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ABSTRACT: 

Since Akiyama and Terada independently reported the introduction of chiral phosphoric acids 

(CPAs) as effective catalysts for Mannich-type reactions in 2004, the field of CPA catalysis 

has grown immensely. Terada reported in 2008 the first example of the activation of aldehydes 

by a CPA. Based on density functional theory (DFT) calculations, Terada proposed a dual 

activation mode for this enantioselective aza-ene-type reaction between an aldehyde and an 

enecarbamate. In this model, hydrogen bonds between the catalyst’s hydroxyl group and the 

carbonyl oxygen and the catalyst’s P=O and the formyl proton were observed; the nucleophile 

then attacks without coordination to the catalyst. This reaction model provided the mechanistic 

basis for understanding Terada’s reaction and many other asymmetric transformations since. 

In the present study, DFT calculations are reported that identify a lower energy mechanism for 

this landmark reaction. In this new model, hydrogen bonds between the catalyst’s hydroxyl 

group and the aldehyde oxygen and the catalyst’s P=O and the NH group of the enecarbamate 

are seen. The new model rationalizes the stereoselective outcome of Terada’s reaction and 

offers insight into why a more sterically demanding catalyst gives lower levels of 

enantioselectivity. 

 

 

 

 



INTRODUCTION 

 

In 2004, Akiyama1 and Terada2 independently reported the introduction of chiral phosphoric 

acids (CPAs) as effective catalysts for Mannich-type reactions. Since then, CPAs have been 

found to catalyze a wide range of asymmetric reactions and have been used extensively in the 

synthesis of biologically active natural products.3–6 

The first example of the activation of aldehydes by a CPA was the enantioselective aza-ene-

type reaction between an aldehyde and an enecarbamate reported by Terada in 2008 (Scheme 

1).7 In this landmark study, the preferred activation mode was identified through density 

functional theory (DFT) calculations. Although no transition state structures (TSs) were 

located, hydrogen bonds between the catalyst’s hydroxyl group and the carbonyl oxygen and 

the catalyst’s P=O and the formyl proton were observed in the lowest energy complex between 

CPA and aldehyde. These interactions were supported by X-ray crystallographic analysis of 

complexes between carboxylic acids and dimethylformamide.8,9 It was proposed that the 

enecarbamate then attacks from the least hindered face of the aldehyde without coordination to 

the catalyst (Terada model, Scheme 1). This dual activation mode has been widely adopted and 

has provided the basis for many proposed mechanisms in CPA catalysis.10 Examples include 

the CPA-catalyzed hetero-Diels−Alder,11 aldol-type,12,13 allenylboration14 and multicomponent 

coupling15 reactions. It has also influenced computational work on related CPA-catalyzed 

reactions including work by Goodman16,17 and Houk18–21. However, an alternative bifunctional 

activation mode was not considered in Terada’s original work. 

In the present study, DFT calculations have identified a new mechanism that is lower in energy 

than Terada’s model in which the CPA coordinates to both the nucleophile and the electrophile 

(New model, Scheme 1). In this bifunctional activation mode, hydrogen bonds are seen 

between the catalyst’s hydroxyl group and the aldehyde oxygen and the catalyst’s P=O and the 

NH group of the enecarbamate. The new model also rationalizes the stereoselective outcome 

of Terada’s reaction. 

 

 

 



 

Scheme 1 Terada’s phosphoric acid-catalyzed asymmetric aza-ene-type reaction and possible activation modes. 

 

 

 

RESULTS AND DISCUSSION 

 

To explore the preferred activation mode of Terada’s phosphoric acid-catalyzed asymmetric 

aza-ene-type reaction, C−C bond forming TSs were located at the B3LYP-D3(BJ)/def2-

TZVPP−IEF-PCM(dichloromethane)//B3LYP/6-31G(d) level of theory22–26 using Gaussian 

1627 (see Supporting Information for full computational details). The ethyl ester of the 

electrophile was replaced by a methyl ester to reduce conformational flexibility and thus 

simplify the calculations. This truncation was shown to have minimal effect on the calculated 

TSs (see Supporting Information, Figure S1). The lowest energy TS was TS-1Si (Figure 1) 

which corresponds to the new bifunctional activation mode proposed in Scheme 1 and leads to 

the major product observed experimentally. The lowest energy Terada-like TS (TS-2Si) was 

calculated to be disfavored by 3.6 kcal mol-1 relative to TS-1Si due to the absence of the strong 

N-H···O interaction. Although the catalyst-electrophile interactions seen in TS-2Si correspond 

to those proposed in Terada’s dual activation mode, a C-H···O interaction is present between 

catalyst and nucleophile. The lowest energy TS that has interactions between catalyst and 

electrophile only (Terada model from Figure 1 but lacking the additional aryl P=O···H-C 

interaction) was calculated to be 5.4 kcal mol-1 higher in energy than TS-1Si. A third, low 

energy activation mode was identified in which hydrogen bonds are seen between the catalyst’s 

hydroxyl group and the aldehyde oxygen and the catalyst’s P=O and a vinylic proton of the 

enecarbamate (TS-3Si). TS-3Si was calculated to be lower in energy than TS-2Si but 

disfavored by 3.4 kcal mol-1 relative to TS-1Si. 



 

Figure 1. Comparison of activation modes in the (R)-1-catalyzed asymmetric aza-ene-type reaction. TSs are 

numbered according to when they are first discussed in the text. Non-critical hydrogen atoms omitted for clarity. 

All energies in kcal mol-1. 

 

By taking a Boltzmann distribution of all TS conformations within 3 kcal mol-1 of TS-1Si, an 

ee value of 95% at 298.15 K was computed which is in full agreement with the experimental 

data. TS-1Re, the lowest energy TS leading to the minor enantiomer of the product, was 

calculated to be disfavored by 2.3 kcal mol-1 relative to TS-1Si (Figure 1). To understand the 

origin of this energy difference, the CPA was optimized in isolation. The lowest energy catalyst 

conformation is shown in Figure 2 alongside TS-1Re and TS-1Si. In TS-1Si, the dihedral angle 

highlighted in green is close to the angle adopted in the isolated catalyst but in TS-1Re, this 

angle is distorted away from its ideal value. The steric bulk of the aldehyde is placed underneath 

the catalyst in TS-1Re and so a larger dihedral angle avoids a steric clash between aldehyde 

and catalyst. This is supported by a larger catalyst distortion energy in TS-1Re relative to TS-

1Si (see Table S1 in Supporting Information). Torsional effects also contribute to the difference 

in energy between TS-1Re and TS-1Si. In TS-1Si, the bulky groups of the nucleophile and 

electrophile approach anti to each other. In TS-1Re, this approach is gauche. This insight is 

supported by a larger substrate pair distortion energy in TS-1Re relative to TS-1Si (see Table 

S1 in Supporting Information). The new model also accounts for the high levels of 



diastereoselectivity observed for substituted enecarbamates (see Page S6 of Supporting 

Information). 

 
 

 

Figure 2. Comparison of catalyst structure in the C-C bond forming TSs in the (R)-1-catalyzed asymmetric aza-

ene-type reaction. Non-critical hydrogen atoms omitted for clarity. All energies in kcal mol-1. 

 

In phosphoric acid catalysis, more sterically demanding 3 and 3′ groups generally lead to higher 

levels of enantioselectivity.28 In the phosphoric acid-catalyzed asymmetric aza-ene-type 

reaction however, this is not the case and enantioselectivity drops significantly when (R)-2 is 

employed instead of (R)-1 (Figure 3). To explain this observation, TSs were located for the 

reaction catalyzed by (R)-2 (see Supporting Information). TS-4Si and TS-4Re were calculated 

to be the lowest energy diastereomeric TSs and are similar in geometry to TS-1Si and TS-1Re 

but are much closer in free energy (Figure 3). In TS-4Re, stabilizing CH··· interactions are 

observed between the substrate and the 3 and 3′ groups; such interactions are not seen to the 

less electron-rich aromatic groups present in TS-1Re. These interactions stabilize TS-4Re 

relative to TS-4Si and thus account for the lower levels of enantioselectivity observed 

experimentally with (R)-2. 
 



 

Figure 3. C-C bond forming TSs for the (R)-2-catalyzed asymmetric aza-ene-type reaction. Non-critical hydrogen 

atoms omitted for clarity. All energies in kcal mol-1. 

 

CONCLUSIONS 

 

In summary, a new model for the phosphoric acid-catalyzed asymmetric aza-ene-type reaction 

has been proposed. In this bifunctional activation mode, hydrogen bonds between the catalyst’s 

hydroxyl group and the aldehyde oxygen and the catalyst’s P=O and the NH group of the 

enecarbamate are seen. DFT calculations show that the new model is lower in energy than 

Terada’s dual activation model in which hydrogen bonds between the catalyst’s hydroxyl group 

and the carbonyl oxygen and the catalyst’s P=O and the formyl proton were observed. The 

stereoselective outcome of the aza-ene-type reaction is rationalized through catalyst and 

substrate distortion present in the TS leading to the minor product. Lower levels of 

enantioselectivity seen in the presence of a more sterically demanding catalyst are rationalized 

through stabilizing CH··· interactions identified in the TS leading to the minor product. It is 

hoped that this new insight into phosphoric acid catalysis will enable further development of 

synthetic methodology involving these important catalysts. 
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