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Abstract: Accurate prediction of the remaining useful life (RUL) of lithium–ion batteries is the focus
of lithium–ion battery health management. To achieve high–precision RUL estimation of lithium–ion
batteries, a novel RUL prediction model is proposed by combining the extraction of health indicators
based on incremental capacity curve (IC) and the method of improved adaptive relevance vector
machine (RVM). First, the IC curve is extracted based on the charging current and voltage data.
To attenuate the noise effects on the IC curve, Gaussian filtering is used and the optimal filtering
window is determined to remove the noise interference. Based on this, the peak characteristics of the
IC curve are analyzed and four groups of health indicators are extracted, and the strong correlation
between health indicators and capacity degradation is determined using Pearson correlation analysis.
Then, to optimize the traditional fixed kernel parameter RVM model, an RVM regression model
whose kernel parameters are optimized by the Bayesian algorithm is established. Finally, four sets
of datasets under CS2 battery in the public dataset of the University of Maryland are carried out
for experimental validation. The validation results show that the improved RVM model has better
short–term prediction performance and long–term prediction stability, the RUL prediction error is
less than 20 cycles, and the mean absolute error is less than 0.02. The performance of the improved
RVM model is better than that of the traditional RVM model.

Keywords: lithium–ion battery; incremental capacity curve; Gaussian filtering; adaptive kernel
function; remaining useful life estimation

1. Introduction

As the reserves of traditional energy sources are decreasing, the development of
new energy sources such as renewable energy and green energy has become the future
direction of energy development [1]. With the advantages of high specific energy, small
size, and recyclability, lithium–ion batteries have become one of the main research objects
and application directions in the field of new energy. Therefore, how to effectively manage
the lithium–ion battery state is the premise and key to the safe and stable operation of
the lithium battery system [2]. Among them, remaining useful life is a key point in the
process of battery management, and is also one of the indicators to evaluate the aging
degree of the battery [3]. A highly accurate prediction of RUL can ensure the safe operation
of lithium–ion batteries and avoid the occurrence of safety hazards.

RUL is the number of remaining charge/discharge cycles before the battery reaches
the failure threshold under certain charge/discharge conditions [4]. Usually, the battery
reaches the end of life (EOL) when the capacity degrades to 70% or 80% of the rated
capacity, and the RUL can obtain the remaining number of cycles to reach the EOL of the
lithium–ion battery in advance to give an early warning of the aging battery and effectively
reduce the possibility of failure. At the same time, the complex electrochemical mechanism
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involved in battery aging makes the RUL estimation method more challenging. In recent
years, model–based methods have been gradually replaced by data–driven methods in
battery–aging diagnosis and evaluation, and the study of how to use externally measurable
voltage and current data, etc., in the battery–aging process to replace the complex internal
battery–aging mechanism is the focus of scholars’ research [5]. In this regard, data–driven
methods have been widely studied and applied. The data–driven approach can be applied
to various types of batteries and can achieve more accurate estimation, which is not possible
with model–based approaches [6]. The essence of the data–driven approach is to extract
health indicators that characterize the historical and current data of the battery system to
predict the next stage of battery aging state.

How to extract health indicators (HIs) to qualitatively characterize the aging character-
istics of batteries is an important prerequisite for using data–driven methods. Many studies
have used direct health characteristics such as capacity degradation trend and internal resis-
tance as objects of study, but it is difficult to obtain capacity degradation data and internal
resistance changes of lithium–ion batteries during actual use, so it is not appropriate to use
direct health characteristics as the object of study. Therefore, many scholars have extracted
numerous features as HIs for their research by using external measurable battery data such
as voltage, current, temperature, and time variation scales [7,8]. Guo et al. [9] extracted 14
health features by studying the regular changes of voltage and current curves during the
charging phase, and used gray correlation analysis (GRA) to investigate the correlation
between HIs and capacity degradation using NASA data for validation, and good results
were achieved. However, such a method can only be extracted at some high sampling
frequency with intact information, and if the sampling interval is large, such a method to
study with the help of curve transformation law does not apply to data with incomplete
information. Compared with the traditional methods, the use of incremental capacity
analysis (ICA) [10] and differential voltage analysis (DVA) [11] has good performance in
estimating RUL and can reflect the aging mechanism of the battery. ICA and DVA start
with IC and differential voltage (DV) curves by deriving the capacity–voltage curve and
studying the peak size, location, and area variation law [12]. DVA has limited application
for RUL, which is a capacity–based study, because it is mainly for voltage variation. There-
fore, the IC curve is more widely used in predicting battery capacity and RUL. In addition,
ICA–based RUL estimation has shown good adaptability to the uniform chemical evolution
process of different batteries. Dubarry et al. [13] conducted a large number of experiments
to verify the correlation between the peak change of IC curve and the phase change of
cathode material using different batteries, and related the IC curve change pattern to the
battery–aging mechanism and attributed it to three degradation modes, namely loss of
lithium inventory (LLI) and loss of active material on the positive and negative electrodes
(LAMNE, LAMPE, respectively). In addition, a large number of studies have verified the
feasibility of IC curves for capacity estimation. Based on IC curves, more scholars use
data–driven methods to go for RUL estimation. For example, Lin et al. [14] used the ICA
method with the backpropagation neural network (BPNN) to convert constant–current
and constant–voltage charging data into IC curves, and then built corresponding BPNN
for multiple voltage segments to supplement the information, and finally experimentally
verified that the maximum average absolute error of the estimated capacity did not exceed
2%. Zhou et al. [15] proposed a new RUL estimation method based on incremental capacity
analysis and Gaussian process regression (GPR). The estimation method was constructed
by analyzing the characteristics of battery aging under high rate charging, and finally
the proposed method was validated on two rechargeable battery datasets, and the model
estimation accuracy was greatly improved.

The IC curve is defined as dQ/dV and the discretization can be approximated as
∆Q/∆V. Among them, Q represents the current capacity of the battery and V refers to the
current terminal voltage value of the battery. The step size ∆ depends on the sampling
interval of the experimental data, i.e., the sampling frequency. Li et al. [16] studied in depth
the effect of different sampling frequencies on the peak of the IC curve. They compared



Metals 2022, 12, 1331 3 of 17

six different sampling frequencies and found that too high a sampling frequency makes
the peak appear large and noisy due to the appearance of a voltage plateau, which makes
the derivative curve spike. Therefore, it is concluded that the peak of the IC curve is
highly sensitive to noise. Thus, how to obtain a smooth IC curve is a prerequisite for
extracting a reliable HI. Nowadays, some scholars smooth the volume–voltage curve by
mathematical models [17], such as the peak–fitting function and least–squares method, and
then obtain the smooth IC curve, but this method tends to cover the original characteristic
information of IC and artificially create the characteristics of the IC curve. On the other
hand, many scholars have proposed a series of curve–noise–reduction methods starting
from IC curves, such as moving average filtering [18], least–squares [19], Gaussian filter [7],
support vector regression [20], Savitzky–Golay (S–G) filtering [21], etc. The Gaussian filter
is widely used due to its simplicity, fast operation speed, and ease at finding the suitable
window length. Combining the above, the curve–denoising method studied in this paper
carries out research with Gaussian filtering as the core.

The selection of a suitable prediction model is the key to accurate RUL prediction.
RVM is a machine learning method well–suited for lithium–ion battery RUL prediction
because it has the advantages of low computational effort, no need to satisfy Mercer’s
condition for the kernel function, and strong generalization ability [22]. Chen et al. [23]
proposed a fusion algorithm of RVM and the generalized learning system (BLS), firstly, the
training data are input into the BLS network, different prediction starting points are set, and
the corresponding prediction data are output. The experimental results show that the BLS–
RVM has higher prediction accuracy and stronger long–term prediction and generalization
ability, and its root–mean–square error is about 0.01. Wei et al. [24] introduce the phase–
space reconstruction method as the input of RVM in order to enhance the long–term
prediction ability of the RVM model, with the aim of enhancing the long–term prediction
performance of the capacity data. The results show that the long–term prediction ability
of the RVM model is greatly enhanced. Although these papers achieved good prediction
results, they are all centered on the RVM model with fixed kernel parameters, due to the
role of the kernel function to map nonlinear data into a high–dimensional space and make
it linearly differentiable in the high–dimensional space [25]. Therefore, using the RVM
model with fixed kernel parameters does not give full play to the advantages and predictive
power of the RVM model. Therefore, it is necessary to optimize the parameters of the kernel
function on the premise of choosing a suitable kernel function, and constructing an adaptive
RVM model is one of the focuses of this research. At the same time, how to obtain the
optimal kernel parameters of the kernel function is the key to construct adaptive relevance
vector machine (ARVM). Currently, the commonly used parameter–finding algorithms are
the genetic algorithm (GA) [26], particle swarm algorithm (PSO) [27], fruit fly optimization
algorithm (FOA) [28], Bayesian optimization algorithm (BOA) [29,30], etc. Since BOA
has the advantages of being a simple algorithm, easy to understand, and having fewer
parameters compared with other optimization algorithms, it is widely used in science and
engineering fields. Therefore, the BOA algorithm was chosen in this study to carry out the
research in order to obtain the optimal ARVM model.

In summary, in this paper, three aspects of IC curve extraction and smoothing, ARVM
model, and Bayesian algorithm are investigated to develop a reliable and accurate RUL
prognostic model. The three main contributions are as follows:

(1) Using the charging data of a battery to extract the IC curve, using the moving
average window, S–G filtering method, and Gaussian filtering to smooth the IC curve, to
find the most suitable filtering window, this paper compares the smoothing effect of four
windows (10, 25, 50, 100) to finally determine the best filtering method and filtering window.

(2) Based on the degradation trend and peak characteristics of the IC curve, four
groups of features are extracted, and the correlation between the features and capacity
degradation is analyzed by using the Pearson correlation analysis method, and finally a
collection of lithium–ion battery health indicators is formed.
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(3) The adaptive RVM model is proposed, and the polynomial kernel is selected to
construct the RVM model according to the capacity degradation characteristics of lithium
batteries. To optimize the parameters of the polynomial kernel function, the BOA algorithm
is used to optimize the kernel parameters, so as to construct the BOA–based ARVM model.

The structure of this paper is as follows: Section 2 is IC curve smoothing and health
indicator extraction. Section 3 is the construction of the ARVM model, including the con-
struction of the RVM regression model, the selection of kernel function, the optimization of
kernel parameters by Bayes algorithm, and the overall flow chart. In Section 4, experimen-
tal validation with two different prediction starting points is performed. Section 5 is the
conclusion and outlook.

2. IC Curve Smoothing and HI Extraction
2.1. Experimental Dataset Analysis

This study uses the battery–aging dataset from the CALCE Engineering Center at the
University of Maryland and chooses to use experimental data from the cyclic charging
and discharging of CS2 with batteries. The battery–aging experiment is divided into a
constant–current and constant–voltage charging part and a constant–current discharging
part. The charging process can be divided into two stages of constant current (CC) and
constant voltage (CV), i.e., the CC–CV charging mode is used. During the charging process,
the lithium–ion battery is first charged with 0.5 C constant current, and the battery voltage
reaches 4.2 V before switching to constant–voltage charging until the charging current drops
to 0.05 A and charging ends. In the discharge stage, the discharge process is completed
by using 1C current to the end voltage of 2.7 V. The dataset records the battery voltage,
battery current, battery temperature, time parameters and capacity parameters during the
charging phase. The lithium–ion battery is cyclically charged and discharged until the
battery reaches the EOL standard and the aging experiment is terminated. In this paper,
the charge/discharge cycle data of four groups of batteries were selected, and their battery
and experimental parameters are shown in Table 1.

Table 1. Use of battery data parameters.

Battery
Number

Ambient
Temperature

Rated
Capacity

Discharge
Current

Cut off
Voltage EOL

CS2–35

24 ◦C 1.1 Ah 1.1 A 2.7 V

0.9 Ah

CS2–36 0.85 Ah

CS2–37 0.9 Ah

CS2–38 0.9 Ah

This study will use these four sets of data to carry out the next step. The capacity
degradation curve of the used battery is shown in Figure 1.
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Figure 1. Battery capacity degradation curve. (a) CS2–35 and CS2–36 capacity degradation curves;
(b) CS2–37 and CS2–38 capacity degradation curves.
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Figure 1 shows the capacity degradation curves of the four sets of data selected, and
this paper will use the data as the basis to explore the IC curve smoothing and feature
extraction and the construction of an RUL estimation model with high accuracy.

2.2. IC Curve Extraction and Smoothing

ICA is a common tool for studying the remaining cycle life of lithium–ion batteries.
IC curve is defined as the derivative of the capacity–voltage curve of the CC–CV charging
process of the battery. That is, it is defined as the derivative of the charging capacity with
respect to the voltage. The definition is shown in Equation (1).

IC =
dQ
dV

=
∆Q
∆V

=
Qt+1 −Qt

Vt+1 −Vt
(1)

where Qt and Vt denote the battery capacity and voltage at moment t during the charging
process, and the step size ∆ depends on the sampling frequency of the aging experiment.
According to the defined equation, the raw IC curves of CS2–35 and CS2–36 at the 50th
cycle are plotted, as shown in Figure 2.
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Figure 2. IC curve of battery CS2–35 and CS2–36 at the 50th cycle. (a): IC curve of the 50th cycle of
CS2–35 battery. (b): IC curve of the 50th cycle of CS2–36 battery.

From Figure 2a,b, it can be seen that the peak of the IC curve is not obvious due to the
large amount of noise in the measurement process, and it is difficult to extract the effective
HIs for capacity estimation. Therefore, to further obtain an identifiable IC curve, this study
synthesizes the filter–smoothing methods from the reference literature and selects the
commonly used moving window average filter, S–G filter, and Gaussian filter to smooth
the IC curve for the study. A more suitable filtering method is selected for smoothing. The
following are the smoothed curves using the above three filtering methods at different
window values, as shown in Figure 3.

As shown in Figure 3, from the original IC curve, there are two obvious peaks: the
first peak area in (3.75, 3.85) and the second peak area in (3.85, 3.95) two voltage intervals;
to extract the characteristic change pattern on the IC peaks, the IC curve was smoothed
using moving window averaging filter (IC–Movmean), S–G filter (IC–Sgolay) and Gaussian
filter (IC–Guass) to smooth the IC curve, and four different windows (10, 25, 50, 100,
respectively) were selected to compare the smoothing effect. From Figure 3a, we can see
that the three filtering methods in the case of window = 10; although the first peak area is
smoothed better, the second peak area is poorly smoothed, and the peak also has multiple
fluctuation points, which may lead to errors in HI extraction in the subsequent second
peak interval, and this situation is often referred to as undersmoothing. As can be seen
from Figure 3b, the smoothing effect of the IC–Movmean curve in the first peak interval
appears to deviate substantially from the peak contour of the original IC curve, specifically
by presenting a straight line through the peak interval, making the peak interval seriously
deformed and unable to propose HIs, a situation usually referred to as oversmoothing.
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In contrast, Gaussian filtering and S–G filtering have a better smoothing effect in the first
peak interval, and no phenomenon occurs. In the second peak interval, both moving
window average filtering and S–G filtering showed an undersmoothing phenomenon,
while Gaussian filtering had a better smoothing effect. From Figure 3c, it can be seen that in
the first peak interval, all three filter curves show an oversmoothing phenomenon, which
indicates that this window value is not suitable for the current data. In Figure 3d, it can be
seen that oversmoothing occurs in both the first peak interval and the second peak interval.
In summary, the selected window value of 25 is the best length that can guarantee the
smoothness of the curve and the integrity of the feature information.
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Figure 3. Comparison of the smoothing effect of the three filtering methods. (a) window = 10;
(b) window = 25; (c) window = 50; (d) window = 100.

2.3. Health Indicators Extraction and Correlation Analysis

The IC curves of batteries are extracted and smoothed using the experimental data
during the charging and discharging cycles of batteries. Here, CS2–35 is used as an example
to plot the IC curves of multiple groups after smoothing with a 25–window value Gaussian
filter, as shown in Figure 4.
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Figure 4. CS2–35 battery aging trend and HI extraction. (a) Trend of IC curves of different cycles of
CS2–35; (b) schematic of IC curve HIs.
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As shown in the aging trend in Figure 4, it can be seen from Figure 4a that two peak
intervals (named Peak I and Peak II, respectively) appear clearly in the IC curve as the
number of cycles increases, and the IC curve as a whole shifts downward to the right. At
the same time, peak I and peak II also changed downward to the right with the shift of
IC, and the information of obvious changes could be extracted from the two peaks for the
next step of the study. In this study, a total of four groups of features, peak height and
peak position, were extracted from the two peaks, respectively, for analysis, as shown in
Figure 4b. In order to represent the trend of the four groups of features more visually with
the aging degree, the feature change curve of CS2–35 was plotted, as shown in Figure 5.
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Figure 5. Four groups of HI change curve of CS2–35 battery. (a) I peak value; (b) I peak position;
(c) II peak value; (d) II peak position.

As shown in Figure 5, to explore the correlation between the four groups of His and
capacity degradation, Pearson correlation analysis was used to investigate the correlation
between His and capacity degradation. In general, the higher the correlation between the
input features and the output of the data–driven model, the better the accuracy of the
model. Pearson correlation coefficient [31] is widely used to study the degree of linear
correlation between two variables, and the calculation formula is shown in Equation (2).

ρxi =
Σ
(
xj − xj

)
(y− y)√

Σ
(
xj − xj

)2Σ(y− y)2
(2)

where xj is the characteristic sequence, y is the reference sequence of battery capacity
degradation, and xj and y are their mean values, respectively. The correlation degree
between CS2–35 capacity degradation and the four groups of HIs is calculated according to
Equation (2). To see more intuitively whether there is a linear relationship between them,
the following four sets of curves are plotted with HI as the horizontal axis and capacity as
the vertical axis, and the calculated Pearson correlation coefficients are given together in
the figure, as shown in Figure 6.
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The Pearson correlation coefficient is between −1 and 1. The closer its absolute value
is to 1, the stronger the correlation between the two variables. It is clear from Figure 6a,c
that the correlation coefficient is close to 1, indicating a strong positive correlation between
the CS2–35 battery capacity and the two peak heights. In addition, it can be seen from
Figure 6b,d that the position is negatively correlated with the capacity, but the correlation
degree of peak I is low, while the correlation of peak II is more significant whether the peak
position is chosen, as HIs are needed to further analyze the correlation degree of other
batteries. The Pearson correlation coefficients of the four selected batteries were further
calculated by using Pearson correlation analysis to screen reliable HIs as the input to the
prediction model, and the calculation results are shown in Table 2.

Table 2. Results of Pearson correlation coefficient calculation for 4 groups of cells.

HIs I Peak Value I Peak Position II Peak Value II Peak Position

CS2–35 0.8019 −0.4759 0.9555 −0.9147

CS2–36 0.8759 −0.8370 0.9579 −0.9196

CS2–37 0.7751 −0.5186 0.9608 −0.8718

CS2–38 0.7494 −0.7507 0.9567 −0.2942

From Table 2 above, it can be seen that the I peak value and II peak value have a
higher correlation in all four groups of cells, among which the lowest correlation of the
II peak value is 0.9555, showing a strong correlation, and the lowest of the I peak value
is 0.7494, while the others are around 0.8, indicating that this HI has a strong correlation
with capacity. It makes sense to select two sets of HI, the I peak–peak value and the II
peak–peak value. From the size of the correlation of the I peak position, the correlation of
the CS2–36 battery and CS2–38 battery is higher, while the correlation of the CS2–35 battery
and CS2–37 battery is lower. From the size of the correlation of the II peak position, the
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correlation of the other three groups of batteries is higher except for the CS2–38 battery,
which has a lower correlation, and in combination with the above, the correlation of the
four groups of batteries in the peak position cannot be kept consistent. If only the peak is
used as HI without considering the peak position, the feature dimension is too small and
the problem of underfitting may occur, so this study selected the highest three groups of
HI for each battery as the set of HIs on the basis of Table 2, and the HI table was selected as
shown in Table 3.

Table 3. Collection of selected HIs.

HIs1 HIs2 HIs3

CS2–35 I peak value II peak value II peak position

CS2–36 I peak value II peak value II peak position

CS2–37 I peak value II peak value II peak position

CS2–38 I peak value I peak position II peak position

The accuracy of battery capacity estimation and the accuracy of RUL prediction
are directly related to the selection of HIs. Selecting three HIs with high correlation as
feature inputs can avoid the occurrence of underfitting, as well as eliminating HIs with
lower correlation to ensure the effectiveness of data preprocessing and the accuracy of
model prediction.

3. Improved Adaptive RVM Model Based on Bayesian Optimization

After having the health indicators with high correlation as the model input, the RVM
model is selected as the prediction model. In this paper, the traditional RVM with fixed
kernel parameters is improved, and an ARVM model with adaptive kernel function is
proposed to improve the accuracy and robustness of the model.

3.1. Relevance Vector Machine Regression Model

The RUL forecasting problem can be categorized as a multistep forecasting problem
for time series, which is essentially a relevance vector regression problem. Given a data set
{xi, ti}N

i=1, N is the number of samples. A nonlinear model can be built, t = y(x) + ε, where y
(·) is a nonlinear function and ε~N(0, σ2) is an independent Gaussian noise, which can be
written in model form as shown in Equation (3).

y(x) =
N

∑
n=1

wnk(x, xn) + b (3)

where w = [w1, · · · , wN] denotes the relevance vector regression weight, k(x,xn) is the kernel
function, and the key to RVM regression is the introduction of a separate hyperparameter
αi for the weight parameter wi, as shown in Equation (4).

p(w|α ) =
M

∏
i=1

N
(

wi

∣∣∣0, α−1
i

)
(4)

wherein αi denotes the precision of the corresponding parameter wi, α = (α1, . . . , αM). The
posterior probability distribution of the weights using literature [22] is given in Equation (5).

p(w|t, X, α, β ) = N(w|m, Σ ) (5)

where the mean m = β · Σ ·ΦTt and the covariance Σ =
(

A + βΦTΦ
)−1

, Φ is the design
matrix of N ×M. The values of α and β can be approximated by maximizing the marginal
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likelihood function. Referring to the literature [22], the re–estimation equations of α, β are
obtained as shown in Equation (6). anew

i = γi
m2

i

(βnew)−1 = ‖t−Φm‖2

N−Σiγi

(6)

wherein mi is the i–th component of the posterior mean m, γi measures the corresponding
parameter wi, γi = 1− αiΣii. Σii is the i–th diagonal element of the posterior covariance Σ.
For a new set of data x* (health indicator series), the corresponding predicted capacity and
predicted variance are shown in Equation (7).{

t∗ = mTΦ(x∗)
σ2
∗ = (βmax)−1 + Φ(x∗)

T ∑ Φ(x∗)
(7)

t* is the predicted capacity at of the RVM model at the health indicator x*.

3.2. Adaptive Kernel Function Based on Bayesian Optimization Algorithm
3.2.1. Analysis and Selection of Kernel Functions

In RVM, kernel functions play the role of mapping nonlinear data into a high–
dimensional space, making them linearly differentiable in the high–dimensional space.
However, there are inevitably hyperparameters in each kernel function, and usually, the
process of model construction is to determine the size of hyperparameters by virtue of
previous experience, but this has great limitations. Therefore, this paper proposes an
adaptive kernel function construction method for RVM. Firstly, a suitable kernel function
needs to be selected, and the commonly used kernel functions are linear kernel function,
Gaussian kernel function, and polynomial kernel function. Among then, the polynomial
kernel function has a wide range of application, good global generalization performance,
and strong long–term prediction performance, and the expression is shown in Equation (8).

Kpoly(x, xi) =
(

γ · x · xT
i + c

)d
(8)

where γ is the width of the kernel function, c is the bias, and d denotes the highest count
term. The lithium–ion battery degradation process is a highly nonlinear process, and it
can be seen from Figure 1 that the capacity degradation process shows a monotonically
decreasing trend, with more localized capacity rebound, but the rebound is not large.
Therefore, the polynomial kernel function is chosen for this study to construct the adaptive
kernel function model.

3.2.2. Bayesian Optimization Algorithm

The Bayesian optimization algorithm finds the optimal value of a function by con-
structing the posterior probability of the output of a black box function with a known finite
number of sample points [32]. Let f (x) be the mapping function from the hyperparameter
vector x to the model. The goal of hyperparameter optimization is to find the hyperpa-
rameter x* in the hyperparameter space that makes the model generalization performance
optimal. In this paper, we take finding the minimum value as an example, and the objective
function is shown in Equation (9).

x∗ = argmin f (x) (9)

f is a black–box objective function with high evaluation cost. Therefore, the probabilis-
tic agent model is used to approximate the current objective function. The probabilistic
agent model starts from an initial hypothetical prior and refines the model by continuously
adding information to the data. The Gaussian process (GP) has become the most commonly
used model in agent models due to the recursive modeling process. Assume that the
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function f satisfies the GP function f ∼ GP(µ, C) with mean µ and covariance C. Therefore,
the prediction points also obey a normal distribution, and then we have Equation (10).

p(y|x, D ) = N
(
y
∣∣µ̂, σ̂2 )

y = (y1, y2, · · · , yi)
T

µ̂ = c(x)T(C + σ2
n I
)−1y

σ̂2 = C(x, x)− c(x)T(C + σ2
n I
)−1c(x)

(10)

where I is the unit matrix and D is the initialized data set, D = (x1, y1), · · · , (xn, yn),
yi = f (xi). Covariance function c(x) = (C(x, x1), · · · , C(x, xi))

T , Cj,k = C
(

xj, xk
)
. To

avoid the emergence of local optimal solutions, many studies have used the acquisition
function [33] as a solution. In this paper, the probability improvement function [34] is used
as the sampling function, as shown in Equation (11).

POI(x) = P( f (x) ≥ f (x∗) + r) = Φ
(

µ(x)− f (x∗)− r
σ(x)

)
(11)

where r serves to equalize the proportion of exploitation and exploration, Φ is the normal
cumulative distribution function, f (x*) is the current maximum, µ is the mean, and σ is the
standard deviation.

3.3. Adaptive RVM Prediction Model Based on Bayesian Algorithm Optimization

The flow block diagram of the adaptive RVM model optimized based on Bayesian
Algorithm Optimization (BOA) is shown in Figure 7.
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The RUL prediction steps based on BOA and ARVM are as follows:
(1) IC curve smoothing. In order to reduce the noise effect of ICs, the IC curve is

smoothed using a Gaussian filter with a window length of 25 to obtain a more discriminative
IC curve.

(2) HI extraction and analysis. According to the IC degradation trend after smoothing,
four different groups of HIs were extracted for study, and the correlation between the
four groups of HIs and the capacity degradation was analyzed using Pearson correlation
analysis, and finally three groups of HIs with high correlation were selected as the feature
vectors, as shown in Table 3. These health indicators constitute the model input sequence x
for model training and testing.
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(3) Kernel function hyperparameter optimization and adaptive RVM model construc-
tion. The polynomial kernel function is selected to construct the RVM regression model, and
the hyperparameters in the polynomial kernel are adaptively optimized using a Bayesian
optimization algorithm. The objective function is shown in Equation (12).

min f (x) =

√
1
n

n
∑

i=1
(x(i)− x̂(x))2

s.t. 1 < d < 7; 2e− 6 < g < 2e + 6;
2e− 6 < c < 2e + 6;

(12)

where the objective function is to find the minimum root–mean–square value between
the predicted capacity ŷ and the reference capacity y under the sequence of HIs. After
obtaining the optimal combination of parameters for the current kernel function according
to the objective function, the polynomial kernel function is used to construct the ARVM
prediction model to output the optimal prediction capacity ŷ(x).

(4) Model prediction. The constructed adaptive RVM model is predicted using the test
set, and the RUL prediction results are output.

4. Experimental Results and Discussion

The validation experiments are divided into two separate types: one is validation using
more training data to verify the short–term predictive ability of the algorithm; the other
one is validation using less training data to verify the long–term expected performance of
the algorithm. The training–set and test–set data groupings for the validation experiments
are shown in Table 4.

Table 4. Experimental classification and the basis of classification.

Short–Term Prediction
Experiments Long–Term Prediction Experiments

Training Data
Length

Test Data
Length

Training Data
Length

Test Data
Length

CS2–35

60%
(360 cycle)

40%
(140 cycle)

30%
(180 cycle)

70%
(420 cycle)

CS2–36

CS2–37

CS2–38

Three evaluation criteria are used to evaluate the performance of the algorithm, namely
RE (RUL Error), MAE (Mean Absolute Error) and R2 coefficient of determination as the
evaluation index of the model.RE denotes the absolute error of the remaining life prediction
value, MAE denotes the mean absolute error of the battery capacity prediction, and R2 to
quantify the performance of the model and is a measure of the predictive ability of the
model. good or bad, and the value ranges from 0 to 1, which indicates the percentage of
the squared correlation between the predicted and actual values of the target variable. The
three evaluation criteria are shown in Equation (13).

RE = |RT − RP|
MAE = 1

n

n
∑

i=1
|y(i)− ŷ(i)|

R2 = 1−

n
∑

i=1
(yi−ŷi)

2

n
∑

i=1
(yi−y)2

(13)

In Equation (13), RT represents the actual RUL value of the battery, RP represents the
RUL value predicted by the proposed algorithm, y(i) represents the capacity value of the



Metals 2022, 12, 1331 13 of 17

i–th cycle, ŷ(i) represents the capacity predicted value of the i–th cycle, and y represents
the average predicted values.

4.1. Short–Term Prediction Experiments

The proposed algorithm is first verified for its ability to predict battery RUL with
more training data, or in another way, to verify the short–term prediction ability of the
model. The experiments are compared using two prediction algorithms. The first one
is a single–kernel–construction RVM model and the second one is a Bayesian optimized
adaptive kernel RVM model, with the aim of exploring whether the predictive ability of the
adaptive kernel model is improved compared to the conventional model. The multicore
construction process is the same as the improved algorithm, and the health indicators
and model parameters used in both algorithms are all the same. The results are shown in
Figure 8.
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Figure 8. Short–term prediction experimental results curve. (a) CS2–35, SP = 360; (b) CS2–36, SP = 360;
(c) CS2–37, SP = 360; (d) CS2–38, SP = 360.

In Figure 8, SP is the prediction starting point, the data before SP are used as the
training sample, EOL is the lithium battery failure threshold, and the capacity degradation
curve and the prediction curve drop to EOL, which is considered as the current RUL value
of the battery. Among them, 80% of the initial capacity of CS2–35, CS2–37 and CS2–38 is
taken as EOL, rounded to 0.9Ah. For CS2–36, if 0.9Ah is taken as EOL, the RUL is around
500 cycles. In order to make full use of the data, EOL is set to 0.85Ah. The prediction results
of four datasets with 60% of the total number of cycles as the training sample for both
methods are shown in the figure, respectively. Among them, C1 is the battery capacity
degradation curve, C2 is the proposed algorithm BOA–ARVM, and C3 is the traditional
single–kernel RVM algorithm using the polynomial kernel function to construct the model
with the same kernel parameter settings. The prediction results and error analysis of C2
and C3 are shown in Table 5.
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Table 5. Short–term prediction experimental error analysis.

Battery Number EOL RT SP Algorithm RP RE MAE R2

CS2–35 0.9 Ah 531 360
C2 523 8 0.0081 0.9204

C3 593 62 0.0146 0.6781

CS2–36 0.85 Ah 525 360
C2 516 9 0.0118 0.9312

C3 486 39 0.0371 0.7123

CS2–37 0.9 Ah 550 360
C2 554 4 0.0074 0.8196

C3 496 54 0.0325 0.5716

CS2–38 0.9 Ah 578 360
C2 577 1 0.006 0.8474

C3 404 174 0.0444 0.3776

As can be seen from Table 5, the RE of the improved algorithm C2 is the smallest in all
four groups of experiments, and the maximum RE is 9, which proves that the improved
algorithm has good RUL estimation. The maximum RE of algorithm C3 reaches 174, and
the RUL prediction of the four groups is poor, which proves the poor prediction ability of
the RVM algorithm under fixed kernel parameters. In terms of the accuracy of capacity
prediction, the maximum MAE of the improved algorithm C2 is 0.0081, which proves the
high accuracy of capacity prediction of the improved algorithm. It can also be seen from
the four sets of C2 curves in Figure 8 that the improved algorithm has good tracking ability
and high accuracy of short–term prediction of capacity. From the four sets of C3 curves
in Figure 8, the curves all deviate from the true capacity curve, and although the MAE is
small, there are some oscillation points, which make the RUL prediction unreliable. From
the reliability R2 of the regression model, the closer the R2 is to 1, the better the prediction
of the regression model is, and the lowest value of R2 of the improved algorithm is 0.81,
which proves that the regression model constructed by the C2 algorithm is more reliable
and the prediction results are more credible., while the lowest R2 value of C3 is 0.57, which
indicates that the single–kernel RVM model prediction model is not reliable. From the MAE
of the four groups of experiments, the MAE are all small, with the maximum being only
0.444. Although the RUL values are poorly predicted, there is a smaller MAE, indicating
that the overall capacity prediction of the prediction model deviates less from the reference
value, which proves that the input training data are more accurate, i.e., the HIs obtained
by smoothing the IC curve in Section 2 play a key role in model training. In summary, the
short–term prediction performance of the RUL prediction model constructed by IC curve
feature extraction through Gaussian filtering and BOA–ARVM algorithm is better, the RUL
prediction accuracy is higher, and the prediction model is more reliable.

4.2. Long–Term Prediction Experiments

To verify the long–term predictive capability of the proposed algorithm, 30% of the
data were used for training and the obtained regression model was used to validate the
remaining 70% of the capacity data. The algorithm setup is the same as in Section 4.1, and
the results are shown in Figure 9.

The same as described in Section 4.1, the prediction results and evaluation criteria of
the two algorithms C2 and C3 are shown in Table 6.
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Figure 9. Long–term prediction experimental results curve. (a) CS2–35, SP = 180; (b) CS2–36, SP =
180; (c) CS2–37, SP = 180; (d) CS2–38, SP = 180.

Table 6. Long–term prediction experimental error analysis.

Battery Number EOL RT SP Algorithm RP RE MAE R2

CS2–35 0.9 Ah 531 180
C2 543 13 0.0089 0.9145

C3 461 70 0.0334 0.7077

CS2–36 0.85 Ah 525 180
C2 520 5 0.0128 0.9516

C3 406 119 0.1044 0.4705

CS2–37 0.9 Ah 550 180
C2 543 7 0.0105 0.9153

C3 361 189 0.0529 0.5676

CS2–38 0.9 Ah 578 180
C2 549 29 0.0114 0.8916

C3 309 269 0.0421 0.6034

As can be seen from Table 6, the RE of the improved algorithm C2 is the smallest in all
four groups of tests, and the maximum RE is 29, which proves that the improved algorithm
has better long–term prediction ability and higher accuracy of RUL estimation. From the
accuracy of capacity prediction, the maximum MAE of the improved algorithm C2 is 0.0128,
which is not much different from the error of the short–term prediction experiment, proving
that the improved algorithm has higher accuracy of capacity prediction with less training
data. It can also be seen from the four groups of C2 curves in Figure 9 that the improved
algorithm has good tracking performance, while the prediction curve of C3 in the figure
deviates from the real capacity curve. From the reliability R2 of the regression model, the
lowest value of R2 of the improved algorithm is 0.89, which proves that the long–term
prediction model constructed by the C2 algorithm is more reliable. In contrast, the R2

values of C3 are all concentrated at 0.5, indicating that the RVM model with fixed kernel
parameters has a lower reliability of the prediction model. From the MAE of the four sets of
experiments, the MAE is 0.1044 at maximum, mostly concentrated within 0.05, such as the
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same as described for the short–term prediction experiments, which verifies the necessity
of accurate input training data. In summary, the long–term prediction performance of the
RUL prediction model constructed by IC curve feature extraction with Gaussian filtering
and BOA–ARVM algorithm is good.

5. Conclusions

Accurate prediction of lithium–ion battery RUL can guarantee the safe and stable
operation of the battery and avoid accidents. In this paper, we propose an RUL prediction
model based on health indicators and BOA–ARVM algorithm after an in–depth analysis
of the current status of RUL research in recent years. It improves the problems such
as imprecise and unreliable prediction of the traditional RVM model. The experimental
degradation data set of the battery provided by the University of Maryland is used, and
four sets of degradation data of the CS2 battery are selected for validation. Four sets of HIs
were extracted from the smoothed IC curves using a Gaussian filter of 25 window length.
These HIs were proved to be highly correlated with capacity by Pearson analysis. Finally,
the BOA–ARVM model was established, and the RUL estimation errors in the experimental
validation were all less than 20 cycles, and the MAE was less than 0.02, which proved the
accuracy of the method prediction. Meanwhile, two different experiments were set up to
verify the short–term prediction performance and long–term prediction accuracy of the
improved model. At the same time, we realize that the model building method proposed in
this paper has some shortcomings. One is that the Gaussian filter window selected for IC
curve smoothing needs to be adjusted one by one, and in future work, we seek an adaptive
method to adjust the window for validation. Second, the model was not validated at other
temperatures, focusing on research work to explore the estimation effects of the improved
model at various temperatures.
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