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Abstract

In this paper, we study a facility location problem in which customer demand is bimodal, i.e.,

display, or belong to, two spatially distinct distributions. We assume that these two distributions

are ambiguous (unknown), and only their mean values and ranges are known. Therefore, we

propose a distributionally robust facility location (DRFL) problem that seeks to find a subset of

locations from a given set of candidate sites to open facilities to minimize the fixed cost of opening

facilities, and worst-case (maximum) expected costs of transportation and unmet demand over a

family of distributions characterized through the known means and support of these distributions.

We propose a decomposition-based algorithm to solve DRFL, which include valid lower bound

inequalities to accelerate the convergence of the algorithm. In a series of numerical experiments, we

demonstrate the superior computational and operational performance of our approach as compared

with the stochastic programming approach and a DR approach that does not consider bimodality

of the demand. Our results draw attention to the need to consider the impact of uncertainty of

customer demand when it does not follow one distinct and known distribution in many strategic

real-world problems.

Keywords: Facility location; Distributionally robust optimization; Bimodal Demand;
Mixed-Integer programming; Cutting plane

1. Introduction

In this paper, we consider a decision-maker who wants to determine a subset of locations from a

given set of candidate sites to open facilities and accordingly assign customer demand to these open

facilities. Different than classical facility location settings, we focus on the case in which customer

demand is bimodal. We use the term“bimodal” in a slightly informal way to refer to the tendency

of a random demand to display, or belong to, two spatially distinct distributions. For example,

depending on the occurrence of a random event, the demand may follow two distinct distributions,

one before the occurrence of the event and one after it takes place. We assume that these two

distributions are ambiguous (unknown), and only their mean values and ranges are known. The
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quality of facility location decisions is a function of the fixed cost of opening facilities and a measure

of the costs of transportation and unmet demand.

Determining facility locations is a fundamental managerial problem and has many applications

such as transportation, logistics, healthcare, to name a few (Ahmadi-Javid et al., 2017; Melo et al.,

2009; Owen and Daskin, 1998; Turkoglu and Genevois, 2019). Customer demand often derives

facility location decisions. Unfortunately, the precise volume of customer demand is not known

at that time when making facility location decisions. Even in a perfect world where we can fore-

cast, estimate, or obtain an approximation of the expected demand, many random events can

change/shift customer demand (from low to high, for example), and the probability of such shift is

hard to predict in advance. For different scenarios, the support of the demand could be different.

At the same time, conditioning on the event realization, the expectation of the demand and thus

its distribution may also differ.

In the carsharing industry such as Zipcar, for example, customers choose vehicles to rent for a

short time from the most convenient rental location. A competitive company that offers cheaper

rental options, more modern cars, or more convenient locations in a certain service region may

reduce customer demand for Zipcar. And the probability of observing such an event is not known

at the time when decision-makers locate their Zipcars. As pointed out by Hao et al. (2019), customer

demand for Zipcar or last-mile transportation services such as Taxi and Uber may be higher on

rainy/snowy days than other days. The future weather information at the demand location is

uncertain at the point when companies decide where to locate their vehicles (Hao et al., 2019).

Indeed a deterministic approach that relies on estimated demand values, which may be easy

to solve from a computational perspective, can produce sub-optimal facility location decisions as

it does not capture the bimodality and variability of the demand. By incorporating uncertainty,

classical two-stage stochastic programming (SP) models seek to find facility location decisions that

minimize the first-stage fixed costs of locating facilities and the expected cost of transportation and

unmet demand. Here, the expectation is taken with respect to known probability distributions of

random demand. In reality, it is often challenging, if not impossible, to estimate the probability

distributions of the demand accurately (Basciftci et al., 2019; Lei et al., 2016; Liu et al., 2019). If

we locate facilities according to the (optimistically) biased SP solutions, then we may fail to satisfy

the demand of a large number of customers.

In this paper, we address the distributional ambiguity and bimodality of customer demand via

scenario-wise distributionally robust (DR) optimization. Specifically, we consider the case in which

the demand has two scenarios with two distinct distributions (e.g., one before and the other after

the occurrence of a random event). Accordingly, we construct a scenario-wise ambiguity set (i.e.,

a family of distributions) with two scenarios that correspond to two distinct distributions. We

characterize this ambiguity set by the known means and ranges of the unknown distributions of the
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demand. Our ambiguity set is a special case of the general scenario-wise or multi-modal ambiguity

set of Chen et al. (2019) and resemble the bimodal ambiguty set of Shehadeh et al. (2020). Then,

we formulate a distributionally robust facility location (DRFL) model that seeks to find a subset of

locations from a given set of candidate sites to open facilities to minimize the fixed cost of opening

facilities, and worst-case expected costs of transportation and unmet demand over the ambiguity

set.

We propose a cutting plane decomposition-based algorithm to solve DRFL and derive lower

bound inequalities to accelerate the convergence of the algorithm. The results of our extensive

numerical experiments demonstrate the superior computational and operational performance of

our approach as compared with the SP approach. More broadly, our results draw attention to the

need to consider the impact of uncertainty of customer demand when it does not follow one distinct

and known distribution in many strategic real-world problems. Thus our results motivate the need

for new approaches that consider the multi-modality and ambiguity of the distributions of random

parameters in real-world optimization problems.

To the best of our knowledge, and according to the recent survey of Turkoglu and Genevois

(2019), this paper is the first to consider the bimodal ambiguity of the demand distribution and

accordingly propose a tractable DRFL approach. Although we use the occurrence of a random

event to illustrate our ideas, present our approach, and derive useful insights, our approach is

applicable in other applications of DRFL in which the distribution of the demand is bimodal, i.e.,

may follow two distinct and unknown distributions. The reminder of this paper is structured as

follows. In Section 2, we review relevant literature. In Section 3, we formally define DRFL and its

reformulation. In Section 4, we introduce our decomposition algorithm to solve DRFL. In Section 5,

we test various instances to demonstrate the computational efficacy and solution performance of

our DR model as compared to the SP model. We draw conclusions and discuss future directions in

6.

2. Relevant Literature

Service and facility location problem. Service and facility location have been extensively

studied in the literature for a wide range of private (e.g., industrial plans, warehouses, distribution

centers, etc.) and public sectors (e.g., emergency medical services, fire station, etc.). Various

operations research techniques have been developed to handle these problems (Chan, 2001). We

refer to ReVelle and Eiselt (2005), Turkoglu and Genevois (2019), and Owen and Daskin (1998) for

a comprehensive and comparative survey of service facility location problems. Given the uncertain

world that we live in, facility location under uncertainty has received a significant attention. We

refer to Snyder (2006) for a comprehensive review of facility location problems under random

demand, characteristics, and cost parameters. We refer to Ahmadi-Javid et al. (2017) for a thorough
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review of deterministic and stochastic healthcare facility location problems and future directions.

Most of this literature assumes that customers demand following a fully known one probability

distribution.

Stochastic optimization. As pointed out by Chen et al. (2019), there are three frameworks

for optimization under uncertainty; stochastic programming (SP), robust optimization (RO), and,

more recently, distributionally robust (DR) optimization. Classical SP extends the linear opti-

mization framework to minimize the total expected cost associated with the optimal here-and-now

(i.e., first-stage) and wait-and-see (i.e., second-stage recourse) decisions under a known probability

distributions of random parameters. We refer to Birge and Louveaux (2011) and Shapiro et al.

(2014) for a thorough discussion on SP. While SP is a powerful and mature modeling approach, its

applicability is limited to the cases in which the distribution of the underlying uncertainty is fully

known. If we calibrate an SP to a data sample from a biased distribution, then the resulting (opti-

mistically biased) decisions will have a disappointing out-of-sample performance. This phenomenon

is well-known as the optimizers’ curse (Smith and Winkler, 2006). Furthermore, SP approaches are

often computationally expensive and intractable.

Classical RO models assume that uncertain parameters reside in a so-called uncertainty set

of possible outcomes, and optimization is based on the worst-case scenario occurring within the

uncertainty set (Bertsimas and Sim, 2004; Ben-Tal et al., 2015; Soyster, 1973). As argued by Chen

et al. (2019), Delage and Ye (2010), and Thiele (2010), sometimes classical RO models can yield

overly-conservative (pessimistically biased) solutions and poor expected performances because it

cannot capture the distributional information of uncertainty.

DR optimization has been developed in recent years and becomes an attractive approach for

addressing optimization problems contaminated with uncertain data. DR optimization bridge the

gap between the conservatism of RO and the requirement of known and exact distributions in SP. In

DR optimization, one assumes that the distribution of uncertain parameters resides in a so-called

“ambiguity set” and optimization is based on the worst-case distribution within the ambiguity

set. The ambiguity set is a family of distributions characterized through certain known properties

of the unknown distributions (Esfahani and Kuhn, 2018). Maybe surprisingly, it turns out that

DR models, where the distribution of uncertain parameters is a decision variable, are often more

tractable than their SP counterparts in many real-world applications (Delage and Ye, 2010). One

can use information that is easy to compute such as the mean and range of random parameters to

construct the ambiguity sets and build DR models that better mimic reality and less conservative

than RO.

Our research belongs to a new class of DR optimization with scenario–wise and multi-modal

ambiguity to address the ambiguity and bimodality of random demand in facility location. Here,

we use the term “multi-modal” in a slightly informal way to refer to the tendency of a random
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parameter to display several spatially distinct distributions (the terms bimodal and bimodality

are to be interpreted analogously). For different scenarios (e.g., before the occurrence of an event

vs. after the event takes place), the random parameter could be different (e.g., typical vs. high

demand), while conditioning on the scenario realization, the expectation and distribution of random

parameter can also be different (Chen et al., 2019).

Despite the advantages of DR optimization in producing robust and efficient solutions and its

success in many real-world applications, it has been less used to address facility location problems.

To date, the concept of demand bimodality has not been studied yet. Basciftci et al. (2019), Luo and

Mehrotra (2018), Santiváñez and Carlo (2018), and Liu et al. (2019) are some of the pioneering work

that uses DR optimization to address the uncertainty of the distribution of customer demand and

optimally locate facilities. However, these studies and references therein assumed that the demand

follows one unknown distribution and thus did not consider the possibility that the demand could

be bimodal. Many random events could affect the volume of customer demand. For example,

Hao et al. (2019) point out that the possibility of rain can affect customer demand for last-mile

transportation services. The future weather information at the demand location is uncertain at the

point when companies decide where to locate their vehicles.

In this paper, we propose the first DR approach for facility location problems with bimodal

(event-wise) customer demand. We characterize our ambiguity set with the mean and range of

the two unknown distributions of random demand. We propose a cutting plane decomposition-

based algorithm to solve DRFL and derive lower bound inequalities to accelerate the convergence

of the algorithm. The results of our extensive numerical experiments demonstrate the superior

computational and operational performance of our approach as compared with the SP approach,

and draw attention to the need to consider the impact of uncertainty of customer demand when it

does not follow one distinct and known distribution in many strategic real-world problems.

Notation : For a, b ∈ Z, we define [a] := {1, 2, . . . , a} and [a, b]Z := {c ∈ Z : a ≤ c ≤ b}. The

abbreviations “w.l.o.g.” and “w.l.o.o.” respectively represent “without loss of generality” and

“without loss of optimality.” Table 1 summarizes other notation.

3. DRFL Formulation and Analysis

We present a distributionally robust facility location (DRFL) problem, in which customer demand

is bimodal, and we need to determine a subset of locations from a given set of candidate sites

to open facilities and accordingly assign customer demand to these open facilities. The quality

of facility location decisions is a function of the fixed cost of opening facilities and a measure of

the costs of transportation and unmet demand. In Section 3.1, we define DRFL, introduce the

ambiguity set for describing the distributional information and bimodality of demand, and present
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Table 1: Notation.

Indices

i index of location, i = 1, . . . , I

j index of costumer, j = 1, ..., J

Parameters and sets

I number, or set, of locations

J number, or, set of costumers

fi cost of opening a facility

ti,j unit transport cost from facility i to customer j

pj penalty of not satisfying demand at site j

Ci capacity of facility i

dj demand at customer site j

dBj /d
B

j lower/upper bound of the demand before the event at customer site j

dAj /d
A

j lower/upper bound of the demand after the event at customer site j

First-stage decision variables

yi

{
1, if a facility is open at location i,

0, otherwise.

Second-stage decision variables

xi,j amount of demand of customer j satisfied by facility i

uj amount of unsatisfied demand of customer j

our min-max DRFL model accordingly. Then, in Section 3.2, we reformulate the min-max DRFL

model to a solvable one.

3.1. Definitions and formulation

We consider a set of I candidate locations for building facilities and J customer sites that generate

demand. customer demand is random and “bimodal,” i.e., display two spatially distinct distribu-

tions. For example, depending on the occurrence of a random event, the demand may follow two

distinct and unknown probability distributions, one before the occurrence of the event and one

after it takes place. Note that the bimodality of the demand could be due to other reasons than the

occurrence of a random event. For ease of presentation, hereafter, we use the idea that the demand

bimodality is a function of a random event to present our models and derive useful insights and

results.

We assume that only certain properties are known about the distribution Pj of the demand dj at

customer site j. In particular, we let Pj = qjPB + (1− qj)PA, where PB and PA are the distributions

of the demand before and after the occurrence of the event, respectively. qj is 0-1 Bernoulli random

variable such that qj = 1 if the event occurs and qj = 0 otherwise. In other words, qj = 1 if the

demand follows PB (distribution 1) and qj = 0 if it follows PA (distribution 2). Accordingly, the

demand dj at each customer site j is dj = qjd
B
j + (1− qj)dA

j , where dB
j ∼ PB and dA

j ∼ PA.

6



We further assume that we know the support (i.e., upper and lower bound) and the mean values

of the random parameters (q, dB, dA). Mathematically, we consider support S = Sq×SB×SA, where

Sq, SB, and SA are respectively the supports of random parameters q, dB, and dA defined as follows:

Sq := {0, 1}J ,

SB :=
{
dB ≥ 0 : dB

j ≤ dB
j ≤ d

B

j ,∀j ∈ [J ].
}
,

SA :=
{
dA ≥ 0 : dA

j ≤ dA
j ≤ d

A

j ,∀j ∈ [J ].
}
,

In addition, we let µq, µB, and µA represent the mean values of q, dB, and dA, respectively. We

denote ξ := [q, dB, dA]> and µ := EP[ξ] = [µq, µB, µ A]> for notational brevity. Then, we consider

the following mean-support ambiguity set F(S, µ):

F(S, µ) :=

{
P ∈ P(S) :

∫
S dP = 1

EP[ξ] = µ

}
(1)

where P(S) in F(S, µ) represents the set of probability distributions supported on S and each

distribution matches the mean values of q, dB, and dA. For all i ∈ [I], let binary variable yi

represents the location decision such that yi = 1 if a facility is open at location i and yi = 0

otherwise. For all i ∈ [I] and j ∈ [J ], we let decision variable xi,j represents the amount of satisfied

demand at customer site j by facility i. Let decision variable uj represents the amount of unsatisfied

demand at each customer site j ∈ [J ]. Finally, we let parameter Ci represents facility capacity in

location i and parameters fi, ti,j , and pj represent the cost of opening a facility at location i, unit

transportation cost from location i to site j, and penalty of each unit of unsatisfied demand at site

j, respectively. Using this notation and ambiguity set F(S, µ), we formulate DRFL as

min
y∈Y⊆{0,1}I

{∑
i∈I

fiyi + sup
P∈F(S,µ)

EP[Q(y, ξ)]

}
(2a)

where for a given y ∈ Y and a joint realization of uncertain parameters ξ := [q, dB, dA]>

Q(y, ξ) := min
x,u

(∑
j∈J

∑
i∈I

ti,jxi,j +
∑
j∈J

pjuj

)
(3a)

s.t.
∑
i∈I

xi,j + uj = qjd
B
j + (1− qj)dA

j , ∀j ∈ [J ] (3b)

∑
j∈J

xi,j ≤ Ciyi, ∀i ∈ [I] (3c)

uj , xi,j ≥ 0, ∀i ∈ [I], j ∈ [J ] (3d)

Formulation DRFL searches for facility location decisions that minimizes the total cost of lo-

cating facilities and the maximum worst-case of transportation and unmet demand over a family

of distributions characterized by the ambiguity set F(S, µ). Constraints (3b) ensures that demand
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at each customer site is either satisfied by other locations or penalized, and constraints (3c) respect

the capacity of each open facility. Polyhedron Y can include any constraints related to the facility

location decision y.

3.2. Reformulation

In this section, we use duality theory and follow a standard approach in DR optimization to

reformulate the min-max DRFL model in (2) to a one that is solvable. We first consider the inner

maximization problem sup
P∈F(S,µ)

EP[Q(x, ξ)] for a fixed facility location decision y ∈ Y, where P is

the decision variable, i.e., we are choosing the distribution that maximizes the expected value of

Q(y, ξ). For a fixed y ∈ Y, we formulate sup
P∈F(S,µ)

EP[Q(y, ξ)] as the following linear functional

optimization problem.

max EP[Q(y, ξ)] (4a)

s.t. EP[ξ] = µ, (4b)

EP[1S(ξ)] = 1 (4c)

where 1S(ξ) = 1 if ξ ∈ S and 1S(ξ) = 0 if ξ /∈ S. In Proposition 1, we show that problem (4) is

equivalent to problem (5) (see Appendix A for detailed proof).

Proposition 1. For any y ∈ Y, problem (4) is equivalent to

min
ρ,α,λ

∑
j∈J

µB
j ρj + µA

j αj + µq

jλj + max
(q,dB,dA)∈S

{
Q(y, q, dB, dA) +

∑
j∈J
−(dB

j ρj + dA
j αj + qjλj)

} (5)

Note that Q(y, q, dB, dA) is a minimization problem, and thus in (5) we have an inner max-min

problem. We next analyze the structure of Q(y, q, dB, dA) for a fixed y and a realized value of

(q, dB, dA). Taking the dual of Q(y, q, dB, dA) lead to the following proposition (see Appendix B for

a detailed proof).

Proposition 2. For fixed y ∈ Y and (q, dB, dA), it holds that

max
(q,dB,dA)∈S

{
Q(y, q, dB, dA) +

∑
j∈J
−(dB

j ρj + dA
j αj + qjλj)

}
≡ max

(β,v)∈Ω

{∑
j∈J

max{dB

j , d
A

j }βj +
∑
i∈I

Ciyivi

∑
j∈J
−
(
d
B

j ρj + (dB
j − d

B

j )(ρj)
+
)
−
(
d
A

j αj + (dA
j − d

A

j )(αj)
+
)

+ (−λj)+
}

(6)

In view of Equation 6, formulation (5) is equivalent to:

min
ρ,α,λ

{∑
j∈J

µB
j ρj + µA

j αj + µq

jλj −
(
d
B

j ρj + (dB
j − d

B

j )(ρj)
+
)
−
(
d
A

j αj + (dA
j − d

A

j )(αj)
+
)

+ (−λj)+

+ F (y)
}

(7)
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where F (y) = max
(β,v)∈Ω

{
∑
j∈J

max{dB

j , d
A

j }βj +
∑
i∈I

Ciyivi}. Combining the inner problem in the form of

(7) with the outer minimization problem in (2), we derive a reformulation of the DR model in (2)

as

min
y∈Yρ,α,λ
w,z,r,δ

{ ∑
i∈I

fiyi +
∑
j∈J

(
µB
j ρj + µA

j αj + µq

jλj
)

∑
j∈J
−
(
d
B

j ρj + (dB
j − d

B

j )wj
)
−
(
d
A

j αj + (dA
j − d

A

j )zj
)

+ rj + δ
}

(8a)

s.t. wj ≥ ρj , wj ≥ 0, zj ≥ αj , zj ≥ 0, rj ≥ −λj , rj ≥ 0, ∀j ∈ [J ] (8b)

δ ≥ F (y) (8c)

Next, we analyze structural properties of function F (y) = max
(β,v)∈Ω

{
∑
j∈J

max{dB

j , d
A

j }βj +
∑
i∈I

Ciyivi}

as a function of variables y ∈ Y in Proposition (3) (see Appendix C for a detailed proof)

Proposition 3. For any fixed values of variables y, F (y) <∞. Furthermore, F (y) is convex and

piecewise linear in y with finite number of pieces.

4. Solution Approaches

Given the two-stage characteristics of the problem and Proposition (3), it is natural to attempt to

solve formulation (8) (or equivalently, the DR model in (2)) with a decomposition algorithm. In

Section 4.1, we present our decomposition (cutting–plane) algorithm to solve the DRFL model in

(8). Then, in Sections 4.2, we derive valid lower bound inequalities for the master problem.

4.1. Decomposition Algorithm

Proposition 3 suggests that constraint (8c) describes the epigraph of a convex and piecewise lin-

ear function of decision variables in formulation (8). This observation facilitates us applying a

separation-based decomposition algorithm to solve model (8) as in Jiang et al. (2017), Thiele et al.

(2009), and Lei et al. (2016). Algorithm 1 presents DRFL–decomposition algorithm. Algorithm 1

is finite because we identify a new piece of the function F (y) each time when we augment the set

{L(y, δ) ≥ 0} in step 4, and the function F (y) has a finite number of pieces (Proposition 3).

4.2. Lower bound inequalities

Since the master problem is a relaxation of the DR problem (i.e., provide a lower bound), the tight-

ness of the lower bound is the key to convergence efficiency. In this section, we aim to incorporate

more second-stage information into the master problem without adding optimality cuts into the

master problem by exploiting the specific characteristics of the second-stage (recourse) problem. In

Proposition 4 and Proposition 5, we derive lower bound inequalities for the master problem, which

exploits the structure of the recourse problem (see Appendix D and Appendix E for a detailed

proof).

9



Algorithm 1: DRFL–decomposition algorithm.

1. Input. Feasible regions Y and Ω; Set of cuts {L(y, δ) ≥ 0} = ∅; LB = −∞ and UB =∞.

2. Master Problem. Solve the following master problem

Z = min
y∈Yρ,α,λ
w,z,r,δ

{ ∑
i∈I

fiyi +
∑
j∈J

(
µB
j ρj + µA

j αj + µq
jλj
)

+
∑
j∈J
−
(
d
B

j ρj + (dBj − d
B

j )wj
)
−
(
d
A

j αj + (dAj − d
A

j )zj
)

+ rj

+ δ
}

(9a)

s.t. wj ≥ ρj , wj ≥ 0, zj ≥ αj , zj ≥ 0, rj ≥ −λj , rj ≥ 0, ∀j ∈ [J ] (9b)

L(y, δ) ≥ 0 (9c)

and record an optimal solution (y∗, δ∗) and set LB = Z∗.

3. Sub-problem. With y fixed to y∗, solve the following problem

W = max
(β,v)∈Ω

{∑
j∈J

max{dBj , d
A

j }βj +
∑
i∈I

Ciyivi

}
(10a)

and record optimal solution (β∗, v∗) and set UB = min{UB, W ∗ + (LB − δ∗)}
4. if δ∗ ≥

∑
j∈J

max{dBj , d
A

j }β∗j +
∑
i∈I

Ciy
∗
i v
∗
i then

stop and return y∗ as the optimal solution to the DR formulation (2)

else

add the cut δ ≥
∑
j∈J

max{dBj , d
A

j }β∗j +
∑
i∈I

Ciyiv
∗
i and go to step 2.

end if

Proposition 4. Inequality (11) is a valid lower bound inequality for DRFL.

δ ≥
∑
j∈J

min{pj ,min
i∈I
{ti,j}}min{dB

j , d
A
j } (11)

Proposition 5. Inequality (12) is a valid lower bound inequality for DRFL.

δ ≥ min
j∈J

pj

{∑
j∈J

min{dB
j , d

A
j } −

∑
i∈I

Ciyi

}
(12)

5. Computational Experiments

In this section, we generate random instances of DRFL and compare our DR approach with the

SP approach and draw several insights. Specifically, we compare the optimal solutions of the DR-

bimodal in (8) with those yielded by: (1) SP-bimodal, a SP approach that considers bimodality of

demand (see Appendix F for the formulation), (2) DR-plain, a DR model that ignores the bimodal-

ity of the demand, and (3) SP-plain, a SP approach that ignores the bimodalitiy of demand. In the
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Table 2: DFRLC instances. Notation: I is # of locations, J is # of customers.

Inst JJJ III Inst JJJ III
1 10 5 7 40 20
2 10 10 8 40 40
3 20 10 9 50 25
4 20 20 10 50 50
5 30 15 11 100 50
6 30 30 12 100 100

plain models, we ignore the bimodality of demand and assume that it follow a single probability

distribution. However, SP-bimodal and SP-plain only differ in how the demand is sampled; from

two known distributions and from a single distribution, respectively. The SP models minimize the

fixed cost of opening facilities plus the expected transportation and unmet demand costs via the

the sample average approximation (SAA) approach (see, e.g., Kim et al. (2015); Kleywegt et al.

(2002) for a detailed discussion on SAA).

We summarize our computational study as follows. We first follow a distributional belief to

generate N independent and identically distributed (i.i.d) samples of each random parameter.

Second, we compute the upper and lower bounds information from the generated samples and use

them to obtain the (in-sample) optimal solutions of the DR model. Third, we solve the SP model

using the generated sample and compare (1) solution times of DR and SP, (2) optimal facility

locations of DR and SP, and (3) the in-sample and out-of-sample performance of the optimal

solutions of DR and SP. Section 5.1 presents the details of data generation and experimental design.

In Section 5.2, we compare solution times of DR and SP models. In Section 5.3, we compare the

optimal solutions of the DR and SP. In Section 5.4, we compare the out-of-sample performance of

these solutions. In Section 5.5, we conduct sensitivity analysis, and derive insights into DRFL.

5.1. Experimental Design

We construct 12 DRFL instances based on the same parameter settings and assumptions made in

the literature. We summarize our test instances in Table 2. Each of the 12 DRFL instances is

characterized by the number of customers J and number of candidate facilities I.

For each DRFL instance, we randomly generate a set of potential facility locations and cus-

tomer sites as uniformly distributed random numbers on a 100 by 100 plane (as in Basciftci et al.

(2019), Lei et al. (2014), Lei et al. (2016), and references therein). We compute the distance, ti,j ,

between each candidate location i ∈ [I] and customer location j ∈ [J ] in Euclidean sense (Bas-

ciftci et al., 2019; Lei et al., 2014). We generate fixed opening cost f from uniform distribution as

fi ∈ U [2000, 5000]. We set the capacity Ci = 150, for all i ∈ [I]. For most of the experiments, we

set the unit penalty cost of unmet demand pj > max{ti,j} at each j ∈ [J ] (as in Lei et al. (2014),

Lei et al. (2016), and references therein). We conduct a sensitivity analysis of these parameters in

Section 5.5.
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We follow the same procedures in the DR applications literature (see, e.g., Jiang et al. (2017)

Mak et al. (2014), Shehadeh et al. (2020)) to generate random parameters as follows. We randomly

sample the mean value of the demand before the event as µB ∈ U [20, 40] and after the event µA ∈
U [30, 60]. We set the standard deviation of the demand before and after the event as σB = 0.5µB

and σA = 0.5µA. To approximate the lower (dB, dA) and upper bound (d
B
, d

A
) values of (dB, dA), we

respectively use the 20% and 80% of the N in-sample data. We generate the in-sample data of dB

and dA by following lognormal (LogN) distributions. Specifically, we sample N = 1000 realizations

of dB
j , for all j ∈ [J ], from LogN with (µB, σB), and N = 1000 realizations of dA

j , for all j ∈ [J ], from

LogN with (µA, σA). We generate (qn1 , . . . , q
n
j ), n ∈ [N ], from Bernoulli distribution with µq = 0.8.

We generate data for the plain models by following the same steps.

For each instance of DRFL, we optimize the SP model with the generated N scenarios and the

DR model with the generated mean and support of random parameters. We implemented the SP,

DR, and DRFL–decomposition algorithm using AMPL2016 programming language calling CPLEX

V12.6.2 as a solver with default settings and relative MIP gap of 1-2%. We ran all experiments

on a computer with an Intel Core i7 processor, 2.5 GHz CPU, and 16 GB (1600MHz DDR3) of

memory. We imposed a solver time limit of 1 hour.

5.2. CPU Time

In this section, we compare solution times of SP and DR models. In addition to the default

capacity of C = 150, we study solution times of SP and DR with C = 100 and a tight capacity

of C ∈ U [20, 50] (i.e., uniformly generated as in Basciftci et al. (2019)). For each of the 12 DRFL

instances in Table 2 and choice of C, we randomly generate 5 instances as described in Section 5.1

for a total of 180 SAAs and DR instances. We solve each instance using the SAA formulation of the

SP model (see Appendix F for the formulation) and our DR model via the DRFL–decomposition

algorithm.

In Table 3, we compare the minimum (Min), average (Avg), and maximum (Max) SP and DR

solution times (in seconds) of the 180 instances. From Table 3, we first observe that solution times

increase as the number of customer and locations increase under all values of C. Second, we observe

that the SP takes a significantly longer time to solve each of the 180 instances than the DR model.

The SP can solve all of the 165 SAAs corresponding to instances 1–11 with solution times ranging

from 1 to 2787 seconds. The SP terminates with no optimal solution (∼ 10% MIP relative gap) for

all of the 15 SAAs instances corresponding to instance 12.

In contrast, solution times of the DR ranges from 0.1 to 187 seconds for instances 1–10. The

DR can quickly solve all of the 90 DRFL instances corresponding to instance 11 and 12 with a

relaxed tolerance level ε = 0.01 in Algorithm 1 (i.e., the algorithm terminates with near-optimal

solutions). Note that when solving these instances with ε := UB−LB
UB = 0.01, the gap remained at

0.01% for several hours. This could indicate that CPLEX finds good integer solutions early, but
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Table 3: Solution times (in seconds) using the SP and DR formulations. Instances marked with ∗ are solved with ε := UB−LB
UB

= 0.01

Inst Model C = 150 C = 100 C ∈ [20, 50]
Min Avg Max Min Avg Max Min Avg Max

1 (10, 5) DR 0.2 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1
SP 3.6 4.5 6.8 4 6 7 1.0 1.0 1

2 (10, 10) DR 0.3 0.4 0.6 0.4 0.5 6 0.1 0.1 0.1
SP 8 8 9 17 32 51 2 3 4

3 (20,10) DR 0.2 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1
SP 89 92 94 5 15 31 4 4 5

4 (20, 20) DR 2.0 37 96 1.0 1.6 2.1 0.1 0.1 0.2
SP 657 763 974 208 573 1079 11 14 24

5 (30,15) DR 0.3 0.7 0.9 0.1 0.1 0.2 0.1 0.1 0.1
SP 60 75 126 13 41 77 9 10 11

6 (30, 30) DR 0.3 0.6 0.9 1.8 2.8 5.2 0.1 0.1 0.2
SP 215 273 427 97 172 285 34.0 45.0 51

7 (40, 20) DR 0.6 1.6 2.1 0.1 0.1 15 0.1 0.1 0.10
SP 185.9 291 417 69 171 259 19 22 24

8 (40, 40) DR 4.2 56 138 1.9 4.3 6.4 0.2 0.2 0.2
SP 2164 2467 2690 291 499 783 77 97 136

9 (50, 25) DR 1.0 2.3 5.5 0.1 0.1 0.1 0.1 0.1 0.1
SP 357.2 481 721 70 331 781 32 37 41

10 (50, 50) DR 3.7 8.9 16.7 17 104 187 0.1 0.1 0.1
SP 1183 1183 1889 464 1110 2787 124 145 220

11 (100, 50)∗ DR 0.4 0.5 0.6 0.12 0.13 0.14 0.1 0.1 0.07
SP 211 319 673 242 874 1931 206 230 255

12 (100, 100)∗ DR 32 65 114 39.0 63.0 86.0 0.1 0.2 0.2
SP - - - - - - - - -

13



examine many additional nodes to prove optimality.

The results in Table 3 also suggest that it is easier and faster to solve DRFL instances with

a tighter capacity C ∈ [20, 50] than with a relaxed capacity of C = 100, 150. Consider instance 8

(40, 40), for example. Increasing C from U [20, 50] to 100 increased the average solution times of

the DR and SP respectively from 0.2 and 97 to 4.30 and 499 seconds. One possible explanation

for the increase in solution times could be that the relaxed capacity allows for satisfying a larger

amount of demand, which may cause both the SP and DR models to search for various alternative

combinations of facility locations than under the tighter capacity.

Finally, it is worthy of mentioning that C is the only parameter affecting the solution times

significantly. Using other values of the fixed cost, f , and unmet penalty, p, we obtain similar

solution times.

5.3. Optimal Open Facility Locations

In this section, we compare the optimal facility location decisions of the DR and SP models. For

presentation brevity and illustrative purposes, we consider instances 3 (20, 10), 8 (40, 40), and

12 (100, 100) as examples of relatively small, medium, and large instances, respectively. Table 4

presents the optimal decisions of the SP and DR models under the default parameter settings.

From Table 4 we first observe that to mitigate the ambiguity of the demand, the DR models

tends to open more facilities than the SP models. Consider instance 8, for example, the DR-bimodal

and DR-plains respectively open 15 and 10 facilities as compared to 9 and 8 facilities opened by

the SP-bimodal and SP-plain, respectively. DR-bimodal and SP-bimodal open more facilities than

their plain counterparts.

Second, we observe that the DR-bimodal mitigates the bimodality of the demand by opening

more facilities than the DR-plain. By opening more facilities, the DR-bimodal satisfies a larger

amount of customer demand than the SP models and the DR-plain (reflected by the zero unsatisfied

demand in Tables 5–6 presented later in Section 5.4). Although this comes at a higher (one-time)

fixed cost associated with opening facilities, as we show in the next section, it results in a lower

total cost and better service quality (in terms of satisfying customers demand) in the long run.

5.4. Out-of-Sample Simulation Performance

In this section, we compare the simulation performance of the optimal solutions of the DR and

SP models. Considering that the results obtained for different instances consistently share some

common features, for presentation brevity and illustrative purposes, we again present results with 3

(20, 10), 8 (40, 40), and 12 (100, 100) as examples of relatively small, medium, and large instances,

respectively.

We evaluate the out-of-sample performance of the optimal DR and SP solutions to these in-

stances (see Table 4) under both perfect (in-sample) and misspecified (out-of-sample) distributional
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Table 4: Optimal Facility Location of SP and DR models.

3(20, 10) 8 (40, 40) 12 (100, 100)
Model # open location # open location # open location
DR-bimodal 8 1,3,4,5,7,8,9,10 15 1,9,12,13,15,16, 35 1,2,3,4,5,6,8,10,

19,20,22, 24,26, 11,12,13,18,19,20,
37,38,39,40 21,22,23,26,27,28,

29,31,32,33,34,35,
36,40,41,43,45,46,
47,49,50

SP-bimodal 5 1,3,4,8,9 9 12,13,19,22,24, 22 1,2,3,4,6,12,17,18,
26,37,38 22,24,25,27,35,36,

37,38,41,42,43,44,
45,46

SP-plain 5 1,3,5,8,9 8 13,19,22,24,26, 19 1,3,4,6,12,17,18,22,
37,38,40 24,25,27,35,37,41,

42,44,45,46,47

DR-plain 5 1,3,4,8,9 10 9,12,13,15,19,22, 25 1,2,3,4,6,9,11,12,17,
24,37,38,40 18,22,24,25,27,32,

35,36,37,38,41,42,
43,44,45,46

information as follows. First, we fix the optimal first-stage decisions y in the SP model. Then,

we solve the second-stage recourse problem in (3) using the following two sets of N ′ = 10000 out-

of-sample data (qn1 , d
B,n

1 , dA,n

1 ), . . . , (qnJ , d
B,n

J , dA,n

J ), for all n ∈ [N ′], to compute the corresponding

second stage and unmet demand costs.

1. Perfect distributional info: we use the same parameter settings and distributions (i.e., LogN)

that we use for generating the N in-sample data to generate the N ′ data points.

2. Misspecified distributional info: we use the same mean values (µq, µB, µA) and standard

deviations (σB, σA) of random parameters (q, dB, dA), but we vary distribution type of (dB,

dA) to generate the N ′ data. Specifically, we follow Weibull distributions with ranges [0, d
B
]

and [0, d
A
] to generate (dB,n

1 , dA,n

1 ), . . . , (dB,n

J , dA,n

J ), for all n ∈ [N ′]. This is to simulate the

out-of-sample performance of the DR and SP optimal solutions when the in-sample data is

biased.

Table 5 presents the means and quantiles of second-stage cost (2-stage), cost of unmet demand,

and total cost yielded by optimal solutions of the DR and SP in 4 under perfect (in-sample)

distributional information.

Clearly, by opening more facilities, the DR models satisfy a larger amount of customer demand

than their SP counterparts. The DR-bimodal has the highest fixed cost because it opens the largest

number of facilities as compared to other models. However, DR-bimodal has the best performance

with zero unmet demand and thus a significantly lower second-stage and total costs on average and

at all quantiles than that of the SP-bimodal and the plain models. In fact, the DR-bimodal has

a significantly better performance at the 0.75- and 0.95- quantiles, especially for instance 8 and

12. By opening more facilities than the SP models, DR-plain satisfy a larger amount of demand

and thus has a lower second stage and total costs. The SP-plain, which open the least number

of facilities and thus has the lowest fixed cost, yields the highest unmet demand and total costs.
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Table 5: Out-of-sample performance of optimal schedules given by DR and SP schedules under perfect distributional

information (LogN).

Inst Model Metric Fixed 2-stage unmet TC

3 DR- bimodal mean 26815 7416 0 34231

SP-bimodal 14080 23912 8699 37992

SP-plain 14080 23917 8846 37997

DR-plain 14080 23912 8699 37992

DR- bimodal 0.75–quantile 26815 9348 0 36163

SP-bimodal 14080 29117 12600 43197

SP-plain 14080 28717 12300 42797

DR-plain 14080 29117 12600 43197

DR- bimodal 0.95–quantile 26815 10353 0 37168

SP-bimodal 14080 59773 41700 73853

SP-plain 14080 61105 43035 75185

DR-plain 14080 59773 41700 73853

8 DR- bimodal mean 37975 12643 0 50618

SP-bimodal 22095 44827 26168 66922

SP-plain 19432 66287 50100 85719

DR-plain 28282 25372 4539 53654

DR- bimodal 0.75–quantile 37975 13353 0 51328

SP-bimodal 22095 62558 42900 84653

SP-plain 19432 92138 75000 111570

DR-plain 28282 25291 4539 53573

DR- bimodal 0.95–quantile 37975 14292 0 52267

SP-bimodal 22095 100849 79770 122944

SP-plain 19432 131562 113400 150994

DR-plain 28282 57130 34500 85412

12 DR- bimodal mean 98817 20437 0 119254

SP-bimodal 58089 149360 120957 207449

SP-plain 49253 262349 239700 311602

DR-plain 77368 44519 11861 121887

DR- bimodal 0.75–quantile 98817 21108 0 119925

SP-bimodal 58089 185324 155700 243413

SP-plain 49253 300582 277200 349835

DR-plain 77368 91453 53700 168821

DR- bimodal 0.95–quantile 98817 22123 0 120940

SP-bimodal 58089 245994 213960 304083

SP-plain 49253 355743 331200 404996

DR-plain 77368 91453 53700 168821

These results imply that when the distributional information is accurate, the DR- bimodal yields

near-optimal solutions that provide a better quality of service by satisfying customers demand.

Table 6 presents the out-of-sample performance of the DR and SP models under misspecified

distributional information. From these results, we observe that the DR-bimodal yields zero unmet
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Table 6: Out-of-sample performance of optimal schedules given by DR and SP schedules under misspecified distri-

butional information (Weibull).

Inst Model Metric Fixed 2-stage unmet TC

3 DR- bimodal mean 26815 8806 0 35621

SP-bimodal 14080 24054 8700 38134

SP-plain 14080 26022 10800 40102

DR-plain 14080 24054 8700 38134

DR- bimodal 0.75–quantile 26815 9493 0 36308

SP-bimodal 14080 29431 12900 43511

SP-plain 14080 32912 16500 46992

DR-plain 14080 29431 12900 43511

DR- bimodal 0.95–quantile 26815 10427 0 37242

SP-bimodal 14080 58501 40500 72581

SP-plain 14080 63624 45600 77704

DR-plain 14080 58501 40500 72581

8 DR- bimodal mean 37975 11697 0 49672

SP-bimodal 22095 44759 26100 66854

SP-plain 19432 74340 58651 93772

DR-plain 28282 29723 7854 58005

DR- bimodal 0.75–quantile 37975 12224 0 50199

SP-bimodal 22095 62558 42900 84653

SP-plain 19432 95649 79200 115081

DR-plain 28282 31150 7800 59432

DR- bimodal 0.95–quantile 37975 12950 0 50925

SP-bimodal 22095 100879 79800 122974

SP-plain 19432 132329 114735 151761

DR-plain 28282 69371 44235 97653

12 DR- bimodal mean 98817 19084 0 117901

SP-bimodal 58089 148006 120600 206095

SP-plain 49253 277469 255600 326722

DR-plain 77368 51341 16800 128709

DR- bimodal 0.75–quantile 98817 19650 0 118467

SP-bimodal 58089 184121 155700 242210

SP-plain 49253 313893 291300 363146

DR-plain 77368 61319 25200 138687

DR- bimodal 0.95–quantile 98817 20406 0 119223

SP-bimodal 58089 244354 213900 302443

SP-plain 49253 367534 343800 416787

DR-plain 77368 122469 84000 199837

demand and the lowest total cost as compared to the DR-plain and the SP. The cost reductions

are reflected in all quantiles of the random second-stage cost and total cost. The DR-plain has a

lower total costs than the two SP models. Moreover, the SP-bimodal satisfies a larger amount of

demand and yields a lower second-stage and total costs than the SP-plain.
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These simulation results show how the DR-bimodal approach can produce facility location

decisions that are robust (i.e., maintain a good performance under various probability distributions

of demand). Satisfying customer demand is a desirable property in many, if not all, real-world

applications.

5.5. Sensitivity Analysis

In this section, we study the sensitivity of DR-bimodal and SP-bimodal to different parameter

settings. For illustrative purposes, we consider instance 8 (40, 40) for this experiment. For each

experiment, we obtain the DR and SP optimal solutions and then simulate their performance under

a sample of 10000 scenarios of the demand generated from LogN distribution.

Impact of event likelihood, µqµqµq

First, we analyze the impact of µq on the optimal number of open facilities, average total

cost, average cost of unmet demand, and average transportation cost. We fix f = 5000 and vary

µq ∈ {0.3, 0.5, 0.8, 1}. Note that µq = 0.3 and 0.8 indicate that the event occurs 70% and 20% of

the time on average, respectively. We keep all other parameter settings as described in Section 5.1.

Figures 1a–1d compares the results under different µq. It is apparent from Figure 1a that DR tends

to open more facilities to mitigate the ambiguity and bimodality of the demand as the event is more

likely to occur (i.e., µq decreases). Figure 1b indicates that the average total costs of the optimal

DR and SP solutions are approximately equal when µq approaches to the lower and upper limits

of the specified set. The SP solution results in a slightly better average total cost when µq = 0.3

and 1. On the other hand, when µq = 0.5, the average total cost reaches to the peak point for

the optimal SP solution, which is significantly higher than the average total cost of the optimal

DR solution. These results indicate that the average total cost is quite sensitive to µq for the SP

approach. The SP approach shows poor performance compared to the DR approach, especially

when the event’s probability is similar to the probability that the event does not occur. Figure 1c

and Figure 1d also show that the optimal DR solution provides a better service quality with 0

unmet demand and less or approximately the same transportation cost.

Impact of capacity

Second, we analyze the optimal number of open facilities as a function of the capacity parameter

C. Specifically, we fix f = 5000 and vary C ∈ {100, 150, 200, 250}. As C increases from 100 to 250,

both models open fewer facilities. When C ∈ {100, 150, 200, 250}, the numbers of open facilities

by DR are {22, 15, 11, 11}, and by the SP are {12, 8, 7, 5}. It makes sense to open fewer facilities

when the capacity increases as each facility can satisfy higher demand. The DR solutions result in

0 unmet demand and significantly less transportation cost than the SP model (see Figures 1e–1f),

thus providing better service quality.

Impact of variability in demand/demand ranges
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(a) No. of open facilities vs µq (b) Average total cost vs µq

(c) Average cost of unmet demand vs µq (d) Average transportation cost vs µq

(e) Average cost of unmet demand vs C (f) Average transportation cost vs C

Figure 1: Comparison of the results under different parameter settings

Finally, we analyze the sensitivity of the DR and SP solutions to the variability and volume of

the demand range. In addition to the base range (Range 1: µB ∈ U [20, 40] and µA ∈ U [30, 60]),

we consider two additional ranges. In Range 2, we increase the variability (difference between the

lower and upper bounds) of µB and µA to µB ∈ [10, 50] and µA ∈ [20, 70]. In Range 3, we keep the

difference between the upper and lower bounds of µB and µA as in Range 1 (20 and 30, respectively)

and increase the demand volume (lower and upper bounds) to µB ∈ [30, 50] and µA ∈ [40, 70].

Figure 2 presents the optimal number of open facilities, average cost of unmet demand, and

average transportation cost under Range 1–Range 3. It is quite apparent from Figure 2a that

both models tend to open more facilities under a higher variability and volume of the demand. By

opening more facilities than SP, the DR mitigates the increase in the variability and amount of

the demand better by maintaining a zero unmet demand (see Figure 2b) and significantly lower

transportation cost (Figure 2c). The average second stage cost of the SP under Range 1, Range 2,

and Range 3 are respectively 2.75, 1.5, and 1.5 times higher than that of the DR.
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(a) No. of open facilities (b) Average cost of unmet demand

(c) Average transportation cost

Figure 2: Effect of demand range

Our experiments in this section provide an example of how our computationally efficient DR

approach can be used to generate robust facility locations decisions under different parameter

settings. Practitioners should thus decide whether satisfying customer demand (by adopting DR

solutions) is more important for their business and reputation or not (by selecting the SP solution

which performs poorly in terms of demand satisfaction, transportation cost, and often total cost).

6. Conclusion

In this paper, we consider a facility location problem, recognizing the bimodality of random de-

mand. That is, customer demand tends to display two spatially distinct distributions. We assume

that these two distributions are ambiguous, and only their mean values and ranges are known.

Therefore, we propose a distributionally robust facility location (DRFL) problem that seeks to find

a subset of locations from a given set of candidate sites to open facilities to minimize the fixed cost

of opening facilities, and worst-case expected costs of transportation and unmet demand over a

family of distributions characterized through the known means and support of these distributions.

We propose a decomposition-based algorithm to solve DRFL, which include valid lower bound

inequalities in the master problem.

Using a set of DRFL instances of various sizes constructed based on prior studies, we conduct

a series of numerical experiments to draw insights into DRFL. Specifically, we demonstrate that:

(1) our DR-bimodal approach has a superior computational performance as compared to the SP
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approach, (2) DR-bimodal can produce facility locations decisions that can satisfy customer demand

(providing a better quality of service) and maintain lower unmet demand and transportation costs

than the SP-bimodal, SP-plain, and DR-plain models (which fail to satisfy customer demand and

have higher transportation costs), under various probability distributions (and extreme scenarios) of

the random parameters. Although we use the occurrence of a random event to illustrate our ideas,

to present our model and derive useful insights, our approach is applicable in other applications

of DRFL in which the distribution of the demand is bimodal, i.e., tends to display two spatially

distinct and unknown distributions.

We suggest the following areas for future research. First, due to the lack of data, our results

are based on assumptions and parameter settings made in prior studies, and we assume that we

know the capacity and the number of potential facility locations. We aim to extend our model to

optimize the capacity and location of the facilities jointly. Second, we want to extend our approach

by incorporating multi-modal probability distributions and higher moments of the demand in a

data-driven DR approach. Third, it would be theoretically interesting to extend our approach

by considering locating facilities in a country-wide setting (i.e., a larger network) and other non-

classical settings such as mobile facility. This may require us to investigate efficient exact methods to

solve larger instances of these problems under the general case of multi-modal distribution. Fourth,

we aim to incorporate other sources of uncertainty (e.g., random capacity, product usability and

lifetime, etc.) and objectives (e.g., holding cost).
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Appendices

Appendix A. Proof of Proposition 1

Proof. For a fixed y, we can formulate problem (4) as the following linear functional optimization

problem.

max
P≥0

∫
S
Q(y, q, dB, dA) dP (A.1a)

s.t.

∫
S
dB
j dP = µB

j ∀j = 1, . . . , J (A.1b)∫
S
dA
j dP = µA

j ∀j = 1, . . . , J (A.1c)∫
S
qj dP = µq

j ∀j = 1, . . . , J (A.1d)∫
S
dP = 1 (A.1e)

Letting ρ = [ρ1, . . . , ρJ ]T , α = [α1, . . . , αJ ]>, λ = [λ1, . . . , λJ ]>, and θ be the dual variable

associated with constraints (A.1b), (A.1c), (A.1d), and (A.1e), respectively, we present problem

(A.1) in its dual form:

min
(ρ,α,λ)∈RJ ,θ∈R

∑
j∈J

µB
j ρj + µA

j αj + µq

jλj + θ (A.2a)

s.t.
∑
j∈J

(dB
j ρj + dA

j αj + qjλj) + θ ≥ Q(y, q, dB, dA) ∀(q, dB, dA) ∈ S (A.2b)

where ρ, α, λ, and θ are unrestricted in sign, and constraint (A.2b) is associated with the pri-

mal variable P. Under the standard assumptions that: (1) µB
j (µA

j ) lies in the interior of the set

{
∫
S d

B
j (dA

j ) dQ : Q is a probability distribution over S}, and (2) µq

j lies in the interior of the

set {
∫
S qj dQ : Q is a probability distribution over S} for each customer site j, strong duality

hold between (A.1) and (A.2) (Bertsimas and Popescu (2005); Jiang et al. (2017); Mak et al.

(2014); Shehadeh et al. (2020)). Note that for fixed (ρ, α, λ, θ), constraint (A.2b) is equivalent to

θ ≥ max
(q,dB,dA)∈S

{Q(y, q, dB, dA) −
∑

j∈J(dB
j ρj + dA

j αj + qjλj)}. Since we are minimizing θ in (A.2),

the dual formulation of (A.1) is equivalent to:

min
ρ,α,λ

∑
j∈J

µB
j ρj + µA

j αj + µq

jλj + max
(q,dB,dA)∈S

{
Q(y, q, dB, dA) +

∑
j∈J
−(dB

j ρj + dA
j αj + qjλj)

}
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Appendix B. Proof of Proposition 2

Proof. For fixed y ∈ Y and ξ = (q, dB, dA), the dual of formulation (3) is as follow

Q(y, q, dB, dA) = max
β,v

∑
j∈J

(qjd
B
j + (1− qj)dA

j )βj +
∑
i∈I

Ciyivi (B.1a)

s.t. βj + vi ≤ ti,j , ∀i ∈ [I],∀j ∈ [J ] (B.1b)

βj ≤ pj , ∀j ∈ [J ] (B.1c)

vi ≤ 0, ∀i ∈ [I] (B.1d)

where β = [β1, . . . , βJ ]> and v = [v1, . . . , vI ]
> are the dual variables associated with constraints (3b)

and (3c), respectively. Note that we can rewrite constraints (B.1b) as vi ≤ min
j∈J
{ti,j − βj},∀i ∈ [I].

Given that vi ≤ 0 and the objective of maximizing a positive number times βj , then without loss of

optimality, we can assume that βj ≥ 0 (note that if βj < 0 for one j, then vi ≤ min
j′ 6=j
{ti,j′ − βj′} and

vi ≤ ti,j + |βj | = positive number. Given that vi ≤ 0 then condition vi ≤ ti,j + |βj | is redundant,

i.e., vi ≤ min
j′ 6=j
{ti,j′ − βj′}, and the first term in the objective function will be negative for j).

Next, we derive several useful algebraic expressions:

max
qj∈{0,1},
dBj ∈[dBj ,d

B
j ]

dAj ∈[dAj ,d
A
j ]

(qjd
B
j + (1− qj)dA

j )βj =

{
d
B

j βj if qj = 1

d
A

j βj if qj = 0

}

≡ max{dB

j , d
A

j }βj . (B.2)

max
dBj ∈[dBj ,d

B
j ]

−dB
j ρj =

{
−dB

j ρj if ρj ≤ 0

−dB
j ρj if ρj > 0

}
≡ −

(
d
B

j ρj + (dB
j − d

B

j )(ρj)
+
)

(B.3)

max
dAj ∈[dAj ,d

A
j ]

−dA
j αj =

{
−dA

j αj if αj ≤ 0

−dA
j αj if αj > 0

}
≡ −

(
d
A

j αj + (dA
j − d

A

j )(αj)
+
)

(B.4)

max
qj∈{0,1}

−qjλj =

{
−λj if λj ≤ 0

0 if λj > 0

}
≡ (−λj)+ (B.5)
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Next, we observe that the feasible region Ω := {(B.1b)−(B.1d)} ofQ(y, q, dB, dA) in (B.1) is bounded

polyhedral and thus the optimal solution (β∗, v∗) to (B.1) is an extreme point of Ω. In addition, the

support S is bounded. It follows that we can equivalently reformulate max
(q,dB,dA)∈S

{
Q(y, q, dB, dA) +∑

j∈J −(dB
j ρj + dA

j αj + qjλj)
}

as

max
(β,v)∈Ω

(q,dB,dA)∈S

[∑
j∈J

(qjd
B
j + (1− qj)dA

j )βj +
∑
i∈I

Ciyivi +
∑
j∈J

(−dB
j ρj − dA

j αj − qjλj)
]

max
(β,v)∈Ω

∑
j∈J

max
qj∈{0,1},
dBj ∈[dBj ,d

B
j ]

dAj ∈[dAj ,d
A
j ]

(qjd
B
j + (1− qj)dA

j )βj +
∑
i∈I

Ciyivi

+
∑
j∈J

max
dBj ∈[dBj ,d

B
j ]

−dB
j ρj + max

dAj ∈[dAj ,d
A
j ]

−dA
j αj + max

qj∈{0,1}
−qjλj (B.6)

Using (B.2)–(B.5), we can rewrite (B.6) as

max
(q,dB,dA)∈S

{
Q(y, q, dB, dA)−

∑
j∈J

(dB
j ρj + dA

j αj + qjλj)
}

≡ max
β,v

{∑
j∈J

max{dB

j , d
A

j }βj −
(
d
B

j ρj + (dB
j − d

B

j )(ρj)
+
)
−
(
d
A

j αj + (dA
j − d

A

j )(αj)
+
)

+ (−λj)+

+
∑
i∈I

Ciyivi

}
(B.7)

This complete the proof.

Appendix C. Proof of Proposition 3

Proof. First, note that feasible region Ω := {(B.1b) − (B.1d)} is bounded and independent of y.

Therefore, F (y) = max
(β,v)∈Ω

{ ∑
j∈J

max{dB

j , d
A

j }βj +
∑
i∈I

Ciyivi

}
< ∞. Second, for any fixed β and v,∑

j∈J
max{dB

j , d
A

j }βj+
∑
i∈I

Ciyivi is a linear function of y. It follows that F (y) is a maximum of a set of

linear functions of y and hence convex and piecewise linear. Third, it is clear that each linear piece

of F (y) is associated with one distinct extreme point of polyhedra Ω. Hence, F (y) is finite because

the bounded polyhedra Ω has a finite number of extreme points. This complete the Proof.

Appendix D. Proof of Proposition 4

Proof. Recall from the definition of the ambiguity set that the lowest demand of each customer

j equals to min{dB
j , d

A
j }. Now if we assume that the facilities are uncapacitated (i.e., we relax

the capacity restriction), then we will be able to satisfy the demand of each customers j ∈ [J ] at
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the lowest transportation cost from the nearest open facility i ∈ I ′ := {i : yi = 1}. Given that

I ′ ⊆ I, then the lowest transportation cost from customer i to the nearest facility i ∈ I ′ must be

at least equal to or larger than min
i∈I
{ti,j}min{dB

j , d
A
j }. If pj min{dB

j , d
A
j } > min

i∈I
{ti,j}min{dB

j , d
A
j },

then the second-stage recourse objective cannot be less than
∑
j∈J

min
i∈I
{ti,j}min{dB

j , d
A
j }. Otherwise,

δ ≥
∑
j∈J

pj min{dB
j , d

A
j }. It follows that (D.1) is a valid lower bound.

δ ≥
∑
j∈J

min{pj ,min
i∈I
{ti,j}}min{dB

j , d
A
j } (D.1)

Appendix E. Proof of Proposition 5

Proof. Note that the lowest demand for all customers is
∑
j∈J

min{dB
j , d

A
j } whereas the total capacity

available over all facilities is
∑
i∈I

Ciyi. This means that at least
∑
j∈J

min{dB
j , d

A
j } −

∑
i∈I

Ciyi demands

are not satisfied whenever the lowest demand exceeds the total capacity. Since the minimum unit

penalty for unsatisfied demand is min
j∈J

pj , (E.1) is a valid lower bound.

δ ≥ min
j∈J

pj

{∑
j∈J

min{dB
j , d

A
j } −

∑
i∈I

Ciyi

}
(E.1)

Appendix F. SP Formulation

min
y∈Y⊆{0,1}Ix,u

∑
i∈I

fiyi +
1

N

N∑
n=1

[∑
j∈J

∑
i∈I

ti,jx
n
i,j +

∑
j∈J

pju
n
j

] (F.1a)

s.t.
∑
i∈I

xni,j + unj = qnj d
B,n

j + (1− qnj )dA,n

j , ∀j ∈ [J ] ∀n ∈ [N ] (F.1b)

∑
j∈J

xni,j ≤ Ciyi, ∀i ∈ [I], ∀n ∈ [N ] (F.1c)

unj , x
n
i,j ≥ 0, ∀i ∈ [I], j ∈ [J ], ∀n ∈ [N ] (F.1d)

References
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