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Abstract

Since the advent of data-driven society, mass information generated from human activity

and the natural environment has been collected, stored, processed, and then dispersed under

conventional von Neumann architecture. However, further scaling the computing capability

in terms of speed and power efficiency has been significantly slowed down in recent years

due to the fundamental limits of transistors. To meet the increasingly demanding requirement

for data-intensive computation, neuromorphic computing is a promising field taking the

inspiration from the human brain, an extremely efficient biological computer, to develop

unconventional computing paradigms for artificial intelligence.

Reservoir computing, a recurrent neural network algorithm invented two decades ago,

has received wide attention in the field of neuromorphic computing because of its unique

recurrent dynamics and hardware-friendly implementation schemes. Under the concept of

reservoir computing, hardware’s intrinsic physical behaviours can be explored as computing

resources to keep the machine learning within the physical domain to improve processing

efficiency, which is also known as physical reservoir computing.

This thesis focuses on modelling and implementing physical reservoir computing based on

dynamical electronics, along with its applications with sensory signals. First, the fundamental

of the reservoir computing algorithm is introduced. Second, based on the reservoir algorithm

and its functionalities, two different architectures for physically implementing reservoir

computing, delay-based reservoir and parallel devices, are investigated to perform temporal



signal processing. Thirdly, an efficient implementation architecture, namely rotating neurons

reservoir, is developed. This novel architecture is evaluated in both theoretical analysis

and experiments. An electrical prototype of the rotating neurons reservoir exhibits unique

advantages such as resource-efficient implementation and low power consumption. More

importantly, the theory of rotating neurons reservoir is highly universal, indicating that a

rotational object embedded with dynamical elements can act as a reservoir computer.

viii
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Chapter 1

Introduction

1.1 Computing resources from electronics

Since the 1950s, we have witnessed explosive growth in the electronics industry, enabling

the technological revolution worldwide. In particular, the advances in transistors define

how the digital computer automatically stores and processes the information generated by

the natural environment and human activities. The semiconductor industry commits to

shrinking the size of transistors to decrease the power and cost per device. Over the past

half-century, the computing capability of processors has been significantly enhanced as the

transistor density increases. The computing tasks that the computer could not handle ten

years ago can now run smoothly on our cell phones [1–4]. Furthermore, the scaling of the

transistor also empowers the widespread application of artificial intelligence, which is a

typical computationally-intensive field. As a result, in recent years, people started feeling

that their hardware has become ‘smarter’ in recognizing faces, understanding voices, driving

cars, etc..
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In 1965, Gordon Moore, the co-founder of Intel, predicted that “the number of transistors

on a microchip doubled about every two years” [5, 6]. We could expect that the scaling of

transistors would continuously boost the emerging AI applications. However, recent research

suggested that the scaling confronts the end due to the fundamental limits: the gate dielectric

length approaches several atomic spacings or silicon lattice constant (0.54 nm) [1, 7–10].

The leakage current significantly increases as the gate length gets small. Simply shrinking

the transistor may end up short-circuiting the chip. In addition, there is another famous

prediction named Denard scaling, which states that increasing the transistor density can also

improve the maximum clock frequency and energy efficiency. However, Denard scaling

failed around 2006 because of the heat-removal problem. The computational capability of a

single-core has barely improved afterwards [7, 11]. Thus, future computationally-intensive

AI applications may be limited by the development of transistors.

The computing resource of modern computers stems from the use of transistors. Comple-

mentary Metal-Oxide-Semiconductor Transistor (CMOS)-based digital circuit can efficiently

operate 0’ and 1’ bits for accurate computing under the Turing-von Neumann paradigm. Due

to the difficulty discussed above, researchers began to explore alternative approaches to con-

tinue advancing computers. Apart from transistors, there exist other properties of electronic

devices that could be developed as computing resources. For example, a simple diode can

physically perform a nonlinear transformation similar to the Rectified Linear Unit (ReLU)

function commonly used as an activation function in machine learning. Besides, a simple

passive low pass filter composed of a resistor and a capacitor can serve as an integrator over

the continuous input stimulation [12]. Furthermore, recently emerging devices and materials

exhibit interesting characteristics that could be used for computing. For instance, non-volatile

memristors offer continuously tunable conductance, which can act as variables in a physical

computing system. Using memristor array, also known as Resistive Random Access Memory

(RRAM), for high-efficient vector-matrix multiplication (VMM) has received considerable
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attention [13]. Given the wide varieties of electronics, the next question is how to fully utilize

their properties to compute?

1.2 Neuromorphic computing

The rapid development of both neuroscience and computer reveals the fact that the human

brain is a super-powerful computer with low energy consumption and excellent cognitive

capability. The human brain consists of about 1011 neurons and 1015 synapses, which

are extremely complex and yet to be fully studied [3, 4, 10]. In 2009, IBM’s Blue Gene

Supercomputer with 147,546 processors and 144 terabytes of memory was used to simulate a

cat’s cerebral cortex. The simulator was about 83 times slower than a real cat and consumed

much more energy, indicating computing potential and the complexity of the biological

nervous system [14].

Despite the complexity of analysing a real brain, we can still take inspiration from its

working mechanism to engineer a computing system, referred to as “neuromorphic”. As a

bio-inspired learning algorithm, Artificial Neural Networks (ANNs) provide computational

algorithms that mimic the activities of simplified neurons and synapses, which have yielded

tremendous successes in the software domain and have become the mainstream in AI ap-

plications [9, 15, 16]. However, running a neural network under a software-based system

brings the entire information processing to a digital system where the data experiences stor-

ing, processing and communication using the bits of 1’s and 0’s. Software-based Artificial

Intelligence (AI) faces challenges in further reducing computational cost and miniaturisation

in the post-Moore era [10, 17]. To keep up with the computing needs o, neuromorphic

computing, originated in 1990 by Carver Mead, paves a new way to develop bio-inspired

neural networks in the physical domain [18, 19]. In general, neuromorphic systems fully

explore hardware’s intrinsic physical behaviours as computing resources to build intercon-
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nected neurons and synapses. Such bio-inspired architecture is fundamentally different from

conventional Turing-von Neumann architecture, holding the promises of parallel, analogue

, adaptable, high efficient, noise-tolerant and low-power computing for solving machine

learning tasks [2, 9, 20–22]. It has been predicted that after the graphics processing units

(GPU)-driven and application-specific integrated circuits (ASIC)-driven machine learning

in the past decades, developing an analogue neuromorphic computer will become the next

dominance of AI research after the 2020s [22].

1.3 Physical reservoir computing

1.3.1 Reservoir computing algorithms

Reservoir computing (RC) is a bio-inspired machine learning paradigm invented two decades

ago. Inspired by human brain, Prof. Jaeger invented Echo State Network in 2001 [23, 24].

Meanwhile, Prof. Maass independently proposed Liquid State Machine (LSM) in 2022 [25].

Afterware, Verstraeten et al. experimentally proved the similarity of ESN and LSM and

unified them as RC [26]. The randomly and recurrently connected nonlinear nodes in the

reservoir layer offer an efficient implementation of Recurrent Neural Network (RNN) with

low training costs. The complex dynamic generated by the reservoir layer nonlinearly maps

the input data into spatiotemporal state patterns in a higher dimensional feature space where

the state vectors of different classes can be easily separated [23, 27]. Furthermore, RC is

particularly powerful in studying temporal input data owing to the recurrent connections

that create the dependency between the current and the past neurons’ dynamic, which is

also known as short-term memory or a fading memory [24, 28]. Because of its nonlinear,

dynamical and memristive properties, RC has demonstrated superior performance in complex

time series prediction and classification tasks. For example, by training the output weights
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using linear regression, a reservoir can adaptively couple its nonlinear dynamic with natural

chaos [27, 29].

A conventional reservoir computing network consists of an input layer, a reservoir and an

output layer. For a reservoir network with d-dimensional input, l-dimensional output and

N neurons, only the coefficients between the output and reservoir (Wout ∈ Rl×N) need to be

trained by a linear regression method, while the input coefficients (Win ∈RN×d) and reservoir

coefficients (Wres ∈ RN×N) are randomly generated [23, 24]. The complex dynamic and

nonlinear transformation in the reservoir would map the input data onto higher dimensional

space for classification or prediction. With the internal feedback, the past neuron states can

be preserved in the fading memory to affect the computation at the current state [30, 31]. At

each time step n, the states in a standard software-based reservoir are subjected to:

s(n+1) = f [aWinu(n+1)+bWress(n)] (1.1)

where s(n) denotes the reservoir states with nth input, s(n) denotes the input at time

step n, f represents the activation function, a and b are the input and feedback scaling

factors, respectively. Under this dynamic, the interaction between neurons generates the

high-dimensional recurrent states denoted by s(n). Afterwards, only the output layer Wout of

the reservoir needs to train by linear regression using collected s(n) and target output. The

output of an RC y(n) can be easily obtained:

y(n) = Wouts(n) (1.2)

The reservoir has been considered one of the effective methods to construct an RNN

because of its training complexity. Compared with other neural network models, it shows

superior performance in the prediction and classification tasks with time-dependent data input.

5



Introduction

The overview of RC strategies is illustrated in Fig. 1.1(a). In particular, the reservoir layer

defined by Wres had been comprehensively studied, resulting in a number of varieties [23, 27,

28, 32–34]. Originally, the Wres of a typical RC is a randomly generated matrix, as illustrated

in Fig. 1.1(b). For example, by fine-tuning and scaling the Wres, an RC could exhibit echo

state property, which is discussed in the studies of ESN [23, 27]. Furthermore, researchers

also try to design a reservoir in a deterministic manner, rather than randomly generated

and scaled. A cyclic structure of Wres, which is more simplified and sparse than a random

one, was found that it can perform the RC functionalities in time series processing tasks

without performance degradation, namely Cyclic Reservoir (CR), as shown in Fig. 1.1(c)

[28]. Based on CR, the performance could be further improved by adding regular jumps on

the cycle, namely Cycle Reservoir with Jumps (CRJ) [32, 35]. In addition, LSM comes from

computational neuroscience background and represents spike-based RC with integrate-and-

fire neurons [25, 36]. In network scale, deep RC (multiple reservoirs in series) and parallel

RC (multiple reservoirs in parallel) are also of high interest for more demanding computing

scenario [37–40]. Finally, RC has been successfully used in various applications, such as

temporal signal processing/forecasting [23, 28, 41], pattern classification [31, 42], system

approximation [29, 43, 44] and bio-signal processing [45–48].

As a machine learning algorithm, the high-dimensional mapping strategy of RC is similar

to the concept of a support vector machine, while the recurrent connections allow the state

vectors contain the spatiotemporal information [49, 50]. The state vector generated at time

step n represents the high-dimensional features of not only the input at time step n, but

also a fading amount of previous steps (n− 1,n− 2,n− 3, ...). The temporal input that

cannot be directly distinguished could be linearly separable after the nonlinear mapping.

Then, the output layer Wout acts like a hyperplane to separate different input classes in

pattern classification. In prediction or system approximation tasks, the state vector could

adapt to the target output by multiplying with trained Wout. In this regard, RC algorithms

6



1.3 Physical reservoir computing

Random reservoir

⋯ ⋯

Cyclic reservoir

⋯ ⋯

Win Wout Win Wout

(b)

(a)

(c)

Win

Wres

Wout

Input 

data/signal Reservoir layer

High-dimensional

nonlinear mapping

for the input

Classification/
processing

result

Fig. 1.1 An overview of RC algorithm (a) and two examples of reservoir network structures,
including (b) The classical reservoir with randomly generated Wres, and (c) A simplified
reservoir with cyclic structure, which can be designed in a deterministic manner rather than
random generation.

7



Introduction

can also be considered a trainable dynamical system. In principle, a wide range of the

existing dynamical discrete-time system, including dynamical controllers, nonlinear filters

and even chaotic systems, could be approximated by properly configuring an RC [51]. This

interesting property provides new insights into the physical implementation of RC, that is,

using dynamical systems to approximate the nonlinear high-dimensional mapping function

of RC algorithm to move the computing into the physical domain, which has received

considerable attention in neuromorphic computing.

1.3.2 Physical implementation

Given the potential and unique property of RC, exploring physical dynamics as computational

resources of reservoirs for high-efficient information processing has received considerable

attention in recent years. Generally. the software-based reservoir layer is employed to nonlin-

early map the current input and a fading amount of previous input into a high-dimensional

space. In the context of physical RC, we are committed to seeking physical objects or

systems that can effectively perform similar high-dimensional mapping as the software-based

reservoirs do, which is becoming one of the major branches of neuromorphic computing [16,

52–55].

The exploration of physical RC is still at an early stage, which mainly involves two

aspects: architecture and processing core (Fig. 1.2). In recent years, most works on physical

RC investigated different processing cores with a chosen architecture. The processing core

that has been proposed for physical RC includes conventional electronics [56–60], spintronic

devices [17, 61, 62], memristive devices [48, 63–70], optical devices [54, 71–76], nanowires

[77–82] and Micro-electromechanical Systems (MEMS) [83–85]. There are also interesting

processing cores such as soft robot [86], biological tissue [87] and swarms [88]. In most

cases, the processing core should provide nonlinear transform and integration simultaneously.
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While the processing core has been widely studied, architectural innovation of physical RC

is rarely found, but usually can significantly impact the field [16]. The effective architectures

that can make the utmost of hardware resources as physical RC are discussed as follows.

Delay-based reservoir

At the early stage, the concept of delay line was introduced to the RC algorithm to describe

the state update [28]. In 2011, a pioneer study introduced a delay-based reservoir and the

concept of virtual nodes into a physical implementation of a CR, which is known as Delay-

based Reservoir (DRC) [56]. It is worth mentioning that this work clearly discussed the role

of dynamical neurons in physical RC, and consequently inspired other approaches, making it

an attractive candidate in the field of neuromorphic computing.

By introducing physical delay lines and time-multiplexing operation to form a delay-

coupled reservoir, the DRC dramatically reduces the number of nonlinear neurons to one,

which facilitates its hardware implementation using analogue and optical components for

high-speed and low-power computing [72, 76]. The virtual nodes can only be generated by

properly tuning the ratio between the time constant of the processing core and the intervals

of time-multiplexing. Similar to the traditional reservoir, the virtual nodes on the delay

lines create a complex reservoir dynamic to map the input to high dimensional space for

classification. The delayed feedback loop plays an important role in preserving previous

information within the network, that is, Memory Capacity (MC). In this regard, DRC is

particularly of high interest in combining with optical or optoelectrical devices since the

delay line can be directly implemented by a long optical fibre subject to the transmitting

velocity of light [54, 71–73].
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Fig. 1.2 An overview of physical RC development.

10



1.3 Physical reservoir computing

Parallel devices

Parallel devices is an attractive method to demonstrate the computing potentials of emerging

devices. The architecture of parallel devices is simply using multiple dynamic devices in

parallel to receive a common input and then output state vector. One important conclusion is

that the usually unwanted device-to-device (D2D) variation is crucial to improve the state

richness under the parallel devices architecture [64], whereas cycle-to-cycle (C2C) variation

should be minimized. The state vector will be much less expressive if the D2D variation

is low. Meanwhile, the MC is provided by the intrinsic property of the device, which is

relatively lower compared with other approaches. Therefore, the parallel devices approach

desires processing cores with memristive property, such as volatile memristor [63–68, 70, 89].

In particular, time-multiplexing can be used to increase state richness under parallel deices

architecture. However, a long time-multiplexing matrix may reduce the MC and disable the

RC functionalities [63].

In-materia

The in-materia is a designless method to implement a physical RC [80], which is based

on the assumption that the inner dynamics of a chosen material are complex enough for

high-dimensional mapping. Given a conductive surface or material, injecting signal at a

specific position could result in different responses at other positions where the collected

output could be considered the state vector. The signal experiences uncontrollable and

unsymmetrical transformation within the material for high-dimensional mapping. Such

in-materia method is normally implemented by using electrical input signal and conductive

materials, and electrodes are placed on the surface for input and output [62, 90–93]. Similar

to other approaches, memristive materials are preferable in in-materia approach to avoid the

shortage in MC [48, 78, 80, 82]. Notably, nanowire and nanotube are frequently used as
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processing cores in in-materia approach since they can create diverse interconnected patterns

[48, 77–82, 91]. In addition, it is interesting that unconventional computing substrates, such

as swarms (simulation) [88], was also used to demonstrate in-materia reservoir computing.

Rotating neurons reservoir

Rotating Neurons Reservoir (RNR), originally proposed by the author in [12], is the latest

implementation paradigm of RC to date. The author found that the state vector update in

conventional CR is analogous to a physically rotating object embedded with dynamical

neurons, which can be proved by mathematical derivation. The RNR theory is adaptable

to various rotational objects. Differ from other methods, the equivalence between software

CR and hardware RNR allows interpretable hardware design. The rotation and signal-driven

neurons can be implemented using resource-efficient devices and materials without the as-

sisted peripherals such as Analogue-to-digital Converter (ADC) and data buffer. Specifically,

the RNR can implement reservoir functionalities in the physical domain. Furthermore, an

electrical RNR (eRNR) was simulated and then developed as a prototype to demonstrate the

physical RC, where the rotation was implemented by efficient logic switches. The results

confirmed the eRNR’s advantages in resource-efficient edge computing.

1.3.3 Input layer

An input layer needs to be specifically designed according to the reservoir architecture

and processing core. In DRC, the main operation in the input layer is time-multiplexing

at which the input signal is multiplied by a randomly generated matrix Win. In fact, the

time-multiplexing operation is adaptable to most existing physical RC for the purpose of

increasing the state richness. In RNR, the input layer is physically configured by a switch

array to select negative or positive input for each channel, which is equivalent to multiply
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by a Win consisting of -1, 1. Win is not always required in parallel devices and in-materia

architectures whose input can be a raw signal [65, 93]. Also, the raw signal can be encoded

in a spike sequence as the input signal, which is commonly used with memristive processing

core [64–66, 68, 80, 93, 94]. For 2D input data like images, usually, segmentation and

rearrangement are needed before encoding into spikes [64, 65, 80, 94].

1.3.4 Output layer

The output layer of reservoir computing is normally a simple fully connected network, based

on the assumption that the state vector after the reservoir layer can be processed by a linear

readout. In the majority of existing RC works, the innovations focused on reservoir layers,

whereas output layers are accomplished by using digital computers. From the viewpoint of

hardware, the fully connected layer is a typical VMM operation, which can be achieved by a

memristor array whose conductance is adjustable by an electrical signal [80, 94, 95]. The

final output can be obtained by measuring the current output of a memristor array subject to

Kirchhoff’s Current Law [13, 96–99].

1.3.5 Discussion

The above-mentioned four architectures are the fundamentals of most existing physical

RCs in the literature. The representative works of electrical RC are listed in 1.1 sorted by

publication year. Apart from the architecture and processing core, this table also compares

their network details, tasks and results. The number of cores means how many processing

cores have been employed in the system. Next, the widespread use of a time-multiplexing

mask allows every core to generate more neuron states so that number of neurons per core is

considered.
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The following is a brief comparison of the strengths and weaknesses of the four architec-

tures:

• Compared with other approaches, the unique advantage of DRC is that fewer neurons

are required even with a large network size (number of virtual neurons). Meanwhile,

multiple delayed feedback lines can significantly increase the MC. However, the use

of time-multiplexing and virtual nodes introduce serial operations at both input and

output, which against the design primitives of parallel computing in neuromorphic

computing. In addition, adding a delayed feedback line is not a straightforward design,

especially in an electrical system where ADC and memory are required [16]. Because

of this, DRC is preferable in optical systems where the delay line can be achieved by

optical components, as discussed above. It is noteworthy that the virtual node concept

is also useful for other architectures to improve the state richness.

• Parallel devices architecture is especially compatible with various emerging devices,

and makes full use of their nonideality such as D2D variation. The state quality highly

depends on a proper D2D variation and a low C2C variation. It is advantageous

in terms of parallelism and analogue computing in the absence of a delay line. Its

weakness involves the limited MC provided by the device itself. Therefore, memristive

devices are more suitable for this architecture [63].

• In-materia method employs a standalone material or substance for physical RC. It

is highly parallel and analogue in the process of generating state output. It is fun-

damentally different from other architectures in terms of interpretability. While the

dynamic behaviours in other architectures are measurable and sometimes adjustable

based on device characterisation and physical connections, the signal in in-materia

usually experiences unclear transformation and only the state output channels are

accessible.
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1.4 Physical reservoir computing with sensory input

• RNR presents advantages in system complexity, interpretability, low power consump-

tion and all-analogue computing [12]. However, it is proposed recently and yet to be

fully studied.

1.4 Physical reservoir computing with sensory input

Sensors act as the information collector of a machine or a system that can respond to its

physical ambient environment. They are able to translate a specific type of information from

a physical environment such as the human body to an electrical signal. Sensor technologies

enable mass ambient data collection from human activities and the surrounding environment,

which require miniaturized, flexible, and highly sensitive sensors to capture clear information

[15, 100, 101]. However, from processing aspect and to make a signal meaningful towards

personalized devices, further development is still needed [2]. Since the sensing signal is rela-

tively weak and noisy, a readout circuit (normally composed of an amplifier, a conditioning

circuit and an analogue signal processing unit) is necessary to make the signal readable for a

system [102]. The subsequent high-level system processes the data and sends commands to

actuators for a closed-loop control or interaction [103, 104]. For various applications ranging

from human-machine interfaces to health monitoring, different combinations of sensors and

systems have been developed over the past decade. The use of machine learning empowers

sensors to build a novel smart application [2].

Recently, the field of artificial intelligence further boosts the possibility of smart sensory

systems. The emerging intelligent applications and high-performance systems require more

complexity and demand sensory units accurately describe the physical object. The decision-

making unit or algorithm can therefore output a more reliable result [100, 105–107]. The

novel applications using multiple sensors and high learning ability usually require more

energy in the computing unit [108]. This weakness limits the further development of smart
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sensory systems [108]. The existing solution is to wirelessly transfer the raw data onto a

cloud where the computationally intensive algorithm is implemented. However, this solution

is not ideal considering (i) the complexity of using a wireless module, (ii) the non-negligible

power consumption, (iii) the amount of data, (iv) the space limitation due to the range of

wireless transmission, (v) privacy issues due to the broadcast of signals, (vi) non-negligible

time latency due to communication channel. These technological drawbacks strongly limit

the application of smart sensors.

Implementation of ANN in von Neumann architectures results in a non-optimized distri-

bution of the energy consumption. Compared to conventional approaches based on a binary

digital system, brain-inspired neuromorphic hardware has yet to be advanced in the contexts

of data storage and removal as well as their transmission between different units [2, 109].

In this perspective, a neuromorphic chip with a built-in intelligent algorithm can act as a

front-end processor next to sensors. Physical RC, as discussed above, is a resource-efficient

implementation of machine learning, which could be preferable to deploy at the edge [110].

1.5 Research summary

This thesis aims to investigate the mechanism and application of physical RC with two

focuses: architecture and electronics implementation. The reasons are:

• As aforementioned in the literature review, prior studies have noted the importance

of architectural innovation in the development of physical RC. Ideally, an excellent

architecture could fully harvest the hardware dynamics as a computing resource with

minimum system complexity and cost. A novel architecture could inspire more physical

RC systems assembled with different processing cores.
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1.5 Research summary

• RC is an attractive computing paradigm that has been adopted by multiple fields,

including optical devices, quantum devices and mechanical structures. However, elec-

tronics is still the mainstream substrate for computing and analogue signal processing.

Particularly, the recently emerging novel devices, such as memristor, can provide a

wide range of hardware dynamics to construct reservoir computers. Additionally, an

electrical RC could be more compatible with modern computing and signal processing

systems.

Thus, three architectures with their electrical implementations are studied in the following

sections: delay-based RC, parallel devices RC and RNR. The in-materia RC is not covered in

this thesis since this approach highly depends on the internal structure of the materials while

in lack of interpretability, as previously discussed. The architectures and processing cores are

implemented by simulation or hardware with for collecting experimental data. Their network

characteristics, signal flows and performances on benchmark temporal signal processing are

investigated. Meanwhile, each implementation is combined with sensory signal to evaluate

its performance on practical applications. The main contributions are:

• In Chapter 1, the state-of-the-art reservoir computers are reviewed. For most existing

physical RC, this thesis divide their architectures into four categories according to

their implementation of the reservoir layer (or middle layer), including delay-based

reservoir, parallel devices, in-materia and rotating neurons reservoir. Their main

features, building blocks, signal flows and representative works in the literature are

introduced independently, followed by their comparison and discussion. In addition

to reservoir layer, input and output layer are also worth discussing for implementing

a complete reservoir computing system. Input layer of physical RC mainly depends

on the reservoir layer, acting like a pre-processing or encoding step for adapting the

input analogue signal to be receivable by the reservoir layer. Meanwhile, output layer

for most RC is a typical VMM operation, which can be implemented by memristor
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array. During the development of physical RC, architectural innovations played an

more significant role. An effective and ingenious architecture, such as delay-based

RC proposed in 2011, can efficiently harness electronic properties for computing and

inspire following works.

• In Chapter 2, the delay-based RC is investigated and tested by a arrhythmia detection

task. A delay-based RC model with a Mackey-Glass typed nonlinear circuit and

multiple delay lines was developed to receive filtered ECG signal collected by MLII

configuration. The database used to test this model is the commonly-used MIT-BIH

database, and the evaluation follows the inter-patient paradigm and standard dataset

splits (DS1 and DS2). In this work, the proposed model, acting like a dynamic system,

directly receives raw and continuous ECG signal in the absence of signal segmentation

and feature extraction, which is the prime difference compared with the existing

software-based algorithms. The analysis of memory capacity verifies the idea that the

node state collected at the end of every single heartbeat contains the fading information

of the whole heartbeat, so that the MC is fully utilized to store ECG information

rather than using external memory. Also, the important parameters, such as input

and feedback strength, are analysed in details and then fully optimized. Finally, the

model yielded acceptable sensitivity and accuracy for the VEB detection task, while

minimizing the memory required to run the system.

• In Chapter 3, another architecture, parallel devices, is studied, and TiOx-based volatile

memristor was used as processing core. Initially, the fabricated volatile memristors

were characterized and then modelled using the discrete behavioural model. In order to

study how to empower memristive deice with computing capability, a reservoir system

was simulated based on this discrete model under parallel devices architecture, where

time-multiplexing operation was also employed to increase state richness. Afterwards,

this model was evaluated by three benchmark tasks: waveform classification, Hénon
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1.5 Research summary

map chaotic signal prediction and human activity recognition. For the first two tasks,

the model demonstrated its capabilities in temporal signal processing in principle. The

signals were successfully classified and predicted. Increasing the number of memristor

and fine-tuning the parameters can improve the processing results. The 5-class human

activity recognition is a more demanding task. The system obtained acceptable results

but additional operations, such as delayed feedback and SMOTE, are required.

• Studies of physical RC show the importance of architectural innovations. Chapter

4 introduces the theory of the novel architecture, namely RNR, that was recently

proposed by the author in [12]. RNR was developed by linking the CR algorithm

and rotating behaviours in hardware. It was found that when rotating a specifically

designed neuron array that processes nonlinearity and dynamical behaviours, the input

and output of the hardware system can be roughly equivalent to a CR algorithm, which

can be proved mathematically. Such network-level equivalence is rare to found in other

architectures. Based on the RNR theory, an eRNR was designed. In the simulation,

the equivalence between hardware and software model are validated by analysing the

task-independent network properties such as MC. Additionally, it was surprisingly

found that the eRNR model obtained the record-low error in the NARMA10 system

approximation task. Those results emphasized the fact that, on one hand, the RNR

hardware and software are roughly equivalent since their similar network behaviours

were observed; on the other hand, software and hardware are not ideally equal and

the hardware provides rich dynamics within a certain range that can be explored to

enhance the performance.

• Chapter 5 discusses the experimental results of the eRNR. A proof-of-concept prototype

of eRNR was implemented by commercial components and PCB, along with its

measurement system and user interface. The first demonstration is real-time Mackey-

Glass time series prediction, where the input is the Mackey-Glass time series and

23



Introduction

the output is the one or multistep ahead prediction. The second demonstration is

real-time handwriting vowel recognition. In this system, the eRNR directly received

horizontal and vertical handwriting trace signals of a resistive touch screen without

intermediate block for signal buffer or digital processing, indicating its near-sensor

computing ability. Another experiment involves using memristor array as output layer

for the VMM operation to form end-to-end all-analogue computing. Finally, the

power analysis suggested that the all-analogue eRNR system consumed three order

of magnitude lower power than the existing physical RC systems. This is attribute to

the RNR architecture that is equivalent to CR on network level, enabling the coherent,

straightforward and elegant hardware implementation.

• Finally, the conclusion of this thesis and further perspective about physical RC as well

as its application are provided.

In addition to the physical RC, the author was also involved in several side research

related to sensory system, signal processing and machine learning, which have mostly been

published in journal articles and conference proceedings. These side works are summarised

as follows:

• Based on the idea that hand gesture could be captured by tracking tendon movement

around the wrist, a wrist-worn gesture sensing system was proposed in [100, 107]. In

this work, an array of PDMS-encapsulated capacitive pressure sensors is attached to

the user to capture the pressure distribution. The pressure signals are then processed

by support vector machine to reconstruct gestures. Furthermore, different sensors and

algorithms were tested for wrist-worn gesture, which were conducted by the author

and collaborators [31, 111, 112].

• Two sensor fusion approaches were proposed to combine static sensor (pressure senor)

and dynamic sensor (radar) [15, 113], which is a continuation of the wrist-worn gesture
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1.6 List of publication

sensing system. The two sensors that focus on different information can be a enhancer

of each other to improve the final recognition rate.

• Spintronic sensor can detect magnetic field variation with high sensitive. When

attaching spintronic sensor on eyeglass, eye movement can be captured by embedding

a small magnet on contact lens for human-machine interaction [101].
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Chapter 2

Delay-based Reservoir Computing for

Continuous Signal Processing

This chapter presents a DRC model for intelligently processing continuous electrocardiogram

(ECG) signal. This model aims to develop a hardware-based signal processing model and

avoid employing digitally intensive operations, such as signal segmentation and feature

extraction, which are not desired in an analogue neuromorphic system. A DRC is used as

the information processing unit, along with a novel training and labelling method. Different

from the conventional ECG classification techniques, this computation model is a end-to-end

dynamic system that mimics the real-time signal flow in neuromorphic hardware. The input

is the raw ECG stream, while the amplitude of the output represents the risk factor of a

ventricular ectopic heartbeat. The intrinsic memristive property of the reservoir empowers

the system to retain the historical ECG information for high-dimensional mapping. This

model was evaluated with the MIT-BIH database under the inter-patient paradigm and yields

81% sensitivity and 98% accuracy. Under this architecture, the minimum size of memory

required in the inference process can be as low as 3.1 MegaByte(MB) because the majority of

the computation takes place in the analogue domain. Such computational modelling boosts
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memory efficiency by simplifying the computing procedure and minimizing the required

memory for future wearable devices.

2.1 Introduction

2.1.1 Machine learning for arrhythmias detection

Cardiovascular diseases are the major sources of global mortality, which led to 17.9 million

deaths in 2016 (WHO) [114]. ECG is a clinical tool that records the electrical rhythm, rate

and activity of the heart and provides a detailed analysis for the diagnosis and the treatment of

abnormal heartbeats [115]. Early research focused on manual comparative ECG classification

and diagnosis by the cardiologist. In recent decades, the rapid development of machine

intelligence opens a novel pathway for automatic arrhythmias analysis and detection [75,

115]. In the future these systems have the potential to be integrated into remote patient

devices to stratify clinical need by providing a more personalised healthcare system [115].

The methodologies of automatic ECG classification have been widely explored in recent

years. Using the open-access MIT-BIH arrhythmia databases [116], previous researches were

done on automatically classifying different types of ECG by the intelligent algorithms such

as support vector machine [117–119], echo state network [46, 47], decision tree [120], and

neural network [105, 121]. Specifically, artificial neural networks have been widely explored

and yield over 90% accuracy in the literature [105, 121, 122]. However, running a neural

network under a software-based system brings the entire information processing to a digital

system where the data experiences storing, processing and communication using the bits

of 1’s and 0’s.To overcome this challenge, neuromorphic engineering paves a new way to

develop a physical neural network to keep up with the computing needs [16, 123].
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Also, portable ECG signal acquisition devices have been developed in recent years, such

as the commercial product Alivecor that can detect atrial fibrillation [124]. Despite good

results obtained in previous studies, they require heavy digital processing of the analogue

signals acquired from sensors. A prospective wearable device expects that the intelligent

computing can also be carried out at the local edge [2, 22, 125]. Under such circumstances,

a neuromorphic analogue processor based on the above-mentioned DRC architecture is

well-suited to act as a direct interface to an ECG electrode with less memory requirement.

2.1.2 Physical DRC for arrhythmias detection

DRC has been proposed as a candidate for physical implementation among all the topologies

of neural network [56]. It is categorized under RC which is derived from RNN. By introducing

delay lines to form a delay-coupled reservoir, the DRC dramatically reduces the number

of nonlinear neurons to one, which facilitates its hardware implementation using analogue

and optical components for high-speed and low-power computing [63, 64, 72, 73, 75, 76].

The DRC architecture is chosen as the main ECG processing core in this work because it is

well-suited to process time-dependent signal, and feasible to implement as neuromorphic

hardware. To validate the performance of our proposed DRC model, this model is applied to

a Ventricular Ectopic Beat (VEB) detection task. Frequent VEB could be a sign for coronary

heart disease, rheumatic heart disease and even acute myocardial infarction.

There are fundamental differences between the neuromorphic model with DRC archi-

tecture proposed in this chapter and conventional automatic ECG detection. Conventional

software-based ECG classification methods can be divided into five steps: 1) ECG sig-

nal preprocessing, 2) ADC, 3) heartbeat segmentation, 4) feature extraction and 5) learn-

ing/classification [115]. These widely used procedures, such as detection of the QRS complex,

signal segmentation and feature extraction, critically rely on digital operations which are not
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desirable in neuromorphic hardware [4, 10, 22]. For example, the prime step for the majority

of automatic ECG classification algorithm is segmenting the entire ECG recording into

individual heartbeat according to the detection algorithm of the QRS complex, followed by a

feature extraction step where various features are obtained from each individual heartbeat

to improve the classification accuracy. These operations are easy to achieve within a digital

system by accessing the memory unit and running algorithms in the processor [9, 10, 17].

However, the digital operations and mass memory bring several constrains like latency,

throughput and power, hindering the further development of computing performance in

conventional architecture [20, 22]. Meanwhile, a prospective wearable device expects that

the intelligent computing can also be carried out at the local edge [2, 22, 125]. Under such

circumstances, a neuromorphic analogue processor based on the above-mentioned DRC

architecture is well-suited to act as a direct interface to an ECG electrode with less memory

requirement. Fig. 2.1(a) illustrates the block diagram of the proposed system in comparison

with the conventional method. The proposed model preserves the hardware-achievable

operations and deposes the procedures involving intensive digital components. Fig. 2.1(b)

is a conceptual figure of the input and output of an analogue neuromorphic computer for

ECG. Ideally, the indicator can be directly driven by the neuromorphic output that reflects

the ECG type. The dynamic system aims to receive a continuous ECG stream and output the

abnormal ECG diagnosis result. The differences mentioned above greatly reduce the memory

needed to deploy such detection algorithm. Compared with the conventional software-based

implementations, the proposed neuromorphic system is expected to offer advantages on

energy efficiency and computing power for machine learning workloads. The proposed

model is validated by the MIT-BIH database [116]. The evaluation protocol follows the inter-

patient paradigm which was presented by [126]. The result shows that this model obtained

high accuracy and sensitivity and has a great potential to facilitate the future development of

a pure analogue ECG processing system. The full development of the dynamic system is not
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covered in this work and remains a topic of future research. The contribution of this chapter

is to provide the first fundamental analysis model of such a neuromorphic dynamic system

using a DRC architecture specifically designed for ECG signal.

Software-based method (digital)

Proposed hardware-based method (analogue)

ADC Heartbeat
segmentation

Feature
extraction

Machine
learning

Acquisition

G

+

- G

Lead II

Mask

ECG
signal

Filtering Threshold

ECG

Neuromorphic
output

Indicator

Ectopic
beat

(a) (b)

Delay-based Reservoir

Trained
weights

Activation
node

Virtual
node

Delay
line

Fig. 2.1 (a) The comparison between the conventional software-based ECG classification and
the proposed hardware-based method. The two standard procedures in literature, heartbeat
segmentation and feature extraction were not adopted since they are difficult to achieve by
analogue system. Instead, the DRC, along with its readout and pre-processing blocks is used
as the information processing core. (b) The conceptual figure of the neuromorphic input ECG
and output. The proposed hardware algorithm can receive continuous signal and perform
point-by-point abnormal ECG detection. The output is an indication of the type of input
ECG. A spike can be observed at the output when an ectopic ECG is received.

2.2 Delay-based reservoir design for ECG

The development of proposed ECG processing model mainly includes four key aspects: 1)

construction of the time-multiplexing reservoir, 2) Lasso regression and shifting labelling,

3) MC analysis, 4) post-processing. The simulation was carried out in MATLAB/Simulink

software.

2.2.1 Database

The performance of proposed method is evaluated by the MIT-BIH arrhythmia database

which is a well-known benchmark task recommended by Association for the Advancement

of Medical Instrumentation (AAMI). The database includes 48 two-lead ECG recordings

33



Delay-based Reservoir Computing for Continuous Signal Processing

at 360 Hz sampling rate [127].The AAMI suggested that the heartbeats in the database can

be divided into five classes: normal, ventricular, supraventricular, fusion of normal and

ventricular and unknown beats. The abnormalities for each type of ECG are clearly labelled

in the data stream by at least two cardiologists. In this chapter, the goal is to detect VEB

type heartbeat which is highly correlated with coronary heart disease and cardiomyopathy.

Furthermore, this work follows the inter-patient paradigm suggesting that the data for training

and testing should come from different patients. Another study [126] suggested that the

database can be divided into two groups: DS1 (101, 106, 108, 109, 112, 114, 115, 116, 118,

119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230, where the numbers indicate

the recording label) and DS2 (100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212,

213, 214, 219, 221, 222, 228, 231, 232, 233, 234). The DS1 is used to train the model while

DS2 is for testing. The DS1 and DS2 split for inter-patient evaluation is in line with the

use of MIT-BIH database in most ECG studies, which makes our results comparable with

the state-of-the-art works. This paradigm is considered to be closer to a realistic scenario

where the classifier can be directly used on the ECG signal from unknown patients without

calibration. In addition, a single lead can satisfy the model requirement and the modified

lead II (MLII) that placing electrodes on the chest was selected since it is an informative and

commonly used configuration.

2.2.2 Delay-based reservoir computing

A conventional RC network consists of an input layer, a reservoir and an output layer. For a

reservoir network with d-dimensional input, l-dimensional output and N neurons, only the

coefficients between the output and reservoir (Wout ∈ Rl×N) need to be trained by a linear

regression method, while the input coefficients (Win ∈ RN×d) and reservoir coefficients

(Wres ∈ RN×N) are randomly generated [23, 24]. As described by Eq. 1.1, the complex

dynamic and nonlinear transformation in the reservoir would map the input data onto higher
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dimensional space for classification or prediction. With the internal feedback, the past neuron

states can be preserved in the fading memory to affect the computation at the current state

[30, 31]. In previous studies, RC has exhibited interesting network properties and excellent

performance in temporal signal processing [16]. Meanwhile, exploring reservoir’s network

typology is of high interest in both software and hardware engineering [23, 28]

In recent years, the reservoir has been developed that can be implemented by only

one nonlinear neuron with time-multiplexing and a delayed feedback [56]. The randomly

connected middle layer in traditional RC is replaced by a single neuron and virtual nodes

created by a delay lines, namely DRC [56]. This substitution facilitates the development of a

physical reservoir, which is considered to be a candidate of the next-generation neuromorphic

signal processors [16]. The ’Delay-based Reservoir’ box in Fig. 2.1(a) briefly illustrates the

network typology. In this chapter, the DRC is designed to process ECG signal as illustrated in

Fig. 2.2(a). Also, the processing core, a nonlinear dynamical neuron, is shown in Fig. 2.2(b).

These modelling and design will be explained as follows:

Pre-processing

Before sending the signal to the delay-loop, a pre-processing step is required to convert the

raw ECG data to a shape specifically created for our DRC system. The filtering step follows

the standard procedure: a 2nd order Butterworth high-pass filter with a cut-off frequency at

0.5 Hz and a 12th order finite impulse response filter with a cut-off frequency at 35 Hz, since

the bandwidth in the range of 0.5-35 Hz contains contains most relevant ECG information

[47]. Following the filtering, the ECG data was resampled by the sampling rate of 180Hz to

reduce the number of samples and accelerate the modelling.
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Fig. 2.2 (a) The system modelling of the DRC. After pre-processing and masking for the
continuous raw ECG signal, the time-multiplexing signal will be fed into a activation node
subjected to delayed feedback lines. Next, the result can be obtained through post-processing
step. (b) The circuit design of the activation node and delay unit, which is the core of the
RC unit. According to the working principle of DRC, the circuit should be able to exhibit
nonlinearity (provided by bipolar junction transistor and R3 −R6) and integration (provided
by Rint and Cint) properties. (c) An example of the masked signal generated by multiplying
the original input with the mask matrix. (d) The settling period of the activation node
allows each virtual node states in DRC to connect to historical states, which creates a similar
dynamic in conventional reservoir by using fewer physical components. (e) A segment of
input masked signal J(t) and output signal of the DRC mode. The green dots are the node
states sampled at 1/θ Hz. The value of each green dot is related to historical several values,
which implies the connection between the neighbouring virtual nodes.

36



2.2 Delay-based reservoir design for ECG

Masked signal

After pre-processing, a mask step is essential to create a reservoir dynamic in the activation

node. Each data point of ECG signal should be multiplied by a binary matrix M (consisting

of randomly uniform distribution of 1 and -1) with length equal to N, which is the number

of virtual nodes in the reservoir [74, 128]. Assuming that τ is the sampling interval of the

ECG signal, the time interval between every two points in the mask is defined as θ = τ/N

to facilitate the MC quantification in this chapter, which will be discussed in the following

section. Given the input ECG data is u and the masked data is J(k), the masking algorithm

can be described as:

J(k) = u
(⌊

k
N

⌋)
· M(k%N)

s
+b, f or k = 1,2, . . . ,LN (2.1)

where ⌊ ⌋ is the floor function, L is the total length of input, u, s and b denote the scaling and

bias factors respectively for adjusting the input range according to the linear and nonlinear

ranges of activation node, % is the modulus operation. Afterwards, the resulting J(k) is

sampled and held to generate a continuous signal J(t). The signal before and after masking

are plotted in Fig. 2.2(c). In this chapter, τ = 5.56ms is the reciprocal of the sampling rate of

180Hz. Also, the network size N = 400 and therefore θ = τ/N = 13.89µs are configured. For

the hardware implementation, the analogue masked signal can be obtained by periodically

switching the signal between the original signal and its negative counterpart according to the

mask matrix M, which remains future development.

Fig 2.3 introduces two approaches to implement the mask circuit using integrated circuit.

Both solutions discussed above can generate masked signal using low-cost CMOS circuit

and avoid digitalizing the signal with ADC.

In the first solution (Fig 2.3(a)), given an analogue signal source which is defined as

a positive signal, an amplifier circuit is employed to generate a negative signal. Next,
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the positive and negative signals are connected to a N channels multiplexer composed of

transmission gates and inverters. The N channels of the multiplexer are randomly connected

to the positive or negative signal, which corresponds to the randomly generated M. In

addition, the N-bits counter, driven by pulse with a frequency of 1/θ Hz, provides the address

to the channel selection ports of multiplexer. In this solution, the M matrix is defined by

the connection of each channel (positive or negative) of multiplexer. In the present of pulse,

the counter periodically outputs binary address from 0 to (N-1) and then reset to 0, driving

the multiplexer to poll every input channel. Therefore, the output is the masked signal

with time-multiplexing. In the second solution (Fig 2.3(b)), similarly, a negative signal is

generated by operational amplifier circuit. Then, both signals are fed to a two channels

multiplexer. A Static Random Access Memory (SRAM) driven by a counter determines the

output of the multiplexer (positive or negative). As the address periodically increases from 0

to (N-1) with interval q, each element of M will be generated continuously, and therefore

switching the multiplexer output between positive and negative. In this case, the M matrix is

stored in the SRAM requiring N-bits space. For our VEB detection setup where N=400, this

solution will additionally require 400 bits memory, approximately 0.05 KB.

Delay-coupled activation node

The J(t) is sent to the activation node after pre-processing and masking. The design of the

activation node is illustrated in Fig. 2.2(b). The circuit with bipolar junction transistor and

resistors forms a Mackey-Glass nonlinear function for the input signal. A passive low pass

filter is also connected to prevent the signal from rapidly reaching a plateau. Fig. 2.2(d)

shows the step response of the circuit, the settling time τneuron is obtained from the empirical

configuration, where τneuron = 5× θ [123], thus it equates to 69.44 µs in our case. This

operation plays a crucial role in connecting a number of neighbouring virtual nodes. The

effect of this connection can be observed from the input and output in Fig. 2.2(e). The green
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Fig. 2.3 Two schematics for implementing mask circuit. (a) The Win is configured by the
connection of N-to-1 multiplexer. (b) The Win is stored in N-bits SRAM driven by a counter.
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dot line represents the discrete virtual node state Q and the pink signal is the masked input

J(t). Both of the sampling intervals and mask separation are θ . Given the settling time

τneuron = 5×θ , what stands out in this figure is the correlation between current node state

and its historical node states, resulting in the connections between neighbouring virtual nodes.

Basically, such connections are provided by the integration property of activation node, and

they can exhibits reservoir dynamic to map the temporal input onto high-dimensional node

states. Furthermore, if τneuron is smaller than θ , each node state will reach a plateau rapidly

before the arrival of the next value. In this case, each state is irrelevant to historical states

and the connections between nodes no longer exist.

To establish a recurrent connection, Ndelay delayed feedback lines are coupled to the

output of the activation node. Each delay line delays the output for a certain time length and

then feeding it back to the input with another scaling factor G f . This delay-coupled reservoir

dynamic is subject to a delay differential equation below:

q̇(t) =−q(t)+ f (G1q(t − τ),G2q(t −2τ),

. . .GNdelayq(t −Ndelayτ),J(t))
(2.2)

where f(x) is the nonlinear function of the activation node (activation function) formed by the

transistor and its surrounding resistors, q(t) denotes the node state at time t, G1, G2. . . GNdelay

are the strengths of each delay line. The delay lines, which can be easily implemented by

optical fiber in analogue domain [72, 74, 75], keep the information of historical data points

within the loop as a fading memory. Differ from the software-based reservoir (Eq. (1.1)), the

Eq. (2.2) describes the analogue signal in hardware reservoir over continuous time t. When a

data point is sent to the delay-coupled node, the output contains not only the information

of the current point, but also a certain portion of knowledge from historical inputs. In the
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absence of nonlinear function, the system can be considered as a positive feedback system

and its transfer function is:

Q(s) =
1

RintCints+1

1− 1
RintCints+1D(s)

J(s) (2.3)

D(s) =
Ndelay

∑
n=1

Gne−nτs = G1e−τs + . . .+GNdelaye
−Ndelayτs (2.4)

where D(s) approximates the delay unit, Rint and Cint form the time constant τneuron of

the activation node as shown in Fig. 2.2(b) and (d), Q(s) and J(s) denotes state output

and masked input in Laplace domain, respectively. In this work, Eq. (2.3) was solved in

MATLAB/Simulink together with the nonlinear function extracted from the activation node to

obtain the resulting q(t). The configuration of this delay-coupled activation node determines

the volume of historical information that can be preserved in the loop, which is known as

‘memory capacity’. Furthermore, the fading memory is capable of preserving the information

of the ECG morphology with only one input channel.

2.2.3 Lasso regression

Sampling the continuous node state q(t) obtained by solving Eq. (2.3), and then concatenating

every N discrete elements as one matrix can obtain S, which is a high-dimensional mapping

for the each input data u(n) and the fading memory of historical data (u(n-1), u(n-2). . . )
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S =



s(1)

s(2)
...

s(n)


=



q1(1) q2(1) · · · qN(1)

q1(2) q2(2) · · · qN(2)
...

... . . . ...

q1(n) q2(n) · · · qN(n)



=



q(θ) q(2θ) · · · q(Nθ)

q(τ +θ) q(τ +2θ) · · · q(τ +Nθ)

...
... . . . ...

q(nτ +θ) q(nτ +2θ) · · · q(nτ +Nθ)



(2.5)

where qi( j) denotes the state of ith virtual node after jth input, and Q( j) is the state matrix

for input u( j). The elements in the last matrix (q(θ)...) can be obtained by solving Eq. (2.3).

Thus, output weight Wout of the DRC can be calculated through a linear regression of Q and

a desired output Y . Lasso regression is chosen as the regression method. Proposed by [129],

Lasso provides a sparse linear regression by adding L1-norm regularisation to ordinary least

squares regression for preventing overfitting. After sampling the node states of training data,

the output weights can be obtained by minimising the loss function of the Lasso regression:

Wout = argmin
W

{
L

∑
i=1

(yi −
N

∑
j=1

qi( j)Wj)
2 +λ

N

∑
j=1

|Wj|} (2.6)

where L is the length of training data, yi is the training label that will be discussed in the next

section and λ represents the regularisation parameter that determines the strength of the L1

penalty [129, 130]. Finally, the predicted output Y ′ can be written as:

Y′ = SWout, or y′(n) = s(n)Wout (2.7)
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Different from L2-norm regularisation (Ridge regression), minimising the absolute value of

coefficients will result in a sparse output connection by automatically eliminating redundant

coefficients (Wj = 0), and that behaves like a coefficient selector. L1 norm is advantageous

and suitable for this application because sparse model reduces the number of components

used to build a post-processing circuit in the next stage. In addition, the node states present a

certain level of multicollinearity in our simulation. The Lasso regression is well-suited to

minimise the effect of multicollinearity.

2.2.4 Training data

The construction of training data and labels is shown in Fig. 2.4(a). The blue line is the

ECG data
@ time tx

New inputData preserved 
in fading memory

Integrality
1

0

Information contained in sampled 
node states during [tx,tx+τ]
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Current input
Previous inputs

δ

δ
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(a) (b)
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Shifted label

Before shift
(Location of 
Q-wave)

Fig. 2.4 (a) Schematic of the training data construction and the effect of fading memory.
When the blue point is sent to the DRC, the information retained in the node state includes
not only the current data (blue), but also the historical data (red). However, the historical data
is not intact since the memory is fading. The top graph also illustrates the construction of
training labels. The green line highlights the location of VEB (positive value) and other types
of heartbeat (negative value). The pink line is a shifted version of green line. (b) Visualization
of the node state distribution in high-dimensional feature space at δ points shifted away from
the label location from database. PCA was used to reduce the state dimension from 400 to 2
for visualization.
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training ECG data with the round dots representing each sample points. As mentioned above,

the end-to-end setup receives the input data points one by one. The blue dot indicates the

point injected to the system at the time stamp tx while the red dots are the historical inputs

at tx – τ , tx – 2τ . . . . . . . The node states q(t) during [tx, tx+τ] contain high-dimensional

information of not only the blue dot, but also of the historical inputs (red dots). This is

because the information of previous points is preserved in the fading memory created by the

delay-coupled loop. However, one data point cannot be maintained permanently and will

be attenuated after each cycle. This feature is crucial for constructing training data. The

MIT-BIH database has labelled the location of Q-wave (the central spike for MLII lead) in

each heartbeat. There are three steps for defining training label Y :

• The label y(n) is based on the ECG type from the database and has the same length as

input data. For the purpose of detecting VEB, the locations of VEB are set to 1, the

locations of other types of ECG is set to -1 and the rest of the labels are 0 (the green

line in Fig. 2.4)).

• Right shift the y(n) by δ points (δ /180ms). The label 1 and -1 are moved from the

location of Q-wave to the end of a heartbeat (pink line in Fig. 3). The reason is that

the node state q(n) at the end of each heartbeat includes the fading memory of the

entire heartbeat, which is analysed with MC in the next subsection.

• The number of VEB (1) and other types of heartbeat (-1) are unbalanced in terms

of training labels, leading to the hyperplane that separates the two classes of data in

high-dimensional space getting closer to the majority. Therefore, the desired output

y(n) should use n1+n2
n1

and −n1+n2
n2

instead of 1 and -1, where n1 and n2 are the number

of VEB and other types of heartbeat respectively in the training data set.

Determining the shifting distance δ of labels should consider the state Q distribution and

dispersion between different classes. With the ECG input, the state Q(n) implies the mapping
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of (u(n),u(n− 1),u(n− 2). . .) into a N-dimensional feature space. Generally, the fewer

overlaps between different classes of ECG in the feature space, the better discrimination can

be obtained by the regression. Q over different δ is visualised and plotted in Fig. 2.4(b). At

the first step, Q was collected by feeding the ECG data to the DRC model. The green dots of

each graph are the states at the locations of the shifted label which is δ points away from the

Q-wave. For example, when δ = 0, the states of green dot were collected at the location of

Q-wave. In order to observe the dispersion between the extracted VEB states and normal

ECG, the states of red dots were randomly collected within the range of other heartbeat

classes including normal beat, left bundle branch block beat and right bundle branch block

beat. After collection, the N-dimensional data of red dots are consistent for all six graphs.

Here total 20395 heartbeat data points, including 15% VEB (green), were illustrated for each

graph. For visualising the high-dimensional data, Principal Component Analysis (PCA) was

used to map the data into two dimensions. As shown in Fig. 2.4(b), the two axes represent the

first and second Principal Component (PC). In each graph, the result of PCA also shows that

the first two PCs can explain 88.19% (std 1.87%) on average of all variances. When δ = 40,

the two classes of data points present less overlap. Therefore, the label was right-shifted for

40 samples ( 222.2ms) for training.

2.2.5 Memory capacity

Fig. 2.4(a) shows that the DRC can retain historical inputs in the fading memory. MC is a

key criterion that indicates the volume of information from the previous inputs that can be

retained in the network. MC depends on the parameters and structure of the reservoir. The

crucial variables that affect the MC are the nonlinearity of activation node, the strength of

each delay line (G1,G2 . . .GNdelay), the ratio between the strength of feedback and input (β =

G f /Gi) and the ratio between each delay line (γ = G2/G1) [122, 131]. Here, the nonlinear

activation region leads to a rather low MC and lots of delay lines are needed to compensate
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for the loss of MC. Therefore, the linear region with two delay lines (G3 . . .GNdelay = 0) was

chosen since our single input channel required high MC and too many delay lines are not

optimal in hardware design. In order to keep the system stable, two requirements should be

fulfilled: G f +Gi = 1 and G1 +G2= 1. Two tasks were employed to analyse the MC of the

DRC model: 1) the task of binary sequence reconstruction is a standard method to quantify

the MC; 2) a ’look back’ ECG reconstruction task for validating the ECG morphology

preserved in a fading memory.

Binary sequence reconstruction

A binary input p(n) = -1 or 1 was randomly generated to evaluate the MC of the proposed

reservoir. In this task, the training output yi(n) is the matrix of p(n) shifted by i steps for i =

1, 2 . . . ∞, which means that each state at the input p(n) will be used to train and reconstruct

the historical points of a square wave. The MC can be calculated as the sum of a linear

correlation between reconstruction result xi(n) and the actual shifted sequence yi(n):

yi (n) = p(n− i) (2.8)

MC =
∞

∑
i=1

m(i) =
∞

∑
i=1

ρ (xi (n) ,yi (n))

=
∞

∑
i=1

< yi (n)xi (n)>2
n

σ2 (p(n))σ2 (xi (n))

(2.9)

where ρ and σ denotes the correlation and variance, respectively [122, 123]. Theoretically,

the summation of m(i) should be taken from i = 1 to ∞, which is incalculable. Thus, i ∈

[1, 600] was adopted. The p(n) was randomly generated with the length of 4000 (75% for

training and 25% for testing) and consistent throughout the test. Also, the Ridge regression,

instead of Lasso, was applied to the square wave reconstruction because a sparse Wout trained

by Lasso may cause information loss. This means the result cannot accurately reconstruct
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the square wave and fully reflect the amount of information retained in node states. During

training, the shifted binary sequence yi(n) was used as the label, which means the node

state collected at the input p(n) is employed and trained to reconstruct the input at i steps

prior to (p(n− i)). This task tests the capacity of the DRC to retain the historical samples

due to the fact that the memory is fading. Reconstructing the sample becomes increasingly

demanding as i becomes higher. Therefore, the MC can be quantified by analysing the

correlation between y′i(n) and yi(n) in Eq. (2.9).

In this task, the two ratios, β and γ , are investigated. The MC is varied by different β ,

while γ was implemented to control the shape of m(i). Fig. 2.5(a) shows a reconstructed

sample for lower MC when β=9.1 and γ=0.1. When the shifting steps are small (i=7), the

result (green dots) can capture most of the original points. As i increases, the reconstructed

points depart from the targeted value with the decline of m(i). In Fig. 2.5(b), raising γ to 10,

which means that the percentage of 2nd delay line is increased, results in a small improvement

in MC. As can be seen from the graph, most of the reconstructed points are close to the

original data p(n), whereas a small fluctuation was also found when i=19. The effect of MC

can be observed through the comparison of the two graphs. A higher MC will enhance the

reservoir’s ability to retain historical inputs in the current node state. Subsequently, a higher

γ will improve the MC because the proportion of the 2nd delay line (length = 2τ) is increased.

The m(i) can be computed based on the correlation between reconstructed data and original

data over i, according to Eq. (2.9). Firstly, β is fixed and γ is varied from 0.01 to 100. The

resulting m(i) is plotted in Fig. 2.5(c). When γ=100 (the 2nd delay line is highly dominant),

the unbalanced distribution of m(i) for odd and even i was found. The reason for this issue is

that the 2nd delay line facilitates the reconstruction of even i step shifting. In addition, the

rest of the lines show that the m(i) is slightly reduced as γ declines, and the distribution of

m(i) can also be tuned by γ . Secondly, γ is fixed and β is varied. The Fig. 2.5(d) shows

that β has a much stronger effect on MC compared to γ . In the next step, the MC can be
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quantified by taking the summation of the correlation m(i), which is visualised in Fig. 2.5(e).

In conclusion, the MC varies more significantly when β changes. The higher the β and γ ,

the stronger MC can be achieved. More specifically, MC mostly depends on the β , while γ

can slightly change the distribution of m(i).

’Look back’ ECG reconstruction

The ‘look back’ ECG reconstruction is a multistep backward signal reconstruction task. The

purpose of this task it to numerically proof the fading amount of ECG information retained

in the delayed feedback loop. If the state matrix collected at the end of each heartbeat can

reconstruct the entire past heartbeat episode, this state matrix should include a certain amount

of historical ECG information and thus can be used to classify different heartbeat types. In

this task, the node states at the end of each ECG beats were used for training to reconstruct

the historical n1 points. For example, the node state at time tx in Fig. 2.4(a) that was extracted

as one of the QM(n) and yM(n) is a matrix of ECG data segments from tx − τn1 to tx, where

QM(n) and the yM(n) are the node state and the training label for this task. In total, n2 groups

of node state and their corresponding ECG slots were collected to calculate the output weight

WM for training. During the testing, the node states at the end of a heartbeat were collected

to reconstruct ECG using Eq. (2.7). Assuming that the tE is an array recording the location
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of each heartbeat in an ECG dataset, the elements in SM(n) and yM(n) can be written as:

SM =



sM (1)

sM (2)
...

sM (n2)



=



q
(
tE
1 +θ

)
q
(
tE
1 +2θ

)
· · · q

(
tE
1 +Nθ

)
q
(
tE
2 +θ

)
q
(
tE
2 +2θ

)
· · · q

(
tE
2 +Nθ

)
...

... . . . ...

q
(
tE
n2
+θ
)

q
(
tE
n2
+2θ

)
· · · q

(
tE
n2
+Nθ

)



(2.10)



yM (1)

yM (2)
...

yM (n2)


=



u
(
tE
1
)

u
(
tE
1 − τ

)
· · · u

(
tE
1 −n1τ

)
u
(
tE
2
)

u
(
tE
2 − τ

)
· · · u

(
tE
2 −n1τ

)
...

... . . . ...

u
(
tE
n2

)
u
(
tE
n2
− τ
)

· · · u
(
tE
n2
−n1τ

)


(2.11)

where n1 = 400 (~2.2s) and n2 = 2000 were used in this task. Using the sM and YM, the

weights Wout
M and the reconstructed output can be calculated by ridge regression and

Eq. (2.7). The reconstruction results at MC equal to 120, 70 and 20 along with the original

waveform are plotted in Fig. 2.6(a). The upper graph illustrates the reconstruction of two

normal beats and the lower one shows a ventricular beat followed by a normal beat. When

MC=120, the output can perfectly copy the later beat and tend to follow most of the earlier

beat. In contrast, the low MC (20) can only retain the rough shape of the later beat and

has almost no information about the earlier beat. This phenomenon can be quantified by

taking Mean-Squared Error (MSE) between the reference and reconstructed data. A more

comprehensive experimental result of ECG reconstruction using 1000 heartbeat episodes

from the database is shown in Fig. 2.6(b). It reveals that when MC is increased, there is a

continuous decrease in MSE as well as the interquartile range. Also, a normal beat is easier
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to reconstruct as compared to a ventricular beat. The result of this task further proves that

the node state generated at the end of one ECG beat contains the information of the whole

ECG under the DRC model reported in previous sections. The accuracy of reconstructing

the ECG and the length of rebuildable data based on the MC value is verified in the last

task. On the other hand, the earlier data are harder to retain in the network. Moreover, it is

worth mentioning that, for up-sampled or analogue ECG signal, the value of θ ×N should

not decrease as τ in order to maintain enough MC in time domain.

Memory capacity for up-sampled ECG

The original sampling rate of the ECG data is 360Hz. In our simulation, it is down-sampled

180Hz to speed up the simulation and optimization. This section will discuss how to maintain

sufficient MC for ECG processing in up-sampled case.

The memristive behaviour of the DRC stems from the integration elements of the neuron

circuit and the delayed feedback. The MC implies the length of signal that can be retained in

the network. However, this length depends on the network configuration including the neuron

and delayed feedback regardless of the sampling rate of the input signal. In most of the cases,

the sampling interval of ECG τ equals to θ ×N to facilitate the parameter analysis, so that

the MC can be represented by the number of data points. The MC shortage would happen

if the equivalence between θ ×N and sampling interval is maintained as the sampling rate

increases. However, in analogue or up-sampled case, it is needed to redefine and separate

the two parameters since they are no longer consistent: τ ′ is the sampling interval of ECG

while τ (equals to θ ×N) is the DRC operation period. A lower sampling interval τ ′ will be

obtained if the τ = θ ×N is unchanged (τ > τ ′). Fig. 2.7 illustrates how to maintain sufficient

MC for an up-sampled case (original sampling rate of the database) in comparison with the

setup discussed in this work. In an up-sampled case, the masked signal during every τ was
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divided into two parts because τ = 2× τ ′. In analogue case (τ ′ close to 0), the masked signal

will be a continuous pulse with smoothly changing amplitude.

Under this setup, the network can still remember the same time length of signal since the

memristive properties of the hardware remains unchanged. This conclusion is endorsed by

an experiment comparing the ECG reconstruction performance under different τ’ (Fig. 2.8).

This experiment is similar to the task discussed in last section. The MSE of ECG construction

using the states collected at the end of the ECG fragment can directly reflect how much ECG

information is retained in up-sampled cases. Note that the ECG reconstruction target is the

180Hz data, in order the make the two cases comparable. The result shows that the MSE is

slightly lower in up-sampled case, which means that the memory capacity is still enough to

process the ECG signal. The minor improvement could own to the amplitude change during

τ , bringing extra state richness for high-dimensional mapping.

In conclusion, the up-sampled or analog signal will not compress the MC in time domain.

In contrast, the up-sampled or analogue signal can be beneficial to the network performance

by improving state richness. The down-sampled operation in this chapter is due to the

following reasons: 1) lower sampling rate can demonstrate the system ability in tolerating

lower quality signals; 2) down-sampling can reduce the number of data fed into the model

and speed up the simulation; 3) lower sampling rate will relieve the burden of hardware

development and cost.

2.2.6 Post-processing

After obtaining the output Y′ in Eq. (2.7), ideally, a spike would appear when a VEB is sent

to the model, whereas the output should keep flat for other types of ECG. This is because

a spike is set at the end of every VEB in the training shifted label. However, fluctuation

always happens throughout the output signal since some of the components for other types
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of ECG are similar to the VEB components. The Fig. 2.4(b) also demonstrates this issue as

there always exists a certain amount of overlap. Thankfully, most of the spikes of VEB are

higher than the unwanted noise. Therefore, a thresholding approach was adopted to capture

the spikes of interest. Before the threshold, another two filters, which are the same as the

high-pass and low-pass filters in the pre-processing step, were applied to the output y′(n)

to support the thresholding. In this step, the location of the possible VEB is highlighted by

spikes after thresholding.

2.3 Performance measures and results

2.3.1 Performance matrix for VEB detection

The performance matrix for the VEB detection is recommended by AAMI. The metrics

include sensitivity (Se), positive predictivity (PP), specificity (Sp), and accuracy (Acc), which

are the standard statistic tools for evaluating the ECG classification on MIT-BIH database. In

addition, F1 score, the harmonic mean of Se and PP is also used to optimise the parameters.

These values can be calculated using the values of True Positive (TP), True negative (TN),

False Positive (FP) and False Negative (FN) [127]:

Se = T P/(T P+FN) (2.12)

PP = T P/(T P+FP) (2.13)

Sp = T N/(T N +FP) (2.14)

Acc = (T P+T N)/(T P+T N +FN +FP) (2.15)

F1 = 2(Se ·PP)/(Se+PP) (2.16)
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The design goal is to minimise the FN and FP and maximise the TP and TN. It is worth

mentioning that, in the absence of heartbeat segmentation, the performance quantification

in this work is slightly different from the beat-by-beat comparison reported in the literature.

Instead, the model output is a point-by-point indication because the raw ECG signal is

continuously fed into the model which acts like a dynamical nonlinear system. To count the

number, a threshold was applied to the output y′(n) generated by ECG input. The threshold

can highlight the spike of the output signal which may suggest the location of a VEB. If the

location of one spike matches the VEB annotated in the database, this VEB will be counted

as a TP. Similar approaches were also used to count TN, FP and FN.

2.3.2 Optimisation

The MC allows the model to load the ECG morphology to the recurrent network using only

one-dimensional input without signal segmentation and feature extraction. However, a high

MC will cause redundant information, such as previous multiple beats, preserved in the loop.

Prior to calculating the final result, the F1 score was chosen as a standard to optimise the

performance. In order to speed up the optimisation process, a descriptive dataset including

1138 normal beats and 420 VEBs randomly collected from DS1 was used to optimise the

parameters. The F1 over different MC was firstly simulated. Fig. 2.9(a)

provides the relationship between MC and F1. The green line presents a curve fitting

using 8th order polynomial. The highest point in this simulation has been amplified and

plotted. Before the maximum point, F1 keeps rising as MC increased. This is because the

gain of MC enhances the model’s ability to keep the heartbeat information. Afterwards, the

F1 is reduced with the growth of MC because the redundant information makes the VEB

detection more challenging. The highest MC achieved by current double delay model is less

than 130. The highest F1 occurs when MC is around 75. Based on this value and the results
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in Fig. 2.5(e), the β and γ generating MC approximately from 70 to 100 are evaluated by F1

(Fig. 2.9(b)). The highest F1 was obtained by β = 13.8 and γ = 3.01 in the condition that MC

= 91.8.

The ratios discussed above had been used to deploy the model in which all ECG data

in DS1 were tested. The output threshold versus the performance matrix are plotted in

Fig. 2.9(c) and (d). At a low threshold value, the number of spikes including errors and noises

were captured, resulting in a high FP and TP. In this case, unwanted noises were incorrectly

detected as VEBs spikes. In contrast, a high threshold leads to the large number of missing

VEBs (high FN and FP). Based on Eq. (2.12)-(2.16), the performance matrix is plotted in

Fig. 2.9(d). The optimal F1 can be obtained when threshold is 0.3.

2.3.3 Results

The result of MC test and optimisation have been discussed in the previous sections. After

optimisation, the entire testing dataset DS2 was fed to the model. In addition, four examples

of the output signal together with the optimised threshold value, input signal and ground

truth (the shifted labels of VEB in DS2) are shown in Fig. 2.10. One pair of matched dot and

rhombus is counted as a TP, while FP is counted when no spike is found in the range of other

types of heartbeat. As can be seen from the graph, most of the VEBs can be detected by the

output spikes. At the same time, the values outside the VEB were kept low. In every TP, short

displacements between the ground truth and result always existed because of the continuous

point-by-point detection. However, the Record 233 contains the highest amount of multiform

VEBs, which can only be partially detected due to its sharper waves. The unreadable artefact

of the data such as few episodes in Record 105, which has also been reported in the database

description, resulted in high TN and FN. The final performance matrix was calculated by the
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gross TP, TN, FP and FN, which is listed in Table I. The proposed hardware-based model

yielded Se = 80.9%, PP = 87.5%, Sp = 99.2% and Acc = 98.0%.

Table 2.1 The result of VEB detection

Record Se (%) PP (%) Sp (%) Acc (%) F1 (%) # of VEB
100 100.0 33.3 99.9 99.9 50.0 1
103 - 0.0 99.8 99.8 - 0
105 12.2 4.1 95.4 94.1 6.1 41
111 100.0 8.3 99.5 99.5 15.4 1
113 - - 100.0 100.0 - 0
117 - 0.0 99.7 99.7 - 0
121 100.0 4.2 98.8 98.8 8.0 1
123 100.0 50.0 99.8 99.8 66.7 3
200 91.8 100.0 100.0 97.4 95.7 826
202 5.3 14.3 99.7 98.9 7.7 19
210 39.7 96.3 99.9 95.4 56.2 194
212 - 0.0 99.7 99.7 - 0
213 96.8 74.5 97.3 97.3 84.2 220
214 60.9 100.0 100.0 95.5 75.7 256
219 82.8 98.1 100.0 99.5 89.8 64
221 97.7 100.0 100.0 99.6 98.9 396
222 - 0.0 97.2 97.2 - 0
228 98.1 96.2 99.2 99.0 97.1 362
231 100.0 28.6 99.8 99.8 44.4 2
232 - 0.0 98.8 98.8 - 0
233 71.1 99.7 99.9 90.8 83.0 831
234 0.0 0.0 99.9 99.8 - 3

Overall 80.9 87.5 99.2 98.0 84.0 3220

2.3.4 Minimum memory needed for inference

In wearable devices, the trained VEB detection model can be deployed in a edge device

where the hardware cost needs to be considered. Minimizing the memory that needs to

be accessed for the detection is a crucial approach to reduce the hardware cost. While

the state-of-the-art systems require massive memory for storing network parameters and

performing nonlinear calculation, the memory needed for deploying the proposed model is
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significantly lower since the major proportion of nonlinear computing occurs in the analogue

domain. The absence of signal segmentation and feature extraction reduces the memory

requirement to zero for the data before the input player. Furthermore, the fixed physical

reservoir layer significantly saves the number of parameters for the network activities. In

the proposed model, only the output of every time-multiplexing step needs to be stored and

multiplied by the corresponding weight for the ‘multiply and accumulate’ operation. Thus,

the total number of parameters in the model is 401 (400 weights and 1 network output at the

current time step). Assuming that the data type is double precision floating point (8 bytes, as

the simulation setup), the minimum size of memory for inference is 3.13 MegaByte(MB).

In addition,under the proposed architecture, the memory is proportional to the number of

virtual nodes. It means that the memory requirement would not exponentially increase if the

network size is expanded for detecting more heartbeat types or higher performance matrix.

56



2.3 Performance measures and results

(d)(c)

(b)

(a)

(e)

Fig. 2.5 Result of memory capacity testing using binary sequence reconstruction at (a)
lower MC (β = 9.1 and γ = 0.1 and (b) higher MC (β = 9.1 and γ = 10. Based on the
reconstruction results over different i, the correlation graph m(i) can be computed. (c) The
m(i) curve with fixed β and (d) The m(i) curve with fixed γ . The corresponding MC values
are also provided. (e) The MC value as a function of the two ratios, β and γ .
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(a) (b)

Fig. 2.6 (a) The result of the ’look back’ ECG reconstruction task under different MC values.
Under DRC models with different MC, the state matrix collected at the end of a heartbeat
was used to reconstruct the past 400 ECG points (approximately two continuous heartbeats).
The top graph shows the reconstruction of two normal beats and the bottom graph shows one
VEB and one normal beat. The blue line is the reconstruction target. (b) The MSE between
the reconstructed line and the reference data over MC value. The values of normal beat and
VEB are plotted separately.The reconstruction results demonstrate the memristive property
of the DRC model that preserving the historical information within the network.

Fig. 2.7 ECG signal and Masked signal under different setup of τ and θ ′.
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(a)

(b)

Fig. 2.8 ECG construction task under different τ’.
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(d)(c)

(b)(a)

Fig. 2.9 Result of the parameter optimization and performance matrix. (a) The F1 score
over MC. The green line stands for the curve fitting of the pink dots using an 8th order
polynomial. The data was obtained from the simulation of MC over the two ratios and its
resulting F1 scores. (b) The F1 score as a function of β and γ . The ranges of β and γ are
the values producing MC from approximately 70 to 80, which is the range of the optimal
F1 was computed in (a). The threshold evaluation in terms of (c) TP, TN, FP, FN and (d)
performance matrix.
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Result Ground truth ECG Model output Threshold

Fig. 2.10 Four episodes of the ECG and their processing output. The top raw shows the
input ECG signal. The bottom row shows the output of DRC model. The red dots denote
the locations of VEB from database. The yellow rhombuses are the VEB detection results.
For example, the artifact in Record 105 led to several FPs, and the multiform VEB in 233
resulted in FPs. Meanwhile, most VEB can be successfully detected in Record 200 and 221.
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2.3.5 Comparison with the state-of-the-art

The methodologies of automatic ECG classification have been widely explored in recent

years. Using the open-access MIT-BIH arrhythmia databases [116], previous researches

were done on automatically classifying different types of ECG by the intelligent algorithms

such as support vector machine [117–119], echo state network [46, 47], decision tree [120],

and neural network [105, 121]. As summarised in Table II, the selected publications are

the state-of-the-art studies with the following criteria: 1) published in the past five years, 2)

evaluated by MIT-BIH arrhythmia database, 3) inter-patient evaluation paradigm, 4) different

types of processing core algorithms and 5) yielded good results. As can be seen from the

table, the prior ECG signal processing studies mainly focused on software-based methods.

The minimum size of memory was calculated using the method reported in the last section.

The data type was double precision floating point unless a specific data type or fixed-point

operation was used. For example, it has been reported that the ring ESN was designed to

detect arrhythmia in [46]. First, the segmented heartbeat was 60 samples (240ms). Second,

total 63-dimensional vector including raw data and features were sent to the input channels.

Next, given the reservoir size is 1000, the size of input weight is 63×1000=63000. In the

reservoir layer, the ring ECG hugely reduces the number of weights to 1000 in comparison

of 1000×1000 in normal ESN. Combining with another 1000 data points for storing node

states, the total number of variables in this network is 60+63+63×1000+1000=65123, and

the corresponding memory size divided by the number of heartbeat types under detection is

508.8MB. This estimated number indicates the minimum number after fully optimizing the

system, and the actual system should require larger memory. The Support Vector Machine

(SVM)-based classifier involves complex operation using nonlinear kernel function to map

the data or features to higher dimensional space. These operations will increase the burden of

both processor and memory [117, 118] . The parameter reported is not sufficient to estimate

the minimum memory. The algorithms with large network size such as Deep Belief Network
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(DBN) [117] and 1500-neuron ESN [47] demands high memory and intensive nonlinear

computing, which may not be suitable to deploy in a wearable edge device.

Compared to the state-of-the-art automatic ECG processing study, an important difference

is that the proposed model simulates a dynamic neuromorphic system receiving continuous

ECG signal, rather than designing an offline machine learning framework. It is advantageous

in a number of ways: 1) the two digital operations, signal segmentation and feature extraction,

are removed from the processing model. This difference facilitates the implementation of

a pure analogue neuromorphic processor; 2) it allows raw ECG signal from single lead

flow into the model for detecting VEB and meanwhile obtains the acceptable result of

effectiveness, which can be also considered as near-sensor computing; 3) it simulates a

neuromorphic dynamic system, rather than a pure algorithm, which implies the processing

and VEB detection happens in real-time; 4) the relatively lower sampling rate reduce the

overall system frequency for real-time processing ;5) inherited from RC, the training of

this model is relatively easy and fast. These advantages can be measured by the minimum

memory size. The proposed system requires significantly lower memory, only 3.1MB, for

running the detection algorithm when the fully trained model is deployed.

2.4 Discussion and conclusions

In this chapter, an ECG signal processing model based on DRC for hardware implementation

has been proposed for the first time. This model was evaluated by an abnormal heartbeat de-

tection task with the MIT-BIH arrhythmia database. Considering the notion of neuromorphic

engineering, the model design refrained from using digital signal processing components.

The novelty of the proposed model can be summarised as follows:

(i) Conventionally, heartbeat segmentation and feature extraction are two routines of

automatic ECG classification in the previous studies. They were sidestepped in this model
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since these operations are much more friendly for software implementation rather than

hardware. Instead, the method proposed in this chapter is to analytically test the MC and

to preserve the desired amount of ECG morphology in the recurrent loop, which has been

tested by two MC validation tasks. Accurate modelling of MC is crucial for designing the

DRC model for processing a specific type of signal.

(ii) This model is a end-to-end dynamic system: the input is raw ECG signal and output

is a point-by-point indication of signal class. As discussed Table II, the performance matrix

in this work is comparable to the software-based methods in the literature considering that

the hardware-based method is not as flexible as a software-based method.

(iii) The main signal processing takes place in the analogue domain. It avoids suffering

the intensive data transmission and processing in memory and processor, and therefore

the memory needed for executing detection algorithm can be greatly reduced compared

with previous studies. This advantage would potentially be useful to form a low-power

neuromorphic computer [2, 20, 22].

Given the merits discussed above, the main weakness is the limited computing ability

and task performance. In the absence of segmentation and feature extraction, the heartbeat in-

formation is preserved by the inherent memristive property of the network. These differences

raise the task difficulty compared with the software-based algorithms where mass memory

and accurate digital computing were used, resulting in a non-ideal performance. The higher

computing performance could be obtained by scaling the network size in actual hardware,

which remains future challenge.

In conclusion, this model provides a fundamental analysis of using DRC as computing

architecture for ECG processing. To the best of our knowledge, this work is the first hardware-

based model acting like a dynamic system which can highlight VEB from continuous ECG

input. The model and the analysis of its dynamic property (such as MC) will facilitate the
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future development of a neuromorphic wearable device, for instance, an analogue end-to-end

abnormal ECG detector with built-in RC algorithm, to form a next-generation long-term

ECG monitoring device at edge. Full development of such system remains a topic in future

exploration. To achieve this, further efforts should involve: 1) developing pre- and post-

processing front-end circuit; 2) analogue delayed feedback circuit; 3) power consumption

evaluation and optimisation; 4) ASIC implementation.
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Chapter 3

Volatile Memristor-based Reservoir

Computing

3.1 Memristive devices for reservoir computing

Memristive devices have emerged as a crucial element in implementing physical neural

networks. In 1971, prof. Leon Chua predicted the existence of memristor by theoretically

analysing the behaviour of the basic electrical components [132]. Later on, HP Lab fabricated

the first memristor in 2008 [133, 134]. One memristor can exhibit multiple conductance

states, which can be modulated by external signals. In principle, the historical stimulation

redistributes the migration and diffusion of oxygen ions of the devices, and thus changes

the conductance [135–138]. In applications, memristors is widely employed in various

physical networks or systems. It has been considered a strong candidate to implement

artificial synapses. To adapt a physical neural network to different computing tasks, the

plasticity of the neural network can be established by changing the weight values stored in

the memristors. In this usage, memristors are expected to accurately store the weights for a

long period even without receiving a signal or power, which is known as non-volatile memory
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(NVM). Particularly, an NVM memristor array can achieve VMM at an extremely high

efficiency subject to Kirchhoff’s Current Law in hardware circuits [13, 96, 97]. Therefore, it

is frequently used to accelerate the VMM operations in physical neural networks, including

ANN [96, 98], spiking neural network [99, 138, 139], CNN [13] and the output layer of RC

[80, 95, 140], as briefly discussed in Section 1. Additionally, non-volatile memristor can also

be used to implement low-power logic units in digital circuit [141–143].

Recent research also revealed that memristive devices can also exhibit short-term memory

(i.e. volatile memory) and nonlinearity. The effects of historical simulations accumulate if

the continued input is received at short intervals. If no signal or relatively low amplitude

is injected, the conductance state will gradually decay toward the initial state. These pro-

cesses are subjected to a certain range of input-output nonlinearity. This type of memristor

exhibits interesting dynamic behaviours in a single device, namely dynamic memristor or

volatile memristor [63–65, 89]. Volatile memristor is well-suited to be the processing core of

physical RC because of its miniaturised size, nonlinearity and intrinsic memristive proper-

ties. In the previous studies, volatile memristor based on WOx [64, 65, 68], GeS [70], SnS

[66], W/HfO2/TiN[144], Ti/TiO2/Si [67], Au/P(VDF−TrFE)/Cs2AgBiBr6/ITO [94]

and TiOx/TaOy [63] were experimentally and numerically proved their effectiveness as

processing cores in physical RC. Those volatile memristor-based RC have been successfully

applied in tasks including chaotic series prediction, nonlinear system approximation, wave-

form classification, handwritten recognition, vehicle flow detection, face image classification,

artificial olfactory etc..

In this section, a volatile memristor based on TiOx and cross-point structure is used to

implement physical RC under hybrid delayed feedback and parallel devices architecture.

First of all, the device is characterised and modelled. Secondly, the architecture of memristor-

based RC will be introduced along with its simulator in Python 3.6. Thirdly, the network
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performance with different device and architecture setups will be discussed. Finally, such a

system will be used in human activity recognition tasks to demonstrate its effectiveness.

3.2 Device characterisation

The TiOx-based volatile memristor is fabricated by vertically staking Ti/TiOx/Pd (110 nm /

80 nm / 50 nm), as shown in Fig. 3.1(a). (The fabrication is done by the LEMON (Laboratory

of Emerging MemOry and Novel computing) group of Tsinghua University. The fabrication

process is not covered in this thesis.) Its dynamic behaviours over time is given by the

Schottky barrier at the Pb/TiOx interface [145]. Next, the measurement was carried out by a

semiconductor parameter analyzer (Agilent 1500) and a probe station at room temperature.

The Pd is the positive electrode. First of all, the volatile memristor’s I-V curve is characterised

by sweeping the input voltage in the range of -2V to 4V (Fig. 3.1(b)). A hysteresis curve with

strong nonlinearity was observed. Then, the same input was injected 20 times, and it can

be seen that the resulting curve is highly consistent, which indicates excellent repeatability

and stability. Compared with the previous work based on the stake of Ti/TiOx/TaOy/Pt

(50 nm/16 nm/30 nm/50 nm) [63], this device is more stable, easy to fabricate and exhibits

similar behaviours.
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Fig. 3.1 Volatile memristor array and characterisation. (a) The fabricated volatile memristor
array with the stake of Ti/TiOx/Pd. (b) The I-V curve was measured by sweeping the voltage
in the range of -2V to 4V, which was repeated by 20 times.
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The next experiment further studies the dynamical behaviours under continuous read

and write stimulation. The periodical input signal is programmed as a write pulse with an

amplitude of 3V and width of 1ms, followed by 200 read pulse with an amplitude of 2V

and width of 20µs. The input and resulting output are shown in Fig. 3.2. The write pulse

with a large voltage can gradually set the memristor to a higher conductance state. During

the continuous read pulse, a decay can be observed after the write pulse. The conductance

state of the volatile memristor depends on both the current input and historical input and

state. These results demonstrate the memristive properties of the volatile memristor. Overall,

the TiOx-based memristor exhibits strong nonlinearity and short-term memory, which is

well-suited to be used as the processing core of physical RC.

decay

Fig. 3.2 Response of volatile memristor under continuous pulse input. The input is a
periodical stimulation including a write pulse (3V, 1ms) and 200 read pulses (2v, 20µs). The
responding current signals show a dependency between the current output and historical
output.

Furthermore, the I-V measurement was repeated 100 times to collect sufficient data for

fitting the parameters of the discrete model of the volatile memristor. The equation of the

discrete model is:
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IM = KGV 3 (3.1)

G = G0 + r(G′−G0)+
α|V |

α|V |+1
(Gth −G′) (3.2)

V ≥ 0



K = Kp

α = αp

r = rp

Gth = 1

V < 0



K = Kn

α = αn

r = rn

Gth = 0

(3.3)

where IM is the output current of the volatile memristor, V is the input voltage, K,α,r

and Gth are the parameters varied with the sign of V (Eq. 3.3), G and G′ denote the current

conductance and the conductance at previous time step respectively. G0,rp,rn,αp,αn,Kp

and Kn are the parameters to approximate the experimental data. This discrete model is an

improved version of the previous work[63]. The measurement and simulation results are

shown in Fig. 3.3, and the parameters of the discrete model for generating the simulation

curve are provided in Table 3.1. As can be seen from the figure, the simulation model can

capture the major characteristics of volatile memristors. This simulation model will be used

as the processing core in the hybrid delayed feedback and parallel reservoir model.

Table 3.1 Parameters for the discrete model of volatile memristor

Parameter Value Parameter Value
G0 0.1 rn 1.005
rp 1.025 αn 0.05
αp 0.007 Kn 0.05
Kp 2.5
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Experiment
Simulation

Fig. 3.3 I-V measurement and simulation results. The grey lines are the 100 repetitions of the
I-V sweep in the range of -2 V to 4 V. The measurement results are used to fit the parameters
of the simulation model. The red line is the fitting result.

3.3 Parallel memristors reservoir with mask

Given the rich dynamics offered by volatile memristor, an architecture should be properly

designed to make full use of the dynamics for computing. In this section, a hybrid delayed

feedback and parallel reservoir architecture are introduced. As illustrated in Fig. 3.4, multiple

volatile memristors that act as processing cores receive the masked signal from a common

input signal. The preprocessing procedure is similar to the mask process discussed in Section

2. Note that different mask matrices should be used for different volatile memristors in order

to increase the state richness. The effect of using a common mask matrix for all volatile

memristors will be discussed in the waveform classification task. Because of the short-term

memory, the virtual nodes are nonlinearly coupled to each other, resulting in the temporal

high-dimensional mapping of the input signal. The devices’ responding output to every

masked signal point should be collected as virtual node state s(n) at nth step. The node

states should be put into the state matrix in a fixed order to multiple with the Wout value.
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3.4 Waveform classification

For example, if the first element in the state matrix is the response of the first masked point

of volatile memristor 1, then the response of the first masked point of volatile memristor 1

should always be the first element for every masked period in both training and testing. The

output layer is consistent with the routine of RC: in the training phase, the state matrix s(n)

is used to calculate the output weights Wout by using Ridge regression towards the target

output y(n); in the testing phase, the state matrix s(n) is multiplied with Wout to obtain the

predicted output y′(n).

⋯

⋯⋯

Mask 1

Mask 2

Mask M

Virtual nodes
VM 1

VM 2

VM M

Input signal

Output layer
(Wout)

Fig. 3.4 Parallel reservoir computing architecture based on volatile memristor.

3.4 Waveform classification

3.4.1 Method

Waveform classification is a relatively simple task to evaluate the time-series processing

performance. In this task, the input signal u(n) consists of the randomly distributed sinusoid
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and square wave with the same amplitude and frequency. The target output y(n) is a

binary sequence of 0 and 1 representing the waveform types of sinusoid and square wave,

respectively. In this task, a total of 4000 data points were generated as the input signal, half

of which were used to train the Wout and the rest for testing the classification results. The

input values were mapped to the range of [-2V, 4V] as the characterisation of the volatile

memristor suggested. According to the empirical results [63], the mask length cannot be high.

Thus it is set to 5 throughout the test. In order to increase the task difficulty, only the volatile

memristors are used to receive the masked input in the absence of delayed feedback. Also, a

Gaussian white noise with an amplitude of 10−5 was added to the normalized conductance

variable G on every time step. The signal flows and system diagram are shown in Fig. 3.5.

The number of volatile memristors (M) is a variable that would be evaluated. For each volatile

memristor, the masked signal can bring out temporal dynamics in its current response. For

multiple volatile memristors, their different mask matrix results in distinguishable outputs

that will be collected in the virtual nodes matrix as a reservoir state. Using the training and

testing procedures introduced above, the predicted result y′(n) can be obtained. Finally, the

consistency between the ground truth y(n) and predicted output y′(n) will be quantified by

normalized root mean square error (NRMSE). The definition of NRMSE is:

NRMSE =

√
1
m

∑
m
n=1(y′(n)− y(n))2

σ2(y(n))
(3.4)

where m is the total data length in the y′(n) and y(n), σ2 is the output variance.

3.4.2 Results

The waveform classification results for the number of volatile memristors M = 1, 5 and 10 are

plotted in Fig. 3.6. It can be seen from the first figure that a single volatile memristor is hard

to distinguish the different waveforms and the NRMSE is 0.67±0.15. For M = 5, the model
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Input signal u(n)

Target y(n) ⋯

⋯

⋯
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Fig. 3.5 Signal flows in the waveform classification task.
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successfully captures the category of the input waveform with NRMSE = 0.28±0.05. When

M is increased to 10, the NRMSE and standard deviation are further reduced to 0.15 and

0.02. Finally, the NRMSE over the different numbers of the volatile memristors is plotted

in Fig. 3.7. The NRMSE and its standard deviation decreased as the number of volatile

memristors increased. However, if every volatile memristor receives the masked signal with

a common mask matrix, the performance cannot be improved since every volatile memristor

produces similar outputs.

These results reveal that 1) the volatile memristor-based network model can successfully

perform waveform classification task, which primarily proves its capabilities in temporal

signal processing; 2) increasing the number of volatile memristors can improve the task

performance when different mask matrices are applied to different devices. In the actual

measurement, a certain level of D2D variation could also enhance the performance as the M

increased[64], even though using a common mask matrix. However, using different masks is

still an effective method to increase state richness.

3.5 Hénon map chaotic series prediction

3.5.1 Method

Introduced by Michel Hénon, the Hénon map is a simplified version of the Lorenz model

and also a classical discrete chaotic time series, which can be used to test the prediction

performance of the proposed model [63, 146]. A typical setup of the Hénon map time series

is defined as follows:
x(n+1) = y(n)−1.4x(n)2

y(n+1) = 0.3x(n)+w(n)
(3.5)
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M = 1 (NRMSE = 0.67±0.15)

M = 5 (NRMSE = 0.28±0.05)

M = 10 (NRMSE = 0.15±0.02)

Fig. 3.6 Result of waveform classification for the number of volatile memristors M = 1, 5
and 10 respectively. Each NRMSE result was repeated 30 times to obtain the mean value and
standard deviation.
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Fig. 3.7 Results of waveform classification over a different number of volatile memristors.
The blue line indicates the cases that every volatile memristor uses different mask matrices,
while the red line is the result of using a common mask matrix for all volatile memristors.
Each NRMSE result was repeated 30 times to obtain the mean value and standard deviation.

where x(n) and y(n) denote the coordinates of the discrete data point on a 2D panel at nth

step, w(n) is the Gaussian white noise randomly generated at every time step with a mean

value of 0 and standard deviation of 0.05. The equations describe that given the value of

y(n) and x(n), the iterative values of y(n+1) and x(n+1) can be calculated together with a

Gaussian white noise value. An example of the Hénon map time series generated by Eq. 3.5

is shown in Fig. 3.8, where a chaotic attractor can be found.

In this task, a total of 2000 steps of Hénon map data (1000 for training and 1000 for

testing) were generated. In the model, the input is x(n) and the target output is x(n+1), while

another axis y(n) can be easily calculated by Eq. 3.5. The signal flows and the resulting output

is similar to what has been presented in Fig. 3.5. Also, the number of volatile memristor M

is evaluated in this task.
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Fig. 3.8 An example of the Hénon map time series generated by Eq. 3.5.

3.5.2 Result

The results indicate that the proposed model can successfully predict the Hénon map time

series with relatively large NRMSE (0.17±0.02) using only 5 volatile memristors, as shown

in Fig. 3.9. When increasing the number of volatile memristors to 100, the prediction result

can be significantly improved to NRMSE = 0.06±0.01. The 2D map can better illustrate the

distribution of outputs in comparison with the target output. Furthermore, Fig. 3.10 indicates

that the NRMSE converge at around 0.06 as the number of volatile memristors increases.

Generally, this task is more demanding than the waveform classification task in terms of

the signal complexity and chaotic properties, therefore resulting in a higher requirement for

the computing and approximation abilities of the model. In the waveform classification task,

the optimal performance can be obtained using less than 20 volatile memristors, whereas the

Hénon map prediction needs more than 40 volatile memristors. The above two benchmark

tasks primarily test the computing performances of temporal signal processing.
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Fig. 3.9 Result of the Hénon map chaotic series prediction for the number of volatile
memristors M = 5 and 100 respectively. Each NRMSE result was repeated 30 times to obtain
the mean value and standard deviation.
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Fig. 3.10 Results of Hénon map chaotic series prediction over a different number of volatile
memristors. Each NRMSE result was repeated 30 times to obtain the mean value and standard
deviation.
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3.6 Human activity recognition

In this task, the proposed volatile memristor-based RC is applied to human activity recogni-

tion which is a more practical task. An online available dataset collected by Wireless Sensor

Data Mining Lab is used to test the system[147]. Overall, the volatile memristor-based RC

model receives the raw 3-axis acceleration signals while the output is a classification result,

as illustrated in Fig. 3.11.

⋯

3-axis acceleration signal

Activities: 
walk, jog, stairs, sit, stand

⋯⋯
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Fig. 3.11 System overview of the proposed volatile memristor-based RC for human activity
recognition, where M denotes mask process. The signal source is an open dataset containing
the 3-axis acceleration data over time for human activities including walking, jogging,
standing, sitting and ascending/descending stairs, which are the typical temporal signals
generated by human activities. The masked signals are sent to volatile memristor-based
reservoir computers with delayed feedback. The reservoir output can be collected to calculate
the final classification output via a linear readout layer.

3.6.1 Datasets

The 3-axis acceleration data of human activity used in this task is an open dataset collected by

Wireless Sensor Data Mining Lab is used to test the system, namely the WISDM dataset [147].
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In this dataset, 36 participants were required to carry a mobile phone with an Android system

in their front pants leg pocket. Then, they were asked to walk, jog, ascend stairs, descend

stairs, sit and stand for specific periods of time, which are most people’s daily activities. The

accelerometer embedded in the mobile phone can record the 3-dimensional acceleration data

stream with a 20Hz sampling frequency. Meanwhile, the data was properly labelled in the

dataset according to the activity that has been performed. Previously, this dataset has been

used to test various human activity recognition using software-based algorithms and yielded

over 80% accuracy, such as multilayer perceptron, logistic regression, decision tree [147]

and Convolutional Neural Network (CNN) [148].

In this task, the WISDM dataset is tested by the proposed hardware-based reservoir

model. First of all, the entire dataset is segmented using a sliding window with a fixed length

of 180 time steps and total of 13000 segments were used, 70% (9100 segments) and 30%

(3900) of which were used in training and testing, respectively. Here, the stairs data is in

combined mode (ascending stairs and descending stairs are combined as stairs).

3.6.2 System framework

Unlike the software-based methods that usually employ feature extraction, the input in the

proposed method is the raw 3-axis acceleration signal collected from the different human

activities. The proposed reservoir system receives the signal for each axis using 50 volatile

memristors. Different from the above two tasks, delayed feedback is added to the reservoir

loop to enhance the performance. Note that different mask metrics should be used for

different volatile memristors as discussed in previous sections. Since the mask length is

5, the total state size is 50× 5× 180× 3 = 135,000 which takes up large memory during

simulation. In order to speed up the simulation, only the state vector of 5 points was collected

(collect once for every 36 points) instead of all 180 points, since the reduced state vector
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could be representative of the rest to some extent. Thus, the actual state vector size is

50× 5× 5× 3 = 3750. For training, ridge regression was employed to calculate Wout by

using the state matrix (9100× 3750) and the target matrix (9100× 5). Finally, the output

in the testing set can be calculated using Wout and the state matrix. Examples of input and

output signals can be found in Fig. 3.12. The output amplitude represents the possibility for

each activity. The activity corresponding to the highest value is considered the predicted

result.
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Fig. 3.12 Examples of input (top) and output (bottom) for the volatile memristor-based RC
in human activity recognition tasks.

3.6.3 Optimization and results

Unbalanced dataset

The WISDM dataset is a highly unbalanced dataset. The training set contains 1868 stairs

data, 2865 Jogging data, 481 Sitting data, 388 Standing data and 3498 walking data, where

walking data significantly outnumbers other classes. In the multiclass classification problem,

different amounts of the classes would result in the separation plane shifting closer to the

classes with more samples, which is also known oversampling problem. The performance of

the model trained by original dataset is shown in Fig. 3.13(a). Due to the highly unbalanced
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dataset, the ‘Stairs’, whose signal is resemble walking data, is easily misclassified into

’Walk’ and yielded only 40.5% accuracy, while the overall accuracy is 81.4%. Such low

accuracy disables the classification of ’Stairs’. To solve this problem, Synthetic Minority

Over-sampling TEchnique (SMOTE) is used to create more state vectors for the minority

classes. In the high-dimensional state space, the SMOTE algorithm generates more samples

between the original samples, so that it creates additional state vectors without overlapping

with the original real state vectors. Using the SMOTE, the number of state vectors of the

classes except ’Walk’ were increased to be equal to ’Walk’, thus minimizing the effect of the

unbalanced dataset. Fig. 3.13(b) is the result using the balanced dataset created by SMOTE

for training. Although the overall accuracy (80.4%) slightly declined, the result of ’Stairs’

increased to an acceptable level and therefore enabling the all 5-class classification.
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Fig. 3.13 Results of human activity recognition using (a) the original unbalanced dataset and
(b) the dataset generated by SMOTE for training. Their overall accuracies are 81.4% and
80.4% respectively.

Delayed feedback

In the previous two tasks, the volatile memristors directly receive the masked input. This

approach should be in line with the architecture of parallel devices. However, using only the

parallel devices results in insufficient network capability to obtain an acceptable accuracy in

the human activity recognition task. As discussed in Section 1, the different architectures are

not completely exclusive. A hybrid reservoir system combining different architectures could
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exhibit excellent performance. In the existing architectures, delay-based architecture can

provide higher MC because the external memory unit is used to store the delayed feedback

signal. In the volatile memristor-based reservoir system, adding delayed feedback can

enhance the classification result since the MC is enhanced by the external feedback unit. The

final result after adding the delayed feedback is shown in Fig 3.14.
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Fig. 3.14 Results of human activity recognition after the optimization using SMOTE and
delayed feedback. The overall accuracy is 85.8%.

3.7 Conclusions

In this chapter, the volatile memristor (Ti/TiOx/Pd) was measured and then modelled by the

discrete behavioural model. The discrete model can approximate the I-V characteristics of the

volatile memristor after fine-tuning the parameters. Next, this model was used to assemble a

volatile memristor-based RC model with the time-multiplexing operation and the architecture

of the parallel device that has been introduced in previous chapters. To evaluate the volatile

memristor-based reservoir, firstly, it has been applied to a waveform classification task, in

which the model is trained to distinguish between sinusoid and square waves. Here, the

system performance over important factors including the number of volatile memristors and

mask matrix is tested, The results proved that the proposed system can successfully classify

the two types of the waveform when using more than 5 volatile memristors with different

mask matrices. Secondly, the Hénon map chaotic series can be used to test the system’s
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performance in terms of chaotic system approximation, which is a more demanding task

compared with the waveform classification. Similarly, the proposed model can successfully

predict the Hénon map signal with acceptable error and the error can be reduced by increasing

the number of the volatile memristors. Thirdly, a 5-class human activity recognition task

using the WISDM database is tested. After optimising the system by using the techniques

like SMOTE and delayed feedback, the accuracy is 85.8%.

In summary, this chapter analyses the volatile memristor-based reservoir computer and its

performance in the benchmark tasks. The simulation results prove the feasibility of using the

short-term memory of a volatile memristor to construct a reservoir computer. Its performance

is not ideal but acceptable considering the limited network size and the difficulty of hardware

implementation. Also, analogue computing is not as flexible as the digital computing in

which various preprocessing and feature extraction algorithms are available, resulting in a

lower accuracy in the human activity recognition benchmarks.

Overall, the parallel devices architecture used in this work successfully explores the

intrinsic physical properties as computing resource. parallel devices provide limited com-

puting capabilities, which can be enhanced by adding delayed feedback to form a hybrid

architecture. However, these techniques usually require additional cost in the actual hardware

implementation. Thus, an effective architecture of RC with minimum hardware complexity

is still of high interest in the field of neuromorphic computing, and remains discussion in the

next chapter.
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Chapter 4

Rotating Neurons Reservoir: Theory and

Simulation

Hardware implementations of RC demand an elegant architecture with minimum system

complexity. However, an end-to-end reservoir architecture has yet to be developed. This

chapter presents an architectural innovation for implementing cyclic reservoirs using rotating

elements integrated with signal-driven dynamic neurons, whose equivalence to standard

cyclic reservoir algorithm is mathematically proven. Simulations show that the rotating

neuron reservoir achieves record-low errors in a nonlinear system approximation benchmark.

4.1 Motivation

As discussed in Chapter 1, the existing physical RC studies mainly adopted three kinds of

architecture: DRC, in-materia and parallel devices. The main drawbacks associated with the

use of delayed feedback and time-multiplexing are as follows:
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(i) Delayed feedback is costly for hardware implementations using conventional CMOS

technology or optical approaches, which require additional digital components [56,

123], such as ADCs and random-access memory, or bulky optical fibers [71–73, 76],

respectively.

(ii) In the absence of a delayed feedback line, a RC system cannot simultaneously maintain

an appropriate MC or satisfactory state richness. For example, previous research

revealed that shortening the step size in time multiplexing could improve the MC but at

the cost of reducing the state richness, or vice versa [63]. In this case, the architecture

is similar to parallel devices architecture.

(iii) The serial operations in time multiplexing increase system complexity and latency for

both input and readout, whereas parallel computing, which enhances the throughput, is

more desirable in neuromorphic computing [22].

The in-materia and parallel devices architectures can compute in highly parallel and

analogue manner. However, they suffer from similar weaknesses:

(i) The outputs are not explainable. The signal experience unclear transformation in

materials and devices. This problem is particularly serious in the in-materia approach

in which only the state outputs are measurable.

(ii) The relatively lower MC in the network. The MC in both approaches are provided

by the memristive property of the devices or materials. To process temporal signal,

usually external memory units are needed to enhance the MC.

These obstacles hinder further reductions in power and size when the cost for an entire

reservoir computer, from the signal input to the computing output, is considered; thus, a

knowledge gap associated with massive deployment in practical applications remains. There

is an urgent need to develop a new architecture involving hardware-based reservoir computers
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of miniature size with low power consumption and high capability for large-scale integration

[2, 16].

In this work, a rotating neuron-based architecture is introduced for physically performing

RC in a more intuitive way, namely rotating neurons reservoir, whose rotation behavior

matches with the neurons update in a CR, as rigorously proven through mathematical

derivations. Compared with the existing implementations in RC [64, 72, 86, 90, 123],

the RNR is hardware-friendly, resource-efficient, fully parallel and equivalent to standard

CR. To verify the feasibility and potential of the RNR, an electrical RNR (eRNR) design

based on CMOS circuits is introduced together with a simulator. Furthermore, a prototype

eRNR composed of eight parallel reservoir circuits is built to perform analogue near-sensor

computing, and real-time Mackey-Glass time series prediction and real-time handwriting

recognition are successfully performed in hardware experiments. To realize an all-analogue

RC system, the eRNR is further integrated with an analogue memristor array that implements

the fully connected output layer. Through the proposed noise-aware training method, the

conductance variation of the memristor array is accommodated, and a high classification

accuracy of 94.0% is achieved for a handwritten vowel recognition task. Finally, a CMOS

circuit simulation based on standard 65nm technology indicated that the eRNR system is

projected to consume as little as 32.7 µW of system power in the handwriting recognition

task; this total would be more than three orders of magnitude lower than that achieved by

literature-reported reservoir systems. These results highlight the tremendous potential of the

proposed RNR, offering a promising paradigm for resource-efficient reservoir computers.

4.2 Physical CR with rotating neurons

For a typical RC with an m-dimensional input, an n-dimensional output and N neurons

(Fig. 4.1(a)), the input coefficients Win and reservoir weights Wres are randomly generated
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[23]. The complex dynamics stemming from the massive and random connections in the

reservoir layer aid in nonlinearly mapping the m-dimensional input to the N-dimensional

feature space where different input classes can be linearly separated. For n output classes,

only the output weights Wout need to be trained by using linear regression, which is relatively

efficient compared to other recurrent neural network methods [23, 24, 31]. Note that linear

ridge regression is used for training throughout this work. The neuron dynamics in the

reservoir layer play an important role in signal mapping according to the Eq. 1.1. In RC, the

reservoir layer Wres can be designed in a deterministic manner rather than being based on

random connections [28]. In this case, the Wres becomes a shifted identity matrix R:

Wres = R =



0 0 · · · 0 0 1

1 0 . . . 0 0 0

0 1 . . . 0 0 0
...

... . . . ...
...

...

0 0 . . . 1 0 0

0 0 · · · 0 1 0


(4.1)

As a result, Wres is significantly simplified, and the network topology becomes CR, as

shown in Fig. 4.1(b). Previous research concluded that CR could achieve comparable results

to those of conventional RC [28]. Then, the matrix R corresponds to one-time shifting in

a ring structure, and Rn indicates a n-time cyclic shift analogous to physically rotating an

object. As illustrated in Fig. 4.1(d), it is assumed that (i) the post- and pre-neuron rotors are

described by R and its transpose matrix RT, respectively; (ii) q(n) is the dynamic neuron

output at the nth step; and (iii) sr(n) is the state matrix of the RNR at the nth step measured

at the end of each rotor’s channel (before the output weights). Considering the rotation of the
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Fig. 4.1 RC architectures. (a) A conventional RC architecture with random connections. (b)
A simplified version of a reservoir, also known as a cyclic reservoir. The randomly connected
neurons are replaced with a ring structure. (c) Illustration of the working principle of the
proposed rotating neuron reservoir (RNR) that can be physically implemented. The input
weights are uniformly distributed in the range of [-1, 1], and a pre-neuron rotor sends the
signal to different neuron channels at different time steps. After flowing through the dynamic
neurons, the signal is sent to different state channels via another post-neuron rotor, and the
final states are read out through a fully connected layer and used in training. (d) Sketch of
the working principle for the case of three neurons, where R denotes the rotation matrix. The
legend for all subfigures is provided at the bottom.
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neuron output, the state sr(n) updating formula can be written as:

Rn−1q(n) = sr(n) (4.2)

which indicates that, at the nth step, the state matrix sr(n) is obtained by rotating the

neuron output q(n) for (n − 1) times. Furthermore, the output of dynamic neurons is

determined based on both an input shift and the previous states:

q(n+1) = fr[a′(Rn)T Winu(n+1)+b′q(n)] (4.3)

where b′ denotes the decay factor resulting from the dynamic property of the neuron, a′

is the scaling factor for the input, and fr(x) is the nonlinear transform implemented by the

dynamic neurons. Eq. 4.3 describes the signal flow through the neurons. Given an input

u(n), it is first multiplied by the input weights Win. After n reverse rotations of the input

connections, the signal is fed into the dynamic nonlinear neurons, which output q(n+1). If

both sides of Eq. 4.2 are multiplied by Rn, thus:

Rnq(n+1) = Rn fr[a′(Rn)TWinu(n+1)+dq(n)] (4.4)

Using Eq. 4.2, Eq. 4.4 can be simplified as:

sr(n+1) = fr[a′Winu(n+1)+b′Rsr(n)] (4.5)

Here, the excellent consistency between Eq. 1.1 and Eq. 4.5 reveals that the proposed

physical RNR architecture (Fig. 4.1(c)) is equivalent to a software CR. Thus, a rotating object

with dynamic neurons can act as a reservoir computer without using extra control units,
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ADC or memory, which remarkably reduces the system complexity and power consumption

compared with those in conventional hardware implementation.

The rotation couples the physical RNR and software CR. The mathematical derivation

of the RNR proves that a rotating neuron array is equivalent to a CR model (Fig. 4.1(b)).

Fig. 4.1(c) illustrates the operation principle of the rotation-based reservoir: if the neuron

array is fixed, the pre- and post-neuron rotors rotate in the same direction to periodically

shift the connections, which is equivalent to rotating the neuron while fixing the pre- and

post-neuron rotors. Fig. 4.1(d) shows an example of a 3-neuron RNR. The rotors shift the

connections before and after the neurons. The channels on the right side output the analogue

computing results equivalent to the neuron states in a CR model with the same input. It

can be emphasized that the fundamental of RNR is widely applicable to various rotating

components, not limited to CMOS implementations, that can be developed as a reservoir by

embedding dynamic neurons.

4.3 Hardware architecture

the main challenge of implementing a hardware RNR is the construction of the physical

rotors and dynamic neurons based on the above approaches. Fig. 4.2(a) illustrates a schematic

of an N-neuron eRNR designed using CMOS circuits. The implementation of the input layer

using binary weights is important because it allows the system to directly interface with

analogue sensory signals. Win is taken to be a matrix consisting of a randomly generated

uniform distribution of -1 and 1 values, which have been proven to be effective as multilevel

weights [74]. Assuming that the signal source is u(t), for each neuron, the driving signal

should be a′u(t) or −a′u(t) during one time step. Win can be configured by changing the

switches (S1 to SN). Note that the Win should remain unchanged while the RNR is operating

so that the switches can be replaced with fixed connections.
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Fig. 4.2 Implementation of the eRNR. (a) Schematic of an N-neuron eRNR. Given an input
u(n), first, an operational amplifier generates another signal source −u(n) or negative input.
The switch array S1 to SN determines the input weights Win by selecting a positive or negative
source for each multiplexer. The multiplexers m1 to mN and m′

1 to m′
N are involved in the

electrical implementation of pre- and post-neuron rotors, respectively. The log2N-bits counter
outputs an address signal to sequentially activate the channels of each multiplexer at switch
intervals τrotor. Based on the distinct sequence of neuron connections (in1 to inN for the input
and out1 to outN for the output), the behavior of the multiplexer array is equivalent to that
of a rotor cyclically shifting connections between neurons and input/output channels. The
sequence for output channels is a mirror version of that of for input channels, which complies
with the common-directional rotation principle in RNR theory. (b) General schematic of the
dynamic properties required for a neuron in an RNR. When a neuron input (Rn−1)TWinu(n)
that has been processed by a pre-neuron rotor and input weights are provided, the neuron
performs nonlinear transform f, integration (feedback line), and leakage (decay factor b’)
operations on the signal. q(n) is the neuron output at the nth step. (c) A dynamic neuron in the
eRNR. Cint and Rint serve as integrators. The rectifying diode DReLU provides an activation
function similar to a nonlinear ReLU function. Finally, high resistance Rleakage is added to
control the current leakage rate, that is, the decay factor b’ in Eq. 4.5. (d-e). The nonlinear
properties (d) and dynamic integration (e) of the neuron for Rint = 10kΩ, Cint = 1µF , and
Rleakage = 100kΩ. DReLU is a germanium diode with a forward voltage of approximately 0.3
V.
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Next, the pre-neuron rotor is implemented using N N-channel multiplexers composed of

transmission gates. All multiplexers share a common address line from a log2N (for N = 2, 4,

8, 16 . . . ) bit counter but different channel sequences for neuron connections, as illustrated

in Fig. 4.2(a). A driving clock with a period of τrotor is used to sequentially increase the

counter address from 0 to N-1 and then reset it to 0. This address is used to control the

activated channels of all the multiplexers. Because the sequence of neuron connections is

inconsistent, every multiplexer is connected to a different neuron during one τrotor. Such a

configuration ensures that every input channel transmitting a′u(t) or −a′u(t) continues to poll

every neuron during every rotation cycle τrotor ×N, which corresponds to the transformation

a′(Rn−1)TWinu(n), where Rn−1 denotes (n-1)-time shifting. Upon receiving the neuron

input a′(Rn−1)TWinu(n) and adding to its current value, the resulting neuron output q(n) is

represented by the voltage level measured at the right side of the neuron circuit. The final

step is to employ another post-neuron rotor at the output to convert q(n) to a state vector

s(n). The post-neuron rotor performs an operation that is a mirror of that implemented by

the input multiplexer array to obtain the forward rotation Rn.

Multiple parallel RNRs can simultaneously connect to a common input signal but use

different Win configurations to increase the state richness. Fig. 4.3 illustrates a complete

eRNR computing architecture that includes M parallel N-neuron eRNRs. The output weights

are obtained through training and mapped in a memristor array to calculate the final results.

4.4 Design and modeling of dynamic neurons

In addition to the rotors, dynamic neurons are also crucial elements in nonlinear computing.

Based on the fundamental RNR characteristics described in the last section, a neuron in the

RNR should possess three important characteristics:provide a nonlinear activation function

f (x); support integration ability for the summation between the current input and previous
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Fig. 4.3 Schematic of a complete eRNR system that includes M parallel N-neuron RNRs. The
total size of the state matrix is M×N. The voltage signal of each state channel is multiplied
by the trained output weights stored in a memristor array to yield the final computing result.
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state q(n− 1); and support leakage, as related to the decay factor b′, to avoid saturation

caused by the integration process.Any passive element that exhibits these three characteristics

could essentially be used as a dynamic neuron in the RNR architecture by fine-tuning the

time constants of neuron and rotors. A dynamic node working in a physical reservoir may

suffer from device variation issues, which impact system performance. Previous studies have

revealed that a certain degree of device variation may be beneficial to system performance by

enhancing state richness [63, 64], but determining how to precisely control device variability

warrants future explorations. In implementations using standard electronics (Fig. 4.2(c)),

a ReLU-type nonlinear transform can be provided by a diode, and the resistor Rint and

capacitor Cint can act as integrators. Leakage can be considered by a connecting the system

to the ground via a large resistance Rleakage. In the simulation, this neuron can be modeled as

follows:

˙Vo(t) =
1

Rint Cint
Vi(t)−

Rint +Rleakage

Rint Rleakage Cint
Vo(t)+

1
Cint

Is

(
e−

Vo(t)
VT −1

)
(4.6)

where Vo(t) and Vi(t) denote the input and output voltages, respectively. The saturation

current Is and thermal voltage VT stem from the Shockley diode equation I = Is(eVD/VT −1).

The typical values for germanium diodes Is = 25×10−9A and VT = 0.026V were used in

the simulation. In the case of linear neurons, the last term Is(eVD/VT − 1)/Cint should be

removed from Eq. 4.6. In our simulation, Eq. 4.6 was solved in MATLAB/Simulink, as

shown in Fig. 4.4. The discrete neuron output becomes s(n) = Vo(nτrotor). The pre- and

post-neuron rotors can be modeled by continuously shifting Winu(n) and the neuron output

q(n). Since Rleakage is a large resistance, the time constant associated with this neuron is

mainly determined by the integrator τneuron = RintCint . For the rate of rotation τrotor, an

empirical value of τrotor = τneuron/8 is used.
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Vi
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Fig. 4.4 Neuron model

Fig. 4.2(d) and (e) plot the nonlinearity (a rectified linear unit (ReLU) that can be

implemented with a diode) and integration characteristics (with a time constant τneuron =

Rint ×Cint for the neuron), respectively. In the absence of the diode, the activation function

becomes linear. Most of the recently reported devices and materials for physical RC could

also be used as the neuron in the RNR architecture [17, 63, 64]. Finally, an eRNR can be

built by combining rotors and neurons.

4.5 Simulation: parameters matching and system mod-

elling

4.5.1 Parameters matching method

A noise-free simulator was developed to evaluate the performance of the eRNR under different

configurations and demonstrate its equivalence to a CR (as proven analytically in above

sections). The first simulation was designed to confirm the consistency between the RNR and

the CR and emphasize the role of rotation in the RNR. The key network characteristics based

on different parameters, nonlinearities and rotation directions were investigated. Before

comparing the network characteristics of the software CR and the hardware RNR, a numerical
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method was developed to calculate the software CR parameters, such as the input scaling

factor a and recurrent strength b, from the RNR behaviors to find the CR counterpart for

a hardware RNR. Given a properly configured RNR, its CR counterpart should exist and

exhibit similar network characteristics. Parameter matching provides a numerical method to

determine the CR counterpart. The main difference between a hardware RNR and a software

CR is associated with nonideal dynamic neurons, which result in different amplitude ranges

for integration and nonlinearity. Therefore, the objective is to find the appropriate scaling

coefficients for the software activation function to approximate the hardware neuron output

under the same input Winu(n). An arbitrary u(n) was generated as an input to the RNR, and

the neuron output q(n) was obtained. Assuming that this q(n) is generated by a software CR,

a comparative neuron update vector can be defined:

qp (n+1,a,b,Vc) = ReLU(bq(n)+aWin u(n),Vc) (4.7)

The prime task-independent network characteristic for a reservoir is the MC, which

indicates its capability to retain the fading memory of the previous input[16, 149], and plays

a critical role in the reservoir’s performance in temporal signal processing. The standard

MC measurement is introduced in Section 2. In addition to MC, the other three important

network characteristics are computing ability (CA), kernel quality (KQ) and generalization

rank (GR)[50]. They are calculated as follows:

• The MC can be quantified by a binary sequence reconstruction task. In this task, a

binary sequence is randomly generated: u(n) = 1or−1, and xi(n) is the shifted version

of u(n) by i steps: xi(n) = u(n− i), for i = 1, 2, ...∞. In our simulation, 4000 data

points of u(n) were generated, in which 3000 points were used in training and 1000

points were used in testing. The u(n) was injected into the reservoir, resulting in the

state output s(n). The training state matrix was used to calculated Wout using Ridge
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regression and the target was xi(n), for n ∈ 1,3000]. In the testing phase, the testing

state matrix (s(n) for n ∈ 3001,4000]) was multiplied by the trained Wout to obtain

yi(n), which indicated the reconstruction result. If the resulting yi(n) can properly

match the testing xi(n), the reservoir can retain the information i steps ahead, which

implies its memory property. Then, the MC can be quantified by taking the sum of the

linear correlation between reconstruction yi(n) and actual shifted sequence xi(n) for i

going from 1 to infinity according to Eq. 2.9.

• KQ evaluates the reservoir’s performance on a high-dimensional nonlinear mapping.

An ideal reservoir should be able to generate linearly separable node states in a higher

dimensional space for different inputs. For an N-neuron reservoir, N different input

sequences U = [u1,u2...uN ] were generated and every ui contains k random values.

The N sequences will be injected into the reservoir one by one. For every sequence,

the state matrix generated by nth data is of interest, while the first n− 1 data are

employed to initialize the reservoir dynamic. Collecting all nth state matrix forms an

N ×N matrix. Ideally, the states generated by different input sequences should be

linearly independent, which means the rank of the N ×N matrix should be equal to N.

Therefore, this normalized rank can measure the high-dimensional mapping quality,

also known as KQ.

• GR tests the reservoir’s response for similar inputs. The reservoir should react to the

coming temporal and deliver their representative states onto their classes regardless

the effect of the previous inputs and minor fluctuation. Otherwise, the reservoir

would collapse into an unwanted chaotic system that is highly sensitive to the initial

condition and noise. To test the GR, a random sequence ux with a length of l was

generated to connect to the end of every ui used in the KQ to form a new sequence

U ′ = [[u1ux], [u2ux]...[uNux]]. It means that, for every reservoir under tested, it is first

fed by different sequence with random values. Followed by all random values, the

100



4.5 Simulation: parameters matching and system modelling

same sequence ux with length l is fed into all reservoirs. Again, the states collected

at the end or (n+ l)th input form the N ×N matrix to calculate the rank with 0.01

tolerance. In contrast to the KQ, a low rank means that the reservoir can quickly shift

its attention to the latest l inputs, which is more desirable. Note that the choice of l

should be determined by the temporal signal in actual application. For example, in

the NARMA10 task, each point of NARMA10 is highly relevant to the previous 10

points. Therefore, a reservoir that gains a low GR when l = 10 can better couple with

the NARMA10 system for prediction.

• CA is simply a combination of KQ and GR. It has been defined that a reservoir with

good CA should be able to quickly focus on the certain length of previous inputs (low

GR) and map it onto a linearly separable space (high KQ). Thus, CA can be calculated

by the difference between them: CA = KQ - GR.

4.5.2 Results

Fig. 4.5(a) plots the MC as a function of reservoir size N in different scenarios. An excellent

agreement in the MC between the eRNR and its CR counterpart for both ReLU and linear

activation functions can be observed. The ReLU neurons yielded a lower MC because the

nonlinearity suppressed the fading information for previous inputs, as also observed in earlier

studies [131, 149]. For the RNR, the effect of the rotating direction is investigated to validate

the design of the two rotors. The four lines at the bottom of Fig. 4.5(a) show the MC when the

two rotors stopped or co-directionally rotated. The near-zero MC suggests that in cases with

no rotation and counter-directional rotation, the RNR failed to implement RC functionalities

since there was no MC for processing the temporal signal.

The CA, KQ and GR were analyzed by varying the time constant of neurons τneuron, which

also changed the parameter matching result for the CR counterpart. As shown in Fig. 4.5(b),
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the network characteristics of the physical eRNR again matched that of its CR counterpart.

Here, the minor difference may be attributed to the imperfect diode characteristics as a ReLU

function. The results presented in Fig. 4.5(a) and (b) corroborate the finding that a properly

configured RNR (rotation in a common direction) is equivalent to a software-based CR and

hence can be used for implementing physical RC.
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Fig. 4.5 eRNR simulation results for network characteristics and nonlinear system approxi-
mation. (a) MC versus the reservoir size N for different scenarios. The two blue lines plot the
MC of the eRNR using dynamic linear and ReLU neurons, respectively. The purple and green
dots are obtained from the parameter-matched CR counterparts. The remaining four lines
show the MCs of dysfunctional RNRs (counter-directional rotation and no rotation). The
symbols ‘↓↓’, ‘↓↑’ and ‘→’ indicate that the pre- and post-neuron rotors perform common-
direction rotation, counter-directional rotation and no rotation, respectively. The parameters
are τneuron = 1s,τrotor = 0.125s,a′ = 0.5 and M = 1. (b) The CA, GR and KQ as a function
of τneuron for the dynamic neurons. For every τneuron value, the properties of the RNR are first
calculated. Then, the CR counterpart is calculated through the parameter matching method,
and the results are analyzed. The obtained parameters are τrotor = 0.125s,a′ = 0.5,N = 200,
and M = 1, and nonlinearity is provided by the diode.

4.6 Benchmark: System approximation of NARMA10

As an implementation of RC, the eRNR should be able to approximate a nonlinear system, for

which a nonlinear autoregressive moving average system (NARMA) is a widely recognized

benchmark for testing RC performance. A standard 10th-order NARMA system can be

express by the following formula:
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4.6 Benchmark: System approximation of NARMA10

y(n+1) = 0.3y(n)+0.05y(n)
9

∑
i=0

y(n− i)+1.5u(n)u(n−9)+0.1 (4.8)

where u(n) is a randomly generated white noise input in the range of [0, 0.5] and y(n+1)

is the target number. As can be observed in Eq. 4.8, the recursive configuration demands both

nonlinear fitting and MC for the prediction model. In this task, an eRNR model was used to

receive the u(n) input and then predict the y(n+1) output after training. In total, 4000 data

samples (u(n) and y(n)) for NARMA10 were generated to train (3000 samples) and test (1000

samples) the eRNR model. Given the same u(n), the NRMSE (see Eq. 3.4 in Chapter 3) of

the predicted result y′(n) versus y(n) calculated with the NARMA10 model based on Eq. 4.8

was used to quantify modelling performance. In the first trial, two key parameters of the

eRNR, the input scaling factor a′ and time constant of dynamic neurons τneuron, were assessed

while other parameters were fixed to obtain the optimal NRMSE for a single 400-neuron

eRNR. The input scaling factor changes the effective range of nonlinearity, and the time

constant affects the decay factor b′. The noise-free simulation result is plotted in Fig. 4.6(b),

where the optimal value (NRMSE = 0.078) was found at a′ = 0.061 and τneuron = 1.1s.

It is worth mentioning that in a neuromorphic computing system, the electronic devices

directly interacting with the environment and natural signals could exhibit a much longer

time constant (e.g., >millisecond scale) compared with that of typical digital systems [20]. A

fast time constant could result in an insufficient MC for retaining historical information. Such

biologically realistic time constant values (τneuron and τrotor, from milliseconds to seconds

scale) were used throughout the explored hardware implementation and simulation processes.

The performance can be further improved by increasing the number of parallel reservoirs

M with different input weights Win as illustrated in Fig.4.3. As shown in Fig. 4.6(a), the

resulting NRMSE can be clearly reduced by increasing M or N. The minimum NRMSE

achieved in this experiment is 0.055 at N = 388 and M = 50. Fig. 4.6(e) shows an instance

of the predicted value y′(t) in comparison with the ground truth y(t) when NRMSE = 0.055.
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To the best of our knowledge, the NRMSE values for both the single eRNR (0.078) and

parallel eRNRs (0.055) are lower than those reported in previous studies [23, 56] in the field

of RC. Notably, the exponential form of nonlinearity in the transition region of the diode

(different from the ideal ON/OFF form in the ReLU function used by software) enhances

the state representation of the NARMA10 system. This result demonstrates the tremendous

potential of the eRNR in high-order nonlinear system approximation due to the rich physical

dynamics of electronics devices.

7 14 21 28 35 42 49

4

40

76

112

148

184

220

256

292

328

364

400

S
iz

e 
of

 s
in

gl
e 

re
se

rv
oi

r 
N

Number of  parallel reservoirs M

0.054

0.059

0.064

0.069

0.074

0.079

0.084

0.089

0.094

0.099

NRMSE

0.
1

0.
4

0.
7

1.
0

1.
3

1.
6

1.
9

0.02

0.06

0.10

0.14

0.18

0.22

0.26

0.08

0.11

0.14

0.17

0.20
NRMSE

a’

τneuron (s)

15 30 45 60 75 90 105 120 1350 150
0.2

0.3

0.4

0.5

0.6

0.7

Am
pl

itu
de

Time step

 Ground truth
 Prediction

(b)(a)

(c)
NRMSE = 0.055

Fig. 4.6 eRNR simulation results for NARMA10. (a) NRMSE result for the NARMA10
system approximation task based on the two key parameters: the time constant τneuron and
input scaling factor a′. The other parameters are N = 400 and M = 1. (b) NRMSE result for
the NARMA10 modeling task when varying the reservoir size N and the number of parallel
reservoirs M. The parameters are τneuron = 1 s, τrotor = 0.125s and a′ = 0.05. (c) An example
prediction result y′(n) and the ground truth y(n) when NRMSE=0.055, that is, for the best
result obtained in (b). The parameters are τneuron = 1s, τrotor = 0.125s,a′ = 0.05,N = 388,
and M = 50 in this case, and a diode with a ReLU function is used.
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Chapter 5

Rotating Neurons Reservoir:

Implementation and Experiments

In this chapter, a hardware prototype was developed for near-sensor computing, chaotic

time-series prediction and handwriting classification. By integrating a memristor array as a

fully-connected output layer, the all-analogue RC system achieves 94.0% accuracy, while

simulation shows > 1000× lower system-level power than prior works. Therefore, our

work demonstrates an elegant rotation-based architecture that explores hardware physics as

computational resources for high-performance RC.

5.1 Implementation

The schematic of eRNR is shown in Fig. 4.2. The network size of our prototype (Fig. 5.1) is

N = 8 and M = 8, which means the single eRNR consists of 8 neurons and there are 8 parallel

eRNRs. Both pre- and post-neuron rotors were implemented by eight CD4051B which is an

8-channel analogue multiplexer from Texas Instrument. The three signal selection ports were

connected to a 3-bit binary counter consisted of a 4-bit counter (74LS161) and an inverter
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Rotating Neurons Reservoir: Implementation and Experiments

(74HC04). The input mask was implemented by 8 switches to select positive or negative

signals. In order to improve the state richness, each eRNR circuit should use a different input

mask configuration.
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Fig. 5.1 An 8-neuron eRNR PCB board for real-time demonstration and data collection (left)
and its design (right).

The customized demonstration and data acquisition platform serves to interface with

the eRNR hardware, collect experimental data, and perform real-time demonstrations but

regardless of low-power design. The 64 state channels on the eRNRs were connected to 8

12-bit ADC channels on a STM32 microcontroller via 8 multiplexers. There are additional 2

ADC channels on STM32 for collecting sensory signals. The total 66 channels data were

sent to PC via universal asynchronous receiver/transmitter (UART) communication. The user

interface software developed on LabVIEW received the data packages and plotted them in

real-time. The software can also store the data in a file for further processing. Here, a proof-

of-concept prototype with τneuron = 1s,N = 8 and M = 8 was developed. The eight parallel

eRNRs shared common power, counter, positive input and negative input characteristics. The

input weight Win varied for every eRNR to create diverse neuron dynamics and increase the

state richness. The picture of software and hardware are shown in Fig. 5.2.
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5.2 Mackey-Glass chaotic time series prediction

Fig. 5.2 An 8×8 eRNR system prototype.

In the real-time Mackey-Glass signal prediction demonstration (see the following sec-

tions), the software can also execute a MATLAB script where the Ridge regression was

performed to calculate the Wout. Then, the Wout was multiplied by the 64 state values at

every time step to output the prediction result that was plotted in both the time-amplitude

window and the phase window. In the handwriting recognition task (see the following sec-

tions), the platform collected the handwriting and state data for every participant. The Wout

was trained in MATLAB by post-processing all the data from 8 participants. After training,

the software can read the trained weights and calculate the 5 channels result indicating the

probabilities of the 5 vowel classes.

5.2 Mackey-Glass chaotic time series prediction

To evaluate the state generation performance, the first experiment with the 8 × 8 eRNR

system was a multistep ahead prediction for Mackey-Glass chaotic system, which has been
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Rotating Neurons Reservoir: Implementation and Experiments

used in various RC studies as a benchmark task [23, 48, 64]. The Mackey-Glass system is

defined by:

dy
dt

= β
y(t − τMG)

1+ y(t − τ)n − γy(t) (5.1)

where the system parameters γ,β , and n were set to the widely used values 0.1, 0.2,

and 10, respectively. Additionally, the system is chaotic when τMG > 16.8, and predictions

become correspondingly more difficult. In this experiment, τMG = 17 and the initial value

y(0) = 1.2 were set following previous works. The samples generated based on the Mackey-

Glass system were input into the 8 × 8 eRNR system with a sampling rate of 8 Hz. This

sampling rate should be the same as the driving frequency of the counter to ensure that every

sample point is captured; that is, τrotor = 0.125s. Based on this configuration, the 64 parallel

output channels produce state values of the measured voltage for postprocessing. With our

customized demonstration platform, the Mackey-Glass chaotic signal y(n) was continuously

fed into the eRNR system. The training state matrix s(n) with a length of 64 based on y(n)

was used for output weight Wout training through linear regression, and the target value was

input into the Mackey-Glass dataset shifted by i steps (y(n+ i)). Here, the number of shifted

steps i depended on how many steps ahead of y(n) the system could predict. The system

continuously received y(n) without any preprocessing and produced 64 state outputs, which

were multiplied by Wout to predict the value y′(n+ i). This process was performed in real

time with the demonstration platform, and all the data, including y(n),y′(n+ i) and s(n).

To better understand how the number of parallel RNRs (i.e., M) affected the prediction

performance of the system, the states within 360 s (2880×64 samples, half for training and

half for testing) were collected with the platform. Again, the NRMSE was used to quantify

the difference between the actual values y(n+ i) and the predicted values y′(n+ i). The

result is shown in Fig. 5.3(b). As i increased, the time series became increasingly difficult to
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5.3 Demonstration of near-sensor computing: handwriting recognition

predict, resulting in a higher NRMSE; however, this NRMSE increase can be alleviated by

using additional parallel reservoirs to enhance computational performance. Two examples of

one-step-ahead prediction using one reservoir (NRMSE = 0.17) and eight parallel reservoirs

(NRMSE = 0.03) are plotted in Fig. 5.3(c) and (d), respectively. The traces of y(n+ i) and

y′(n+ i) in the phase space were also examined (Fig. 5.3(e) and (f)). The traces of eight

eRNRs exhibited excellent consistency with the true values compared with the traces for the

one-reservoir system. These experimental results suggest that the 8×8 eRNR prototype can

be used to make accurate predictions of variables in the Mackey-Glass chaotic system after

training. Even with the inevitable noise introduced by the analogue circuits, the eRNR can

successfully emulate the chaotic system, with a low NRMSE of 0.03.

Moreover, our experiment revealed that the eRNR prototype can properly predict one-

step-ahead for more chaotic signals (τMG > 17) (Fig. 5.4(a-f)). In comparison, the system

performance could degrade as τMG increases in multistep-ahead prediction (Fig. 5.4(g).

5.3 Demonstration of near-sensor computing: handwriting

recognition

In the literature, some previously reported RC demonstrations achieved relatively low power

consumption for certain parts inside systems using emerging devices and materials [17, 63,

64]. However, the operations for entire systems are usually overlooked. An interface between

a sensory signal and the reservoir input is usually necessary, and assistive techniques, such as

converting between digital and analogue data, memory buffering, preprocessing and feature

extraction, are also often required [17, 56, 64]. These sophisticated operations increase

system complexity and power consumption but are necessary in conventional physical RC

and remain a key challenge for practical deployment [16]. In this work, a prime advantage
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Fig. 5.3 8× 8 eRNR prototype for Mackey-Glass time series prediction. (a) An eRNR
prototype consisting of eight 8-neuron eRNRs (i.e., M = 8 and N = 8). (b) NRMSE result
for multistep-ahead Mackey-Glass time series prediction. The state matrix used in this
experiment was obtained from the parallel output channels of the eRNR hardware. (c-d)
Two cases of one-step-ahead prediction with the Mackey-Glass time series result compared
with the ground truth using (c) one eRNR (NRMSE = 0.17) and (d) eight parallel eRNRs
(NRMSE = 0.03). (e-f) Phase space of the prediction compared with the ground truth using
(c) one eRNR and (d) eight parallel eRNRs. The phase diagram was created by plotting the
predicted and ground truth series y(t) for the x-axis and y(t − τMG) for the y-axis.
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Fig. 5.4 Experimental results for Mackey-Glass chaotic signal prediction with τMG > 17. (a-
c) Three episodes of one-step ahead prediction of Mackey-Glass time series result compared
with the ground truth using the chaotic signal with τMG = (a) 20, (b) 35 and (c) 50. (d-f)
Phase space of the prediction compared with ground truth using the chaotic signal with τMG
= (d) 20, (e) 35 and (f) 50. (g) NRMSE results of 1 and 20 steps ahead prediction with varied
τMG values.
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of our eRNR prototype is that it can directly receive analogue sensory signals and produce

the parallel state output without any digital memory use or preprocessing, which could

considerably reduce the power consumption of the overall system. In fact, this strength is

highly attractive for emerging applications in analogue near-sensor computing; notably, the

processor can act as a direct interface for sensory signals for cognitive computing purposes

[109].

5.3.1 Experimental setups

To demonstrate analogue near-sensor computing, a resistive touch screen was employed

to provide an analogue sensory signal for a handwritten vowel recognition task. In the

experimental setup, a front-end circuit converted the resistive variations into two continuous

signals representing the X and Y coordinates of the activated pixel on the screen. The 8 × 8

eRNR system used in the Mackey-Glass task was divided into two 4 × 8 eRNR subsystems

(i.e., N = 8 and M = 4) to process X and Y temporal signals, and the total length of the state

channel was still 64. In this case, the two subsystems still shared common power and counter,

but had different positive and negative inputs from the X and Y axes. A photograph of the

hardware is shown in Fig. 5.5. This experiment demonstrates that five different handwritten

vowels (A, E, I, O, and U) can be distinguished after high-dimensional nonlinear mapping in

the eRNR. Additionally, one important advantage of using RC systems is that their short-term

memory property allows the network to retain the fading information of previous inputs in

the state matrix at each time step. Thus, the state matrix obtained at the end of a handwritten

event contains the information for the entire handwritten trace. After training, the eRNR

system can perform point-by-point analogue reservoir state generation without accessing

digital memory. Consequently, the memory unit for storing a certain length of data, such

as the data in a sliding window or segmented signal, in conventional machine learning

approaches can be eliminated by making full use of the MC. Further advancement of this
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5.3 Demonstration of near-sensor computing: handwriting recognition

system involves the analogue output weights stored in a memristor crossbar array to realize

all-analogue signal processing [13, 150], for which the power consumption can be further

reduced by taking advantage of the computing-in-memory capability of memristors. Thus,

from the sensory signal to the classification result, the entire system can perform near-sensor

computing in the analogue domain, as shown in Fig. 5.5.
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Fig. 5.5 Experimental setup for analogue near-sensor computing for handwriting recognition.
The hardware used in this experiment: a handwriting sensor (resistive touch screen), a
front-end circuit, and two 4×8 eRNR circuits for the x- and y-axes of the sensor.

5.3.2 Data collection and processing

The parameters of the eRNR used in the handwritten vowel recognition task are τneuron =

1s,τrotor = 0.1s,N = 8, and M = 4 (for each X and Y channel). All data were collected with

our customized platform. In total, 66 channel data streams, including the two axis signals

and signals from 64 reservoir state channels, were collected at each time step. During the

data collection process, eight participants were asked to write the five vowels on a resistive

touch screen, and repeat at least 20 times for each vowel. Data for 1103 handwritten vowels

(2802 s) were successfully collected. The location and class of each handwritten vowel were

labeled at the final rising/falling edge of the X and Y raw data. the end of each handwritten

vowel were labelled (the blue square in Fig. 5.6(b)) where the state matrix at this time step

contains the information of the handwritten trace because of memory capacity. Specifically,
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the 64×1 state matrix collected at the time denoted by the green dot can be considered a

feature vector for the corresponding handwritten trace.

In our experiment, handwritten vowel data from eight participants were collected, and

typical handwritings are displayed in Fig. 5.6(a). For different handwritten vowels, Fig. 5.6(b)

shows the X and Y signals input into the eRNRs, and Fig. 5.6(c) shows the resulting state

output of the 64 channels. After data collection and labeling, the database was divided into a

training set (400 handwritten vowels; 1025.8 s) and a testing set (703 handwritten vowels;

1776.2 s). According to the point-by-point computation introduced above, the size of the

training label matrix Ytrain for the five classes should be a five-dimensional data stream in

which only the locations of green squares are set to 1, and values of 0 are assigned at other

points. For training Wout (64×5), ridge regression with the target = Ytrain (five-dimensional

label for 1025.8 s) and variables = Strain (64-dimensional state vector for 1025.8 s) was

used. Next, Wout was multiplied by the test state matrix (y′test = Stest×Wout) to obtain a

five-dimensional output representing the possibility of five potential classes at each time step,

which corresponded to the graphs in Fig. 5.6(d). To quantify the classification accuracy, the

predicted output for the testing set y′test was compared with the manually labeled locations

ytest . For every location in a handwritten event, for example, ytest(n)|n = nx, the actual output

was investigated to find the maximum value in the range of ytest(nx−7) to ytest(nx+3). The

corresponding channel that output the maximum value was considered the predicted class.

Using the labeling, training and testing procedure introduced above, 683 handwritten

vowels (of a total of 703 in the test set) were correctly recognized, yielding a high accuracy

of 97.1%. Examples of the point-by-point outputs for the five classes are illustrated in

Fig. 5.6(d), and the confusion matrix is shown in Fig. 5.7. The errors mainly occurred when

predicting ‘O’, which was misclassified as ‘U’ in some cases since these two classes are

associated with similar writing traces.
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Fig. 5.6 The signal flows measured from the eRNR hardware for different handwritten
patterns, including (a) the five handwritten vowels, (b) the sensory signals for the x- and
y-axes x(n), (c) the 64 channel reservoir states s(n) of the eRNRs, and (f) the output y(n)
computed based on s(n) and the trained weights.
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Fig. 5.7 Confusion matrix using digital Wout without noise-aware training. The overall
accuracy is 97.1%.
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5.3.3 Memristor-based output layer

The next experiment further integrated the eRNR system with a memristor crossbar array

that served as the output layer. Memristor-based analogue computing has displayed excellent

potential in neuromorphic computing. While the input and reservoir layer are generally

established based on eRNR design, the output layer, which employs standard vector-matrix

multiplication operations, can be effectively implemented by a memristor array for end-to-end

all-analogue computing [80, 95]. The memristor array has a unit cell of one-transistor-one-

resistor (1T1R). Each 1T1R consists of a resistive switching memristor with a material stack

of TiN/HfOx/TaOy/TiN connected to a Si transistor that is fabricated using a standard 130nm

Si CMOS process [150, 151]. The description of the memristor array can be found in Fig. 5.8.

The computation principles of memristor-based analogue computing can be expressed as

I =V ×G =V × (Gp−Gn), where G represents the weight matrix W, and Gp and Gn are the

positive and negative conductance matrices, respectively. Furthermore, a standard write-with-

verify scheme was used to map the weight matrix Wout to the conductance of the memristor

array [13].

In this experiment, a differential pair of two memristors was used to represent one

synaptic weight, so 640 memristors were used to represent all the weights in the above Wout.

It is noted that the analogue weights in a memristor array usually suffer from conductance

variation issues (e.g., read noise) due to the nonideal device characteristics, leading to

certain performance degradation compared with the floating-point digital weights in software

[150]. The next simulation evaluated the effect of memristor conductance noise on the

classification performance of the system to establish a proper training scheme. Fig. 5.10(a)

shows the result of directly mapping Wout without noise-aware training; notably, the accuracy

decreased significantly as the noise level increased. In our experiment, the intrinsic noise of

the memristor was the dominant noise source in the all-analogue system. To achieve high

accuracy, a noise-aware training method was adapted to obtain a robust Wout in the presence
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Fig. 5.8 Memristor-based fully connected output layer for eRNR. (a) Schematic of the
1T1R cell consisting of one transistor and one TiN/HfOx/TaOy/TiN memristor. (b) DC
I-V characteristics of the memristor. (c) memristor-based fully connected output layer
implemented by the 1T1R array. The WL, BL and SL indicate the word line, bit line and
source line, respectively.
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of memristor conductance variation [152, 153]. In the noise-aware training scheme, Gaussian

white noise with a standard deviation of ±0.03 was added to the normalized training state

data before regression, and the resulting accuracy is plotted in Fig. 5.10(a). The comparisons

between digital Wout, target analogue Wout and the average values of the measured Wout

after mapping are visualized in Fig. 5.9.
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Fig. 5.9 Normalized output weights and error. (a) Output weights without noise-aware
training. (b) Output weights with noise-aware training. (c) Analog output weights measured
from the memristor array. (d) weights error resulted from the difference between the measured
and target memristor conductance.

Most of the weight values can be successfully mapped to the memristor array with

acceptable device variation, and the standard deviation (target conductance minus measured

conductance) is approximately 0.368µS. Finally, the confusion matrix using analogue Wout

measured from the memristor array is shown in Fig. 5.10(b). Using the noise-aware training

method and the measured analogue Wout, the classification accuracy was improved from
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29.2±0.9% (without noise-aware training) to 94.0±0.8% (with noise-aware training). The

recognition result for each participant is summarized in Fig. 5.11.
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Fig. 5.10 Result of using memristor-based output layer with noise-aware training. (a).
Classification accuracy as a function of simulated memristor conductance variation with and
without the noise-aware training method. The measured average variation of the memristor
array was 0.368µS. (b) Confusion matrix using analogue Wout stored in the memristor array.
The overall accuracy was 94.0%, with a standard deviation of 0.8%.

5.4 System-level power estimation and benchmark testing

The power consumption for the whole eRNR-based RC system can be divided into two parts:

eRNR circuit consumption and the memristor array consumption. For the eRNR circuit, an

8-neuron eRNR was designed and simulated using a standard 65nm CMOS process based on

the parameters used in the handwriting recognition task.

As shown in Fig. 4.2, the neurons, as passive components, are driven by the negative

and positive sensory signals, providing a power source Ps. Also, the energy consumed by

the counter and transmission gates depends on not only the static power but also the rate

of rotation τrotor. The total power consumption P of the system consisting of M 8-neuron
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Accuracy Participant 1-8

92.3%±1.5%
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time(s)

Fig. 5.11 Handwriting recognition result for each participant.
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eRNRs (where the number of neurons N is fixed at 8) can be expressed as:

P = Pc +

(
Ps +Pt +

Edyn
c +Edyn

t

τrotor

)
×M+

Edyn
m

τrotor
(5.2)

where Pc and Pt represent the static power of the counter and transmission gates, re-

spectively, and Edyn
c and Edyn

t represent the dynamic energy dissipated in the transition

region driven by rate of rotation 1/τrotor. Edyn
m is the energy consumed in the output layer

(memristor array) for one inference. The M parallel eRNRs can share one counter, but

the power for the other components increases with the number of parallel eRNRs M. For

our application involving real-time handwritten signals, the operation period τrotor is a rel-

atively slow (0.1 s) to match the time scale of human operations. The simulation result

shows that Ps = 3.27µW,Pc = 0.93µW , and Pt = 0.70µW , regardless of how fast the ro-

tors are operating. Moreover, the energy related to the rotation rate is Edyn
c = 0.31pJ and

Edyn
t = 0.07pJ. For the memristor-based output layer, the power dissipated by the voltage

buffer driving the memristor array and the memristor array itself are 144µW and 0.8µW

respectively. During every τrotor, only one-time inference is needed since all state channels

are monotonously increased or decreased. The memristor array takes 50 ns to respond to the

state voltage. Therefore, the dynamic energy of the memristor array for every inference step

is Edyn
m = (144µW +0.8µW )×50ns×64 = 463.36pJ/class. The total power consumption

of an 8 × 8 eRNR can then be calculated using Eq. 5.2. The simulated power breakdown

at different frequencies is shown in Table 5.1. The simulation also suggests that the static

power, mainly associated with the dynamic neurons and the leakage current of transistors,

plays a dominant role when the processing rate (1/τrotor) is lower than 100 kHz (for which

the power consumption was estimated to be 79.1 µW ). This striking advantage is associated

with the unique all-analogue computing capability of our eRNR-implemented RC system,

which saves the energy for frequent data conversion between digital and analogue domains.

It should also be highlighted that our all-analogue eRNR provides more than three orders of
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magnitude lower system-level power consumption compared with previous cutting-edge RC

systems, whose power are in the ranges of 83 mW to 150 W using different implementation

methods (Table 5.2) [76, 154–156]

Table 5.1 Simulated power breakdown for 8 × 8 eRNR system (µW )

Processing rate (Hz)
eRNR

Memristor Total power
Counter Rotor Neurons

10 0.93 5.59

26.16

46.3×10−4 32.7

103 0.93 5.59 46.3×10−4 32.9

105 0.96 5.64 46.3 79.0

107 3.98 11.03 4633.6 4674.8

Table 5.2 Comparison with system-level power of literature-reported reservoir systems

Reference Implementation N Processing rate (Hz) Power

Alomar et. al.[154] FPGA 48 106 1.5W

Kleyko et. al.[156] FPGA 100 - 1.6W

Alomar et. al.[155] FPGA 50 1142 83mW

Brunner et. al.[76] Optoelectronic 388 13×106 150

This work All-analog eRNR 64

10 32.7µW

103 32.9µW

100×103 79.0µW

107 4.7 mW

5.5 Discussion: Why eRNR can be more resource-efficient?

From a fundamental perspective, the different mechanisms of introducing memory in rotation-

based architecture and other architectures mainly determine their power efficiency. In the
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rotation-based architecture, the memory is provided by the rotating dynamic node itself

(see Fig. 4.2(a)). The excellent consistency between the rotation behavior and software

algorithm frees the system from using extra control units, ADC, buffer and memory, which

remarkably reduce the system complexity and power consumption. Also, implementing

the logic switches for rotation is a resource-efficient use of CMOS-based transmission

gates. Meanwhile, the rotating dynamic node serves to process signal and retain previous

information simultaneously. Such in-memory computing paradigm is advantageous for

low-power computing. In other architectures, such as the well-studied delay-based approach,

the memory is actually separated from the processor. Although carrying out the processing

in the nonlinear dynamic node was a significant progress, the memory is mainly provided

by the delay unit which is constrained by the limitations of conventional digital computing,

such as power consumption, throughput and latency [20]. These fundamental differences

result in the better power efficiency for the proposed rotation-based architecture.

Compared with the classic random RC, the key difference of cyclic reservoir is the

connection in the reservoir layer defined by Wres. The Wres of random reservoir is a

randomly generated matrix with a proper spectral radius, while the cyclic counterpart is a

shifted identity matrix which can be implemented in a more deterministic manner without

performance degradation [28]. In this work, it has been proven that the cyclic Wres can be

equivalent to a physical rotor, while an effective physical counterpart of random Wres is yet

to be found, which remains an exciting challenge to be addressed for future studies.

5.6 Conclusion

In summary, a hardware-friendly RNR architecture for all-analogue neuromorphic computing

was developed; the resulting structure represents a fundamentally different reservoir architec-

ture than those used in conventional hardware implementations. The proposed RNR has been
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validated in theory, simulation, and experimental analyses. The theoretical analysis of RNR

rigorously mapped the CR algorithm onto the physical rotation of dynamic neuron array, pro-

viding a solid foundation for hardware implementation. Such an RNR can be embedded into

natural rotating components in various electronics, mechanical systems or even nanorobotics

and empower them with computing capability. In the simulation using the eRNR model,

the NARMA10 prediction task was performed to benchmark the system with varying hy-

perparameters, and record-low NRMSE values of 0.078 for a single eRNR and 0.055 for

parallel eRNRs were achieved. It was found that the additional nonlinearity provided by

the hardware-based dynamic neurons enhanced system performance in the approximation

of the NARMA10 system, thus highlighting the computing potential of the proposed RNR.

Furthermore, an 8 × 8 eRNR prototype was developed based on RNR theory for near-sensor

analogue computing. The prototype successfully demonstrated multistep-ahead prediction

of chaotic time series, and eight parallel reservoirs were found to reduce the prediction

NRMSE from 0.17 to 0.03 for the studied Mackey-Glass chaotic system. This experimental

result further validates the computing capability of our eRNR prototype under different

experimental configurations. By further integrating the eRNR with an analogue memristor

array as the fully connected output layer, an all-analogue RC system was realized to perform

handwriting recognition tasks. A noise-aware training method was used to accommodate

the conductance variation of the memristor array and improved the classification accuracy to

94.0%. In the simulation of the eRNR circuit, the overall system power consumption was

estimated to be as low as 32.7 µW for the handwriting tasks operating at 10 Hz (τrotor= 0.1 s),

reflecting an advantage of more than three orders of magnitude compared to the consumption

reported for RC systems in the literature. Additionally, further power analysis suggested

that the static power, mainly dissipated by the dynamic neurons, dominates the system at

processing rates below 100 kHz, while the overall system power remains at a low level for

high processing rates (>100 kHz) (see Table 5.2). This result can be explained by the fact
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that most computations occur in the analogue domain that only contribute to static power,

which is a general advantage of analogue neuromorphic computing. Dynamic power, mainly

attributed to logic switches and memristor arrays, starts to dominate the system at processing

rates higher than 100 kHz (see Table 5.1)).

To further enhance the eRNR system capabilities when performing complex tasks, a

useful approach is to increase the number of neurons (N) or the number of parallel eRNRs

(M) to expand the network size. Furthermore, a deep eRNR, consisting of multiple eRNR

cells in series, could enhance the classification performance for inputs of different classes.

From a hardware perspective, dynamic neurons could be replaced by recently reported

emerging devices (e.g., dynamic memristors [63, 64] and spintronic devices [17]) to further

reduce the system size and power consumption. Different configurations of neurons could be

beneficial for enhancing state richness and improving system performance. In addition, the

eRNR design can be miniaturized and monolithically integrated onto chips to reduce power

requirements and promote ultrafast computing. It is also worth mentioning that various

rotational hardware could be explored for constructing efficient pre- and post-neuron rotors,

which are the key to implement the RNR. Our work demonstrates that the RNR is well-

suited for large-scale and high-speed neuromorphic computing systems and has tremendous

potential for use in applications involving the Internet of Things and edge computing, among

others.
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Chapter 6

Discussion and Future Perspectives

6.1 Main conclusions of this thesis

The dynamical properties of Rhat involves multiple implementation substrates such as optical

devices and mechanics, this research studies physical RC with the two aspects of focus:

electronic implementations and architectures. Overall, this thesis reviewed the existing

reservoir computers in the literature. Then, the delay-based RC and parallel devices RC

therein were investigated in depth, along with simulation and experiment results. Next, the

RNR architecture originally proposed by the author is introduced and discussed in details,

representing a promising paradigm of physical RC towards practical applications. The main

conclusions of this thesis are summarized as follows:

• The achievements and novel applications of artificial intelligence are all based on the

development of modern computer, whose fundamental element is transistor. In fact,

apart from the 0’ and 1’ bits offered by transistor, there exists rich dynamics in elec-

tronics that can be explored as computational, which is of particularly high interest in

the post-Moore’s era. Physical reservoir computing is a promising paradigm to harvest
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computing resource from hardware. The state-of-the-art physical reservoir computers

are reviewed in Chapter 1. During the development of physical RC, architectural

innovations played an more significant role. For most existing physical RC, this thesis

divide their architectures into four categories according to their implementation of

the reservoir layer (or middle layer), including delay-based reservoir, parallel devices

reservoir, in-materia reservoir and rotating neurons reservoir.

• Delay-based reservoir computing is a promising architecture to implement physical

RC. Because the use of time-multiplexing, only one or few neurons are needed to

generate complex dynamic for high-dimensional mapping. In this work, the proposed

DRC model directly receives raw and continuous ECG signal in the absence of signal

segmentation and feature extraction, which is the prime difference compared with the

existing software-based algorithms. After fully optimizing the parameters, the model

successfully detect the VEB in the continuous ECG stream, while keeping the majority

of the computing in analogue domain.

• Volatile memristors are well-suited to implement parallel devices RC because of its

intrinsic short-term memory property. Using the time-multiplexing technique for the

parallel memristors can increase the state richness and therefore improve the system

performance. The parallel memristors system can act like a reservoir to handle simple

temporal processing tasks like waveform classification and one-step ahead prediction

for Hénon map chaotic signal. However, for more demanding tasks like human activity

recognition, extra operations, such as delayed feedback, would be required in order to

yield an acceptable accuracy.

• RNR is a recently proposed novel architecture for implementing physical. It was found

that when rotating a specifically designed neuron array that processes nonlinearity and

dynamical behaviours, the input and output of the hardware system can be roughly
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equivalent to a CR algorithm, which can be proved mathematically. Such network-level

equivalence is rare to found in other architectures. The simulation results emphasized

the fact that, on one hand, the RNR hardware and software are roughly equivalent

since their similar network behaviours were observed; on the other hand, software

and hardware are not ideally equal and the hardware provides rich dynamics within a

certain range that can be explored to enhance the performance.

• The hardware simulations and experiments on eRNR further demonstrated the po-

tentials of this novel architecture. The eRNR prototype successfully demonstrated

real-time Mackey-Glass chaotic signal prediction and near-sensor handwriting recogni-

tion. Another experiment involves using memristor array as output layer for the VMM

operation to form end-to-end all-analogue computing. Finally, the power analysis sug-

gested that the all-analogue eRNR system consumed three order of magnitude lower

power than the existing physical RC systems. This is attribute to the RNR architecture

that is equivalent to CR on network level, enabling the coherent, straightforward and

elegant hardware implementation.

6.2 Future work and application

Algorithm

From the viewpoint of algorithm, RC provides an efficient way to implement RNN with

less training cost. However, the network capability is relatively limited compared with

deep and large networks such as CNN. As a machine learning algorithm, the existing RC-

based algorithms, including the deep-RC proposed in recent years, have not demonstrated

state-of-the-art result in benchmark tasks. Further advancing RC-based algorithms could be

helpful for improving the computing potentials of physical RC. Also, a new network topology
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could inspire new hardware architectures. For example, RNR stems from CR that is not a

conventional RC. Therefore, developing RC algorithms for higher computing capabilities

and more ingenious network typology is an important topic.

Architecture

Architecture of implementing physical RC remains a crucial topic in the field of RC. As

mentioned in previous chapters, an effective architecture can fully explore the electronics’

dynamics for computing. The existing architectures mainly includes delay-based RC, parallel

devices RC, in-materia RC and RNR, which have their own strengths and drawbacks. For

more practical uses, the further development of RC architecture should pay more attention to

the cost of overall system including the peripheral circuit, assistive module and input and

output layers, rather than only demonstrating the reservoir layer.

Processing core

Processing core plays an important role in a physical RC by providing nonlinearity (or

activation function) and dynamical properties that significantly affect the performance.

Given an architecture, an optimal processing core could minimize energy consumption

and maximize processing result. In electrical RC, other factors, such as size, integration

and large scale fabrication, should also be taken into consideration. Previous works had

proposed various processing cores (see Chapter 1) for the architectures except recently-

reported RNR. Therefore, investigating different processing cores and their compatibility

with the architectures could be an important topic in the field of RC.
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Integration

Implementing physical RC in integrated circuit is a promising direction. The previous works

have proved that the RCs are achievable by electrical components and compatible with

existing electronics. Particularly, the recently proposed eRNR can be achieved by CMOS

circuit. Therefore, a further development on RC chip is therefore suggested.

Unified systematic benchmark

In the past decade, hundreds of physical RCs were demonstrated. Physical RC is becoming

a more and more comprehensive field. However, most physical RC works explain their

RC system from their perspective and several questions remain unanswered at present.

For example, given a physical RC system, researchers from material science, electrical

engineering and computer science would concern over completely different aspects. How

to setup a criteria to judge that a physical RC is ’good’ or ’bad’ remains a problem in the

RC community. Toward practical RC and make them comparable, an unified systematic

benchmark is needed to more comprehensively evaluate an RC system.

Application

The application of physical RC should fully utilize its unique properties and advantages in

comparison with other computing accelerators, including (1) trainable dynamical system,

(2) intrinsic memory property, (3) temporal signal processing and (4) elegant hardware

implementation. Possible future applications of physical RC are:

• Edge/in-sensor/near-sensor computing. Physical RC is a lightweight network which

is well-suited to deploy at edge for pre-processing or feature extraction purposes.
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Meanwhile, physical RC could integrate with sensor for in-sensor or near-sensor

computing.

• High-speed nonlinear computing. As a analogue computer, physical RC is free from

von Neumann bottleneck and thus makes ultra-high speed nonlinear computing possi-

ble.

• Nonlinear controller. Previous researches mainly used RC for machine learning tasks.

However, RC can approximate measurable dynamic systems, enabling its application

in control. Using physical RC as a trainable nonlinear controller is also a interesting

topic.

• Complex system solver. RC algorithms have been used in solving spatiotemporally

chaotic systems like Kuramoto-Sivashinsky equation [29]. Performing such RC algo-

rithms on hardware could significantly accelerate the computing efficiency.

6.3 Epilogue

Physical RC is an interesting and promising topic. The recent studies has proved the rich

dynamic existed in electronics that can be explored as computing resource under the concept

of RC. However, there are still many unanswered questions about the physical RC before

practical uses, which requires joint-effort from different disciplines.
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