , rh) which denotes the degree parity of each vertex in Rhv/Lhv, and of a vector u =

(u1, ..., uh) which denotes the connected component to which each vertex in Rhv/Lhv belongs. Here,

both the ith entry ri of r and the ith entry ui of u state the degree parity, respectively the connected

component label, of the vertex that lies on the ith horizontal line in Rhv/Lhv.

Definition 8 (connected component). A partial path subgraph may contain partial paths

that are not necessarily connected with each other but may still yield a feasible solution if they are

merged with a second partial path subgraph that preserves the connectedness of the overall path.

To trace the number of different partial paths, we use a connected component label ui given by an

integer number. Here, ui denotes the connected component label of the vertex that lies on the ith

Ŝ

U

B

Figure 5 Example of Ŝ and its

resulting subgraphs.

Ŝ

B34

U46

R34 L46

Figure 6 Example of subgraphs

B34 and U46.

Ŝ

B35

U44

R35

L44

Figure 7 Fully explored graph with

Ŝ =L44 =R35.
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horizontal line of H(C) in the planar separator. We initialize the label of the first explored vertex

with one and increase the label everytime a transition disconnects c′ from c when propagating

(c, c′). When a transition reconnects two vertices, both gain the lower connected component label.

Once Lhv = Rhv = Ŝ it holds that Bhv = B and Uhv = U , and B and U collectively exploit

H(C) exhaustively (Figure 7). We can then identify the optimal path by merging feasible paths

from Bhv/Uhv. To specify our general algorithmic concept, we now define transitions to propagate

partial path subgraphs, a feasibility check to either discard infeasible states or to merge partial

path subgraphs, and a dominance criterion to discard dominated states.

Transitions: We use the transitions proposed by Ratliff and Rosenthal (1983) as vertical transi-

tions (cf. Figure 3). Doing so straightforwardly yields a transition set that is larger than needed.

To derive a minimum transition set and speed up computational times, we separate all edges of

set E of H(C) into a set of mandatory edges Em and a set of optional edges Eo. Mandatory edges

comprise edges that represent a mandatory sub-aisle while optional edges represent non-mandatory

sub-aisles or cross-aisles such that E = Em ∪Eo. Since each edge in Em must be visited, transitions

II –VI are sufficient to propagate mandatory edges. Non-mandatory edges will only be used as

connecting edges such that we need only transitions I –III to propagate these.

Feasibility Check: We use the information stored in the state α= {r,u} to evaluate whether a

transition leads to an infeasible state or not. Our feasibility check then bases on the degree ri ∈ r

and on the connected component label ui ∈ u of each vertex in Rhv/Lhv. The degree of each vertex

ri ∈ {E,O} can be even (E) or odd (O). A partial path subgraph in Bhv/Uhv may contain multiple

partial paths that are not necessarily connected with each other (cf. Definition 6). To trace these, ui

denotes an integer label of the connected component of the partial path ending on the ith horizontal

line in Rhv/Lhv.

Given this information, we can check the feasibility of a transition as follows. A transition leads

to an infeasible state if any of the following statements holds:

i) After applying a transition from vertex c to vertex c′, c remains with an odd degree but is no

longer in Rhv/Lhv.

ii) After applying a transition, the drop-off point vertex is not connected to the path.

iii) After applying a horizontal transition, a connected component is reduced without a merge.

To check the feasibility during the merge operation, a merge is feasible only if:

i) No vertex in Ŝ remains with an odd degree.

ii) Only a single connected component label remains.

Dominance Criterion: We use the definition of equivalence between partial path subgraphs to

develop a dominance criterion. To keep the number of propagated partial path subgraphs as small

as possible, we withdraw each partial path subgraph that is equivalent to an already existing partial
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path subgraph and does not improve its cost. This criterion is based on the rationale that for two

equivalent partial path subgraphs T and T ′ in Bhv it is sufficient to keep only the one with the lower

cost to derive an optimal path subgraph. We establish this equivalence in Proposition 3.

Definition 9 (equivalent partial path subgraphs). We consider a hanan graph H(C)

and its subgraphs B and U that collectively cover H(C) exactly. Let T and T ′ be two distinct

partial path subgraphs in B. We call T and T ′ equivalent if any partial path subgraph F in U that

completes T to a path subgraph in H(C), also completes T ′ to a path subgraph in H(C).

Proposition 3. We consider a hanan graph H(C) and its subgraphs B and U that collectively

cover H(C) exactly. Let T and T ′ be two distinct partial path subgraphs in B. Then, T and T ′ are

equivalent if their states α and α′ are equal.

Using the described transitions, feasibility check, and dominance check, we propagate partial

path subraphs until Bhv and Uhv collectively exploit H(C) when Bhv = B and Uhv = U . For the

algorithmic details, we refer the interested reader to Appendix D.

3.2.3. Improved graph representation: With the modifications described above, we obtain

an LGA to solve a picker routing problem for a single picklist, a single drop-off point, and an

arbitrary number of aisles and cross-aisles. We now derive an improved graph representation that

helps reduce the number of developed labels to enhance the algorithm’s computational performance.

The number of labels increases with the number of edges that must be traversed. Hence, we aim

to derive a maximal sparse graph that preserves optimality but contains as few edges as possible.

We introduce the set Cm as the set of all vertices that are either adjacent to an edge in Em or

represent a drop-off point. Then, a graph that preserves the realization of a shortest path between

any c, c′ ∈ Cm preserves optimality. In the following, we provide a reduction technique that improves

the sparsity of H(C) while preserving optimality.

Focusing on a planar separator S, we say that this separator is decreasing if ∀ c, c′ ∈ S, χh(c′)>

χh(c) ⇒ χv(c′)≤ χv(c) and increasing if ∀ c, c′ ∈ S, χh(c′)> χh(c) ⇒ χv(c′)≥ χv(c). With this

notation, we state Proposition 4, which allows to construct a reduced Hanan graph.

Proposition 4. Let H ′ = (C′,E ′) be a reduced Hanan graph with E ′ ⊂ E being its edge set,

induced by the vertex set C′ ⊂ C. Then, H ′ is sparser than H(C), i.e., |C′| < |C|, |E ′| < |E| and

preserves optimality if we construct C′ as follows.

1. We consider two planar separators Sl and Sr, for which the following conditions hold:

(a) |Sl|= |Sr|= h and χh(Sl) = χh(Sr) = {1, ..., h},

(b) each planar separator Sl, Sr can be split into two partial planar separators with Sl = Sl
1∪Sl

2

and Sr = Sr
1 ∪Sr

2 such that
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i. ∀ c∈ Sl
1, c

′ ∈ Sl
2 : χh(c)≤ χh(c′),

ii. ∀ c∈ Sr
1, c

′ ∈ Sr
2 : χh(c)≤ χh(c′),

iii. Sl
1 and Sr

2 are decreasing, and Sl
2 and Sr

1 are increasing.

2. We can then construct C′ in O(hv) such that Cm ⊆C′ and

χh(c′) = χh(c) = χh(c′′) ⇒ χv(c′)≤ χv(c)≤ χv(c′′) ∀ c∈ C′, c′ ∈ Sl, c′′ ∈ Sr.

Figure 8 shows an example of such a reduced Hanan graph.

3.3. Extensions for the general GOPP

We now present a general framework that allows to integrate the LGA algorithm of Section 3.2 to

solve any variant of the GOPP. The main rationale of this framework leverages a branch-and-prune

algorithm to make decisions on i) which subsequent picklists should be processed in parallel, and

on ii) the drop-off points at which finished lists should be dropped. To calculate the overall picker

walking time for a specific configuration of parallel-processed picklists and drop-off points, we need

to solve extended variants of the basic problem studied in Section 3.2. Here, our branch-and-prune

algorithm makes use of extended variants of our LGA to solve these subproblems. In the following,

we first detail the general branching and pruning framework that embeds our LGA to solve the

resulting subproblems in Section 3.3.1. We then discuss characteristics of and extensions that are

necessary to integrate cartless subtours, a dynamic batching policy, and multiple drop-off points

into our LGA in Section 3.3.2, and derive lower bounds in order to speed-up the branch-and-prune

algorithm in Section 3.3.3. We note that we could also use our ILP within the branch-and-prune

algorithm and refer to Appendix C for further elaboration.

3.3.1. Branch-and-Prune Algorithm: As a prerequisite to formalize our branch-and-prune

algorithm, we first decompose the solution of the GOPP. To this end, we refer to a solution

σ = (ϑ1, ..., ϑn) as an n-tuple of subproblem solutions ϑi. Each solution is associated with a cost

C(σ) =
∑
C(ϑi). A subproblem solution represents a single picking tour between two drop-off point

visits and is a quadruple ϑi = (La
i ,Ti, ω

−
i , ω

+
i ) consisting of a set of active picking list labels La

i ⊆L

which depends on the general set of order list labels L to be processed, a vector of transitions Ti

that comprises an explicit transition tij ∈ Tij for each edge, a starting drop-off point ω−i , and a

final drop-off point ω+
i .

(a) Example instance.

SrSl

(b) Feasible reduced Hanan graph.
Figure 8 Example of a feasible reduced Hanan graph.
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To solve the GOPP using this decomposition, one needs to decide on i) La*
i , i.e., which picklists

are processed in which subproblem, ii) which drop-off points ω+∗
i , ω−∗i should be used in each

subproblem, and on iii) T∗i , i.e., which transitions form the cost optimal picking tour. To make

decision iii) and obtain T∗i , we leverage an extended variant of our LGA, which we detail in

Section 3.3.2. We now develop a branch-and-prune algorithm that allows to make decisions i) and

ii), using our extended LGA as an oracle to determine the minimum cost of each subproblem.

We represent our branch-and-bound tree as a graph-theoretic tree, with N being the set of node

labels of the complete tree, 0 being its root node, and Zn ⊂N denoting the child nodes of node n.

Each node n in this tree represents a subproblem θn, identified by a unique triple θn = (La
n, ω

+
n , ω

−
n ),

which may be part of the optimal solution that is given by the cost-minimum path from the tree’s

root node to a leaf.

Example 2 (branch-and-bound tree). We consider a set of picklists L= {1,2,3}, a picking

zone layout with two drop-off points a, b ∈ D, and a cart capacity of κ= 2. Further, the picker is

supposed to start her first tour and to end her last tour at a. Figure 9 shows the corresponding

fully enumerated branch-and-bound tree, which contains subproblems with four different active

picklist configurations La
i ∈ {{1}, {2}, {3}, {1,2}, {2,3}}, and depot configurations (ω−i , ω

+
i ) ∈

{(a, b), (b, a), (a,a), (b, b)}. As one can see, the leaving drop-off point in a child subproblem

always remains the entering drop-off point in its direct parent subproblem. This ensures that the

subproblems capture the total picker walking distance. Moreover, a path’s depth from the root

node to a leaf may vary, depending on the configuration of active order lists in each subproblem,

because a path up to a leaf must always contain all picklists to represent a feasible solution.

We introduce the following additional notation to detail the algorithm that allows us to explore

such a tree efficiently. We associate each node n with a subproblem sequence Θn = (θi, ..., θn),

defined by the path from the root node 0 to node n. For example, referring to the example given in

Figure 9, the subproblem sequence defined by node n= 6 reads Θ6 = (θ1, θ6), while the subproblem

sequence for node n = 16 is Θ16 = (θ2, θ9, θ16). Note that the root node is never part of such a

0

4

({3}, b, a)
12

({1,2}, a, b)3
({1,2}, a, a)

({3}, a, a)
11

({1}, a, a)
1

({2}, a, b)6
({2,3}, a, a)

7
({2}, a, a)

5

({3}, b, a)
14

({3}, a, a)
13

({1}, a, b)2

({2}, b, b)9
({2,3}, b, a)

10
({2}, b, a)

8

({3}, b, a)
16

({3}, a, a)
15

Figure 9 Branch-and-bound tree representation for |L| = 3, κ= 2, and |D| = 2 .
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sequence as it is not associated with a subproblem, because the first subproblem is not unique due

to the varying active picklist configurations.

With ϑi being the solution to subproblem θi, we can then define the cost Cn of a node n as the

sum of the subproblem costs of its corresponding subproblem sequence and note that a subproblem

sequence Θ whose subproblems cover all picklists which must be processed constitutes a complete

solution σ. We use σ∗ to denote the optimal solution and C∗ to denote its cost. Further, let

ψ(n) denote a function that calculates a lower bound on the cost of a solution that includes the

subproblem sequence of n. We refer to Section 3.3.3 for details on the lower bound calculation and

note that for leaves of the tree, ψ(n) = Cn. To explore the tree, we use sets N a and N s to keep

track of nodes that have not been solved (N a) and nodes that have already been solved (N s). Here,

N a remains an ordered set that can be seen as a priority queue which contains nodes hierarchically

ordered by i) the number of processed order lists, starting with the maximum, and ii) nodes with

an equal number of processed order lists in increasing order with respect to their lower bound cost.

Whenever we insert nodes into N a, we preserve this order.

Subproblem sequence dominance: Clearly, this branch-and-bound tree grows significantly for

larger problem settings depending on the number of picklists and drop-off points. To allow for a

tractable exploration of such a tree, we introduce the following dominance relation. We consider

two subproblem sequences Θn and Θn′ . We then say that Θn dominates Θn′ (Θn �Θn′) if i) the

picklists processed in Θn′ have also been processed in Θn, and ii) Cn + C(ω+
n , ω

+
n′) ≤ Cn′ , with

C(ω+
n , ω

+
n′) being the cost to move from ω+

n to ω+
n′ . This bound allows to discard a majority of

nodes of the branch-and-bound tree early and thus allows to efficiently solve large-size instances.

Pseudo-code: Figure 10 details the pseudo-code of our algorithm. We first initialize N a with

the children of the root node Z0 and set C∗ to infinity (l.1). We then explore nodes in N a in a

branch-and-bound fashion. We explore the tree with a depth-first strategy, defined by the order

of N a; in case of a tie, we chose the node with the smaller index (l.3). We then check whether

the node is dominated (l.4) or it’s lower bound exceeds the so far best-found solution cost (l.5). If

any of these checks is true, we discard (prune) the node and continue with the next node in N a.

If none of these checks is true, we either update the optimal solution if the current node is a leaf

1: N a←Z0,C∗←∞
2: while N a 6= ∅ do
3: n′← getF irstNode(N a)
4: if isNotDominated(n′) then
5: if ψ(n′)<Cn∗ then
6: if isLeafNode(n′) then
7: C∗←Cn′

8: σ∗←Θn′

9: else
10: N s←N s ∪{n′}
11: extend(N a,Zn′ )

12: return σ∗

Figure 10 Pseudo-code for our branch-and-prune algorithm.
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(l.6–8) or add n′ to N s (l.10) and add its children to N a (l.11). We note that the smallest lower

bound calculated by ψ(n) is usually not tight, i.e., we do not achieve an exact matching between

the smallest lower bound and the global upper bound. However, the lower bound often allows to

discard unfavorable unexplored subproblems early.

3.3.2. Subproblem extensions: We recall from Section 3.3.1 that the cost of a subproblem

solution results from the cost of its transitions. Accordingly, we can determine the cost of a sub-

problem by computing a cost-optimal transition vector using the LGA presented in Section 3.2,

accounting for the following modifications in settings with cartless subtours, multiple drop-off

points, and dynamic batching. We note that all of the detailed modifications are additive, e.g.,

to solve a subproblem with cartless subtours, multiple drop-off points, and dynamic batching, we

apply all modifications outlined below but no further interdependencies between those modifica-

tions apply.

Cartless Subtours: Allowing for cartless subtours results in varying travel speeds in sub-aisles,

which affect the cost of the transitions. We prove in Proposition 5 that the transitions discussed

in Section 3.2 still suffice to calculate an optimal solution. Thus, our algorithm can be applied to

problems with cartless subtours without changes.

Proposition 5. If a picker can switch her travel mode from picking SKUs accompanied by her

cart to picking a limited number of items of the same or different SKUs on foot in line with the

definition of a cartless subtour, the transition set T is sufficient to derive an optimal solution.

Therefore, no changes to our algorithm are necessary to handle cartless subtours. We only add

a routine that considers potential cartless subtours and the corresponding travel time reductions

when calculating the cost of all transitions during preprocessing.

Multiple drop-off points: We recall that the decision on which drop-off points are used is made

in the branch-and-prune phase of our algorithm. This reduces the necessary modifications in our

LGA algorithm to account for settings where the starting drop-off point and the final drop-off

point are different, i.e., ω+
i 6= ω−i . Such a setting leads to optimal subproblem solutions with tours

that contain odd-degree vertices, which are prohibited by the feasibility check of our basic LGA,

as detailed in Section 3.2. We prove that these odd degrees are always limited to the drop-off point

vertices ω+
i and ω−i , i.e., the start and end of a subproblem’s optimal tour.

Proposition 6. The optimal path subgraph T ∗ of ϑi with ω+
i 6= ω−i comprises exactly two ver-

tices with an odd degree which relate to ω+
i and ω−i .

With Proposition 6, we extend the feasibility check of our LGA to a subproblem with ω+
i 6= ω−i by

enforcing an odd instead of an even degree for ω+
i and ω−i .
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Dynamic Batching: Under a dynamic batching policy, a picker can pick multiple lists l ∈ L at

once (as long as the cart’s bin capacity κ is not exceeded) and may return to the drop-off point

once at least one but not necessarily all picklists are finished to empty one or several bins. As

explained in Section 3.3.1, we model such possibilities with subproblem variations: each subproblem

comprises the possible transitions to form a picker tour between two drop-off point visits, where

the transitions result from the order lists that are active in the respective subproblem.

Specifically, this implies that subproblems exist where the number of active order lists is lower

than the bin capacity to reflect cases where a subset of bins is returned to a depot early, although

collecting a larger number of picklists in parallel. In these cases, we calculate the respective sub-

problem’s transitions based on the active picklists but consider items of subsequent picklists that

are processed in parallel as picked if the resulting transitions cover them. This implicit picking of

items from inactive lists reduces the number of items to be picked when their picklist becomes

active in a subsequent subproblem, without delaying the drop-off of active picklists. Here, one may

achieve even shorter overall picking times by picking more items early from subsequent lists, at the

price of delayed drop-offs of active lists. Accounting for this characteristic would require a mod-

ified algorithm and remains an interesting future research direction. Here, the decision on which

picklists are active in parallel influences the number of consecutive subproblems in a subproblem

sequence Θ (see Example 2). We recall that order lists must be processed in chronological order

(cf. Section 2.3) and note that this limits the combinations of active picklists.

3.3.3. Lower Bounds for a single subproblem: In the following, we detail the function

ψ(n) that we use in Section 3.3.1 to efficiently prune the branch-and-bound tree. Specifically, ψ(n)

calculates a lower bound on the cost of a solution that includes the subproblem sequence of n by

extending Cn with the maximum of two lower bounds Υ1 and Υ2. Here, Υ1 and Υ2 are lower bounds

for the remaining unexplored subproblems’ cost that can be added to the subproblem sequence to

get a complete solution. For each unexplored subproblem, we calcuate Υ1 and Υ2 as follows.

To calculate Υ1, we consider our original graph representation G= (V,A). We derive a minimal

spanning tree on a reduced graph Gc = (Vc,Ec), where Vc contains the drop-off vertices and every

pick-up position of the subproblem, Ec = {{i, j} | i ∈ Vc, j ∈ Vc}, and Gc is weighted with the

walking time τij that results from the Manhattan distance of each arc. Then, a minimal spanning

tree is given by P c ⊆Ec with a minimal total weight which yields Υ1 such that Υ1 =
∑

(i,j)∈P c τij.

To calculate Υ2, we consider the reduced Hanan graph H ′ = (E ′,C′). We derive a lower bound

by summing up i) the cost-minimum transition for each mandatory edge, i.e., ζ∗ij = mint∈Tij{ζijt},
and ii) costs ζIII for a double traversal of cross-aisles between each pair of aisles with n being the

number of aisles remaining in H ′, such that Υ2 =
∑

(i,j)∈Em ζ
∗
ij + ζIII(n− 1). For cartless subtours,

we treat all transitions of type IV , V , and V I as cartless to calculate Υ2.
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If the leaving and returning depots are not equal, we adapt the calculation of these bounds

accordingly, i.e., in this case, the spanning tree for Υ1 comprises both drop-off vertices, and the

minimum cost transition calculation for Υ2 considers a single transition for both depots.

4. Computational study

The scope of our computational study is twofold. First, we benchmark the basic component of our

algorithm against the current state of the art and we also analyze the performance of our algorithmic

framework for real-world environments in Section 4.1. Second, we study various warehouse layouts

and picking policies based on three case studies from a managerial perspective in Section 4.2.

We conducted all experiments on a standard desktop computer with an Intel Core I7 3.6GHz

and 16 GB RAM. Our algorithm was implemented as a single thread code in C++. We solved the

ILP using Gurobi 8.1.

4.1. Computational performance

Currently, no algorithm can solve all problem variants considered in this study. The most generic

algorithm proposed in parallel to this work by Pansart et al. (2018) focuses on a picker routing

problem for a multiblock warehouse limited to a single picklist, a single drop-off point, a static

batching, and lacks cartless subtours. We compare the performance of both our monodirectional

and our bidirectional LGA, and our ILP (see Appendix C) to the algorithm of Pansart et al.

(2018). Since these authors also use dynamic programming, we reimplemented their algorithm in

our framework to allow for a fair comparison on the same desktop computer. The benchmark from

Theys et al. (2010), which we detail in Appendix G.1 forms the basis for our comparison.

Table 2 compares the performance of our monodirectional (M-LGA) and bidirectional (B-LGA)

algorithms, the algorithm of Pansart et al. (2018) (PCC), and our ILP in terms of i) the number

of solved instances and ii) the computational times. As can be seen, our LGAs perform much

better than the algorithm of Pansart et al. (2018) in terms of both computational times and

scalability on large-size instances. In particular, for large-size instances, our LGAs show much better

computational times and solve more instances. Comparing our monodirectional algorithm to our

bidirectional algorithm, one can see that the bidirectional algorithm shows the best computational

times and solves more instances with 11 cross-aisles then the monodirectional algorithm. Note that

the computational times for the monodirectional algorithm on instances with 11 cross-aisles and

five aisles only appear to be lower since less instances are solved. Accordingly, the comparison is not

complete as only solved instances are counted within the average computational times. Our ILP

shows longer computational times than all problem specific algorithms but manages to solve a large

subset of instances. For the instances with three or six cross-aisles reported as not solved, it still

finds an optimal solution but struggles to close the optimality gap within the time limit of an hour.
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Remarkably, the ILP solves the most instances with 11 cross-aisles out of all algorithms. While

our bidirectional LGA solves 64 instances with 11 cross-aisles, the ILP solves 110 instances with

11 cross-aisles. For most other instances with 11 cross-aisles, the ILP finds a solution but cannot

prove its optimality within the given time limit. Only 35 instances remain completely unsolved.

The different performance of these solution approaches can be attributed to specific algorithmic

components. Our LGA-based algorithms outperform that of Pansart et al. (2018) for three reasons:

first, we use an elaborate online graph reduction which significantly reduces the number of states

that must be explored. Notably, the time of this reduction routine is included within the computa-

tional times of Table 2. Second, we use improved transition sets which allow for a further reduction

in the number of states that must be explored. Third, our feasibility check and equivalence criterion

allow us to discard dominated or infeasible states early. In total, the largest share of improvement is

due to the graph reduction. Our bidirectional LGA outperforms its mono-directional counterpart as

it can discard states earlier by exploring the subgraphs in two directions. While the computational

complexity of our LGAs depends on the number of cross-aisles of an instance, the computational

complexity of the ILP depends on the total number of arcs. Accordingly, it succeeds in solving a

large number of instances with 11 cross-aisles and a small number of aisles but struggles on closing

optimality gaps for instances with many aisles, independent of the number of cross-aisles.

In real-world settings, the computational performance of our algorithm can be better or worse

than in Experiment 1 due to a multitude of complexity drivers. Hence, we use a second benchmark,

detailed in Appendix G.1, to analyze the computational performance of our algorithm with respect

to i) the number of cross-aisles, ii) the number of processed picklists and the number of items

on each list, and iii) the picking zone layout. Further, we show the impact of our preprocessing

technique.

Table 3 shows computational results for a set of benchmark instances with a varying number of

cross-aisles. We created 20 instances with a single depot and 50 aisles for each cross-aisle setting,

Table 2 Number of solved instances and computational times in seconds on the Theys et al. (2010) benchmarks.

Volume based Random

Num. of cross-aisles 3 6 11 3 6 11

Num. of aisles 5 15 60 5 15 60 5 15 60 5 15 60 5 15 60 5 15 60

Instances
solved

B-LGA 60 60 60 60 60 60 33 15 2 60 60 60 60 60 60 14 2 -
M-LGA 60 60 60 60 60 60 27 13 2 60 60 60 60 60 60 9 2 -

PCC 60 60 60 60 60 60 - - - 60 60 60 60 60 60 - - -
ILP 60 60 45 60 38 8 26 10 - 60 60 45 60 49 9 44 30 -

Time

B-LGA 0.004 0.01 0.03 0.16 6.87 45.8 337 555 1320 0.00 0.01 0.04 0.28 10.1 60.1 340 484 -
M-LGA 0.004 0.01 0.04 0.78 9.42 48.6 153 566 1803 0.00 0.01 0.04 1.39 13.8 63.1 334 1476 -

PCC 0.006 0.03 0.09 12.4 193 1062 - - - 0.01 0.03 0.09 12.9 193 1062 - - -
ILP 0.05 10.4 176 12.2 273 1.17 315 778 - 0.05 3.55 174 2.24 125 1.01 98.9 639 -

The table shows the average computational times of the solved instances on the Theys et al. (2010) benchmark for the
algorithm of Pansart et al. (2018) (PCC), our monodirectional LGA (M-LGA), our bidirectional LGA (B-LGA), and our ILP.
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Table 3 Computational results for benchmark instance sets with 50 aisles.

Number of cross-aisles 3 4 5 6 7 8

Average computational time [s] 0.02 0.13 1.54 25.6 322 -
Average speed-up factor 1.50 1.66 3.16 6.08 16.4 -

Maximum value speed-up factor 3.07 4.77 20.4 64.5 71.0 -
3rd Quartile speed-up factor 1.46 1.61 2.75 3.87 16.9 -

Median speed-up factor 1.28 1.43 2.09 2.52 6.49 -
1st Quartile speed-up factor 1.20 1.30 1.67 1.92 3.14 -

Minimum value speed-up factor 1.06 1.09 1.19 1.20 1.30 -

The table shows the average computational time and the statistical characteristics of the ratio between the computational

time without and with preprocessing for benchmark sets of 20 instances for different numbers of cross-aisles.

generating pick positions as described in Appendix G.1. We report the average computational time

for each instance set. Further we analyze the ratio between the computational times without and

with our graph reduction technique, from here on referred to as speed-up factor. As can be seen,

the overall complexity of the instances increases exponentially with the number of cross-aisles. The

computational times remain stable for each instance set, and settings with up to five cross-aisles

which are relevant in practice can be solved in less than a few seconds. Instances with seven cross-

aisles already take a few minutes of computational time, and instances with eight cross-aisles do

no longer show stable computational times as some instances cannot be solved due to memory

limitations. Without our graph reduction technique instances with seven cross-aisles already show

unstable computational performance. The impact of the speed-up factor varies depending on the

instance characteristics. The statistical quantities in Table 3 show that in approximately 50% of the

cases our graph reduction technique reduces computational times by at least 50%. In general, the

improvement potential of this technique tends to be higher, the higher is the number of cross-aisles.

Besides the number of aisles and cross-aisles, the number of consecutively processed picklists

and the number of items on each list influence the computational tractability of our algorithm.

Furthermore, this tractability heavily depends on the chosen picking policy and on the number of

drop-off points in a picking zone. The simplest real-world configuration comprises a static batching,

a single drop-off point, and no cartless subtours on a layout with three cross-aisles and one drop-off

point. The most complex real-world configuration comprises a dynamic batching (DS), multiple

drop-off points (MD), and cartless subtours (CS) on a layout with three cross-aisles and five

drop-off points (cf. Figure 12). Figure 11 shows the computational times for these two extreme

configurations. Computational times remain stable below 0.1 second for the simple case. For the

complex case, computational times increase significantly for large instances but remain rather

insensitive to the number of consecutive picklists due to the dominance criterion introduced in

Section 3.3.1. In practice, such algorithms are used in a receding-horizon fashion within a 15-minute

interval. This corresponds to a maximum number of four to five consecutive picklists with up to 35

items (see Section 4.2). For these real-world configurations shown by the orange area in Figure 11,

we achieve computational times below 90 seconds even for the worst scenario.
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Concluding, our algorithm yields both new best known results for existing benchmarks and a

generic framework that is amenable to a real-time implementation for a multitude of real-world

configurations with respect to picking zone layouts and picking policies. In the following, we extend

our experiments by using the bidirectional LGA as it provides the best and a robust performance

on instance sizes relevant in practice.

4.2. Impact of different picking policies and picking zone layouts

The three real-world applications discussed in Section 2.2 are similar with respect to the size and

throughput of the warehouse. Each comprises roughly 15,000,000 items of SKUs which is the total

storage capacity of the Zalando warehouse. This translates into 400,000 items for a single picking

zone. A picking zone has a width of 70 to 80 m; each aisle or cross-aisle has a width of 1.5 m;

a shelf has a depth of 0.75 m, each storing about 300 items. Hence, 1,400 shelves are necessary

to store 400,000 items. Whereas these characteristics are similar for all three warehouses, their

layouts vary in terms of the number of cross-aisles and drop-off points: Zalando (Figure 12a) uses

the most conventional layout with a single drop-off point (blue square) and three cross-aisles, at

the beginning, in the middle, and at the rear of the picking zone; Hermes (Figure 12b) works with

a layout having a single drop-off point but uses five cross-aisles to increase the flexibility of the

pickers; the Amazon layout (Figure 12c) has three cross-aisles but four additional drop-off points in

the middle cross-aisle. In the following, we perform a numerical study based on these case studies

to derive insights into the optimal design of picking policies and the respective picking zone layouts.
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(a) Layout 1, (SB/SD/NS).
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(b) Layout 3, (DB/MD/CS).

Figure 11 Computational times dependent on the number of consecutive lists and items per list.

(a) Layout 1 (Zalando). (b) Layout 2 (Hermes). (c) Layout 3 (Amazon).

Figure 12 Picking zone layouts for three real-world cases, by increasing order of complexity.
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Experimental Design: To allow for an unbiased analysis, we need to work with identical picklist

sequences and picking zone sizes. Hence, we cannot use real data from our three industrial cases

but generate realistic synthetic instance data.

To ensure equal picking zone sizes that reflect the spacious conditions of our real-world cases, we

choose a picking zone width of 75 m that results in a layout with 25 aisles to cover 50 shelf rows,

each row having 28 shelves. The width of a shelf is 2 m, and hence we divide each shelve into two

picking positions to derive a distance granularity of 1 m. Further, we generate instances with three

and five cross-aisles and one to six drop-off points to account for all picking zone settings from our

real-world examples and potential variations.

To ensure identical picklist sequences, we generate realistic picklist sequences as detailed in

Appendix G.2 that mimic a potential upstream batching procedure. Here, we account for varying

picklist dispersions, i.e., picklists spanning across a varying spatial area within a picking zone, to

account for varying batching efficiency. To characterize a picklist dispersion, we use the number

of aisles β ∈ N to the left and right and the share of pick positions γ ∈ [0,1] above and below a

picklist’s centroid to define the picking zone area in which the lists items are distributed. Small β,γ

values denote clustered picklists, while large β,γ values denote dispersed picklists. The former

means that the previous batching planning stage has sucessfully clustered all picking positions in

a closely confined area, whereas the latter represents a less successful batch plan where picking

positions are widely scattered throughout the picking zone. Since all layouts have the same number

of aisles and shelves per aisle, this technique allows us to use the derived picklists on each layout

and hence to produce comparable unbiased results.

We perform a full factorial design with respect to the picking policy characteristics (Table 1).

To this end, we refer to a picking policy with three identifiers, where the first (SB,DB) indicates

whether batching is static (SB) or dynamic (DB), the second (SD,MD) indicates whether a single

(SD) or multiple (MD) drop-off points are used, and the third (NS,CS) indicates whether cartless

subtours are allowed (CS) or not (NS). Moreover, we consider a varying cart capacity κ between

two (Amazon, Zalando) and four (Hermes) bins on a cart that influences the number of parallel

processed picklists.

For each resulting setting, we analyze a representative set of 50 instances with five consecutive

picklists of 35 items each. This corresponds to a 15-minute planning interval in a receding-horizon

setting, which is often used in practice. To evaluate the performance of the different picking policies

and picking zone layouts, we analyze the average total picking time reduction (TPTR) related to a

picking zone layout with a single depot and the most elementary picking policy (SB/SD/NS). We

calculated the TPTR by first comparing the results on a per-instance basis and then computing

an average value.
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The remainder of this section summarizes our main findings for selected settings, while

Appendix I contains detailed results.

Two comments on this experimental design are in order. First, we note that we focus our analyses

on the impact of picking policies and the respective picking zone layouts for varying picklist disper-

sions and cart capacities. We do not analyze the benefit of increasing the cart capacity explicitly as

such an analysis would require a different experimental setup that focuses on a larger time horizon.

We refer the interested reader to Appendix H for a detailed discussion and prelimary analyses of

this impact. Second, although extensive, these studies are not exhaustive since considering layouts

with an even number of cross-aisles or further parameter studies may reveal additional benefits.

However, we leave these studies for further research as they would require considerable space to

allow for rigorous elaboration and discussion.

Picking Policies: Figure 13 focuses on the improvement potential of each picking policy depend-

ing on the picklists’ dispersion. Here, Figure 13a addresses the impact of multiple drop-off points

and shows the average TPTR when using an SB/MD/NS policy with κ = 2 on a five-cross-aisle

layout with six drop-off points. We observe a maximum improvement of 24.3% for clustered pick-

lists with the smallest β,γ. For increasing β,γ, the TPTR may be significantly lower, in the worst

case as little as 1%. We see similar trends but different amplitudes for settings with κ∈ {3,4} and

layouts with three cross-aisles. The maximum TPTR for three-cross-aisle layouts remains 3%–4%

below the maximum TPTR for five-cross-aisle layouts. Settings with κ ∈ {3,4} show amplitudes

that are 7%–8% below the κ= 2 setting.

Result 1. Multiple drop-off points can yield TPTRs up to 24% on average, given clustered

picklists. For dispersed picklists, these TPTRs may become negligible.

Figure 13b explores the impact of dynamic batching and shows the average TPTR when using

an DB/SD/NS policy with κ = 4 on a three-cross-aisle layout with one drop-off point. Here, we

observe maximum TPTRs of 9% and minimum TPTRs of 3%. Similar patterns occur for varying

2468
1216

0.25
0.50

0.75
1.00

0
5

10
15
20
25

βγ

∆ [%]

(a) SB/MD/NS TPTR for κ = 2, 5
cross-aisles, and 6 drop-off points.
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(b) DB/SD/NS TPTR for κ = 4, 3
cross-aisles, and 1 drop-off point.
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(c) SB/SD/CS TPTR for κ = 2, 3
cross-aisles, and 1 drop-off point.

Figure 13 Average TPTR (∆) for picking policy flexibility levers.
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κ and three- as well as five-cross-aisle layouts, with slightly higher amplitudes on three-cross-aisle

layouts. While settings with clustered picklists still show greater improvements than settings with

dispersed picklists, we do not observe the steep systemic decrease seen for multiple drop-off points.

In fact, we observe the highest improvement potential for γ = 0.5 and β ∈ {2,4}.

Result 2. Dynamic batching can yield TPTRs up to 9.2% on average for clustered picklists.

For dispersed picklists, the TPTRs may reduce to 3%.

Figure 13c focuses on the impact of cartless subtours and shows the average TPTR when using an

SB/SD/CS policy with κ = 2 on a three-cross-aisle layout with one drop-off point. Interestingly,

we observe an inverse pattern with the highest TPTRs being realized for dispersed picklists. Inde-

pendent of κ or the layout’s number of cross-aisles, we observe similar patterns with only slight

amplidute variations of roughly 1%.

Result 3. Cartless subtours can yield TPTRs up to 11.3% on average for dispersed picklists.

For clustered picklists, the improvement may reduce to 3%.

Figure 14 further details the impact of multiple drop-off points by showing the TPTR for selected

levels of picklist dispersion dependent on the number of drop-off points available. As can be seen,

the marginal utility of adding an extra drop-off point decreases significantly for settings beyond

three drop-off points. This effect is independent of κ or the cross-aisle layout, and we note that the

marginal utility decrease is slightly lower for clustered picklists than for dispersed picklists.

Result 4. The deployment of multiple drop-off points shows decreasing marginal utilities for

large numbers of drop-off points such that the positive effect of additional drop-off points quickly

diminishes the more drop-off points are added.

Figure 15 shows the TPTR when utilizing all picking policy characteristics (DB/MD/CS) for

κ = 2 on a five-cross-aisle layout. We observe a maximum average TPTR of 31% for maximal

clustered picklists and decreasing TPTR for more dispersed picklists, yielding a minimum TPTR

of 12%. Similar patterns arise for three-cross-aisle layouts and settings with varying κ. While
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Figure 14 Average SB/MD/NS TPTR for κ= 2 with 5

cross-aisles for different levels of picklist dispersion (β,γ)

dependent on the number of drop-off points.
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κ= 2 with 5 cross-aisles and 6 drop-off points.
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minimum average improvements remain stable between 11% and 12% for all settings, maximum

TPTRs vary between 31% and 21%.

Result 5. Exploiting all picking policy flexibility levers can yield TPTRs up to 31% for clus-

tered picklists. For dispersed picklists, the TPTR may reduce to 11%.

Synthesis: Our observations allow us to synthesize the following insights. First, we note that

the TPTR potential of a specific picking policy depends highly on the picklist dispersion, i.e, the

efficincy of an upstream batching: the more efficient the upstream batching, i.e., the more clustered

the picklists, the larger is the benefit of multiple drop-off points. This allows for a significantly

improved routing and early dropping-off of asynchronously finished picklists. For dispersed picklists,

it is less likely that the completion time of picklists hugely vary, i.e, that picklists can be dropped off

early, and the benefit of multiple drop-offs decreases significantly for inefficient upstream batching.

Independent of the batching efficiency, we observe decreasing marginal utilities when increasing

the number of deployed drop-off points beyond three drop-off points.

Second, we observe a reversed effect for cartless subtours, which yield the greatest TPTRs in

settings with inefficient batching. In these cases, the picking routes span over a large part of the

picking zone, which naturally leads to more slopes and subtours that allow for savings, whereas

clustered picklists reduce the gains of cartless subtours.

Third, the TPTR potential of dynamic batching appears to be relatively insensitive to the picklist

dispersion as changing the order of active picklists bears a TPTR potential in various settings.

Focusing on the overall TPTR potential, the impact of the different levers is additive, i.e.,

by utilizing all three levers, we reach a TPTR potential similar to the sum of the single TPTR

potentials. We do not observe distinct reinforcing effects; across all settings, the overall TPTR

potential and the sum of the single TPTR potentials show positive or negative deviations below 2%.

Picking zone layout: Besides the picking policies, changing the picking zone layout with respect

to the number of cross-aisles may impact the picking performance. Table 4 shows for all levels of

picklist dispersion the range of average TPTRs over all picking policies and cart capacities κ when

switching from a three-cross-aisle layout to a five-cross-aisle layout. We observe greater reductions

for dispersed picklists with a maximum reduction of 23.2% for β = 16 and γ = 0.75. For clustered

Table 4 TPTR between five and three-cross-aisle layouts for varying picklist distributions.

β 2 4 6 8 12 16

γ 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

max 6.3 6.4 6.3 -0.7 10.5 8.3 10.3 3.3 14.9 10.6 14.2 7.9 15.1 14.1 16.9 9.7 17.5 17.0 21.5 14.1 18.2 17.8 23.2 16.0
Q3 4.7 5.4 4.6 -2.3 8.8 6.8 8.5 1.5 12.3 9.0 12.3 6.4 12.9 11.6 15.6 8.9 14.9 14.6 19.7 12.9 15.6 15.9 20.6 14.2
Q2 4.0 4.3 3.5 -2.9 7.2 5.8 6.9 0.6 11.0 8.2 10.3 3.9 11.9 10.4 13.1 6.0 13.6 13.8 17.8 10.1 15.0 15.4 19.7 12.8
Q1 2.2 3.1 2.8 -4.1 6.1 4.7 6.2 -0.5 10.4 7.6 9.5 2.8 11.3 9.0 12.7 5.0 12.8 12.5 16.3 8.7 13.8 14.3 18.5 10.6

min 0.3 2.1 0.7 -5.1 4.5 3.2 5.0 -1.9 9.1 6.6 7.4 1.8 9.8 7.7 11.7 3.9 11.2 12.1 15.5 7.4 12.4 13.3 17.0 9.1

mean 3.6 4.2 3.6 -3.1 7.5 5.8 7.3 0.6 11.4 8.4 10.8 4.3 12.1 10.5 13.9 6.6 13.9 13.9 18.0 10.5 14.9 15.3 19.7 12.6

This table characterizes the TPTR distribution when switching from a three-cross-aisle to a five-cross-aisle layout.
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picklists, we observe significantly lower reductions. For high γ and low β, we even observe increased

total picking times in some settings. This effect highlights that additional cross-aisles increase the

flexibility of the picker to shortcut into adjacent aisles, but add unused space to the warehouse and

increase the lengths of the picking aisles. Particularly for clustered picklists which require only a few

aisles to be traversed, additional cross-aisles constitute a significant share of the overall distance,

which may worsen the picking time. Hence, there exists a general trade-off between different design

and operational objectives, and we cannot conclude that more cross-aisles automatically increase

picking performance. This trade-off has been explored in great detail for traditional (single-depot)

settings, e.g., by Roodbergen and De Koster (2001) as well as Roodbergen et al. (2008).

Result 6. Increasing the number of cross-aisles significantly reduces the picking time for set-

tings with dispersed picklists. For clustered picklist the reduction is much smaller and increasing

the number of cross-aisles may even lead to a loss of picking performance.

5. Conclusions

With the rapid growth in e-commerce, picker routing and its associated policies have become crucial

determinants of profitability and competitiveness in warehouse operations. We have presented the

first generic and exact algorithmic framework for the GOPP, which constitutes a new state of the

art for several known (sub)problem variants and for the generic case. Our algorithm is scalable and

amenable to real-time applications since it requires computational times of less than two seconds

for realistic warehouse layouts and picking policies. Using this algorithm, we have analyzed the

impact of several picking policies and warehouse layouts on the overall performance of a picker.

Although not exhaustive in all design aspects of picking zones, our results allow the derivation

of several meaningful managerial insights, identifying trends that may open the field for further

research. We have shown that employing enhanced picking policies may reduce the average total

picker walking time by up to 20–30% depending on the picking zone layout and cart capacity used,

which provides the potential to increase overall flexibility or throughput. Utilizing multiple drop-

off points is highly beneficial in case of clustered picklists that result from an efficient upstream

batching procedure. Its impact becomes negligible for scattered picklists, i.e., in the absence of an

efficient upstream batching. Conversely, cartless subtours appear to be particularly beneficial in the

presence of scattered picklists and may partly compensate for inefficient upstream batching, but

show only little impact for settings with clustered picklists. Dynamic batching allows for improve-

ments independently of the upstream batching’s efficiency and the resulting picklist dispersion.

Increasing the number of cross-aisles in a picking zone layout can improve or deteriorate the picking

times since deciding on the number of cross-aisles amounts to making a trade-off between routing

flexibility and walking distances. Accordingly, using layouts with larger numbers of cross-aisles
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appears to be particularly beneficial for dispersed picklists but may worsen picking times when an

efficient upstream batching generates significantly clustered picklists.

Three final comments in relation with these insights are in order. First, the impact of cartless

subtours may be significantly higher or lower, based on the ratio between a picker’s speed with

and without a cart. The picker speeds used in this work are often observed in practice, which

means that our results provide a good baseline, but they should be reexamined if achievable speeds

differ significantly. Second, explicitly analyzing the benefit of varying cart capacities may reveal

additional interesting insights. Here, we want to emphasize that our results constitute only a first

step into this field of research. Extending our framework to provide in-depth analyses of different

objectives or integrated batching and order picking, which has been so far mostly studied for rather

theoretical warehouse settings, may yield interesting insights for both academics and practitioners.
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Appendix A: Proofs of propositions

Proof of Proposition 1 [§3.1] See Ratliff and Rosenthal (1983). �

Proof of Proposition 2 [§3.2] See Cambazard and Catusse (2018). �

Proof of Proposition 3 [§3.2] We consider a Hanan graph H and its subgraphs B and U , defined by a

vertical planar separator S, that collectively exploit H. Let T and T ′ be partial path subgraphs in B and

let α and α′ be their respective states. We then show that α= α′ implies equivalence between T and T ′ by

showing that for any partial path subgraph F in U it holds that if T and F form a path subgraph P in H,

T ′ and F also form a path subgraph P ′ in H.

We note that formally, a subgraph P is a path subgraph if for every vertex c in P it holds that i) deg c

mod 2 = 0 and ii) deg c > 0, and iii) P is connected.

We now note that by construction conditions i) and ii) hold for any vertex in T and T ′ that are not

contained in S. By definition, conditions i) and ii) also hold for all nodes in F \S and for all vertices in S in

case T and F form a path subgraph P . Then, α= α′ implies that ri = r′i ∀i∈ {1, . . . , h} and thus conditions

i) and ii) also hold for path subgaph P ′, which is formed by T ′ and F .

We now focus on condition iii). Here, two cases exist. If T , T ′ and F are connected, P and P ′ remain

connected and are path subgraphs. If either T and T ′ or F have more than one connected component, α= α′

implies that ui = u′i ∀i ∈ {1, . . . , h} such that either both P and P ′ or none of these subgraphs is a path

subgraph.

This concludes the proof. �

Proof of Proposition 4 [§3.2] We first show that requiring Cm ⊆ C′ in combination with conditions a)

and b) of Proposition 4 preserves optimality in H ′, by proving that the length of a shortest path for any

pair of (c, c′), c, c′ ∈ C is the same in H ′ and H. This only holds if the left and right border of H ′ are convex,

which implies that Sl and Sr must have a concave shape. By construction, Sl and Sr remain concave.

We now show how a feasible C′ can be constructed from C in O(hv). We set C′ = C and proceed as follows.

1. We first traverse H(C) starting in its lower left corner, moving horizontally from left to right along

vertices c ∈ C with χh(c) = 1. We remove the inspected vertex if i) it neither belongs to a mandatory

edge, nor ii) it is a drop-off point. The first time we found constraints i) or ii) violated, we store the

vertex’s vertical position v̂. We then start inspecting vertices c∈ C with χh(c) = 2 from left to right and

stop either if constraints i) or ii) are violated or if iii) χv(c)> v̂. We then repeat this procedure until

we inspected vertices with χh(c) = h and condition i)–iii) is violated.

2. Afterwards, we repeat this procedure starting in the upper left corner of H(C), moving horizontally

from left to right and subsequently from top to bottom.

3. We then proceed analogously for the lower and upper right corners of H(C), moving horizontally from

right to left and subsequently in the respective vertical direction.

Removing vertices in this order preserves the convexity of C′, which concludes the proof. �

Proof of Proposition 5. [§3.4.1] Recall from Section 2.3 that a cartless subtour starts and ends at the

same position and occurs only within a sub-aisle. Accordingly, only circular subtours with a limited number

1
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of stops may arise. We consider a sub-aisle in between vertex c∈ C and vertex c′ ∈ C and differentiate between

two cases, depending on a picker’s walking time through this sub-aisle by cart τ cc,c′ or by foot τpc,c′ :

If τ cc,c′ ≤ τ
p
c,c′ , partial tours without cart become superfluous.

If τ cc,c′ > τ
p
c,c′ , we can still use the standard transitions based on the following reasoning. We note that:

i) Transition I disconnects the path, such that it is valid independent of the travel mode.

ii) Transition II does not allow to form a slope within a sub-aisle and thus, does not model a cartless

subtour in any case.

iii) Transition III allows to go back and forth between two vertices but is always dominated by Transi-

tions IV, V, and VI, because a cartless subtour by definition is limited to a sub-aisle.

iv) Transitions IV and V capture the case that all items are collected with a slope that starts at one end

of the sub-aisle. In this case, one can reduce the cost of the transitions by the eligible cartless subtours

within the respective slope.

v) The cost of Transition VI in the case of cartless subtours can be calculated by considering the cost

reduction in eligible subtours for each potential split, identifying its minimum. This minimum may still

not be unique. Then, the same argument as for the standard transition holds.

For transitions IV to V I, a slope may contain more items than a picker may pick on a cartless subtour. In

this case, we consider only a part of the slope as cartless such that the respective capacity constraint is not

violated. Accordingly, one can recalculate the influence of cartless subtours on each transition and its eligible

slopes a-priori, such that the same transition set can still be used to run the layered graph algorithm (LGA)

or the integer linear program (ILP).

This concludes the proof. �

Proof of Proposition 6. [§3.4.1] With ω+
i 6= ω−i , T ∗ remains either as a straight origin-destination path

without cycles or contains one or more cycles. In both cases T ∗ must remain connected so that the only odd

degrees relate to ω+
i and ω−i . This holds since the traversal of each cycle must start and end in the same

vertex since T ∗ remains an Eulerian cycle. In any infeasible case, additional odd degrees arise. �

Appendix B: NP-hardness proof for the generalized order picking problem
(GOPP) with multiple picklists and multiple drop-off points

Here, we prove that the GOPP as defined in Section 2.3 (i.e., with multiple picklists to be assembled according

to a given processing sequence, a cart with a capacity of κ orders, and multiple drop-off points) is strongly

NP-hard even if each picklist demands just a single item. Note that a straightforward transformation from

the TSP is not available for our problem, because picker routing in parallel aisle warehouses is solvable in

polynomial time (Ratliff and Rosenthal 1983). Instead, our transformation is from the sorting buffer problem

(dubbed SBP), which is NP-hard in the strong sense (Asahiro et al. 2012). The SBP in its feasibility version

is defined as follows.

Sorting Buffer Problem: Given a sequence η of n items, each item i is to be colored in color k(i) by a server,

which has a random access input buffer for up to g parallel items. According to η, items are moved

into the buffer. At any step, a color k is selected and all items in the buffer of color k are removed from
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the buffer and processed by the server. Freed buffer space is filled by succeeding items of η; if some of

these new items also demand color k, they are instantaneously removed until no item in the buffer is

of color k. Then, a new color is selected and the process repeats, until no items remain in η. Given no

initial color, we have to decide whether a processing plan with at most K color changes exists.

We transform an instance I of SBP into an instance I ′ of our GOPP in pseudo-polynomial time as follows.

For each color k of I, we introduce an aisle within a rectilinear warehouse layout. Each item i with color k(i)

of SBR corresponds to a picklist demanding just a single item to be retrieved for a picking position located

in the middle of the aisle corresponding to the respective color. Thus, if we have four items of color white in

SBP, we introduce four picklists each demanding an item stored at a picking positions in the middle of the

‘white aisle’ of GOPP. Furthermore, in the middle of each aisle we have a drop-off point. Note that, for a

matter of convenience, we assume that all items stored in the same aisle and each aisle’s drop-off point are

located in the middle of the aisle and have zero distance among each other. This proof can easily be extended

by (small) distances among an aisle’s picking positions and drop-off point. Additionally, we have the picking

cart of GOPP, which resembles the input buffer of SBP. The capacity of the cart equals that of the input

buffer, so that we have κ = g. The sequence η of SBP equals the GOPP sequence of picklists. The length

of each aisle is 2λ, so that the distance towards the middle of each aisle, where the picking positions and

the drop-off points are located is λ. The distance all along the front cross-aisle in order to reach the parallel

picking aisles is ρ. We assume λ > K · ρ. Initially, the picker is located in the cross aisle and the question

we ask is whether there exists a solution to I ′ with a total picking distance Z < 2λ ·K. Our transformation

scheme is depicted in Figure 18.

If I is a yes-instance, visiting the aisles within GOPP in the same sequence as switching colors within

SBP leads to a solution to I ′ with Z < 2λ ·K. When visiting an aisle with the picking cart all picklists with

their items stored in this aisle can be completed and handed over at the drop-off point. Since we have no

distance among the picking positions of this aisle and the drop-off point, all succeeding picklists put onto the

cart according to given sequence η and having their items stored in the current aisle can also be processed

without causing additional picker walking. Thus, each aisle visit causes a distance of 2λ to walk back and

Figure 18 Transformation scheme of complexity proof.
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forth the middle of the aisle, except of the last aisle where picking stops after handing over the last picklists.

Since even completely passing the front cross aisle (of length ρ) K times does not exceed λ, the resulting

solution to I ′ does not exceed Z < 2λ ·K.

On the other hand, any solution to I ′ of GOPP with Z < 2λ ·K is also a feasible solution to I of SBP.

Switching colors in the same sequence as changing aisles inevitably leads to K color changes, which completes

our complexity proof. �

Appendix C: An integer linear program for a single picklist

Instead of designing an LGA to solve the order picking problem for a single depot and a single picklist,

we can also develop a concise and efficient ILP to solve this problem. We define this ILP on a modified,

directed graph G′ = (C′,A) which results from transforming the reduced graph H ′ into a directed graph.

In addition to the set of all arcs a = (c, c′) ∈ A with c, c′ ∈ C′, Am denotes all mandatory arcs, i.e., arcs

corresponding to sub-aisles that must be traversed, and Ad-,Ad+ denote the subset of arcs leaving or entering

the vertex that represents the drop-off point. Further, Ai denotes for each aisle i, the subset of cross-aisle

arcs that are located between the ith and the (i+ 1)st aisle. We use the cut sets δ+(a) and δ−(a) to denote

all predecessor and successor arcs of a, and a′ to denote the inverse arc of a and define Am
= {(c, c′) ∈

Am | χv(c) < χv(c′) ∨ χh(c) < χh(c′)}, which allows us to efficiently model slope transitions on mandatory

arcs. We use binaries xa to indicate whether an arc is traversed (xa = 1) or not (xa = 0) and binaries yat

to indicate whether an arc is sloped with a specific transition t (yat = 1) or not (yat = 0). Specifically, we

cover transitions I, II, III from Figure 3 with the binary traversal variables xa and xa′ , while we use the yat

variables to model potential slopes with the limited transition set T ′ = {IV,V,V I}. The coefficients ζa and

ζat denote the predefined cost for each traversal or slope. Further, we use binary zab to trace if in a tour, arc

b is the direct successor of arc a. Binary oa identifies the first arc of a tour, while binary da identifies the last

arc of a tour.

With this notation as summarized in Table 5, our ILP is as follows:

minimize Z =
∑
a∈A

ζaxa +
∑

a∈Am
,t∈T ′

ζatyat (1)

subject to

xb ≥
∑

a∈δ+(b)

zab b∈A (2)

Table 5 Notation used in the ILP formulation.

A set of all arcs ζa cost of traversing arc a
Am set of all mandatory arcs ζat cost of sloping arc a with transition t

Ad- set of all depot leaving arcs a′ inverted arc of a

Ad+ set of all depot entering arcs

Ai cross-aisle arcs between the ith and (i+1)st aisle xa a is traversed (xa = 1) or not (xa = 0)

Am
mandatory arc subset yat a is covered with slope t (yat = 1) or not (yat = 0)

T ′ limited transition set (T ′ = {IV,V,V I}) zab b is traversed after a (zab = 1) or not (zab = 0)
δ−(a) cut set yielding all successor arcs of a oa a is the first arc of the tour (oa = 1) or not (oa = 0)
δ+(a) cut set yielding all predecessor arcs of a da a is the last arc of the tour (da = 1) or not (da = 0)
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xa ≥
∑

b∈δ−(a)

zab a∈A (3)

∑
b∈δ−(a)

zab ≥ xa a∈A\Ad+ (4)

∑
b∈δ−(a)

zab + da ≥ xa a∈Ad+ (5)

∑
a∈δ+(b)

zab ≥ xb b∈A\Ad- (6)

∑
a∈δ+(b)

zab + ob ≥ xb b∈Ad- (7)

xa +xa′ +
∑
t∈T ′

yat ≥ 1 a∈Am
(8)

∑
a∈Ad-

oa = 1 (9)

xa ≥ oa a∈Ad- (10)∑
a∈Ad+

da = 1 (11)

xa ≥ da a∈Ad+ (12)∑
t∈{IV,V I}

yat ≤
∑

b∈δ+(a)

xb a∈Am
(13)

∑
t∈{V,V I}

yat ≤
∑

b∈δ−(a)

xb a∈Am
(14)

∑
a∈Ai

xa ≥ 2 i∈ {1, ..., v− 1} (15)

∑
a∈B

xa ≤
∑
a∈B−

xa|A| B ⊆A\ (Ad+ ∪Ad-) (16)

xa ∈ {0,1} a∈A; zab ∈ {0,1} a, b∈A; yat ∈ {0,1} a∈Am
, t∈ T ′;

oa ∈ {0,1} a∈Ad-; da ∈ {0,1} a∈Ad+.
(17)

Our objective minimizes the total cost, which results from traversing or sloping arcs. Constraints (2) and

(3) link arc and sequence binaries, Constraints (4) and (5) ensure that each but the last traversed arc has

a successor, and similarly Constraints (6) and (7) enforce the existence of a predecessor for all but the

first traversed arc. Constraints (8) ensure that every sub-aisle that must be visited is traversed or sloped.

Constraints (9) and (10) uniquely identify the first arc of a tour, while Constraints (11) and (12) uniquely

identify the last arc of a tour. Constraints (13) and (14) are connecting slopes and preceding and successive

traversals, while Constraints (15) ensure that the picker traverses cross-sub-aisles between two aisles in the

reduced graph at least twice. Constraints (16) ensure connectivity with B− being the set of all arcs that are

successor arcs of arcs in B whose end-vertex is not contained in the vertex set induced from all arcs in B.

Finally, Constraints (17) define the domains of the variables.

Since the number of Constraints (16) grows exponentially with the size of A, we add these in a lazy fashion

as feasibility cuts in the solver. By so doing, we obtain an integer problem that remains tractable for many
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instances of small and medium size. We note that the cost coefficients of the xa and yat variables can be

preprocessed from the transitions in Figure 3. Accordingly, these costs remain equal to the costs of the state

transitions used in the bidirectional LGA in Section 3.2 and thus, the bidirectional LGA and the proposed

ILP solve the same reduced version of the GOPP and obtain the same optimal value.

One comment on this ILP is in order. We note that one could simplify this ILP further for the prevalent

case of a single drop-off point and a single picklist, i.e., one could omit the zab, oa, da variables and the

Ad+, Ad- sets. We state a more comprehensive ILP formulation as it is applicable to multiple drop-off points

without major modifications. Accordingly, one could use the ILP instead of the LGA as an oracle in our

branch-and-prune algorithm with minor changes: for cartless subtours and dynamic batching, the changed

transition calculations as described for the LGA in Section 3.3 apply. For multiple drop-off points it suffices

to consider all depots in the respective depot arc sets Ad+ and Ad-, and to drop Constraints (15) which is

a valid inequality for the special case with one depot.

Appendix D: Pseudo-code:

In the following, we detail the pseudo-code for the LGA described in Section 3.2. We propagate partial path

subraphs as described in Section 3.2 until Bhv and Uhv collectively exploit H(C) when Bhv =B and Uhv =U .

Here, we use a layered graph structure to store the states of partial path subgraphs in sets AB
j / AU

j , which

denote the states α that correspond to partial path subgraphs in the jth Bhv / Uhv subgraph of B / U .

Then, we obtain the optimal picking path by merging the states on the last layers AB
j and AU

j that contain

the states of partial path subgraphs explored in B and U . We elaborate the merge procedure in Appendix D

and detail only the forward and backward propagation in the following.

To keep the pseudo-codes of the corresponding algorithms concise, we first introduce the ordered sets

EB and EU, and denote the cost (i.e., the picking time) of a partial path subgraph associated with a state

α as C(α). Let EB contain all edges of B, ordered such that one traverses B starting at its lower-left

corner, processing vertical edges first and horizontal edges second, when processing edges in the order of EB.

Analogously, EU contains all edges of U , ordered such that one traverses U starting at its upper right corner,

processing vertical edges first and horizontal edges second.

Figure 19 provides the pseudo-code of our forward propagation. We first initialize AB
0 with an artificial

unconnected state α0 (l.1). Then, we start at the bottom left corner of B and explore partial path subgraphs

by propagating vertical edges (i.e., sub-aisles) first and horizontal edges (i.e., sub-cross-aisles) iteratively (l.2).

Here, each state related to a partial path subgraph on the next subgraph results from propagating a state

from its preceding subgraph and a transition (l.4–l.6). For each propagated state, we check its feasibility (l.7).

If the generated state is feasible, we check whether the current layer of states already contains an equivalent

partial path subgraph (l.8). In this case, we keep only the state with the lower cost and discard the other

one (l.9 and l.10). Otherwise, we add the generated state to the set of states AB
l of the corresponding layer

l, which refers to the lth subgraph (l.11 and l.12).

The backward propagation (Figure 20) works analogously but starts at the upper right corner of U ,

propagating vertical edges first and horizontal edges consecutively. To do so, we use the ordered set EU

instead of EB.

We show in Appendix F, that both algorithms have a worst-case complexity of O(vh7h).
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1: AB
0 ←{α0}, picklist← 0

2: for e∈ EB do
3: picklist← picklist+ 1
4: for α∈AB

picklist−1 do
5: for t∈ Te do
6: α′← propagate(t,α)
7: if feasible(α′) then
8: if ∃ α′′ ∈AB

picklist : α′′ == α′ then
9: if C(α′)<C(α′′) then

10: α′′← α′

11: else
12: AB

picklist←AB
picklist ∪{α′}

Figure 19 Pseudo-code of the forward propagation.

1: AU
0 ←{α0}, picklist← 0

2: for e∈ EU do
3: picklist← picklist+ 1
4: for α∈AU

picklist−1 do
5: for t∈ Te do
6: α′← propagate(t,α)
7: if feasible(α′) then
8: if ∃ α′′ ∈AU

picklist : α′′ == α′ then
9: if C(α′)<C(α′′) then

10: α′′← α′

11: else
12: AU

picklist←AU
j ∪{α′}

Figure 20 Pseudo-code of the backward propagation.

Appendix E: Merge procedure

In the following, we detail the merge procedure used in our bidirectional LGA implementation. Given the

final-layer sets AB and AU that contain the states of partial path subgraphs explored in B and U (see

Section 3.2.3), we can identify a cost-optimal path subgraph as

arg min
α∈AB,α′∈AU

C(α) +C(α′) (18)

such that α and α′ can be merged to a feasible path subgraph. Here, we can check feasibility in O(h) by

i) iteratively merging the connected component labels of α and α′ to ensure that merging both partial

path subgraphs yields a subgraph with a single connected component, and ii) ensuring that rα = rα
′
. Then,

solving (18) straightforwardly via pairwise comparison results in O(|AB||AU|) necessary comparisons, such

that the overall computational complexity is O(h|AB||AU|).

Observation 1. Let µ=
∑

i∈{1,...,h} r
α
i be the total parity in Ŝ for a state α∈AB and ξ =

∑
i∈{1,...,h} r

α′

i

be the total parity in Ŝ for a state α′ ∈AU. A merge of two partial path subgraphs can only be feasible if µ

and ξ are either both even or both odd. Moreover, the sum of parity degrees must be even for each vertex

in Ŝ.

To reduce the number of necessary comparisons, we exploit Observation 1 and divide AB and AU into

subsets such that AB =
⋃
i∈IA

B
i and AU =

⋃
i∈IA

U
i . We derive |I|= 2h subsets, each containing states with

an equal rα / rα′ . Then, we can limit the number of necessary comparisons to O(
∑

i∈I |AB
i ||AU

i |), as rα = rα′

must hold for a feasible merge, and obtain a worst-case computational complexity of O(h
∑

i∈I |AB
i ||AU

i |).

To further speed up our merge procedure, we sort the states in each subset in increasing order with respect

to their costs. This allows us to efficiently exploit potential merge moves and to exit the comparisons once

a feasible solution is found as all succeeding pairs would show a higher potential objective value.

Appendix F: Computational complexity of the forward and backward LGA

In the following, we prove that both the forward and backward LGA as introduced in Section 3.2.3 have

a worst-case time complexity of O(vh7h), with v being the number of aisles and h being the number of

cross-aisles of the underlying instance. To keep this paper concise, we discuss the proof for the forward LGA

in the following and note that it holds analogously for the backward LGA.

We recall that our algorithm advances through the graph by exploring one arc with each iteration. Accord-

ingly, the number of invocations of its main body (see Figure 8, lines 2–12) is bounded by the total number of



Schiffer et al.: Optimal picking policies for e-commerce warehouses
8 Article submitted to Management Science; manuscript no. MS-OPT-18-01682.R4

arcs, which is in O(hv). At each iteration, the algorithm propagates all partial path subgraphs that resulted

from the previous iteration, herein discarding infeasible or dominated partial path subgraphs. We now show

that the number of feasible states is bounded by some function f ∈O(7h) to prove the proposed worst-case

time complexity bound of O(vh7h).

Let Ω(h) be the set of feasible and distinct states α= {r,u}= {(r1, . . . , rh), (u1, . . . , uh)} that result when

running our algorithm. Further, let Ω′(h) be the set of states where for each α′ = {(r′1, . . . , r′h), (u′1, . . . , u
′
h
)} ∈

Ω′(h) the following claims hold:

1. The connected component labels of α′ form a non-crossing partition of u with respect to the ordering

induced by vertex indices [1, h].

2. Each connected component has an even number of vertices with odd degree.

Cambazard and Catusse (2018) show that |Ω′(h)| is bounded by O( (4+
√
8)h+1√

(h+1)3
) =O(7h) for a general rectilin-

ear Steiner traveling salesman problem (TSP). Accordingly, we prove in the following that for our problem

specific transition set α∈Ω(h) implies α∈Ω′(h). The following two proofs verify Claims 1 and 2 for α∈Ω(h),

which proves the existence of some f ∈ O(7h) that bounds the number of feasible states in our algorithm

and thus verifies O(vh7h) for the algorithm’s worst-case time complexity.

Proof of Claim 1. We prove Claim 1 by contradiction. Let α= {r,u} be a state for which the claim does

not hold. Then there exist a, b, d, e∈ [1, h] with a< b< d< e and ua = ud 6= ub = ue. From ua = ud and ub = ue

it follows that there exists paths πad and πbe from vertices a and b to vertices d and e, respectively in all

shortest feasible path subgraphs represented by α. From the construction of H(C), it follows that there exists

some c that is both in πad and πbe. Accordingly, there exists a path from vertex a to c and from c to b, which

implies that ua = ub. �

Proof of Claim 2. It is easy to see that Claim 2 holds for the initial state. For any other state, let α′ ∈Ω(h)

be a feasible state and let αt = {rt, ut} ∈Ω(h) denote its successor, such that αt results from α′ by applying

transition t∈ T on edge e= (co, cd)∈ E that can be either a horizontal edge, i.e., a sub-cross-aisle e∈ Ec, or

a vertical edge, i.e., a sub-aisle e ∈ Es. We now discuss each transition separately. To keep this discussion

concise, we say that a vertex is even (odd) if it has an even (odd) degree.

t= I: If e∈ Es, then rt = r′ and ut = u′. If e∈ Ec, then rti = r′i ∀i∈ [1, h] \ {χh(cd)} and r′
χh(cd)

= 0.

t = II: We first focus on horizontal edges e ∈ Ec, where we note that the algorithms propagation order

always ensures that cd is unconnected in α but connected in αt, and consider two cases: i) if co is

(un-)connected and even, propagating e with transition II is infeasible as co remains odd forever; ii) if

co is connected and odd, by propagating e with transition II the overall number of odd vertices remains

unchanged and the claim holds.

We now focus on vertical edges e∈ Es. Here, we consider four cases: i) if co and cd are (un-)connected and even,

applying transition II yields an odd degree at both vertices and the claim holds. ii) if co is (un-)connected

and even, and cd is connected and odd, the overall number of vertices with an odd degree remains unchanged

and the claim holds. iii) if co is connected and cd is (un-)connected and even, the claim holds in analogy to

ii) if co is odd, and follows by induction if co is even as propagating transition II causes co to become odd

but merges an odd vertex into the connected component. iv) if co and cd are connected cd must be odd. In
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case co is odd, too, transition II forces both vertices to become even and removes an even number of odd

vertices such that the overall number of odd vertices remains even. In case co is even in α′, it becomes odd

in αt while cd becomes even such that the overall number of odd vertices remains unchanged.

t= III: Transition III does not modify the vertex degree unless a new connected component is added.

In the former case the claim clearly holds. In the latter case, both vertices of the new connected component

have an even degree and the claim follows.

t= IV : rti = r′i and uti = u′i for i∈ [1, h] unless rti = 0. In this case, a new connected component comprising

only co results. As co has an even degree, the claim holds.

t= V : Analogous to t= IV .

t= V I: Follows from cases t= IV and t= V .

We conclude that the claim holds for all transitions whenever αt is feasible.

Then, Claim 2 holds in general. �

Appendix G: Instance generation

This appendix details our instance generation. In Section G.1, we detail the instances and benchmark sets

used in the computational performance experiments (cf. Section 4.1). In Section G.2, we detail the instance

generation for our real-world experiments (cf. Section 4.2).

G.1. Computational performance experiments

To compare our skeleton algorithm against the algorithm of Pansart et al. (2018) for a picker routing problem

with a multiblock warehouse limited to a single picklist, a single drop-off point, a static batching, and no

cartless subtours, we use the benchmark from Theys et al. (2010). This benchmark comprises 1,080 instances

which vary with respect to the number of aisles (5, 15, 60), the number of cross-aisles (3, 6, 11), the number

of picks (15, 60, 240), a volume-based (V) or random (R) storage policy, and central as well as decentralized

drop-off point positions.

To generate picklists for our additional instances, we randomly choose pick positions to create a sequence of

picklists and consider 20–60 picks per picklist, which correspond to a typical bin capacity for online retailers

selling small to mid-size consumer goods. We note that the derived picklists do not allow for meaningful

managerial anaylsis as an upstream batching procedure would derive more efficient picklists that are less

spatially dispersed within a picking zone. However, a randomly distributed picklist poses a bigger challenge

to our algorithm as the number of mandatory edges is higher. Accordingly, we use this picklist generation

scheme only to derive instances for conservative, pure computational studies.

G.2. Real-world setting & optimal picking policies

Through this experiment, we aim to derive insights into the optimal design of picking policies and the

respective picking zone layouts. To this end, we perform a full factorial design with respect to the picking

policy characteristics (Table 1) and the picking zone layouts from Section 4.1.2. To complete the experiment,

we extend our analysis as follows:
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i) Taking the real-world layouts as an envelope to our study, we design picking zone layouts with one to

six drop-off points and three and five cross-aisles. By enlarging the number of settings for additional

drop-off point configurations beyond the configurations observed in practice, our study allows to derive

more general insights into the benefit of picking zone layouts. Figure 21 shows an example of the drop-off

point configurations for a layout with three cross-aisles.

ii) For all resulting layouts, we evaluate the impact of a) cartless subtours and b) dynamic batching. Note

that we implicitly consider multiple drop-off points by each picking zone layout.

iii) The number of available bins, and therefore the number of parallel processed picklists in a dynamic

batching policy varies between two (Amazon, Zalando) and four (Hermes). Hence, we add an additional

parameter scan over the number of available bins κ∈ {2,3,4}, but we do not extend it to larger numbers

of bins as the cart size is limited in practice.

For cartless subtours, we assume a picker walking speed of 5 km/h, whereas this speed goes down to 4 km/h

if she is accompanied by her cart. We do not consider further variations in the picker walking speed as these

values reflect physical properties which are hardly alterable.

Besides these structural characteristics, the dispersion of a picklist’s pick positions, which results from

the efficiency of an upstream batching procedure, might significantly impact the efficiency of specific picking

policies. To take this effect into account, we generate picklist sequences with different levels of dispersion.

Our instance generation scheme bases on two ideas to mimic an upstream batching procedure. First, we take

into account that in a scattered multi-depot warehouse an efficient batching aims to create a picklist sequence

such that the pick positions of subsequent picklists have a maximum overlap (Weidinger et al. 2019). Second,

we consider that an efficient batching aims to minimize the distance between the pick positions within each

picklist, i.e., a picklist’s level of dispersion. Note that the picklist dispersion is only one criterion for the

batch building process. For an elaboration on further criteria, e.g., the orders’ urgency and a fair division

of workload among zones, see Boysen et al. (2019). If more weight is attributed to these further criteria,

dispersed picklists need not be an indicator for a flawed batch building process. Specifically, our instance

generation scheme accounts for these characteristics as follows.

(a) one drop-off point (b) two drop-off points (c) three drop-off points

(d) four drop-off points (e) five drop-off points (f) six drop-off points

Figure 21 Example of the different drop-off point configurations for a layout with three cross-aisles.
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We first account for creating an efficient list sequence that is still subject to some random order behavior

as follows.

1. To create a picklist sequence with n subsequent picklists, we randomly draw 3n pick positions within

the picking zone layout, each representing the center of a certain picklist.

2. We then select a cluster of n of these positions by randomly selecting one position and choosing n− 1

additional positions such that the total distance between the positions in the cluster is minimal.

We then account for a picklist’s level of dispersion by limiting the pick positions of a picklist to a certain

area around its center in the picking zone. By varying this area we can then steer the level of dispersion for

each picklist.

3. To determine the pick positions of each picklist, we randomly draw pick positions within a limited area

of the picking zone, which we define based on the prior selected center of each picklist. Specifically, we

limit the area from which pick positions can be drawn by the number of aisles β ∈ N to the left and

right of the center’s aisle and to the share of pick positions within an aisle γ ∈ [0,1] above and below

the center’s position, cf. Figure 22. Accordingly, a picklist that has been created with a small β and γ

reflects an efficient upstream batching, while a picklist that has been created with a large β and γ is

the result of a less efficient batching where picking positions are spread over a larger area.

4. For each picklist, we randomly draw 35 positions within the respective area. By so doing, we account

for a typical bin capacity for online retailers selling small to mid-size consumer goods.

To account for diferent efficient upstream batching procedures, we create instances with picklist neighbor-

hoods in the range of β ∈ {2,4,6,8,12,16} and γ ∈ {0.25,0.5,0.75,1.0}. We consider a full factorial design

over β and γ and create 50 instances for each setting to avoid statistical bias.

picklist center

pick position area
γ

β

Figure 22 Example of a picklist neighborhood.
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Appendix H: Preliminary analyses of cart capacity impact

In the following, we exemplary discuss the benefit of increasing the cart capacity for the most simple picking

policy with static batching, a single drop-off point, and no cartless subtours (SB/SD/NS), which allows for

a clean analysis that is not influenced by enhanced picking policies. To this end, we generate instances as

described in Section G.2 and vary the number of consecutive picklists, considering instances with 5, 20, 35,

and 50 consecutive picklists. We create 50 instances for each consecutive picklist setting, picklist dispersion

for three- and five-cross-aisle layouts.

To analyze the impact of an increased cart capacity, we calculate the total picking time reduction (TPTR)

when increasing the cart capacity from κ= 2 to κ= 3 (∆23) or from κ= 2 to κ= 4 (∆24) related to the total

picking time with κ= 2. Additionally, we denote the improvement that can be realized by further increasing

the cart capacity from κ= 3 to κ= 4 as ∆34 = ∆24 −∆23. Analogously to Section 4.2.2, we report results

based on average relative reductions which have been calculated by first comparing the results on a per

instance basis and then computing an average value.

Figure 23 shows the average TPTR reduction when increasing the cart capacity from κ= 2 to κ= 3 or

from κ= 3 to κ= 4 when using an SB/SD/NS policy on a three-cross-aisle layout with a single drop-off point

for five consecutively processed picklists. As can be seen average TPTRs of up to ∆24 = 30% can be realized

by switching the cart capacity to κ= 4. However, we observe an imbalance between ∆23 and ∆34 as only up

to 8% improvement can be realized by increasing the cart capacity from κ= 3 to κ= 4. A detailed analysis

reveals that this imbalance between ∆23 and ∆34 stems from a termination effect, where on the final picking

tour, the cart cannot be loaded with bins to capacity due to the limited number of consecutive picklists.

To exclude this termination effect, we analyze the resulting TPTRs for instances with a larger number

of consecutive picklists in Figure 24. Here, we observe rather stable results for settings with 20, 35, and 50

picklists, which shows that the chosen number of picklists is sufficient to remedy a termination effect. Here,

we observe average TPTR improvements of up to ∆24 = 44% with up to ∆34 = 16% resulting from increasing

the cart capacity from κ= 3 to κ= 4. While these numbers could be interpreted as a possible improvement

potential of increasing cart capacity, two comments on these findings are in order.

2468
1216
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∆ [%]

∆34

∆23

Figure 23 Average TPTR for SB/SD/NS on a three-cross-aisle layout with one drop-off point and five

consecutive picklists.
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(a) Average TPTR for 20 consecutive
picklists.

2468
1216

0.25
0.50

0.75
1.00

0

10

20

30

40

βγ

∆ [%]

∆34

∆23

(b) Average TPTR for 35 consecu-
tive picklists.
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(c) Average TPTR for 50 consecutive
picklists.

Figure 24 Average TPTR for SB/SD/NS on a three-cross-aisle layout with one drop-off point dependent on

the number of consecutive picklists.

First, our results reveal that increasing cart capacity promises considerable improvements because the

picking density per tour improves with a larger cart capacity. However, in the narrow aisles of a typical

e-commerce warehouse, automated picking carts are not applicable, and handling manual carts for multiple

large batch picking bins burdens the pickers with excessive physical stress. For example, at the Hermes

warehouse (see Section 2.2), where they apply a cart capacity of κ = 4, they mainly handle light-weighed

apparel. According to our experience, for heavier and bulkier goods such a cart capacity risks the physical

health of the human workforce over the long run and considerably slows down the travel speed in the narrow

aisles. Thus, the huge improvements of larger carts promised by our experiments must be put into perspective

with these negative effects on the human workforce, and more research on this trade-off is necessary.

Second, to remain reactive on unforeseen change, it is our experience, that most online retailers apply

fairly short planning horizons, e.g., not exceeding planning intervals of fifteen minutes, which is reflected

in our original experimental design with five consecutive picklists. Accordingly, a straighforward extension

of the instances’ to larger numbers of consecutive picklists allows to remedy the initial termination effect

but remains a simplified approximation of analyzing the improvement potential of increased cart capacities.

In practice, retailers may apply more enhanced rolling horizon planning schemes. Analyzing the impact of

increased cart capacities in such realistic schemes in detail goes beyond the scope of this paper and would

require a significantly different experimental design.

Appendix I: Detailed numerical results

This appendix shows all numerical results that have been synthesized in Section 4.2.2. We report results

based on average relative improvements, which have been calculated by first comparing the results on a

per-instance basis and then computing an average value.

We describe each picking policy with three identifiers, where the first (SB,DB) indicates whether batching

is static (SB) or dynamic (DB), the second (SD,MD) indicates whether a single (SD) or multiple (MD)

drop-off points are used, and the third (NS,CS) indicates whether cartless subtours are allowed (CS) or

not (NS).
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To quantify the improvement potential of each picking zone layout and policy, we show the average relative

improvement in the total picking time for each setting and κ related to the average total picking time realized

with a single depot and the most elementary picking policy (SB/SD/NS). Note that if a policy does not

allow for multiple drop-off points, the comparison is skipped.

I.1. Results for cart capacity κ= 2

Table 6 Average policy and layout improvement potential with κ= 2, β = 2, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -1.1 - - - - -
SB/SD/CS -3.3 - - - - - -4.0 - - - - - -1.8 - - - - -

SB/MD/NS 0.0 -8.5 -18.4 -18.9 -20.1 -20.4 0.0 -11.2 -21.8 -22.7 -23.6 -24.3 -1.1 -4.3 -5.4 -6.0 -5.4 -6.1
SB/MD/CS -3.3 -11.7 -22.3 -22.7 -24.1 -24.4 -4.0 -14.7 -25.9 -26.7 -27.6 -28.3 -1.8 -4.7 -5.8 -6.3 -5.8 -6.3
DB/SD/NS -3.4 - - - - - -3.1 - - - - - -0.8 - - - - -
DB/SD/CS -6.4 - - - - - -6.9 - - - - - -1.6 - - - - -

DB/MD/NS -3.4 -12.2 -22.2 -22.9 -23.8 -24.3 -3.1 -14.6 -24.9 -25.8 -26.6 -27.4 -0.8 -4.0 -4.6 -4.9 -4.7 -5.2
DB/MD/CS -6.4 -15.2 -25.5 -26.1 -27.2 -27.6 -6.9 -17.8 -28.7 -29.5 -30.4 -31.1 -1.6 -4.4 -5.3 -5.6 -5.4 -5.8

The table shows for κ= 2 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference

value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD

- multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 7 Average policy and layout improvement potential with κ= 2, β = 4, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -3.1 - - - - -
SB/SD/CS -5.5 - - - - - -5.2 - - - - - -2.8 - - - - -

SB/MD/NS 0.0 -5.1 -11.3 -12.3 -12.8 -13.6 0.0 -5.7 -14.4 -15.1 -15.8 -16.4 -3.1 -3.7 -6.4 -6.1 -6.3 -6.1
SB/MD/CS -5.5 -10.2 -17.2 -17.9 -18.8 -19.3 -5.2 -9.8 -19.4 -19.8 -20.9 -21.2 -2.8 -2.7 -5.7 -5.4 -5.7 -5.4
DB/SD/NS -4.5 - - - - - -4.4 - - - - - -3.0 - - - - -
DB/SD/CS -9.2 - - - - - -9.3 - - - - - -3.2 - - - - -

DB/MD/NS -4.5 -9.7 -16.0 -17.1 -17.4 -18.3 -4.4 -10.0 -18.6 -19.2 -20.0 -20.5 -3.0 -3.4 -6.1 -5.5 -6.1 -5.6
DB/MD/CS -9.2 -14.0 -21.1 -22.0 -22.5 -23.2 -9.3 -13.7 -23.4 -23.6 -24.8 -24.9 -3.2 -2.8 -5.9 -5.2 -5.9 -5.3

The table shows for κ= 2 the percentage deviation in total picking time for settings with three and five cross-
aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation

between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference

value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD
- multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 8 Average policy and layout improvement potential with κ= 2, β = 6, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -2.8 - - - - -
SB/SD/CS -4.7 - - - - - -5.5 - - - - - -3.6 - - - - -

SB/MD/NS 0.0 -3.9 -7.5 -8.3 -8.6 -9.2 0.0 -4.5 -9.4 -10.2 -10.6 -11.2 -2.8 -3.5 -4.9 -4.9 -5.1 -5.0
SB/MD/CS -4.7 -7.2 -11.9 -12.5 -13.0 -13.5 -5.5 -8.7 -14.8 -15.2 -16.1 -16.3 -3.6 -4.5 -6.1 -5.9 -6.2 -6.0
DB/SD/NS -4.1 - - - - - -3.3 - - - - - -2.0 - - - - -
DB/SD/CS -8.4 - - - - - -8.6 - - - - - -3.0 - - - - -

DB/MD/NS -4.1 -8.1 -11.6 -12.7 -12.7 -13.6 -3.3 -8.3 -13.5 -14.4 -14.7 -15.4 -2.0 -3.0 -4.9 -4.7 -5.0 -4.8
DB/MD/CS -8.4 -11.1 -15.6 -16.4 -16.8 -17.3 -8.6 -12.2 -18.5 -19.0 -19.7 -20.1 -3.0 -4.0 -6.1 -5.8 -6.3 -6.0

The table shows for κ= 2 the percentage deviation in total picking time for settings with three and five cross-
aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference
value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD

- multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 9 Average policy and layout improvement potential with κ= 2, β = 8, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - 1.4 - - - - -
SB/SD/CS -4.5 - - - - - -4.6 - - - - - 1.2 - - - - -

SB/MD/NS 0.0 -6.0 -6.4 -8.5 -7.4 -9.0 0.0 -3.5 -5.5 -6.6 -6.3 -7.3 1.4 4.1 2.4 3.4 2.5 3.3
SB/MD/CS -4.5 -7.5 -9.9 -10.8 -10.7 -11.5 -4.6 -6.6 -9.7 -10.2 -10.5 -10.9 1.2 2.5 1.6 2.1 1.6 2.1
DB/SD/NS -4.5 - - - - - -4.9 -4.9 - - - - - - - - - -
DB/SD/CS -8.7 - - - - - -9.4 -9.4 - - - - - - - - - -

DB/MD/NS -4.5 -11.1 -11.3 -13.6 -12.3 -14.2 -4.9 -8.5 -10.6 -11.8 -11.5 -12.4 0.9 4.4 2.2 3.5 2.4 3.5
DB/MD/CS -8.7 -12.3 -14.4 -15.6 -15.2 -16.3 -9.4 -11.3 -14.4 -15.0 -15.1 -15.6 0.7 2.7 1.4 2.1 1.5 2.2

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five

cross-aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the
deviation between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as

reference value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off

point, MD - multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of
drop-off points.

Table 10 Average policy and layout improvement potential with κ= 2, β = 12, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -6.1 - - - - -
SB/SD/CS -5.0 - - - - - -5.7 - - - - - -6.8 - - - - -

SB/MD/NS 0.0 -6.1 -13.7 -14.0 -14.8 -15.0 0.0 -8.4 -16.6 -17.2 -17.8 -18.2 -6.1 -8.8 -9.5 -9.8 -9.5 -9.8
SB/MD/CS -5.0 -11.0 -19.2 -19.4 -20.3 -20.5 -5.7 -14.0 -22.5 -23.0 -23.7 -24.1 -6.8 -9.5 -10.1 -10.5 -10.2 -10.5
DB/SD/NS -4.6 - - - - - -4.4 - - - - - -6.0 - - - - -
DB/SD/CS -8.8 - - - - - -9.5 - - - - - -6.8 - - - - -

DB/MD/NS -4.6 -10.7 -18.6 -19.0 -19.7 -20.0 -4.4 -13.3 -21.2 -21.9 -22.3 -22.8 -6.0 -9.1 -9.2 -9.6 -9.2 -9.6
DB/MD/CS -8.8 -15.0 -23.2 -23.6 -24.3 -24.6 -9.5 -18.1 -26.3 -26.9 -27.4 -27.8 -6.8 -9.8 -10.0 -10.3 -10.0 -10.3

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.

Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple

drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 11 Average policy and layout improvement potential with κ= 2, β = 16, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -6.5 - - - - -
SB/SD/CS -6.8 - - - - - -5.9 - - - - - -5.7 - - - - -

SB/MD/NS 0.0 -2.9 -8.0 -8.4 -8.9 -9.2 0.0 -3.5 -9.8 -9.9 -10.6 -10.7 -6.5 -7.1 -8.3 -8.1 -8.3 -8.1
SB/MD/CS -6.8 -9.8 -15.4 -15.5 -16.3 -16.4 -5.9 -9.0 -15.8 -16.0 -16.7 -16.8 -5.7 -5.8 -7.2 -7.1 -7.1 -7.1
DB/SD/NS -4.5 - - - - - -4.2 - - - - - -6.2 - - - - -
DB/SD/CS -10.5 - - - - - -9.7 - - - - - -5.7 - - - - -

DB/MD/NS -4.5 -7.4 -12.9 -13.3 -13.7 -14.0 -4.2 -7.6 -13.9 -14.1 -14.7 -14.8 -6.2 -6.7 -7.6 -7.3 -7.6 -7.4
DB/MD/CS -10.5 -13.2 -19.1 -19.4 -20.0 -20.2 -9.7 -12.8 -19.4 -19.5 -20.3 -20.3 -5.7 -6.1 -7.0 -6.9 -6.9 -6.8

The table shows for κ= 2 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation

between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.
Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD -

multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 12 Average policy and layout improvement potential with κ= 2, β = 2, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -8.5 - - - - -
SB/SD/CS -6.2 - - - - - -6.1 - - - - - -8.4 - - - - -

SB/MD/NS 0.0 -1.3 -4.5 -4.7 -5.1 -5.3 0.0 -2.3 -6.3 -6.5 -6.9 -7.0 -8.5 -9.4 -10.2 -10.2 -10.3 -10.2
SB/MD/CS -6.2 -7.1 -11.0 -11.1 -11.6 -11.7 -6.1 -8.2 -12.6 -12.8 -13.2 -13.3 -8.4 -9.5 -10.2 -10.2 -10.2 -10.2
DB/SD/NS -5.9 - - - - - -5.3 - - - - - -7.8 - - - - -
DB/SD/CS -11.1 - - - - - -10.5 - - - - - -7.8 - - - - -

DB/MD/NS -5.9 -7.2 -10.7 -10.9 -11.2 -11.5 -5.3 -7.2 -11.6 -11.8 -12.2 -12.3 -7.8 -8.5 -9.3 -9.3 -9.4 -9.3
DB/MD/CS -11.1 -12.2 -16.1 -16.3 -16.8 -16.9 -10.5 -12.4 -17.2 -17.3 -17.8 -17.8 -7.8 -8.6 -9.6 -9.5 -9.5 -9.4

The table shows for κ= 2 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations

hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points,

NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 13 Average policy and layout improvement potential with κ= 2, β = 4, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -2.0 - - - - -
SB/SD/CS -4.3 - - - - - -5.1 - - - - - -2.8 - - - - -

SB/MD/NS 0.0 -1.4 -3.8 -4.2 -4.4 -4.6 0.0 -1.2 -3.5 -3.8 -4.0 -4.2 -2.0 -1.7 -1.6 -1.6 -1.5 -1.5
SB/MD/CS -4.3 -5.2 -7.9 -8.1 -8.4 -8.6 -5.1 -6.5 -8.9 -9.2 -9.3 -9.5 -2.8 -3.3 -3.1 -3.2 -3.0 -3.0
DB/SD/NS -4.2 - - - - - -3.8 - - - - - -1.5 - - - - -
DB/SD/CS -7.9 - - - - - -8.5 - - - - - -2.6 - - - - -

DB/MD/NS -4.2 -5.8 -8.3 -8.7 -8.9 -9.2 -3.8 -5.0 -7.5 -7.8 -7.9 -8.1 -1.5 -1.1 -1.0 -0.9 -0.9 -0.8
DB/MD/CS -7.9 -8.9 -11.9 -12.1 -12.3 -12.6 -8.5 -9.8 -12.4 -12.7 -12.8 -13.0 -2.6 -3.0 -2.6 -2.6 -2.4 -2.4

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five

cross-aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows

the deviation between the three and the five cross-aisle settings, taking the respective three cross-aisle settings
as reference value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single

drop-off point, MD - multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number

of drop-off points.

Table 14 Average policy and layout improvement potential with κ= 2, β = 6, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -11.8 - - - - -
SB/SD/CS -7.2 - - - - - -6.4 - - - - - -10.9 - - - - -

SB/MD/NS 0.0 -4.6 -10.5 -10.6 -11.4 -11.5 0.0 -5.8 -13.4 -13.7 -14.2 -14.4 -11.8 -13.0 -14.8 -14.9 -14.7 -14.8
SB/MD/CS -7.2 -11.9 -18.2 -18.3 -19.1 -19.1 -6.4 -12.0 -19.9 -20.1 -20.7 -20.8 -10.9 -12.0 -13.6 -13.8 -13.6 -13.7
DB/SD/NS -4.5 - - - - - -2.9 - - - - - -10.3 - - - - -
DB/SD/CS -10.7 - - - - - -8.7 - - - - - -9.8 - - - - -

DB/MD/NS -4.5 -8.8 -15.3 -15.4 -16.2 -16.2 -2.9 -8.7 -16.7 -16.9 -17.6 -17.7 -10.3 -11.7 -13.2 -13.3 -13.3 -13.3
DB/MD/CS -10.7 -15.0 -22.0 -22.1 -22.8 -22.9 -8.7 -14.2 -22.7 -22.8 -23.4 -23.5 -9.8 -11.0 -12.5 -12.5 -12.5 -12.5

The table shows for κ= 2 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the

three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations
hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points,

NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 15 Average policy and layout improvement potential with κ= 2, β = 8, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -8.8 - - - - -
SB/SD/CS -7.9 - - - - - -6.5 - - - - - -7.5 - - - - -

SB/MD/NS 0.0 -2.9 -6.5 -6.8 -7.3 -7.4 0.0 -3.6 -8.4 -8.5 -9.1 -9.2 -8.8 -9.6 -10.6 -10.5 -10.6 -10.5
SB/MD/CS -7.9 -11.0 -15.1 -15.3 -16.0 -16.0 -6.5 -10.2 -15.1 -15.2 -15.9 -15.9 -7.5 -8.1 -8.9 -8.9 -8.8 -8.8
DB/SD/NS -4.1 - - - - - -3.8 - - - - - -8.5 - - - - -
DB/SD/CS -11.1 - - - - - -9.8 - - - - - -7.5 - - - - -

DB/MD/NS -4.1 -7.3 -10.9 -11.2 -11.7 -11.9 -3.8 -7.6 -12.5 -12.7 -13.2 -13.3 -8.5 -9.1 -10.4 -10.3 -10.3 -10.2
DB/MD/CS -11.1 -14.3 -18.5 -18.6 -19.3 -19.4 -9.8 -13.5 -18.8 -18.9 -19.4 -19.4 -7.5 -8.1 -9.2 -9.2 -8.9 -8.9

The table shows for κ= 2 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations

hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points,

NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 16 Average policy and layout improvement potential with κ= 2, β = 12, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -12.3 - - - - -
SB/SD/CS -7.2 - - - - - -6.8 - - - - - -11.9 - - - - -

SB/MD/NS 0.0 -0.7 -2.9 -3.0 -3.5 -3.5 0.0 -2.2 -4.9 -5.1 -5.3 -5.5 -12.3 -13.6 -14.1 -14.2 -14.0 -14.1
SB/MD/CS -7.2 -8.4 -10.6 -10.8 -11.2 -11.3 -6.8 -9.3 -12.1 -12.3 -12.5 -12.6 -11.9 -13.2 -13.8 -13.8 -13.6 -13.6
DB/SD/NS -3.8 - - - - - -2.8 - - - - - -11.4 - - - - -
DB/SD/CS -10.1 - - - - - -9.3 - - - - - -11.5 - - - - -

DB/MD/NS -3.8 -4.8 -7.1 -7.2 -7.6 -7.7 -2.8 -5.4 -7.9 -8.3 -8.4 -8.6 -11.4 -12.8 -13.1 -13.3 -13.0 -13.2
DB/MD/CS -10.1 -11.4 -13.6 -13.9 -14.2 -14.4 -9.3 -11.9 -14.8 -15.1 -15.3 -15.5 -11.5 -12.9 -13.5 -13.6 -13.4 -13.3

The table shows for κ= 2 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the

three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations
hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points,

NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 17 Average policy and layout improvement potential with κ= 2, β = 16, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -6.4 - - - - -
SB/SD/CS -5.6 - - - - - -6.4 - - - - - -7.2 - - - - -

SB/MD/NS 0.0 -0.8 -3.0 -3.1 -3.3 -3.4 0.0 -1.3 -3.1 -3.3 -3.3 -3.5 -6.4 -6.9 -6.5 -6.6 -6.4 -6.5
SB/MD/CS -5.6 -6.5 -8.3 -8.4 -8.6 -8.8 -6.4 -7.8 -9.7 -9.9 -9.9 -10.1 -7.2 -7.7 -7.8 -7.9 -7.7 -7.8
DB/SD/NS -4.3 - - - - - -3.9 - - - - - -6.0 - - - - -
DB/SD/CS -9.4 - - - - - -9.9 - - - - - -6.9 - - - - -

DB/MD/NS -4.3 -5.1 -7.5 -7.7 -7.9 -8.0 -3.9 -5.2 -7.1 -7.4 -7.5 -7.7 -6.0 -6.5 -6.0 -6.1 -5.9 -6.0
DB/MD/CS -9.4 -10.4 -12.4 -12.5 -12.8 -12.9 -9.9 -11.1 -13.2 -13.4 -13.4 -13.5 -6.9 -7.2 -7.2 -7.3 -7.0 -7.1

The table shows for κ= 2 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference

value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD
- multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 18 Average policy and layout improvement potential with κ= 2, β = 2, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -11.8 - - - - -
SB/SD/CS -8.7 - - - - - -7.3 - - - - - -10.3 - - - - -

SB/MD/NS 0.0 -3.8 -8.9 -9.0 -9.7 -9.7 0.0 -5.3 -12.0 -12.2 -12.8 -12.9 -11.8 -13.3 -14.8 -15.0 -14.8 -15.0
SB/MD/CS -8.7 -12.5 -18.2 -18.2 -18.9 -18.9 -7.3 -12.5 -19.5 -19.7 -20.3 -20.4 -10.3 -11.9 -13.2 -13.4 -13.2 -13.3
DB/SD/NS -2.5 - - - - - -2.5 - - - - - -11.7 - - - - -
DB/SD/CS -10.8 - - - - - -9.3 - - - - - -10.2 - - - - -

DB/MD/NS -2.5 -6.3 -11.5 -11.6 -12.3 -12.3 -2.5 -7.9 -14.5 -14.8 -15.4 -15.6 -11.7 -13.3 -14.8 -15.1 -14.9 -15.1
DB/MD/CS -10.8 -14.5 -20.3 -20.4 -21.0 -21.0 -9.3 -14.5 -21.6 -21.9 -22.4 -22.6 -10.2 -11.8 -13.1 -13.4 -13.2 -13.4

The table shows for κ= 2 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations

hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points,

NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 19 Average policy and layout improvement potential with κ= 2, β = 4, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -12.0 - - - - -
SB/SD/CS -9.3 - - - - - -7.5 - - - - - -10.4 - - - - -

SB/MD/NS 0.0 -2.3 -5.0 -5.2 -5.6 -5.7 0.0 -3.5 -7.2 -7.2 -7.7 -7.7 -12.0 -13.2 -14.1 -13.9 -14.0 -13.9
SB/MD/CS -9.3 -11.8 -15.0 -15.0 -15.6 -15.6 -7.5 -11.0 -14.6 -14.7 -15.1 -15.1 -10.4 -11.4 -11.8 -11.8 -11.7 -11.7
DB/SD/NS -4.0 - - - - - -3.0 - - - - - -11.2 - - - - -
DB/SD/CS -12.4 - - - - - -10.1 - - - - - -9.8 - - - - -

DB/MD/NS -4.0 -6.3 -9.1 -9.2 -9.6 -9.6 -3.0 -6.6 -10.4 -10.5 -11.0 -11.1 -11.2 -12.3 -13.3 -13.2 -13.3 -13.3
DB/MD/CS -12.4 -15.0 -18.0 -18.1 -18.6 -18.7 -10.1 -13.7 -17.4 -17.5 -18.0 -18.0 -9.8 -10.9 -11.5 -11.5 -11.4 -11.4

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the

three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold
as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 20 Average policy and layout improvement potential with κ= 2, β = 6, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -15.6 - - - - -
SB/SD/CS -8.6 - - - - - -7.8 - - - - - -15.0 - - - - -

SB/MD/NS 0.0 -0.6 -2.0 -2.2 -2.4 -2.5 0.0 -2.1 -3.4 -3.6 -3.8 -3.9 -15.6 -16.9 -16.9 -16.8 -16.9 -16.8
SB/MD/CS -8.6 -9.6 -10.9 -11.1 -11.3 -11.4 -7.8 -10.1 -11.6 -11.8 -11.9 -12.0 -15.0 -16.1 -16.2 -16.2 -16.2 -16.2
DB/SD/NS -3.9 - - - - - -3.6 - - - - - -15.3 - - - - -
DB/SD/CS -11.7 - - - - - -10.7 - - - - - -14.7 - - - - -

DB/MD/NS -3.9 -4.6 -6.1 -6.2 -6.5 -6.6 -3.6 -5.7 -7.0 -7.3 -7.5 -7.7 -15.3 -16.5 -16.4 -16.6 -16.5 -16.6
DB/MD/CS -11.7 -12.8 -14.1 -14.3 -14.5 -14.7 -10.7 -13.1 -14.6 -14.9 -14.9 -15.1 -14.7 -15.9 -16.1 -16.2 -16.0 -16.0

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 21 Average policy and layout improvement potential with κ= 2, β = 8, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -9.0 - - - - -
SB/SD/CS -6.9 - - - - - -7.1 - - - - - -9.3 - - - - -

SB/MD/NS 0.0 -0.6 -1.7 -1.8 -1.9 -2.0 0.0 -0.9 -1.5 -1.7 -1.7 -1.9 -9.0 -9.4 -8.9 -8.9 -8.9 -8.9
SB/MD/CS -6.9 -7.6 -8.2 -8.4 -8.5 -8.6 -7.1 -8.3 -8.7 -9.1 -9.0 -9.2 -9.3 -9.7 -9.5 -9.7 -9.6 -9.7
DB/SD/NS -4.2 - - - - - -4.2 - - - - - -9.0 - - - - -
DB/SD/CS -10.7 - - - - - -10.9 - - - - - -9.2 - - - - -

DB/MD/NS -4.2 -4.9 -6.1 -6.3 -6.4 -6.6 -4.2 -5.3 -5.8 -6.2 -6.2 -6.5 -9.0 -9.4 -8.7 -8.9 -8.8 -8.9
DB/MD/CS -10.7 -11.5 -12.1 -12.4 -12.5 -12.7 -10.9 -12.0 -12.5 -12.9 -12.8 -13.1 -9.2 -9.6 -9.4 -9.6 -9.3 -9.5

The table shows for κ= 2 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.

Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD -

multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 22 Average policy and layout improvement potential with κ= 2, β = 12, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -14.9 - - - - -
SB/SD/CS -10.3 - - - - - -8.2 - - - - - -12.8 - - - - -

SB/MD/NS 0.0 -3.3 -7.6 -7.7 -8.4 -8.5 0.0 -4.5 -10.2 -10.3 -10.9 -11.0 -14.9 -16.0 -17.3 -17.4 -17.2 -17.3
SB/MD/CS -10.3 -13.6 -18.5 -18.5 -19.2 -19.2 -8.2 -12.8 -18.5 -18.6 -19.2 -19.3 -12.8 -14.0 -14.8 -14.9 -14.8 -14.8
DB/SD/NS -3.2 - - - - - -3.3 - - - - - -15.0 - - - - -
DB/SD/CS -12.9 - - - - - -11.1 - - - - - -13.0 - - - - -

DB/MD/NS -3.2 -6.6 -10.9 -10.9 -11.6 -11.6 -3.3 -7.9 -13.5 -13.6 -14.2 -14.3 -15.0 -16.1 -17.4 -17.4 -17.4 -17.5
DB/MD/CS -12.9 -16.1 -21.1 -21.1 -21.8 -21.8 -11.1 -15.6 -21.3 -21.4 -22.1 -22.2 -13.0 -14.3 -14.9 -15.0 -15.0 -15.1

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the

three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold
as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 23 Average policy and layout improvement potential with κ= 2, β = 16, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -15.7 - - - - -
SB/SD/CS -10.9 - - - - - -8.9 - - - - - -13.9 - - - - -

SB/MD/NS 0.0 -1.2 -3.6 -3.6 -4.1 -4.2 0.0 -2.1 -5.1 -5.1 -5.6 -5.6 -15.7 -16.5 -17.0 -17.0 -17.0 -17.0
SB/MD/CS -10.9 -12.4 -15.0 -15.0 -15.5 -15.6 -8.9 -11.1 -13.9 -14.0 -14.4 -14.4 -13.9 -14.5 -14.7 -14.7 -14.6 -14.6
DB/SD/NS -3.3 - - - - - -2.8 - - - - - -15.3 - - - - -
DB/SD/CS -13.5 - - - - - -11.2 - - - - - -13.5 - - - - -

DB/MD/NS -3.3 -4.6 -7.1 -7.2 -7.7 -7.7 -2.8 -4.9 -8.0 -8.1 -8.7 -8.7 -15.3 -16.0 -16.5 -16.4 -16.6 -16.5
DB/MD/CS -13.5 -15.0 -17.7 -17.8 -18.3 -18.4 -11.2 -13.5 -16.4 -16.5 -16.8 -16.8 -13.5 -14.3 -14.4 -14.4 -14.1 -14.1

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 24 Average policy and layout improvement potential with κ= 2, β = 2, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -20.8 - - - - -
SB/SD/CS -10.6 - - - - - -8.7 - - - - - -19.2 - - - - -

SB/MD/NS 0.0 -0.4 -1.4 -1.5 -1.7 -1.8 0.0 -1.2 -2.2 -2.4 -2.5 -2.6 -20.8 -21.5 -21.5 -21.5 -21.4 -21.4
SB/MD/CS -10.6 -11.3 -11.9 -12.1 -12.2 -12.3 -8.7 -10.0 -11.2 -11.4 -11.5 -11.6 -19.2 -19.7 -20.2 -20.1 -20.2 -20.1
DB/SD/NS -3.7 - - - - - -3.1 - - - - - -20.3 - - - - -
DB/SD/CS -13.6 - - - - - -11.4 - - - - - -18.8 - - - - -

DB/MD/NS -3.7 -4.1 -5.2 -5.3 -5.6 -5.7 -3.1 -4.5 -5.5 -5.6 -5.7 -5.8 -20.3 -21.1 -21.0 -21.0 -20.9 -20.9
DB/MD/CS -13.6 -14.2 -15.0 -15.1 -15.3 -15.4 -11.4 -12.7 -13.9 -14.0 -14.3 -14.3 -18.8 -19.4 -19.8 -19.7 -19.8 -19.7

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 25 Average policy and layout improvement potential with κ= 2, β = 4, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -13.6 - - - - -
SB/SD/CS -8.6 - - - - - -8.0 - - - - - -13.0 - - - - -

SB/MD/NS 0.0 -0.5 -1.0 -1.1 -1.2 -1.3 0.0 -1.0 -1.0 -1.3 -1.2 -1.4 -13.6 -14.1 -13.7 -13.8 -13.7 -13.8
SB/MD/CS -8.6 -9.4 -9.4 -9.6 -9.5 -9.7 -8.0 -9.1 -9.1 -9.4 -9.3 -9.5 -13.0 -13.4 -13.3 -13.4 -13.4 -13.5
DB/SD/NS -3.8 - - - - - -3.5 - - - - - -13.4 - - - - -
DB/SD/CS -12.0 - - - - - -10.7 - - - - - -12.4 - - - - -

DB/MD/NS -3.8 -4.4 -5.0 -5.2 -5.2 -5.3 -3.5 -4.5 -4.5 -4.9 -4.7 -5.0 -13.4 -13.8 -13.2 -13.4 -13.2 -13.4
DB/MD/CS -12.0 -12.7 -12.9 -13.1 -13.0 -13.2 -10.7 -11.9 -11.9 -12.3 -12.1 -12.4 -12.4 -12.8 -12.7 -12.9 -12.8 -12.9

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the

three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold
as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 26 Average policy and layout improvement potential with κ= 2, β = 6, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -15.9 - - - - -
SB/SD/CS -11.2 - - - - - -9.4 - - - - - -14.1 - - - - -

SB/MD/NS 0.0 -2.4 -7.4 -7.4 -7.9 -7.9 0.0 -4.0 -9.8 -9.8 -10.4 -10.4 -15.9 -17.3 -18.1 -18.1 -18.2 -18.2
SB/MD/CS -11.2 -13.5 -19.0 -19.0 -19.5 -19.5 -9.4 -13.4 -19.1 -19.1 -19.6 -19.7 -14.1 -15.7 -15.9 -15.9 -15.8 -15.9
DB/SD/NS -2.8 - - - - - -2.2 - - - - - -15.4 - - - - -
DB/SD/CS -13.4 - - - - - -11.3 - - - - - -13.6 - - - - -

DB/MD/NS -2.8 -5.4 -10.3 -10.3 -10.9 -10.9 -2.2 -6.2 -12.2 -12.2 -12.9 -12.9 -15.4 -16.6 -17.7 -17.7 -17.7 -17.7
DB/MD/CS -13.4 -16.0 -21.4 -21.4 -22.0 -22.0 -11.3 -15.3 -21.2 -21.2 -21.7 -21.8 -13.6 -15.1 -15.4 -15.5 -15.3 -15.4

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 27 Average policy and layout improvement potential with κ= 2, β = 8, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -17.1 - - - - -
SB/SD/CS -11.0 - - - - - -9.4 - - - - - -15.7 - - - - -

SB/MD/NS 0.0 -1.8 -4.6 -4.6 -5.0 -5.0 0.0 -2.5 -5.4 -5.4 -5.7 -5.7 -17.1 -17.8 -17.8 -17.8 -17.7 -17.7
SB/MD/CS -11.0 -13.1 -15.9 -15.9 -16.3 -16.3 -9.4 -12.0 -14.6 -14.6 -14.8 -14.8 -15.7 -16.2 -15.9 -15.9 -15.7 -15.7
DB/SD/NS -3.2 - - - - - -2.9 - - - - - -16.9 - - - - -
DB/SD/CS -13.6 - - - - - -11.7 - - - - - -15.3 - - - - -

DB/MD/NS -3.2 -5.0 -7.8 -7.8 -8.2 -8.2 -2.9 -5.5 -8.5 -8.5 -8.9 -8.9 -16.9 -17.6 -17.8 -17.8 -17.7 -17.8
DB/MD/CS -13.6 -15.7 -18.5 -18.5 -19.0 -19.0 -11.7 -14.3 -16.9 -17.0 -17.4 -17.4 -15.3 -15.9 -15.6 -15.6 -15.5 -15.5

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 28 Average policy and layout improvement potential with κ= 2, β = 12, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -22.4 - - - - -
SB/SD/CS -11.3 - - - - - -8.9 - - - - - -20.3 - - - - -

SB/MD/NS 0.0 -0.4 -1.8 -1.8 -2.0 -2.0 0.0 -1.3 -2.4 -2.5 -2.6 -2.7 -22.4 -23.2 -23.0 -23.0 -23.0 -23.0
SB/MD/CS -11.3 -12.1 -13.1 -13.1 -13.3 -13.3 -8.9 -10.2 -11.5 -11.6 -11.7 -11.8 -20.3 -20.8 -21.0 -21.0 -21.0 -21.0
DB/SD/NS -3.8 - - - - - -3.1 - - - - - -21.9 - - - - -
DB/SD/CS -14.2 - - - - - -11.3 - - - - - -19.8 - - - - -

DB/MD/NS -3.8 -4.3 -5.8 -5.8 -6.2 -6.2 -3.1 -4.5 -5.8 -5.8 -6.1 -6.1 -21.9 -22.6 -22.5 -22.5 -22.3 -22.3
DB/MD/CS -14.2 -15.1 -16.2 -16.2 -16.5 -16.5 -11.3 -12.8 -14.1 -14.2 -14.4 -14.4 -19.8 -20.4 -20.5 -20.5 -20.4 -20.5

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the

three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold
as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 29 Average policy and layout improvement potential with κ= 2, β = 16, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -15.8 - - - - -
SB/SD/CS -9.4 - - - - - -7.9 - - - - - -14.4 - - - - -

SB/MD/NS 0.0 -0.4 -1.1 -1.1 -1.2 -1.3 0.0 -0.7 -0.9 -1.1 -1.1 -1.2 -15.8 -16.0 -15.7 -15.8 -15.8 -15.8
SB/MD/CS -9.4 -9.9 -10.2 -10.3 -10.3 -10.4 -7.9 -8.7 -8.9 -9.1 -9.2 -9.3 -14.4 -14.7 -14.7 -14.7 -14.8 -14.8
DB/SD/NS -3.9 - - - - - -3.3 - - - - - -15.3 - - - - -
DB/SD/CS -12.8 - - - - - -10.6 - - - - - -13.8 - - - - -

DB/MD/NS -3.9 -4.4 -5.2 -5.3 -5.5 -5.6 -3.3 -4.0 -4.3 -4.4 -4.5 -4.6 -15.3 -15.4 -15.0 -15.1 -15.0 -14.9
DB/MD/CS -12.8 -13.3 -13.7 -13.8 -13.9 -14.0 -10.6 -11.6 -11.7 -12.0 -12.0 -12.1 -13.8 -14.1 -13.9 -14.0 -14.0 -14.0

The table shows for κ = 2 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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I.2. Results for cart capacity κ= 3

Table 30 Average policy and layout improvement potential with κ= 3, β = 2, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -1.8 - - - - -
SB/SD/CS -3.5 - - - - - -4.0 - - - - - -2.3 - - - - -

SB/MD/NS 0.0 -5.9 -12.5 -12.7 -13.5 -13.6 0.0 -7.7 -15.0 -15.2 -16.0 -16.1 -1.8 -3.7 -4.7 -4.7 -4.8 -4.7
SB/MD/CS -3.5 -9.4 -16.3 -16.5 -17.3 -17.4 -4.0 -11.6 -19.2 -19.3 -20.2 -20.3 -2.3 -4.2 -5.2 -5.2 -5.2 -5.2
DB/SD/NS -4.0 - - - - - -3.1 - - - - - -1.0 - - - - -
DB/SD/CS -6.9 - - - - - -6.8 - - - - - -1.8 - - - - -

DB/MD/NS -4.0 -10.2 -16.4 -16.7 -17.3 -17.5 -3.1 -11.2 -17.7 -18.3 -18.7 -19.2 -1.0 -2.9 -3.3 -3.7 -3.4 -3.8
DB/MD/CS -6.9 -13.1 -19.8 -20.0 -20.6 -20.7 -6.8 -14.6 -21.4 -22.0 -22.5 -22.9 -1.8 -3.5 -3.9 -4.3 -4.2 -4.5

The table shows for κ= 3 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation

between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference
value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD

- multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 31 Average policy and layout improvement potential with κ= 3, β = 4, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -4.0 - - - - -
SB/SD/CS -4.9 - - - - - -4.6 - - - - - -3.7 - - - - -

SB/MD/NS 0.0 -2.9 -7.7 -7.8 -8.4 -8.4 0.0 -3.2 -9.3 -9.4 -10.0 -10.0 -4.0 -4.2 -5.7 -5.6 -5.6 -5.6
SB/MD/CS -4.9 -7.7 -12.9 -13.1 -13.6 -13.7 -4.6 -7.5 -14.3 -14.4 -14.8 -14.8 -3.7 -3.9 -5.5 -5.4 -5.4 -5.4
DB/SD/NS -5.9 - - - - - -4.3 - - - - - -2.2 - - - - -
DB/SD/CS -9.8 - - - - - -8.6 - - - - - -2.7 - - - - -

DB/MD/NS -5.9 -9.1 -14.0 -14.2 -14.7 -14.9 -4.3 -8.7 -14.6 -14.9 -15.3 -15.6 -2.2 -3.5 -4.5 -4.6 -4.5 -4.6
DB/MD/CS -9.8 -12.9 -18.3 -18.5 -19.1 -19.3 -8.6 -12.1 -18.8 -18.9 -19.5 -19.6 -2.7 -3.1 -4.5 -4.4 -4.4 -4.3

The table shows for κ= 3 the percentage deviation in total picking time for settings with three and five cross-
aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation

between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference
value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD

- multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 32 Average policy and layout improvement potential with κ= 3, β = 6, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -3.0 - - - - -
SB/SD/CS -3.5 - - - - - -4.8 - - - - - -4.3 - - - - -

SB/MD/NS 0.0 -1.9 -4.7 -4.8 -5.3 -5.3 0.0 -2.4 -5.8 -6.0 -6.3 -6.4 -3.0 -3.6 -4.1 -4.2 -4.0 -4.2
SB/MD/CS -3.5 -5.4 -8.7 -8.8 -9.2 -9.3 -4.8 -6.9 -10.8 -11.0 -11.4 -11.5 -4.3 -4.6 -5.3 -5.4 -5.4 -5.4
DB/SD/NS -5.4 - - - - - -4.0 - - - - - -1.6 - - - - -
DB/SD/CS -8.6 - - - - - -8.6 - - - - - -3.0 - - - - -

DB/MD/NS -5.4 -8.7 -11.1 -11.5 -11.7 -12.0 -4.0 -8.7 -10.9 -11.6 -11.6 -12.1 -1.6 -3.0 -2.8 -3.0 -2.8 -3.0
DB/MD/CS -8.6 -11.3 -14.2 -14.5 -14.8 -15.0 -8.6 -12.1 -15.5 -15.9 -16.2 -16.4 -3.0 -3.8 -4.5 -4.5 -4.5 -4.6

The table shows for κ= 3 the percentage deviation in total picking time for settings with three and five cross-
aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference

value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD
- multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 33 Average policy and layout improvement potential with κ= 3, β = 8, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - 3.7 - - - - -
SB/SD/CS -2.7 - - - - - -4.1 - - - - - 2.3 - - - - -

SB/MD/NS 0.0 -4.6 -4.4 -5.6 -5.1 -6.1 0.0 -3.6 -4.1 -5.1 -4.7 -5.5 3.7 4.8 4.1 4.4 4.3 4.4
SB/MD/CS -2.7 -5.8 -6.8 -7.5 -7.5 -8.1 -4.1 -6.4 -7.7 -8.4 -8.3 -8.8 2.3 3.2 2.7 2.8 2.9 3.0
DB/SD/NS -2.9 - - - - - -3.7 - - - - - 2.8 - - - - -
DB/SD/CS -5.8 - - - - - -7.7 - - - - - 1.7 - - - - -

DB/MD/NS -2.9 -9.1 -8.9 -10.6 -9.6 -11.0 -3.7 -8.1 -8.4 -9.5 -9.2 -9.9 2.8 5.0 4.3 5.1 4.3 5.1
DB/MD/CS -5.8 -10.6 -10.9 -12.2 -11.7 -12.7 -7.7 -10.3 -11.6 -12.3 -12.2 -12.7 1.7 4.2 3.0 3.8 3.2 3.8

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and five

cross-aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the
deviation between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as

reference value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off

point, MD - multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of
drop-off points.

Table 34 Average policy and layout improvement potential with κ= 3, β = 12, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -6.2 - - - - -
SB/SD/CS -5.0 - - - - - -5.4 - - - - - -6.7 - - - - -

SB/MD/NS 0.0 -4.0 -9.1 -9.1 -9.9 -9.9 0.0 -5.5 -11.4 -11.6 -12.0 -12.2 -6.2 -7.7 -8.5 -8.7 -8.4 -8.5
SB/MD/CS -5.0 -9.0 -14.4 -14.4 -15.2 -15.2 -5.4 -10.8 -16.8 -17.0 -17.5 -17.6 -6.7 -8.2 -8.8 -8.9 -8.7 -8.9
DB/SD/NS -4.5 - - - - - -3.5 - - - - - -5.3 - - - - -
DB/SD/CS -8.3 - - - - - -8.2 - - - - - -6.1 - - - - -

DB/MD/NS -4.5 -8.7 -13.9 -14.0 -14.8 -14.8 -3.5 -9.2 -14.7 -15.0 -15.4 -15.6 -5.3 -6.8 -7.0 -7.3 -6.9 -7.1
DB/MD/CS -8.3 -12.6 -17.9 -18.0 -18.8 -18.8 -8.2 -13.8 -19.4 -19.6 -20.2 -20.4 -6.1 -7.7 -8.0 -8.2 -8.0 -8.1

The table shows for κ= 3 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation

between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference
value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD

- multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 35 Average policy and layout improvement potential with κ= 3, β = 16, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -5.6 - - - - -
SB/SD/CS -6.3 - - - - - -5.5 - - - - - -5.0 - - - - -

SB/MD/NS 0.0 -2.0 -5.3 -5.5 -5.9 -6.1 0.0 -2.2 -6.5 -6.6 -7.0 -7.0 -5.6 -5.8 -6.8 -6.6 -6.7 -6.5
SB/MD/CS -6.3 -8.3 -12.2 -12.3 -12.7 -12.8 -5.5 -7.6 -12.3 -12.3 -12.7 -12.7 -5.0 -5.0 -5.9 -5.8 -5.8 -5.6
DB/SD/NS -5.7 - - - - - -4.3 - - - - - -4.3 - - - - -
DB/SD/CS -10.7 - - - - - -9.7 - - - - - -4.7 - - - - -

DB/MD/NS -5.7 -8.0 -11.6 -12.0 -12.3 -12.6 -4.3 -6.8 -11.0 -11.1 -11.7 -11.8 -4.3 -4.4 -4.9 -4.6 -4.9 -4.6
DB/MD/CS -10.7 -13.2 -17.0 -17.2 -17.6 -17.8 -9.7 -11.8 -16.2 -16.3 -16.8 -16.8 -4.7 -4.2 -4.8 -4.6 -4.7 -4.5

The table shows for κ= 3 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.

Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD -

multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 36 Average policy and layout improvement potential with κ= 3, β = 2, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -5.6 - - - - -
SB/SD/CS -4.5 - - - - - -5.5 - - - - - -6.6 - - - - -

SB/MD/NS 0.0 -0.9 -3.4 -3.5 -3.8 -3.9 0.0 -1.5 -4.2 -4.3 -4.5 -4.6 -5.6 -6.3 -6.4 -6.5 -6.4 -6.4
SB/MD/CS -4.5 -5.4 -8.3 -8.4 -8.7 -8.7 -5.5 -6.8 -9.8 -10.0 -10.0 -10.1 -6.6 -7.1 -7.2 -7.3 -7.1 -7.1
DB/SD/NS -3.8 - - - - - -3.7 - - - - - -5.5 - - - - -
DB/SD/CS -8.1 - - - - - -8.9 - - - - - -6.5 - - - - -

DB/MD/NS -3.8 -5.2 -7.4 -7.5 -7.9 -8.0 -3.7 -5.4 -7.8 -8.0 -8.3 -8.4 -5.5 -5.8 -6.0 -6.1 -6.0 -6.1
DB/MD/CS -8.1 -9.2 -12.0 -12.2 -12.3 -12.4 -8.9 -10.1 -13.1 -13.2 -13.3 -13.4 -6.5 -6.6 -6.8 -6.8 -6.7 -6.7

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and five

cross-aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the
deviation between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as

reference value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off

point, MD - multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of
drop-off points.

Table 37 Average policy and layout improvement potential with κ= 3, β = 4, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - 0.2 - - - - -
SB/SD/CS -3.6 - - - - - -4.7 - - - - - -1.0 - - - - -

SB/MD/NS 0.0 -1.9 -3.3 -3.6 -3.8 -4.1 0.0 -1.3 -2.7 -3.0 -3.0 -3.2 0.2 0.8 0.9 0.9 1.1 1.1
SB/MD/CS -3.6 -4.7 -6.4 -6.6 -6.8 -6.9 -4.7 -6.0 -7.3 -7.6 -7.5 -7.8 -1.0 -1.1 -0.7 -0.8 -0.6 -0.7
DB/SD/NS -3.6 - - - - - -3.4 - - - - - 0.5 - - - - -
DB/SD/CS -6.9 - - - - - -7.6 - - - - - -0.4 - - - - -

DB/MD/NS -3.6 -5.4 -7.0 -7.4 -7.5 -7.8 -3.4 -4.6 -6.0 -6.3 -6.3 -6.6 0.5 1.2 1.3 1.4 1.5 1.6
DB/MD/CS -6.9 -7.8 -9.7 -9.9 -10.1 -10.3 -7.6 -8.7 -10.1 -10.3 -10.4 -10.6 -0.4 -0.7 -0.2 -0.2 -0.1 -0.2

The table shows for κ= 3 the percentage deviation in total picking time for settings with three and five

cross-aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the

deviation between the three and the five cross-aisle settings, taking the respective three cross-aisle settings
as reference value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single

drop-off point, MD - multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs -

number of drop-off points.

Table 38 Average policy and layout improvement potential with κ= 3, β = 6, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -9.3 - - - - -
SB/SD/CS -6.5 - - - - - -6.3 - - - - - -9.1 - - - - -

SB/MD/NS 0.0 -3.1 -8.0 -8.0 -8.7 -8.7 0.0 -4.0 -9.9 -9.9 -10.4 -10.5 -9.3 -10.1 -11.0 -11.0 -10.9 -10.9
SB/MD/CS -6.5 -9.6 -14.7 -14.7 -15.3 -15.3 -6.3 -10.1 -16.1 -16.1 -16.7 -16.7 -9.1 -9.9 -10.8 -10.8 -10.7 -10.7
DB/SD/NS -4.1 - - - - - -4.1 - - - - - -9.3 - - - - -
DB/SD/CS -9.7 - - - - - -9.7 - - - - - -9.3 - - - - -

DB/MD/NS -4.1 -7.2 -12.3 -12.3 -12.9 -12.9 -4.1 -7.8 -13.9 -13.9 -14.4 -14.4 -9.3 -10.0 -10.8 -10.9 -10.7 -10.8
DB/MD/CS -9.7 -12.7 -17.9 -17.9 -18.5 -18.5 -9.7 -13.2 -19.4 -19.4 -20.0 -20.0 -9.3 -9.9 -11.0 -11.0 -10.9 -11.0

The table shows for κ= 3 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the

three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations
hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points,
NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 39 Average policy and layout improvement potential with κ= 3, β = 8, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -8.8 - - - - -
SB/SD/CS -7.5 - - - - - -6.2 - - - - - -7.6 - - - - -

SB/MD/NS 0.0 -1.7 -4.6 -4.6 -5.2 -5.2 0.0 -2.4 -5.7 -5.7 -6.2 -6.2 -8.8 -9.4 -9.9 -9.9 -9.8 -9.7
SB/MD/CS -7.5 -9.3 -12.5 -12.5 -13.1 -13.1 -6.2 -8.5 -12.1 -12.1 -12.5 -12.5 -7.6 -8.1 -8.4 -8.4 -8.2 -8.2
DB/SD/NS -4.6 - - - - - -3.6 - - - - - -7.8 - - - - -
DB/SD/CS -11.1 - - - - - -9.1 - - - - - -6.9 - - - - -

DB/MD/NS -4.6 -6.9 -9.4 -9.6 -10.0 -10.1 -3.6 -5.9 -9.4 -9.4 -9.9 -9.9 -7.8 -7.8 -8.7 -8.5 -8.6 -8.5
DB/MD/CS -11.1 -13.1 -16.2 -16.2 -16.9 -16.9 -9.1 -11.5 -15.1 -15.1 -15.6 -15.6 -6.9 -7.3 -7.7 -7.6 -7.5 -7.4

The table shows for κ= 3 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.

Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD -

multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 40 Average policy and layout improvement potential with κ= 3, β = 12, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -9.5 - - - - -
SB/SD/CS -6.1 - - - - - -6.4 - - - - - -9.9 - - - - -

SB/MD/NS 0.0 -0.7 -2.3 -2.3 -2.8 -2.8 0.0 -1.4 -3.2 -3.3 -3.5 -3.6 -9.5 -10.2 -10.4 -10.5 -10.2 -10.2
SB/MD/CS -6.1 -6.8 -8.6 -8.6 -9.1 -9.1 -6.4 -7.9 -9.7 -9.8 -10.0 -10.0 -9.9 -10.6 -10.6 -10.7 -10.4 -10.5
DB/SD/NS -3.3 - - - - - -3.3 - - - - - -9.4 - - - - -
DB/SD/CS -9.0 - - - - - -9.2 - - - - - -9.6 - - - - -

DB/MD/NS -3.3 -4.2 -5.7 -5.7 -6.2 -6.2 -3.3 -4.8 -6.6 -6.7 -6.9 -6.9 -9.4 -10.2 -10.4 -10.5 -10.1 -10.2
DB/MD/CS -9.0 -9.9 -11.6 -11.6 -12.1 -12.1 -9.2 -10.8 -12.4 -12.6 -12.7 -12.7 -9.6 -10.4 -10.4 -10.5 -10.1 -10.1

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and five cross-
aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation

between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.

Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple
drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 41 Average policy and layout improvement potential with κ= 3, β = 16, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -2.4 - - - - -
SB/SD/CS -4.2 - - - - - -5.7 - - - - - -3.9 - - - - -

SB/MD/NS 0.0 -0.7 -2.5 -2.6 -2.9 -2.9 0.0 -0.9 -2.1 -2.1 -2.3 -2.4 -2.4 -2.6 -1.9 -2.0 -1.8 -1.8
SB/MD/CS -4.2 -4.8 -6.3 -6.4 -6.6 -6.6 -5.7 -6.8 -7.8 -7.9 -8.0 -8.0 -3.9 -4.4 -4.0 -4.0 -3.8 -3.9
DB/SD/NS -2.9 - - - - - -3.1 - - - - - -2.6 - - - - -
DB/SD/CS -6.9 - - - - - -8.3 - - - - - -3.9 - - - - -

DB/MD/NS -2.9 -3.6 -5.5 -5.5 -5.8 -5.8 -3.1 -3.9 -5.2 -5.3 -5.5 -5.5 -2.6 -2.6 -2.0 -2.1 -2.0 -2.1
DB/MD/CS -6.9 -7.6 -9.1 -9.2 -9.4 -9.4 -8.3 -9.4 -10.4 -10.6 -10.5 -10.7 -3.9 -4.3 -3.8 -3.9 -3.6 -3.7

The table shows for κ= 3 the percentage deviation in total picking time for settings with three and five

cross-aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows

the deviation between the three and the five cross-aisle settings, taking the respective three cross-aisle
settings as reference value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching,

SD - single drop-off point, MD - multiple drop-off points, NS - no cartless subtours, CS - cartless subtours,

#DPs - number of drop-off points.
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Table 42 Average policy and layout improvement potential with κ= 3, β = 2, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -11.1 - - - - -
SB/SD/CS -8.1 - - - - - -7.1 - - - - - -10.1 - - - - -

SB/MD/NS 0.0 -2.4 -7.0 -7.0 -7.6 -7.6 0.0 -3.5 -8.6 -8.7 -9.1 -9.1 -11.1 -12.1 -12.7 -12.7 -12.6 -12.6
SB/MD/CS -8.1 -10.6 -15.4 -15.4 -16.0 -16.0 -7.1 -10.6 -15.7 -15.8 -16.2 -16.2 -10.1 -11.1 -11.4 -11.5 -11.3 -11.4
DB/SD/NS -3.8 - - - - - -3.8 - - - - - -11.2 - - - - -
DB/SD/CS -10.9 - - - - - -10.1 - - - - - -10.3 - - - - -

DB/MD/NS -3.8 -6.4 -10.9 -10.9 -11.6 -11.6 -3.8 -7.4 -12.7 -12.7 -13.2 -13.2 -11.2 -12.2 -12.8 -12.9 -12.7 -12.8
DB/MD/CS -10.9 -13.3 -18.2 -18.2 -18.8 -18.8 -10.1 -13.6 -19.0 -19.0 -19.6 -19.6 -10.3 -11.5 -11.9 -11.9 -11.9 -12.0

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 43 Average policy and layout improvement potential with κ= 3, β = 4, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -9.9 - - - - -
SB/SD/CS -8.7 - - - - - -6.8 - - - - - -8.1 - - - - -

SB/MD/NS 0.0 -1.5 -3.9 -4.0 -4.3 -4.3 0.0 -2.3 -5.1 -5.1 -5.4 -5.4 -9.9 -10.6 -11.0 -11.0 -10.9 -10.9
SB/MD/CS -8.7 -10.4 -13.1 -13.1 -13.5 -13.5 -6.8 -9.2 -11.8 -11.8 -12.0 -12.0 -8.1 -9.0 -8.7 -8.7 -8.6 -8.6
DB/SD/NS -4.1 - - - - - -3.2 - - - - - -9.1 - - - - -
DB/SD/CS -11.8 - - - - - -9.5 - - - - - -7.7 - - - - -

DB/MD/NS -4.1 -5.8 -8.1 -8.2 -8.5 -8.5 -3.2 -5.5 -8.5 -8.5 -8.7 -8.8 -9.1 -9.7 -10.2 -10.2 -10.1 -10.1
DB/MD/CS -11.8 -13.5 -16.2 -16.2 -16.6 -16.6 -9.5 -11.9 -14.6 -14.6 -14.8 -14.8 -7.7 -8.4 -8.4 -8.4 -8.2 -8.2

The table shows for κ= 3 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations

hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points,
NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 44 Average policy and layout improvement potential with κ= 3, β = 6, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -12.6 - - - - -
SB/SD/CS -7.1 - - - - - -7.3 - - - - - -12.9 - - - - -

SB/MD/NS 0.0 -0.4 -1.9 -1.9 -2.1 -2.1 0.0 -1.2 -2.4 -2.5 -2.6 -2.6 -12.6 -13.4 -13.1 -13.2 -13.0 -13.1
SB/MD/CS -7.1 -7.6 -9.1 -9.1 -9.3 -9.3 -7.3 -8.7 -9.8 -9.9 -9.9 -9.9 -12.9 -13.7 -13.3 -13.4 -13.2 -13.2
DB/SD/NS -3.6 - - - - - -3.6 - - - - - -12.6 - - - - -
DB/SD/CS -10.2 - - - - - -10.6 - - - - - -13.0 - - - - -

DB/MD/NS -3.6 -4.1 -5.6 -5.6 -5.8 -5.8 -3.6 -4.9 -5.8 -5.9 -6.1 -6.1 -12.6 -13.4 -12.9 -13.0 -12.9 -13.0
DB/MD/CS -10.2 -10.8 -12.1 -12.1 -12.4 -12.4 -10.6 -12.0 -12.9 -13.0 -13.2 -13.2 -13.0 -13.8 -13.4 -13.5 -13.4 -13.4

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 45 Average policy and layout improvement potential with κ= 3, β = 8, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -5.3 - - - - -
SB/SD/CS -5.4 - - - - - -6.5 - - - - - -6.4 - - - - -

SB/MD/NS 0.0 -0.3 -1.6 -1.6 -1.9 -1.9 0.0 -0.5 -1.1 -1.1 -1.1 -1.2 -5.3 -5.4 -4.7 -4.8 -4.6 -4.6
SB/MD/CS -5.4 -5.8 -6.5 -6.6 -6.7 -6.7 -6.5 -7.3 -7.5 -7.7 -7.6 -7.8 -6.4 -6.8 -6.3 -6.4 -6.2 -6.3
DB/SD/NS -2.7 - - - - - -2.7 - - - - - -5.2 - - - - -
DB/SD/CS -7.9 - - - - - -8.6 - - - - - -6.0 - - - - -

DB/MD/NS -2.7 -3.2 -4.3 -4.4 -4.5 -4.6 -2.7 -3.4 -3.9 -4.0 -4.0 -4.1 -5.2 -5.4 -4.9 -4.9 -4.8 -4.8
DB/MD/CS -7.9 -8.4 -9.0 -9.1 -9.2 -9.2 -8.6 -9.5 -9.8 -10.0 -10.1 -10.2 -6.0 -6.4 -6.1 -6.2 -6.2 -6.2

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and

five cross-aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further
it shows the deviation between the three and the five cross-aisle settings, taking the respective three

cross-aisle settings as reference value. Abbreviations hold as follows: SB - static batching, DB - dynamic

batching, SD - single drop-off point, MD - multiple drop-off points, NS - no cartless subtours, CS - cartless
subtours, #DPs - number of drop-off points.

Table 46 Average policy and layout improvement potential with κ= 3, β = 12, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -13.3 - - - - -
SB/SD/CS -9.1 - - - - - -7.8 - - - - - -12.1 - - - - -

SB/MD/NS 0.0 -2.1 -5.7 -5.7 -6.4 -6.4 0.0 -2.9 -7.4 -7.4 -8.1 -8.1 -13.3 -13.9 -14.8 -14.8 -14.7 -14.7
SB/MD/CS -9.1 -11.2 -15.1 -15.1 -15.8 -15.8 -7.8 -10.8 -15.2 -15.2 -15.8 -15.8 -12.1 -12.8 -13.3 -13.3 -13.2 -13.2
DB/SD/NS -2.6 - - - - - -2.8 - - - - - -13.5 - - - - -
DB/SD/CS -11.0 - - - - - -10.0 - - - - - -12.3 - - - - -

DB/MD/NS -2.6 -4.7 -8.3 -8.3 -9.0 -9.0 -2.8 -5.7 -10.2 -10.2 -10.9 -10.9 -13.5 -14.2 -15.0 -15.1 -15.1 -15.1
DB/MD/CS -11.0 -13.2 -17.1 -17.1 -17.7 -17.7 -10.0 -13.1 -17.5 -17.5 -18.1 -18.1 -12.3 -13.2 -13.6 -13.6 -13.6 -13.6

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the

three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold
as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 47 Average policy and layout improvement potential with κ= 3, β = 16, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -14.0 - - - - -
SB/SD/CS -10.1 - - - - - -8.4 - - - - - -12.5 - - - - -

SB/MD/NS 0.0 -0.7 -3.0 -3.0 -3.5 -3.5 0.0 -1.3 -3.7 -3.7 -4.0 -4.0 -14.0 -14.6 -14.6 -14.6 -14.5 -14.5
SB/MD/CS -10.1 -11.0 -13.4 -13.4 -13.9 -13.9 -8.4 -9.7 -11.8 -11.8 -12.0 -12.0 -12.5 -12.9 -12.6 -12.6 -12.2 -12.2
DB/SD/NS -4.2 - - - - - -3.8 - - - - - -13.6 - - - - -
DB/SD/CS -13.3 - - - - - -11.6 - - - - - -12.4 - - - - -

DB/MD/NS -4.2 -4.8 -7.4 -7.4 -7.9 -7.9 -3.8 -5.1 -7.2 -7.2 -7.6 -7.6 -13.6 -14.2 -13.8 -13.8 -13.7 -13.7
DB/MD/CS -13.3 -14.1 -16.6 -16.6 -17.1 -17.1 -11.6 -12.9 -14.8 -14.9 -15.1 -15.1 -12.4 -12.9 -12.3 -12.3 -12.1 -12.1

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 48 Average policy and layout improvement potential with κ= 3, β = 2, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -17.7 - - - - -
SB/SD/CS -9.1 - - - - - -8.7 - - - - - -17.3 - - - - -

SB/MD/NS 0.0 -0.2 -1.4 -1.4 -1.7 -1.7 0.0 -0.8 -1.5 -1.6 -1.7 -1.7 -17.7 -18.2 -17.8 -17.8 -17.7 -17.7
SB/MD/CS -9.1 -9.4 -10.3 -10.3 -10.6 -10.6 -8.7 -9.5 -10.3 -10.4 -10.5 -10.5 -17.3 -17.8 -17.7 -17.7 -17.6 -17.6
DB/SD/NS -3.0 - - - - - -3.3 - - - - - -18.0 - - - - -
DB/SD/CS -11.7 - - - - - -11.5 - - - - - -17.5 - - - - -

DB/MD/NS -3.0 -3.4 -4.4 -4.4 -4.7 -4.7 -3.3 -4.0 -4.8 -4.8 -5.0 -5.0 -18.0 -18.2 -18.0 -18.0 -17.9 -17.9
DB/MD/CS -11.7 -12.1 -12.9 -12.9 -13.2 -13.2 -11.5 -12.4 -13.1 -13.2 -13.2 -13.3 -17.5 -17.9 -17.8 -17.9 -17.7 -17.8

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 49 Average policy and layout improvement potential with κ= 3, β = 4, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -9.7 - - - - -
SB/SD/CS -7.2 - - - - - -7.6 - - - - - -10.1 - - - - -

SB/MD/NS 0.0 -0.2 -1.0 -1.0 -1.2 -1.2 0.0 -0.5 -0.6 -0.7 -0.7 -0.8 -9.7 -9.9 -9.2 -9.4 -9.2 -9.3
SB/MD/CS -7.2 -7.4 -7.7 -7.8 -7.8 -7.9 -7.6 -8.3 -8.3 -8.4 -8.4 -8.5 -10.1 -10.5 -10.2 -10.3 -10.2 -10.3
DB/SD/NS -2.8 - - - - - -3.2 - - - - - -10.0 - - - - -
DB/SD/CS -9.8 - - - - - -10.3 - - - - - -10.1 - - - - -

DB/MD/NS -2.8 -3.1 -3.8 -3.8 -4.0 -4.0 -3.2 -3.9 -3.9 -4.1 -4.1 -4.2 -10.0 -10.4 -9.8 -10.0 -9.8 -9.9
DB/MD/CS -9.8 -10.2 -10.4 -10.5 -10.5 -10.6 -10.3 -11.1 -11.1 -11.3 -11.3 -11.4 -10.1 -10.5 -10.4 -10.5 -10.4 -10.5

The table shows for κ= 3 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations

hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points,
NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 50 Average policy and layout improvement potential with κ= 3, β = 6, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -14.1 - - - - -
SB/SD/CS -10.3 - - - - - -8.9 - - - - - -12.7 - - - - -

SB/MD/NS 0.0 -1.4 -4.7 -4.7 -5.3 -5.3 0.0 -2.4 -6.3 -6.3 -6.8 -6.8 -14.1 -15.0 -15.5 -15.5 -15.5 -15.5
SB/MD/CS -10.3 -11.8 -15.3 -15.3 -15.8 -15.8 -8.9 -11.4 -15.2 -15.2 -15.6 -15.6 -12.7 -13.7 -13.8 -13.8 -13.7 -13.7
DB/SD/NS -2.3 - - - - - -2.7 - - - - - -14.4 - - - - -
DB/SD/CS -12.4 - - - - - -11.3 - - - - - -12.9 - - - - -

DB/MD/NS -2.3 -3.7 -7.1 -7.1 -7.6 -7.6 -2.7 -5.1 -9.1 -9.1 -9.7 -9.7 -14.4 -15.4 -16.0 -16.0 -16.0 -16.0
DB/MD/CS -12.4 -13.8 -17.4 -17.4 -18.0 -18.0 -11.3 -13.8 -17.7 -17.7 -18.1 -18.1 -12.9 -14.0 -14.1 -14.1 -14.0 -14.0

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 51 Average policy and layout improvement potential with κ= 3, β = 8, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -15.6 - - - - -
SB/SD/CS -10.4 - - - - - -9.1 - - - - - -14.4 - - - - -

SB/MD/NS 0.0 -0.9 -2.9 -2.9 -3.3 -3.3 0.0 -1.5 -3.4 -3.4 -3.6 -3.6 -15.6 -16.2 -16.1 -16.1 -15.9 -15.9
SB/MD/CS -10.4 -11.6 -13.5 -13.5 -13.9 -13.9 -9.1 -10.7 -12.2 -12.2 -12.4 -12.4 -14.4 -14.9 -14.4 -14.4 -14.3 -14.3
DB/SD/NS -3.3 - - - - - -3.0 - - - - - -15.3 - - - - -
DB/SD/CS -13.0 - - - - - -11.7 - - - - - -14.4 - - - - -

DB/MD/NS -3.3 -4.2 -6.2 -6.2 -6.6 -6.6 -3.0 -4.5 -6.6 -6.6 -6.9 -6.9 -15.3 -15.9 -15.9 -15.9 -15.8 -15.8
DB/MD/CS -13.0 -14.1 -16.2 -16.2 -16.6 -16.6 -11.7 -13.3 -14.8 -14.8 -15.1 -15.1 -14.4 -14.9 -14.3 -14.3 -14.2 -14.2

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 52 Average policy and layout improvement potential with κ= 3, β = 12, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -20.3 - - - - -
SB/SD/CS -10.2 - - - - - -9.0 - - - - - -19.1 - - - - -

SB/MD/NS 0.0 -0.1 -1.2 -1.2 -1.4 -1.4 0.0 -0.8 -1.6 -1.6 -1.7 -1.7 -20.3 -20.8 -20.6 -20.6 -20.5 -20.5
SB/MD/CS -10.2 -10.6 -11.5 -11.5 -11.7 -11.7 -9.0 -9.8 -10.6 -10.6 -10.8 -10.8 -19.1 -19.6 -19.5 -19.5 -19.5 -19.5
DB/SD/NS -3.2 - - - - - -2.8 - - - - - -20.0 - - - - -
DB/SD/CS -12.9 - - - - - -11.3 - - - - - -18.7 - - - - -

DB/MD/NS -3.2 -3.5 -4.6 -4.6 -4.8 -4.8 -2.8 -3.6 -4.5 -4.5 -4.7 -4.7 -20.0 -20.4 -20.2 -20.2 -20.2 -20.2
DB/MD/CS -12.9 -13.3 -14.3 -14.3 -14.5 -14.5 -11.3 -12.2 -13.0 -13.1 -13.2 -13.2 -18.7 -19.2 -19.1 -19.1 -19.1 -19.1

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 53 Average policy and layout improvement potential with κ= 3, β = 16, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -13.1 - - - - -
SB/SD/CS -8.5 - - - - - -8.1 - - - - - -12.7 - - - - -

SB/MD/NS 0.0 -0.3 -0.8 -0.8 -1.0 -1.0 0.0 -0.5 -0.6 -0.7 -0.7 -0.8 -13.1 -13.3 -12.9 -13.0 -12.9 -12.9
SB/MD/CS -8.5 -8.8 -9.0 -9.1 -9.2 -9.2 -8.1 -8.7 -8.7 -8.8 -8.9 -8.9 -12.7 -13.0 -12.8 -12.8 -12.8 -12.8
DB/SD/NS -3.5 - - - - - -3.5 - - - - - -13.1 - - - - -
DB/SD/CS -11.4 - - - - - -10.9 - - - - - -12.6 - - - - -

DB/MD/NS -3.5 -3.9 -4.5 -4.6 -4.7 -4.7 -3.5 -4.0 -4.1 -4.2 -4.3 -4.3 -13.1 -13.1 -12.7 -12.8 -12.6 -12.7
DB/MD/CS -11.4 -11.8 -12.0 -12.1 -12.2 -12.2 -10.9 -11.4 -11.5 -11.6 -11.7 -11.7 -12.6 -12.7 -12.6 -12.6 -12.6 -12.6

The table shows for κ = 3 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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I.3. Results for cart capacity κ= 4

Table 54 Average policy and layout improvement potential with κ= 4, β = 2, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -1.6 - - - - -
SB/SD/CS -3.4 - - - - - -4.0 - - - - - -2.2 - - - - -

SB/MD/NS 0.0 -4.8 -12.2 -12.3 -13.2 -13.2 0.0 -7.2 -14.4 -14.9 -15.3 -15.7 -1.6 -4.3 -4.2 -4.7 -4.1 -4.5
SB/MD/CS -3.4 -8.3 -16.0 -16.1 -17.0 -17.1 -4.0 -10.9 -18.5 -19.0 -19.4 -19.8 -2.2 -4.6 -4.6 -5.0 -4.5 -4.9
DB/SD/NS -6.4 - - - - - -5.2 - - - - - -0.3 - - - - -
DB/SD/CS -9.1 - - - - - -8.7 - - - - - -1.2 - - - - -

DB/MD/NS -6.4 -12.1 -18.8 -18.9 -19.6 -19.6 -5.2 -13.0 -19.4 -20.0 -20.2 -20.7 -0.3 -2.8 -2.3 -2.9 -2.3 -2.9
DB/MD/CS -9.1 -14.7 -21.9 -22.0 -22.6 -22.6 -8.7 -16.1 -23.0 -23.5 -23.7 -24.1 -1.2 -3.3 -2.9 -3.5 -3.0 -3.5

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation

between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference
value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD

- multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 55 Average policy and layout improvement potential with κ= 4, β = 4, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -3.3 - - - - -
SB/SD/CS -5.0 - - - - - -4.8 - - - - - -3.1 - - - - -

SB/MD/NS 0.0 -4.1 -8.2 -8.7 -9.0 -9.4 0.0 -4.0 -9.7 -10.0 -10.5 -10.7 -3.3 -3.1 -4.9 -4.5 -4.8 -4.5
SB/MD/CS -5.0 -8.5 -13.4 -13.7 -14.1 -14.3 -4.8 -7.9 -14.6 -14.8 -15.4 -15.4 -3.1 -2.7 -4.7 -4.5 -4.7 -4.6
DB/SD/NS -8.4 - - - - - -7.6 - - - - - -2.3 - - - - -
DB/SD/CS -12.0 - - - - - -11.6 - - - - - -2.8 - - - - -

DB/MD/NS -8.4 -12.8 -16.6 -17.2 -17.6 -18.1 -7.6 -12.1 -17.7 -18.1 -18.2 -18.6 -2.3 -2.5 -4.3 -4.1 -3.9 -3.7
DB/MD/CS -12.0 -15.9 -20.2 -20.9 -21.1 -21.5 -11.6 -15.0 -21.3 -21.6 -22.0 -22.2 -2.8 -2.1 -4.4 -3.9 -4.3 -3.9

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-
aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation

between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.
Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD -

multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 56 Average policy and layout improvement potential with κ= 4, β = 6, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -1.7 - - - - -
SB/SD/CS -3.8 - - - - - -4.6 - - - - - -2.6 - - - - -

SB/MD/NS 0.0 -1.8 -5.0 -5.3 -5.6 -5.8 0.0 -2.9 -6.2 -6.4 -6.8 -7.0 -1.7 -2.9 -3.0 -3.0 -3.1 -3.0
SB/MD/CS -3.8 -5.2 -9.0 -9.1 -9.6 -9.7 -4.6 -7.0 -11.0 -11.1 -11.6 -11.7 -2.6 -3.6 -3.9 -4.0 -3.9 -4.0
DB/SD/NS -7.6 - - - - - -6.8 - - - - - -0.7 - - - - -
DB/SD/CS -10.0 - - - - - -10.7 - - - - - -2.3 - - - - -

DB/MD/NS -7.6 -11.6 -13.7 -14.4 -14.2 -14.9 -6.8 -11.6 -13.6 -14.5 -14.2 -14.9 -0.7 -1.6 -1.5 -1.7 -1.5 -1.6
DB/MD/CS -10.0 -13.5 -16.2 -16.9 -16.9 -17.5 -10.7 -14.2 -17.2 -17.8 -17.9 -18.4 -2.3 -2.4 -2.7 -2.7 -2.8 -2.7

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-
aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.

Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD -
multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 57 Average policy and layout improvement potential with κ= 4, β = 8, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - 2.5 - - - - -
SB/SD/CS -3.5 - - - - - -3.3 - - - - - 2.7 - - - - -

SB/MD/NS 0.0 -3.8 -4.2 -5.4 -4.8 -5.8 0.0 -2.1 -3.6 -4.2 -4.1 -4.5 2.5 4.3 3.1 3.8 3.2 3.8
SB/MD/CS -3.5 -5.7 -7.2 -7.8 -7.7 -8.2 -3.3 -5.3 -7.0 -7.6 -7.5 -8.0 2.7 2.9 2.6 2.7 2.6 2.6
DB/SD/NS -7.4 - - - - - -7.0 - - - - - 2.9 - - - - -
DB/SD/CS -10.3 - - - - - -9.8 - - - - - 3.0 - - - - -

DB/MD/NS -7.4 -13.1 -12.6 -14.5 -13.4 -14.9 -7.0 -11.1 -11.5 -12.7 -12.1 -13.0 2.9 5.1 4.0 4.8 4.1 5.0
DB/MD/CS -10.3 -14.5 -15.0 -16.3 -15.7 -16.7 -9.8 -12.5 -13.7 -14.5 -14.4 -14.9 3.0 5.1 4.0 4.9 4.1 4.9

The table shows for κ = 4 the percentage deviation in total picking time for settings with three and five

cross-aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the
deviation between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as

reference value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off

point, MD - multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off
points.

Table 58 Average policy and layout improvement potential with κ= 4, β = 12, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -4.9 - - - - -
SB/SD/CS -4.9 - - - - - -5.5 - - - - - -5.4 - - - - -

SB/MD/NS 0.0 -3.5 -9.2 -9.3 -9.9 -9.9 0.0 -5.1 -11.0 -11.4 -11.7 -12.0 -4.9 -6.7 -6.8 -7.2 -6.8 -7.2
SB/MD/CS -4.9 -8.5 -14.5 -14.6 -15.2 -15.2 -5.5 -10.5 -16.5 -16.9 -17.3 -17.7 -5.4 -7.1 -7.2 -7.6 -7.4 -7.7
DB/SD/NS -7.1 - - - - - -6.6 - - - - - -4.5 - - - - -
DB/SD/CS -10.9 - - - - - -10.9 - - - - - -4.9 - - - - -

DB/MD/NS -7.1 -11.3 -16.8 -17.0 -17.6 -17.8 -6.6 -12.2 -17.6 -18.1 -18.4 -18.7 -4.5 -6.0 -5.8 -6.1 -5.7 -6.0
DB/MD/CS -10.9 -14.9 -20.6 -20.7 -21.4 -21.4 -10.9 -16.2 -21.6 -22.1 -22.3 -22.7 -4.9 -6.5 -6.2 -6.6 -6.1 -6.5

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation

between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.
Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD -

multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 59 Average policy and layout improvement potential with κ= 4, β = 16, γ = 0.25.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -6.2 - - - - -
SB/SD/CS -6.1 - - - - - -5.4 - - - - - -5.5 - - - - -

SB/MD/NS 0.0 -2.1 -5.9 -6.0 -6.4 -6.4 0.0 -2.2 -7.1 -7.1 -7.5 -7.5 -6.2 -6.2 -7.3 -7.2 -7.2 -7.2
SB/MD/CS -6.1 -8.3 -12.5 -12.5 -13.0 -13.0 -5.4 -7.5 -12.8 -12.8 -13.2 -13.2 -5.5 -5.5 -6.5 -6.5 -6.5 -6.5
DB/SD/NS -9.2 - - - - - -6.4 - - - - - -3.2 - - - - -
DB/SD/CS -13.1 - - - - - -11.3 - - - - - -4.2 - - - - -

DB/MD/NS -9.2 -11.6 -14.9 -15.3 -15.5 -15.8 -6.4 -9.4 -13.6 -13.8 -14.0 -14.1 -3.2 -3.6 -4.4 -4.2 -4.2 -4.0
DB/MD/CS -13.1 -15.5 -19.2 -19.5 -19.7 -20.0 -11.3 -13.8 -18.2 -18.3 -18.5 -18.6 -4.2 -4.2 -4.8 -4.5 -4.5 -4.3

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.

Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD -

multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 60 Average policy and layout improvement potential with κ= 4, β = 2, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -5.9 - - - - -
SB/SD/CS -4.9 - - - - - -5.4 - - - - - -6.5 - - - - -

SB/MD/NS 0.0 -0.8 -3.5 -3.6 -3.9 -4.0 0.0 -1.8 -4.5 -4.7 -4.9 -5.0 -5.9 -6.9 -6.9 -7.0 -6.9 -7.0
SB/MD/CS -4.9 -5.7 -8.7 -8.7 -9.1 -9.1 -5.4 -7.1 -10.3 -10.4 -10.6 -10.7 -6.5 -7.4 -7.6 -7.7 -7.5 -7.6
DB/SD/NS -8.3 - - - - - -7.5 - - - - - -5.0 - - - - -
DB/SD/CS -11.7 - - - - - -11.6 - - - - - -5.7 - - - - -

DB/MD/NS -8.3 -9.8 -11.9 -12.1 -12.5 -12.6 -7.5 -9.1 -11.5 -11.6 -12.0 -12.1 -5.0 -5.1 -5.4 -5.3 -5.3 -5.2
DB/MD/CS -11.7 -13.1 -15.4 -15.6 -16.0 -16.1 -11.6 -13.2 -15.9 -16.1 -16.4 -16.5 -5.7 -6.0 -6.5 -6.4 -6.4 -6.3

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.

Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD -

multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 61 Average policy and layout improvement potential with κ= 4, β = 4, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -0.2 - - - - -
SB/SD/CS -3.6 - - - - - -4.2 - - - - - -0.9 - - - - -

SB/MD/NS 0.0 -1.2 -3.0 -3.2 -3.4 -3.5 0.0 -1.5 -3.0 -3.2 -3.3 -3.5 -0.2 -0.5 -0.2 -0.2 -0.1 -0.2
SB/MD/CS -3.6 -4.8 -6.6 -6.7 -6.9 -7.0 -4.2 -5.8 -7.3 -7.5 -7.6 -7.7 -0.9 -1.3 -1.0 -1.1 -1.0 -1.0
DB/SD/NS -7.1 - - - - - -5.9 - - - - - 1.0 - - - - -
DB/SD/CS -9.4 - - - - - -9.4 - - - - - -0.1 - - - - -

DB/MD/NS -7.1 -8.9 -10.5 -10.9 -10.8 -11.2 -5.9 -7.3 -8.9 -9.1 -9.2 -9.4 1.0 1.6 1.6 1.9 1.6 1.9
DB/MD/CS -9.4 -11.3 -12.7 -13.1 -13.2 -13.6 -9.4 -10.8 -12.3 -12.5 -12.6 -12.7 -0.1 0.4 0.3 0.6 0.6 0.9

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference

value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD
- multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 62 Average policy and layout improvement potential with κ= 4, β = 6, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -11.1 - - - - -
SB/SD/CS -6.7 - - - - - -5.9 - - - - - -10.4 - - - - -

SB/MD/NS 0.0 -3.4 -7.9 -7.9 -8.5 -8.5 0.0 -4.2 -9.9 -10.0 -10.5 -10.5 -11.1 -12.0 -13.1 -13.1 -13.0 -13.1
SB/MD/CS -6.7 -10.1 -15.0 -15.0 -15.6 -15.6 -5.9 -10.0 -15.9 -16.0 -16.5 -16.6 -10.4 -11.2 -12.2 -12.3 -12.1 -12.2
DB/SD/NS -7.0 - - - - - -5.5 - - - - - -9.7 - - - - -
DB/SD/CS -11.8 - - - - - -10.2 - - - - - -9.5 - - - - -

DB/MD/NS -7.0 -10.1 -15.0 -15.1 -15.7 -15.7 -5.5 -9.6 -15.5 -15.6 -16.0 -16.1 -9.7 -10.6 -11.5 -11.5 -11.3 -11.4
DB/MD/CS -11.8 -14.9 -20.1 -20.1 -20.7 -20.7 -10.2 -14.1 -20.5 -20.5 -20.9 -21.0 -9.5 -10.3 -11.5 -11.5 -11.4 -11.4

The table shows for κ = 4 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 63 Average policy and layout improvement potential with κ= 4, β = 8, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -8.2 - - - - -
SB/SD/CS -7.3 - - - - - -6.2 - - - - - -7.2 - - - - -

SB/MD/NS 0.0 -1.8 -4.6 -4.7 -5.1 -5.1 0.0 -2.4 -5.8 -5.8 -6.2 -6.3 -8.2 -8.8 -9.3 -9.3 -9.3 -9.3
SB/MD/CS -7.3 -9.3 -12.5 -12.5 -13.0 -13.0 -6.2 -8.6 -12.1 -12.2 -12.5 -12.6 -7.2 -7.7 -7.8 -7.9 -7.8 -7.8
DB/SD/NS -7.1 - - - - - -5.8 - - - - - -6.9 - - - - -
DB/SD/CS -12.3 - - - - - -10.8 - - - - - -6.6 - - - - -

DB/MD/NS -7.1 -9.5 -11.6 -11.7 -12.1 -12.2 -5.8 -8.4 -11.6 -11.7 -12.1 -12.1 -6.9 -7.0 -8.1 -8.0 -8.0 -8.0
DB/MD/CS -12.3 -14.9 -17.2 -17.3 -17.9 -18.0 -10.8 -13.4 -16.5 -16.6 -17.1 -17.1 -6.6 -6.6 -7.4 -7.4 -7.2 -7.2

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.

Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD -

multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 64 Average policy and layout improvement potential with κ= 4, β = 12, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -9.2 - - - - -
SB/SD/CS -5.7 - - - - - -6.0 - - - - - -9.5 - - - - -

SB/MD/NS 0.0 -0.8 -2.5 -2.6 -2.8 -2.9 0.0 -1.7 -3.6 -3.7 -3.9 -3.9 -9.2 -9.9 -10.1 -10.2 -10.1 -10.1
SB/MD/CS -5.7 -6.9 -8.6 -8.6 -8.9 -9.0 -6.0 -7.8 -9.8 -9.9 -10.0 -10.1 -9.5 -10.0 -10.4 -10.4 -10.2 -10.3
DB/SD/NS -6.5 - - - - - -4.8 - - - - - -7.4 - - - - -
DB/SD/CS -10.5 - - - - - -9.7 - - - - - -8.3 - - - - -

DB/MD/NS -6.5 -7.6 -8.9 -9.2 -9.4 -9.6 -4.8 -6.5 -8.3 -8.4 -8.6 -8.6 -7.4 -8.0 -8.4 -8.2 -8.3 -8.1
DB/MD/CS -10.5 -11.4 -13.0 -13.1 -13.6 -13.7 -9.7 -11.4 -13.1 -13.3 -13.4 -13.5 -8.3 -9.1 -9.2 -9.3 -8.9 -9.0

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations

hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points,
NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 65 Average policy and layout improvement potential with κ= 4, β = 16, γ = 0.5.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -3.1 - - - - -
SB/SD/CS -4.3 - - - - - -5.1 - - - - - -3.9 - - - - -

SB/MD/NS 0.0 -0.8 -2.3 -2.4 -2.6 -2.7 0.0 -1.1 -2.2 -2.4 -2.4 -2.5 -3.1 -3.4 -3.0 -3.1 -2.9 -3.0
SB/MD/CS -4.3 -5.3 -6.6 -6.7 -6.9 -6.9 -5.1 -6.5 -7.5 -7.7 -7.6 -7.8 -3.9 -4.3 -4.0 -4.2 -3.9 -4.0
DB/SD/NS -6.4 - - - - - -5.5 - - - - - -2.1 - - - - -
DB/SD/CS -9.6 - - - - - -9.9 - - - - - -3.4 - - - - -

DB/MD/NS -6.4 -7.4 -8.9 -9.0 -9.1 -9.2 -5.5 -6.7 -7.8 -8.1 -8.1 -8.3 -2.1 -2.3 -1.8 -2.1 -1.9 -2.1
DB/MD/CS -9.6 -10.5 -12.2 -12.3 -12.4 -12.5 -9.9 -11.0 -12.3 -12.5 -12.6 -12.7 -3.4 -3.6 -3.2 -3.3 -3.2 -3.2

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-
aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference

value. Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD
- multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 66 Average policy and layout improvement potential with κ= 4, β = 2, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -11.2 - - - - -
SB/SD/CS -8.0 - - - - - -6.6 - - - - - -9.8 - - - - -

SB/MD/NS 0.0 -2.6 -7.3 -7.3 -7.7 -7.7 0.0 -3.6 -9.1 -9.2 -9.6 -9.6 -11.2 -12.2 -13.0 -13.0 -12.9 -12.9
SB/MD/CS -8.0 -10.6 -15.7 -15.7 -16.2 -16.2 -6.6 -10.2 -15.9 -15.9 -16.3 -16.3 -9.8 -10.8 -11.4 -11.4 -11.3 -11.3
DB/SD/NS -4.0 - - - - - -4.1 - - - - - -11.3 - - - - -
DB/SD/CS -10.7 - - - - - -9.8 - - - - - -10.3 - - - - -

DB/MD/NS -4.0 -6.9 -11.5 -11.5 -12.1 -12.1 -4.1 -7.8 -13.0 -13.1 -13.6 -13.7 -11.3 -12.1 -12.7 -12.8 -12.7 -12.8
DB/MD/CS -10.7 -13.4 -18.4 -18.4 -18.9 -18.9 -9.8 -13.4 -18.9 -19.0 -19.5 -19.5 -10.3 -11.3 -11.9 -11.9 -11.9 -11.9

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations

hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points,

NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 67 Average policy and layout improvement potential with κ= 4, β = 4, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -11.6 - - - - -
SB/SD/CS -8.6 - - - - - -6.5 - - - - - -9.7 - - - - -

SB/MD/NS 0.0 -1.5 -4.0 -4.0 -4.4 -4.4 0.0 -2.4 -5.4 -5.4 -5.7 -5.7 -11.6 -12.5 -12.9 -12.9 -12.7 -12.8
SB/MD/CS -8.6 -10.2 -13.2 -13.2 -13.6 -13.6 -6.5 -9.0 -11.9 -11.9 -12.2 -12.2 -9.7 -10.6 -10.5 -10.5 -10.3 -10.3
DB/SD/NS -6.3 - - - - - -4.2 - - - - - -9.5 - - - - -
DB/SD/CS -13.1 - - - - - -9.5 - - - - - -8.0 - - - - -

DB/MD/NS -6.3 -8.2 -10.5 -10.5 -11.0 -11.0 -4.2 -6.9 -9.8 -9.8 -10.0 -10.0 -9.5 -10.2 -10.8 -10.8 -10.5 -10.4
DB/MD/CS -13.1 -14.8 -17.5 -17.5 -18.1 -18.1 -9.5 -12.0 -14.8 -14.9 -15.1 -15.1 -8.0 -8.7 -8.7 -8.7 -8.4 -8.4

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations

hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points,
NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 68 Average policy and layout improvement potential with κ= 4, β = 6, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -12.3 - - - - -
SB/SD/CS -6.9 - - - - - -6.7 - - - - - -12.1 - - - - -

SB/MD/NS 0.0 -0.6 -2.0 -2.1 -2.4 -2.4 0.0 -1.4 -2.8 -2.9 -3.2 -3.2 -12.3 -13.0 -13.0 -13.0 -13.0 -13.0
SB/MD/CS -6.9 -7.7 -9.2 -9.2 -9.5 -9.5 -6.7 -8.4 -9.6 -9.7 -9.9 -9.9 -12.1 -12.9 -12.7 -12.8 -12.7 -12.7
DB/SD/NS -5.9 - - - - - -5.4 - - - - - -11.7 - - - - -
DB/SD/CS -11.3 - - - - - -11.5 - - - - - -12.5 - - - - -

DB/MD/NS -5.9 -6.5 -7.8 -7.8 -8.2 -8.3 -5.4 -6.7 -7.9 -8.1 -8.1 -8.3 -11.7 -12.4 -12.3 -12.5 -12.2 -12.3
DB/MD/CS -11.3 -11.9 -13.4 -13.4 -13.7 -13.8 -11.5 -13.0 -14.0 -14.1 -14.1 -14.2 -12.5 -13.3 -12.9 -12.9 -12.7 -12.7

The table shows for κ = 4 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 69 Average policy and layout improvement potential with κ= 4, β = 8, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -4.6 - - - - -
SB/SD/CS -5.0 - - - - - -5.8 - - - - - -5.4 - - - - -

SB/MD/NS 0.0 -0.6 -1.6 -1.6 -1.8 -1.8 0.0 -1.0 -1.4 -1.6 -1.6 -1.7 -4.6 -5.0 -4.5 -4.6 -4.4 -4.5
SB/MD/CS -5.0 -5.6 -6.5 -6.6 -6.7 -6.7 -5.8 -7.0 -7.2 -7.4 -7.3 -7.5 -5.4 -5.9 -5.3 -5.5 -5.2 -5.4
DB/SD/NS -6.0 - - - - - -6.0 - - - - - -4.5 - - - - -
DB/SD/CS -10.3 - - - - - -11.1 - - - - - -5.4 - - - - -

DB/MD/NS -6.0 -6.8 -7.6 -7.7 -8.1 -8.2 -6.0 -7.0 -7.2 -7.5 -7.4 -7.7 -4.5 -4.7 -4.2 -4.3 -3.9 -4.1
DB/MD/CS -10.3 -10.9 -11.4 -11.6 -11.7 -11.9 -11.1 -12.0 -12.3 -12.5 -12.5 -12.7 -5.4 -5.8 -5.5 -5.7 -5.5 -5.5

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.

Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD -

multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 70 Average policy and layout improvement potential with κ= 4, β = 12, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -12.3 - - - - -
SB/SD/CS -8.6 - - - - - -7.6 - - - - - -11.3 - - - - -

SB/MD/NS 0.0 -2.1 -6.3 -6.3 -7.0 -7.0 0.0 -2.9 -8.0 -8.0 -8.6 -8.6 -12.3 -13.1 -13.9 -13.9 -13.8 -13.8
SB/MD/CS -8.6 -10.7 -15.2 -15.2 -15.9 -15.9 -7.6 -10.6 -15.6 -15.6 -16.2 -16.2 -11.3 -12.3 -12.6 -12.6 -12.5 -12.5
DB/SD/NS -4.4 - - - - - -3.6 - - - - - -11.7 - - - - -
DB/SD/CS -11.6 - - - - - -10.5 - - - - - -11.2 - - - - -

DB/MD/NS -4.4 -6.6 -10.5 -10.5 -11.2 -11.2 -3.6 -6.9 -11.8 -11.8 -12.5 -12.5 -11.7 -12.6 -13.5 -13.6 -13.6 -13.6
DB/MD/CS -11.6 -13.6 -18.0 -18.0 -18.7 -18.7 -10.5 -13.5 -18.6 -18.6 -19.3 -19.3 -11.2 -12.1 -12.9 -12.9 -12.9 -12.9

The table shows for κ = 4 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 71 Average policy and layout improvement potential with κ= 4, β = 16, γ = 0.75.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -13.9 - - - - -
SB/SD/CS -9.7 - - - - - -7.8 - - - - - -12.2 - - - - -

SB/MD/NS 0.0 -0.8 -3.2 -3.2 -3.7 -3.7 0.0 -1.4 -4.0 -4.0 -4.4 -4.4 -13.9 -14.4 -14.6 -14.6 -14.5 -14.5
SB/MD/CS -9.7 -10.7 -13.3 -13.3 -13.8 -13.8 -7.8 -9.3 -11.7 -11.7 -12.0 -12.0 -12.2 -12.7 -12.4 -12.4 -12.1 -12.1
DB/SD/NS -5.7 - - - - - -4.8 - - - - - -13.0 - - - - -
DB/SD/CS -13.5 - - - - - -11.8 - - - - - -12.3 - - - - -

DB/MD/NS -5.7 -6.5 -9.1 -9.1 -9.7 -9.7 -4.8 -6.3 -8.7 -8.7 -9.1 -9.1 -13.0 -13.6 -13.4 -13.4 -13.2 -13.2
DB/MD/CS -13.5 -14.3 -16.9 -16.9 -17.5 -17.5 -11.8 -13.2 -15.5 -15.6 -15.7 -15.8 -12.3 -13.0 -12.5 -12.5 -12.1 -12.1

The table shows for κ = 4 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 72 Average policy and layout improvement potential with κ= 4, β = 2, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -15.8 - - - - -
SB/SD/CS -8.2 - - - - - -7.9 - - - - - -15.5 - - - - -

SB/MD/NS 0.0 -0.4 -1.6 -1.6 -1.9 -1.9 0.0 -0.9 -1.9 -1.9 -2.1 -2.1 -15.8 -16.3 -16.0 -16.1 -16.0 -16.0
SB/MD/CS -8.2 -8.8 -9.7 -9.7 -10.0 -10.0 -7.9 -8.9 -9.8 -9.8 -10.0 -10.0 -15.5 -15.9 -15.9 -15.9 -15.8 -15.8
DB/SD/NS -5.2 - - - - - -5.2 - - - - - -15.8 - - - - -
DB/SD/CS -12.0 - - - - - -12.6 - - - - - -16.4 - - - - -

DB/MD/NS -5.2 -5.8 -6.9 -6.9 -7.5 -7.5 -5.2 -6.4 -7.2 -7.5 -7.4 -7.6 -15.8 -16.4 -16.2 -16.3 -15.7 -15.8
DB/MD/CS -12.0 -12.8 -13.7 -13.8 -14.1 -14.1 -12.6 -13.7 -14.2 -14.4 -14.5 -14.6 -16.4 -16.7 -16.3 -16.3 -16.2 -16.2

The table shows for κ = 4 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 73 Average policy and layout improvement potential with κ= 4, β = 4, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -8.5 - - - - -
SB/SD/CS -6.4 - - - - - -6.8 - - - - - -8.8 - - - - -

SB/MD/NS 0.0 -0.5 -1.3 -1.3 -1.5 -1.5 0.0 -0.7 -0.9 -1.1 -1.0 -1.2 -8.5 -8.7 -8.1 -8.2 -8.0 -8.2
SB/MD/CS -6.4 -7.1 -7.4 -7.5 -7.6 -7.6 -6.8 -7.6 -7.7 -7.9 -7.8 -8.0 -8.8 -9.0 -8.7 -8.9 -8.7 -8.8
DB/SD/NS -6.3 - - - - - -6.0 - - - - - -8.2 - - - - -
DB/SD/CS -12.2 - - - - - -11.7 - - - - - -8.0 - - - - -

DB/MD/NS -6.3 -6.9 -7.9 -8.0 -8.3 -8.3 -6.0 -7.2 -7.1 -7.6 -7.3 -7.7 -8.2 -8.8 -7.7 -8.1 -7.4 -7.8
DB/MD/CS -12.2 -12.8 -13.0 -13.3 -13.2 -13.4 -11.7 -12.7 -12.8 -13.1 -13.0 -13.2 -8.0 -8.3 -8.3 -8.2 -8.2 -8.2

The table shows for κ= 4 the percentage deviation in total picking time for settings with three and five cross-

aisles, taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation
between the three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value.

Abbreviations hold as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD -
multiple drop-off points, NS - no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 74 Average policy and layout improvement potential with κ= 4, β = 6, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -14.0 - - - - -
SB/SD/CS -9.8 - - - - - -8.5 - - - - - -12.7 - - - - -

SB/MD/NS 0.0 -1.4 -5.2 -5.2 -5.9 -5.9 0.0 -2.6 -6.9 -6.9 -7.5 -7.5 -14.0 -15.0 -15.5 -15.5 -15.4 -15.4
SB/MD/CS -9.8 -11.2 -15.3 -15.3 -15.9 -15.9 -8.5 -11.1 -15.3 -15.3 -15.9 -15.9 -12.7 -13.8 -13.9 -13.9 -13.8 -13.8
DB/SD/NS -3.6 - - - - - -3.3 - - - - - -13.7 - - - - -
DB/SD/CS -12.4 - - - - - -11.0 - - - - - -12.4 - - - - -

DB/MD/NS -3.6 -5.1 -8.9 -8.9 -9.6 -9.6 -3.3 -5.9 -10.5 -10.5 -11.0 -11.0 -13.7 -14.7 -15.4 -15.4 -15.3 -15.3
DB/MD/CS -12.4 -14.0 -18.2 -18.2 -18.8 -18.8 -11.0 -13.5 -18.0 -18.0 -18.6 -18.6 -12.4 -13.4 -13.6 -13.6 -13.6 -13.6

The table shows for κ = 4 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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Table 75 Average policy and layout improvement potential with κ= 4, β = 8, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -14.9 - - - - -
SB/SD/CS -9.8 - - - - - -8.3 - - - - - -13.6 - - - - -

SB/MD/NS 0.0 -1.2 -3.4 -3.4 -3.8 -3.8 0.0 -1.7 -4.1 -4.1 -4.3 -4.3 -14.9 -15.4 -15.5 -15.5 -15.4 -15.4
SB/MD/CS -9.8 -11.2 -13.4 -13.4 -13.9 -13.9 -8.3 -10.1 -12.2 -12.2 -12.4 -12.4 -13.6 -13.9 -13.8 -13.8 -13.6 -13.6
DB/SD/NS -4.9 - - - - - -4.1 - - - - - -14.1 - - - - -
DB/SD/CS -13.2 - - - - - -11.6 - - - - - -13.4 - - - - -

DB/MD/NS -4.9 -6.0 -8.4 -8.4 -8.8 -8.8 -4.1 -5.8 -8.2 -8.2 -8.5 -8.5 -14.1 -14.8 -14.6 -14.6 -14.6 -14.6
DB/MD/CS -13.2 -14.6 -16.9 -16.9 -17.4 -17.4 -11.6 -13.4 -15.5 -15.5 -15.7 -15.7 -13.4 -13.9 -13.5 -13.5 -13.3 -13.3

The table shows for κ = 4 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -

no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 76 Average policy and layout improvement potential with κ= 4, β = 12, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -18.6 - - - - -
SB/SD/CS -9.4 - - - - - -8.3 - - - - - -17.6 - - - - -

SB/MD/NS 0.0 -0.3 -1.5 -1.5 -1.7 -1.7 0.0 -0.9 -1.9 -1.9 -2.0 -2.0 -18.6 -19.1 -18.9 -18.9 -18.9 -18.9
SB/MD/CS -9.4 -10.0 -11.0 -11.0 -11.2 -11.2 -8.3 -9.2 -10.2 -10.2 -10.3 -10.3 -17.6 -17.9 -17.8 -17.8 -17.8 -17.8
DB/SD/NS -6.3 - - - - - -5.4 - - - - - -17.8 - - - - -
DB/SD/CS -14.4 - - - - - -12.7 - - - - - -17.0 - - - - -

DB/MD/NS -6.3 -6.8 -8.4 -8.4 -8.6 -8.7 -5.4 -6.2 -7.3 -7.3 -7.6 -7.6 -17.8 -18.1 -17.6 -17.6 -17.6 -17.6
DB/MD/CS -14.4 -14.9 -16.1 -16.1 -16.4 -16.4 -12.7 -13.7 -14.6 -14.6 -14.8 -14.8 -17.0 -17.4 -17.1 -17.1 -17.0 -17.0

The table shows for κ = 4 the percentage deviation in total picking time for settings with three and five cross-aisles,

taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.

Table 77 Average policy and layout improvement potential with κ= 4, β = 16, γ = 1.0.

Three cross-aisles Five cross-aisles Three vs. five cross-aisles

# DPs 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

SB/SD/NS 0.0 - - - - - 0.0 - - - - - -10.6 - - - - -
SB/SD/CS -7.3 - - - - - -7.3 - - - - - -10.6 - - - - -

SB/MD/NS 0.0 -0.5 -1.1 -1.1 -1.3 -1.3 0.0 -0.6 -0.8 -0.9 -0.9 -1.0 -10.6 -10.7 -10.4 -10.4 -10.3 -10.4
SB/MD/CS -7.3 -7.8 -8.2 -8.2 -8.3 -8.3 -7.3 -8.1 -8.2 -8.3 -8.3 -8.4 -10.6 -10.9 -10.6 -10.7 -10.6 -10.7
DB/SD/NS -6.8 - - - - - -6.2 - - - - - -9.9 - - - - -
DB/SD/CS -13.6 - - - - - -12.7 - - - - - -9.7 - - - - -

DB/MD/NS -6.8 -7.5 -8.4 -8.6 -8.8 -8.9 -6.2 -7.1 -7.1 -7.4 -7.4 -7.6 -9.9 -10.1 -9.3 -9.5 -9.1 -9.3
DB/MD/CS -13.6 -14.1 -14.5 -14.6 -14.8 -14.8 -12.7 -13.5 -13.6 -13.8 -13.8 -14.0 -9.7 -10.0 -9.6 -9.8 -9.6 -9.7

The table shows for κ = 4 the percentage deviation in total picking time for settings with three and five cross-aisles,
taking the setting with policy (SB/SD/NS) and one depot as reference value. Further it shows the deviation between the
three and the five cross-aisle settings, taking the respective three cross-aisle settings as reference value. Abbreviations hold

as follows: SB - static batching, DB - dynamic batching, SD - single drop-off point, MD - multiple drop-off points, NS -
no cartless subtours, CS - cartless subtours, #DPs - number of drop-off points.
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