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Spurious Quasi-Resonances in Boundary Integral Equations

for the Helmholtz Transmission Problem

Ralf Hiptmair∗, Andrea Moiola†, Euan A. Spence‡

28th April 2022

Abstract

We consider the Helmholtz transmission problem with piecewise-constant material coeffi-
cients, and the standard associated direct boundary integral equations. For certain coefficients
and geometries, the norms of the inverses of the boundary integral operators grow rapidly
through an increasing sequence of frequencies, even though this is not the case for the solu-
tion operator of the transmission problem; we call this phenomenon that of spurious quasi-
resonances. We give a rigorous explanation of why and when spurious quasi-resonances occur,
and propose modified boundary integral equations that are not affected by them.

AMS subject classification: 35J05, 35J25, 45A05, 78A45

Keywords: Helmholtz equation, boundary integral equations, transmission problem, quasi-
resonance.

1 Introduction and statement of the main results

The goal of this paper is to explain, and also provide a remedy for, the feature of spurious quasi-
resonances in boundary integral equations for the Helmholtz transmission problem. This feature
is illustrated in numerical experiments in §1.4, with the explanation and our remedy given in §1.5.
§§1.1-1.3 define, respectively, the Helmholtz transmission problem, its solution operator, and the
standard first- and second-kind direct boundary integral formulations of this transmission problem.

1.1 The Helmholtz transmission scattering problem

We consider the scattering of an incident time-harmonic acoustic wave by a penetrable homogeneous
object that occupies the region of space Ω− ⊂ Rd, d = 2, 3, which is a bounded Lipschitz open set.
We first introduce notation necessary for a precise mathematical statement of this transmission
problem. Let Ω+ := Rd \ Ω−, Γ := ∂Ω− = ∂Ω+, and let n be the unit normal vector field on Γ
pointing from Ω− into Ω+. For any ϕ ∈ L2

loc(Rd), we let ϕ− := ϕ|Ω− and ϕ+ := ϕ|Ω+ . With
H1

loc(Ω±,∆) := {v : χv ∈ H1(Ω±),∆(χv) ∈ L2(Ω±) for all χ ∈ C∞comp(Rd)}, we define the Dirichlet
and Neumann trace operators

γ±D : H1
loc(Ω±)→ H1/2(Γ) and γ±N : H1

loc(Ω±,∆)→ H−1/2(Γ),

with γ±Dv := v±|Γ and γ±N such that if v ∈ H2
loc(Ω±) then γ±Nv = n · γ±D(∇v). Let γ±C := (γ±D, γ

±
N )

be the Cauchy trace, which satisfies

γ±C : H1
loc(Ω±,∆)→ H1/2(Γ)×H−1/2(Γ).

Given ϕ ∈ C1(Rd \ BR), for some ball BR := {|x| < R}, and κ > 0, ϕ satisfies the Sommerfeld
radiation condition if

lim
r→∞

r
d−1
2

(
∂ϕ(x)

∂r
− iκϕ(x)

)
= 0 (1.1)

uniformly in all directions, where r := |x|; we then write ϕ ∈ SRC(κ).
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Given ni, no > 0 and frequency k > 0, the Helmholtz transmission scattering problem is
that of finding the complex amplitude u of the sound pressure, with u ∈ H1

loc(Rd \ Γ) the solution
of

(∆ + k2ni)u
− = 0 in Ω−,

(∆ + k2no)u
+ = 0 in Ω+,

γ−Cu
− = γ+

Cu
+ + γ±Cu

I on Γ,

u+ ∈ SRC(k
√
no),

(1.2)

where the incident wave uI is an entire solution of the homogeneous Helmholtz equation in Rd,

(∆ + k2no)u
I = 0 in Rd. (1.3)

This set up means that u− is the total field in Ω− and u+ the scattered field in Ω+.
In principle, the jump γ+

Cu
+−γ−Cu− of the Cauchy trace of u across Γ can be more general than

the Cauchy trace of an incident wave. This leads to the following generic Helmholtz transmission
problem.

Definition 1.1. (The Helmholtz transmission problem.) Given positive real numbers k, ni,
and no and f ∈ H1/2(Γ)×H−1/2(Γ), find u ∈ H1

loc(Rd \ Γ) ∩ SRC(k
√
no) such that,

(∆ + k2ni)u
− = 0 in Ω−,

(∆ + k2no)u
+ = 0 in Ω+,

γ−Cu
− = γ+

Cu
+ + f on Γ.

(1.4)

The following well-posedness result is proved in, e.g., [24, Lemma 2.2 and Appendix A].

Lemma 1.2. The solution of the transmission problem of Definition 1.1 exists and is unique.
Moreover, if f ∈ H1(Γ)× L2(Γ) then γ±Cu

± ∈ H1(Γ)× L2(Γ).

Remark 1.3. The transmission problem of Definition 1.1 is not the most general form of the
transmission problem. If the transmission condition in (1.4) is replaced by

γ−Cu
− = Dγ+

Cu
+ + f , where D :=

(
1 0
0 α

)
(1.5)

for α a constant, then this covers all possible constant-coefficient transmission problems; see, e.g.,
[24, Page 322]. In Appendix A we outline how our results extend this more general transmission
problem. We see that, although the main ideas remain the same, more notation and technicalities
are required, hence why we have chosen to focus on the simpler problem of Definition 1.1.

1.2 Solution operators and quasi-resonances

Definition 1.4. (Solution operators.) Given positive real numbers k, ci, and co, let

S(ci, co)f := γ−Cu,

where u ∈ H1
loc(Rd \ Γ) ∩ SRC(k

√
co) is the solution of the Helmholtz transmission problem

(∆ + k2ci)u
− = 0 in Ω−,

(∆ + k2co)u
+ = 0 in Ω+,

γ−Cu
− = γ+

Cu
+ + f on Γ.

(1.6)

Lemma 1.2 implies that S(ci, co) is well defined and bounded on either H1/2(Γ)×H−1/2(Γ) or
H1(Γ)× L2(Γ). We introduce the abbreviations

Sio := S(ni, no) and Soi := S(no, ni).

We refer to Sio as the “physical” solution operator, since it corresponds to the transmission problem
of Definition 1.1, and Soi as the “unphysical” solution operator, since it corresponds to the trans-
mission problem where the indices ni and no are swapped compared to those in Definition 1.1. The
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results of this paper show that to understand the behaviour of boundary integral operators used to
solve the “physical” problem, one needs both the “physical” solution operator and the “unphysical”
one (this is made more precise in Theorem 1.10 below).

The spurious quasi-resonances we study in this paper are related to the high-frequency behaviour
of boundary integral operators. We therefore recap here the high-frequency behaviour of Sio; recall
that this depends on which of ni and no is larger. Indeed, if ni < no and Ω− is Lipschitz and
star-shaped with respect to a ball, then Lemma 4.5 below shows that the norm of Sio has, at worst,
mild algebraic growth in k; this result uses the bounds on the solution operator from [24], with
analogous bounds obtained for smooth, convex Ω− with strictly positive curvature in [9]. If ni > no
and Ω− is smooth and convex with strictly positive curvature, then Lemma 4.6 below, based on the
results of [29], shows that there exists 0 < k1 < k2 < . . . with kj → ∞ such that the norm of Sio
blows up superalgebraically through kj as j →∞. (Similar results in the particular case when Ω−

is a ball were obtained in [7, 8], and summarised in [1, Chapter 5]).
We call these real frequencies kj quasi-resonances, since they can be understood as real parts of

complex resonances of the transmission problem lying close to the real axis (with this terminology
also used in, e.g., [1, 7, 8]); the particular functions on which Sio at k = kj blows up are called
quasimodes. The relationship between quasimodes and resonances is a classic topic in scattering
theory; see [32–34], [17, §7.3]. The Weyl-type bound on the number of resonances of the transmission
problem when Ω− is smooth and convex with strictly positive curvature in [10, Theorem 1.3] implies
that the number of quasi-resonances in [0,K] in this case grows like Kd as K →∞.

Remark 1.5. The physical reason for the existence of quasi-resonances when ni > no is that, in
this case, geometric-optic rays can undergo total internal reflection when hitting Γ from Ω−. Rays
“hugging” the boundary via a large number of bounces with total internal reflection correspond
to solutions of the transmission problem localised near Γ; in the asymptotic-analysis literature
these solutions are known as “whispering gallery” modes; see, e.g., [3, 4]. The existence of quasi-
resonances of the transmission problem has only been rigorously established when Ω− is smooth
and convex with strictly positive curvature. The understanding above via rays suggests that such
quasi-resonances and quasimodes do not exist for polyhedral Ω− (since sharp corners prevent rays
from moving parallel to the boundary), although solutions with localisation qualitatively similar to
that of quasimodes can be seen when Ω− is a pentagon [21, Figure 13] or a hexagon [6, Figure 23].

1.3 Calderón projectors and the standard first- and second-kind direct
boundary integral equations (BIEs)

Since all the layer potentials and integral operators depend on k, we omit this k-dependence in the
notation. Let the Helmholtz fundamental solutions be given by

Φi/o(x,y) :=
i

4
H

(1)
0 (k

√
ni/o|x− y|) for d = 2, and Φi/o(x,y) :=

eik
√
ni/o|x−y|

4π|x− y|
for d = 3,

where H
(1)
0 is the Hankel function of the first kind and order zero; see [30, Section 3.1].

As in [30, Equation 3.6], the single-layer, adjoint-double-layer, double-layer, and hypersingular
operators are defined for φ ∈ L2(Γ) and ψ ∈ H1(Γ) by

Vi/oφ(x) :=

∫
Γ

Φi/o(x,y)φ(y) ds(y), K ′i/oφ(x) :=

∫
Γ

∂Φi/o(x,y)

∂n(x)
φ(y) ds(y), (1.7)

Ki/oφ(x) :=

∫
Γ

∂Φi/o(x,y)

∂n(y)
φ(y) ds(y), Wi/oψ(x) := − ∂

∂n(x)

∫
Γ

∂Φi/o(x,y)

∂n(y)
ψ(y) ds(y), (1.8)

for x ∈ Γ (note that the sign of the hypersingular operator is swapped compared to, e.g., [11]). When
Γ is Lipschitz, the integrals defining Ki/o and K ′i/o must be understood as Cauchy principal values

(see, e.g., [11, Equation 2.33]), and the integral defining Wi/o is understood as a non-tangential
limit (see, e.g., [11, Equation 2.36]) or finite-part integral (see, e.g., [22, Theorem 7.4 (iii)]), but we
do not need the details of these definitions in this paper.

Let the Calderón projectors P±i/o be defined by

P±i/o :=
1

2
I ±Mi/o, where Mi/o :=

[
Ki/o −Vi/o
−Wi/o −K ′i/o

]
; (1.9)
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see, e.g., [30, Section 3.6], [11, Page 117]. Basic results about P±i/o (including that they are indeed

projectors) are in §2, but we record here that

P+
i/o + P−i/o = I. (1.10)

Let the boundary integral operators (BIOs) AI and AII be defined by

AI := P−o − P+
i = P−i − P

+
o =

[
−(Ki +Ko) Vi + Vo
Wi +Wo K ′i +K ′o

]
(1.11)

and

AII := P−o + P+
i = 2I − P+

o − P−i = I +

[
Ki −Ko −(Vi − Vo)
−(Wi −Wo) −(K ′i −K ′o)

]
. (1.12)

Lemma 1.6. If u is the solution of the Helmholtz transmission problem of Definition 1.1, then

AI(γ
−
Cu
−) = P−o f and AII(γ

−
Cu
−) = P−o f . (1.13)

In particular, if u solves the Helmholtz transmission scattering problem (1.2), then

AI(γ
−
Cu
−) = γ−Cu

I , and AII(γ
−
Cu
−) = γ−Cu

I . (1.14)

These boundary integral equations (BIEs) are called single-trace formulations (STFs). The first-
kind BIEs in (1.13) and (1.14) appeared in [16], [38], and are also derived in, e.g., [13, Section 3.3].
Their counterparts for electromagnetic scattering are known as the PMCHWT (Poggio–Miller–
Chang–Harrington–Wu–Tsai) formulation [28]. The second-kind BIEs in (1.13) and (1.14) can be
found in, e.g., [14] and are known as the Müller formulation in computational electromagnetics [26].

Lemma 1.7. (i) Both AI and AII are bounded and invertible on H1/2(Γ)×H−1/2(Γ).
(ii) AII is bounded and invertible on H1(Γ)× L2(Γ).

The proofs of Lemmas 1.6 and 1.7 are contained in §2.
The reason for the choice of spaces in Lemma 1.7 is the following. From the point of view of

computation, the natural space in which to consider AI is the trace space H1/2(Γ) × H−1/2(Γ),
and the natural space in which to consider AII is the L2-based space H1(Γ)× L2(Γ) (see, e.g., the
discussion in [14] and the references therein); these choices are both included in Lemma 1.7. It
turns out that all the results for AII on H1(Γ)×L2(Γ) also hold on H1/2(Γ)×H−1/2(Γ), and thus
we include this second choice of space for AII.

1.4 Spurious quasi-resonances for the standard BIOs

Lemma 1.7 shows that the BIEs of (1.13) and (1.14) are well-posed. It is then reasonable to believe
that the solution operators of these BIEs inherit the behaviour (with respect to frequency) of the
solution operator of the transmission problem. The following numerical results, however, show that
this is not the case. 1

Example 1.8. If Γ is a circle for d = 2 or a sphere for d = 3 all boundary integral operators Vi/o,
K ′i/o, Ki,o, and Wi/o can be “diagonalized” by switching to a “modal” L2(Γ)-orthogonal basis of
Fourier harmonics in 2D or spherical harmonics in 3D, respectively. The corresponding eigenvalues
can be found in, e.g., [2] for d = 2 and in, e.g., [37] for d = 3. All relevant norms have a simple sum
representation with respect to these bases. Therefore we can compute the norms of the solution
operators as the maximum of the Euclidean norms of 2 × 2-matrices, one for every mode. We did
this in MATLAB for the modes of order at most 100, which seems to be sufficient, because the
maximal norm was invariably found among the modes of order ≤ 25.

We report the computed norms of the solution operator Sio along with the norms of A−1
I and

A−1
II (i.e., the solution operators for the BIEs (1.14)) on the space H1/2(Γ) × H−1/2(Γ), where

we use the weighted norm ‖ · ‖
H

1/2
k (Γ)×H−1/2

k (Γ)
defined in §4.1. We plot these norms for different

frequencies k and give the results for d = 2 in Figure 1 and for d = 3 in Figure 2.

1The code used to produce the numerical results is available at https://github.com/moiola/

TransmissionBIE-OpNorms
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Figure 1: Γ unit circle: Norms of operators Sio, A
−1
I , and A−1

II on H1/2(Γ)×H−1/2(Γ) for ni = 3,
no = 1 (left) and ni = 1, no = 3 (right)

Figure 2: Γ unit sphere: Norms of operators Sio, A
−1
I , and A−1

II on H1/2(Γ)×H−1/2(Γ) for ni = 3,
no = 1 (left) and ni = 1, no = 3 (right)

When ni > no (plots on the left) we see the typical spikes in the norms as a function of k,
expected because of the results recalled in §1.2. Indeed, the results in §1.2 predict super-algebraic
growth through quasi-resonances only for sufficiently-large kj . However, noting the logarithmic
scale on the y-axis of the plots, we see that the super-algebraic growth occurs through the spikes
even for small- to moderate-sized kj .

Conversely, for ni < no (right plots) the norm of Sio (in yellow) does not have any spikes,
whereas the spikes persist in the norms of A−1

I and A−1
II .

The observations made in Example 1.8 provide evidence of spurious quasi-resonances of AI and
AII when ni < no: for certain frequencies these boundary integral operators are ill-conditioned
though for the same frequencies the solution operator is stable.

On rare occasions such spurious quasi-resonances have been noticed before. Indeed, the paper
[23] computed the complex eigenvalues of AI and AII and pointed out in [23, Section 2.3] the
existence of “fictitious eigenvalues”, i.e., non-physical poles of the resolvent operators. Although [23]
did not give a rigorous explanation for this phenomenon, [23] attempted to remedy it by modifying
the BIEs; these new BIEs, however, still have issues with poles with small imaginary part – see
the discussion in [23, §4]. Non-physical spikes in the condition numbers of discretized BIEs for
Helmholtz transmission problems were also reported in [35, Section 4.4], but no deeper investigation
was attempted.

The observation of the spurious quasi-resonances of Example 1.8 was the starting point for this
paper – we wanted to understand precisely why they affect AI and AII. We also wanted to find
alternative BIEs immune to spurious quasi-resonances. The remainder of this paper reports our
progress towards these goals.

Remark 1.9. For the standard first and second-kind BIEs for the exterior Dirichlet and Neumann
problems for the Helmholtz operator (modelling acoustic scattering by impenetrable objects), the
occurrence of spurious (true) resonances is well-known; see, e.g., [30, Section 3.9.2]: the solutions
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of the BIEs are not unique for an infinite sequence of distinct ks, although the boundary-value
problems have unique solutions for all k. The standard remedies for this are recalled (and linked
to the results of the present paper) in Remark 1.16 below.

1.5 Statement of the main results

1.5.1 The relationship between the BIOs and the solution operators

Theorem 1.10. As an operator on H1/2(Γ)×H−1/2(Γ), A−1
I has the decomposition

A−1
I = Sio + Soi − I (1.15)

and, as an operator on either H1/2(Γ)×H−1/2(Γ) or H1(Γ)× L2(Γ), A−1
II has the decomposition

A−1
II = I − Sio − Soi + 2SioSoi. (1.16)

The proof of Theorem 1.10 is contained in §3 below.
The following result uses (1.15) and results about the behaviour of Sio and Soi in Lemmas 4.5

and 4.6 below to prove that if ni 6= no, then the norm of AI blows up through the quasi-resonances
of the transmission problem (1.6) with ci = max{ni, no} and co = min{ni, no}. This result explains
rigorously the experiments in Figures 1 and 2. The result is stated using the weighted norm
‖·‖

H
1/2
k (Γ)×H−1/2

k (Γ)
defined in §4.1, with the operator norm

‖·‖
H

1/2
k (Γ)×H−1/2

k (Γ)→H1/2
k (Γ)×H−1/2

k (Γ)
abbreviated to ‖·‖

H
1/2
k ×H−1/2

k

. (1.17)

Theorem 1.11. (Superalgebraic blow up of ‖A−1
I ‖ for Ω− smooth and convex.) If Ω− is

C∞ with strictly-positive curvature and ni 6= no, then there exist frequencies 0 < k1 < k2 < . . . with
kj →∞ such that given any N > 0 there exists CN such that∥∥A−1

I

∥∥
H

1/2
kj
×H−1/2

kj

≥ CNkNj for all j.

The proof of Theorem 1.11 is contained in §4 below.
The reason we only prove blow up of AI, and not of AII, is that Theorem 1.10 shows that A−1

II

involves not only Sio and Soi but also the composition of Sio and Soi (whereas AI does not), and
we do not currently know how to show that this extra term does not cancel out the blow up of one
of Sio or Soi.

The next result shows that, on appropriate subspaces, A−1
I and A−1

II involve only the physical
solution operator Sio. In particular, this result demonstrates that, because of the specific form of
the right-hand sides in (1.13), only the physical solution operator Sio is involved in the solution
of the boundary value problem of Definition 1.1, as expected. The results for A−1

II hold on either
H1/2(Γ)×H−1/2(Γ) or H1(Γ)× L2(Γ), but the results for A−1

I hold only on H1/2(Γ)×H−1/2(Γ)
(since we have not proved that A−1

I exists on H1(Γ) × L2(Γ)). We use the notation that R(P ) is
the range of the operator P .

Theorem 1.12. (AI and AII as operators R(P−i )→ R(P−o ).)
(i) A−1

I P−o = A−1
II P

−
o = SioP

−
o .

(ii) Both AI and AII are bounded and invertible from R(P−i )→ R(P−o ) with A−1
I = A−1

II = Sio
as operators from R(P−o )→ R(P−i ).

The proof of Theorem 1.12 is contained in §3 below.

1.5.2 Augmented BIEs

We now propose a simple way to suppress spurious quasi-resonances in the BIEs without resorting
to products of integral operators. We work in the Hilbert space H where H := H1/2(Γ)×H−1/2(Γ)
for the results involving AI, and H equals either H1/2(Γ) × H−1/2(Γ) or H1(Γ) × L2(Γ) for the
results involving AII; the norm ‖ · ‖H is then either ‖ · ‖

H
1/2
k ×H−1/2

k

or ‖ · ‖H1
k×L2 . We equip the

space H×H with the norm
‖ψ‖2H×H := ‖ψ1‖

2
H + ‖ψ2‖

2
H ,

where ψ = (ψ1,ψ2) with ψ1,ψ2 ∈ H.

6



Define the augmented BIOs ÃI and ÃII : H → H×H by

ÃI :=

(
AI

P+
i

)
and ÃII :=

(
AII

P+
i

)
. (1.18)

The idea behind introducing these augmented operator equations is that the solution γ−Cu
− to the

BIEs (1.13) satisfies P+
i γ
−
Cu
− = 0 (we see this below in (2.10) in the proof of Lemma 1.6).

Lemma 1.13. (Solutions of augmented BIEs.) Let Ã∗ be one of ÃI and ÃII. Given g ∈ H, if
the solution φ to the augmented operator equation

Ã∗φ =

(
g
0

)
(1.19)

exists, then g satisfies
g = Soig (1.20)

and φ is given by
φ = Siog. (1.21)

Lemma 1.13 (proved in §5) shows that the solution of the augmented operator equation (1.19), if
it exists, only involves the physical solution operator Sio. Note that if g = P−o f , i.e., the right-hand
side of the first- and second-kind BIEs (1.13), then (1.20) is satisfied; indeed, it follows from Lemma
3.2 below that (Soi − I)P−o = 0.

Example 1.14. As in Example 1.8 we perform a “diagonalization” of the augmented BIOs of
(1.18) to compute the operator norms of their pseudo-inverses in H1/2(Γ)×H−1/2(Γ) numerically
(i.e., we compute the inverse of the smallest singular value of the block-diagonal matrix arising from
truncating the Fourier/spherical-harmonic expansion). These norms as functions of the frequency
k are plotted in Figure 3 for the case n1 = 1, no = 3, in which the physical solution operator Sio
has small norm for all values of k considered (as shown by the right-hand plots of Figures 1 and 2).

Figure 3: Plots of the operator norms of the pseudo-inverses Ã†I , Ã†II of the augmented BIOs

As an agreeable surprise, we see that the norms of the pseudo-inverses of the augmented BIOs
are smaller than those of Sio for the range of frequencies considered – augmentation has successfully
removed any spurious quasi-resonances!

The following theorem rigorously explains the results in Figure 3, and is proved in §5.

Theorem 1.15. (Stability of augmented BIEs.)

inf
φ∈H\{0}

sup
ψ∈H\{0}

∣∣(ÃIφ,ψ
)
H×H

∣∣
‖φ‖H ‖ψ‖H×H

≥ 1√
2 max

{
‖Sio‖H→H , 1

} (1.22)

and

inf
φ∈H\{0}

sup
ψ∈H\{0}

∣∣(ÃIIφ,ψ
)
H×H

∣∣
‖φ‖H ‖ψ‖H×H

≥ 1√
6 + 4

√
2 max

{
‖Sio‖H→H , 1

} . (1.23)
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This theorem reveals that the operator norms of the pseudo-inverses Ã†I and Ã†II are bounded by
C max

{
‖Sio‖H→H , 1

}
for some k-independent constant C > 0. Hence, if the physical solution op-

erator Sio is well-conditioned, then this well-conditioning carries over to the BIOs of the augmented
formulations.

Remark 1.16. (The analogue of Theorem 1.10 for BIOs for scattering by impenetrable
obstacles.) The analogous formulae to those in Theorem 1.10 for second-kind combined-field BIOs
for solving the exterior Dirichlet, Neumann, and impedance problems were given in [11, Theorem
2.33], with formulae for certain BIOs involving operator preconditioning given in [5, Lemma 6.1].
(We note that [5, Lemma 6.1] introduced the idea of obtaining these formulae via Calderón pro-
jectors, and we prove Theorem 1.10 using this idea in §3.)

For example, the standard direct second-kind combined-field BIO for solving the exterior Di-
richlet problem involves the operator A′η := 1

2I +K ′ − iηS, for η ∈ R \ {0}, and [11, Theorem 2.33]
and [5, Lemma 6.1] (see also [18, §3]) prove that(

A′η
)−1

= I −
(
DtN+ − iη

)
ItD−,η, (1.24)

where DtN+ is the exterior Dirichlet-to-Neumann map for solutions of the Helmholtz equation sat-
isfying the Sommerfeld radiation condition (1.1), and ItD−,η is the interior Impedance-to-Dirichlet
map (where the impedance boundary condition is γ−Nu − iηγ−Du = g). Recalling that A′η is also
the standard indirect second-kind BIO for solving the interior impedance problem, we see that
(1.24) expresses (A′η)−1 in terms of the solution operators for the appropriate exterior and interior
problems solved using A′η.

The standard indirect second-kind combined-field BIO for solving the exterior Dirichlet problem
involves the operator Aη := 1

2I + K − iηS; this operator is also the standard direct second-kind
BIO for solving the interior impedance problem, and, correspondingly,(

Aη
)−1

= I − ItD−,η
(
DtN+ − iη

)
.

Remark 1.17. (Indirect BIEs) In this paper, we have considered only direct BIEs for the
Helmholtz transmission problem, i.e., BIEs where the unknown is the Cauchy data of the solution.
It is reasonable to expect that similar results hold for indirect BIEs for the transmission problem,
just as similar decompositions into solution operators hold for the inverses of the direct BIOs for
scattering by impenetrable obstacles (see the previous remark and [11, Theorem 2.33]), but we have
not investigated this.

Remark 1.18. (Spurious quasi-resonances for electromagnetic BIEs) We expect that the
phenomenon of spurious quasi-resonances also occurs for the BIEs for time-harmonic electromag-
netic scattering; we have not pursued this in this paper however.

2 Recap of results about layer potentials, BIOs, and Calderón
projectors

The single-layer and double-layer potentials, Vi/o and Ki/o respectively, are defined for ϕ ∈ L1(Γ)
by

Vi/oϕ(x) =

∫
Γ

Φi/o(x,y)ϕ(y)ds(y) for all x ∈ Rd \ Γ, and (2.1)

Ki/oϕ(x) =

∫
Γ

∂Φi/o(x,y)

∂n(y)
ϕ(y)ds(y) for all x ∈ Rd \ Γ; (2.2)

these definitions for ϕ ∈ L1(Γ) naturally extend to ϕ ∈ H−s(Γ) for s ∈ [0, 1] by continuity (see,
e.g., [11, Page 109]).

Lemma 2.1. (i) If φ ∈ Hs−1/2(Γ) with |s| ≤ 1/2, then Vi/oφ ∈ Hs+1
loc (Rd) ∩ C2(Rd \ Γ) ∩

SRC(k
√
ni/o).

(ii) If ψ ∈ Hs+1/2(Γ) with |s| ≤ 1/2, then Ki/oψ ∈ Hs+1
loc (Rd \ Γ) ∩ C2(Rd \ Γ) ∩ SRC(k

√
ni/o).

References for the proof. See, e.g., [11, Theorem 2.15]; we note that the mapping properties for
|s| = 1/2 crucially use the harmonic analysis results of [15], [36].
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The potentials (2.1) and (2.2) are related to the integral operators in (1.7) and (1.8) via the
jump relations

γ±DVi/o = Vi/o, γ±NVi/o = ∓1

2
I +K ′i/o, γ±DKi/o = ±1

2
I +Ki/o, γ±NKi/o = −Wi/o; (2.3)

see, e.g., [22, §7, Page 219]. Recall the mapping properties, valid when Γ is Lipschitz, k ∈ C, and
|s| ≤ 1/2,

Vi/o : Hs−1/2(Γ)→ Hs+1/2(Γ), Wi/o : Hs+1/2(Γ)→ Hs−1/2(Γ), (2.4a)

Ki/o : Hs+1/2(Γ)→ Hs+1/2(Γ), K ′i/o : Hs−1/2(Γ)→ Hs−1/2(Γ); (2.4b)

see, e.g., [11, Theorems 2.17 and 2.18] (similar to the results of Lemma 2.1, the mapping properties
for |s| = 1/2 crucially use the harmonic analysis results of [15], [36]). The mapping properties (2.4)
imply that P±i/o is a bounded operator from H1/2(Γ)×H−1/2(Γ) to itself and from H1(Γ)× L2(Γ)

to itself.
We use the following notation for spaces of Helmholtz solutions:

H−(κ) :=
{
v ∈ H1(Ω−) ∩ C2(Ω−), (∆ + κ2)v = 0

}
,

H+(κ) :=
{
v ∈ H1

loc(Ω+) ∩ C2(Ω+) ∩ SRC(κ), (∆ + κ2)v = 0
}
.

Lemma 2.2. R(P±i/o) = γ±CH
±(k
√
ni/o).

Proof. By the jump relations (2.3) and the definitions of P±i/o (1.9), with φ = (φ1, φ2),

P±i/oφ = ±γ±C
(
Ki/oφ1 − Vi/oφ2

)
; (2.5)

see, e.g., [11, Equation 2.49]. Both when φ ∈ H1(Γ) × L2(Γ) and when φ ∈ H1/2(Γ) ×H−1/2(Γ),
the right-hand side is then the trace of an element of H±(k

√
ni/o) by Lemma 2.1, so that R(P±i/o) ⊂

γ±CH
±(k
√
ni/o). To prove the reverse inclusion, given u± ∈ H±(k

√
ni/o), u

± = ±(Ki/oγ±Du −
Vi/oγ±Nu) by Green’s integral representation (see, e.g., [11, Theorems 2.20 and 2.21]); (2.5) with

φ1 = γ±Du and φ2 = γ±Nu then implies that H±(k
√
ni/o) ⊂ R(P±i/o).

The following two lemmas are proved in, e.g., [11, Page 118 and Lemma 2.22], respectively.2

Lemma 2.3. (P+
i/o)

2 = P+
i/o and (P−i/o)

2 = P−i/o as operators either on H1/2(Γ)×H−1/2(Γ) or on

H1(Γ)× L2(Γ).

Lemma 2.4. (i) If v ∈ H−(k
√
ni/o) then

P−i/oγ
−
Cv = γ−Cv. (2.6)

(ii) If v ∈ H+(k
√
ni/o) then

P+
i/oγ

+
Cv = γ+

Cv. (2.7)

The next lemma is a converse to Lemma 2.4.

Lemma 2.5. Let φ ∈ H1/2(Γ)×H−1/2(Γ) or H1(Γ)× L2(Γ).
(i) If P−i/oφ = φ, then φ = γ−Cv for some v ∈ H−(k

√
ni/o).

(ii) If P+
i/oφ = φ, then φ = γ+

Cv for some v ∈ H+(k
√
ni/o).

Proof. (i) Given φ such that P−i/oφ = φ, let

v(x) = −
(
Ki/oφ1 − Vi/oφ2

)
(x) for x ∈ Ω−. (2.8)

By Lemma 2.1, v ∈ H−(k
√
ni/o). We therefore only need to check that φ = γ−Cv. However, by

(2.5) and the definition of v (2.8), φ = P−i/oφ = γ−Cv.

(ii) Given φ such that P+
i/oφ = φ, let

v(x) =
(
Ki/oφ1 − Vi/oφ2

)
(x) for x ∈ Ω+. (2.9)

Similar to in (i), v ∈ H+(k
√
ni/o), and, by (2.5) and the definition of v (2.9), φ = P+

i/oφ = γ+
Cv.

2Strictly speaking, [11, §2.5] only considers P±
i/o

as operators on H1/2(Γ)×H−1/2(Γ), but the proofs of the results

on H1(Γ) × L2(Γ) are the same.
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Proof of Lemma 1.6. By (1.4) and (2.6), P−i γ
−
Cu
− = γ−Cu

−, so that, by (1.10),

P+
i γ
−
Cu
− = 0. (2.10)

Similarly, by (1.4), (2.7), and (1.10),
P−o γ

+
Cu

+ = 0. (2.11)

Applying P−o to the transmission condition γ−Cu
− = γ+

Cu
+ + f in (1.4) and using (2.11), we find

that
P−o (γ−Cu

−) = P−o f . (2.12)

Subtracting (2.10) from (2.12), we obtain the first-kind BIE in (1.13). Adding (2.10) to (2.12),
we obtain the second-kind BIE in (1.13).

To obtain (1.14), observe that, for the Helmholtz transmission scattering problem (1.2), f =
γ−Cu

I with uI satisfying (1.3). Then P−o γ
−
Cu

I = γ−Cu
I by (2.6), and thus the right-hand sides of

(1.13) are just γ−Cu
I .

Lemma 2.6. Let A∗ equal either AI or AII. Then A∗ is an injective, bounded operator on either
H1/2(Γ)×H−1/2(Γ) or H1(Γ)× L2(Γ).

Proof. The boundedness of A∗ follows from the expressions (1.11)/(1.12) and the boundedness of
P±i/o. Injectivity follows by repeating the arguments in the proof of Theorem 1.10 below with g = 0

(these arguments use uniqueness of the Helmholtz transmission problem of Definition 1.1).

Proof of Lemma 1.7. The result for AI follows from Lemma 2.6 combined with the coercivity result
in H1/2(Γ) × H−1/2(Γ) of, e.g., [13, Theorem 7.27] (see [13, Corollary 7.28]); we do not know
of an analogous coercivity result in H1(Γ) × L2(Γ), hence why our results for AI are only in
H1/2(Γ)×H−1/2(Γ).

The results for AII follows from Lemma 2.6 combined with the fact that AII − I is compact on
both H1/2(Γ)×H−1/2(Γ) and H1(Γ)× L2(Γ). This latter result follows if we can show that

• Ki −Ko is compact H1/2(Γ)→ H1/2(Γ) and H1(Γ)→ H1(Γ),

• Vi − Vo is compact H−1/2(Γ)→ H1/2(Γ) and L2(Γ)→ H1(Γ),

• Wi −Wo is compact H1/2(Γ)→ H−1/2(Γ) and H1(Γ)→ L2(Γ), and

• K ′i −K ′o is compact H−1/2(Γ)→ H−1/2(Γ) and L2(Γ)→ L2(Γ).

Since Φi−Φo = (Φi−Φ0)−(Φo−Φ0), where Φ0 is the Laplace fundamental solution, these mapping
properties follow from the bounds on the difference of the Helmholtz and Laplace fundamental
solutions in [11, Equation 2.25] and the fact that the inclusion Hs(Γ) → Ht(Γ) is compact for
−1 ≤ t ≤ s ≤ 1.

3 Proof of Theorems 1.10 and 1.12

Lemma 3.1. Given φ, f in either H1/2(Γ)×H−1/2(Γ) or H1(Γ)× L2(Γ),

φ = Siof if and only if

{
P−i φ = φ, and
P−o (φ− f) = 0.

(3.1)

Similarly,

φ = Soif if and only if

{
P−o φ = φ, and
P−i (φ− f) = 0.

(3.2)

Proof. We prove (3.1); the proof of (3.2) is the same with i and o swapped.
We first prove the forward implication in (3.1). Given f , let u be as in the definition of Sio

(Definition 1.4), i.e., u satisfies (1.6) with ci = ni and co = no. By definition φ = γ−Cu, so
P−i φ = φ by (2.6). The jump condition in (1.6) implies that φ− f = γ+

Cu, and (2.7) then implies
that P+

o (φ− f) = φ− f .
For the reverse implication in (3.1), given φ satisfying the right-hand side of (3.1), Part (i) of

Lemma 2.5 implies that φ = γ−Cw
− for some w− ∈ H−(k

√
ni). Similarly, Part (ii) of Lemma 2.5

implies that φ − f = γ+
Cw

+ for some w+ ∈ H+(k
√
no). Let w := w+ in Ω+ and w := w− in Ω−.

Then γ−Cw
− − γ+

Cw
+ = φ− (φ− f) = f . Since the solution of the transmission problem is unique,

w equals the function u in the definition of Sio (i.e., Definition 1.4 with ci = ni and co = no), and
φ = γ−Cw

− = γ−Cu
− = Siof .
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We now prove Theorem 1.10.

Proof of the result (1.15) in Theorem 1.10. Assume that ψ,g ∈ H1/2(Γ) × H−1/2(Γ) or H1(Γ) ×
L2(Γ) with AIψ = g, i.e.,

(P−i − P
+
o )ψ = g. (3.3)

Step 1: apply P−i to (3.3).
Applying P−i to (3.3) and using the fact that P−i is a projection (by Lemma 2.3), we have

P−i
(
ψ − P+

o ψ − g
)

= 0,

that is, by (1.10),
P−i
(
P−o ψ − g

)
= 0, (3.4)

Let φ := P−o ψ and let f := g. Then by Lemma 3.1 and the fact that P−o is a projection, φ = Soig,
i.e.

P−o ψ = Soig. (3.5)

Step 2: apply P−o to (3.3).
Applying P−o to (3.3) and using the fact that P−o is a projection (so that, in particular, P−o P

+
o = 0),

we have
P−o
(
P−i ψ − g

)
= 0. (3.6)

Let φ := P−i ψ and let f := g. Then by Lemma 3.1 and the fact that P−i is a projection, φ = Siog,
i.e.

P−i ψ = Siog. (3.7)

Step 3: use (1.10) and (3.3) and the results of Steps 1 and 2.
By (1.10), (3.5), (3.3), and (3.7) (in that order),

ψ = (P−o + P+
o )ψ = Soig + P−i ψ − g = (Soi + Sio − I)g, (3.8)

which is the result (1.15).

Proof of the result (1.16) in Theorem 1.10. Assume that ψ,g ∈ H1/2(Γ) × H−1/2(Γ) or H1(Γ) ×
L2(Γ) with AIIψ = g, i.e.,

(P−o + P+
i )ψ = g. (3.9)

Step 1: apply P−i to (3.9).
Applying P−i to (3.9) and using the fact that P−i is a projection (by Lemma 2.3), we see that (3.4)
holds. Let φ := P−o ψ and let f := g. Then by Lemma 3.1 and the fact that P−o is a projection,
φ = Soig, i.e., (3.5) holds.

Step 2: apply P−o to (3.9).
Applying P−o to (3.9) and using the fact that P−o is a projection, we see that

P−o
(
ψ + P+

i ψ − g
)

= 0.

Let φ̃ := P−i ψ, so that

P−o
(
φ̃+ 2P+

i ψ − g
)

= 0.

Let f̃ := −2P+
i ψ + g. Then by Lemma 3.1 and the fact that P−i is a projection, φ̃ = Siof̃ , i.e.,

P−i ψ = Sio
(
− 2P+

i ψ + g
)
.

Using (3.9) and then (3.5), which holds by Step 1, we have

P−i ψ = Sio
(
2P−o ψ − g

)
= Sio

(
2Soig − g

)
. (3.10)

Step 3: use (1.10), (3.9), and the results of Steps 1 and 2.
By (1.10) and (3.5),

ψ = (P−o + P+
o )ψ = Soig + P+

o ψ. (3.11)

Using (1.10) in (3.9) and rearranging, we have

P+
o ψ = −P−i ψ + 2ψ − g,
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and using this in (3.11) we find that

ψ =
(
I − Soi

)
g + P−i ψ;

the result (1.16) then follows from using (3.10).

To prove Theorem 1.12, we need the following consequences of the definitions of Sio and Soi.

Lemma 3.2. SioP
+
o = 0 and SioP

−
i = P−i as operators on either H1/2(Γ)×H−1/2(Γ) or H1(Γ)×

L2(Γ). Similarly, SoiP
+
i = 0 and SoiP

−
o = P−o .

Proof. We prove the relationships involving Sio; the proofs of those involving Soi are completely
analogous. Given f ∈ H1/2(Γ) ×H−1/2(Γ) or H1(Γ) × L2(Γ), by Definition 1.4, SioP

+
o f = γ−Cv

−

where
v+ ∈ H+(k

√
no), v− ∈ H−(k

√
ni), and γ−Cv

− = γ+
Cv

+ + P+
o f . (3.12)

By Lemma 2.2 and (2.5), there exists w+ ∈ H+(k
√
no) such that γ+

Cw
+ = P+

o f . Thus v− := 0
and v+ := −w+ is a solution of (3.12), and by uniqueness of the Helmholtz transmission problem
(Lemma 1.2) it is the only solution. Therefore SioP

+
o f = γ−Cv

− = 0.
The proof that SioP

−
i = P−i is similar. Indeed, again using uniqueness of the Helmholtz

transmission problem, we have SioP
−
i f = γ−Cw

− with w− ∈ H−(k
√
ni) and γ−Cw

− = P−i f .

Proof of Theorem 1.12. Part (i): By (1.15), A−1
I P−o = (Sio + Soi − I)P−o . Lemma 3.2 shows that

(Soi − I)P−o = 0, and thus A−1
I P−o = SioP

−
o . The equation A−1

II P
−
o = SioP

−
o follows similarly.

Part (ii): By the second equality in (1.11), Lemma 2.3, and (1.10),

AIP
−
i = (P−i − P

+
o )P−i = (I − P+

o )P−i = P−o P
−
i ,

so that AI : R(P−i )→ R(P−o ). Similarly, by (1.12),

AIIP
−
i = (P−o + P+

i )P−i = P−o P
−
i ,

so that AII : R(P−i ) → R(P−o ). By Definition 1.4, Sio maps into the space of Cauchy data of
H−(k

√
ni); by (2.6) and Lemma 2.2, this space is R(P−i ). Therefore, by Part (i), both A−1

I and
A−1

II map R(P−o )→ R(P−i ) and both equal Sio as operators between these spaces.

4 Proof of Theorem 1.11

Throughout this section we use the notation that a . b if there exists C > 0, independent of k,
such that a ≤ Cb. We write a ∼ b if both a . b and b . a.

4.1 Definitions of k-weighted norms and associated results

For φ ∈ H1(Γ)× L2(Γ) with φ = (φ1, φ2), let ∇Tφ1 be the tangential gradient of φ1 on Γ and

‖φ1‖2H1
k(Γ) := ‖∇Tφ1‖2L2(Γ) + k2 ‖φ1‖2L2(Γ) , ‖φ‖2H1

k(Γ)×L2(Γ) := ‖φ1‖2H1
k(Γ) + ‖φ2‖2L2(Γ) .

Define H
1/2
k (Γ) by interpolation between H1

k(Γ) and L2(Γ) and then H
−1/2
k (Γ) by duality. As in

§1, we use the abbreviation (1.17).
For a bounded Lipschitz open set D ⊂ Rd, let

‖v‖2H1
k(D) := ‖∇v‖2L2(D) + k2 ‖v‖2L2(D) .

Fix k0 > 0. Then, with H
1/2
k (∂D) defined above, by, e.g., [27, Theorem 5.6.4],

‖γDv‖H1/2
k (∂D)

. ‖v‖H1
k(D) for all v ∈ H1(D) and k ≥ k0, (4.1)

and there exists E : H1/2(∂D)→ H1(D) such that

γDEφ = φ and ‖Eφ‖H1
k(D) . ‖φ‖H1/2

k (∂D)
. (4.2)

Lemma 4.1. If v ∈ H1(D,∆) with (∆ + k2c)v = 0 and k ≥ k0, then

‖γNv‖H−1/2
k (∂D)

. ‖v‖H1
k(D) (4.3)

(where the omitted constant depends on c and k0).

Sketch proof of Lemma 4.1. This follows by repeating the argument in, e.g., [22, Lemma 4.3] (which
starts from the definition of the Neumann trace via Green’s identity) and then using weighted norms
and, in particular, the bound (4.2).
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4.2 From resolvent estimates to bounds on Sio and Soi

Lemma 4.2. Given co, ci, R positive real numbers and g ∈ H1/2(Γ)×H−1/2(Γ), let v ∈ H1
loc(Rd \

Γ) ∩ SRC(k
√
co) satisfy

(∆ + k2ci)v
− = 0 in Ω−,

(∆ + k2co)v
+ = 0 in Ω+,

γ−Cv
− = γ+

Cv
+ + g on Γ.

Assume that, for all f ∈ L2(Rd) with supp f ⊂ BR and w ∈ H1
loc(Rd \ Γ) ∩ SRC(k

√
co) that satisfy

(∆ + k2ci)w
− = f− in Ω−,

(∆ + k2co)w
+ = f+ in Ω+,

γ−Cw
− = γ+

Cw
+ on Γ,

the following bound holds:

‖w‖H1
k(BR) ≤ Csol(k,R, ci, co) ‖f‖L2(BR) . (4.4)

Then, given k0 > 0,

‖v‖H1
k(BR) . k

(
1 + Csol(k,R, ci, co)

)
‖g‖

H
1/2
k (Γ)×H−1/2

k (Γ)
for all k ≥ k0. (4.5)

Corollary 4.3. Under the assumptions of Lemma 4.2,

‖S(ci, co)‖H1/2
k ×H−1/2

k

. k
(
1 + Csol(k,R, ci, co)

)
.

Proof of Corollary 4.3 from Lemma 4.2. This follows from combining the result of Lemma 4.2 and
the trace results (4.1) and (4.3).

Proof of Lemma 4.2. Let u ∈ H1(Rd \ Γ) ∩ SRC(k
√
co) be the solution to

(∆ + (k2 + ik)ci)u
− = 0 in Ω−,

(∆ + (k2 + ik)co)u
+ = 0 in Ω+ ∩BR′ ,

γ−Cu
− = γ+

Cu
+ + g on Γ

(4.6)

(this choice of auxiliary problem is motivated by the proof of [5, Theorem 3.5] using [5, Lemma
3.3]). We prove below that

‖u‖H1
k(Ω+) . k ‖g‖

H
1/2
k (Γ)×H−1/2

k (Γ)
. (4.7)

Given R > 0 such that Ω− b BR, choose χ ∈ C∞comp(Rd) with suppχ ⊂ BR and χ ≡ 1 on Ω−. Let

w = v − χu; then w ∈ H1
loc(Rd \ Γ) ∩ SRC(k

√
co) satisfies

(∆ + k2ci)w
− = ikciu

− in Ω−,

(∆ + k2co)w
+ = ikcoχu

+ − 2∇u+ · ∇χ− u+∆χ in Ω+,

γ−Cw
− = γ+

Cw
+ on Γ.

Using the fact that w = v−χu, the fact that suppχ ⊂ BR (by construction), and the bound (4.4),
we have that, given k0 > 0,

‖v‖H1
k(BR) . ‖w‖H1

k(BR) + ‖u‖H1
k(BR) . Csol(k,R, ci, co) ‖u‖H1

k(BR) + ‖u‖H1
k(BR)

for all k ≥ k0; the result (4.5) then follows from the bound (4.7).
It therefore remains to prove (4.7). First observe that, thanks to the ik term in the PDE in

(4.6), u+ decays exponentially at infinity, and thus u+ ∈ H1(Ω+). Next, apply Green’s identity to
u− in Ω− and u+ in Ω+ to obtain that∥∥∇u−∥∥2

L2(Ω−)
− (k2 + ik)ci

∥∥u−∥∥2

L2(Ω−)
= 〈γ−Nu

−, γ−Du
−〉Γ, (4.8)
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∥∥∇u+
∥∥2

L2(Ω+)
− (k2 + ik)co

∥∥u+
∥∥2

L2(Ω+)
= −〈γ+

Nu
+, γ+

Du
+〉Γ. (4.9)

The jump condition in (4.6) implies that, with g = (gD, gN ),

〈γ−Nu
−, γ−Du

−〉Γ − 〈γ+
Nu

+, γ+
Du

+〉Γ = 〈gN , γ−Du
−〉Γ + 〈γ+

Nu, gD〉Γ. (4.10)

Therefore, adding (4.8) and (4.9), taking the imaginary part, and then using the Cauchy-Schwarz
inequality on terms arising from (4.10), we obtain

min{ci, co}k ‖u‖2L2(Ω+) ≤ ‖gN‖H−1/2
k (Γ)

∥∥γ−Du−∥∥H1/2
k (Γ)

+
∥∥γ+

Nu
+
∥∥
H
−1/2
k (Γ)

‖gD‖H1/2
k (Γ)

. (4.11)

Adding (4.8) and (4.9), taking the real part, adding a sufficiently-large multiple of k times (4.11),
and then using the Cauchy-Schwarz inequality on terms arising from (4.10), we have

‖u‖2H1
k(Ω+) . k

(
‖gN‖H−1/2

k (Γ)

∥∥γ−Du−∥∥H1/2
k (Γ)

+
∥∥γ+

Nu
+
∥∥
H
−1/2
k (Γ)

‖gD‖H1/2
k (Γ)

)
. (4.12)

The bound (4.7) then follows from using the inequality

2ab ≤ εa2 + ε−1b2, a, b, ε > 0, (4.13)

and the trace bounds (4.1) and (4.3) in the right-hand side of (4.12).

4.3 k-explicit bounds on Sio and Soi

We recall the notions of star-shaped and star-shaped with respect to a ball.

Definition 4.4. (i) Ω− is star-shaped with respect to the point x0 if, whenever x ∈ Ω−, the
segment [x0,x] ⊂ Ω−.
(ii) Ω− is star-shaped with respect to the ball Ba(x0) if it is star-shaped with respect to every point
in Ba(x0).

Lemma 4.5. (“Good” behaviour of Sio when ni < no.) If Ω− is star-shaped with respect to a
ball and ni < no, then, given k0 > 0,

‖Sio‖H1/2
k ×H−1/2

k

. k for all k ≥ k0.

Proof. [24, Theorem 3.2] proves that (4.4) holds with Csol(k) ∼ 1, and the result then follows from
Corollary 4.3.

Lemma 4.6. (“Bad” behaviour of Sio when ni > no.) If Ω− is C∞ with strictly-positive
curvature and ni > no, then there exist 0 < k1 < k2 < . . . with kj →∞ such that given any N > 0
there exists CN > 0 such that

‖Sio‖H1/2
k ×H−1/2

k

≥ CNkNj for all j.

In the proof of Lemma 4.6, we use the notation that a = O(k−∞) as k → ∞ if, given N > 0,
there exists CN , k0 such that |a| ≤ CNk−N for all k ≥ k0, i.e. a decreases superalgebraically in k.

The ideas behind Lemma 4.6 are that (i) if there exist quasimodes with O(k−∞) remainder
(in the sense of (4.15) below), then the norm of Sio has O(k∞) blow up (immediately from the
definitions of quasimodes and Sio), and (ii) if Ω− is C∞ with strictly positive curvature and ni > no
then quasimodes with O(k−∞) remainder exist by [29]. To prove Lemma 4.6, we need the following
bounds on the Newtonian potential, i.e., integration against the fundamental solution. Let

Ni/of(x) :=

∫
Rd

Φi/o(x, y)f(y) dy.

Lemma 4.7. Given f ∈ L2(Rd) with supp f ⊂ BR and k0 > 0,

1

k

∑
|α|=2

∥∥∂α(Ni/of)
∥∥
L2(BR)

+
∥∥Ni/of∥∥H1

k(BR)
. ‖f‖L2(BR)

for all k ≥ k0, where the omitted constant depends on ni/o and R.
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References for the proof of Lemma 4.7. See, e.g., [17, Theorem 3.1] for d = 3 and [19, Theorem
14.3.7] for arbitrary dimension (note that [19, Theorem 14.3.7] is for fixed k, but a rescaling of the
independent variable yields the result for arbitrary k).

Proof of Lemma 4.6. We are going to show that there exist gj ∈ H1/2(Γ)×H−1/2(Γ), j = 1, 2, . . .,
such that the solutions vj to (1.6) (with ci = ni and co = no and f = gj) are such that given N > 0
there exists CN > 0 such that∥∥γ−Cv−j ∥∥H1/2

k (Γ)×H−1/2
k (Γ)

≥ CNkNj ‖gj‖H1/2
k (Γ)×H−1/2

k (Γ)
for all j;

i.e., that
‖gj‖H1/2

k (Γ)×H−1/2
k (Γ)∥∥γ−Cv−j ∥∥H1/2

k (Γ)×H−1/2
k (Γ)

= O(k−∞j ) as j →∞. (4.14)

By [29], there exist kj ∈ C, with |kj | → ∞, 0 > =kj = O(k−∞j ), w±j ∈ C∞(Ω±) with the

support of w±j contained in a fixed compact neighbourhood of Γ, and such that ‖γ−Dw
−
j ‖L2(Γ) = 1,∥∥(∆ + k2

jni/o)w
±
j

∥∥
L2(Ω±)

= O(k−∞j ),
∥∥γ−Cw−j − γ+

Cw
+
j

∥∥
H2(Γ)×H2(Γ)

= O(k−∞j ), (4.15)

as j →∞. We now claim that we can

1. change the normalisation from ‖γ−Dw
−
j ‖L2(Γ) = 1 to ‖γ−Dw

−
j ‖H1/2

|kj |
(Γ)

= |kj |1/2 (or indeed any

finite power of |kj |), and

2. assume, without loss of generality, that kj ∈ R for all j.

Indeed, [24, Corollary 6.1] shows that the results of [29] imply existence of a quasimode normalised by
‖γ−Dw

−
j ‖H1

|kj |
(Γ) = |kj |, and then [24, Corollary 6.2] shows that this implies existence of a quasimode

with kj ∈ R for all j, normalised by ‖γ−Dw
−
j ‖H1

kj
(Γ) = kj . To obtain the claim involving Points 1

and 2 above, we need to justify that we can replace the normalisation ‖γ−Dw
−
j ‖H1

|kj |
(Γ) = |kj | by

‖γ−Dw
−
j ‖H1/2

|kj |
(Γ)

= |kj |1/2. This follows by repeating the arguments in [24, Corollaries 6.1 and 6.2]

with

• the bound on the Dirichlet-to-Neumann map from H1
k(Γ) → L2(Γ) from [25, Lemma 5]

replaced by the analogous bound from H
1/2
k (Γ) → H

−1/2
k (Γ) obtained by interpolation (see,

e.g., [12, Lemma 4.2]), and

• the bounds on the L2(Γ)→ L2
comp(Rd) norms of Vi/o and Ki/o from [31, Lemma 4.3] replaced

by analogous bounds on the H
−1/2
k (Γ) → L2

comp(Rd) and H
1/2
k (Γ) → L2

comp(Rd) norms,
respectively; these bounds are proved using the bounds in Lemma 4.7, the trace result (4.1),
and similar arguments to those in the proof of Lemma 4.1.

Note that, in both these points, the precise algebraic powers of kj don’t matter, since they are
dominated by the O(k−∞j ) coming from the quasimode.

With the changes to the quasimode w±j in Points 1 and 2 above, we now let

v−j := w−j +Ni
(
(∆ + k2

jni)w
−
j

)
and v+

j := w+
j +No

(
(∆ + k2

jno)w
+
j

)
(4.16)

(where the arguments of Ni and No are extended by zero outside their supports), and observe that,
since w+

j has compact support, v+
j ∈ SRC(kj

√
no). Let

gj := γ−Cv
−
j − γ

+
Cv

+
j ;

then v satisfies (1.6) with ci = ni and co = no and f = gj .
We now show that (4.14) holds. On the one hand, by the definition of gj , the second equation

in (4.15), Lemma 4.7, and the first equation in (4.15).

‖gj‖H1/2
kj

(Γ)×H−1/2
kj

(Γ)
≤
∥∥γ−Cw−j − γ+

Cw
+
j

∥∥
H

1/2
kj

(Γ)×H−1/2
kj

(Γ)
+
∥∥γ−CNi((∆ + k2

jni)w
−
j

)∥∥
H

1/2
kj

(Γ)×H−1/2
kj

(Γ)

+
∥∥γ+

CNo
(
(∆ + k2

jno)w
+
j

)∥∥
H

1/2
kj

(Γ)×H−1/2
kj

(Γ)
,
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= O(k−∞j ) as j →∞. (4.17)

On the other hand, using (4.16), the normalisation ‖γ−Dw
−
j ‖H1/2

kj
(Γ)

= k
1/2
j , Lemma 4.7, and (4.15)

(in that order), we have∥∥γ−Cv−j ∥∥H1/2
kj

(Γ)×H−1/2
kj

(Γ)
≥
∥∥γ−Dv−j ∥∥H1/2

kj
(Γ)
≥
∥∥γ−Dw−j ∥∥H1/2

kj
(Γ)
−
∥∥γ−DNi((∆ + k2

jni)w
−
j

)∥∥
H

1/2
kj

(Γ)
,

= k
1/2
j +O(k−∞j ) as j →∞. (4.18)

The bound (4.14) (and hence the result) follows by combining (4.17) and (4.18).

Proof of Theorem 1.11. This follows by combining Theorem 1.10, Lemma 4.5, and Lemma 4.6.
Indeed, if ni < no, then Sio has “good” behaviour via Lemma 4.5, but Soi has “bad” behaviour
via Lemma 4.6. If ni > no, then Sio has “bad” behaviour via Lemma 4.6, and Soi has “good”
behaviour via Lemma 4.5.

We also record the following upper bound on
∥∥A−1

I

∥∥
H

1/2
k ×H−1/2

k

, valid for all Lipschitz Ω−.

Theorem 4.8. (Inverse is algebraically bounded in frequency for almost all frequencies.)
Given positive real numbers ni, no, k0, δ, and ε, there exists a set J ⊂ [k0,∞) with |J | ≤ δ and
C = C(δ, ε, k0) such that∥∥A−1

I

∥∥
H

1/2
k ×H−1/2

k

≤ Ck2+5d/2+ε for all k ∈ [k0,∞) \ J.

This result shows that, at high frequency, the blow-up associated with spurious quasi-resonances
is extremely localised in frequency, thus giving a possible reason why spurious quasi-resonances seem
to have rarely been noticed in literature.

Proof of Theorem 4.8. This follows from Theorem 1.10, Corollary 4.3, and the results of [20]. In-
deed, [20, Theorem 1.1] implies that, for arbitrary positive real numbers ni, no, the assumptions
of Lemma 4.2 (and hence also Corollary 4.3) are satisfied with Csol(k) ∼ k5d/2+1+ε. To see this,
we note that [20, Theorem 1.1] holds for problems fitting in the “black-box scattering” framework,
and the transmission problem fits in this framework by [20, Lemma 2.3 and Remark 2.4]. Further-
more, [20, Theorem 1.1] is an L2 → L2 bound, but this implies a bound of the form (4.4) with
Csol(k) ∼ k5d/2+1+ε thanks to Green’s identity – see the comments around [20, Equation 1.3].

5 Proofs of Lemma 1.13 and Theorem 1.15 (the results about
the augmented BIEs)

Proof of Lemma 1.13. We first prove the result when Ã∗ = ÃI. By the first equation in (1.19)
φ = A−1

I g. Then, by the second equation in (1.19) and the expression for A−1
I (1.15),

0 = P+
i φ = P+

i A
−1
I g = P+

i (Sio + Soi − I)g.

By (3.1) P+
i Sio = 0, and then

P+
i (Soi − I)g = 0. (5.1)

Now, by (3.2), P−i (Soi − I)g = 0, and thus the constraint (1.20) follows by (1.10). Then, by the
first equation in (1.19) and (1.15), φ = A−1

I g = (Sio + Soi − I)g, and the result (1.21) follows by
(1.20).

We now prove the result when Ã∗ = ÃII. Similar to before, by (1.19) and the expression for
A−1

II (1.16),

0 = P+
i φ = P+

i A
−1
II g = P+

i (I − Sio − Soi + 2SioSoi)g = P+
i (I − Soi)g,

since P+
i Sio = 0 by (3.1); we therefore obtain (5.1), and the constraint (1.20) follows exactly as

before. The result (1.21) then follows from using the constraint (1.20) in the expression for A−1
II

(1.16).
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Proof of Theorem 1.15. We first prove (1.22). Let ψ = (ψ1,ψ2) for ψ1,ψ2 ∈ H. Then(
ÃIφ,ψ

)
H×H =

(
AIφ,ψ1

)
H +

(
P+
i φ,ψ2

)
H.

Given φ, let ψ2 := P+
i φ. Since φ = P+

i φ+ P−i φ,(
ÃIφ,ψ

)
H×H =

(
AIP

+
i φ,ψ1

)
H +

(
AIP

−
i φ,ψ1

)
H +

∥∥P+
i φ
∥∥2

H .

Motivated by Theorem 1.12, let ψ1 := S∗ioP
−
i φ. By Theorem 1.12, SioAI = I as an operator

R(P−i )→ R(P−i ), and thus(
ÃIφ,ψ

)
H×H =

(
AIP

+
i φ, S

∗
ioP
−
i φ
)
H +

(
SioAIP

−
i φ, P

−
i φ
)
H +

∥∥P+
i φ
∥∥2

H

=
(
AIP

+
i φ, S

∗
ioP
−
i φ
)
H +

∥∥P−i φ∥∥2

H +
∥∥P+

i φ
∥∥2

H .

Now, by the second equality in (1.11), Lemma 2.3, and (1.10),(
AIP

+
i φ, S

∗
ioP
−
i φ
)
H =

(
Sio(P

−
i − P

+
o )P+

i φ, P
−
i φ
)
H,

which equals zero since P−i P
+
i = 0 by (1.10) and SioP

+
o = 0 by Lemma 3.2. Therefore, with this

choice of ψ,∣∣(ÃIφ,ψ
)
H×H

∣∣
‖φ‖H ‖ψ‖H×H

=

∥∥P−i φ∥∥2

H +
∥∥P+

i φ
∥∥2

H

‖φ‖H
√∥∥S∗ioP−i φ∥∥2

H +
∥∥P+

i φ
∥∥2

H

≥

√∥∥P−i φ∥∥2

H +
∥∥P+

i φ
∥∥2

H

‖φ‖Hmax
{
‖Sio‖H→H , 1

} . (5.2)

By (1.10), the triangle inequality, and the inequality 2ab ≤ a2 + b2 for a, b > 0,∥∥P−i φ∥∥2

H +
∥∥P+

i φ
∥∥2

H ≥
1

2
‖φ‖2H . (5.3)

The result (1.22) then follows from combining (5.2) and (5.3).
We now prove (1.23). As above, let ψ = (ψ1,ψ2) for ψ1,ψ2 ∈ H. Motivated by the proof of

(1.22), given φ ∈ H, let ψ1 := S∗ioP
−
i φ. Then, by the definition of ÃII and Theorem 1.12,(

ÃIIφ,ψ
)
H×H =

(
SioAIIφ, P

−
i φ
)
H +

(
P+
i φ,ψ2

)
H,

=
(
SioAIIP

+
i φ, P

−
i φ
)
H +

∥∥P−i φ∥∥2

H +
(
P+
i φ,ψ2

)
H. (5.4)

Now, by the definition of AII (1.12), Lemma 2.3, (1.10), and the fact that SioP
+
o = 0 by Lemma

3.2, (
SioAIIP

+
i φ, P

−
i φ
)
H =

(
Sio
(
P−o + I

)
P+
i φ, P

−
i φ
)
H = 2

(
SioP

+
i φ, P

−
i φ
)
H. (5.5)

We now let ψ2 := P+
i φ− 2S∗ioP

−
i φ. This definition along with (5.4) and (5.5) implies that(

ÃIIφ, ψ
)
H×H = 2

(
SioP

+
i φ, P

−
i φ
)
H +

∥∥P−i φ∥∥2

H +
∥∥P+

i φ
∥∥2

H − 2
(
P+
i φ, S

∗
ioP
−
i φ
)
H,

=
∥∥P−i φ∥∥2

H +
∥∥P+

i φ
∥∥2

H .

Therefore, with this choice of ψ,∣∣(ÃIIφ,ψ
)
H×H

∣∣
‖φ‖H ‖ψ‖H×H

=

∥∥P−i φ∥∥2

H +
∥∥P+

i φ
∥∥2

H

‖φ‖H
√∥∥S∗ioP−i φ∥∥2

H +
∥∥(P+

i − 2S∗ioP
−
i )φ

∥∥2

H

.

We now use the triangle inequality and (4.13) to find that∥∥S∗ioP−i φ∥∥2
+
∥∥(P+

i − 2S∗ioP
−
i )φ

∥∥2 ≤ ‖S∗io‖
2 ∥∥P−i φ∥∥2

+
(∥∥P+

i φ
∥∥+ 2 ‖S∗io‖

∥∥P−i φ∥∥)2

≤ ‖S∗io‖
2 ∥∥P−i φ∥∥2

+
∥∥P+

i φ
∥∥2

+ 4 ‖S∗io‖
2 ∥∥P−i φ∥∥2

+ 4
∥∥P+

i φ
∥∥ ‖S∗io‖∥∥P−i φ∥∥

≤ (1 + 2ε)
∥∥P+

i φ
∥∥2

+ (5 + 2/ε) ‖S∗io‖
2 ∥∥P−i φ∥∥2

H ;

if ε = 1 +
√

2, then 5 + 2ε = 1 + 2ε = 3 + 2
√

2 and thus∣∣(ÃIIφ,ψ
)
H×H

∣∣
‖φ‖H ‖ψ‖H×H

≥

√∥∥P−i φ∥∥2

H +
∥∥P+

i φ
∥∥2

H

‖φ‖H
√

3 + 2
√

2 max
{
‖Sio‖H→H , 1

} .
The result (1.23) follows from this inequality and (5.3).
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A Extension of the results to the more general form of the
transmission problem

We now sketch how the decomposition (1.15) of the first-kind BIE extends to the more general
transmission problem of Definition 1.1 with the transmission condition in (1.4) replaced by (1.5).
The analogous extension of the decomposiiton (1.16) for the second-kind BIE is very similar.

Derivation of the first kind BIE. The equation (2.10) holds as before, but now the analogue
of (2.12) is

P−o D
−1γ−Cu

− = P−o D
−1f .

Therefore, the analogue of the first-kind BIE AI in (1.13) is

Agen
I γ−Cu

− = P−o D
−1f

where

Agen
I := P−o D

−1 −D−1P+
i = D−1P−i − P

+
o D

−1 =

[
−(Ki +Ko) Vi + α−1Vo
α−1Wi +Wo α−1(K ′i +K ′o)

]
. (A.1)

Solution operators. Let S(ci, co) be the solution operator of the BVP (1.6) with the transmission

condition replaced by (1.5). Let S̃(ci, co) be the solution operator to (1.6) with the transmission
condition

γ−Cu
− = D−1γ+

Cu
+ + f ;

i.e., α is replaced by α−1 compared to S(ci, co). Let Sio := S(ni, no) and let S̃oi := S̃(no, ni).

Lemma A.1. (
Agen

I

)−1
= SioD +DS̃oi −D. (A.2)

Sketch of the proof. The analogue of Lemma 3.1 is now that

φ = Siof if and only if

{
P−i φ = φ, and

P−o D
−1(φ− f) = 0.

(A.3)

and

φ = S̃oif if and only if

{
P−o φ = φ, and
P−i D(φ− f) = 0.

(A.4)

We then repeat the steps in the proof of Theorem 1.10. Assuming that Agen
I ψ = g and applying

P−i D, we find that the analogue of (3.4) is that

P−i D
(
P−o D

−1ψ − g
)

= 0,

so that, by (A.4),

P−o D
−1ψ = S̃oig. (A.5)

Similarly applying P−o to Agen
I ψ = g, we find that the analogue of (3.6) is

P−o
(
D−1P−i ψ − g

)
= 0,

so that, by (A.3),
P−i ψ = SioDg. (A.6)

Then, using that Agen
I ψ = g, (A.1), (A.5), and (A.6), we find that the analogue of (3.8) is

ψ = (P+
i + P−i )ψ = DP−o D

−1ψ −Dg + P−i ψ = DS̃oig −Dg + SioDg,

which is (A.2).
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