
1. Introduction
In recent years there has been substantial interest in improving the skill of subseasonal-to-seasonal (S2S; 
2–8 weeks) forecasts, which sit between traditional weather and climate forecasts (Brunet et al., 2010; Vitart 
et al., 2017). A major source of global S2S predictability is provided by tropical intraseasonal oscillations (ISOs: 
Ding et al., 2011; Waliser et al., 2003), such as the Madden-Julian Oscillation (MJO), which produces rainfall 
fluctuations with a period of approximately 30–60 days (Madden & Julian, 1994). Accurate representation of the 
land surface and its interaction with the atmosphere is also key to developing skillful S2S forecasts. The state 
of the land surface (e.g., root zone soil moisture or leaf area) varies more slowly than the atmospheric state and 
affects the partitioning of the surface energy budget through changes in evapotranspiration, surface albedo and 
roughness. The land therefore provides a potential source of S2S predictability to the atmosphere (Dirmeyer 
et al., 2015, 2018; Guo et al., 2011). Realistic land surface initialization has been shown to enhance S2S predict-
ability (Guo et al., 2011, 2012; Koster et al., 2010, 2020), and improved variability at S2S timescales may also 
provide skill (Zhu et al., 2019).

Intraseasonal land surface feedbacks impact circulation and rainfall in India (Ferranti et  al.,  1999; Saha 
et al., 2012; Unnikrishnan et al., 2017; Webster, 1983), South America (Chug & Dominguez, 2019; Spennemann 
& Saulo,  2015), Australia (Yu & Notaro,  2020) and West Africa (Lavender et  al.,  2010; Talib et  al.,  2022; 
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Taylor, 2008). For example, regional-scale soil drying and associated vegetation browning can induce an anom-
alous heat low which enhances rainfall via moisture convergence (Chug & Dominguez, 2019; Taylor, 2008).

Identifying where subseasonal precipitation variability drives surface flux dynamics has received little attention. 
One notable study showed strong responses of surface soil moisture (SSM) to the MJO with a lag of 2 days (Peng 
et  al.,  2017). Investigations of vegetation response to precipitation have mostly used monthly composites of 
Normalized Difference Vegetation Index (NDVI), with greenness typically lagging precipitation by 1–3 months 
(Nicholson et al., 1990; Papagiannopoulou et al., 2017; Seddon et al., 2016; Wu et al., 2015). However, these 
datasets cannot resolve response times shorter than 1 month. Regional investigations using 8- or 16-day NDVI 
composites have identified a 2–3-week lagged vegetation response (Justice et al., 1991; Cissé et al., 2016; J. Zhou 
et al., 2021).

NDVI needs to be composited over many days to obtain cloud-free images and minimize viewing angle effects. 
An alternative satellite vegetation metric, derived from passive microwave measurements and therefore generally 
unaffected by cloud cover, is Vegetation Optical Depth (VOD). VOD is a proxy for vegetation water content 
(Attema & Ulaby, 1978; Jackson & Schmugge, 1991; Meesters et al., 2005; van der Schalie et al., 2017) and also 
linked to aboveground biomass (Rodríguez-Fernández et al., 2018; Tian et al., 2016) and Gross Primary Produc-
tivity (GPP: Teubner et al., 2018; Wild et al., 2022). Recent studies have identified rapid L-band VOD responses 
to SSM variations: on average, vegetation water content peaks within 2 days of a soil moisture pulse across all 
observed land cover types (Feldman et al., 2018; Feldman, Short Gianotti et al., 2021; He et al., 2021).

Here we exploit daily VOD observations to produce the first global analysis quantifying vegetation responses to 
intraseasonal (25–60 day period) precipitation variability. Simulating vegetation dynamics at intraseasonal times-
cales is crucial for S2S models to benefit from land-based predictability. We use cross-spectral analysis to identify 
where, and at what lag, VOD responds to precipitation. We assess responses by land cover type and investigate 
VOD persistence following intraseasonal wet spells.

2. Data and Methods
2.1. Data

To investigate the vegetation response to intraseasonal precipitation variability, we use X-band (10.7 GHz) VOD 
observations from the Vegetation Optical Depth Climate Archive (VODCA) data set (Moesinger et al., 2020), 
which provides a long-term daily record (1997–2018) at 0.25° horizontal resolution. X-band provides good 
sensitivity to vegetation dynamics whilst also not becoming saturated too often. VODCA is constructed using 
the Land Parameter Retrieval Model (LPRM) v6 (van der Schalie et  al.,  2017), a forward radiative transfer 
model based on the model of Mo et al. (1982). LPRM is used to derive X-band VOD from the observations of 
four microwave radiometers (AMSR-E, AMSR2, TMI, WindSat). Observations over frozen ground or affected 
by radio-frequency interference are removed. Data from the different sensors are then averaged for each day 
after CDF-matching (Moesinger et al., 2020). We mask unphysical spikes in the VOD time series by comparing 
changes in consecutive observations with a monthly climatology for each pixel. We remove data points where 
both preceding and subsequent VOD changes exceed two standard deviations, as in Talib et  al.  (2022). This 
removes a mean of 1% of observed days from each pixel.

Inundation introduces artefacts into VOD data: increased surface water fraction produces an apparent decrease 
in VOD (Bousquet et al., 2021; Jones et al., 2011). This is due to the effect of open water on retrieved brightness 
temperatures, rather than a change in the vegetation itself. Previous studies have masked pixels containing more 
than 5% surface water (He et al., 2021; McColl et al., 2017; Tian et al., 2018). However, with such a mask, we 
still found widespread cases of day-to-day surface water fraction changes affecting VOD responses to rainfall. 
We therefore developed an alternative inundation mask, using daily SSM from the ESA CCI SM v06.1 combined 
active-passive microwave product (Dorigo et al., 2017; Gruber et al., 2019), and surface water fraction from the 
active-passive SWAMPS v3.2 data set (Jensen & Mcdonald, 2019), as in Talib et al. (2022), exploiting that arti-
ficial decreases in VOD due to inundation tend to coincide with increases in SSM. Further details are included in 
Text S1 in Supporting Information S1.

To analyze the relationships between VOD and precipitation, we use the Integrated Multi-satellitE Retrievals 
for GPM (IMERG) V06 product (Huffman et al., 2019), available from June 2000 onwards. We stratify data by 
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land cover type using the 2018 Copernicus Global Land Service Land Cover map (Buchhorn et al., 2020), and 
compare VOD behavior with NDVI using 16-day NDVI composites from 2000 to 2018 from the MODIS sensors 
onboard Aqua and Terra (Didan, 2015a, 2015b). All datasets are regridded to the 0.25° VOD grid.

2.2. Cross-Spectral Analysis

Cross-spectral analysis investigates the relationship between two variables as a function of frequency of vari-
ability. Here we analyze precipitation and VOD at intraseasonal (25–60-day) timescales across the tropics and 
mid-latitudes. Previous cross-spectral studies of precipitation and vegetation have been limited to specific regions 
and longer periods of variability (van Hoek et al., 2016; J. Zhou et al., 2021). Critically, we use Lomb-Scargle 
periodograms to derive cross spectra (coherency and phase spectra), allowing us to analyze time series with miss-
ing data (Weedon et al., 2015). This avoids the need for gap-filling, which would introduce bias to the spectra.

Figure 1 illustrates the principles of cross-spectral analysis for artificial precipitation and VOD time series. Both 
datasets comprise an annual cycle and an intraseasonal (30-day) oscillation, plus white noise (Figures 1a–1c). 
We mask 20% of the data in 10-day sections, to represent missing observations (Figure 1d). Coherency derived 
from Lomb-Scargle periodograms (Weedon et al., 2015) measures correlation between time series at a given 
frequency. Phase difference spectra describe the time by which one time series leads or lags the other. Phase 
differences are only plotted for periods at which the time series exhibit a coherent relationship significant at the 
95% confidence level; for lower coherency, the error in the phase difference exceeds ±45°. A positive phase 
difference indicates that changes in VOD lag changes in precipitation. At each frequency, the phase difference is 
converted from degrees into days (i.e., [1/frequency] × phase difference[°]/360°).

As expected, Figure 1 demonstrates that coherency is high at periods of 30 and 365 days. The modeled annual 
cycle of VOD lags the annual cycle of precipitation by about 90 days (95% confidence interval 87.0 ± 3.9 days), 
while the intraseasonal variation in VOD lags the intraseasonal precipitation variation by 10 days (9.8 ± 0.7). 
The estimates of coherency and phase difference represent the average behavior. Therefore, the analysis may be 
biased in regions where the vegetation response to precipitation has changed over time, for example, due to land 

Figure 1. Illustration of cross-spectral analysis. Artificial annual cycles (a) and intraseasonal oscillations (b) of precipitation (black) and Vegetation Optical Depth (red) 
are added together, along with white noise (c), to create the total time series (d). Only the first 500 days of the 5,000-day time series are shown. Cross-spectral analysis 
computes the coherency (e) and phase difference (f) spectra. Dashed lines in (e) indicate the 95% and 99% confidence levels for coherency. Error bars in (f) show 95% 
confidence intervals for phase difference. Red markers and labels indicate the phase differences nearest the periods of the annual cycle and intraseasonal oscillation.
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use change. The analysis also assumes a linear VOD response, which is an approximation to observed non-linear 
water-vegetation responses (Short Gianotti et al., 2019).

2.3. Application of Cross-Spectral Analysis to Observations

For each 0.25° pixel and each season, we compute the coherency and phase difference spectra if the pixel has 
VOD observations for at least 30% of days (after masking inundation). Coherency is estimated at approximately 
150 frequencies spanning the 25–60-day band. When determining significance, we perform a robustness test 
by comparing the coherency spectra of nearby pixels, since we expect ISOs and the corresponding vegetation 
responses to occur at scales much larger than 0.25°. The “neighbors” of a pixel are defined as eight pixels in a 
square around it, such that all neighbors are separated by at least 0.75° (Figure S3 in Supporting Information S1). 
This separation avoids the comparison of VOD data that are derived from microwave measurements with over-
lapping footprints. Accounting for the width of the intraseasonal band, a pixel has a 95% significant coherent 
relationship for a period of x days if the pixel itself and at least three of its neighbors have coherency greater than 
the significance level (0.78) at some frequency within the resolution bandwidth around 𝐴𝐴

1

𝑥𝑥
 cycles per day. The 

intraseasonal coherency and phase difference are computed as averages across all periods in the intraseasonal 
band showing significant coherency. The 95% confidence interval for the phase difference is then derived from 
the average coherency. If phase differences exist near antiphase, the phase angles are shifted from 𝐴𝐴 [−180◦, 180◦] to 

𝐴𝐴 [0
◦
, 360

◦
] before averaging, to avoid averaging two antiphase angles to appear in phase. As an additional step, two 

intraseasonal sub-bands corresponding to periods of 25–40 and 40–60 days were analyzed to ascertain possible 
differences between phase relationships.

3. Results
The sign of the phase difference between intraseasonal precipitation and VOD variations is shown in Figure 2 
for all pixels with a coherent intraseasonal relationship at 95% significance. For small phase differences, the 
95% confidence interval may overlap zero (yellow pixels), meaning that the sign of the phase difference cannot 
be determined from currently available observations. As expected, more phase differences are positive than 
negative, that is, VOD lags precipitation in more locations than it leads. Wet intraseasonal events increase soil 
moisture, enabling increased water uptake by vegetation and hence increased VOD. Approximately half of the 
roughly 194,000 pixels with a coherent precipitation-VOD relationship have a positive phase difference with 95% 
confidence. Many regions exhibit coherence in both bands, though for example, East Africa in MAM shows a 
coherent response only for 40–60-day variability. Examples of observed precipitation and VOD time series, with 
their estimated phase differences, are included in Figure S4 in Supporting Information S1.

Large areas with positive phase differences are found in arid or semi-arid regions (Figure 2), consistent with 
enhanced vegetation sensitivity in water-limited environments. The regions where we identify positive phase 
differences broadly correspond to locations where water availability is an important driver of vegetation 
productivity on climate timescales (Li et al., 2021; Papagiannopoulou et al., 2017; Seddon et al., 2016; Walther 
et al., 2019). In addition, most of these areas have a relatively high percentage of precipitation variance in the 
intraseasonal band (Figure S5 in Supporting Information S1, following Moron & Robertson, 2020). These regions 
are therefore the most likely to exhibit vegetation-induced evapotranspiration anomalies that provide a source of 
S2S predictability.

Changes in VOD mostly occur less than a week after precipitation (Figure 3, dashed lines). Of the pixels with a 
positive mean phase difference estimate in the 40–60-day band, 58% of these are within 7 days, increasing to 79% 
for the 25–40-day band. These responses are considerably shorter than the 1–3-month rainfall-vegetation lags 
computed in climatic studies using monthly data (e.g., Wu et al., 2015)—partly because the use of daily VOD 
data enables the resolution of sub-monthly responses. The responses to intraseasonal variability are longer than 
the time estimated for peak VOD to occur following short-term SSM anomalies, which is often only 1–2 days 
(Feldman, Short Gianotti et  al., 2021; He et  al., 2021). For longer wet spells, increases in biomass are more 
likely to occur, which are slower than the plant rehydration that dominates 1–2-day VOD responses (Feldman, 
Short Gianotti et al., 2021).

Despite applying our surface water mask, inundation still impacts VOD in regions such as India and Madagascar 
(in MAM). Such pixels exhibit decreased VOD due to inundation shortly after rainfall, resulting in large negative 
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phase differences (Figure S4c in Supporting Information S1). Our mask does eliminate most of these negative 
phase differences: without masking VOD, 46% of 40–60-day phase differences are negative with 95% confi-
dence, versus 11% after masking. Negative phase differences can also occur due to vegetation changes genuinely 
preceding precipitation changes, for example, in monsoonal northern Australia in DJF, where Green et al. (2017) 
argued that vegetation has a strong intraseasonal influence on precipitation. Also, in locations where vegetation 
is limited more by temperature or radiation than moisture, negative phase differences could result from dry spells 
favoring growth under warmer, less cloudy conditions.

To investigate whether the vegetation type influences the surface response to intraseasonal precipitation variabil-
ity, Figure 3 shows the distributions of phase difference by land cover, aggregated over all seasons. The distribu-
tions are wider for 40–60-day variability than 25–40-day variability, with peaks at longer phase differences. The 
distributions for all land covers peak below 10 days. Sparsely vegetated areas, typically found in arid regions, 
typically have faster vegetation responses than other land covers, consistent with other studies (De Keersmaecker 
et al., 2015; Vicente-Serrano et al., 2013). In an arid climate, rapid vegetation green-up can occur in response 
to a wet spell. Indeed, Feldman et al. (2018) found the strongest vegetation water uptake following soil moisture 
pulses in regions with low rainfall.

Fewer pixels with a coherent precipitation-VOD relationship are found in forest and cropland (Figure S6 in 
Supporting Information S1). This is partly due to lack of data; these classes are frequently masked as inundated. 

Figure 2. Sign of phase difference between intraseasonal precipitation and Vegetation Optical Depth (VOD) variability. Positive phase difference means VOD lags 
precipitation. Column titles show the periods of variability. White pixels denote too few observations for analysis whilst gray pixels denote that no 95% significant 
coherent relationship was found.
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For cropland this is potentially linked to irrigation. In forests, the inundation mask may over-mask due to the lack 
of SSM observations. Even with sufficient data we expect weaker precipitation impact on VOD for these land 
covers; forests tend to exhibit stronger radiation and temperature controls (e.g., Papagiannopoulou et al., 2017), 
whilst cropland will be affected by irrigation and harvesting. It is also more difficult to identify coherent relation-
ships in forests because variations in the nearly-saturated VOD signal are small, heterogeneous canopy structures 
introduce errors into VOD retrievals (Konings et al., 2021), and VOD retrievals are more sensitive to noise for 
dense vegetation (Feldman, Chaparro, & Entekhabi, 2021).

Whilst cross-spectral analysis investigates the correlation and relative timing of precipitation and VOD variabil-
ity, it does not provide information on the persistence of VOD anomalies following anomalous precipitation. For 
example, in the weeks after a wet event, VOD may quickly return to its prior state, or may maintain high values, 
particularly if the rain stimulated an increase in biomass. To investigate this, we construct composites around 
intraseasonal wet events. Applying a 25-day low-pass Lanczos filter to the day-of-year precipitation anomaly at 
each pixel, these events are defined as local maxima lying above one standard deviation from the mean of the 
filtered time series. We then composite standardized anomalies of precipitation, VOD and SSM from their daily 
climatology on the wet events. We similarly composite 16-day MODIS NDVI anomalies, using a monthly clima-
tology. All data have any long-term linear trends removed prior to processing.

Figure 4 shows the composites of standardized anomalies for ±60 days around the precipitation event. Note that 
these composites focus only on strong wet spells, whereas the cross-spectral method analyzed the entire time 
series. Sparse vegetation, shrubland and herbaceous vegetation all show quick VOD responses to the precipi-
tation, consistent with Figure 3. The SSM composites exhibit a much larger peak standardized anomaly than 

Figure 3. (a) 2018 Copernicus Global Land Service Land Cover map (Buchhorn et al., 2020), aggregated to 0.25°. (b, c) 
Probability distributions of phase difference between precipitation and Vegetation Optical Depth (all seasons), by land cover 
type, for (b) 25–40-day and (c) 40–60-day variability. Black dashed lines show the probability distribution for all land covers 
combined. Error bars show the median width of the 95% confidence interval over all pixels. The color bar applies to all 
panels.
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VOD, but whereas the SSM anomaly declines over the following 10 days, the VOD anomaly in shrubland and 
herbaceous vegetation persists out to +60 days. A strong post-event signal is also evident in NDVI, indicating 
a persistent increase in biomass. Two months after the event, standardized anomalies of both VOD and NDVI 
are approximately twice that of SSM for these two classes. We also expect root zone soil moisture anomalies to 
persist longer than SSM, though we cannot observe this directly.

Sparse vegetation shows the largest standardized VOD anomaly in the days after rainfall, but this anomaly is 
short-lived. The similarity of the VOD and SSM composites is likely a consequence of the strong soil moisture 
control on vegetation in arid climates. However, we also acknowledge the potential for misattribution of the 
microwave signal between water in the soil and vegetation. A strong, short-lived NDVI response is not evident, 
but this could be due to the poorer temporal resolution. In both cropland and closed forest, VOD decreases during 
wet events, again suggesting inundation effects. Closed forest shows no evidence of a VOD increase, indicating 
a lack of water control. The VOD response of open forest can be understood as a combination of the herbaceous 

Figure 4. Standardized anomaly composites of precipitation, surface soil moisture, Vegetation Optical Depth, and Normalized Difference Vegetation Index (NDVI) 
around intraseasonal wet events, for all pixels from 55°S to 55°N. For any given number of days since the event, n is the number of observations that were averaged to 
create the composite at that time (n does not apply to NDVI composites).
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vegetation and closed forest responses. Overall, this analysis highlights that the vegetation response to intra-
seasonal wet events depends on land cover type, with large persistent responses in herbaceous vegetation and 
shrubland. This suggests that vegetation responses could enhance S2S forecasts at longer lead times in these land 
covers, by providing a source of predictability (via transpiration) well beyond the intraseasonal event.

4. Discussion and Conclusions
Satellite-based measurements were used to identify coherent relationships between intraseasonal variability in 
precipitation and VOD. Across arid and semi-arid regions, VOD tends to increase in response to wet spells. For 
all land covers, the distribution of phase difference peaks at less than 10 days. Bare/sparsely vegetated areas 
respond fastest, consistent with dominant moisture control on vegetation processes. In a minority of pixels, 
predominantly covered by cropland and forest, precipitation variations significantly lag VOD. In forests, this may 
indicate a dominant temperature or insolation control, which tend to be in antiphase with precipitation. Croplands 
may be impacted by irrigation and harvesting. In many cases, it appears to be an artefact of transient inundation, 
which poses a significant challenge for the interpretation of VOD signals. Our methodology to limit the impact 
of surface water fraction changes results in large areas of the domain being masked, including India during the 
monsoon season.

Although VOD fluctuations predominantly lag precipitation, this does not mean that vegetation anomalies cannot 
influence subsequent precipitation. Our cross-spectral analysis treats the precipitation-vegetation system as linear 
and estimates a single value for the phase difference. The stronger vegetation response to precipitation is expected 
to dominate any weaker impacts in the opposing direction. Moreover, the impact of intraseasonal surface varia-
bility on precipitation may be non-local (Chug & Dominguez, 2019; Talib et al., 2021, 2022). Water controls on 
transpiration (rather than direct evaporation) provide the dominant pathway for atmospheric feedbacks on these 
timescales. Daily VOD observations are valuable because transpiration cannot be directly observed by satellites, 
but it is strongly affected by vegetation biomass and water stress, which are both represented in VOD. Overall, our 
results provide unique evidence of coherent intraseasonal relationships between precipitation and transpiration, 
their global distribution, and associated timescales.

Characterizing vegetation responses to intraseasonal precipitation variability is a prerequisite to understanding 
how vegetation-atmosphere feedbacks can support S2S predictability. ISOs typically impact precipitation on 
scales of several hundred to several thousand kilometers (Krishnamurthy & Shukla, 2008; Zhang et al., 2020). 
In regions highlighted in Figure 2, we expect these ISOs to induce coherent transpiration responses over similar 
scales. Perturbations in transpiration can affect surface heating of the lower atmosphere, influencing regional 
pressure gradients, low-level jets and moisture convergence. These changes, along with direct atmospheric mois-
tening, can affect subsequent rainfall (Chug & Dominguez, 2019; Taylor, 2008; S. Zhou et al., 2021). To further 
support S2S forecast model development, future research should quantify the transpiration response to intrasea-
sonal VOD perturbations and understand the atmospheric response to transpiration changes.

Given that realistic initialization of land surface conditions improves atmospheric predictability over S2S times-
cales (Koster et al., 2010), correctly representing the vegetation response to ISOs should further enhance predict-
ability from vegetation-atmosphere feedbacks in the regions where the responses occur. For example, the MJO 
impacts precipitation across herbaceous regions of Australia (Wheeler et al., 2009). Current S2S forecast models 
demonstrate skill in predicting the MJO out to 3 weeks (Vitart, 2017). As we observe a vegetation response to 
intraseasonal rainfall variability with a lag of approximately 1 week in this area (Figures 2 and 3), we predict that 
a model that correctly represents the MJO-induced rainfall variability could gain additional skill by modeling the 
subsequent vegetation response. The persistence of the vegetation response (Figure 4c) also provides potential for 
a source of predictability beyond the 3-week lead time. However, the land surface response to intraseasonal vari-
ability in current S2S forecasts will be highly model-dependent, given the large spread of surface energy balance 
dynamics found in climate models on intraseasonal timescales (Gallego-Elvira et al., 2019). This implies a loss 
of skill in the forecast range identified by Dirmeyer et al. (2015), where land surface processes provide a bridge 
between sub-weekly predictability from the atmosphere and monthly predictability from oceanic conditions. 
Accurately representing intraseasonal vegetation variability offers potential to exploit this predictability.



Geophysical Research Letters

HARRIS ET AL.

10.1029/2022GL099635

9 of 11

Data Availability Statement
All datasets used for this work are freely available for download. IMERG precipitation: https://doi.org/10.5067/
GPM/IMERGDF/DAY/06 (Huffman et al., 2019). VODCA: https://doi.org/10.5281/zenodo.2575599 (Moesinger 
et al., 2019). ESA CCI soil moisture: https://www.esa-soilmoisture-cci.org combined product v06.1 (accessed 23 
July 2021). SWAMPS surface water fraction: https://asf.alaska.edu/data-sets/derived-data-sets/wetlands-meas-
ures/wetlands-measures-product-downloads/ global daily product v3.2 (accessed 23 June 2021). Copernicus 
Global Land Service land cover: https://doi.org/10.5281/zenodo.3518038 discrete classification map (Buchhorn 
et al., 2020). MODIS NDVI composites: Terra https://doi.org/10.5067/MODIS/MOD13C1.006 (Didan, 2015a), 
Aqua https://doi.org/10.5067/MODIS/MYD13C1.006 (Didan, 2015b). The code used to generate the results of 
the paper is available at https://doi.org/10.5281/zenodo.6783138. The code used for the cross-spectral analysis, 
csagan1.1f, is freely available for to anyone to use from the Met Office Science Repository Service at https://
code.metoffice.gov.uk/trac/lmed/browser%23main/trunk/benchmarking (last access: 29 June 2022). Access 
requires registration for an account and this will be supported by a member of the JULES group. Requests for 
new accounts can be made by emailing Jules-Support@metoffice.gov.uk with details of the user's name, email 
address, institution and purpose for requiring access.
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