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Interior Void Classification in Liquid Metal using
Multi-Frequency Magnetic Induction Tomography

with a Machine Learning Approach
Imamul Muttakin, Member, IEEE , and Manuchehr Soleimani

Abstract— Identification of gas bubble, void detection and porosity
estimation are important factors in many liquid metal processes.
In steel casting, the importance of flow condition and phase distri-
bution in crucial parts, such as submerged entry nozzle (SEN) and
mould raises the needs to observe the phenomena. Cross-section
of flow shapes can be visualised using the magnetic induction
tomography (MIT) technique. However, the inversion procedure in
the image reconstruction has either limited resolution or post-
processing stages. Additionally, in some cases, the displayed im-
age may not be essential when quantifying the void fraction or
porosity. This work proposes an interior void classifier based on
multi-frequency mutual induction measurements with eutectic alloy
GaInSn as a cold liquid metal model contained in a 3D printed plastic miniature of an SEN. The sensors consist of
eight coils arranged in a circle encapsulating the column, providing combinatorial detection on conductive surface and
depth. The datasets are induced voltage collections of several non-metallic inclusions (NMI) patterns in liquid metal static
test and used to train a machine learning model. The model architectures are a fully connected neural network (FCNN)
for 1D; and a convolutional neural network (CNN) for 2D data. The classifier using 1D data has been trained providing
98% accuracy on this dataset. On the other hand, CNN classification using multi-dimensional data produces 96% of test
accuracy. Refined with representative flow scenarios, the trained model could be deployed for an intelligent online control
system of the liquid metal process.

Index Terms— Classification, liquid metal, machine learning, magnetic induction tomography, non-metallic inclusion.

I. INTRODUCTION

THE level of void and/or non-metallic inclusions (NMI)
needs to be estimated in many liquid metal applications.

In continuous steel casting, the presence of NMI, occurring
at the primary stage and then more crucial at the casting
process (multiphase flow of molten metal and argon gas from
tundish to mould), affects the steel cleanliness. Therefore, it
is important to observe liquid metal flow shape and structure
[1]. Another application that necessitates the observation of
porosity of metal in its liquid phase is foam manufacturing
[2]. The porosity of the liquid metal will determine the final
solid porous metal. Liquid metal is also used for cooling a
nuclear reactor [3] [4]. In the liquid metal-cooled reactor, it
is desired to detect and characterise the voids due to their
influence on heat exchange.
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Magnetic induction tomography (MIT) system produces
mutual induction values as boundary measurements which are
then transformed into a cross-sectional image of conductivity
distribution. This capability is further enriched by employing
frequency-sweep on each measurement resulting in spatio-
spectral information. The structure of a conductive body can be
explored using the aforementioned spectroscopy [5]. However,
spatial resolution is limited especially for recovering small
and dispersed interior non-conductive disturbances. Exhaustive
algorithm or post-processing is the usual treatments, still, they
could not satisfy demands from some industrial applications.

The advancement in artificial intelligence (AI) is accelerated
by the availability of data generated from potent sectors. Since
the algorithm shows its capability for image interpretation, its
implementation progressively finds the broad area of medical,
industrial and informatics [6] [7]. This trend also applies in
tomography technology [8] [9], where the data and/or the
resulting image can be exploited to obtain conclusive outputs.
Machine learning (ML) utilised in tomography research has
mainly been for the reconstruction scheme [10] [11], image en-
hancement [12] [13], and various post-processing mechanisms
[14] [15]. Those methods are rarely directly targeting primary
information embedded in the measurement data. Bypassing the
complexity of tomographic image reconstruction, the detection
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based on raw data will reduce the computational resources in
the deployment phase [16]. Moreover, end-to-end learning of
spatio-temporal feature from raw tomography sensor data was
assessed to be an efficient scheme [17].

Key parameters in multiphase flow were predicted from
multiple sensors reading using a deep-learning method [18].
The model demonstrated generalisation capability for poten-
tial field measurement. The work presented in [19] took a
direct approach to map the relationship between measurements
from electrical capacitance tomography (ECT) sensors and
hydrodynamics parameters of flow patterns in a fluidised
bed. Although the reconstruction process was still conducted
to infer the process parameters, it experimentally collected
training samples offline and then the model was used for
online monitoring to estimate solid concentration and bubble
diameter.

Previously, in cold miniaturised static model experiments,
we investigate common two-phase liquid-gas flow scenarios
such as full-stream, stratified, bubbly, and annular. These
basic flow shapes have been reconstructed with conventional
MIT [20]. Accordingly, adaptation of AI become more com-
mon in the metallurgy sector [21] [22]. ML approaches for
analysing the continuous casting process was surveyed in
[23]. Thus, data-driven method and system are prospective for
field implementation to extract useful information in helping
production. This work attempts to produce a classification of
flow inner structure based on multi-frequency mutual induction
measurements data.

II. MACHINE LEARNING METHOD USING MUTUAL
INDUCTION DATA

Among several techniques in employing ML for classifica-
tion problems reviewed in [24], the following work trains the
network from scratch while adjusting an efficient architecture
for the given problem and dataset.

For dense layer, where each input feature is assigned a
vector of weights that connects to activation output, this
operation applies [25]:

zi = W ix+ bi (1)

hi = f i(zi) (2)

here, W i and bi are weights and biases at ith layer respec-
tively. The layer’s input is x, and the resulting linear activation
zi is transformed by a non-linear activation function f i.

There are various activation functions such as sigmoid or
hyperbolic tangent. In order to start with the approach based
on experimental sensing data, the relatively simpler and faster
Rectified Linear Unit (ReLU) will be used.

f(z) = max(0, z) (3)

On the other hand, convolutional neural network (CNN)
conducts:

zin = Ki
n ∗ x+ bin (4)

where n is the index of the feature map, Ki
n is the nth filter

kernel, and ∗ is the convolution operator.
In order to reduce the computation cost, the CNN layer is

usually accompanied by a pooling layer for sub-sampling the
feature map. Max operation finds the maximum value.

The performance is evaluated using accuracy, i.e. ratio of
correctly classified samples vs all available samples [22]:

acc =

∑k−1
m=0 cm,m∑k−1

m=0

∑k−1
n=0 cm,n

(5)

where cm,n are the elements of the confusion matrix. The
network is also trained to minimise the loss between prediction
and true labels.

Mutual induction measurements are conducted using a two-
port method with LCR meter and additional switching module
(Keysight Technologies) for sequentially selecting a pair out
of an 8-coil array at a time. This measurement system has a
signal-to-noise ratio (SNR) between 60–90 dB, where mea-
surement at low-frequency opposite-coil has the lowest SNR;
and high-frequency adjacent-coil has the highest SNR. The
detailed configuration was described in [26]. For the following
work (see Fig. 1), all 28 (pair-combination) mutual induction
coils are measured and swept from 100 Hz to 100 kHz
(logarithmic scale with 28 points).

Fig. 1: The liquid metal column with grid for wood inclusion

Pixelated data vector was commonly used as either main or
additional input for improving traditional image classification
performances [27]. This form of pseudo-image can be built
from an array of sensors’ reading on the first axis and another
measurement dimension on the second axis. An example of a
classifier model which is built on limited training images was
reported by [28]. Nevertheless, this dataset will be a valuable
framework in developing tomographic sensing interpretation
using ML [29] [30].
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Two methods are investigated: traditional dense fully con-
nected neural network (FCNN) for classifier using one-
dimensional (1D) data, and CNN for classifier using two-
dimensional (2D) data. Both are implemented in Keras 2.4.0
framework [31] with TensorFlow 2.3.0 backend [32].

III. FCNN CLASSIFIER

In the FCNN classifier, the data are built from mutual
induction measurement between every coil pair. There are
eight coils so that C8

2 gives 28 data of mutual combination.
This is observed at multiple frequency points.

Mf,n =

m1,1 . . . m1,28

...
. . .

...
m28,1 . . . m28,28

 (6)

The measurement data structure in (6) details frequency
points f with n mutual induction values. For instance, m1,1

is mutual induction between coil-1 and coil-2 at the first
frequency point, m1,28 is mutual induction between coil-7 and
coil-8 at the first frequency point, m28,1 is mutual induction
between coil-1 and coil-2 at the last frequency point, and
m28,28 is mutual induction between coil-7 and coil-8 at the
last frequency point. Particularly, the phase-shift between the
driving signal from transmitting-coil and the detected signal
at receiving-coil is taken to represent the sensing information.
The measurement is relative values against the reference where
liquid metal is full (without any inclusion). θ are phase-shift
values for an investigated case, whereas θ0 are phase-shift
values for a reference condition. By this definition, the studied
data are 28 ∆θ = θ − θ0 values at 28 frequency points. The
following (7) is applied on each frequency point for all 28
values, where xf is ∆θ values at frequency f . As a result, a
normalised one-dimensional data plot is obtained as shown in
Fig. 2. Here, Index 0 corresponds to a data point at f=100 Hz,
Index 10 corresponds to a data point at f=2 kHz, and so on.

||xf || =

√√√√ 28∑
i=1

|xi|2 (7)

A wood (balsa) occupies a single grid in the liquid metal
(GaInSn) column. Five classes are studied: 1 wood (central
grid), 2 woods (East-West), 3 woods (East-centre-West), 4
woods (North-South East-West), and 5 woods (North-South
centre East-West), as shown in Fig. 3. Each case is measured
in separate sessions and accompanied by the respective refer-
ence measurement. Datasets are created and labelled for five
classes, and split into training (80%) and test (20%) data. The
validation set is randomly chosen from training data during
the training process.

Fig. 4 shows the architecture. Keras model Sequential is
constructed consisting of three hidden dense layers, each
of which has 128 neurons, with activation function ReLU.
Vector of “logits” scores for each class are then converted
into probability using a Softmax function. Loss function
Sparse Categorical Crossentropy takes a vector of logits and a

Fig. 2: Norm phase-difference for a number of wood inclu-
sions

(a) 8-coil MIT sensor (b) case1

(c) case2 (d) case3

(e) case4 (f) case5

Fig. 3: Wood inclusions in liquid metal cases
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Fig. 4: A neural network with features, hidden layers, and
predictions

“True” index and returns a scalar loss for each example. The
model is compiled using optimiser ADAptive with Momentum
(Adam), utilising “accuracy” metrics to measure the loss and
the accuracy of the model. This model will then be fitted
adjusting parameters to minimise the loss. The total number
of parameters (param) is 53893, all of which are trainable.
Model summary is described in Table I.

TABLE I: FCNN Model Summary

Layer Properties Output Shape Param
input 28 x 1 (28) 0
Dense1 Activation: ReLU (128) 3712
Dense2 Activation: ReLU (128) 16512
Dense3 Activation: ReLU (128) 16512
Dense4 Activation: ReLU (128) 16512
Dense5 + Softmax (5) 645

Fig. 5: FCNN training and validation accuracy-loss vs epoch

Fig. 5 shows training and validation accuracy-loss along
50 epochs. At the beginning (1s 36ms/step) train loss is
1.6014, train accuracy is 0.2200, validation loss is 1.5632,
and validation accuracy is 0.4000; at the end (0s 8ms/step)
train loss is 0.0770, train accuracy is 0.9999, validation loss
is 0.1097, and validation accuracy is 0.9800. Performance is
checked on validation/test set, giving: test loss 0.11 and test
accuracy 0.98. The accuracy on the validation dataset is going
lesser than the accuracy on the training dataset starting at
epoch>45, indicating overfitting.

Examples of prediction on woods/voids are depicted in
Fig. 6. Ten test data are fed into the model, and the prediction
bar chart is shown accordingly. The chart shows how confident
the model decides that the data corresponds to each class. The
confusion matrix is shown in Fig. 7. The map represents tests,
where each case has ten predictions. The classifier has a good
accuracy, with only four woods case produces a prediction
error.

IV. CNN CLASSIFIER

Two-dimensional data in the form of multi-frequency phase-
difference coil combination are constructed as pseudo-image.
The data arrangement follows the structure in (6). This makes
a 2D analysis approach is suitable, such as applying a CNN
model.

Mutual coil pairs measurements lie on the horizontal axis;
whereas frequency points on the vertical axis. Mutual induc-
tance combinations are 28 (from eight coils), so to shape the
image into 2D form, the same number of frequency points is
set to 28. The measurement frequency is swept in logarithmic
fashion from 100 Hz up to 100 kHz. An example of a pseudo-
image is shown in Fig 8.

The pseudo-image is 28x28 pixels and the values are scaled
between [0 1]. Each value represents ∆θ which is a phase-
difference measurement of a liquid metal case (θ), against
a free-space (air) background reference (θ0). In addition to
cases depicted in Fig. 3, up to nine inclusions are given, and
a full liquid metal (no inclusion) condition is incorporated.
Therefore, there are ten classes to investigate. Datasets are
split into training (80%) and test (20%) data. Validation set
is randomly chosen from training data during the training
process.

Sequential layers consist of Conv2D, MaxPooling2D, and
Dense are stacked for the model, as illustrated in Fig. 9.
The diagram gives the information about the input shape,
which is a pseudo-image in 2D 28x28 pixels and one ’colour’
channel. Subsequent layers are convolution and pooling before
the tensor is flattened for the traditional dense neural network.
Finally, the last layer provides a number of outputs according
to the prediction classes. Table II describes the architecture in
detail, where total (trainable) parameters are 93322.

TABLE II: CNN Model Summary

Layer Properties Stride Padding Output Shape Param
input 28 x 28 x 1 - - (28, 28, 1) 0
Convolution1 Filters: 32 1 x 1 Valid (26, 26, 32) 320

Kernel: 3 x 3
Activation: ReLU

MaxPooling1 Kernel: 2 x 2 - Valid (13, 13, 32) 0
Convolution2 Filters: 64 1 x 1 Valid (11, 11, 64) 18496

Kernel: 3 x 3
Activation: ReLU

MaxPooling2 Kernel: 2 x 2 - Valid (5, 5, 64) 0
Convolution3 Filters: 64 1 x 1 Valid (3, 3, 64) 36928

Kernel: 3 x 3
Activation: ReLU

Flatten - - - (576) 0
Dense1 Activation: ReLU - - (64) 36928
Dense2 + Softmax - - (10) 650
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(a) one wood

(b) two woods

(c) three woods

(d) four woods

(e) five woods

Fig. 6: Plot prediction of sample case

Fig. 7: FCNN confusion matrix

Fig. 8: Pseudo image multi-frequency mutual induction

input

32 26

28

conv1

32 13

pool1

64 11

conv2

64 5

pool2

64 3

conv3

1 57
6

flatten

1 64

dense

1

dense+softmax

10

output

Fig. 9: CNN model
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Fig. 10: CNN training and validation accuracy-loss vs epoch

Fig. 10 shows training and validation accuracy-loss along
250 epochs. Performance is checked on validation/test set,
giving: test loss 0.18 and test accuracy 0.96. Examples of
prediction cases are depicted in Fig 11. Ten test data are
fed into the model, and the prediction bar chart is shown
accordingly.

The confusion matrix is mapped in Fig. 12. For clarity, the
labels associated with inclusion numbers are presented on the
axes. Almost all test samples are predicted accurately, except
for the full case (no inclusion) where the classifier mispredicts
symmetrically distributed of one and five voids/woods (NMI).

V. DISCUSSION

In this study, we define the classification based on the
number of voids. It is possible to define the classification in
different ways depending on the application. The accuracy of
the classifier, on the one hand, depends on the algorithm and
training strategies and the other hand depends on the accuracy
of the MIT data. With an interest in the interior region of the
liquid metal, the accuracy of the MIT setup for low-frequency
data will be an important factor.

We intend to provide a prospect of the study for liquid metal
processing where void or NMI determination is crucial. The
ML approach we develop provides a potent sensing method to
address some issues on detecting and characterising the two-
phase liquid metal-gas system. Although our case study is for
steel-casting where the investigation of bubble distribution in
metal flow is desired, this approach would also apply in a wide
area of implementation involving liquid metal such as reactor
coolant and functional material processing.

For liquid metal fast breeder reactors, real-time radiography
is used to image the system [33]. Basic research has been
conducted in using neutron radiography for observing liquid
metal two-phase flows in vessels. Using the technique reported
in [34], radial void fraction profiles were obtained. The follow-
up research by authors [35], clarified the basic characteristics
of the flow. They visualised the liquid metal two-phase flow
and measured its void fraction using neutron radiography and
conductivity probe, respectively. The radiography method was

(a) case0 (b) case1

(c) case2 (d) case3

(e) case4 (f) case5

(g) case6 (h) case7

(i) case8 (j) case9

Fig. 11: CNN prediction sample

Fig. 12: CNN confusion matrix
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used earlier utilising a tracer particle [36]. It requires the
attenuation of rays due to the liquid metal being less than
1/e, and particle size larger than one digitised image element
size. The other known method is invasive. A recent technique,
optical fibre sensors were used and tested in a well-controlled
lab-scale and a pilot-scale reactor [37]. Another report by [38]
discloses a probe insertion for detecting gas bubbles in liquid
metals.

Porous metal is another engineering material product that
is formed in the liquid phase. Its processing method involves
bubble generation where pore growth is one of the parameters
of interest [39]. Although several modelling methods for liquid
metal foam processing have been established [40], experimen-
tal observations are still limited. The difficulty in investigating
opaque system such as metallic foam is acknowledged. In
[41], X-ray tomoscopy was used to clarify the liquid metal’s
dynamic phenomena, one of which is bubble arrangements.

Generally, alloy casting suffers from inclusions such as
dissolved gases. A technique was demonstrated to assess
the metal quality by visualising gas content. Albeit only a
single dissolved gas in the aluminium alloy was tested by
[42]. An online liquid metal cleanliness analyzing system is
used for quality assurance of inclusion sensitive products. The
commercial system [43] is based on the electric sensing zone.

From the above prior methods, further training data could
be gathered to refine our initial model. The simplified ex-
perimental data is aimed as a starter to demonstrate the ML
approach for liquid metal interior investigation. Additionally,
computational fluid dynamics (CFD) simulation would also
be used to provide training and validation input. We hope that
our proposed method, once escalated to field test could offer
an alternative to capture local and quantitative information
relevant to operating condition.

VI. CONCLUSION

The work proposes a liquid metal flow condition classifier
focused on the interior voidage. Measurement datasets are
multi-frequency mutual induction phase-difference of several
wood inclusion variations inside liquid metal GaInSn. The
1D classifier architecture is a multi-layered fully connected
neural network (FCNN). After 50 epochs, this model produces
a training loss of 0.08, training accuracy 0.99; whereas test
accuracy is 98% The 2D classifier architecture is based on a
convolutional neural network (CNN). After 250 epochs, this
model produces a training loss of 0.15, training accuracy 0.95;
whereas test accuracy is 96% The number of woods, or non-
metallic inclusions (NMI), classification can be further trans-
lated into other quantification such as interior void fraction
percentage. This framework provides a prospect for a data-
driven liquid metal processing system.

APPENDIX I
SUPPLEMENTARY MATERIALS

Dataset and script are available upon request:
https://github.bath.ac.uk/im463/metal-flow
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