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ABSTRACT

A set of Quantitative Precipitation Estimates (QPEs) from a dual-polarisation X-band radar 

observation campaign in a mountainous area of Northern Scotland is assessed with reference 

to observed river flows as well as being compared to estimates from the UK C-band radar and 

raingauge networks. Employing estimation methods of varying complexity, the X-band QPEs 

are trialled as alternative inputs to Grid-to-Grid (G2G), a distributed hydrological model, to 

produce simulated river flows for comparison with observations. This hydrological 

assessment complements and extends a previous meteorological assessment that used point 

raingauge data only. Precipitation estimates for two periods over the observation campaign 

in 2016 (March to April and June to August) are assessed. During the second period, increased 

incorporation of dual-polarisation variables into the radar processing chain is found to be of 

considerable benefit, whereas during the first period the low height of the melting layer often 

restricts their use. As a result of the complex topography in Northern Scotland, the Lowest 

Usable Elevation (LUE) of the X-band radar observations is found to be a stronger indicator of 

the hydrological model performance than range from the radar. For catchments with an LUE 

of less than 3 km, the best X-band QPE typically performs better for modelling river flow than 

using an estimate from the UK C-band radar network. The hydrological assessment 

framework used here brings fresh insights into the performance of the different QPEs, as well 
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as providing a stimulus for targeted improvements to dual-polarisation radar-based QPEs that 

have wider relevance beyond the case study situation.

KEYWORDS

Weather radar, dual-polarisation, X-band, precipitation, river flow, distributed hydrological 

model

1. Introduction

Observing, in a quantitative and robust way, the dynamic space-time pattern of 

precipitation in hilly and mountainous terrain presents a major challenge of great practical 

importance across the world. A common approach is to obtain Quantitative Precipitation 

Estimates (QPEs) using observations from networks of weather radars and/or raingauges. 

Such gridded QPEs have a wide range of applications from the images seen on weather 

forecasts through to their quantitative use in hydrological modelling, river flow forecasting 

and water resource simulation. However, there are a number of issues to be considered 

when forming such QPEs for high-latitude, mountainous regions.

Networks of raingauges are typically sparse in mountainous areas due to difficulties of 

access, so lack representativity in capturing the complex rainfall patterns found in these 

topographically-varied domains. Further problems can be associated with wind-induced 

under-catch, solid-phase precipitation and instrument blockage, wetting and evaporation 

loss (Sevruk, 1982; Price, 1999). Weather radar networks provide better spatial coverage 

and can be used in isolation, or in combination with raingauges to make the best of these 

complementary sensors of areal and point rainfall. However, such radar networks often 
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provide less than ideal observation coverage or quality in areas of high relief, due to issues 

such as beam blockage, range effects, and variability in the vertical profile of precipitation 

including changes of water phase and low-level orographic enhancement. In addition to the 

impact of range on beam broadening and non-uniform beam filling, overshooting of 

precipitation becomes more likely in areas of orography (Koistinen and Pohjola, 2014; Yu et 

al., 2018). A particular issue affecting high-latitude locations is the presence of a melting 

layer which can be close to the surface and appear as enhanced radar reflectivity via the 

“bright band” effect. The robustness of radar rainfall estimates is also dependent on 

artefacts of the sensed environment and post-processing operations.

The introduction of dual-polarisation radar capabilities has brought benefits to 

precipitation estimation (Ryzhkov and Zrnić, 1995, 2019; Illingworth, 2004; Montopoli et al., 

2017; Wijayarathne et al., 2020) and river flow simulation in mountainous terrain 

(Anagnostou et al., 2018). However, a detailed assessment of the benefits to hydrological 

modelling of the different dual-polarisation processing steps and retrievals has not been 

undertaken: this is an important novelty of the paper presented here. Studies investigating 

the improvement for hydrological simulation of employing dual-polarisation relative to 

single-polarisation are few. One example is the study by Gourley et al. (2010) for nine severe 

storm events from 2005 to 2008 over a 813km2 catchment area in Oklahoma, USA, with a 

hydrological focus on a 342km2 gauged catchment. They found that improved hydrological 

model performance was only achieved once long-term biases in the QPEs were identified 

and corrected for. Whilst the single-polarisation QPE, assessed against raingauges, had a 

lower bias (-9% compared to -31%), the best dual-polarisation QPE had a bias that was 

stationary whereas that of the single-polarisation QPE fluctuated with event rain-intensity, 

attributed to varying drop-size distributions and hail. This provides evidence for dual-
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polarisation stabilising the error structure across varying types of storm. Correction for bias 

resorted to use of the raingauge network. Seeking improvement through studies of radar 

QPE errors, focussed on range effects across a range of environments, was recommended 

for future work. A more recent hydrological assessment employing dual-polarisation radar 

by He et al. (2018) focussed on a flat area of Denmark with a complex hydrological regime 

influenced by groundwater. There was little to choose between the use of raingauge, single- 

and dual-polarisation QPEs for these environmental conditions, whilst the potential benefits 

of dual-polarisation in complex terrain was recognised. 

Application of X-band dual-polarisation radars for QPE in mountainous environments has 

several advantages over more conventional network radars (Lim et al., 2014; Yu et al., 

2018). Known limitations of X-band radar - such as their increased susceptibility to 

attenuation and typically lower azimuthal interval (due to smaller antenna sizes) - are less 

relevant in mountainous environments where topographic blockage and low-level 

precipitation formation typically impose severe constraints on the maximum useful radar 

range. The reduced cost of X-band radars - when compared to C-band or S-band systems - is 

particularly advantageous: making them well suited for filling gaps within existing radar 

networks to rectify areas of poorer local coverage. In addition, dual-polarisation has 

advantages in mountainous areas since phase-shift based precipitation estimators (using 

specific differential phase) are immune to the effects of partial beam blockage which are 

prevalent in such locations. This allows the use of radar observations from lower elevations 

than would be possible with a single polarisation system. The benefit is greatest for X-band 

radars as phase shift measurements from lower wavelength radars have a greater sensitivity 

to precipitation intensity (Sachidananda and Zrnić, 1986; Anagnostou et al., 2004). 
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Turning to hydrological use, based on experience limited to using networks of single-

polarisation C-band radars and raingauges in the UK, precipitation estimates from 

raingauges have been preferred over radar-based QPEs for hydrological model development 

(Cole and Moore, 2008, 2009; Moore et al., 2012). Partly, this is down to the more stable 

error structure of raingauge data - associated with the simplicity of direct measurement and 

application of quality-control checks (e.g. Howard et al., 2012) - which can be partially 

eliminated from modelled flows during the calibration of the hydrological model. 

In contrast, a range of artefacts can feature in the radar errors, arising from the sensed 

environment or in the post-processing, with some not readily diagnosed or corrected. 

Radar-based QPEs can suffer from transient under- or over-estimation of the precipitation 

on sub-daily and sub-hourly timescales. Although radar rainfall performance can be 

improved through applying radar-raingauge adjustment or merging methods, the effect of 

transient errors can persist and affect estimator robustness. It is in the context of increasing 

QPE robustness that dual-polarisation methodologies show greatest promise for improving 

radar rainfall use in hydrological modelling: this is an important motivator for the work 

reported on here. Further, there are particular advantages in radar rainfall for hydrological 

applications at smaller spatial and temporal scales, such as for modelling flash-floods and in 

urban hydrology (Berne and Krajewski, 2013; Thorndahl et al., 2017), where convective 

storm cells may be missed completely by the relative sparsity of a raingauge network.

The work presented here employs a unique radar dataset from the RAiNS (Radar 

Applications in Northern Scotland) campaign (Bennett, 2019; Neely et al., 2021). This 

campaign deployed the NCAS mobile X-band dual-polarisation Doppler weather radar 

(NXPol), available for research studies (Neely et al., 2018), in the Scottish Highlands near 
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Inverness over two periods in 2016. The aim of the present work is to assess the 

improvement to radar QPEs particularly for use as input to a hydrological model for 

simulating river flow over an area where the existing national network of weather radars 

and raingauges has known shortcomings. Importantly, it has been possible to exploit NXPol 

data to produce QPEs using processing chains of varying complexity and differing extent of 

use of dual-polarisation capability.

Previously, Neely et al. (2021) had shown that precipitation estimates from the second 

period of the RAINS campaign were able to outperform estimates from the UK C-band radar 

network for certain parts of the study area when assessed against raingauge measurements. 

The present investigation aims to assess whether these benefits to QPE pass through to 

hydrological model simulations of river flow in mountainous locations, and ascertain any 

dependence on the characteristics of the catchments being modelled and the season of the 

year. To undertake this, NXPol-derived QPEs from both periods of the RAiNS campaign along 

with estimates from the UK C-band network and raingauge data are used as input to the 

G2G distributed hydrological model, and assessed by comparing the model-simulated river 

flows against observations at gauged locations. Importantly, such a hydrological assessment 

essentially integrates QPEs over space and time, complementing the traditional point-based 

meteorological comparison with raingauge data: it can provide additional insights into the 

performance of the QPEs, helping to stimulate future improvements to radar-based QPE 

methods. The hydrological approach through its space-time integration allows the radar-

estimated precipitation to be evaluated over entire catchment areas, circumventing both 

potential raingauge issues and reducing sensitivity to localised artefacts in radar-based QPEs 

that may heavily influence such point-based assessments. The results of this investigation 

are likely to be of value to those interested in the use of dual-polarisation capabilities in 
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networks of C-band radars, as well as for X-band radars deployed for network coverage infill 

purposes and for local, high-resolution applications relating to urban storm drainage 

management. 

This paper is organised as follows. First, in Section 2, details are given of the dual-

polarisation X-band radar campaign over northern Scotland including the methods of 

increasing complexity used in NXPol’s QPE processing chain. Section 3 describes two 

alternative gridded QPEs included in the assessment of methods, one from the network C-

band radars and the other from interpolating raingauge data. Section 4 outlines the G2G 

distributed hydrological model and how it is used to obtain simulated river flows from each 

QPE method for comparison with observations across selected catchments (detailed in 

Section 5). The performance statistics used to assess each QPE method, through comparison 

of modelled and observed river flow, are described in Section 6. Section 7 describes the 

performance assessment of the QPE methods and examines the influence on performance 

of the Lowest Usable Elevation (LUE), the radar range and the study period. A broader 

discussion and concluding remarks follow in Section 8. 

2. The dual-polarisation X-band radar campaign over northern Scotland

2.1. Study area

The location of the NXPol radar at Kinloss Barracks, near Inverness in the Scottish 

Highlands, is shown as a red dot in Fig. 1a. This site was chosen for the radar to infill an area 

of reduced coverage in Scotland within the C-band weather radar network across the British 

Isles. Comparison to raingauge measurements over this area have shown radar rainfall 

estimates to be less accurate (Worsfold et al., 2014), particularly on account of the large 

distance to the nearest C-band radar and also in relation to topography and beam blockage 
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effects (Harrison et al., 2012). The C-band radar network includes four installations in 

Scotland. Locations of two of them - at Druim a’Starraig (166 km to the northwest of NXPol) 

and at Hill of Dudwick (95 km to the east) - are marked as blue dots in Fig. 1a. The other two 

– Munduff Hill and Holehead at distances 161 and 187 km from NXPol respectively - are off 

the map to the south. Also the locations of raingauges in SEPA’s hydrometric network over 

the study area are shown by green triangles in Fig. 1a.

The study area has several mountainous parts: notably the Cairngorms in the eastern 

Highlands to the south of NXPol (with the summit reaching 1309 m) and those of the 

western Highlands to the west (reaching a height of 1150 m within 100 km of the radar site). 

These lead to radar beam blockages and local orographic enhancements to the 

precipitation, both of which provide additional challenges for radar QPE (Georgiou et al., 

2012). The spatial distribution of annual average rainfall in the region is variable: from less 

than 700 mm for some areas of the eastern coast, to greater than 3000 mm over some parts 

of the western Highlands (1981–2010 average precipitation map; Met Office, 2018). An 

additional challenge is posed by the typically low altitude of the melting layer during winter, 

which often leads to accumulations of solid precipitation particularly in upland areas. The 

low melting layer limits the effectiveness of dual-polarisation processing, which is partly 

based on the electromagnetic scattering properties of liquid precipitation, and is particularly 

pronounced when the surface topography requires that QPE uses higher altitude radar data. 

On the other hand, the study area is well suited for assessing precipitation using 

hydrological models as topography acts as a dominant control on runoff production. The 

impermeable geology means there are no groundwater transfers between catchments, and 

the baseflow fraction is low so antecedent condition effects do not persist for extended 
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periods of time. Additionally, the headwater catchments are typically rapidly responding 

which limits the possible temporal averaging of transient errors in the QPE. 

[FIGURE 1 LOCATION]

2.2. Description of NXPol QPEs assessed

To deal with mountainous terrain in the vicinity of NXPol, radar scans are taken at 

different angles relative to the ground. Observations from those scans considered to be at 

the LUE are combined to create a two-dimensional QPE. Full details of the NXPol radar and 

its rain-retrieval methods are provided in Neely et al. (2021). Briefly, the system has a 75kW 

peak power output split between the two transmit channels, operates using simultaneous 

transmit and receive (STAR) for dual-polarisation moment estimation, has a 2.4m antenna 

leading to a half-power beam width of 0.98° (narrower than most X-band systems), and 

operates without a radome. In this campaign NXPol collected a volume of observations 

consisting of ten 360° Plan Position Indicator (PPI) sweeps at increasing elevation angles, 

including but not limited to 0.5, 1, 1.5, 2, 3, 4°. Each PPI has an azimuthal interval of 1° and a 

150m range-gate spacing to a maximum range of 150km. The full volume scan cycle took 

approximately 5.5 minutes and is labelled in this analysis by the start-time of each volume. 

Using a static look-up table based on the minimum detectable signal and the occurrence of 

clutter, each volume of PPIs was collapsed into a single LUE product.

The LUE method described in Neely et al. (2021) differs from the typical radar data 

gridding approach as it considers the impact of the blocked fraction on the minimum 

detectable signal with increasing range, rather than using a fixed fraction to eliminate low 

elevations. It also incorporates the impact of ground clutter on radar data quality, 

substituting areas that have significantly elevated echo occurrence percentages with data 
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from higher elevation angles. To achieve this, data for each range gate are taken from the 

lowest elevation that has both a minimum detectable signal of 10dBZ (factoring in the 

impact of beam blockage based on a static partial beam blockage correction) and an echo 

occurrence percentage of less than 75% based on a static clutter map from six non-

consecutive clear-air days. This approach is a necessary compromise between avoiding 

excessive beam blockage and ground clutter, and the possibility of overshooting of low-lying 

precipitation for scans with higher angles. The overshooting of precipitation becomes 

especially problematic behind mountains and is expected to result in a considerable 

underestimation of the precipitation for catchments with LUE greater than around 3 to 

4 km. 

A map of catchments used in this study, shaded according to their mean LUE, is shown in 

Fig. 1b. Regions of high LUE, and anticipated poorer QPE performance, are clearly visible to 

the south and west. Areas near the radar, and also across the sea to the north, and, to a 

lesser extent, along the Great Glen (a geological fault line) to the south-west, have lower 

LUE even for catchments that are a long distance from the radar site.

Ten different NXPol QPEs (summarised in Table 1) were assessed using hydrological 

simulation in this study. The first five of these methods (R(Z) to R(ZC)) in Table 1) all make 

use of the Marshall-Palmer relationship, Z=200R1.6, between reflectivity, Z, and precipitation 

rate, R (Harrison et al., 2012; Marshall and Palmer, 1948) but represent a progression of 

increasing data processing. This starts with R(Z), which simply applies the Marshall-Palmer 

relationship to the calibrated horizontal reflectivity as measured by NXPol, thus providing a 

baseline for the assessment of all other methods. The second method, R(Z+DTM), applies a 

partial beam blockage correction based on a Digital Terrain Model (DTM) to the horizontal 
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reflectivity before precipitation estimation. This method is implemented using wradlib 

(Heistermann et al., 2013) using 1 arc-second SRTM (Shuttle Radar Topography Mission) 

data for the surface topography. R(Z+DTM+QC) additionally applies dual-polarisation quality 

control (QC), removing second trip echoes and non-meteorological echoes using a fuzzy 

logic approach followed by removal of isolated pixels using connected component labelling 

(Dufton and Collier, 2015; Dufton, 2016). R(Z+DTM+QC+At) then applies attenuation 

correction through the implementation of the ZPHI method (Testud et al., 2000). In this 

instance a minimum precipitable path length of 3km (10 continuous range gates identified 

as meteorological by the fuzzy logic QC) is required for data assumed to be below the 

melting layer based on extrapolation of surface temperature data using a fixed lapse rate of 

6°C/km. Differential phase shift is smoothed using a modification of the Hubbert and Bringi 

(1995) iterative method prior to identification of the phase limits for the calculations 

(Dufton, 2016). The method assumes a constant factor of 0.27dB/deg to estimate specific 

attenuation from specific differential phase (also used in later methods for direct 

precipitation estimation). R(ZC) is identical to the previous method with the exception of the 

partial beam blockage correction being applied. In this case the correction is derived from 

the consistency of polarimetric variables during the summer of the RAINS deployment, as 

proposed by Diederich et al (2015a). This leads to higher estimates of the correction needed 

when compared to the DTM approach: see Neely et al. (2021) for more details.

The next five methods make use of either specific attenuation, specific differential phase 

or both to calculate the QPEs, with R(ZC) being used as an infill when these methods are not 

possible (above the melting layer in the case of specific attenuation, for example). R(Ah) 

estimates precipitation intensity using specific attenuation, Ah, assuming an atmospheric 

temperature of 10°C leading to a relationship of R=45.5Ah
0.83(Diederich et al., 2015b) where 
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Ah is estimated during attenuation correction by the ZPHI method. R(Ah,thr) is identical to 

R(Ah) when the total differential phase shift along the rain region path identified exceeds 5 

degrees, but otherwise defaults to R(ZC). Considering this method allows an assessment of 

the impact of potentially spurious results during light rainfall conditions where noise in the 

differential phase shift measurements could have a significant impact. R(Z(Ah)) uses the 

same 5 degrees threshold on the total differential phase shift used with R(Ah,thr) but 

instead converts Ah into a synthetic equivalent horizontal reflectivity, Zh,syn, for use in the 

Marshall-Palmer relation. This is the same approach taken to derive the dual-polarisation 

beam blockage correction introduced in the R(ZC) method. This approach acts as a dynamic 

bias correction to reflectivity, while still using the Marshall-Palmer relation, which is a good 

climatological fit for UK precipitation estimation. R(KDP-Z) instead focuses on using specific 

differential phase, Kdp, for the estimation of precipitation. Here the method uses the 

relationship from Ryzhkov et al. (2014) where the estimates are blended with those from 

R(ZC) at all Kdp estimated precipitation intensities between 10 and 20 mm h−1 using a linear 

weighted average. Below 10 mm h−1, R(ZC) is used without Kdp input. The weighting 

accounts for the well-known difficulties of estimating small values of Kdp (Vulpiani et al., 

2012). The final method, R(Dual-Pol), is a combination of R(Z(Ah)) and R(KDP-Z) where 

specific attenuation based estimates are used as first preference, followed by those utilising 

specific differential phase, and finally reverting to reflectivity where these estimates are not 

available. All QPE methods are applied to the published calibrated NXPOL radar dataset, 

where horizontal reflectivity is calibrated using polarimetric self-consistency and differential 

reflectivity is calibrated using vertically pointing radar scans (Bennett, 2019; Neely et al., 

2021). Since specific attenuation and specific differential phase are immune to radar miss-

calibration, QPE methods involving them will be less sensitive to any temporal variations in 
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radar calibration over the study period. All NXPol radar data processing is coded in python, 

taking advantage of the open source libraries Py-Art (Helmus and Collis, 2016) for reading 

and writing CfRadial files and wradlib (Heistermann et al., 2013) for DTM estimation and 

gridding of the data. No raingauge or climatological adjustments are applied to the NXPol-

derived QPEs to avoid confounding the current analysis which is focussed on comparing 

QPEs of increasing complexity in their use of radar variables. The strategic aim is to develop 

an X-band radar processing chain to which additional corrections can be applied and 

assessed as part of a staged, evolutionary process. This allows for consideration of 

raingauge data at a later stage, perhaps as part of a wider multi-sensor network. 

QPE products were produced for two periods in 2016: Period 1 from 1 March to 30 April 

and Period 2 from 1 June to 17 August, with an interval of down-time for the radar in 

between. The melting layer was typically much lower during Period 1, with median heights 

of 1043 and 2243 m for the two periods respectively: this results in much more frequent use 

of R(ZC) as a fall-back for the dual-polarisation QPEs over Period 1. 

For use with the G2G distributed hydrological model, the LUE products created on the 

native polar coordinate system of the NXPol were regridded onto a 1 km Cartesian 

rectilinear grid using the area-weighted average of all 2D polar radar pixels intersecting with 

each Cartesian grid-cell. Missing and filtered radar pixels within a grid-cell are excluded from 

the average provided they cover less than 30% of the area, after which they are set to NaN 

and counted as having zero precipitation by G2G. The resulting rectilinear coordinate 

system is the same as used by the network C-band QPE product. To produce continuous 

QPEs for use in the hydrological model, any period of greater than 10 minutes without 

NXPol data was infilled using QPEs from the C-band network. This included the entire month 
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of May (between Period 1 and 2), which was subsequently excluded from the analysis of 

river flow. Apart from during May, C-band QPE data were only used 314 times for infilling, of 

which 275 were used during a 23-hour period of downtime between 6 and 7 April. C-band 

data, as opposed to raingauge data, were chosen for infilling so as not to bias comparisons 

between NXPol and C-band QPEs. The irregularly timed QPEs (approximately 5.5 min apart) 

were accumulated using a simple trapezoidal rule, without allowing for advection effects, to 

produce 15-minute precipitation totals for input to G2G. Experience in a UK context has 

shown that accounting for the movement and development of storms between time-steps 

(see, for example, Fabry et al. (1994)) normally has little impact on modelled river flows for 

the catchment scales considered here (median catchment area 232km2).

 [TABLE 1 LOCATION]

3. Alternative precipitation sources for comparison

3.1. R(C-band) precipitation

The UK Met Office operates four C-band radars in Scotland as part of a wider network of 

18 weather radars across the British Isles. Data from the radars are processed by the 

Radarnet IV Central Processing System at Exeter (Met Office, 2020) to produce an estimate 

of rainfall intensity at ground level. The processing includes clutter removal, beam blockage 

correction, correcting for attenuation and the vertical profile of reflectivity (VPR), adjusting 

for orographic enhancement, and correcting for residual bias using observations from the 

raingauge network (Harrison et al., 2006; Darlington et al., 2016a,b). These corrected data 

are then composited into a UK-wide gridded precipitation product. 
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The gridded C-band rainfall intensity data used in this study were sourced from a live 

data-feed supplied by the Met Office on a 1km Cartesian grid with a 5 minute time-step. 

These data are identical, up to minor differences in the occurrence of missing data, to the 

1km resolution UK Composite Rainfall product available from the CEDA Archive (Met Office, 

2003). These gridded time-series were accumulated (without accounting for advection, as 

per NXPol QPE) to form a C-band QPE of 15-minute rainfall totals on a 1km grid for input to 

the G2G hydrological model. 

While there are several processing elements in common between NXPol and the 

operational C-band processing, the latter includes a greater use of external data sources 

including weather model fields for VPR correction and orographic enhancement adjustment, 

and raingauges for bias correction (Harrison et al., 2009, 2012; Georgiou et al., 2012).

3.2. Raingauge precipitation

Raingauge data from SEPA’s hydrometric network were used to produce gridded 15-

minute rainfall accumulation estimates for the whole of Scotland, including the study area, 

on a 1 km grid. This used a multiquadric interpolation technique (Hardy, 1971) in an 

extended form (Cole and Moore, 2008) employing a Euclidean measure of distance and zero 

“offset” which is equivalent to Kriging with a linear variogram (Borga and Vizzaccaro, 1997). 

Quality control of the raingauge data was performed as an initial step using the methods 

presented in Howard et al. (2012). This precipitation estimate provides a useful baseline, 

one previously found to produce the best modelled river flow and subsequently chosen for 

calibration of the G2G model (Cole and Moore, 2009). 

For the study period, the raingauge network consisted of approximately 290 tipping-

bucket raingauges over the whole of Scotland, and over the studied catchments a mean 
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gauge density of approximately one raingauge per 290 km2 (calculated using the ArcMap 

point density tool with a 20 km neighbourhood). Raingauge locations within the study area 

are mapped in Fig. 1a.

4. The G2G model

The Grid-to-Grid (G2G) model is a distributed physical-conceptual hydrological model 

(Moore et al., 2006; Bell et al., 2009; Environment Agency, 2010) used for a range of 

research and operational applications including flood forecasting by both the Scottish Flood 

Forecasting Service (Cranston et al., 2012) and the Flood Forecasting Centre for England and 

Wales (Price et al., 2012). G2G is underpinned by spatial datasets on landscape properties 

(elevation, soil/geology and land-cover) in support of its area-wide application, and also 

employs precipitation, potential evaporation and air temperature as gridded time-series 

inputs. To account for sub-grid heterogeneity, the Probability Distributed Model (PDM; 

Moore 1985, 2007) concept is employed within each grid-cell to generate surface and 

subsurface runoff components. These runoffs are routed along separate water pathways 

from grid-cell to grid-cell to produce hillslope, river channel, and groundwater flows; return 

flows from the groundwater and soil water to the surface water pathway are also 

represented. The G2G model is based on water conservation principles with its water 

balance updated at each time-step.

The G2G setup used in this study follows the version used operationally by the Scottish 

Flood Forecasting Service. It runs with a model time-step of 15 minutes and includes use of 

the G2G Snow Hydrology module based on the PACK snowmelt model (Moore et al., 1999). 

Although the use of spatial datasets of landscape properties reduces the importance of 

calibration compared to lumped conceptual hydrological models, simulation-mode 
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calibration was used to improve G2G operational performance. A number of parameters 

relating to runoff production and routing were calibrated across the whole model domain of 

Scotland (rather than just the study area), using river flow observations from January to 

September 2016. Additionally, a further two parameters (controlling channel roughness and 

return flow from soil water) were adjusted separately for each gauged catchment. 

Calibration paid attention to performance over the full flow range as well at high flows, 

relevant to its use for flood forecasting, and employed a mix of visual and automated 

calibration tools. Gridded raingauge precipitation was used as input (Section 3.2). Whilst 

data assimilation of river flow observations is used to enhance model performance for 

operational flow forecasting purposes, it is not invoked here so as not to confound the 

comparative assessment of simulated river flow using the different QPEs as input to G2G. 

The PACK formulation (Moore et al., 1999) of the G2G Snow Hydrology module acts as pre-

processing step affecting the input precipitation. Air temperature is used as a threshold to 

differentiate between liquid and solid precipitation and also to control the melting process 

through a temperature-excess formulation; the storage and release of water in the 

snowpack is also represented.

The potential evaporation (PE) and air temperature inputs used here are those employed 

in G2G operationally. For PE, a standard annual profile grid of monthly averages was 

employed, calculated as the monthly average MORECS PE (Thompson et al. 1981; Hough 

and Jones, 1997) using the 40 km gridded monthly values over the 1981 to 2010 period. Air 

temperature was from the Post Processing of the UK Met Office weather prediction model 

(UKPP) for a height of 1.5 m and obtained at a 2 km and hourly space-time resolution. Data 

were downscaled to a 1 km grid using a lapse rate of 5.9°C/km to account for differences in 

mean elevations between the 2 and 1 km grid-cells.
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5. Catchment selection and river flow data

Fig. 1 maps the 57 gauged catchments and sub-catchments selected for inclusion in this 

study. These were chosen from an original selection of 63 catchments having a mean 

distance of less than 100 km to the radar site and of interest to SEPA. Of the original 63 

catchments, two were discounted due to missing river flow observations and two more 

through inspection of hydrographs revealing significant sub-daily fluctuations that were 

attributed to measurement error. A further two sites were discounted as G2G simulated 

flows were found to perform poorly regardless of precipitation input type. The river flow 

data at 15 minute intervals were obtained from SEPA. 

6. Performance statistics used for hydrological assessment of QPEs

To describe the performance of the modelled river flows and, by extension, that of the 

precipitation estimates used to produce them, several statistics are employed. Each 

compare modelled flows to observations, and each aim to capture a different aspect of 

performance. 

One statistic, the R2 Efficiency - also known as the Nash-Sutcliffe Efficiency (Nash and 

Sutcliffe, 1970) - is defined as
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Here  and  are, respectively, the modelled and observed flow at time-step , and  is tq tQ t Q

the mean observed flow over the period. This commonly used statistic places a higher 

weight on the larger absolute discrepancies that are typically found for high flows. As such, 

it is particularly useful in assessing the high flow regime and as an indicator of an input 



19

precipitation’s suitability for use in flood modelling. An R2 Efficiency of 1 indicates a perfect 

agreement between modelled and observed flows, whilst a value of less than zero indicates 

that the performance, as measured by mean square error, is worse than would be obtained 

by using the observed mean flow value. Note that R2 Efficiency differs in its definition from 

the coefficient of determination r2, where r is the correlation coefficient, which does not 

account for bias effects on model efficiency and therefore has a larger or equal value.

The correlation coefficient, r, is also calculated. This statistic is insensitive to overall 

absolute and relative (linear) biases in the modelled river flow. As such, it may also be less 

sensitive to bias corrections and other compensations applied to the QPEs, such as those 

featuring in the network C-band but not the NXPol. Correlations have values between +1 for 

a perfect positive correlation and -1 for a perfect negative correlation, with zero indicating 

no correlation.

The modified Kling–Gupta Efficiency (Gupta et al., 2009; Kling et al., 2012) is defined as

(2)2 2 21 ( 1) ( / 1) (( / ) 1)q QKGE r CV CV q Q       

with  and  the coefficient of variation (standard deviation divided by mean) for the qCV QCV

modelled and observed flows respectively, and  the mean modelled flow over the q

evaluation period. This statistic obtains its maximum value of 1 for perfect agreement 

between model and observation. In this study KGE’ is applied to the square-root of river 

flow, denoted as KGE’[sqrt], in order to produce a general metric that places weight on low 

and medium flows as well as high flows: it therefore may be sensitive to features in the river 

flow not adequately captured in the R2 Efficiency. 
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The percentage bias, , in the modelled flow compared to the observation 100( ) /q Q Q

is also calculated. This statistic should approximate the relative bias in the input 

precipitation because of: (i) the conservation of water within the G2G model, (ii) the 

relatively low contribution of evaporation to the water balance for the humid temperate 

climate of Northern Scotland, (iii) the small groundwater component of river flow, and (iv) 

the relatively long time-span of the study period compared to typical hydrological response 

times of the catchments.

Unless stated otherwise, all performance statistics are evaluated at the model time-step 

of 15 minutes over the period 1 February to 17 August 2016, excluding the month of May 

(for which all NXPol QPEs were missing and infilled using R(C-band): see Section 2). The G2G 

simulations were started on 1 February 2016 with each selected precipitation input. To 

avoid the uncertainty associated with a cold start, and possibly poorly initialised water 

stores in the model, model states that had been spun-up using raingauge precipitation from 

a start on 10 October 2013 were used. 

Statistics are also used to quantify the influence of snow accumulation and melt on river 

flow. This involves calculating the fraction of days for which modelled flows with gridded 

raingauge data as input differ by more than 20% when the G2G Snow Hydrology module is 

included (as is standard) or excluded (all precipitation is treated as rainfall). This statistic 

naturally captures the full impact of snow on flows including its accumulation, melt, rain-on-

snow events, the influence of different elevations within a catchment, and how this 

translates into river flows.

7. Performance assessment
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The performance of the NXPol R(Dual-Pol) QPE, which makes full use of dual-polarisation 

variables, is assessed first. Each catchment in Fig. 2 is shaded according to the R2 Efficiency, 

correlation, and bias of G2G modelled flows using the NXPol R(Dual-Pol) QPE as input. 

Except for a few catchments very close to the radar, and with reference to the LUE map in 

Fig. 1b, the catchments with highest R2 Efficiency and highest correlation coefficient are 

typically those with lower LUEs. In contrast, those catchments with high LUEs (exceeding 

4 km) have, without exception, a strong negative bias (worse than -50%) and a 

correspondingly poor R2 Efficiency (below zero), indicating that a large portion of the 

precipitation for these catchments is missed by the R(Dual-Pol) QPE. The correlation for 

these catchments is also often poor (usually less than 0.5). 

 [FIGURE 2 LOCATION] 

Modelled river flows, calculated using either R(Dual-Pol) QPE or raingauge QPE - for the 

four example catchments delineated by bold lines in Fig. 2 and labelled on Fig. 1b - are 

compared to observed flows in the hydrographs of Fig. 3. Time-series of catchment average 

precipitation and air temperature are also displayed in the figure while catchment details 

and analysis statistics are summarised in Table 2. These catchments were chosen to 

represent the range of behaviours found in modelled river flows using NXPol-derived QPEs 

as input. In all four cases, the use of raingauge precipitation produces modelled river flows 

that compare at least reasonably well to the observations (R2>0.6, r>0.8, |bias|<20%, in all 

cases, see Table 2). For NXPol QPEs, the range of behaviour may be summarised as follows.

Strathy at Strathy Bridge (Fig. 3a). A catchment in the far north of Scotland which is distant 

(92 km on average) from NXPol but has a fairly low mean LUE (2.1 km). The R2 Efficiency 

(0.43) and correlation coefficient (0.68) of modelled flows using R(Dual-Pol) QPE are 
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reasonable for this catchment suggesting that LUE has a greater influence on performance 

than range from the radar, at least up to distances of around 100 km. The total catchment 

average precipitation recorded in R(Dual-Pol) (321 mm) is 14% lower than that found using 

raingauge precipitation (373mm) which feeds through to a bias of -14% in modelled flows 

using R(Dual-Pol) (Table 2). Also note that throughout Period 1 the catchment’s mean air 

temperature at ground level is often no more than a few degrees above 0oC. This has two 

consequences. Firstly, the catchment’s mean air temperature is frequently below the 

threshold of 0.75oC at which G2G treats precipitation inputs as snow – and it will tend to be 

significantly colder than this at the catchment’s higher elevations. This translates into a 

reasonable impact of snow on the river flows (determined as the percentage of days for 

which the modelled flows with and without the inclusion of snow processes differ by more 

than 20%, see Table 2), even for this relatively low elevation catchment. The other example 

catchments are also affected by snowfall to a degree partially determined by their elevation 

(see Table 2). Secondly, above the catchment, the low height of the melting layer almost 

totally prevents the calculation of the specific attenuation, which is based on the properties 

of liquid water. Hence, R(Dual-Pol) will be identical to R(KDP-Z) for almost all of Period 1 for 

this catchment. Any period for which the height of the melting layer prevents the 

calculation of specific attenuation over more than 50% of a catchment is shaded red on the 

hyetograph for R(Dual-Pol) in Fig. 3. Note that additional checks in the processing chain for 

radar signals associated with solid precipitation may also limit the calculation of specific 

attenuation, so this measure provides only a maximum possible percentage. The other 

example catchments are also affected by this to a degree mainly determined by their mean 

LUE.
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Lossie at Sheriffmills (Fig. 3b). A catchment very close to the radar (14 km) and having a low 

LUE (0.5 km). Modelled river flow using the R(Dual-Pol) QPE displays a very large overall 

positive bias (+94%), which is far more pronounced in Period 1 (+164% bias) than Period 2 

(+30% bias), and arises from catchment-average R(Dual-Pol) precipitation totals that are a 

very large compared to raingauge precipitation totals (40% larger for the full period or 120% 

larger for Period 1). Nevertheless, even in Period1, modelled flows using R(Dual-Pol) data 

agree reasonably well with the observed flows in terms of relative magnitude and timing of 

the flood peaks. Similar behaviour (biases in excess of 90%) is found for all three catchments 

closest to NXPol. This was traced to a previously undiagnosed antenna elevation pointing 

error in Period 1, leading to overcorrection of beam blockage for this period, especially 

when using beam blockage corrections derived using data from Period 2 (Neely et al., 2021). 

This effect was strongest close to the radar where the LUE derivation incorporated a greater 

number of radar voxels from lower elevations which suffered more from the overcorrection.

Deveron at Avochie (Fig. 3c). A catchment fairly close (51 km) to the radar and with a 

relatively low mean LUE (2.3 km), producing reasonable modelled river flows. The highest 

peak in the observed flow data, reaching 127m3/s at 19:30 15-June, is the most significant 

flood peak found during the study period at an example catchment: it is the only peak that 

approaches the median annual flood (129 m3/s for this catchment, see Table 2). This peak is 

underestimated in both the modelled flow using the raingauge QPE as input (peak of 

53 m3/s) and the R(Dual-Pol) QPE as input (peak 41m3/s). The difference appears to reflect 

the different catchment-average total precipitation recorded over the preceding 48 hours 

(51 mm for raingauge and 38mm for R(Dual-Pol)). Over the whole study period however, 

the total precipitation recorded for this catchment is quite similar for the two QPEs: 424mm 

for raingauge and 409 mm for R(Dual-Pol).
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North Esk (Tayside) at Inveriscandye (Fig. 3d). A catchment in the south of the radar area 

that is both a long distance (94 km) from NXPol and on the far side of the Cairngorm 

mountain range. Its mean LUE of 6.7 km is the highest of all the catchments included in this 

study. Because of this, the radar beam overshoots almost all precipitation in this catchment 

(total catchment-average R(Dual-Pol) precipitation is just 55mm) resulting in a large 

negative bias in the modelled flow (-84%). Similar behaviour is seen for all catchments with 

LUE exceeding 4 km. 

[TABLE 2 LOCATION] 

[FIGURE 3 LOCATION] 

7.1. Influence of LUE and range of the radar observations on performance

Figure 4a-c show scatter plots of R2 Efficiency, correlation coefficient, and bias for 

modelled river flow using either R(Dual-Pol) or raingauge QPE as input against each 

catchment’s mean LUE. The plots for correlation coefficient and bias (Fig. 4b,c) also show 

the linear least-squares regression line and associated coefficient of determination, denoted 

by  in this context. For R(Dual-Pol) QPE, the systematic reductions in correlation 2

coefficient and bias is particularly striking and is reflected by strong coefficients of 

determination for the least squares regression lines: 0.38 and 0.63 for the correlation 

coefficient and bias, respectively. Similarly strong fits (in the ranges 0.38 to 0.61 and 0.51 to 

0.63 for the correlation coefficient and bias, respectively) are found for all NXPol QPEs. The 

lack of similar behaviour in modelled river flow using raingauge QPE (hollow grey circles in 

Fig. 4b-c) shows that the trends with R(Dual-Pol) are not associated with the characteristics 

of the hydrological catchments themselves. The trend for R2 Efficiency is more complicated, 
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which instead tends to have largest values at LUEs of around 2 km for which biases of 

around zero are typical.

The existence of distant catchments that perform comparatively well with NXPol 

precipitation, such as the Lossie at Sheriffmills (Fig. 3b), suggests that it is LUE rather than 

range that is chiefly responsible for the deterioration of performance shown in Fig. 4a-c. 

Nevertheless, the LUE is correlated with range having a value of 0.68. Catchments at closer 

range will benefit from lower minimum detectable signal, a smaller areal resolution, and 

suffer less from partial beam filling. Weaker values of the coefficient of determination for 

the regression lines (0.084 for r and 0.56 for bias using R(Dual-Pol)) obtained when mean 

range is used as the explanatory variable, rather than mean LUE, suggest it is LUE that has 

the strongest influence.

[FIGURE 4 LOCATION] 

7.2. Comparing different QPEs for Period 1 and Period 2

The boxplots of Fig. 5a summarise the overall performance of all QPEs, as assessed by 

statistics calculated on the modelled river flows and using data from both Period 1 and 

Period 2. Statistics are only shown for those 38 catchments with an LUE of less than 3 km in 

altitude on average across the catchment. Similar trends are repeated if all 57 catchments 

are included (not shown) - albeit with an overall reduction in R2 Efficiency, correlation, and 

bias for all NXPol QPEs - due to the inclusion of poorly performing catchments whose high 

mean LUE would flag them as unsuitable. 

The raingauge QPE tends to produce the best modelled river flows according to the 

R2 Efficiency metric. Some of this improvement could be due to the G2G hydrological model 
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having been calibrated using raingauge QPE as input. But this seems unlikely to account for 

a large proportion of the difference, especially given the reduced role of calibration for an 

area-wide distributed model like G2G compared to, for example, a lumped hydrological 

model with a catchment-specific calibration. The R2 Efficiency also indicates a general 

improvement in performance with either increased processing complexity for single 

polarisation QPEs (R(Z) to R(ZC) in Table 1), or using the dual-polarisation estimates (R(Ah) 

to R(Dual-Pol) in Table 1), albeit with the R(ZC) QPE able to match the performance of some 

dual-polarisation estimates. Correlation, KGE’[sqrt] and bias generally repeat the same 

trends towards improvement found for R2 Efficiency, but with some exceptions. The 

strongest increase in performance is seen for the bias. This suggests that the improved bias 

is the factor responsible for a larger part of the improvement seen in R2 Efficiency (which 

can be viewed as a combination of correlation, bias, and the ratio of standard deviations 

(Gupta et al., 2009)). It also suggests that while the application of a bias correction to NXPol 

QPEs should be expected to increase the overall R2 Efficiency for their associated modelled 

river flows, it may reduce the further improvements gained by processing complexity or 

dual-polarisation.

The boxplots of Fig. 5b and 5c highlight the different trends in performance found using 

the radar QPEs for Period 1 (March to April) and Period 2 (June to August). There is also a 

difference across the two periods in the performance of modelled river flow using raingauge 

or R(C-band) QPE as input to G2G. Part of the difference for both radar and raingauge inputs 

may be due to the increased complexity of modelling snow accumulation and melt within 

the G2G model. One way to quantify this is by comparing G2G modelled flows (with 

raingauge QPE as input) calculated either using the G2G Snow Hydrology module (as is 

standard), or excluding it (when all precipitation is treated as rainfall). On average across all 
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catchments, river flows calculated using these two model setups differ by more than 20% 

for 31% of days in Period 1, compared to almost no differences of this size (0.1% of days) for 

Period 2. Additionally, the short time periods over which river flows have been modelled 

can make results sensitive to the observed weather conditions.

 [FIGURE 5 LOCATION] 

For the NXPol QPEs, the clearest difference between the two periods is the lack of 

improvement produced by the increasing use of dual-polarisation in Period 1, compared to 

the strong improvements found for Period 2. This is attributed to the considerably lower 

height of the melting layer in Period 1, which limits the occurrence of the liquid 

precipitation conditions assumed in the use of estimators based on specific attenuation, 

variations of which are the main difference between the dual-polarisation methodologies. 

Fig. 6 shows the distribution of the highest altitude for which the specific attenuation is 

calculated, which is 250 m below an estimated 0˚C height. In Period 1 this averages a 

median of just 793 m, compared to 1993 m in Period 2, and leads to at least 35% of the 

radar domain never having estimates based on specific attenuation available in the first 

period (compared to less than 10% in the second period). The trend for improvement 

produced by increasing processing complexity and use of dual-polarisation for Period 2 is 

consistent with that found by Neely et al. (2021; Fig. 5 therein) where the same QPEs were 

assessed against raingauge data. However, use of hydrological model simulations of river 

flow against observations for assessment of the different QPEs, when employed as 

alternative model inputs, produces a much stronger contrast in performance between 

methods particularly when considering the correlation and bias. This results from the 

greater spatial coverage of the hydrological catchments when compared to raingauges, 
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which can be subject to localised error structures. This furnishes further evidence of the 

benefit of using catchment-scale river flow data alongside direct raingauge data 

comparisons for assessing radar QPE. The increased correlation of the R(Ah) and R(Ah, thr) 

methods for multiple catchments when compared to R(ZC) in Period 2 is further evidence 

that estimators based on specific attenuation are impacted to a lesser extent by variability 

in the drop-size distribution of the precipitation than conventional ones employing 

reflectivity (Diederich et al., 2015b; Chen et al., 2021). 

 [FIGURE 6 LOCATION] 

7.3. Mapping best performing QPEs

Fig. 7 maps the best performing NXPol QPE - as determined by either R2 Efficiency, 

correlation or bias on modelled river flow - for the full study period. The lowest absolute 

values of bias are almost exclusively found for R(KDP-Z) or R(Dual-Pol). For a number of 

catchments, these two QPEs give identical performances. In general, even when not exactly 

equal, their performance is very similar: 90% of catchments have an absolute difference in 

percentage bias between these QPEs which is smaller than 2%. Their performances assessed 

by correlation or R2 Efficiency are also very similar. 

The typically lower absolute bias in R(KDP-Z) and R(Dual-Pol) feeds through into typically 

superior R2 Efficiency. However, when judged by correlation coefficient the picture is far 

more mixed: various dual-polarisation or non-dual-polarisation QPEs are found to give the 

best performance, especially for some of the catchments with lower LUE. When judged by 

median correlation coefficient for catchments with LUE below 3km (Fig. 5a), 
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R(Z+DTM+QC+At), R(Ah), R(Ah,thr), and R(Z(Ah) QPEs all perform better than R(KDP-Z) and 

R(Dual-Pol). These results broadly reflect those shown in Fig. 7 of Neely et al. (2021) where 

the various NXPol QPEs were assessed against raingauge measurements. 

[FIGURE 7 LOCATION] 

Fig. 8 maps in green the catchments for which the performance of R(Dual-Pol) is better 

than R(C-band). The R(Dual-Pol) QPE has a higher R2 Efficiency than R(C-band) for 23 

catchments that tend to be either near the radar, or towards the south-east and north. This 

is expected as LUE for the NXPol radar is low for these locations while, due the distance to 

the nearest C-band radar and the intervening topography, observations contributing to the 

C-band QPEs will be from higher altitudes. The three catchments close to the radar and 

suffering high positive bias in R(Dual-Pol) as a result of the antenna elevation pointing error 

in Period 1 are an exception. A similar pattern of best-performing catchments is also seen 

for the bias. This overall behaviour is the result of averaging the differing behaviours in 

Periods 1 and 2, as shown in Fig. 5. In Period 1 the benefit of using the dual-polarisation 

variables in the NXPol QPE are limited, and the R2 Efficiency of R(Dual-Pol) is only better 

than that of R(C-band) for 10 catchments. In contrast, during Period 2, R(Dual-Pol) has 

better R2 Efficiency than that of R(C-band) for 30 catchments as the increased use of dual-

polarisation variables for R(Dual-Pol) during this period improves its performance, while for 

R(C-band) many of the catchments suffer from strong positive bias (which actually tends to 

become increasingly positive for those sites nearest NXPol and correspondingly furthest 

from the C-band radars) and consequently it suffers a poorer R2 Efficiency. As assessed by 

correlation coefficient, the performance of R(Dual-Pol) is only better than that of R(C-band) 
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for 15 of the catchments in the study area. However, this number would be increased to 19 

for either R(Ah) or R(Ah,thr). Also recall that NXPol QPEs are experimental prototypes not 

benefitting from the full complexity of estimation measures featuring in the R(C-band) 

processing chain. These results are consistent with those presented in Fig. 7 of Neely et al. 

(2021) comparing R(Dual-Pol) and R(C-band) using the raingauge network data for 

assessment rather than river flow data.

[FIGURE 8 LOCATION] 

8. Discussion and concluding remarks

The performance of a set of X-band QPEs produced using data from the NXPol radar - 

having increasingly complex processing chains and use of dual-polarisation (summarised in 

Table 1) - were assessed in a hydrological context over northern Scotland. Here, 

mountainous terrain and low melting layer heights make radar-based QPE challenging. This 

hydrological assessment used the QPEs as input to a distributed hydrological model, G2G, 

and compared the resulting set of modelled river flows to observations. The assessment 

strategy considers how QPEs perform once integrated over space and time, thereby 

providing additional insights to the meteorological assessment against point raingauge 

measurements reported by Neely et al. (2021). 

All NXPol QPEs assessed showed a clear tendency to underestimate the precipitation for 

catchments with high mean LUE. The best performance, as assessed by the R2 Efficiency of 

the modelled river flows, was generally found for the R(Dual-Pol) and R(KDP-Z) QPEs, while 

the flows modelled using R(Ah) and R(Ah,thr) QPEs often had the best correlation 
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coefficient. There were clear differences between the two study periods (March to April and 

June to August 2016) which were caused by the lower melting layer and consequently 

reduced use of dual-polarisation capability in the first period. A longer study period would 

allow greater assessment of seasonal effects and reduce the impact of individual weather 

events.

The strong dependence on LUE of the performance of river flow modelling using NXPol 

QPEs as input highlights the difficulty of radar precipitation estimation in mountainous 

environments. Here, the high elevation scans needed to circumvent blockages leads to 

significant overshooting of the falling precipitation: resulting in low correlation and negative 

bias of modelled river flows. This effect becomes most apparent when the mean LUE results 

in utilising radar observations of altitude ~3km and above. The assessment also highlights 

that the Met Office C-band radar network suffers from similar issues in this region, but with 

the results inverted compared to the NXPol radar as a result of the different radar locations. 

This is despite the more complex processing used in the network radar to attempt to 

overcome this challenge. Clearly, one solution is to incorporate additional radars into the 

observing network in these problematic locations, sited such that observations for critical 

catchments may be made at altitudes less than 3km. Where this is not feasible, using heavily 

processed low-elevation scans are likely to be more effective than processed higher-

elevation scans. Further improvements to the LUE methodology used herein are required to 

allow a dynamic use of lower-altitude scan data where possible.

Comparing the assessment results obtained for Period 1 (March to April 2016) with those 

for Period 2 (July to August 2016), it is seen that the dual-polarisation processing 

(attenuation correction and specific attenuation based precipitation estimators) has more 
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impact on river flow modelling performance during Period 2. This is a consequence of the 

requirement to have a continuous path within liquid precipitation to allow more accurate 

estimation of specific attenuation. Meeting this requirement is often not possible when the 

freezing height is low and, particularly, when higher elevation-angle scans are needed. 

Additional processing is required to obtain further benefits (beyond filtering capabilities) 

from dual-polarisation radars in lower temperature conditions. The expectation is that using 

solid-phase precipitation estimators based on specific differential phase and reflectivity 

would improve the results in cold conditions (Bukovčić et al., 2020). Additionally, 

incorporation of vertical profile corrections and conventional reflectivity estimators better 

suited to ice-phase hydrometeors may also lead to performance improvements in these 

conditions. The hydrological simulation approach to assessment used here would be better 

placed to identify these benefits than a more conventional comparison to data from 

raingauges as these are less accurate when measuring solid precipitation (Savina et al., 

2012). This should be explored in future work.

NXPol QPEs have also been compared to the rain-rate estimates based on observations 

made by the C-band radar network operated by the UK Met Office. The network radars 

employ a variety of processing steps not included in the NXPol processing chain. For 

example, adding an adjustment for mean field bias using raingauge data could be trialled in 

NXPOL. Even so, most NXPol QPEs tended to give higher R2 Efficiency in modelled river flows 

than using R(C-band) QPE for catchments near the radar, towards the south-east and the far 

north of the study area.

The relationship between radar reflectivity and rain-rate used in this study was the 

Marshall-Palmer relationship (Harrison et al., 2012; Marshall and Palmer, 1948). However, 
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the exact physical relationship between reflectivity and precipitation intensity depends on 

the drop-size distribution, which in turn depends on type of precipitation, location and 

season. A preliminary investigation was carried out using data from the Disdrometer 

Verification Network, DiVeN (Pickering et al., 2019), to measure the drop-size distribution at 

a location within the coverage of NXPol during the RAiNS campaign (Cairngorm, 2017 to 

2019). This suggested that several events were dominated by a large number of smaller 

drops where the Marshall-Palmer relationship would underestimate rainfall intensity. An 

initial investigation considering these events, using a bulk average relationship, was tested. 

It was found to result in large positive biases in modelled river flows for catchments with 

low LUE, without improving the trend towards negative biases for catchments with high 

LUE. The conclusion drawn was that a dynamic approach is required, with the Z-R 

relationship chosen as a function of the observed microphysics, either on a scan-by-scan or 

voxel-by-voxel basis. Implementation of such a scheme requires further investigation to 

understand the relationship between drop-size distribution, weather conditions and dual-

polarisation radar signatures under UK conditions (Cocks et al., 2019; Thurai et al., 2017).

Further improvements should also consider how the LUE concept introduced in Neely et 

al. (2021) can be improved upon to preferentially use lower elevation observations where 

available. This could include using blockage-corrected lower elevations where data exist and 

higher elevations where there are no echoes available to correct. Also, introducing 

weighting into the Cartesian gridding scheme to give a higher weight to lower elevation 

observations within the target grid box where there is a variation in elevations available. 

Assessing radar-based QPEs by their effect on modelled river flows (using each QPE as an 

alternative input to a hydrological model) has been found to be a very useful and 
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independent addition to the assessment against point raingauge measurements performed 

by Neely et al. (2021). The approach facilitates assessment of precipitation over entire 

catchment areas, thus circumventing the potential sensitivity to local radar artefacts that 

can affect raingauge-based assessments, the measurement limitations of raingauges during 

solid phase precipitation, and also a possible lack of representativity for hard to service 

locations such as mountain tops. This approach also allows direct assessment of whether 

the potential benefits of a QPE procedure is carried forward to its quantitative use in 

hydrological modelling and therefore to end-users. Additionally, the number of suitable 

catchments in the study area (57) was comparable to the number (64) of raingauges used by 

Neely et al. (2021). Using a hydrological model to assess QPEs does add complexity and an 

additional source of uncertainty in the assessment. However, the accuracy of the QPE 

appears to be a dominant factor affecting river flow modelling performance. One way to 

investigate such sensitivity further would be to incorporate an additional hydrological model 

into the assessment framework, such as a catchment-calibrated lumped rainfall-runoff 

model. Nevertheless, the hydrological modelling assessment framework presented here has 

given additional insights into the space-time performance of radar-based QPEs beyond the 

traditional point-based comparison with raingauge data, and can be easily reapplied to test 

future QPE developments. Such assessment frameworks have wide applicability and the 

insights gained - on the performance of dual-polarisation methods and on identifying 

priority areas for future development – are of general relevance to those developing radar-

based QPEs. 
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produce simulated river flows for comparison with observations. This hydrological 

assessment complements and extends a previous meteorological assessment that used point 

raingauge data only. Precipitation estimates for two periods over the observation campaign 

in 2016 (March to April and June to August) are assessed. During the second period, increased 

incorporation of dual-polarisation variables into the radar processing chain is found to be of 

considerable benefit, whereas during the first period the low height of the melting layer often 

restricts their use. As a result of the complex topography in Northern Scotland, the Lowest 

Usable Elevation (LUE) of the X-band radar observations is found to be a stronger indicator of 

the hydrological model performance than range from the radar. For catchments with an LUE 

of less than 3 km, the best X-band QPE typically performs better for modelling river flow than 

using an estimate from the UK C-band radar network. The hydrological assessment 

framework used here brings fresh insights into the performance of the different QPEs, as well 

as providing a stimulus for targeted improvements to dual-polarisation radar-based QPEs that 

have wider relevance beyond the case study situation.
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Fig. 1. a) Elevation map of NE Scotland showing the NXPol site (red dot), C-band radar sites 

(blue dots), and concentric circles indicating distances of 50, 100 and 150 km from NXPol. 

Black lines indicate the boundaries of the catchments used in this study. Green triangles 

mark the locations of raingauges. b) The catchments shaded according to their mean Lowest 

Useable Elevation (LUE) for NXPol. The boundaries of four gauged catchments used as 

examples are delineated by bold lines, with fine lines showing gauged sub-catchments 

within them.

Fig. 2. Performance of G2G modelled river flows using the R(Dual-Pol) QPE. Each catchment 

is coloured according to the performance metric used: R2 Efficiency, correlation coefficient 

(r), or percentage bias. An R2 Efficiency of less than zero is set to zero for clarity.

Fig. 3. Time-series displays for the example catchments, each containing graphs of river flow 

along with catchment-average precipitation - from raingauges and R(Dual-Pol) radar - and 

air temperature. Graph 1. Observed (black) and modelled (green: R(Dual-Pol), cyan: 

raingauge) river flow. The G2G catchment area, mean LUE and mean distance from NXPol is 
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given below the catchment (river and station) name. Grey shading indicates a period of 

downtime for NXPol, infilled using R(C-band) precipitation). Graph 2. Raingauge 

precipitation. Graph 3. R(Dual-Pol) precipitation. Red markers indicate when the bottom of 

the melting layer is lower than the LUE over greater than 50% of the catchment. Graph 4. 

Air temperature at screen height (1.5m). Precipitation at temperatures below 0.75°C 

(highlighted as a dashed horizontal line) is treated as snowfall in G2G.

Fig. 4. Scatter plots showing (a) R2 Efficiency, (b) correlation coefficient, r, and (c) percentage 

bias in modelled river flow using R(Dual-Pol) (green circles) or raingauge (hollow grey circles) 

QPEs as input. Values of R2 Efficiency less than zero are set to zero for clarity. Straight lines 

in (b) and (c) indicate the linear least-squares regression line - for either R(Dual-Pol) (solid 

black line) or raingauge (dashed grey line) QPEs as input – with the associated coefficient of 

determination, , shown above the plot (that for raingauge QPE input is in brackets). 2

Fig. 5. Boxplots summarising the performance of modelled river flow for the 38 catchments 

with a mean LUE less than 3 km, separately for the whole study period (left), Period 1 

(March to April, centre) and Period 2 (June to August, right) for all precipitation inputs. The 

coloured box displays the interquartile range, the median is shown as the horizontal black 

line therein, and the typical range of the statistic is shown as black dashed lines extending to 

a maximum of 1.5 times the interquartile range with outliers beyond this range shown as 

hollow circles.
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Fig. 6. Distribution of the estimated highest LUE for which the specific attenuation is 

calculated (250 m below the estimated 0 °C height) for Period 1 (shaded grey) and Period 2 

(shaded pink). The distribution was estimated using the air temperature at the NXPol and a 

lapse rate of 6°C/km.

Fig. 7. Catchments are coloured according to the NXPol QPE that produces the best 

performance in the modelled river flow when assessed using either R2 Efficiency, correlation 

or bias. Catchments for which R(Dual-Pol) and R(KDP-Z) perform equally are shown with 

light-green/dark-green hatching. For bias, the lowest absolute bias is best.

Fig. 8. Catchments are coloured according to whether the R(Dual-Pol) (shaded green) or R(C-

band) (shaded grey) QPE produces the best performance in the modelled river flow when 

assessed using either R2 Efficiency, correlation or bias. 

Table 1

Description of NXPol QPEs used in this study. 

QPE Description
R(Z) A simple estimate based on the unfiltered horizontal reflectivity with no 

post-processing beyond calibration.
R(Z+DTM) A reflectivity-based estimate with simple clutter mitigation and Digital 

Terrain Model (DTM) based beam blockage correction.
R(Z+DTM+QC) As per R(Z+DTM) but additionally removing spurious radar echoes.
R(Z+DTM+QC+At) As per R(Z+DTM+QC) but applying a dual-polarisation based attenuation 

correction to the beam blockage correction and reflectivity filter.
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R(ZC) Similar to R(Z+DTM+QC+At) except using a specific attenuation derived 
clutter map to correct beam blockage.

R(Ah) Specific attenuation is converted into a rain-rate using a fixed R(A) 
relationship. R(ZC) is used as a fall-back.

R(Ah,THR) As per R(Ah) except only applying the R(A) relationship where the total 
differential phase shift exceeds 5°.

R(Z(Ah)) Specific attenuation is converted to reflectivity before calculation of the 
rain-rate. This is used when total differential phase shift is greater than 5°, 
otherwise R(ZC) is used as a fall-back.

R(KDP-Z) Smoothly blends an estimate based on the specific differential phase for 
high-intensity precipitation with the R(ZC) estimate at lower intensities 
(<20mm/h). 

R(Dual-Pol) As per R(Z(Ah)) except using R(KDP-Z) for infilling.

Table 2

Catchment details and analysis statistics for the four example catchments. 

Strathy at 
Strathy 
Bridge

Lossie at 
Sheriffmills

Deveron at 
Avochie

North Esk at 
Inveriscandye

Catchment Details
National River Flow Archive ID* 96003 7003 9001 -
Catchment Area (from G2G), km2 120 214 445 316
Mean NXPol LUE, km 2.1 0.5 2.3 6.7
Mean distance from NXPol, km 92 14 51 94
Mean (min, max) elevation, m† 165 (36, 312) 185 (25, 423) 329 (107, 680) 458 (46, 836)
Median annual flood, m3/s* 50 44 129 -
Max observed flow in study period, m3/s 27 23 127 105
Split Period Analysis
AH potential availability, %  Period 1 (Period 2) 0 (39) 70 (100) 1 (35) 0 (0)
% of flow affected by snow Period 1 (Period 2) 7 (0) 1 (0) 19 (0) 49 (0)
Full Period Analysis (excluding May)
Total precipitation, mm                Dual-Pol (RG) 321 (373) 527 (377) 409 (424) 55 (387)
R2 Efficiency                Dual-Pol input (RG input) 0.43 (0.60) -3.52 (0.72) 0.52 (0.68) -0.41 (0.76)
r                                    Dual-Pol input (RG input) 0.68 (0.84) 0.42 (0.86) 0.76 (0.88) 0.17 (0.90)
% bias                          Dual Pol-input (RG input) -14 (1) 94 (8) -21 (-18) -84 (-15)

*Source: National River Flow Archive (NRFA), https://nrfa.ceh.ac.uk
†Calculated from 1km average elevation grid used in G2G Snow Hydrology module

https://nrfa.ceh.ac.uk/data/station/info/96003
https://nrfa.ceh.ac.uk/data/station/info/7003
https://nrfa.ceh.ac.uk/data/station/info/9001
https://nrfa.ceh.ac.uk
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Highlights

 Precipitation data from an X-band radar in northern Scotland are assessed.
 Assessment against river flow using a distributed hydrological model brings fresh insights.
 Lowest usable beam elevation is the main limit on performance in this mountainous area.
 Use of dual-polarisation estimators improves performance during summer months.
 The X-band radar is suited for filling gaps in the existing C-band radar network.


