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Abstract

In recent years, the field of movement ecology has been changed dramatically by the capacity to
collect accurate high-frequency telemetry data. In this thesis I present new statistical methods
scalable to very large volumes of data being generated as there is a problem of scale dependence
in most popular animal movement models.

Popular and widely used movement models in ecology are discrete-time movement models,
where animals’ positions are observed at discrete times. However, discrete-time models do not
perform well when problems such as missing or irregular data are present. A remedy to the
inefficiency of discrete-time movement models is to use continuous-time movement models,
however the formulation of continuous-time movement models is often difficult and hard to
interpret.

In this thesis, I first focus on discrete-time movement models, where through a study I il-
lustrate one of the problems that discrete-time movement models pose - the specification in
advance of the discretisation time-step. I then move on to probabilistic methods, widely used
in the machine learning community, Gaussian processes (GPs), and I show that they are equiv-
alent to many continuous-time movement models. Given that the primary goal of machine
learning methods is to learn from large scale datasets, using robust continuous-time movement
models such as Gaussian processes is highly advantageous for multiple reasons. These include
their flexibility in choosing various covariance functions, their scalability to large datasets and
their ability to analyse data, infer parameters of interest and quantify uncertainty within a non-
parametric Bayesian approach.

I extend the standard Gaussian process (GP) into a non-stationary hierarchical Gaussian pro-
cess, where both the movement process and the dynamic parameters of the movement model are
Gaussian processes, which allows for increased flexibility to a wide range of behaviour modes
that animals can exhibit. Throughout this thesis, I implement Gaussian processes on simulated
and real tracking data using statistical libraries such as TensorFlow, which provide an acces-
sible way to implement the model and gain access to GPU/HPC-accelerated machine learning
libraries. I perform inference using optimisation methods such as maximum-a-posteriori (MAP)
estimation, approximate sampling based inference methods such as Markov Chain Monte Carlo
(MCMC) and variational inference methods on both synthetic and real datasets.
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Chapter 1

Introduction to animal movement

Animal movement is a fundamental ecological process that is often complex and difficult to
analyse and interpret, driven by processes that operate on multiple spatio-temporal scales. Un-
derstanding animal movement is essential as movement determines an individual fecundity rates
and survival chances, thus affecting the trophic interactions between species. The movement of
animals also has a crucial role in the stability of the ecosystems and spread of infectious diseases
[Nathan et al., 2008].

The increased possibility to collect high accuracy, high frequency telemetry data from in-
dividual animals has lead to the growing development of statistical methods that can infer the
dynamics of animal movement. Topics of interest are the underlying motivations and mecha-
nism behind animal movement i.e. the drivers of movement such as internal state, landscape
characteristics, habitat selection, motion capacity and/or navigational capacity [Nathan et al.,
2008]. Much of the current research is focused on multi-state movement models, where the
animal switches between various multiple behavioural states at different times [Morales et al.,
2004, McClintock et al., 2012]. When using these kinds of models, the main problems that need
to be addressed are how many discrete behavioural states (e.g. foraging, migrating, resting) can
be determined from the data, the different structure of the underlying models (each distinct state
is modelled by a different parameterised model) present on the movement path, how to model
different transitions between the various behavioural modes and how often they occur [Morales
et al., 2004].

Ecologists prefer movement models that are intuitive, easily interpretable and feasible to
implement such as random walks or some variations of random walks. More complex mod-
els may be more realistic in terms of animal movement, but are also harder to implement and
computationally demanding. The increasing size of the datasets is also a challenge as ecologists
might lack the computational resources to fit complex models that are scalable to large amounts
of data. Hence, there is a urgent need for developing realistic animal movement models and
statistical techniques that can capture the dynamics of animal movement, and can process and
analyse large amounts of data.

1
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1.1 Animal movement data

Movement data usually consists of positions of an animal or a group of animals recorded at a
set of discrete points in time. In this thesis, as I study the movement of land-based animals, the
telemetry data recorded will be two-dimensional, longitude and latitude. In other cases, where
the interest of study is the movement of marine animals and birds, the coordinate along the third
dimension (depth or altitude) might be recorded using for example pressure sensors.

There are various methods to collect telemetry data, but using satellite positioning systems
such as the Global Positioning System (GPS) or the Argos system, is the predominant data
collection method used in recent years. Animals will be equipped with a tag, for example, a
collar, and its locations are recorded at a set of discrete time points, until the battery runs out or
the tag is removed or falls off the animal. Other types of data can be recorded using (VHF) radio
[Cagnacci et al., 2010] or telemetry tags such as accelerometers [Brown et al., 2013].

In recent years the technological advances have made it possible to collect telemetry data at
high temporal resolutions and over longer periods of time. The sampling scheme of observations
that is employed might vary considerably depending on the battery’s size and life and on the aim
of the study. If the goal of the study is to research the long term behaviour of an individual
animal or a group, then a sampling frequency of months can be a good option, however if the
aim is the study of small-range behaviour, then a high sampling frequency of minutes is a better
choice.

Various problems might arise while collecting telemetry data such as irregular or missing
observations that can complicate statistical modelling of animal movement. Observations might
be missing due to faulty tags and irregularities might be introduced due to sensor, battery or
memory limitations. Other issues might arise from the lack of accuracy of the measurements,
such as systematic biases and wrong conclusions (for example, a large measurement error has a
negative impact on habitat selection) [Bjørneraas et al., 2010]. The measurement error of GPS
tags might vary as it often depends on the number of satellites used, their position in space
[Bjørneraas et al., 2010], but on average it is less than 30 m and this does not pose a problem if
the scale of animal movement is comparatively large [Frair et al., 2010] and if the sampling step
is sensibly chosen (for example, a sampling step of 1 second causes problems when measure-
ment errors are large). Argos devices are even less accurate and might have measurement errors
ranging from 150 m to several kilometres [Patterson et al., 2010].

A characteristic of movement data is its autocorrelated nature. That is, an animal’s location in
the near future will be dependent on its current location. If the data is recorded at high sampling
frequencies, the autocorrelation will be high and should be accounted for when modelling the
movement data. The statistical methodology developed to deal with autocorrelated observations
centers around random walk models [Johnson et al., 2008, Fleming et al., 2014a].

After the collection of animal positions, movement models are formulated in a variety of
ways. The model can be formulated in terms of raw positions, the displacement of positions i.e.
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step, in terms of the velocity between consecutive positions, or in terms of change of directions
between consecutive positions [McClintock et al., 2014].

Modern telemetry data together with the fact that animal movement is an inherently com-
plex and multiscale process driven by many factors [Nathan et al., 2008, Fryxell et al., 2008]
gives raise to many challenges for ecologists. The large-scale data with the added challenges
of strong autocorrelation observations recorded with possible measurement error further com-
plicates the already existing challenges. Hence, developing strong, robust and flexible statistical
methodology to deal with these problems and enhance the knowledge of animal movement is a
necessity.

1.2 Aim of the thesis

In this thesis, I focus on developing new statistical methods that are interpretable from an eco-
logical perspective and scalable to large datasets. In Chapter 1, I present the ecological data
and the problems that arise with analysing it. In Chapter 2, I discuss the background material
necessary for understanding the main chapters of the thesis, namely, Chapters 3-6.

In Chapter 3 of the thesis, I start by using discrete-time movement models, where the dis-
cretisation step is specified in advance and is very important in setting up the model [Bovet
and Benhamou, 1988, Harris and Blackwell, 2013]. More specifically, I use a basic correlated
random walk movement model with Bayesian inference methods such as Markov Chain Monte
Carlo (MCMC). In this chapter, I illustrate the limitations of discrete-time movement models
by simulating various datasets with different sampling frequencies and then fit the model to the
data with a different discretisation step. I test whether I can detect systematic mismatch between
the model and the data using different test statistics and by computing posterior p-values. The
study showed that the model mismatch was not consistently detected, thus exemplifying a cen-
tral flaw with the discrete-time models, that is the specification in advance of the discretisation
step. In Chapters 4-6, I focus on continuous-time movement models and their corresponding
covariance functions, that are more flexible and do not have the limitations of the discrete-time
movement models. I focus exclusively on a probabilistic method known as Gaussian processes
(GPs), which are flexible non-parametric methods widely used in machine learning community
for regression and classification purposes. The focus is on natural extensions of the standard
Gaussian process (GP), non-stationary GPs, where all or a subset of the GP’s parameters (e.g.
lengthscale, amplitude or noise variance) are allowed to vary in time or space.

In Chapter 4, I show that GPs are equivalent to many continuous-time movement models
by specifying an appropriate and corresponding covariance function. More specifically, I show
how popular continuous-time movement models such as Brownian bridge [Hooten et al., 2017],
Orstein-Uhlenbeck (OU) [Uhlenbeck and Ornstein, 1930], Orstein-Uhlenbeck velocity model
(OUV) [Johnson et al., 2008] and Orstein-Uhlenbeck-Foraging (OUF) [Fleming et al., 2014a]
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can be reintroduced as GPs. Moreover, significant advantages are gained from a computationally
point of view from having access to powerful machine learning libraries and various already im-
plemented inference techniques such as maximum-a-posteriori (MAP) or Markov Chain Monte
Carlo (MCMC).

In Chapters 5-6, I extend the stationary GP model to a non-stationary GP, where the pa-
rameters of the GP are allowed to vary, since stationary GPs lack the flexibility to model non-
stationary data [Paciorek and Schervish, 2004, Gibbs, 1997, MacKay, 1997]. I follow the ap-
proach described by Heinonen et al. [2016], where the parameters are also modelled by another
GPs and I essentially construct a double-layer hierarchical GP. In Chapter 5, the model is a hi-
erarchical spatial GP process, where the parameters on the first layer of the GP are dependent
on the GPS locations from multiple individuals. I derive a novel covariance function that links
positional data with the dynamic parameters of a velocity model and I aim to infer the drivers of
movement, the environment’s characteristics, or in other words infer the parameters of the model
that characterise the environment using MAP estimation and gradient based MCMC methods. I
apply my method to a synthetic dataset and then to telemetry data from the Serengeti wildebeest
migration. In Chapter 6, I make the inference approach scalable to potential millions of points,
by using a variational inference method instead of sampling-based methods such as MCMC,
which are computationally expensive. I apply my method on multiple synthetic datasets and on
an empirical dataset - individual household average power consumption. The method developed
in this chapter is a general method applicable to different types of data, not only to movement
telemetry data.



Chapter 2

Review of background theory

2.1 Discrete-time movement models

Introduction to random walks

Random walks are one of the most common and simple methods that are used to model move-
ment data in a wide range of biological settings such as cell movement [Tweedy et al., 1977,
Hall, 1977, Liepe et al., 2012, Taylor et al., 2013, Jones et al., 2015, Panotopoulos et al., 2018],
animals movement [Skellam, 1951, 1973, Codling et al., 2004, Morales et al., 2004, Nouvel-
let et al., 2015, Michelot and Blackwell, 2019] or in a financial setting [Bachelir, 1900, Fama,
1965]. The term ‘random walk’ was first used by Karl Pearson in 1905 [Pearson, 1905], when
in a letter to Nature, he used a simple random walk to model a mosquito infestation in a for-
est. The letter was answered by Lord Rayleigh [Rayleigh, 1905], who previously used random
walks in 1880 to model sound waves through heterogeneous materials. However, the founda-
tion of random walks was laid out previously by the botanist Brown [Brown, 1828] in his work
regarding the irregular motion of individual pollen particles, which is now known as Brownian
motion (or diffusion). Later on, physicists such as Albert Einstein [Einstein, 1905, 1906], and
then Smoluchowski [Smoluchowski, 1916] published papers on random walks, which they used
to model the path of a large dust particle in the air.

There are different types of random walks, the simplest of them is the Brownian motion,
where the movement is uncorrelated and unbiased. Uncorrelated means that the direction of
the movement is not influenced by the previous directions of movement. Unbiased means that
there is no preference for a particular direction. One example of a very simple uncorrelated and
unbiased random walk would be a random walk restricted on a lattice, where you have equal
probability of going either up and down, or left or right. Also, it is worth noting that the process
defined by an uncorrelated random walk is Markovian with regards to the location due to the
fact that the location at each step is dependent only on the location at the previous step. In
addition, Brownian motion can be shown to produce the heat equation (or standard diffusion)

5
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[Vvedensky, 2019], Section 2.1.2.
When modelling animal movement, the diffusion equations might be used as a very basic

model to compare with more complex models. This simple model can be extended to more com-
plicated and realistic movement patterns by including correlation between successive steps. The
correlated random walk (CRW) is also called ‘persistent’ as the successive steps are correlated.
In a CRW model each step tends to point in the same direction as the previous one, however, the
persistence fades away gradually in time and the directions become uniformly distributed in the
long term [Benhamou, 2006]. It can be said that a CRW model is a RW with an introduced local
bias.

Another extension would be the biased random walk model (BRW), which is a random walk
model with global directional bias. The BRW can be biased in several ways, one by having a
higher probability of moving into a specific direction, rather than having an equal probability
of moving in either direction, or by having the walker move further along a specific direction.
An example to illustrate this concept is a random walk particle moving three spaces to the left
each time it goes left and one space each time it goes to the right. Another possible extension
would be the biased persistent random walk in which the walker is ‘biased’ and ‘persistent’.
Moreover, a random walk particle might present different levels of bias and persistence along the
path [Codling et al., 2004]. Another very popular extension is the Ornstein-Uhlenbeck process
[Uhlenbeck and Ornstein, 1930], which is a mean-reverting process, with the strength of the
attraction to the mean being stronger as the random walk particle moves away from the mean.
The Ornstein-Uhlenbeck process is discussed in more detail in Section 2.5.

Fundamentals of random walk model

The simple unbiased random walk (SRW) is the foundational model for diffusion processes.
In a SRW model, a random walk particle is equally likely to move in each possible direction
and its direction is uncorrelated i.e. the direction taken at a particular time is independent of
all previous times. Let l be the step-length, τ the time for a single step, p the probability for a
step to the right, q = 1− p the probability for a step to the left and let PN(m) the probability to
find the walker at position x = ml at time t = Nτ . The probability PN(m) satisfies the following
stochastic difference equation

PN+1(m) = pPN(m−1)+qPN(m+1). (2.1)

I specialise to the case p = q = 1
2 and from the previous equation I subtract PN(m) on both sides

and then taking limit as N grows large, the differences become differentials

PN+1(m)−PN(m) =
1
2
(PN(m−1)+PN(m+1)−2PN(m)). (2.2)
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The left hand side term is approximately equal to τ
∂P
∂ t and the right hand side term is approx-

imately equal to l2 ∂ 2P
∂x2 (using finite differences of first and second order). Rearranging and

denoting the term D = l2

2τ
(the diffusion coefficient), the diffusion equation is

∂P
∂ t

= D
∂ 2P
∂x2 . (2.3)

The diffusion equation can be solved with the following boundary conditions: P(x, t)→ 0 as
x→±∞ for all t and P(x,0) = γ(x). The diffusion equation or heat equation admits a Gaussian
function as a solution

P(x, t) =
1√

2πσ2(t)
exp
(
−x2

2σ2(t)

)
, (2.4)

where σ2 = 2Dt. The mean location of a random variable X at time t, E(Xt), and the mean
squared displacement (MSD) E(X2

t ) are defined as

E(Xt) =
∫

∞

−∞

xP(x, t)dx. (2.5)

E(X2
t ) =

∫
∞

−∞

x2P(x, t)dx. (2.6)

Keeping in mind that P(x, t) is Gaussian distributed with mean 0 and variance σ2, I get that

E(Xt) = 0. (2.7)

E(X2
t ) = σ

2 = 2Dt. (2.8)

This means that the SRW is unbiased i.e. it has no preferred direction and that the MSD increases
linearly with time, a standard property of a diffusive process.

Correlated discrete-time movement models

The discrete-time correlated random walk (CRW) [Kareiva and Shigesada, 1983, Turchin, 1998,
Siniff and Jessen, 1969, Bovet and Benhamou, 1988] and its extensions [Morales et al., 2004,
McClintock et al., 2012] are the foundation of the movement data models. In a discrete-time
model framework methods from the time series literature can be borrowed and implemented
[Anderson-Sprecher and Ledolter, 1991]. A very important aspect when working with discrete-
time models is the specification in advance of a suitable discretisation time-step. Ideally, the
time-step should be as small as possible and carefully chosen based on the aim of the experiment.
However, the discretisation time-step might be chosen by different criteria due to experimental,
logistical constraints such as for example, battery life when modelling animal movement data,
or because of computational efficiency constraints. More specifically, as discussed in Chapter
1, the sampling frequency might vary from recording observations every few minutes to months
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depending on whether the goal of the study is to research the short-term or the long-term be-
haviour of an individual animal. Moreover, there is a trade-off between the sampling frequency
and the battery life, as high data resolution recording reduces battery life [Johnson and Gan-
skopp, 2008].

In a CRW model, the persistence gradually disappears in the long term [Benhamou, 2006].
Therefore, a large time-step will lead to a loss in correlation, transforming the path into a random
walk. Turchin [1998], Morales et al. [2004], Haydon et al. [2008], Hopcraft et al. [2014] im-
plemented statistical models for components of discrete-time random walks. Those components
include the step-length and the associated observed turning angle relative to the previous step
between each pair of successive observations. The distributions commonly used are Gamma
or Weibull distributions for the step-length [Morales et al., 2004], respectively Uniform, Von
Mises, Wrapped Cauchy or Wrapped Normal distribution for the turning angle [Kareiva and
Shigesada, 1983, Siniff and Jessen, 1969, Langrock et al., 2014, Batschelet, 1981, Mardia and
Jupp, 1999].

The Weibull distribution has two parameters, one parameter controlling the scale and the
other controlling the shape, and it is considered a good option to model the step-lengths [Morales
et al., 2004]. More specifically, depending on the value of the shape parameter, the Weibull
distribution is equivalent to an exponential distribution (when the shape parameter is 1), it is
suitable to model long step lengths due to a long tail (when the shape parameter is less than 1)
and it is equivalent to the step-length distribution of a standard diffusion process when the shape
parameter is 2 [Morales et al., 2004].

Assigning the Uniform distribution to the turning angles means that the direction is random,
thus the random walk is not ‘persistent’. The Wrapped Normal, Von Mises and the Wrapped
Cauchy distributions are circular distributions and all have two parameters, one controlling the
scale and the other one is the mean (location). The Wrapped Cauchy distribution is more peaked
and has heavier tails than the aforementioned circular distributions, and when the scale parame-
ter tends to zero, it transforms to a Uniform distribution [Morales et al., 2004].

The probability density function of the Weibull distribution is

p(x|a,b) = b
a

(x
a

)b−1
exp
(
−
(x

a

)b
)
, (2.9)

where x > 0, b,a > 0, b is the shape parameter and a is the scale parameter.
The probability density function of the Gamma distribution is

p(x|α,β ) =
β αxα−1 exp(−βx)

Γ(α)
, (2.10)

where x > 0, α,β > 0, Γ(α) is the Gamma function, α is the shape parameter, β = 1/θ is the
inverse-scale parameter, and θ is the scale parameter.
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The probability density function of the standardised Wrapped Cauchy distribution is

p(θ |c) = 1− c2

2π(1+ c2−2ccosθ)
, (2.11)

where 0 ≤ θ ≤ 2π and c is the shape parameter, with 0 < c < 1. The Weibull, Gamma and
Wrapped Cauchy distributions are used in Chapter 3 to model the step-lengths, respectively the
turning angles and are plotted for various values of the parameters in Figure 3.2.

The basic random walk model, while it is a good model to start with is not realistic in terms
of animal movement, as the movement of animals is a complex multiscale process. Certain
extensions of random walks like CRW or BRW are better than SRW in modelling movement
in the short term, but the ‘persistence’ fades away gradually. The pattern of animal movement
changes according to the habitat the animals find themselves in or by human or animal interac-
tions [Morales et al., 2004], therefore various extensions of the basic random walk are needed
to model effectively this change in animal behaviour.

To capture effectively the complexity of animal movement, mixtures of random walk mod-
els that contain non-stationary distributions for the components of model (step-length and turn-
ing angle), hidden Markov processes and different sources of bias [Morales et al., 2004] have
been developed. These models are called discrete-time multistate movement models, where a
certain movement model is associated with a distinct behavioural state [Morales et al., 2004,
McClintock et al., 2012, Langrock et al., 2014]. These behavioural states might include forag-
ing, predator avoidance, homing, and landscape exploration [Hooten et al., 2017], Section 1.1.2.
The behavioural modes might be classified as ‘encamped’, where you have short step-lengths
and low directional persistence or ‘exploratory’, where you have long step-lengths and high di-
rectional persistence [Morales et al., 2004]. An individual animal can switch between different
behavioural states with certain probabilities, which are stored in transition matrices [Taylor et al.,
2013, Morales et al., 2004, Langrock et al., 2014]. These probabilities will change depending
on factors such as habitat type or interactions between individuals, for example the probability
of an animal becoming ‘encamped’ will increase if the habitat has more food [Morales et al.,
2004, Haydon et al., 2008].

Among discrete-time movement models, one popular model is the Hidden Markov model
(HMM). The HMM is a time-series model that consists of two components, an observed part
consisting of the observations and an unobservable or hidden (latent) discrete-states [Patterson
et al., 2009, Langrock et al., 2012, Michelot et al., 2016]. A HMM can be considered a special
case of a state-space model, where the number of the hidden states is finite [Langrock et al.,
2012]. HMMs are flexible and intuitive models due to accounting for multiple underlying be-
havioural states, can include covariates and can explain the correlation in the movement data,
however, they assume that the location measurement error and the missing data were low [Pat-
terson et al., 2009, Langrock et al., 2012, Michelot et al., 2016]. Michelot et al. [2016] created a
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package in R that implements HMMs, and is accessible and relatively easy to use for ecologists.
Another example is Langrock et al. [2015], where the authors use non-parametric inference and
HMMs to model beaked whale dive data.

In conclusion, while multistate discrete-time models are a good tool to model complex move-
ment data, due to their diversity and accessible formulation in terms of step-lengths and turning-
angles [Morales et al., 2004, McClintock et al., 2014], an important limitation is the specifi-
cation in advance of the unknown discretisation step [Bovet and Benhamou, 1988, Harris and
Blackwell, 2013, Avgar et al., 2013, Nouvellet et al., 2015, Fleming et al., 2014a]. This causes
problems dealing with irregular observations [Harris and Blackwell, 2013, Avgar et al., 2013],
as the choice of sampling rate might be chosen due to GPS-collar battery life [Nouvellet et al.,
2015, Fleming et al., 2014a] rather than important behavioural events [Bovet and Benhamou,
1988]. Moreover, missing data can occur for a multitude of reasons including weather and ter-
rain [Morales et al., 2004, McClintock et al., 2012], or the collar might fall off or its battery
might run out.

2.2 Gaussian processes

A history of Gaussian processes

A Gaussian process (GP) is a stochastic process (a collection of random variables indexed by
time or space) such that any subset of those random variables is jointly Gaussian. GPs are
named after Carl Friedrich Gauss and can be seen as an infinite-dimensional generalisation of
multivariate Normal distributions. GPs have been studied and applied in different domains for
decades. For example, the Wiener process is a type of GP. Since GPs are stochastic processes
that can be indexed by time, probably they were first used for time series prediction in works
that date back to 1940’s [Wiener, 1949, Kolmogorov, 1941]. GPs were also used in the field
of geostatistics [Matheron, 1973, Whittle, 1963], where prediction using GPs is called kriging,
named after the South African mining engineer D. G. Krige by Matheron [1973]. Another field
where GPs prediction was widely used is meteorology [Thompson, 1956], where GPs prediction
was restricted to 2 and 3 dimensional input spaces. An early reference about the use of a GP
as a prior over functions appears in the works of O’Hagan and Kingman [1978]. Another early
appearance of GPs in the statistics community would be in Sacks et al. [1989]. In the machine
learning community, GPs started being used in the 90’s by Rasmussen and Williams [2006] and
nowadays, GPs are still used mostly in the spatial statistics field [Gelfand et al., 2010].

Introduction to Gaussian processes

This subsection is based on Murphy [2012], Section 15.1. Assume that at inputs xi, the outputs
yi are observed and that yi = f (xi) for some unknown function f with possible added noise. GPs
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are a non-parametric method, that consist of inferring a distribution over functions given the
data, p( f |x,y), and then to use this to make predictions given new inputs x∗, i.e. to compute

p(y∗|x∗,x,y) =
∫

p(y∗| f ,x∗)p( f |x,y)d f , (2.12)

where x is a set consisting of all the input (training) points and y is a set consisting of all the
observed data points (output) [Murphy, 2012].

A prior distribution is set over the latent function f and likewise the posterior distribution
will be obtained over functions. In a GP setting it is sufficient to be able to define a distribution
over the functions values at a finite, but arbitrary, set of points, say x1,x2, . . . ,xN . A GP assumes
that p( f (x1), f (x2), . . . , f (xN)) is jointly Gaussian, with a mean function µ(x) and covariance
matrix K, defined by K(xi,x j) = k(xi,x j), where k is a positive semi-definite kernel (covariance
function) and xi,x j are random input points. The conventional notation is the following

f (x)∼ G P(µ(x),K). (2.13)

Kernels

This subsection is mainly based on Rasmussen and Williams [2006], Chapter 4. A key fact of
GPs is that they can be completely defined by their mean and (kernel) covariance functions.
Since it is common to assume that the prior mean of the GP to be zero [Murphy, 2012], Section
15.2, the kernel completely defines the process’ behaviour. A crucial point is that the covariance
function is used to ensure that values that are close together in input space will produce output
values that are close together. Figure 15.1 in Murphy [2012] provides an illustration of this key
idea.

An important aspect of the process’ behaviour is the stationarity property. A stationary
process depends only on the difference x− x′, and a non-stationary process depends on the
actual position of the random points x and x′. Another important aspect is the isotropy prop-
erty. An isotropic process depends only on the difference |x− x′|, thus making the process
invariant to all rigid motions [Rasmussen and Williams, 2006], Chapter 4. For example, the
Ornstein–Uhlenbeck covariance function is isotropic.

Moreover, a valid kernel is a real-valued function of two arguments, k(x,x′)∈R for x,x′ ran-
dom points in the input space. The function is symmetric i.e. k(x,x′) = k(x′,x) and non-negative.
Also, a valid covariance function must be positive semi-definite. The covariance matrix K, de-
fined by K(x,x′) = k(x,x′) is called positive semi-definite if the following relationship holds

vT Kv≥ 0, (2.14)

for all real vectors v.
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Standard kernels

I give a list of standard isotropic kernels. Further on, I list a few examples of non-stationary
kernels [Rasmussen and Williams, 2006], Chapter 4. For the following kernels, the lengthscale
parameter l and the parameter σ are always positive.

Squared exponential kernel

Following Murphy [2012], Section 14.2.1, the squared exponential (SE) kernel or the radial
basis function (RBF) kernel has the following form

kSE(x,x′) = σ
2 exp

(
−1

2
(x−x′)T

ΣΣΣ
−1 (x−x′

))
. (2.15)

If ΣΣΣ is diagonal, the automatic relevance determination (ARD) kernel is obtained with the fol-
lowing formula

kSE(x,x′) = σ
2 exp

(
−1

2

D

∑
j=1

1
l2

j
(x j− x′j)

2

)
, (2.16)

where l j is the characteristic lengthscale of the dimension j. If l j → ∞, then the corresponding
dimension is ignored. If ΣΣΣ is spherical1, the isotropic SE kernel is obtained

kSE(x,x′) = σ
2 exp

(
− 1

2l2 ||x−x′||2
)
, (2.17)

where ||x|| is the L2-norm or Euclidean norm. An Euclidean norm of a vector x = (x1, . . . ,xn) is
given by the following relationship

||x||=
√

x2
1 + · · ·+ x2

n. (2.18)

The lengthscale l determines the length of the ‘wiggles’ in your function i.e. the smoothness of
the function and the signal variance parameter σ2 determines the vertical variation. The kernel
is infinitely differentiable.

Rational quadratic kernel

The rational quadratic (RQ) kernel has the following form

kRQ(x,x′) = σ
2
(

1+
1

2αl2 ||x−x′||2
)−α

. (2.19)

1A matrix ΣΣΣ is called spherical or isotropic if it is proportional to the identity matrix i.e. ΣΣΣ = λ I, where λ is a
constant.
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The RQ kernel is equivalent to the sum of multiple SE kernels with different lengthscales, with
the positive scale-mixture parameter α determining the weighting between multiple length-
scales. When α → ∞, the RQ kernel is identical to the SE kernel [Rasmussen and Williams,
2006], Section 4.2.

Matérn kernel

The Matérn kernel which is often used in GP regression has the following form

k(r) = σ
2 21−ν

Γ(ν)

(√
2νr
l

)ν

Kν

(√
2νr
l

)
, (2.20)

where r = ||x− x′||, ν > 0, and Kν is a modified Bessel function. As ν −→ ∞, this is the SE
kernel. If ν = 3

2 or ν = 5
2 , the corresponding kernels are Matérn 3/2 and Matérn 5/2. If ν = 1

2 ,
the Matérn 1/2 kernel is obtained and the kernel formula simplifies to

k(r) = σ
2 exp{−r/l}. (2.21)

In one-dimension the Matérn 1/2 kernel can be used to define the Ornstein-Uhlenbeck (OU) pro-
cess, which describes the velocity of a particle undergoing Brownian motion. The corresponding
function is continuous, but nowhere differentiable, therefore is very ragged.

Non-stationary kernels

Periodic kernel

The periodic kernel has the following form

kPer(x,x′) = σ
2 exp

−2sin2 π||x−x′||
p

l2

 , (2.22)

where p is the period of the function, p > 0.

Wiener kernel

The Wiener process (also called continuous-time Brownian motion) has the following kernel
formula

kWiener(x,x′) = σ
2 min(x,x′), (2.23)

where x,x′ are real vectors .
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Neural network kernel

The construction of this kernel and all the formulas are due to Neal [1996], Rasmussen and
Williams [2006], Williams [1998]. Consider a network with input x that has one hidden layer
with NH units. The linear combination of the outputs of the hidden units with a bias b produces
f (x). The mapping has the following form

f (x) = b+
N j

∑
j=1

v jh(x,u j), (2.24)

where the v js are the hidden-to-output weights and h(x,u) is the hidden unit transfer func-
tion, which depends on the input-to-hidden weights u. If the error function h(z) = erf(z) =

2√
π

∫ z
0 e−t2

dt is the transfer function, then let h(x,u) = erf (u0 +∑
D
j=1 u jx j), and choose u ∼

N (0,ΣΣΣ). Thus, the neural network kernel is obtained [Williams, 1998]

kNN(x,x′) =
2
π

sin−1
(

2x̃T Σx̃′√
2xT Σx′

√
2x̃T Σx̃′

)
, (2.25)

where x̃′ = (1,x1, . . . ,xd) is the augmented input vector.
The covariance functions that are mostly used in this thesis are RBF and Matérn 1/2. I also

show the full derivations of the Matérn 1/2 and of the Brownian motion (Wiener kernel) covari-
ance functions in Chapter 4 of this thesis. Other examples of kernels or covariance functions,
stationary or non-stationary can be found, but it is also possible to obtain other kernels by sum-
ming, multiplying or convoluting known kernels to obtain more flexible and complex processes.
While these kernels might be useful to detect trends in the data, they might also lead to over-
fitting and to difficult parameter inference. They might not have closed form solutions and might
require computationally demanding inference techniques [Wilson and Adams, 2013].

Simulating from a Gaussian process prior

I simulate from a GP prior and illustrate the differences between various kernels. The training
data consists of 100 points between 0 and 2. The hyperparameters, the lengthscale and the signal
variance, of every kernel are set to 1.
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Figure 2.1: Multiple simulations from a Gaussian process prior with different kernels.

The results in Figure 2.1 are as expected, since the plots become smoother from left to right,
top to bottom i.e. the Matérn 1/2 (OU) kernel (ν = 1

2 ) is nowhere differentiable, Matérn 3/2
(ν = 3

2 ) is once differentiable, Matérn 5/2 (ν = 5
2 ) is twice differentiable and RBF (ν −→ ∞) is

infinitely differentiable.

Regression in a Gaussian process model

This section closely follows Murphy [2012], Section 15.2 and Rasmussen and Williams [2006],
Chapter 2. A GP prior is set on the latent function f such that

f (x)∼ G P(m(x), K(xi,x j)), (2.26)

where x is the vector of input points, m(x) = E[ f (x)] is the mean function and K(xi,x j) =

E[( f (xi)−m(xi))( f (x j)−m(x j))
T ], for two random input points xi and x j. For any finite set of

points, this process defines a joint Gaussian

p(f|x) = N (f|µµµ,K), (2.27)

where K(xi,x j)= k(xi,x j), k is a kernel, µµµ =(m(x1), . . . ,m(xN)) and f=( f (x1), f (x2), . . . , f (xN)).
The vector notation can be written as f = f (x), and this notation convention is used throughout
the thesis. It is common to use a prior mean function of m(x) = 0, since the GP is flexible enough
to model the posterior mean arbitrarily well [Murphy, 2012], Section 15.2. However, if there is
a trend in the data, a good approach is to use a semi-parametric model, where a linear model is
fitted to the mean of the process and a zero-mean GP is applied to the residuals [Murphy, 2012],
Section 15.2.6.
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Predictions with Gaussian processes without added noise

Suppose that the training set data is x, consisting of N points, and f (xi) is the function evaluated
at a random point xi. In this section I start with the simple case, where I assume that there is no
noise added to the data and I wish to predict the function values f∗ at a new set of N∗ test points
x∗.

The joint distribution of the GP has the following form(
f
f∗

)
∼N

((
µµµ

µµµ∗

)
,

(
K K∗

K∗T K∗∗

))
, (2.28)

where K = K(x,x) is N×N, K∗ = K(x,x∗) is N×N∗ and K∗∗ = K(x∗,x∗) is N∗×N∗. Using
standard rules for conditioning Gaussians [Murphy, 2012], Equations 4.120-4.121, the posterior
has the following form

p(f∗|x∗,x, f) = N (f∗|µµµ∗,ΣΣΣ∗) . (2.29)

µµµ
∗ = µ(x∗)+K∗

T
K−1(f−µ(x)). (2.30)

ΣΣΣ
∗ = K∗∗−K∗

T
K−1K∗, (2.31)

where µ(x) = µµµ .
By having the posterior distribution in closed form, samples can be drawn directly from

the posterior p(f∗|x∗,x, f). Since the observations are noiseless, the GP model goes perfectly
through the observed points i.e. act as an interpolator for the training data, and reverts to prior
knowledge outside of the observed data. Therefore, the uncertainty increases when moving
further away from the observed data, given a valid kernel.

Gaussian processes predictions on noisy observed data

Now consider the case when noise is added to the data, yi = f (xi)+ εi, where εi ∼N (0,σy),
where the noise terms εi are independent. Then, the covariance of the noisy data y is

Cov[yp, yq] = K(xp, xq)+σ
2
y δpq, (2.32)

where δpq = I(p = q), a Kronecker delta term. Therefore,

Cov[y|x] = K+σ
2
y I = Ky. (2.33)

The second matrix is diagonal because I assumed the noise terms were independently added
to each observation. Moreover, I assume the mean is 0 for notational simplification. Using
Equation 2.28, but replacing the noise-free matrix K with the noisy version Ky, the joint density
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of the observed data and the latent function on the test points is given by(
y
f∗

)
∼N

(
0,

(
Ky K∗

K∗T K∗∗

))
. (2.34)

Thus, using the Equations 2.29-2.31, the posterior predictive density is

p(f∗|x∗,x,y) = N (f∗| µµµ∗,ΣΣΣ∗) . (2.35)

µµµ
∗ = K∗

T
K−1

y y. (2.36)

ΣΣΣ
∗ = K∗∗−K∗

T
K−1

y K∗. (2.37)

Inference in Gaussian processes

This subsection is mainly based on Murphy [2012], Section 15.2.4. and Rasmussen and Williams
[2006], Chapter 2. While working in a GP setting, problems of interest include the computation
of the posterior distribution over the latent function given the observed data and of the posterior
predictive distribution at a new set of test points. Another important problem of interest is in-
ferring the GP parameters within a Bayesian framework. Usually, in a standard GP regression
framework the data is assumed to have Gaussian distributed noise. Thus, the likelihood function
is given by

p(y|f) = N (y|f,σ2I). (2.38)

The marginal likelihood (the latent function f is marginalised out) has the following form

p(y|x) =
∫

p(y|f,x)p(f|x)df. (2.39)

The prior on the latent function f is

p(f|x) = N (f|0,K), (2.40)

and the likelihood function factorises over the data such that

p(y|f) =
N

∏
i

N (yi| fi,σ
2
y ). (2.41)

Using the Equations 2.40 and 2.41, the log marginal likelihood is given by

log p(y|x,θθθ) = logN (y|0,Ky) = logN (y|0,K+σ
2I) =−1

2
yK−1

y y− 1
2

log |Ky|−
N
2

log(2π).

(2.42)
The marginal log likelihood balances between model fit and model complexity. The first term is
a data fit term, the second term is a model complexity term and the third term is just a constant.
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Picking the best model would be a trade-off between the first two terms and this is discussed
in Murphy [2012], Section 15.2.4. To understand the trade-off, Murphy [2012] considers a
RBF kernel in one-dimension, where the lengthscale parameter is allowed to vary, the signal
variance parameter is kept constant at 1, and the noise variance σ2

y is constant. Let J(l) =

− log p(y|x, l). For a short lengthscale the fit is good, thus yK−1
y y is small. However, the model

complexity would be high since K will be almost diagonal (due to very small terms inside the
exponential function). Thus, the points are ‘spread’ apart, making the term log |Ky| large. For
a long lengthscale, the fit is poor. Thus, K is almost all 1’s (the terms inside the exponential
function are close to 0) i.e. the points are very ‘close’ together. Therefore, log |Ky| is small and
the model complexity term is low.

In order to infer the kernel parameters, the marginal likelihood is maximised by doing partial
differentiation with respect to the kernel parameters θ j

∂ log p(y|x)
∂θ j

=
1
2

yT K−1
y

∂Ky

∂θ j
K−1

y y− 1
2

tr
(

K−1
y

∂Ky

∂θ j

)
=

1
2

tr
(
(αααααα

T −K−1
y )

∂Ky

∂θ j

)
, where ααα = K−1

y y.
(2.43)

In the previous equation the following properties were used

∂K−1
y

∂θ j
=−K−1

y
∂Ky

∂θ j
K−1

y . (2.44)

∂ log |Ky|
∂θ j

= tr
(

K−1
y

∂Ky

∂θ j

)
. (2.45)

The computation times to calculate K−1
y is O(N3) and to calculate the gradient is O(N2)

per hyperparameters (kernel parameters). If there are constraints on the hyperparameters, then
a transformation that satisfies the constraints can be used and the chain rule can be applied to
compute the gradient. Since the log marginal likelihood and its derivative are available, the
estimation of the kernel parameters can be done by using any gradient based optimiser or by
using an MCMC sampling method, among other methods. However, highly-correlated kernel
parameters might lead to slow convergence of the optimiser and inefficient MCMC sampling.
To remedy this, whitening a parameter can make the optimisation or the MCMC sampling more
efficient. This is achieved by taking the Cholesky decomposition of the prior covariances such
that the whitened variable θ̂θθ = L−1θθθ , where L is the Cholesky decomposition matrix. The
marginal likelihood is evaluated at Lθ̂θθ , then the chain rule is applied to compute the gradient
and recover the initial parameters θθθ :

∂ log p(y|x)
∂ θ̂θθ

=
∂ log p(y|x)

∂θθθ

∂θθθ

∂ θ̂θθ
= LT ∂ log p(y|x)

∂θθθ
. (2.46)
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Limitations of Gaussian processes

One limitation that GPs have is the high computational complexity, as training the model, i.e.
inverting the matrix Ky takes O(N3) time with storage demands O(N2) time. Another limitation
is that for general likelihood models, the log marginal likelihood is intractable, hence methods
such as MCMC are needed to compute the integral from Equation 2.39.

2.3 Relationship between Gaussian processes and other mod-
els

In this section I discuss GPs from different perspectives. Firstly, I look at GPs from a ma-
chine learning perspective, where I show how to get from a parametric linear model to a non-
parametric model, in this case a GP [Bishop, 2006]. Secondly, I look at how a GP can be ob-
tained using convolutions of continuous-time movement models [Hooten and Johnson, 2017].
Finally, I illustrate the link between GPs and state space models, and how a GP can be con-
verted to a state space model and vice-versa [Särkkä et al., 2013, Särkkä and Hartikainen, 2012,
Hartikainen and Särkkä, 2010]. The main advantage of this discussion is that I summarise and
collect in one place all the ways GPs are represented in the literature in a clear and concise
manner.

Original contributions are made in this chapter by offering more explanations on how to
convert a covariance function to a state space model in Section 2.3.3. In addition to this, I show
the full details on how to arrive at the stochastic differential equations when the covariance
function is part of the Matérn class of kernels as these details are not shown in Särkkä et al.
[2013]. In Hartikainen and Särkkä [2010], the authors illustrate a method on how to derive the
stochastic differential equations when the kernel is squared exponential (RBF). I review that
method, and offer more explanations when needed. Also, in Särkkä and Hartikainen [2012], in
the Supplemental Material, Section 2, the authors use an identity (Equation 23) to deduce the
stochastic differential equation when the kernel is squared exponential. Although, the context
is different, given that I use a temporal model, not a spatio-temporal model as employed in
Särkkä and Hartikainen [2012], I prove thoroughly this identity using induction (proof shown
in Appendix, Section A in this thesis, but not shown in Särkkä and Hartikainen [2012]), and
then use it to provide an alternative derivation of the stochastic differential equations when the
covariance function is the squared exponential kernel.

2.3.1 Link between linear models and Gaussian processes

In this subsection, I show that from a parametric representation of a linear model I can arrive at
a GP. This derivation is mainly based on Bishop [2006], Section 6.4.1. I consider a model such
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that
f (x) = wT

φφφ(x), (2.47)

where x is the data vector, w is a weight vector and φφφ(x) is a vector of functions of the data. A
prior distribution is set over the weights w such that

p(w) = N (w| 0,σ2I), (2.48)

where the hyperparameter σ is the standard deviation of the distribution. The probability dis-
tribution over the prior p(w) induces a probability distribution over the functions f (x) such
that

f = ΦΦΦw, (2.49)

where ΦΦΦ is the design matrix with elements Φnk = φk(xn). Since the weights w are normally
distributed and f is a linear combination of the weight variables, f is also Gaussian. The mean
and the variance can be found in the following way,

E(f) = ΦΦΦE(w) = 0. (2.50)

Cov(f) = E(ffT ) = ΦΦΦE(wwT )ΦΦΦT = σ
2

ΦΦΦΦΦΦ
T = K, (2.51)

where k is the kernel and K is the covariance matrix with the elements

Knm = k(xn,xm) = σ
2
φφφ(xn)

T
φφφ(xm). (2.52)

A key fact of GPs is that they can be completely defined by their second-order statistics,
the mean and the covariance function. Therefore, if a GP has a mean zero prior, defining the
covariance function completely defines the process. This is equivalent to choosing the mean of
the prior over the weights w to be 0.

I have shown that I arrive at a GP from a parametric model specified by the functions φφφ(x).
In practice, the kernel can be specified directly, rather than specifying first the functions φφφ(x).
As for the other direction, given a function f , then f can be parameterised to get to a parametric
model.

2.3.2 Gaussian processes as stochastic process models

This subsection closely follows Hooten and Johnson [2017]. In this subsection I show that a GP
can be obtained by using convolutions of continuous-time movement models. Brownian motion
might be represented as an integral of white noise and this process can be written as a stochastic
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integral equation using Ito’s notation [Protter, 2004] as follows

b(ti) =
∫ ti

t0
db(τ), (2.53)

where b(ti) is scaled multivariate Brownian motion (i.e. a multivariate Wiener process) at times
ti. Brownian motion is a stochastic process, therefore it can be integrated with respect to time to
obtain a smoother process as follows

ηηη(t) =
∫ t

t0
b(τ)dτ, (2.54)

where ηηη(t) is a similar process to the integrated stochastic process by Johnson et al. [2008].
The velocity model in continuous-time has the following form

µµµ(t) = µµµ(0)+ηηη(t), (2.55)

where µµµ(ti) is the position at time ti. Johnson et al. [2008] model the velocity directly as an OU
process, then integrate it to get a smoother process and then substitute the integrated velocity
process into Equation 2.55 to yield the position process. The framework used by Johnson et al.
[2008] can be generalised by using convolutions in the form of

ηηη(t) =
∫ tn

t0
H(t, τ)b(τ)dτ, (2.56)

where tn is the last time at which data are observed and the matrix H(t, τ) is a 2× 2 diagonal
matrix with elements equal to the function

h(t,τ) =

{
1 if t0 < τ ≤ t.

0 if t < τ ≤ tn.
(2.57)

This convolution is a Brownian motion velocity-based model and is part of a more general
class of stochastic movement models named functional movement models (FMMs) [Hooten and
Johnson, 2017]. Hooten and Johnson [2017] show in the Appendix A (Supplementary Material)
(details are not shown here) that the FMMs from Equation 2.56 can be rewritten as

ηηη(t) =
∫ tn

t0
H̃(t, τ)db(τ), (2.58)

where H̃(t, τ) is a diagonal matrix with elements

h̃(t, τ) =
∫ tn

τ

h(t, τ̃)dτ̃. (2.59)

The FMM representation from Equation 2.58 is regarded as a process convolution or a kernel
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convolution [Hooten and Johnson, 2017, Calder, 2007]. Different kernels h(t, τ) lead to differ-
ent movement models. After the smoothing kernel for Brownian motion is chosen, illustrated in
Equation 2.56, Equation 2.59 is used to obtain the integrated kernel h̃(t, τ) that is convoluted
with white noise. In one-dimension, the covariance function for the movement process η(t) can
be calculated [Hooten and Johnson, 2017, Paciorek and Schervish, 2006] as the convolution of
kernels

cov(η(t1), η(t2)) =
∫ tn

t0
σ

2h̃(t1, τ) h̃(t2, τ)dτ, (2.60)

for any two times t1 and t2. The covariance function shown in Equation 2.60 is positive definite
and the proof of this is shown in Equation (4) in Paciorek and Schervish [2006] (the details are
not shown here). From Equation 2.60, a GP can be obtained with the following representation
[Hooten and Johnson, 2017]

ηηη ∼N (0, σ
2

∆t H̃H̃T ), (2.61)

where (t1, . . . , tn) is a finite subset of times, ηηη = (η1, η2, . . . , ηn)
T , 0 is an n×1 vector of zeros

and H̃ is a matrix of basis functions with the i-th row equal to h̃(ti, τ) for all τ . Translating this
into a position process µµµ at the observation times (t1, . . . , tn) results in

µµµ ∼N (µ(0)1, σ
2

∆t H̃H̃T ). (2.62)

This process can be generalised further. For two dimensions, the joint model can be written as

ηηη ∼N (0, σ
2

∆t (I⊗ H̃H̃T )), (2.63)

where (t1, . . . , t2n) is a finite subset of times, ηηη = (η1, η2, . . . , η2n)
T , 0 is an 2n×1 vector of

zeros, I is a 2×2 identity matrix and H̃ is a basis functions matrix for both directions (longitude
and latitude). Also, the symbol ⊗ refers to the tensor product of two vectors.

In conclusion, Equation 2.62 is equivalent to the definition for a GP. Thus, I showed that the
convolution of continuous-time movements models leads to a GP.

2.3.3 Gaussian processes as state space models

In this subsection2, I show that spatial, temporal and spatio-temporal GPs can be converted into
infinite dimensional state space models and vice-versa. This idea was previously implemented
by Lindgren et al. [2011], but this section is mainly based on Särkkä et al. [2013], Särkkä [2017],
Särkkä and Hartikainen [2012]. The main issue with Gaussian processes is that the computa-
tional costs are high, O(N3). Using SDE/SPDE (stochastic differential equations/stochastic
partial differential equations) and state space models is a good alternative to GPs given that their

2In this subsection I will use the same notation as Särkkä et al. [2013], given that vector notation is more
common in the literature when working with state space models. However, getting from a vector notation to a
scalar notation can be easily done by using Equation 23 from Särkkä et al. [2013].
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inference problem might be solved with Bayesian filters (e.g. Kalman filter) and smoothers with
O(N) computation complexity [Grewal and Andrews, 2011, Cressie and Wikle, 2002, Hiltunen
et al., 2011], where N is the number of data points. The downside of following the SDE/SPDE
approach is that approximations to the spectral density are often used when it does not have a ra-
tional function form (for example, the squared exponential kernel does not have a rational form
for its spectral density) and the mathematics might be difficult [Särkkä, 2017]. Before going into
further details, I illustrate a few examples of representing a GP as a SDE in Equations 2.64-2.66

In the first example, consider the function f (x), a spatial GP model with kernel k(x,x′),
which has the equivalent stochastic partial differential equation model [Särkkä, 2017] as follows

L f (x) =W (x), (2.64)

where L is an operator, W (x) is a vector of white noise processes, x ∈ Rd .
Another example is when f is a temporal GP model with kernel k(t, t ′), that has the equivalent

state space/SDE formulation [Hartikainen and Särkkä, 2010] as follows

df(t)
dt

= Af(t)+LW(t), (2.65)

where A, L are given matrices and W(t) is a vector of white noise processes.
Finally, the spatio-temporal GP f, with kernel k(x, t,x, t ′) has the corresponding stochastic

evolution equation [Särkkä and Hartikainen, 2012]

∂ f(x, t)
∂ t

= Axf(x, t)+LW(x, t), (2.66)

where Ax is an operator, L is a given matrix and W is a vector of white noise processes.

Gaussian process regression reformulation

The GP regression problem can be rewritten in the following form

f (x)∼ G P(m(x), k(x,x′)). (2.67)

y = H f (x)+ εεε, εεε ∼N (0, ΣΣΣ), (2.68)

where x is a d-dimensional input vector, ΣΣΣ = σ2I, H f (x) = ( f (x1), . . . , f (xN)) and the linear
operator K is designed to select the elements of the function f that are observed. The above
infinite-dimensional problem can be reformulated into a finite-dimensional version of a Bayesian
linear regression problem [Särkkä et al., 2013] as follows

f∼N (m,K). (2.69)

y = Hf+ εεε, εεε ∼N (0,ΣΣΣ), (2.70)
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where H is a matrix and f = f (x).
Solving the infinite-dimensional problem GP model is analogous to solving a finite-dimensional

Bayesian linear regression problem [Särkkä et al., 2013, Särkkä and Hartikainen, 2012]. This is
consistent with the definition of a GP, where the GP is defined just at a finite number of points.

Bayesian filters and smoothers algorithms

As stated above, an alternative to GP regression is using Bayesian filters (e.g. Kalman filter)
and smoothers, which significantly reduce the computation time [Grewal and Andrews, 2011,
Cressie and Wikle, 2002, Hiltunen et al., 2011]. Suppose a state space model is of the form
[Särkkä et al., 2013]

df
dt

= Af(t)+LW(t). (2.71)

yk = Hf(tk)+ εεεk, (2.72)

where k = 1, . . . ,T and A, L, H are given matrices and εεεk is a vector of Gaussian noise measure-
ments and W(t) is a vector of Gaussian white noise processes. A Gaussian white noise process
is a zero mean Gaussian random process, where the values of the process are uncorrelated. The
vector function f(t) is a solution to a linear SDE (Equation 2.71) driven by Gaussian noise,
therefore, f is a GP [Särkkä et al., 2013, Särkkä, 2017]. The solution of an SDE is a Markovian
process, therefore the Kalman filter and Rauch-Tung-Striebel (RTS) smoother algorithms can
be used to calculate the posterior distribution of an unobserved test point in linear time [Särkkä
et al., 2013, Särkkä, 2017].

Spatio-temporal Gaussian processes representation as a state space model

Spatio-temporal GP regression is used with models of the following form [Särkkä et al., 2013,
Särkkä, 2017]

f (x, t)∼ G P(0, k(x, t;x′, t ′)). (2.73)

yk = Hk f (x, tk)+ εεεk. (2.74)

The corresponding infinite-dimensional state space model [Särkkä et al., 2013, Särkkä, 2017] is

∂ f(x, t)
∂ t

= Axf(x, t)+LW(x, t). (2.75)

yk = Hkf(x, tk)+ εεεk, (2.76)

where Ax and Hk are linear operators.
This model is an infinite-dimensional Markovian model, thus, linear time inference of the
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function f is possible by using the infinite-dimensional Kalman filter and RTS smoother [Särkkä
et al., 2013, Särkkä and Hartikainen, 2012, Särkkä, 2017]. As for the spatial and temporal GPs,
the representations as state space models are shown in Equations 2.64 and 2.65. Linear time
inference is possible in these cases using the same algorithms by following the same procedure
as above.

Gaussian processes as solutions to linear SDEs

In this subsection I show that GPs can be constructed as solutions to n-th order stochastic linear
differential equations of the following form [Särkkä et al., 2013, Särkkä, 2017]

an
dn f (t)

dtn + · · ·+a1
d f (t)

dt
+a0 f (t) =W (t), (2.77)

where W (t) is a white noise GP with mean zero. As before, the solution f (t) is a GP, because
W (t) is a GP (the solution f (t) of a linear differential equation is also Gaussian because W (t) is
Gaussian, as it is a linear operation on the input) [Hartikainen and Särkkä, 2010, Särkkä, 2017].

If f =
(

f , d f
dt , . . . ,

dN−1 f
dtN−1

)
, then a space state model of the form is obtained

df
dt

= Af+LW (t). (2.78)

f (t) = Hf+ ε, (2.79)

where

A =


0 1 . . . 0 0
... . . . ... . . .

...
0 0 0 0 1
−a0 −a1 . . . −an−2 −an−1

 ,

and H = (1 0 . . .0), L = (0 0 . . .1)T . The vector process f(t) is Markovian, although f (t) is
generally not. Thus, a model of the same form as before is obtained and linear-time inference is
performed for the function f using a Kalman filter or smoother algorithms [Särkkä et al., 2013,
Särkkä, 2017].

Converting from state space models to covariance functions

In this subsection I show how to get from the space state model formulation to the corresponding
covariance function [Särkkä et al., 2013, Särkkä, 2017]. If the Fourier transform of Equation
2.77 is taken and solved for F(w), the following equation is obtained

F(w) =
(

1
an(iw)n + · · ·+a1(iw)+a0

)
W (w) = G(iw) W (iw), (2.80)
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where G(iw) =
(

1
an(iw)n+···+a1(iw)+a0

)
is the transfer function and W (iw) is the Fourier transform

of the white noise process. From the table of Fourier transform pairs from time domain to
frequency domain I used the following transformation

dn( f (t))
dtn → (iw)nF(w). (2.81)

The spectral density of the process can be calculated by squaring the absolute value of the
Fourier transform of the process. Thus, the spectral density of the process is

S(w) = |W (iw)|2|G(iw)|2. (2.82)

The spectral density of the white noise process is a constant3, hence the spectral density is of the
following form

S(w) =
constant

polynomial in w2 . (2.83)

Therefore, the spectral density of Equation 2.77 is a rational function. By using the classical
Wiener–Khinchin theorem, calculating the inverse Fourier transform of the spectral density gives
the stationary covariance function

C(t) = F−1[S(w)] =
1

2π

∫
S(w)exp(iwt)dw. (2.84)

Finally, the corresponding covariance function is

k(t, t ′) =C(t− t ′). (2.85)

Converting from a covariance function to a state space model

A state space model can be formulated given a covariance function as follows [Särkkä et al.,
2013, Hartikainen and Särkkä, 2010, Särkkä, 2017]

• Firstly, the spectral density S(w) is calculated by computing the Fourier transform of the
covariance function C(t).

• If S(w) is not a rational function, then an approximation using Taylor series expansions or
Padé approximants is formed.

• Factorisation into stable and unstable parts using spectral factorisation is done such that

S(w) = H(iw)qcH(−iw), (2.86)

3White noise is noise that has equal intensity at different frequencies, therefore the spectral density is constant
and independent of frequency. It is called white noise because of its similarities to white light, which has equal
quantities of all colors [Mancini, 2003].
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where qc is the spectral density of the white noise process. The transfer function H(iw), a
function of iw, is stable and rational if and only if its roots (the zeros of the denominator)
are in the upper half plane. The zeros of the numerator should also be in the upper plane
for the transfer function to be in the minimum phase.

• Using methods from control theory [Glad and Ljung, 2000], the more general stochastic
evolution equations is obtained4

df(x, t) = Af(x, t)dt +LdW(x, t), (2.87)

where

A =


0 1 . . . 0 0
... . . . ... . . .

...
0 0 0 0 1
−A0 −A1 . . . −Am−2 −Am−1


is a matrix of linear operators, W(x, t) is a Hilbert space valued Wiener process, and
L = (0 0 . . .1)T . Moreover, the linear operators A j are defined as

A0 = F x
−1 [a0(iwx)] .

A1 = F x
−1 [a1(iwx)] .

...

Am−1 = F x
−1 [am−1(iwx)] ,

where F x
−1 is the inverse Fourier transform. Finally, a0,. . . am−1 are the coefficients of

the rational function form of the spectral density S(w), similar to the coefficients ai found
in Equation 2.80.

More explicitly, the method called spectral factorisation is used to find the transfer function
H(iw). The method consists in the following steps

• Compute the roots of the numerator and denominator of S(w). Given that S(w) is a polyno-
mial in w2, i.e. it has even degree, the roots will come in pairs and be complex conjugates
of one another.

• Construct H(iw) from the positive-imaginary-part roots only or from the negative-real-
part roots only5.

4More details of how to get to the evolution equation are shown below alongside detailed examples.
5In Särkkä et al. [2013] there is no mention of using the negative-real-part roots, however in Särkkä and Har-

tikainen [2012], Example 4.1, the authors use the negative-real-part roots only. Also, in Hartikainen and Särkkä
[2010], Section 4.2, negative-real-part roots were used to form the transfer function. Thus, I added this part in.
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• Using the stable function H(iw) construct a stable Markov process, which leads to the
following frequency domain representation of the process6

(iw)mF(w)+hm−1(iw)m−1F(w)+ · · ·+h0F(w) =W (w),

where W (w) and F(w) are the formal Fourier transforms of W (t) and f (t), and h0, h1, . . .
, hm−1 are the coefficients of the polynomial in the denominator of H(iw).

• The Markov representation in the time domain is

dm f (t)
dtm +hm−1

dm−1 f (t)
dtm−1 + · · ·+h1

d f (t)
dt

+h0 f (t) =W (t),

which is the desired form. Getting to the frequency domain representation can easily be
done using Equation 2.81.

• It is important to remark that if the spectral density does not have a rational form, using
approximations of S(w) will only lead to approximate covariance functions.

I show multiple examples converting from a covariance function to the corresponding linear
differential equations. The full details are not shown in Särkkä et al. [2013], however I derive
the full details here. The class of kernels of interest is the Matérn class. The covariance function
of the Matérn familiy in one-dimension is given by

k(t, t ′) = σ
2 21−ν

Γ(ν)

(√
2ν
|t− t ′|

l

)ν

Kν

(√
2ν
|t− t ′|

l

)
, (2.88)

where ν ,σ , l > 0 are the smoothness, magnitude and lengthscale parameters, Kν(·) is the modi-
fied Bessel function of the second kind and Γ(·) is the Gamma function.

To define the spectral density I first state the Bochner’s theorem [Rasmussen and Williams,
2006] as follows

Theorem 1 A complex-valued function k on RD is the covariance function of a weakly station-

ary mean square continuous complex-valued random process on RD if and only if it can be

represented as

k(τττ) =
∫
RD

e2πis·τττdµ(s), (2.89)

where µ is a positive finite measure.

From Rasmussen and Williams [2006], a process with a constant mean and with an invariant
variance to translations is called weakly stationary. Moreover, a strictly stationary process has

6This bullet point and the next are not found in Särkkä et al. [2013], however I added them in according to
Hartikainen and Särkkä [2010], due to lack of clear explanations in Särkkä et al. [2013] on how to actually derive
the transfer function and the stochastic differential equation. Examples in Särkkä et al. [2013] are also very brief
and skip the details.



CHAPTER 2. REVIEW OF BACKGROUND THEORY 29

all of its finite dimensional distributions invariant to translation. Moreover, a process X is called
mean square continuous if

E(X2
t )<+∞, (2.90)

lim
s→t

E
[
|Xs−Xt |2

]
= 0. (2.91)

If the spectral density S(s) exists, the Wiener-Khintchine theorem states that the covariance
function and the spectral density are Fourier duals of each other [Rasmussen and Williams,
2006], Equation 4.6 such that

k(τττ) =
∫

S(s)e2πis·τττds. (2.92)

S(s) =
∫

k(τττ)e−2πis·τττdτττ. (2.93)

The spectral density of the Matérn class of kernels [Rasmussen and Williams, 2006] is

S(s) = σ
2 2DπD/2Γ(ν +D/2)(2ν)ν

Γ(ν)l2ν

(
2ν

l2 +4π
2s2
)(−ν+D/2)

, (2.94)

where D is the number of dimensions. In one-dimension the above term can be simplified such
that

S(w) = σ
2 2π1/2Γ(ν +1/2)

Γ(ν)
λ

2ν
(
λ

2 +w2)(−ν+1/2)
, (2.95)

where λ =
√

2ν

l and 4π2s2 = w2 (a simple transformation to angular frequency notation). From
the equation above the spectral density is proportional to

S(w) ∝ (λ 2 +w2)−(ν+
1
2 ). (2.96)

Keeping in mind that i2 =−1 , the spectral density is factorised into

S(w) ∝ (λ + iw)−(p+1)(λ − iw)−(p+1), (2.97)

where ν = p+ 1
2 and p is a non-negative integer. This function is a rational function in w2,

therefore the transfer function H(iw) of the corresponding stable Markov process exists and has
the following form

H(iw) = (λ + iw)−(p+1). (2.98)

Using Equations 2.95-2.98 and Equation 2.86, the corresponding white noise process spectral
density is

qc =
2σ2π1/2λ 2p+1Γ(p+1)

Γ(p+1/2)
. (2.99)

For integer values of p, Matérn 1/2 (p = 0), Matérn 3/2 (p = 1), Matérn 5/2 (p = 2) or the
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squared exponential kernels (p→∞) are obtained. My goal is to deduce all the stochastic differ-
ential equations in all of these cases. I start by deriving the SDE for p = 0 (Matérn 1/2 kernel).
Following the procedure from Section 2.3.3 and using Equation 2.97 the transfer function is

H(iw) = (λ + iw)−1 =
1

λ + iw
. (2.100)

Then, the polynomial frequency domain representation of the process is

(iw)1F(w)+λF(w) =W (w), (2.101)

where m = 1 and λ = h0. Hence, the SDE representation in the time domain is the following

d f (t)
dt

+λ f (t) =W (t). (2.102)

The solution to this SDE is shown in Chapter 4, Section 4.2.2.
For p = 1, I get

H(iw) = (λ + iw)−2 =
1

(iw)2 +2λ (iw)+λ 2 . (2.103)

Then, the polynomial frequency domain representation of the process is

(iw)2F(w)+h1(iw)F(w)+h0F(w) =W (w). (2.104)

Therefore, the SDE formulation for the Matérn 3/2 process is

d f 2(t)
dt2 +2λ

d f (t)
dt

+λ
2 f (t) =W (t). (2.105)

For p = 2, I have

H(iw) = (λ + iw)−3 =
1

(λ + iw)3 =
1

(iw)3 +3λ (iw)2 +3λ 2(iw)+λ 3 . (2.106)

From the previous equation the coefficients that are needed can be identified, m = 3, h2 = 3λ ,
h1 = 3λ 2 and h0 = λ 3. Therefore, the SDE representation for the Matérn 5/2 kernel is

d f 3(t)
dt3 +3λ

d f 2(t)
dt2 +3λ

2 d f (t)
dt

+λ
3 f (t) =W (t). (2.107)

The derivations of the Matérn 3/2 and 5/2 SDE are not explicitly shown in Rasmussen and
Williams [2006], but the final solutions are shown in Rasmussen and Williams [2006], Equation
4.17. To solve the SDEs for Matérn 3/2 and 5/2 processes, Laplace transformations [Särkkä and
Solin, 2019], Section 2.5 can be used. Alternatively, an easy solution to find the function f is to
use Fourier transformations as in Särkkä and Solin [2019], Example 2.2.
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Now, the aim is to derive the stochastic differential equation when ν→∞ (or p→∞). In this
case the kernel is called the squared exponential or RBF kernel. The one-dimensional squared
exponential covariance function has the following form

k(t, t ′) = σ
2 exp

(
−(t− t ′)2

2l2

)
. (2.108)

Performing the Fourier transform of k(t, t ′), the spectral density is

S(w) =
∫

k(t, t + τ)exp(−iwt)dτ =
∫

σ
2 exp

(
− τ2

2l2

)
exp(−iwτ)dτ

= σ
2
√

2πl exp
(
− l2w2

2

)
,

(2.109)

where the Fourier transformation table is used to get to the last equation. The spectral density
S(w) of the RBF kernel is not a rational function, therefore I use a Taylor series approximation
to approximate it. As a reminder, the Taylor series approximation formula is

f (x) = f ((x−a)+a) = f (a)+
f ′(a)
1!

(x−a)+
f (2)(a)

2!
(x−a)2 + . . . , (2.110)

where in general f (k)(a) is the k-th derivative of f evaluated at the point a. Using the Taylor
Series expansion I get that

exp
(

l2w2

2

)
= exp

(
w2

4k

)
≈ 1+

w2

4k
+

1
2!

w4

(4k)2 + · · ·+
1

N!
w2N

(4k)N , (2.111)

where I denoted k = 1
2l2 . From the previous expression I get that7

S(w)≈ σ
2
√

π

k
1

1+ w2

4k +
1
2!

w4

(4k)2 + · · ·+ 1
N!

w2N

(4k)N

. (2.112)

I want the coefficient in front of the leading term w2N to be 1, therefore I factorise the coefficient
of w2N to get

S(w) = σ
2N!(4k)N

√
π

k

(
1

∑
N
n=0

N!(4k)N−n

n! w2n

)
. (2.113)

The spectral density is now of the desired rational form. I next calculate the transfer function

7In Särkkä et al. [2013], in Example 2, the authors seem to have forgotten a coefficient of 1
2i in front of the i-th

term in the sum series.
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H(iw). For simplicity I assume N is even (so that the leading coefficient is 1). I denote

P(iw) =
N

∑
n=0

N!(−1)n(4k)N−n

n!
w2n. (2.114)

The transfer function H(iw) is formed by following this procedure

1. Calculate numerically the roots of the polynomial P(x).

2. P(x) is an even degree polynomial with real coefficients, therefore the roots will be com-
plex conjugates and will come in pairs. Let P−(x) be the polynomial formed by the solu-
tions with negative real parts, and P+(x) the polynomial formed by the roots with positive
real parts. Then,

P(x) = P−(x)P+(x).

3. The transfer function is then H(iw) = 1
P−(iw) and the corresponding white noise spectral

density is qc = σ2N!(4k)N
√

π

k . This procedure results in S(w) = H(iw)qcH(−iw).

The derivation so far for the RBF kernel SDE representation has been reviewed using Har-
tikainen and Särkkä [2010], and I added some explanations where the reader might get stuck.
In Figure 2 of Hartikainen and Särkkä [2010], the authors show that for N = 6, the approximate
spectral density and covariance functions are almost identical to the true ones. Moreover, in
Hartikainen and Särkkä [2014], the authors prove rigorously that the approximate spectral con-
verges to the true density as N → ∞ and that the corresponding covariance function converges
to the true covariance function, shown in Equations 6 and 7 in Hartikainen and Särkkä [2014].

There is another way to derive the stochastic differential equation of a RBF process. The
following identity can be used 8 to derive the transfer function H(iw) given the spectral density
formula in Equations 2.112

1
a0 +a1(iw)2 + · · ·+(aN)(iw)2N =

1
b0 +b1(iw)+ · · ·+bN(iw)N ×

1
b0 +b1(−iw)+ · · ·+bN(−iw)N .

(2.115)
The first term of the right hand side term is the transfer function H(iw). Using the identity
above, S(w) = H(iw)qcH(−iw), which is the form needed to form the SDE representation of
the process. Using the coefficients of H(iw) = 1

b0+b1(iw)+···+bn(iw)N , the Markov representation
in the time domain is

bN
d f (N)

dtN +bN−1
d f (N−1)

dtN−1 + · · ·+b1
d f (1)

dt1 +b0 f (t) =W (t), (2.116)

where W (t) is the white noise process.

8The proof is shown in the Appendix, Section A in Särkkä et al. [2013].
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It is not entirely obvious why the identity in Equation 2.112 holds. I discuss here in more
detail. The identity can be rewritten as

1
a0 +a1(iw)2 + · · ·+(aN)(iw)2N =

1
b0 +b1(iw)+ · · ·+bN(iw)N

× 1
b0 +b1(−1)1(iw)+ · · ·+bN(−1)N(iw)N .

(2.117)

By doing the multiplication in the RHS term it can be easily seen why the odd powers of (iw)
disappear. The formula for a coefficient ak is

ak = b0b2k + · · ·+b2
k(−1)k +bk+1bk−1(−1)k−1 + · · ·+b2kb0, (2.118)

using all the possible combinations of the terms that can be used to get to the power of 2k.
It is known from the previous method that a large N is not needed to have an almost identical

spectral density and covariance function. A value of N = 6 is sufficient, and hence for a value
of N = 6 I get

a0 = b2
0. (2.119)

a1 = 2b2b0−b2
1. (2.120)

a3 = 2b4b0−2b1b3 +b2
2. (2.121)

a4 = 2b0b6−2b1b5 +2b2b4−b2
3. (2.122)

a5 = b4b6−b2
5. (2.123)

a6 = b2
6. (2.124)

Given that ai =
N!(−1)i(4k)N−i

i! , the system of equations above can be solved to get the coefficients
bi’s to form the SDE representation when the covariance function is the RBF kernel. The previ-
ous approach gives a numerical way to find the transfer function H(iw), given that that the roots
of P(x) get computed numerically, however this approach gives exact results for the coefficients
bi’s.

In summary, I showed in this subsection that a GP can be represented as a state-space model
[Särkkä et al., 2013, Hartikainen and Särkkä, 2010, Lindgren et al., 2011, Särkkä, 2017] in
order to reduce the high computational costs to linear-time inference by using Kalman filters
and smoothers algorithms [Grewal and Andrews, 2011, Cressie and Wikle, 2002, Hiltunen et al.,
2011]. Also, the inverse transformation is possible and a state space model can be represented
as a GP [Särkkä et al., 2013, Särkkä, 2017]. Moreover, I showed in Section 2.3.3 that GPs
arise as solutions to linear stochastic differential equations. The full details are not shown in
Särkkä et al. [2013], however using Särkkä et al. [2013], Hartikainen and Särkkä [2010], Särkkä
and Hartikainen [2012], I illustrated the full derivation on how to get the stochastic differential
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equations for the Matérn class. The advantage of representing a GPs as a state space model
is that they are a computationally cheaper alternative to GPs and I showed briefly how this
might be done. The downsides are that approximations are often needed to compute the spectral
factorisation and the mathematics might be difficult [Särkkä, 2017].

Conclusions

In this section, I discussed GPs from three different perspectives. Firstly, from the machine
learning perspective, I illustrated how a parametric model is obtained from a non-parametric
model, in this case a GP. Secondly, from the ecology perspective, I demonstrated that con-
volutions of continuous-time movement models can yield GPs. Finally, I showed that GPs are
solutions to linear stochastic differential equations and can be represented as a state space model
and vice-versa. The strength and the main contribution of this chapter lie not in its distinct sec-
tions, which can be found scattered across the literature, but as a whole, connecting the dots,
and explaining to a lay reader the bigger picture of GPs. I also showed the full details of how
to derive the stochastic differential equations for the Matérn class of kernels and offered further
explanations when I considered that it was necessary.

2.4 Non-stationary Gaussian processes

In a standard GP setting, the three key parameters: lengthscale, signal variance (amplitude)
and noise variance are constant and are not input-dependent. Stationary GPs lack the flexibility
to model data that presents various degrees of non-stationarity [Paciorek and Schervish, 2004,
Gibbs, 1997, MacKay, 1997]. In this case a non-stationary GP, where all or a subset of the
parameters: lengthscale, signal variance and noise variance vary might be more suitable for
this type of data. In such a scenario, the analytical posterior of the GP becomes intractable
[Bachelir, 1900, Tolvanen et al., 2014]. For example, non-stationarities in the GP have been
introduced in Paciorek and Schervish [2004], Gibbs [1997], where the lengthscale parameter is
input-dependent, or in the signal variance and/or in the noise parameter in Kersting et al. [2007],
Tolvanen et al. [2014].

Non-stationarity in a GP model can be introduced through the use of valid non-stationary
kernels (examples can be found in Rasmussen and Williams [2006], Chapter 4, one particu-
lar example is a neural network kernel). Another approach is to use a hierarchical GP model
[Heinonen et al., 2016, Tolvanen et al., 2014], where all or a subset of the GP parameters are
modelled by other GPs. The latter has multiple advantages over the former, including increased
flexibility, as the covariance kernels of the second-layer of the GPs model determine the smooth-
ness and structure of the first-layer parameters. Another advantage is that given the hierarchi-
cal structure and the ability to choose the GP priors on all the layers, the modeller’s control
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is increased, thus increasing the applicability potential to real life applications and the inter-
pretability of the GP parameters. A recent example is Torney et al. [2021], where the authors
use a hierarchical GP model to learn time-varying movement parameters with periodic (seasonal
and diurnal) structure. The covariance function of the first layer of the GPs needs to be a valid
non-stationary kernel, and in this regard, the technique that can transform any valid stationary
covariance function into a valid non-stationary covariance function developed by Paciorek and
Schervish [2004] can be used with great effectiveness.

Another remark is that the covariance function of a non-stationary GP will depend on the
actual datapoints. For example, suppose that the covariance function is non-stationary in the
lengthscale parameter l, but stationary for the other parameters: the noise variance ω2, the
signal variance σ2, and that there are n datapoints xi. Therefore, there are n li’s for each value
of xi, while the other parameters are kept at constant value.

Similar to the hierarchical model developed by Heinonen et al. [2016] and used in this thesis,
in Chapters 5 and 6, is the deep Gaussian process (DGP) model, a multi-layer generalisation of
a GP, where the prior is defined recursively on multiple stochastic functions [Damianou and
Lawrence, 2013, Salimbeni and Deisenroth, 2017, Wang et al., 2016]. The difference between
the hierarchical model introduced by Heinonen et al. [2016] and the DGP model is that in the
latter, independent GP priors are set on each stochastic function, not on the parameters of the GP
parameters. Mathematically, a DGP model resembles a composition of multivariate functions.

Across the literature there are other attempts to account for the non-stationarity in the data
such as Tresp [2001], where the author uses a mixture of GPs, called a MGP model. This
approach has the advantage that it uses arbitrary local GP kernels, however it does not guarantee
function continuity over GP kernel transitions. Contrary to this, Paciorek and Schervish [2004]
develop a non-stationary GP model which guarantees function continuity at the borders, however
the local stationary kernels belong to the same family of kernels.

From an ecology perspective, in order to define more realistic animal movement models,
allowing for the possibility for the animals to switch between several behavioural states is nec-
essary. For example, these behavioural states might include ‘encamped’, where you have short
step-lengths and low directional persistence or ‘exploratory’, where you have long step-lengths
and high directional persistence [Morales et al., 2004]. To address this, in Chapter 5, we employ
a non-stationary hierarchical GP model [Heinonen et al., 2016] that allows for the inference of
continuous latent behavioural states. However, in situations where there are sharp transitions be-
tween states, a MGP model can be a better alternative [Tresp, 2001] than the hierarchical model.
In contrast, the latter model incorporates smooth transitions between states more effectively than
the former model.
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2.5 Ornstein-Uhlenbeck process

Most of the movements of animals models are derived from simple random walk processes.
The studies of the irregular motion of individual particles by the botanist Brown can be consid-
ered the foundation of random walk theory [Brown, 1828]. This irregular motion of particles
is now known as Brownian motion and has smoother trajectories than white noise because it is
an integrated quantity (integral of a white noise GP). Brownian motion is not a flexible model
for movement since it lacks drift and attraction components, however it is often used as a ba-
sic model for animal movement in continuous time [Turchin, 1998]. The Ornstein–Uhlenbeck
process (named after Leonard Ornstein and George Eugene Uhlenbeck), is a stochastic process
that describes the velocity of a massive Brownian particle under the influence of friction [Uhlen-
beck and Ornstein, 1930]. The process is a modification of the random walk in continuous time
(Wiener process) i.e. the OU process is a Brownian motion process that has attraction to a point
(the mean). The process is called mean-reverting in the sense that over time, the process tends
to drift towards its long-term mean with a greater attraction when the position of the particle is
further away from the center.

The OU model is a basic mean reversion model that has applications in areas such as bi-
ology or finance [Oksendal, 1998, Shreve, 2004, Lande, 1976, Wiens et al., 2010]. The OU
process is widely used in biology modelling neuronal responses [Cain et al., 2013], whereas in
mathematical finance it can be used to model the change in the interest rates and in the asset
prices [Barndorff-Nielsen and Shephard, 2001a, Kluppelberg et al., 2007, Vasicek, 1977]. For
example, the Vasicek model is an Ornstein-Uhlenbeck process that has been used to capture the
dynamics of the short-term interest rate in the market [Vasicek, 1977]. It is worth noting that not
all continuous-time models are based on OU processes i.e. there are continuous-time random
walk models that do not have the mean-reversion property. Examples include GPs with differ-
ent kernels than the OU kernel (Matérn 1/2 kernel), such as SE kernel or RBF kernel. Other
examples include models based on potential functions [Morales et al., 2004, Brillinger, 2010].
I illustrate the Brownian motion process, white noise GP and the OU process in Figures 2.2b,
2.2a and 2.2c.
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(a) Plot of a white noise process. (b) Plot of Brownian motion. (c) Plot of an OU process with an
attraction point at 0. The initial
value is 30. The mean reversion
rate a is 0.1 and σ = 0.3.

Figure 2.2: White noise, Brownian motion and OU processes plots comparison.

Simulating an OU process

The stochastic differential equation (SDE) for an OU process is

dxt = a(b− xt)dt +σdWt , (2.125)

where Wt is a Wiener process, a is the rate at which the process mean reverts (a larger number
results in a faster mean reverting process), b is the run average and σ is the volatility of the
process. This SDE can be discretised and approximated using Euler–Maruyama method as
follows

xn+1 = xn +a (b− xn) ∆t +σ∆Wt , (2.126)

where ∆Wt are independent and identically distributed Wiener increments, i.e. normal variables
with zero mean and variance ∆t. Thus

Wtn+1−Wtn = ∆Wn ∼N (0,∆t) =
√

∆t N (0,1). (2.127)

In Figure 2.3, I simulate multiple OU processes, where ∆t = 0.02, t = [0,20], b = 1.2 and the
initial starting point x0 = 0.
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(a) Plot of an OU process with
a = 1 and σ = 2.

(b) Plot of an OU process with
a = 5 and σ = 2.

(c) Plot of an OU process with
a = 5 and σ = 0.3.

Figure 2.3: Multiple OU processes with various coefficients where the mean b = 1.2 (red dashed
line).

Figures 2.3a and 2.3b have the same value for σ , but in the latter the OU levels revert faster
due to higher rate a. By comparing Figures 2.3b and 2.3c, the effects of increasing σ in the first
plot are noticeable due to increase in vertical variation. Since the initial starting point is close to
the mean b, the noise around the mean b is more visible in Figure 2.3 than Figure 2.2c.

Link between the parameters of the OU process and the parameters of the
Matérn 1/2 kernel

In one-dimension the Matérn 1/2 kernel and the OU covariance function (derivation of the OU
kernel will be given in Chapter 4) have the following form

k(xs,xt) = kernel variance× exp
{

−|s− t|
kernel lengthscale

}
. (2.128)

Cov(xs,xt) =
σ2

2a
exp(−a|s− t|). (2.129)

Equating these last two equation gives

kernel variance =
σ2

2a
. (2.130)

kernel lengthscale =
1
a
, (2.131)

where a is mean-reversion rate and σ is the volatility of the OU process. The last two equations
establish a relationship between the parameters of the OU process and the parameters of the
Matérn 1/2 kernel.

2.6 Bayesian inference and algorithms

In this section I only review the relevant methods and tools used in this thesis, however the cited
literature in the corresponding section should provide wider information background.
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2.6.1 Sampling methods

Introduction to Markov Chain Monte Carlo

The main sources for this section are: Chapter 24 from Murphy [2012], Section 11.5 from
Bishop [2006], Chapter 10 from Gelman et al. [2013] and Neal [1992].

In a Bayesian setting usually the main interest is the computation of the posterior distribution
p(θθθ |y) and the computation of the posterior predictive distribution p(y∗|y), where θθθ is the
vector parameter of interest, y is the observed data and y∗ is a predictive dataset. The posterior
distribution p(θθθ |y) in some simple cases can be computed analytically in closed form and if it is
a known distribution one can sample from it, however for more complicated, unknown models
or for high dimensional models more complex methods are needed to sample from the posterior
distribution [Gelman et al., 2013].

Numerical integration methods, also referred as ‘quadrature’ methods are a group methods
that compute an integral over continuous functions at a finite set of points [Gelman et al., 2013].
This class of methods can be divided into two branches, one being the stochastic approach
which makes use of methods such as Monte Carlo methods (rejection sampling and importance
sampling) and the other one being the deterministic approach where quadrature rule methods
can be used [Gelman et al., 2013].

Suppose the aim is to sample from the posterior distribution p(θθθ |y), which is the target
distribution. One possible way to sample from this distribution is to use Markov Chain Monte
Carlo methods (MCMC). MCMC methods are simulation (stochastic) methods, that are based
on obtaining random draws θθθ

s from the target distribution p(θθθ |y), and then calculating the
integral (expectation of any function h(θθθ))

E(h(θθθ)) =
∫

h(θθθ)p(θθθ |y)dθθθ ≈ 1
S

S

∑
s=1

h(θθθ sss). (2.132)

The accuracy of the simulation can be improved by drawing more samples from the target
distribution. While it is easy to sample from known distributions, more complex methods need
to be constructed in order to sample from unknown posterior distributions. A Markov chain
is constructed by sampling step by step with the distribution of the sampled draws depending
only on the last value drawn. The approximate conditional distribution needs to reach the equi-
librium distribution and converge to the stationary distribution (our target distribution). Once
convergence occurs, the samples drawn can be considered as actual samples from the desired
target distribution [Gelman et al., 2013]. Checking for convergence is essential and this is done
either by visual inspection (traceplots) or by formal calculations of convergence diagnostics such
as Gelman-Rubin statistic [Gelman and Rubin, 1992] or Geweke diagnostic [Geweke, 1992].

It is worth noting that other sampling algorithms such as rejection sampling or importance
sampling have limitations especially in higher dimensions, such as a high rejection rate. How-
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ever, MCMC methods perform much better in a more general framework (higher dimensions),
allowing sampling from a large class of distributions [Gelman et al., 2013]. In the next sections
I present two of the algorithms used in this thesis: the Metropolis-Hastings algorithm and the
Hamiltonian Monte Carlo (HMC) algorithm. I also review some convergence diagnostics and in
the last section I discuss an alternative to MCMC, that is variational inference methods.

Metropolis-Hastings algorithm

This subsection is mainly based on Gelman et al. [2013], Section 11.2. The Metropolis-Hastings
(MH) algorithm is the basic MCMC method and it can be used to draw samples from a proba-
bility distribution that might be difficult to draw samples from directly. The algorithm generates
iterative samples that are correlated, each sample being dependent only on the previous one
(hence generating a Markov chain). As more and more samples are generated, eventually the
distribution of sample values will be close to the target distribution. The algorithm proceeds as
follows

1. Choose an arbitrary point x0 to be the first draw and choose a candidate or proposal distri-
bution Q(x).

2. For t = 1, 2, . . .

• Sample a candidate or a proposal value θ∗ from the proposal distribution Qt(θ∗|θt−1).
This means a candidate is proposed for the next sample value θ∗ given the previous
value of θt−1.

• Calculate the ratio
r =

p(θ∗|y)/Qt(θ∗|θt−1)

p(θt−1|y)/Qt(θt−1|θ∗)
.

• Accept the proposed sample with the probability min(1,r), otherwise reject θ∗ and
remain at the current value θt−1 and this still counts as an iteration in the algorithm.

A sufficient but not necessary condition for our Markov chain P(x) to reach the target distri-
bution π(x) is detailed balance i.e. π(x)P(x′|x)= π(x′)P(x|x′). I prove that for the MH algorithm
detailed balance holds. I have that

π(x)P(x′|x) = π(x)Q(x′|x)A(x′,x)

= min
[
π(x)Q(x′|x),π(x′)Q(x|x′)

]
= min

[
π(x′)Q(x|x′),π(x)Q(x′|x)

]
= π(x′)Q(x|x′)A(x,x′)

= π(x′)P(x|x′),

(2.133)

where Q(x′|x) is the conditional probability of proposing a state x′ given x and the acceptance
probability A(x′,x) is the probability to accept x′, A(x′,x) = min(1,r), r = π(x′)Q(x|x′)

π(x)Q(x′|x) .
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The Hybrid Monte Carlo algorithm

This subsection closely follows Bishop [2006], Section 11.5. The Hybrid or Hamiltonian Monte
Carlo (HMC) algorithm is a variation of the Metropolis algorithm that makes use of a ‘momen-
tum’ parameter that allows to explore the parameter space better, thus improving the mixing,
especially in high dimensions. Due to the random walk behaviour, the Metropolis-Hastings
sampler might move slowly through the target distribution, HMC tackles this issue by borrow-
ing an idea from physics. By making use of both simulating and deterministic methods, the
Hamiltonian Monte Carlo is also called hybrid Monte Carlo. To explain the algorithm I make
use of the framework of Hamiltonian dynamics. The Hamiltonian equations are given by

dθi

dτ
=

∂H
∂φi

,

dφi

dτ
=−∂H

∂θi
,

(2.134)

where the θi’s are position variables, φi’s are the ‘momentum’ variables, evolving in continuous
time τ and H is the Hamiltonian function. The joint space of position and momentum variables
is called the phase space.

Two important properties of Hamiltonian dynamical systems is the preservation of H and
preservation of volume in phase space under the evolution of time. H is preserved as τ evolves
since

dH
dτ

= ∑
i

(
∂H
∂θi

dθi

dτ
+

∂H
∂φi

dφi

dτ

)
= ∑

i

(
∂H
∂θi

∂H
∂φi
− ∂H

∂φi

∂H
∂θi

)
= 0.

(2.135)

The preservation of volume in a Hamiltonian dynamical system, otherwise known as Liouville’s
Theorem, means that while a region might change shape, its volume remains unchanged. This
can be proven by observing that the flow field (rate of change of location in phase space) is given
by

V =

(
dθθθ

dτ
,
dφφφ

dτ

)
. (2.136)

The divergence of this field is

div V = ∑
i

(
∂

∂θi

dθi

dτ
+

∂

∂φi

dφi

dτ

)
= ∑

i

(
− ∂

∂θi

∂H
∂φi

+
∂

∂φi

∂H
∂θi

)
= 0.

(2.137)
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The joint distribution (a Boltzmann distribution) over the phase space whose total energy is the
Hamiltonian is given by

p(θθθ ,φφφ) =
1

ZH
exp(−H(θθθ ,φφφ)). (2.138)

It can be concluded that p(θθθ ,φφφ) is invariant due to the fact H is preserved over time and that
the volume remains constant as well. Even though H remains constant, the position variables θθθ

and ‘momentum’ variables φφφ can have multiple values. One way to have ergodic samples from
p(θθθ ,φφφ) is to simply replace the value of φφφ with one drawn from its distribution conditioned on
θθθ . This approach does not change the fact that p(θθθ ,φφφ) is invariant.

A suitable numerical integration scheme of the Hamiltonian equations that minimises nu-
merical errors is called the leapfrog discretisation scheme. This scheme consists of alternating
between a series of leapfrog updates and a resampling of the ‘momentum’ variables from their
marginal distribution. More explicitly, the ‘momentum’ variables are updated using a half-step,
followed by a full-step update of the position variables, and again followed by a second half-
step update of the ‘momentum’ variables. The details of the leapfrog scheme are shown below,
where θ̂ and φ̂ are discrete-time approximations to the position and momentum variables

φ̂i

(
τ +

ε

2

)
= φ̂i(τ)−

ε

2
∂E
∂θi

(
θ̂θθ(τ)

)
. (2.139)

θ̂i (τ + ε) = θ̂i(τ)+ εφ̂i

(
τ +

ε

2

)
. (2.140)

φ̂i (τ + ε) = φ̂i

(
τ +

ε

2

)
− ε

2
∂E
∂θi

(
θ̂θθ (τ + ε)

)
, (2.141)

where E(θ) is interpreted as the potential energy of the system at state θ . The Hamiltonian
function H(θθθ ,φφφ) contains both potential and kinetic energy such that the following relationship
holds

H(θθθ ,φφφ) = E(θθθ)+
1
2
|φφφ |2. (2.142)

The leapfrog discretisation scheme is time-reversible, such that a negative step −ε will re-
verse the effect of integration with a positive step ε . The backward or forward integration in
time can happen with equal probability (1

2 ). Moreover, it is important to note that during the
leapfrog process, unlike the Metropolis-Hastings algorithm the gradients of the log probability
distribution are used. If (φφφ ,θθθ) is the initial state and (φφφ∗,θθθ ∗) is the state after the leapfrog
integration, then this proposed state is accepted with probability

a = min(1,exp(H(φφφ ,θθθ)−H(φφφ∗,θθθ ∗))). (2.143)

If the numerical integration was without numerical errors, then every proposed state would
be accepted due to the fact that H is invariant. Thus, there is a need to check that the resulting
sample values are drawn from the target distribution. To do this one needs to verify if the
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detailed balance condition holds. Firstly, note that the leapfrog scheme is time-reversible, so
that a forward trajectory with a positive step-size is inverse to a backward trajectory with a
negative step-size. Secondly, another important aspect of this scheme is that it still preserves
phase space volume exactly and this is true because the leapfrog scheme updates either variable
by an amount that is a function only of the other variable.

Previous results can be used to prove detailed balance. Consider a small region of volume
δV around the point A = (φφφ A,θθθ A). A leapfrog scheme is performed and the region around the
point B = (φφφ B,θθθ B) is reached. Since the leapfrog scheme preserves volume the regions around
points A and B will have the same volume. Due to time reversibility property going back from
B to A is possible. The detailed balance condition with respect to the regions around A and B
can now be written as

p(φφφ A,θθθ A)δV × 1
2
×min(1,exp(H(φφφ A,θθθ A)−H(φφφ B,θθθ B)))

= p(φφφ B,θθθ B)δV × 1
2
×min(1,exp(H(φφφ B,θθθ B)−H(φφφ A,θθθ A))) .

(2.144)

The left hand side of the equation is the probability of moving from the region around A to
the region around B. The first factor is the Boltzmann probability for being in the region around
A at the start, the second factor (1

2 ) is the probability of selecting a positive step-size for the
trajectory rather a negative one, and the third factor is the probability that this trajectory will be
accepted. Similarly, the right hand side is the probability of moving from the region around B
to the region around A. Using Equations 2.138 and 2.143 the detailed balance condition holds.

To summarise, for each parameter θ j in the target space, HMC adds an auxiliary variable φ j

in order to move fast through the parameter space. Both θ j and φ j are updated together using a
Metropolis step. Consider a joint distribution p(θθθ ,φφφ |y) = p(θθθ |y)p(φφφ), from which simulation
is done and only the samples of θθθ are kept. HMC also requires the gradient of the log-posterior
density, which needs to be computed numerically. The momentum distribution p(φφφ) is usually
multivariate normally distributed with mean 0 and covariance matrix M, such that the following
relationship is satisfied

H(θθθ ,φφφ) = E(θθθ)+
1
2

φφφ
T M−1

φφφ . (2.145)

From Gelman et al. [2013], Section 12.4, the HMC algorithm proceeds as follows

1. Sample φφφ from its prior distribution φφφ ∼N (0,M).

2. Jointly update (φφφ , θθθ). Repeat the following L times, where L is the number of leapfrog
steps and ε is the step-size (each leapfrong step is scaled by a factor of ε)

(a) Update firstly φφφ ← φφφ + 1
2ε

d log p(y|θθθ)
dθθθ

.

(b) Use the ‘momentum’ vector φφφ to update the ‘position’ vector θθθ

θθθ ← θθθ + εM−1
φφφ .
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(c) Update again φφφ

φφφ ← φφφ +
1
2

ε
d log p(y|θθθ)

dθθθ
.

3. Let θt−1 and φt−1 be the values of the parameters before the leapfrog process and let θ∗

and φ∗ the values after the leapfrog process. Compute

r =
p(θ∗|y)p(φ∗)

p(θt−1|y)p(φt−1)
.

4. Accept θ∗ with probability min(1,r). Otherwise, reject θ∗ and remain at the current value
θt−1 and this still counts as an iteration in the algorithm.

The performance of the HMC is highly dependable on choosing suitable values for ε and L.
The number of leapfrog steps L should be large enough to travel trough the posterior space, but
a L that is too large would result in a high rejection rate, thus wasting computational resources.
If L is too small, then consecutive samples will be close together, thus the samples will exhibit
random walk behaviour and it would mix slowly (for L = 1, the Metropolis-adjusted Langevin
algorithm is obtained).

2.6.2 Convergence diagnostics

In this thesis I regularly make use of convergence diagnostics to test if the Markov chains have
converged or not. I assess the convergence of the MCMC chain by looking at two aspects:
mixing and stationarity. Convergence is never guaranteed, but there are several tests, both visual
and statistic, to assess whether the chain appears to have converged. The visual tests consist
of traceplots and the statistics that can be used are Gelman-Rubin statistic [Gelman and Rubin,
1992] or Geweke diagnostic [Geweke, 1992].

The Gelman-Rubin statistic Gelman and Rubin [1992] R̂ is a ratio between the variance
within the chains to the variance across chains. Multiple MCMC chains for each parameter and
from different starting positions need to be run in order to calculate it. When R̂ is high (greater
than 1.2), then the chains should be run for longer to improve convergence to the stationary
distribution. More specifically, following Murphy [2012], Section 24.4.3.1, assume there are S

samples (after burn-in) drawn from each of C chains of D variables, xisc, i = 1 : D, s = 1 : S,
c = 1 : C. Let ysc be a scalar quantity of interest derived from x1:D,s,c, such as ysc = xisc, for some
i. Then, the within-sequence mean and the overall mean are defined as

y.c =
1
S

S

∑
s=1

ysc. (2.146)

y.. =
1
C

C

∑
c=1

y.c. (2.147)
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Also, the between-sequence and within-sequence variance are defined as

B =
S

C−1

C

∑
c=1

(y.c− y..)
2 . (2.148)

W =
1
C

C

∑
c=1

(
1

S−1

S

∑
s=1

(ysc− y.c)
2

)
. (2.149)

Therefore, the scale reduction factor is defined as

R̂ =

√
V̂
W

, (2.150)

where V̂ = S−1
S W + 1

SB. Values of R̂ smaller than 1.2 means that probably there is no need to
run the chain for a longer time.

Another test to determine if convergence has not occurred is the Geweke test [Geweke,
1992]. The Geweke diagnostic consists in comparing the mean of the first 10% to the last 90%
(other values can be taken) of the series. The chain is divided into a number of segments and this
difference is computed. It can be said that the chain does not show any signs of non-convergence
if the diagnostic varies between -1 and 1. The Geweke score for the chain x is computed by

E(x f )−E(xl)√
Var(x f )+Var(xl)

, (2.151)

where E is the mean, Var is the variance of the chain, x f is a section at the start of the chain and
xl a section at the end of the chain.

2.6.3 Variational inference methods

GP regression is computationally challenging with the complexity generated by the inversion of
the covariance matrix being O(N3), where N is the dataset size. To counter this, we employ al-
ternative methods to MCMC sampling-based inference methods such as the variational methods
that formulate inference as an optimisation problem and are capable of computing the posterior
distribution in a general context [Blei et al., 2017]. Variational inference methods are applied
in situations where MCMC methods are difficult and costly to implement and the main idea is
centered around a construction of a variational distribution that is approximate to the true poste-
rior distribution. This is done by maximising a lower bound on the marginal likelihood, which
is equivalent to minimising a Kullback-Leibler divergence between the approximate variational
distribution and the exact posterior distribution. Variational inference methods will be applied
in Chapter 6 in a hierarchical non-stationary GP framework to both synthetic and real datasets.
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Variational inference for a Gaussian process

In this subsection I show how variational inference techniques are applied when the model is a
GP. The main sources used are Titsias [2009], Campioni et al. [2021], Saul et al. [2016], Hens-
man et al. [2013]. In standard GP regression, assume that some outputs (data) yi are observed
at the input (training) points xi such that yi = f (xi)+ εi, where εi ∼N (0,σ2) and f is a latent
(unobserved) function. A prior is set on the latent function f such that

f (x)∼ G P
(
m(x), K

(
xi,x j

))
, (2.152)

where m(x) is a mean function, K is a covariance matrix and xi,x j are random training points.
Now consider a set of m inducing points, given by the vector z, which reside in the same

space as x, and the set of function values at the inducing points is given by u. The prior distri-
bution over the inducing latent functions is a multivariate Normal distribution i.e.

p(u) = N (0,Kmm), (2.153)

where Kmm is the covariance matrix at the m inducing points.
To derive a lower bound on the marginal likelihood p(y) the following assumption is neces-

sary [Titsias, 2009]
p(f∗|f,u) = p(f∗|u), (2.154)

where f∗ is the function f evaluated at the test points x∗. Using Equation 2.154 the predictive
posterior distribution is

p(f∗,u|y) = p(f∗|u)p(u|y). (2.155)

To perform variational inference, a variational distribution φ(u) is introduced such that the fol-
lowing relationship holds

q(f∗,u) = p(f∗|u)φ(u), (2.156)

where φ(u) is a Gaussian distribution with mean µµµq and covariance Kq i.e.

φ(u)∼N (µµµq,Kq). (2.157)

Thus, from Equations 2.155 and 2.156, the approximation to the predictive posterior distribution
is given by the following relationship

p(f∗,u|y)≈ p(f∗|u)φ(u). (2.158)



CHAPTER 2. REVIEW OF BACKGROUND THEORY 47

The log marginal likelihood has the following form

log p(y) = log
∫∫

p(y|f,u)p(f,u)dfdu = log
∫∫

p(y|f)p(f,u)
q(f,u)
q(f,u)

dfdu

≥
∫∫

log
(

p(y|f)p(f,u)
q(f,u)

)
q(f,u)dfdu =

∫
log p(y|f)q(f)df−K L (φ(u)||p(u)),

(2.159)

where Jensen’s inequality is applied at the first inequality, q(f) =
∫

q(f,u)du and K L denotes
the Kullback-Leibler divergence between the prior distribution p(u) and the variational posterior
φ(u). The K L divergence between two distributions P and Q is defined by

K L (P||Q) =
∫

p(x) log
(

q(x)
p(x)

)
dx, (2.160)

where p and q are probability distributions at x.
I explain in more detail why the last equality occurs below

∫∫
log
(

p(y|f)p(f,u)
q(f,u)

)
q(f,u)dfdu =

∫∫
log(p(y|f))q(f,u)dfdu

+
∫∫

log
(

p(f,u)
q(f,u)

)
q(f,u)dfdu

=
∫

log p(y|f)q(f)df

+
∫∫

log
(

p(f|u)p(u)
p(f|u)φ(u)

)
p(f|u)φ(u)dfdu

=
∫

log p(y|f)q(f)df+
∫∫

log
(

p(u)
φ(u)

)
q(f,u)dfdu

=
∫

log p(y|f)q(f)df−
∫

log
(

φ(u)
p(u)

)
φ(u)du

=
∫

log p(y|f)q(f)df−K L (φ(u)||p(u)),

(2.161)

where I used the properties of the log function in the first equation, q(f,u) = p(f|u)φ(u) and
q(f) =

∫
q(f,u)du in the second equation, properties of log function, φ(u) =

∫
q(f,u)df, and

the definition of K L in the last equation.
Moreover, the likelihood factorises across the data such that

p(y|f) =
N

∏
i=1

p(yi|fi), (2.162)

where N is the number of data points. Thus, after rewriting the integral as an expectation,
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Equation 2.159 becomes

log p(y)≥
N

∑
i=1

∫
log p(yi|fi)q(fi)dfi−K L (φ(u)||p(u))

= Eq(fi)

N

∑
i=1

log p(yi|fi)−K L (φ(u)||p(u)).
(2.163)

The sparse variational method can be extended to multiple latent functions, thus defining a
chained or a multilatent GP. Following Saul et al. [2016], let two latent functions f and g such
that the following relationship holds

p(f,g|u f ,ug) = p(f|u f )p(g|ug), (2.164)

where u f , ug are the latent function values f and g evaluated at the inducing points z. Assume
that the variational distributions φ(u f ) and φ(ug) are normally distributed. Then, the lower
bound on the marginal log likelihood is

log p(y)≥
∫∫

log p(y|f,g)q(f)q(g)dfdg−K L (φ(u f )||p(u f ))−K L (φ(ug)||p(ug)),

(2.165)

where Jensen’s inequality is applied, q(f) =
∫

p(f|u f )φ(u f )du f and q(g) =
∫

p(g|ug)φ(ug)dug.
The likelihood factorises over the data such that we have

p(y|f,g) =
N

∏
i=1

p(yi|fi,gi), (2.166)

where N is the number of data points. Thus, Equation 2.165 becomes

log p(y)≥
N

∑
i=1

∫∫
log p(yi|fi,gi)q(fi)q(gi)dfidgi−K L (φ(u f )||p(u f ))−K L (φ(ug)||p(ug))

= Eq(fi,gi)

N

∑
i=1

p(yi|fi,gi)−K L (φ(u f )||p(u f ))−K L (φ(ug)||p(ug)).

(2.167)

Equation 2.167 can further be generalised to multiple latent functions. In Equation 2.167,
the K L divergence terms can be calculated analytically since the distributions inside the terms
are multivariate Normal distribution. The term difficult to calculate is the expectation term. In
a general case, the integral (the expected log likelihood) has a closed formula if the likelihood
is Gaussian. In other cases, where the integral is intractable, methods such as Gauss-Hermite
quadrature [Hensman et al., 2015] or Monte Carlo sampling [Salimbeni and Deisenroth, 2017,
Bonilla et al., 2018, Saul et al., 2016] can generally be used to calculate the expectation. The
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formed method increases the computational complexity of the model by introducing a number
of n nodes to calculate the integral and the approximation is exact for polynomials of degree
less than 2×n−1. Finally, stochastic optimisation [Hensman et al., 2013] can then be used to
maximise the lower bound and perform inference for the parameters of interest.



Chapter 3

A study on discrete-time movement models

Understanding animal movement is an important challenge in ecology, with improvement in
tagging technology permitting the collection of data on an increasingly wide range of species.
Consequently, methodologies for statistical analysis of such data have received considerable at-
tention in recent years. Discrete-time random walks are the foundation of the movement data
models. The advantages of the discrete-time movement models are that they are intuitive and
easily implemented, however the specification of the discretisation step is often problematic and
must be done in advance. Misspecification of the discretisation step might lead to a model mis-
match and thus choosing an appropriate test statistic to capture the model mismatch is essential.

Authors’ statement: This Chapter is based on the paper ’A study on discrete-time movement
models’, that has been published and presented as a conference paper at ICSTA ’19, Lisbon
[Paun et al., 2019]. Colin Torney, Dirk Husmeier and Ionut Paun designed the study, Ionut Paun
performed the analysis and Ionut Paun wrote the manuscript. I confirm that my contribution to
each section of the paper is more than 50%.

3.1 Introduction

In Chapter 2, Section 2.1 we introduced the discrete-time CRW model and its extensions as the
foundation of movement data models. In this chapter, following Turchin [1998], Morales et al.
[2004], Haydon et al. [2008], Hopcraft et al. [2014] we fit statistical models for components
of discrete-time random walks. Those components include the step-length and the associated
observed turning angle relative to the previous step between each pair of successive observations.
The distributions used are Gamma or Weibull distributions for the step-lengths, and Uniform or
Wrapped Cauchy distribution for the turning angles [Morales et al., 2004]. In this chapter, in
Section 3.2, we introduce several discrete-time movement models and perform inference for
the parameters of interest using an MCMC algorithm, namely Metropolis-Hastings, and check
for convergence using both visual tests (traceplots) and convergence diagnostics tools (Gelman-
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Rubin statistic). This section provides a solid inference foundation needed for Section 3.3, where
we simulate data from a CRW model and we assume the discretisation step for the original data
to be ∆t = 1. Then, we change the discretisation step by interpolating with different time-steps
and the data after interpolation resembles a real dataset, where the true discretisation time step
is unknown. Afterwards, we fit a CRW movement model, implement the MH algorithm to infer
the parameters of interest, and then finally perform model checking using multiple test statistics.
The main aim of the chapter is to assess whether the different test statistics capture the lack of
model fit when fitting a discrete-time model with a different time step than the original data.

3.2 Overview of discrete-time movement models

3.2.1 Data

We simulate data from three different discrete-time movement models with the data sample
consisting of 10,000 observations.

In Figure 3.1 we show plots of the data for all three models. In Table 3.1 below we show all
of the relevant information for the data

Data
Rank of the
model

Simulated data
sample size

step-lengths dis-
tribution

Associated turn-
ing angle distri-
bution

First model 10,000 Weibull(5, 2) Uniform(0, 2π)
Second model 10,000 Weibull(5, 2) Wrapped

Cauchy(0.9)
Third model 10,000 Gamma(2, 1) Uniform(0, 2π)

Table 3.1: Simulated data for various discrete-time movement models.

(a) Step-lengths data from a
Weibull(5,2) distribution.

(b) Step-lengths data from a
Gamma(2,1) distribution.

(c) Turning angles data from
a Wrapped Cauchy distribution
with a shape parameter value of
0.9.

Figure 3.1: Plots of the data for all three models.
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3.2.2 Models

The probability density function of the Weibull distribution is

p(x|a,b) = a
b

(x
b

)a−1
exp
(
−
(x

b

)a)
, (3.1)

where x > 0, a is the shape parameter and b is the scale parameter, both positive parameters.
The probability density function of the Gamma distribution is

p(x|α,β ) =
β αxα−1 exp(−βx)

Γ(α)
, (3.2)

where x > 0, α,β > 0 and Γ(α) is the gamma function. Also, α is the shape parameter and
β = 1/θ is the inverse-scale parameter, where θ is the scale parameter.

The probability density function of the Wrapped Cauchy distribution is

p(θ |m,c) =
1− c2

2π(1+ c2−2ccos(θ −m))
, (3.3)

where 0≤ θ ≤ 2π , m is the location and c is the shape parameter, with 0 < c < 1.
Let rt represent the observed step-lengths and let θt represent the associated observed turning

angle. The first model considered is

rt ∼Weibull(a,b).

θt ∼ Uniform(0,2π).

The Weibull distribution has two parameters, one parameter controlling the scale and the other
controlling the shape. If the shape is one, then the Weibull distribution becomes the exponential
distribution. If the shape is less than one, the Weibull has mode close to zero and has a long tail,
suitable for long movements steps. If the shape is two, then the Weibull distribution is equivalent
to Rayleigh distribution and describes the step-length distribution of a standard diffusion process
(random walk) [Morales et al., 2004]. The turning angle follows a Uniform distribution, which
means that the direction is random, thus the first model is unbiased, i.e. there is equal probability
to go in any direction. The Weibull and Gamma distributions are plotted in Figures 3.2a and 3.2b.

The second model considered is

rt ∼Weibull(a,b).

θt ∼WrapCauchy(θt−1,c).

The second model is a ‘persistent’ random walk or a CRW model. The random walk moves un-
restricted and it can go in every direction. The Wrapped Cauchy distribution is more peaked and
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has heavier tails compared to the other circular distributions such as Von Mises or the Wrapped
Normal distribution. We choose the Wrapped Cauchy distribution in our model, but the other
distributions are suitable options as well. The Wrapped Cauchy distribution is plotted for various
values of the shape parameter c in Figure 3.2c.

The third model considered is

rt ∼ Gamma(a,b).

θt ∼ Uniform(0,2π).

The Gamma distribution has a similar shape to the Weibull distribution as illustrated in Figures
3.2a and 3.2b. When the shape parameters of the two distributions are equal to 1, the two distri-
butions are equivalent to the exponential distribution. Moreover, when the shape parameters are
greater than 1, the Weibull distribution decreases at a larger rate than the Gamma distribution
and vice versa when the shape parameters are lesser than 1.

(a) Plots of the Weibull distri-
bution for various values of the
shape (a) and scale (b) parame-
ters.

(b) Plots of the Gamma distri-
bution for various values of the
shape (a) and scale (b) parame-
ters.

(c) Plots of the Wrapped Cauchy
distribution for various values of
the shape (c) parameter.

Figure 3.2: Plots of the Weibull distribution, Gamma distribution and Wrapped Cauchy distri-
bution for various values of the parameters.

Prior distributions

For the first two models we choose a vague improper prior for all the parameters (shape and scale
parameters of the Weibull distribution, and the shape parameter of the Wrapped Cauchy distri-
bution) with p(x) ∝ 1, where x is one of the aforementioned parameters. For the third model, the
prior chosen is Gamma(1,2) with shape parameter 1 and scale parameter 2. A Gamma prior dis-
tribution is chosen because it is a conjugate prior distribution for the Gamma distribution when
the shape parameter is kept fixed. Thus, we can calculate the analytical posterior distribution.
In Bayesian statistics, if the posterior distribution is in the same probability distribution family
as the prior probability distribution, then the prior and posterior distributions are called conju-
gate distributions, and the prior is called a conjugate prior for the likelihood function [Murphy,
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2012].
The equation for the prior for the third model is

p
(

1
β
|a,b

)
=

β 1−a exp
(
− 1

bβ

)
Γ(a)ba . (3.4)

The prior follows a Gamma distribution with shape parameter a, scale parameter b and 1
β
> 0.

3.2.3 Likelihood calculation

For the first two models, suppose the step-lengths, r1, . . . ,rn, are independent and identically
draws from a Weibull distribution. For the first model, the log likelihood equation for the step-
lengths is proportional to

l(a,b;r) ∝

n

∑
i=1

log
(

a
ba ra−1

i exp
(
−

ra
i

ba

))
. (3.5)

Suppose the turning angles θ1, . . . ,θn, are correlated draws from the Wrapped Cauchy distri-
bution, θt ∼WrapCauchy(θt−1,c). Thus, for the second model, the log likelihood equation for
the turning angles θ ’s, where c is the shape parameter is proportional to

l(c;θ) ∝

n

∑
i=1

log
(

1− c2

2π(1+ c2−2ccos(θi−θi−1)

)
, (3.6)

where θ0 is an initial value for the turning angles, 0≤ θi ≤ 2π and c is the shape parameter, with
0 < c < 1.

It is important to note that the log likelihood for the full first model is proportional to Equa-
tion 3.5, given that the turning angles are uniformly distributed with parameters 0 and 2π . How-
ever, the full log likelihood for the second model is the sum of the log likelihoods from Equa-
tions 3.5 and 3.6, given that the models for the step-lengths and turning angles are independent.
Therefore, the joint likelihood equation factorises and the step-lengths and turning angles are
inferred independently.

For the third model, suppose the step-lengths, r1, . . . ,rn, are independent and identically
distributed draws from a Gamma distribution where α , the shape parameter is known and 1

β
,

the rate parameter (or the reciprocal of the scale parameter) is unknown. For the third model,
the log likelihood function, l(β ;r1, . . . ,rn) is proportional to

l (β ;r1, . . . ,rn) = log(L (β ;r1, . . . ,rn)) ∝ log

exp
(
−∑

n
i=1 ri
β

)
β αn

 . (3.7)

For the third model, the log likelihood for the full model is given by Equation 3.7 keeping in
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mind that the turning angles are uniformly distributed with parameters 0 and 2π . For this model,
we also wish to calculate analytically the posterior distribution. The prior follows a Gamma
distribution with shape a and scale b. By using Equation 3.4 for the prior defined in Section
3.2.2, the likelihood Equation 3.7 and the fact that the posterior probability is proportional to the
likelihood multiplied by the prior probability we get that

π

(
1
β
|a′,b′

)
∝ p

(
1
β
|a,b

)
×L (β ;r1, . . . ,rn) =

β 1−a exp
(
− 1

bβ

)
Γ(a)ba ×

exp
(
−∑

n
i=1 ri
β

)
β αn . (3.8)

After combining terms the posterior distribution, π

(
1
β
|a′,b′

)
is a Gamma distribution with hy-

perparameters

a′ = αn+a. (3.9)

b′ =
b

1+b∑
n
i=1 xi

. (3.10)

3.2.4 Inference

For the first model, our goal is to infer the step-lengths, more specifically the shape and the scale
parameters of the Weibull distribution. For the second model, our goal is to infer the turning
angles, more specifically the shape parameter c of the Wrapped Cauchy distribution and for the
third model, our goal is to infer the scale parameter b of the Gamma distribution, while keeping
the shape parameter a fixed at 2.

To infer the parameters we use a MCMC method, namely the MH algorithm. MCMC is not
the natural methodological choice in this case, as there are more efficient inference techniques
that can be used such as directly sampling from the Cauchy or Weibull distribution, importance
sampling, rejection sampling or slice sampling [Murphy, 2012]. However, these approaches
would not be applicable to more complex models. MCMC, on the other hand, is a generally
applicable tool. It was therefore chosen as a testbed for future, more general models.

For the third model the natural MCMC method to use is the Gibbs sampling algorithm, given
that there is a conditional probability (the conjugate prior for the rate parameter 1

β
). However,

the objective of this chapter is to check the convergence of a general MH sampler that we have
implemented. Therefore, the MH algorithm is chosen as the inference method for the third
model, as in the later chapters of the thesis we apply MCMC sampling schemes to new models
that do not have conditional prior distributions, where the Gibbs sampling algorithm cannot be
applied. Therefore, the conjugate prior is used to effectively compare the posterior samples
against an analytically tractable posterior distribution. This is done by applying a standard
hypothesis test i.e. a Kolmogorov–Smirnov (KS) test [Hodges, 1958]. If the KS test returns a
small KS statistic or a high p-value, then the null hypothesis that the underlying distribution of
the posterior samples is identical to the analytical posterior distribution cannot be rejected in
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favour of the alternative, that is the underlying distribution of the posterior samples is different
to the analytical posterior distribution.

For all models, the proposal distribution is a symmetric Normal distribution, the number of
iterations are 10,000 and the burn-in is 1000 iterations for each model. Negative proposals for
the shape and scale parameters of the Weibull and Gamma distributions are rejected. Similarly,
proposals for the shape parameter of the Wrapped Cauchy distribution that are not between 0
and 1 are rejected. The acceptance rates are close to 40% and the step-sizes are tuned to give an
acceptance probability within the desired interval (between 25%-40%) [Murphy, 2012], Section
24.3. The potential scale reduction factors are less than 1.1.

3.2.5 Results

For the first model, we plot the histograms of the marginal posterior for the shape, respectively
the scale parameter of the posterior distribution in Figures 3.3a and 3.3b. The histograms are
noisy due to a large number of bins, therefore smoother kernel density estimation (KDE) plots
using Gaussian kernels are plotted for the first model in Figures 3.3c and 3.3d. The data used to
produce the plots are the posterior samples from the MCMC inference and the bandwith method
used is Scott’s rule [Scott, 1979]. In Figure 3.3a, the mode is close to 2, and in Figure 3.3b, it
is close to 5, which is expected given that the data comes from a Weibull distribution with the
shape parameter 5 and scale parameter 2.

For the second model, we plot the log likelihood of the shape parameter of the Wrapped
Cauchy distribution in Figure 3.4a, which shows that the mode is located when the shape param-
eter is close to 0.9, as expected given that the data comes from a Wrapped Cauchy distribution
with the shape parameter 0.9. Also, in Figure 3.4b, we plot a histogram of the posterior samples
and the mode is close to 0.9 as expected.

For the third model, we plot in Figure 3.4c the profile log likelihood for the scale parameter
while keeping the shape parameter fixed at 2. The mode in Figure 3.4c is located around 1,
which is as expected given that we simulated the step-lengths from a Gamma distribution with
the scale parameter 1. In Figure 3.4d, the mode of the posterior samples for the scale parameter
is located around e0 = 1, which is again as expected. In Figure 3.4d, we plot together the
analytical posterior pdf from Equation 3.8 and the samples obtained from the MCMC sampler,
which are in agreement. This is confirmed by the KS test, which returned a value of the KS
statistic of 0.0307 and a p-value of 0.1995. Since the p-value is not extreme, we cannot reject
the null hypothesis that the underlying distribution of the posterior samples is identical to the
analytical posterior distribution. Thus, the MH inference is successful in generating samples
from the posterior. We illustrate the inference results in Table 3.2.
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Results of the MCMC inference
Weibull distribu-
tion shape param-
eter mean / true
value

Weibull distribu-
tion scale param-
eter mean / true
value

Wrapped Cauchy
shape parameter
mean / true value

Gamma distribu-
tion scale param-
eter mean / true
value

5.011± 0.03 std /
5

2.001± 0.004 std
/ 2

0.89± 0.001 std /
0.9

0.98± 0.007 std /
1

Table 3.2: Table of the inference results.

(a) Histogram of the marginal posterior for the
shape parameter of the Weibull distribution for
the first model.

(b) Histogram of the marginal posterior for the
scale parameter of the Weibull distribution for
the first model.

(c) Plot of the marginal posterior for the shape
parameter of the Weibull distribution using ker-
nel density estimation. The kernel is Gaussian
and the bandwidth method is Scott’s rule [Scott,
1979].

(d) Plot of the marginal posterior for the scale
parameter of the Weibull distribution using ker-
nel density estimation. The kernel is Gaussian
and the bandwidth method is Scott’s rule [Scott,
1979].

Figure 3.3: Plots of the marginal posterior distribution parameters of the Weibull distribution.
The true values for the shape and scale parameters of the Weibull distribution are 5, respectively
2.
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(a) Plot of the log likelihood of the shape pa-
rameter of the Wrapped Cauchy distribution for
the second model.

(b) Histogram of the posterior samples of the
shape parameter of the Wrapped Cauchy distri-
bution for the second model.

(c) Plot of the profile log likelihood for the scale
parameter of the Gamma distribution while
keeping the shape parameter of the Gamma dis-
tribution fixed at 2 for the third model.

(d) Plot of the pdf of the analytical posterior
distribution (a Gamma distribution) (red line)
and the marginal posterior samples for the scale
parameter of the Gamma distribution for the
third model.

Figure 3.4: Plots of the profile log likelihoods and of the histograms of the posterior distribu-
tions for multiple parameters. The true value for the shape parameter of the Wrapped Cauchy
distribution is 0.9. The true value of the shape parameter for the Gamma distribution is 1.

3.2.6 Assessing convergence

For all the models, we use both visual plots in the form of traceplots and convergence diagnostics
such as Gelman-Rubin statistic [Murphy, 2012] to assess if the MCMC chains show a lack of
convergence. In our case, we run 5 MCMC chains from different starting values to calculate the
Gelman-Rubin statistics for each parameter. To calculate the Gelman-Rubin statistic we follow
the method described in Section 2.6.2. For all models, the Gelman-Rubin statistic is very close
to 1, the traceplots in Figure 3.5 show that they reached stationarity and that the mixing is good.
Therefore, in all cases the MCMC chains do not show a lack of convergence.
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(a) Traceplots of the scale parameter of the
Weibull distribution for the first model.

(b) Traceplots for the shape parameter of the
Weibull distribution for the first model.

(c) Traceplots of the shape parameter of the
Wrapped Cauchy distribution for the second
model.

(d) Traceplots for the scale parameter of the
Gamma distribution for the third model.

Figure 3.5: Traceplots for the parameters of interest. The different colours represent multiple
chains starting from different initialisations.

3.3 Changing the discretisation step

One crucial aspect when employing a discrete-time movement model is the selection in advance
of a fixed discretisation step. The choice of a suitable sampling scheme will depend on the
aim of the study. If the goal is to study the long-term behaviour of an animal, then a sampling
frequency of months is a viable option, however if the aim of the study is the analysis of the
short-term behaviour of an animal, then a high sampling frequency of minutes is a good choice.
Moreover, if the discretisation step is large, the trajectory will appear more random as the corre-
lation between points is lost [Codling and Hill, 2005]. If the discretisation step is too small, then
we lose information about the long-term behaviour of an animal. Inference of animal movement
in a discrete-time framework is not time scale invariant, and thus it is very important that the
discretisation step is specified such that it matches with the scale at which behavioural decisions
are made [McClintock et al., 2014].

In this section we simulate data from a CRW model and we assume the true discretisation
step for the original data to be ∆t = 1. We change the discretisation step by interpolating with
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different time steps and the data after interpolation resembles a real dataset (in a real dataset
the discretion-step is unknown). Afterwards, we fit a CRW movement model, perform infer-
ence using the MH algorithm, check for convergence and then finally do model checking using
multiple test statistics. The main aim of this section is to assess whether different test statistics
capture the lack of model fit when fitting a discrete-time model with a different time step than
the original data.

3.3.1 Data

We simulate data for the step-lengths from a Weibull distribution with the shape parameter 5
and the scale parameter 2. The associated observed turning angles data are simulated from a
Wrapped Cauchy distribution with shape parameter 0.9. The sample size is 1000 and the time
step for the original dataset is set to ∆t = 1 arbitrary time unit, meaning that every time unit ∆t

we observe a position of an individual animal. We denote this dataset: dataset 0. Using cubic
interpolation we sample data with a new time step and we denote this dataset: dataset 1. We
analyse different cases when the new time steps are 0.1, 0.2, 0.3, respectively 2 time units. For
example, when the time step is 0.1 time units, this means that an observation is recorded every
0.1 time units, compared to the previous case when we recorded an observation every 1 time
unit. From the x-coordinates and y-coordinates obtained from the interpolation, we calculate
the step-lengths and the associated turning angles. When the new time step, ∆t = 0.1 we plot
the data in Figures 3.6 and 3.7.

(a) (b)

Figure 3.6: Plot of the x-coordinates, respectively y-coordinates from newly obtained dataset
after interpolation, dataset 1 (red line) and of every 10-th x-coordinate, respectively 10-th y-
coordinate from the original dataset, dataset 0 (blue dots) for ∆t = 0.1.
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(a) (b)

Figure 3.7: Plot of the x-coordinates, respectively y-coordinates from the newly obtained dataset
after interpolation, dataset 1 (red circles) and the first 20 observations from the original dataset,
dataset 0 (blue dots) for ∆t = 0.1.

3.3.2 Model

Let rt represent the observed step-length and let θt represent the associated observed turning
angle at time t. The CRW model considered is

rt ∼Weibull(a,b).

θt ∼WrapCauchy(θt−1,c).

We choose a vague improper prior for all the parameters (a,b and c) such that p(x) ∝ 1, where
x ∈ {a,b,c}.

3.3.3 Inference

One of our goals in this section is to infer the shape and scale parameters of the Weibull distri-
bution and the shape parameter of the Wrapped Cauchy distribution. In order to do that, we use
two MCMC samplers, one to infer the shape and scale parameters from the Weibull distribution
and the other one to infer the shape parameter from the Wrapped Cauchy distribution. The al-
gorithm chosen to infer the parameters of interest is MH, a general inference tool. The proposal
distribution is a symmetric Normal distribution in both cases. When the interpolating time step
is 0.2, 0.3 and 2, the MCMC sample sizes are 20,000 and the burn-in used is 5000 samples
for the shape and scale parameters of the Weibull distribution and 1000 samples for the shape
parameter of the Wrapped Cauchy distribution. When ∆t = 0.1, we use more samples (30,000)
for the first MCMC sampler and the burn-in used is 20,000 samples for the shape and scale
parameters of the Weibull distribution. For ∆t = 1, the number of MCMC samples is 50,000 and
the burn-in is the same as for when the time step is 0.2, 0.3 and 2. The step-sizes were tuned to
give an acceptance probability within the desired interval: between 25%-40% [Murphy, 2012],
Section 24.3.
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3.3.4 Results

In Figures 3.8-3.12 we plot histograms of the posterior samples for the shape and scale param-
eters of the Weibull distribution and of the posterior samples for the shape parameter of the
Wrapped Cauchy distribution for all the different time steps. We illustrate the inference results
in Table 3.3. Analysing Table 3.3, the mean shape parameters do not change much as the result
of the interpolation however, the scale parameter gets divided accordingly. For example, if the
interpolation step is 0.1, then we have in total 10 times more observations, and the mean scale
parameter is almost 10 times less (0.204) than the original scale parameter 2. For all the step-
sizes we obtain similar results. For ∆t = 0.1, we plot in Figure 3.6 the new dataset (dataset 1)
after interpolation.

(a) Histogram of the posterior
samples of the shape parameter of
the Weibull distribution.

(b) Histogram of the posterior
samples of the scale parameter of
the Weibull distribution.

(c) Histogram of the posterior
samples of the shape parameter of
the Wrapped Cauchy distribution.

Figure 3.8: Histograms of the posterior samples for ∆t = 0.1. The true values (when ∆t = 1)
for the shape and scale parameters of the Weibull distribution are 5, respectively 2, and for the
Wrapped Cauchy distribution the true value for the shape parameter is 0.9.
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(a) Histogram of the posterior
samples of the shape parameter of
the Weibull distribution.

(b) Histogram of the posterior
samples of the scale parameter of
the Weibull distribution.

(c) Histogram of the posterior
samples of the shape parameter of
the Wrapped Cauchy distribution.

Figure 3.9: Histograms of the posterior samples for ∆t = 0.2. The true values (when ∆t = 1)
for the shape and scale parameters of the Weibull distribution are 5, respectively 2, and for the
Wrapped Cauchy distribution the true value for the shape parameter is 0.9.

(a) Histogram of the posterior
samples of the shape parameter of
the Weibull distribution.

(b) Histogram of the posterior
samples of the scale parameter of
the Weibull distribution.

(c) Histogram of the posterior
samples of the shape parameter of
the Wrapped Cauchy distribution.

Figure 3.10: Histograms of the posterior samples for ∆t = 0.3. The true values (when ∆t = 1)
for the shape and scale parameters of the Weibull distribution are 5, respectively 2, and for the
Wrapped Cauchy distribution the true value for the shape parameter is 0.9.
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(a) Histogram of the posterior
samples of the shape parameter of
the Weibull distribution.

(b) Histogram of the posterior
samples of the scale parameter of
the Weibull distribution.

(c) Histogram of the posterior
samples of the shape parameter of
the Wrapped Cauchy distribution.

Figure 3.11: Histograms of the posterior samples for ∆t = 1. The true values (when ∆t = 1)
for the shape and scale parameters of the Weibull distribution are 5, respectively 2, and for the
Wrapped Cauchy distribution the true value for the shape parameter is 0.9.

(a) Histogram of the posterior
samples of the shape parameter of
the Weibull distribution.

(b) Histogram of the posterior
samples of the scale parameter of
the Weibull distribution.

(c) Histogram of the posterior
samples of the shape parameter of
the Wrapped Cauchy distribution.

Figure 3.12: Histograms of the posterior samples for ∆t = 2. The true values (when ∆t = 1)
for the shape and scale parameters of the Weibull distribution are 5, respectively 2, and for the
Wrapped Cauchy distribution the true value for the shape parameter is 0.9.
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Results of the MCMC inference

Interpolation
time step

Sample size Weibull shape pa-
rameter mean

Weibull scale pa-
rameter mean

Wrapped Cauchy
shape parameter
mean

0.1 9988 4.74 ± 0.022 std 0.202 ± 0.0004
std

0.983 ± 0.0002
std

0.2 4993 4.49 ± 0.05 std 0.404± 0.001 std 0.969 ± 0.0005
std

0.3 3328 4.52 ± 0.05 std 0.606± 0.002 std 0.955± 0.001 std

1 997 5.16 ± 0.13 std 1.99 ± 0.013 0.903± 0.004 std

2 500 6.04 ± 0.21 std 3.82 ± 0.029 std 0.82 ± 0.01 std

Table 3.3: Table of the inference results. The true values for the shape and scale parameters of
the Weibull distribution are 5, respectively 2, and for the Wrapped Cauchy distribution the true
value for the shape parameter is 0.9.

3.3.5 Convergence

In this section we assess whether the MCMC chains show a lack of convergence by using both
visual plots (traceplots) illustrated in Figures 3.13-3.16 for all the different time steps and con-
vergence diagnostics such as Gelman-Rubin statistic. We run 5 MCMC chains from different
initial positions. In all cases, the traceplots show good mixing and that the MCMC chains have
reached stationarity. Also, the Gelman-Rubin statistic is very close to 1, therefore we do not
have evidence of lack of convergence.

(a) Traceplots of the shape pa-
rameter of the Weibull distribu-
tion.

(b) Traceplots of the scale param-
eter of the Weibull distribution.

(c) Traceplots of the shape pa-
rameter of the Wrapped Cauchy
distribution.

Figure 3.13: Traceplots of the parameters samples for ∆t = 0.1. The different colours represent
multiple chains starting from different initialisations.
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(a) Traceplots of the shape pa-
rameter of the Weibull distribu-
tion.

(b) Traceplots of the scale param-
eter of the Weibull distribution.

(c) Traceplots of the shape pa-
rameter of the Wrapped Cauchy
distribution.

Figure 3.14: Traceplots of the parameter samples for ∆t = 0.2. The different colours represent
multiple chains starting from different initialisations. The difference between the first two plots
and the third plot lies in the fact that the initial starting points for the multiple chains in the first
two plots are more dispersed than in the third plot, where the starting points are close to the true
value.

(a) Traceplots of the shape pa-
rameter of the Weibull distribu-
tion.

(b) Traceplots of the scale param-
eter of the Weibull distribution.

(c) Traceplots of the shape pa-
rameter of the Wrapped Cauchy
distribution.

Figure 3.15: Traceplots of the parameter samples for ∆t = 0.3. The different colours represent
multiple chains starting from different initialisations. The difference between the first two plots
and the third plot lies in the fact that the initial starting points for the multiple chains in the first
two plots are more dispersed than in the third plot, where the starting points are close to the true
value.

3.3.6 Model checking

In this section we check whether our inferred model is a good fit to our data (dataset 1). Fol-
lowing Gelman et al. [2013], Chapter 6, we perform model checking: The most popular model
checking approach consists of generating replicates samples from the posterior predictive dis-
tribution and observe the behaviour of sample summaries over repeated sampling. The goal in
model checking is to calculate some statistic for which we have some idea of what an ‘extreme’
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(a) Traceplots of the shape pa-
rameter of the Weibull distribu-
tion.

(b) Traceplots of the scale param-
eter of the Weibull distribution.

(c) Traceplots of the shape pa-
rameter of the Wrapped Cauchy
distribution.

Figure 3.16: Traceplots of the parameter samples for ∆t = 2. The different colours represent
multiple chains starting from different initialisations.

value would be in the true dataset and compare with the same statistic calculated in predictive
datasets. To conduct a posterior predictive check, we do the following

1. Come up with a suitable test statistic T that has power to diagnose violations of whatever
assumption we are testing.

2. Calculate T for the observed data y: T(y, φφφ ), where φφφ is a vector of the inferred parameters
using MCMC.

3. Calculate T for each draw y_rep from the posterior predictive distribution: this gives
T(y_rep, φφφ ).

4. Compare the posterior predictive distribution of T(y_rep, φφφ ) to T(y, φφφ ).

5. Calculate the Bayesian p-value or posterior predictive p-value (ppp-value) defined as the
probability that the replicated samples y_rep could be more extreme than the observed
data y, as measured by the test quantity

pB = Pr
(
T (yrep,φφφ)≥ T (y,φφφ |y)

)
, (3.11)

where the probability is calculated over the posterior distribution of φφφ of yrep.

6. In practice, to compute the posterior predictive p-value we estimate the p-value by calcu-
lating the fraction of times from S simulations that T(ys

rep, φφφ
s)≥ T (y,φφφ s), for s = 1, . . . ,S.

If the estimated posterior predictive p-value is close to 0 or 1 (say 0.05 or 0.95), then it
suggests that something in our model is inadequate.

In our case we use two test-statistics, the log likelihood and the diffusion coefficient. To gen-
erate the replicate datasets we use 500 different sets of posterior samples from the two MCMC
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samplers (one to infer the shape and scale parameters of the Weibull distribution and the other
one to infer the shape parameter of the Wrapped Cauchy distribution). Plots of the path of the
CRW model for the replicate and observed datasets when ∆t = 0.1 are illustrated in Figure 3.17
- 3.18.

Log likelihood as a test statistic

In this section we use the log likelihood as a test statistic to check whether our inferred model
is a good fit to the observed data i.e. dataset 1, the data obtained after interpolation. The test
statistic T(y) is the sum of the log likelihood of the Weibull distribution for the step-lengths and
of the log likelihood of the Wrapped Cauchy distribution for the turning angle.

The diffusion coefficient as a test statistic

In this section we use the diffusion coefficient as a test statistic. To accomplish this, we make
use of the following mathematical equation [Codling et al., 2008]

u2 = 4Dτ, (3.12)

where u is the expected distance from the origin at time step τ , and D is the diffusion coefficient.
For the observed dataset, we calculate the distance from the origin at each time step, then using
Equation 3.12 and linear regression we calculate the slope D.

For the replicated datasets, we can minimise the uncertainty when calculating the diffusion
coefficient D by computing the average distance from the origin at each time step from multiple
simulations (50 in our case), but uncertainty deriving from the MCMC inference of the param-
eters is still present. More specifically, suppose φφφ = (φ1,φ2,φ3) be a set of parameters obtained
from the MCMC inference, where φ1,φ2 are the shape and scale parameters of the Weibull dis-
tribution and φ3 is the shape parameter of the Wrapped Cauchy distribution. Using this set of
parameters we generate data multiple times, calculate the distance from the origin at each time
step for every simulation, and then take the average in order to calculate the average distance
from the origin vector. We can represent this mathematically. Suppose the distance from the
origin vector to any position for the k-th simulated sample is vk = (vk

0, vk
∆t
, vk

2∆t
, . . .), where vk

0

is the distance from the origin to the origin (the first entry is always going to be 0), vk
∆t

is the
distance from the origin to the position at time step ∆t , ∆t is the interpolation time step, and k is
a natural number between 1 and 50. Thus, the average distance from the origin vector across all

simulations is u =

(
∑

k=50
k=1 vk

0
50 ,

∑
k=50
k=1 vk

∆t
50 ,

∑
k=50
k=1 vk

2∆t
50 , . . .

)
. We repeat the same procedure to calcu-

late the average distance from the origin for the remaining replicated samples. It is important to
stress that each replicate sample is generated using a different set of parameters, but we average
across the simulations using the same set of parameters.
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Model checking results

In this section we show the results of the model checking using the two test statistics. In Table
3.4 we show the results using log likelihood as a test statistic and in Figures 3.19-3.23 we plot
scaled scaled histograms of the log likelihood test statistic for the replicate samples T(yrep) and
for dataset 1, T(y). In all cases the log likelihoods were re-scaled to adjust to the fact that the
sample size for the replicate datasets is 1000, compared to the dataset 1 sample size. In Table
3.5 we show the results using the diffusion coefficient as a test statistic. In Figures 3.24 and 3.25
we plot histograms of the replicate samples together with the test statistics T(y) computed using
the diffusion coefficient for all the cases.

t The dataset 1 sample size Bayesian p-value

0.1 9988 0.004

0.2 4993 0.012

0.3 3328 0.011

1 1000 0.566

2 500 0.58

Table 3.4: Model checking results using re-scaled log likelihood per data point as a test statistic.

t The dataset 1 sample size Bayesian p-value

0.1 9988 0

0.2 4993 0

0.3 3328 0

1 1000 0.188

2 500 0.026

Table 3.5: Model checking results using the diffusion coefficient as a test statistic where T (y) =
17.74.

(a) Plot of the x-coordinates for the replicated
datasets for ∆t = 0.1.

(b) Plot of the x-coordinates for the observed
dataset, dataset 1 for ∆t = 0.1.

Figure 3.17: Plots of the x-coordinates for the replicated and the observed datasets for ∆t = 0.1.
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(a) Plot of the y-coordinates for the replicated
datasets for ∆t = 0.1.

(b) Plot of the y-coordinates for the observed
dataset, dataset 1 for ∆t = 0.1.

Figure 3.18: Plots of the y-coordinates for the replicated and the observed datasets for ∆t = 0.1.

(a) Scaled histogram of T(y_rep) for ∆t = 0.1. (b) Scaled histogram of T(y) for ∆t = 0.1.

Figure 3.19: Model checking using log likelihood as a test statistic for ∆t = 0.1.

(a) Scaled histogram of T(y_rep) for ∆t = 0.2. (b) Scaled histogram of T(y) for ∆t = 0.2.

Figure 3.20: Model checking using log likelihood as a test statistic for ∆t = 0.2.
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(a) Scaled histogram of T(y_rep) for ∆t = 0.3. (b) Scaled histogram of T(y) for ∆t = 0.3.

Figure 3.21: Model checking using log likelihood as a test statistic for ∆t = 0.3.

(a) Scaled histogram of T(y_rep) for ∆t = 1. (b) Scaled histogram of T(y) for ∆t = 1.

Figure 3.22: Model checking using log likelihood as a test statistic for ∆t = 1.

(a) Scaled histogram of T(y_rep) for ∆t = 2. (b) Scaled histogram of T(y) for ∆t = 2.

Figure 3.23: Model checking using log likelihood as a test statistic for ∆t = 2.
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(a) Histogram of T(y_rep) and T(y) (red dashed
line) for ∆t = 0.1.

(b) Histogram of T(y_rep) and T(y) (red dashed
line) for ∆t = 0.2.

Figure 3.24: Model checking using the diffusion coefficient as a test statistic.

(a) Histogram of T(y_rep) and
T(y) (red dashed line) for ∆t =
0.3.

(b) Histogram of T(y_rep) and
T(y) (red dashed line) for ∆t =
1.0.

(c) Histogram of T(y_rep) and
T(y) (red dashed line) for ∆t = 2.

Figure 3.25: Model checking using the diffusion coefficient as a test statistic.

In almost all of the cases we found out that there is a model mismatch between our in-
ferred model and the observed data (dataset 1) illustrated in Tables 3.4-3.5 (extreme Bayesian
p-values), in Figures 3.19-3.23 (using log likelihood), and in Figures 3.24-3.25 (using the dif-
fusion coefficient). The only exception occurred when ∆t = 2 when using the log likelihood
as test-statistic, illustrated in Table 3.4 (Bayesian p-value is 0.58) and in Figure 3.23. Also,
when we fit a model with the same time step as the original data (∆t = 1) we get that there is
no evidence of a model mismatch illustrated in Tables 3.4 and 3.5 (Bayesian p-value is 0.566,
respectively 0.188) and in Figures 3.22, 3.25b.

3.4 Conclusions

Mathematical modelling of animal movement is becoming ever more important in quantitative
ecology, and with the improvement in GPS tagging technologies, increasing amounts of data are
rapidly becoming available. This opens the door to statistical inference, to address the related
challenges of parameter estimation, hypothesis testing and uncertainty quantification.
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In the present chapter, we have analysed several discrete-time movement models, performed
inference using a MCMC sampler and checked for convergence of the MCMC chains. From all
of these models, we have focused on a model that is the centrepiece of the animal movement
literature: a Markovian discrete-time random walk model. While very basic, this model is an
essential building block from which many more advanced models are constructed by model
extension. We have set up a Bayesian inference scheme based on sampling parameters from the
posterior distribution. In order to be generalisable to more complex and advanced models, we
have applied a general-purpose Markov chain Monte Carlo (MCMC) sampler. This addresses
the challenges of parameter estimation (e.g. posterior means) and uncertainty quantification
(credible intervals).

To address the challenge of hypothesis testing, we have generated synthetic data with a mis-
match in the sampling frequency, to test procedures for detecting a systematic mismatch between
the model and the data. In our study, we have evaluated a Bayesian approach to model critique
based on summary statistics and posterior predictive p-values. The idea is to select an infor-
mative summary statistic and compute it from the original data. We then compare this value
with the posterior distribution of the same summary statistic based on the model. This poste-
rior distribution is obtained by drawing a sample of parameters from the posterior distribution,
simulating data for each sampled parameter, and then computing the summary statistic for each
simulated dataset. The posterior predictive p-value quantifies how far in the tails the summary
statistic of the true data lies, with values close to 0 or 1 indicating a systematic model mismatch.

Any choice of summary statistic incurs an inevitable information loss, though, and our study
has shown that the log likelihood is not sufficiently informative for consistent mismatch indica-
tion. The diffusion coefficient, on the other hand, has consistently indicated any model mismatch
related to wrong sampling rates, and has thus turned out to be a more reliable model mismatch
indicator. Besides testing Bayesian model critique procedures, our study has highlighted a fun-
damental shortcoming of discrete-time movement models, namely the need to select a sampling
time interval (inverse sampling frequency) in advance. In the next chapters of the thesis (Chap-
ters 5 and 6), we will apply Bayesian inference techniques to continuous time movement models,
like Gaussian processes, which are more flexible and inherently avoid this limitation.



Chapter 4

Movement models and their covariance
functions

Gaussian processes (GPs) are a powerful model that can detect patterns in the data and have
been applied in various domains for decades. GPs have been applied in the field of geostatis-
tics, where prediction is known as kriging, and have been widely implemented in the machine
learning community. While being extensively used for a long time, applications of GPs are
scattered across the literature. In Section 2.3, ‘Relation between Gaussian processes and other
models’, we discussed the connections between non-parametric methods such as GPs and para-
metric models, convolutions of continuous-time movement models and state space models, thus
connecting the many loose threads in the literature. In this chapter, we focus on represent-
ing popular continuous-time movement models such as Brownian bridge, Ornstein-Uhlenbeck
(OU), Ornstein-Uhlenbeck velocity (OUV) and Ornstein-Uhlenbeck foraging (OUF) models as
GPs, by deriving the appropriate and corresponding covariance function to the movement model.
Thus, we gain significant advantages such as working in a non-parametric Bayesian inference
framework with access to powerful machine learning libraries with already in-built inference
methods such as maximum-a-posteriori (MAP), Markov Chain Monte Carlo (MCMC) or varia-
tional inference methods.

Authors’ statement: Colin Torney, Dirk Husmeier and Ionut Paun designed the study, Ionut
Paun performed the analysis and Ionut Paun wrote the manuscript. I confirm that my contribu-
tion to each section of the paper is more than 50%.

4.1 Introduction

In Section 2.3, ‘Relation between Gaussian processes and other models’, we discussed GPs
and their various applications. Firstly, we looked at GPs from a machine learning perspective,
where we showed that we can get from a parametric model to a non-parametric model such

74
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as a GP. Secondly, we showed that convolutions of continuous-time movement models can be
represented as a GP. Finally, we showed the advantages and disadvantages of representing a GP
as a state space model and how we can convert a GP to a state space model and vice versa.

In this chapter, we expand on the background section ‘Relation between Gaussian pro-
cesses and other models’ and show how different movement models formulated in continuous-
time, such as Brownian bridge [Hooten et al., 2017], Orstein-Uhlenbeck (OU) [Uhlenbeck and
Ornstein, 1930], Orstein-Uhlenbeck velocity model (OUV) [Johnson et al., 2008] and Orstein-
Uhlenbeck-Foraging (OUF) [Fleming et al., 2014a] can be reformulated as GPs. Thus, the infer-
ence framework becomes non-parametric and Bayesian. Moreover, access to machine learning
libraries that enable fast and efficient computational inference for large datasets is provided.

The theoretical covariance functions of the aforementioned movement models are mostly
known and are found across the literature, the only exception being the OUV model, where we
could not find the covariance function for the location process. However, sometimes the deriva-
tions of the covariance functions of these models are not found easily and are often incomplete
or terse1. In this chapter we show the full derivation of these covariance functions in a simple
and easy to understand manner. We first show the derivations of the covariance functions of the
Brownian motion and Brownian bridge models2, then in the case of the OUV and OUF models
we offer two distinct derivations of their corresponding covariance functions for each model.
For the last two models, in both cases, the first derivation makes use of the existing literature,
then we expand on the existing literature to give a full derivation of their corresponding covari-
ance functions. Furthermore, we illustrate alternative derivations of the covariance function for
each model, that to the best of our knowledge are novel.

An important contribution is that we corrected the OUF covariance function formula in Flem-
ing et al. [2014a], that had a different constant in front of the kernel and we showed thoroughly
that it is a valid kernel i.e. is symmetric and positive semi-definite. Moreover, in Section 4.3 we
run empirical tests to show that all our derivations for the theoretical covariance functions are
correct by plotting the theoretical covariance function values against the numerical covariance
function values obtained from simulating the corresponding movement model.

4.2 Movement models as Gaussian processes

It has been noted that GP regression (also known as kriging) is formally equivalent to many
continuous-time movement modelling approaches [Hooten and Johnson, 2017, Fleming et al.,
2014b]. Assuming that animal movement data is generated from a particular stochastic model,

1In the case of the Brownian motion and Brownian bridge covariance functions one might find various deriva-
tions across the literature. For the OU model, we found an accessible yet incomplete derivation on Wikipedia,
however this source might not be always reliable. For the OUF model in the Supplemental Material [Fleming et al.,
2014a], there is a terse derivation of the covariance function.

2We have never seen this derivation of the covariance function of the Brownian bridge model done before in the
literature.
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then inferring the parameters of that model is equivalent to placing a GP prior on the data with
a particular covariance kernel. We detail here how common continuous-time movement models
may be implemented within a GP framework by specifying the appropriate covariance kernel.

4.2.1 Brownian bridge movement process

A Brownian bridge process is a Brownian motion process where the starting/end times and
locations are known and fixed in advance. Given that f (t) is the position variable, Hooten et al.
[2017] describe the Brownian bridge as multivariate normal random process such that

f (t)∼N

(
f (ti−1)+

t− ti−1

ti− ti−1
( f (ti)− f (ti−1)),

(t− ti−1)(ti− t)
ti− ti−1

σ
2
)
, (4.1)

for ti−1 < t < ti, where f (ti−1), f (ti) are known and σ2 is the variance.
For a start, we aim to derive the Brownian motion model’s covariance function. We suppose

that the position of a particle undergoing Brownian motion at time t is

xt = σ

∫ t

0
dWu, (4.2)

where σ is the spread and Wu is the Wiener process. Likewise, at time s we have

xs = σ

∫ s

0
dWv, (4.3)

where σ is the spread and Wv is the Wiener process at time v. Given that the mean of a Brownian
motion process is 0, the covariance at the times t and s is3

Cov(xs,xt) = σ
2E(xsxt) = σ

2E
(∫ t

0
dWu

∫ s

0
dWv

)
. (4.4)

Using the isometric property of the Itô integral [Protter, 2004] we get

Cov(xs,xt) = σ
2E
(∫ min(s,t)

0
du
)
= σ

2E[min(s, t)] = σ
2 min(s, t). (4.5)

3In this thesis, we make use of both notations, x(s) or xs for any s interchangeably.
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More explicitly, assuming t < s without loss of generality, we get

E
(∫ t

0
dWu

∫ s

0
dWv

)
= E

(∫ t

0
dWu

(∫ t

0
dWv +

∫ s

t
dWv

))
= E

(∫ t

0
dWu

∫ t

0
dWv +

∫ t

0
dWu

∫ s

t
dWv

)
= E

(∫ t

0
dWu

∫ t

0
dWv

)
+E

(∫ t

0
dWu

∫ s

t
dWv

)
= E

(∫ t

0
du
)
+0 = E(t) = t = min(s, t),

(4.6)

where the first expectation is computed using properties of the Itô integral [Protter, 2004] and
the second integral is 0 due to properties of Brownian motion as there is no overlap between the
two integrals.

Now we aim to prove that given the covariance function in Equation 4.5 we can arrive at the
Brownian bridge movement model in Equation 4.1. We suppose that our observed data is the set
x = x1, . . . ,xN and fi = f (xi) is the function evaluated at xi. We assume that we do not have any
observation noise and we wish to predict the function values f∗ at a new set of test points x∗. If
the observations are noiseless, then our GP will return the answer f (x) with no uncertainty for
an already seen set of observations x.

Using the definition of the GP, the joint distribution of the GP has the following form(
f
f∗

)
∼N

((
µµµ

µµµ∗

)
,

(
K K∗

K∗T K∗∗

))
, (4.7)

where K = k(x,x) is N×N, K∗ = k (x,x∗) is N×N∗ and K∗∗ = k (x∗,x∗) is N∗×N∗ and k is a
kernel. Using standard rules for conditioning Gaussians4 [Rasmussen and Williams, 2006], the
posterior has the following form

p(f∗|x∗,x, f) = N (f∗|µµµ∗,ΣΣΣ∗) . (4.8)

µµµ
∗ = µ(x∗)+K∗

T
K−1(f−µ(x)). (4.9)

ΣΣΣ
∗ = K∗∗−K∗

T
K−1K∗, (4.10)

where we use the following convention regarding notation: µµµ = µ(x).
Suppose we have 3 observations at different time points, s,m and t, with s < m < t, where

s and t are training points and m is a new test point. Using the formulas from Equations 4.5,
4.9 and 4.10 we calculate the mean and covariance matrix for the Brownian bridge movement

4Note that the definition of a GP and the standard rules for conditioning Gaussians have been introduced before
in the thesis, in Section 2.2, but have been replicated here for the clarity of the derivations.
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process as follows

K∗ = σ
2

(
min(s,m).

min(m, t)

)
= σ

2

(
s

m

)
. (4.11)

K = σ
2

(
min(s,s) min(s, t)
min(t,s) min(t, t).

)
= σ

2

(
s s

s t

)
. (4.12)

K∗∗ = σ
2min(m,m) = σ

2m. (4.13)

We can assume that the means of the observations are zero. Following the formulas from Equa-
tions 4.9 and 4.10 we get that

µ
∗(m) = 0+

(
s m

)(s s

s t

)−1(
( f (s) f (t))T −0

)
=
(

s m
) 1

st− s2

(
t −s

−s s

)(
f (s)

f (t)

)

=
1

t− s
(t−m m− s)

(
f (s)

f (t)

)
=

1
t− s

((t−m) f (s)+(m− s) f (t))

=
1

t− s
( f (s)t−m f (s)+m f (t)− s f (t)) =

1
t− s

m(( f (t)− f (s))+ f (s)t− s f (t))

=
1

t− s
(m( f (t)− f (s))+ f (s)t− s f (t)+ s f (s)− s f (s))

=
1

t− s
((m− s)( f (t)− f (s))− s f (s)+ t f (s)) =

1
t− s

((m− s)( f (t)− f (s))+ f (s)(t− s))

= f (s)+
(m− s)( f (t)− f (s))

t− s
.

(4.14)

We repeat the same process for the covariance matrix at time point m

ΣΣΣ
∗(m) = σ

2

m− (s m)

(
s s

s t

)−1(
s

m

)
= σ

2

(
m− (s m)

1
st− s2

(
t −s

−s s

)(
s

m

))

= σ
2

(
m− 1

st− s2 (st−ms − s2 + sm)

(
s

m

))

= σ
2
(

m− 1
t− s

(st−2ms+m2)

)
= σ

2
(

mt− sm− st +2ms−m2

t− s

)
= σ

2 mt− st +ms−m2

t− s
= σ

2 t(m− s)+m(s−m)

t− s
= σ

2 (t−m)(m− s)
t− s

.

(4.15)

We have that f (m) ∼N (µ∗(m),ΣΣΣ∗(m)). This is equivalent to Equation 4.1 and this is the
form of the Brownian bridge process that is common in the literature [Hooten et al., 2017]. The
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Brownian bridge model covariance function at two different time points will be presented in the
Appendix, Section C.1.

4.2.2 Ornstein-Uhlenbeck process

The stochastic differential equation (SDE) for an OU process in one-dimension is

dxt = a(b− xt)dt +σdWt , (4.16)

where Wt is a Wiener process, a is the rate at which the process mean reverts, b is the run average
and σ is the volatility of the process.

We illustrate the derivation of the covariance function for the OU model. Changing variables
f (xt , t) = xteat we get

d f (xt , t) = axteatdt + eatdxt = eatabdt +σeatdWt , (4.17)

using the formula for the OU stochastic differential Equation 4.16 in the last equation. Integrat-
ing from 0 to t we get

xteat = x0 +
∫ t

0
easab ds+

∫ t

0
σeasdWs. (4.18)

Therefore,

xt = x0e−at +b(1− e−at)+σ

∫ t

0
e−a(t−s)dWs (4.19)

Then, from the previous equation we calculate the expectation such that

E(xt) = x0e−at +b(1− e−at). (4.20)

The term σ

∫ t

0
e−a(t−s)dWs disappears because of properties of Brownian motion as the expec-

tation E(Wt) = 0.
Using Itô’s isometry property [Protter, 2004] we have that (we assume s < t withous loss of

generality)

Cov(xs,xt) = E[(xs−E(xs))(xt−E(xt)]

= E
(∫ s

0
σea(u−s)dWu

∫ t

0
σea(v−t)dWv

)
= σ

2e−a(s+t)E
(∫ s

0
eaudWu

∫ t

0
eavdWv

)
= σ

2e−a(s+t)E
(∫ s

0
eaudWu

(∫ s

0
eavdWv +

∫ t

s
eavdWv

))
= σ

2e−a(s+t)
(
E
(∫ s

0
eaudWu

∫ s

0
eavdWv

)
+E

(∫ s

0
eaudWu

∫ t

s
eavdWv

))
.

(4.21)
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We compute the first expectation using properties of the Itô integral [Protter, 2004] and the
second expectation is 0, due to properties of Brownian motion, as there is no overlap between
the two integrals.

Cov(xs,xt) = σ
2e−a(s+t)E

(∫ s

0
eaudWu

∫ s

0
eaudWu

)
= σ

2e−a(s+t)
∫ s

0
e2audu = σ

2e−a(s+t) e2au

2a

∣∣∣∣∣
s

0

=
σ2

2a
e−a(s+t) (e2as−1

)
=

σ2

2a
e−a(s+t)

(
e2amin(s,t)−1

)
=

σ2

2a

(
e−a|t−s|− e−a(t+s)

)
.

(4.22)

As t and s grow large e−a(t+s) −→ 0, therefore, we get that the OU covariance function is given
by

Cov(xs,xt) =
σ2

2a
e−a|t−s|. (4.23)

To get the final result we use the following identity: 2amin(s, t)− a(s+ t) = −a|s− t| derived
from

|s− t|= max(s, t)−min(s, t). (4.24)

s+ t = max(s, t)+min(s, t). (4.25)

4.2.3 Orstein-Uhlenbeck velocity model

The OUV model or the continuous-time correlated random walk (CTCRW) is a animal move-
ment model made popular by Johnson et al. [2008]. We denote xt the location of the animal at
time t, and vt the velocity is given the following equation in one-dimension

dxt = vtdt. (4.26)

We then model the velocity by an OU process, given by the following equation in one-dimension
such that

dvt = a(b− vt)dt +σdWt , (4.27)

where Wt is a Wiener process, a is mean reversion rate, b is the average, σ is the volatility of the
process that measures the deviation of the velocity around the mean.

We are interested in calculating the covariance function for the location process x at time t.
We can then use this covariance function as the kernel of a GP, instead of working with stochastic
differential equations. We give two approaches to calculating the covariance function of an OUV
model. The first derivation is based on Michelot and Blackwell [2019] and the second derivation
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of the covariance function of the OUV model is novel. We note that the first method is more
general, done by solving the stochastic differential equations and the second method uses the
fact that we already know the formula for the OU covariance function.

OUV model covariance derivation: First derivation

For the first derivation we use Michelot and Blackwell [2019], Appendix S1. The OUV model
in one-dimension is defined as

dxt = vtdt. (4.28)

dvt =−avtdt +σdWt , (4.29)

where xt is the location process, vt is the velocity process, a is the mean-reversion rate, the
average is taken to be zero, σ is the volatility of the process and Wt is a Wiener process. For
simplicity, we work with the univariate case. We multiply Equation 4.29 by eat such that

eatdvt =−aeatvtdt + eat
σdWt . (4.30)

We notice that
d(eatvt) = aeatvtdt + eatdvt . (4.31)

Adding Equations 4.30 and 4.31 we get that

d(eatvt) = eat
σdWt . (4.32)

We integrate both sides between t and t +δ ,

ea(t+δ )vt+δ − eatvt = σ

∫ t+δ

s=t
easdWs. (4.33)

Solving this we get the solution

vt+δ = e−aδ vt +σ

∫ t+δ

s=t
e−a(t+δ−s)dWs. (4.34)

To solve for xt we integrate Equation 4.28 between t and t +δ and using Equation 4.34 we get
that

xt+δ − xt =
∫ t+δ

s=t
vsds =

∫ t+δ

s=t

(
e−a(s−t)vt +σ

∫ s

u=t
e−a(s−u)dWu

)
ds. (4.35)
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Therefore,

xt+δ = xt + vt

∫ t+δ

s=t
e−a(s−t)ds+σ

∫ t+δ

s=t

∫ s

u=t
e−a(s−u)dWuds

= xt + vt

[
−e−a(s−t)

a

]t+δ

s=t

+σ

∫ t+δ

u=t

∫ t+δ

s=u
e−a(s−u)dsdWs

= xt +

(
1− e−aδ

a

)
vt +σ

∫ t+δ

u=t

[
−e−a(s−u)

a

]t+δ

s=u

dWu

= xt +

(
1− e−aδ

a

)
vt +

σ

a

∫ t+δ

u=t
(1− e−a(t+δ−u))dWu.

(4.36)

We denote the Gaussian error term as5

ξ (δ ) =
σ

a

∫ t+δ

u=t
(1− e−a(t+δ−u))dWu. (4.37)

The derivation so far has been reproduced from Michelot and Blackwell [2019]. Now we aim
to use the Gaussian error term from Equation 4.37 to calculate the covariance function for the
location process xt . We do this in a similar manner to the calculation of the covariance of the
location process and the velocity process found in Michelot and Blackwell [2019], page 15. For
simplicity, we choose the times to be 0 and δ . The Gaussian error term for the location process
of the velocity model between the times 0 and δ , respectively δ ′, where a and σ are parameters
of the CTCRW model is

ξ (δ ) =
σ

a

∫
δ

0
(1− e−a(δ−u′))dWu′. (4.38)

ξ (δ ′) =
σ

a

∫
δ ′

0
(1− e−a(δ ′−v′))dWv′. (4.39)

The covariance function at times δ and δ ′ is

Cov[ξ (δ ),ξ (δ ′)] = E[(ξ (δ )−E[ξ (δ ])(ξ (δ ′)−E[ξ (δ ′)])]

= E[ξ (δ )ξ (δ ′)]−E[ξ (δ )]E[ξ (δ ′)].
(4.40)

5Note that in the article there is a plus sign, however there should be a minus sign, given the following equations
on page 14 and 15 of Michelot and Blackwell [2019].
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Using properties of the Itô integral [Protter, 2004] and the notation γ = min(δ ,δ ′) we get that

E[ξ (δ )ξ (δ ′)] =
σ2

a2

∫
γ

0
(1− e−a(δ−u′))(1− e−a(δ ′−u′))du′

=
σ2

a2

∫
γ

0
1− e−a(δ−u′)− e−a(δ ′−u′)+ e−a(δ ′+δ−2u′)du′

=
σ2

a2

(
γ− e−a(δ−γ)

a
− e−a(δ ′−γ)

a
+

e−a(δ+δ ′−2γ)

2a
−0+

e−a(δ−0)

a
+

e−a(δ ′−0)

a

− e−a(δ+δ ′−0)

2a

)

=
σ2

a2

(
γ− e−a(δ−γ)+ e−a(δ ′−γ)− e−aδ − e−aδ ′

a
+

e−a(δ+δ ′−2γ)− e−a(δ+δ ′)

2a

)

=
σ2

a2

γ−
2
(

e−a(δ−γ)+ e−a(δ ′−γ)− e−aδ − e−aδ ′
)
− e−a(δ+δ ′−2γ)+ e−a(δ+δ ′)

2a

 .

(4.41)

We can simplify the above expression. We can assume without loss of generality that δ ≤ δ ′ i.e.
γ = min(δ ,δ ′) = δ . Therefore, Equation 4.41 becomes

E[ξ (δ )ξ (δ ′)] =
σ2

2a3

(
2aδ −2

(
e0 + e−a(δ ′−δ )− e−aδ − e−aδ ′

)
+ e−a(δ ′−δ )− e−a(δ+δ ′)

)
=

σ2

2a3

(
2aδ −2− e−a(δ ′−δ )+2e−aδ +2e−aδ ′− e−a(δ+δ ′)

)
=

σ2

2a3

(
2e−aδ − e−a(δ+δ ′)− e−a(δ ′−δ )+2e−aδ ′+2aδ −2

)
=

σ2

2a3

(
2e−aδ − e−a(δ+δ ′)− e−a|δ ′−δ |+2e−aδ ′+2amin(δ ,δ ′)−2

)
.

(4.42)

Due to symmetry we can insert modulus |δ − δ ′| in the last equation in Equation 4.42. Using
the expectation formula from Michelot and Blackwell [2019], page 14, we have

E[ξ (δ )] = x0 +

(
1− e−aδ

a

)
v0. (4.43)

E[ξ (δ ′)] = x0 +

(
1− e−aδ ′

a

)
v0, (4.44)

where xt is the location process and vt is the velocity process at time t.
Plugging everything into Equation 4.40 we get the covariance formula for the location pro-

cess for a general mean. However, if we assume that the mean of the process is 0 by taking
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x0 = v0 = 0, the location process’ covariance function for the velocity model is Equation 4.42.
Reverting to the standard notation used in this chapter (ξ → x , δ → t, δ ′→ t ′), the covariance
of the location process x of the OUV model at two time points t and t ′ is

Cov[x(t),x(t ′)] =
σ2

2a3

(
2e−at− e−a(t+t ′)− e−a|t ′−t|+2e−at ′+2amin(t, t ′)−2

)
, (4.45)

where a is the mean reversion rate, σ is the volatility of the OU process for the velocity process
v.

OUV model covariance derivation: Second approach

We suppose we have two observations recorded at positions xt and xt ′ at times t and t ′ drawn
from an OUV model. Given that we assume that the mean of the process is 0 we have that the
covariance functions is

Cov[x(t),x(t ′)] = E
[
x(t)x(t ′)

]
= E

(∫ t

0
v(s)ds

∫ t ′

0
v(r)dr

)
=
∫ t

0

∫ t ′

0
E [v(s)v(r)]dsdr =

∫ t

0

∫ t ′

0

σ2

2a

(
e−a|s−r|− e−a(s+r)

)
dsdr.

(4.46)

In Equation 4.46 we used the fact that we can move the expectation inside the integral and
the fact that the velocity process is modelled by an OU model, which has a known covariance
function derived in Equation 4.22 replicated here for clarity

Cov[v(s),v(t)] =
σ2

2a

(
e−a|t−s|− e−a(t+s)

)
, (4.47)

where v is the velocity process at times t and s, σ is the volatility of the process and a is the
mean inversion rate.

We have |s− r|= s− r if r ≤ s and |s− r|= r− s if r > s. We assume t < t ′ without loss of
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generality. Equation 4.46 becomes

Cov[x(t),x(t ′)] =
σ2

2a

∫ t

0
ds
(∫ s

0
e−a(s−r)− e−a(s+r)dr+

∫ t ′

s
e−a(r−s)− e−a(s+r)dr

)

=
σ2

2a

∫ t

0
ds

e−a(s−r)

a

∣∣∣∣∣
r=s

r=0

+
e−a(s+r)

a

∣∣∣∣∣
r=s

r=0

− e−a(r−s)

a

∣∣∣∣∣
r=t ′

r=s

+
e−a(s+r)

a

∣∣∣∣∣
r=t ′

r=s


=

σ2

2a

∫ t

0
ds

((
1
a
− e−as

a

)
+

(
e−2as

a
− e−as

a

)
−

(
e−a(t ′−s)

a
− 1

a

)

+

(
e−a(t ′+s)

a
− e−2as

a

))

=
σ2

2a2

∫ t

0

(
−2e−as + e−a(t ′+s)− e−a(t ′−s)+2

)
ds

=
σ2

2a2

(
2

e−as

a

∣∣∣∣∣
s=t

s=0

− e−a(t ′+s)

a

∣∣∣∣∣
s=t

s=0

− e−a(t ′−s)

a

∣∣∣∣∣
s=t

s=0

+2t

)

=
σ2

2a3

(
2
(
e−at−1

)
−
(

e−a(t+t ′)− e−at ′
)
−
(

e−a(t ′−t)− e−at ′
)
+2ta

)
=

σ2

2a3

(
2e−at−2− e−a(t+t ′)− e−a(t ′−t)+2e−at ′+2ta

)
=

σ2

2a3

(
2e−at− e−a(t+t ′)− e−a|t ′−t|+2e−at ′+2amin(t, t ′)−2

)
,

(4.48)

where due to symmetry we can insert the modulus |t− t ′| in the last equation. In conclusion, the
two approaches (Equations 4.45 and 4.48) of determining the covariance function of the location
process x at two times t and t ′ for the velocity model give the same result

Cov[x(t),x(t ′)] =
σ2

2a3

(
2e−at− e−a(t+t ′)− e−a|t ′−t|+2e−at ′+2amin(t, t ′)−2

)
. (4.49)

4.2.4 OU-Foraging model

The OU-Foraging model (OUF) is a generalisation of the OU model derived by Fleming et al.
[2014a] that adds random foraging periods to the OU model. These periods are regulated by the
introduction of another time-scale parameter τF , that corresponds to foraging behaviour. The
OUF corresponding covariance function at times t and t ′ is given by the following formula

k(t, t ′) = σH
τHe−

|t−t|′
τH − τFe−

|t−t′|
τF

τH− τF
, (4.50)

where σH is the position variance parameter and τH , τF denote the time-scales parameters.
First of all, in order to use this model, the OUF covariance function given by Equation 4.50
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must be positive-semidefinite. While the OUF kernel is a popular kernel, in Fleming et al.
[2014a] the explanation of why it is a positive-semidefinite and its derivation are terse. Firstly,
we thoroughly prove the positive-semidefiniteness of the OUF kernel and then we illustrate a
novel and complete derivation of the OUF model’s covariance function.

The covariance matrix of a random vector x ∈ Rn with mean vector m is defined as

ΣΣΣ = E
[
(x−m)(x−m)T

]
. (4.51)

The (i, j)th element of the covariance matrix ΣΣΣ is given by

ΣΣΣi j = E
[
(xi−mi)

(
x j−m j

)]
= ki j. (4.52)

Any covariance matrix has various properties, including the fact that it is symmetric and that it
is positive-semidefinite. Therefore, to prove that the OUF kernel gives a positive-semidefinite
covariance matrix we prove that starting from the definition given by Equations 4.51 or 4.52 we
obtain the OUF kernel formula.

Following the Supplementary Material from Fleming et al. [2014a], Section C.3, and us-
ing the authors’ notation for simplicity, we can derive the OUF covariance function from the
Langevin equations

d
dt

x(t) =− 1
τH

(x(t)−µ)+u(t). (4.53)

d
dt

u(t) =− 1
τF

u(t)+a(t), (4.54)

where the x-movement is driven by the process u(t), which itself is driven by the white noise
process a(t). We can solve Equation 4.53 and construct the covariance matrix by using the
OU derivation presented in the Supplementary Material by Fleming et al. [2014a], Section C.2.
Equation C.21 from Fleming et al. [2014a] (Equation 4.55), illustrates the covariance matrix for
the OUF kernel

ΣΣΣ(t, t ′) =
∫ t

−∞

ds
∫ t ′

−∞

ds′e−
t−s
τH e−

t′−s′
τH E

[
u(s)u(s′)

]
. (4.55)

Equation 4.55 is obtained by using Equation 4.52, the definition of the expectation and Equation
C.20 [Fleming et al., 2014a], replicated below for clarity

lim
t0→−∞

x(t)−µ =
∫ t

−∞

dt ′e−
t−t′
τH u(t ′), (4.56)

where we set the arbitrary initial conditions x(t0) = x(0). Using Equation 4.54 and Equations
C.23, C.28 [Fleming et al., 2014a] we obtain Equation C.29 [Fleming et al., 2014a] (Equation
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4.57)

ΣΣΣ(t, t ′) =
∫ t

−∞

ds
∫ t ′

−∞

ds′e−
t−s
τH e−

t′−s′
τH

σaτF

2
e−
|s−s′|

τF , (4.57)

where Equations C.23 and C.28 have the following formulas

ΣΣΣOU(t, t ′) =
σuτH

2
e−
|t−t′|

τH . (4.58)

E
[
a(t)a(t ′)

]
= σaδ (t− t ′) (δ (t)is the Dirac delta distribution). (4.59)

We aim to prove that from Equation 4.57 we get to Equation C.30 [Fleming et al., 2014a]
(Equation 4.60), which is Fleming et al. [2014a]’s final formula for the OUF covariance function

ΣΣΣ(t, t ′) =
σaτHτF

2
τHe−

−|t−t′|
τH − τFe−

|t−t′|
τF

τH− τF
. (4.60)

We explain how to get to this result in greater detail. For simplification we denote τH = H,
τF = F and σa = a. We can assume s < t ′ without loss of generality, and as the integral in
Equation 4.57 is symmetric we have that t < t ′ as well. We have that

∫ t ′

−∞

e−
t′−s′

H e−
|s−s′|

F ds′ =
∫ s

−∞

e−
t′−s′

H e−
s−s′

F ds′+
∫ t ′

s
e−

t′−s′
H e−

s′−s
F ds′. (4.61)

We denote

A =
∫ s

−∞

e
s′−t′

H e
s′−s

F ds′ =
∫ s

−∞

e
(H+F)s′−Ft′−Hs

HF ds′

=
HF

H +F
e
(H+F)s′−Ft′−Hs

HF

∣∣∣∣∣
s

−∞

=
HF

H +F
e
(H+F)s−Ft′−Hs

HF

=
HF

H +F
e

s−t′
H .

(4.62)

Also, let

B =
∫ t ′

s
e

s′−t′
H e

s−s′
F ds′ =

∫ t ′

s
e
(F−H)s′−Ft′+Hs

HF ds′

=
HF

F−H
e
(F−H)s′−Ft′+Hs

HF

∣∣∣∣∣
t ′

s

=
HF

F−H

(
e
(F−H)t′−Ft′+Hs

HF − e
(F−H)s−Ft′+Hs

HF

)
=

HF
F−H

(
e

s−t′
F − e

s−t′
H

)
.

(4.63)
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Equation 4.57 becomes

ΣΣΣ(t, t ′) =
∫ t

−∞

aF
2

e
s−t
H

(
HF

F +H
e

s−t′
H +

HF
F−H

(
e

s−t′
F − e

s−t′
H

))
ds

=
aF
2

∫ t

−∞

HF
H +F

e
2s−t−t′

H +
HF

F−H

(
e

s−t′
F + s−t

H − e
s−t′

H + s−t
H

)
ds

=
aF
2

∫ t

−∞

HF
H +F

e
2s−t−t′

H +
HF

F−H

(
e
(H+F)s−Ht′−Ft

FH − e
2s−t−t′

H

)
ds

=
aF
2

(∫ t

−∞

HF
H +F

e
2s−t−t′

H ds +
∫ t

−∞

HF
F−H

(
e
(H+F)s−Ht′−Ft

FH − e
2s−t−t′

H

)
ds
)

=
aF
2

(
HF

H +F
H
2

e
2s−t−t′

H

∣∣∣∣∣
t

−∞

+
HF

F−H

(
HF

H +F
e
(H+F)s−Ht′−Ft

FH − H
2

e
2s−t−t′

H

)∣∣∣∣t
−∞

)

=
aF
2

(
H2F

2(F +H)
e

t−t′
H +

HF
F−H

(
FH

H +F
e

t−t′
F − H

2
e

t−t′
H

))
=

aHF
2

(
HF

2(F +H)
e

t−t′
H +

F2H
(F−H)(F +H)

e
t−t′

F − HF
2(F−H)

e
t−t′

H

)
=

aHF
2

(
HF(F−H)−HF(H +F)

2(F +H)(F−H)
e

t−t′
H +

F2H
(F−H)(H +F)

e
t−t′

F

)
=

aHF
2

(
−H2F

(F +H)(F−H)
e

t−t′
H +

F2H
(F +H)(F−H)

e
t−t′

F

)
=

aHF
2

(
−H

F−H
e

t−t′
H +

F
F−H

e
t−t′

F

)
HF

F +H

=
aHF

2
HF

F +H

(
He

t−t′
H −Fe

t−t′
F

H−F

)

=
aHF

2
HF

F +H

He
−|t−t′|

H −Fe
−|t−t′|

F

H−F

 .

(4.64)

Due to the symmetry we can add modulus in the previous equation to make the kernel stationary.
Reverting to the original notation we get that

ΣΣΣ(t, t ′) =
σaτ2

Hτ2
F

2(τF + τH)

τHe
−|t−t′|

τH − τFe
−|t−t′|

τF

τH− τF


= σH

τHe
−|t−t′|

τH − τFe
−|t−t′|

τF

τH− τF

 ,

(4.65)

which is the same form as Equation 4.50.
We arrived at the same form as Equation C.30 [Fleming et al., 2014a] (Equation 4.60), ex-

cept the constants in front of the kernel. Therefore, we proved rigorously that the OUF kernel
is positive-semidefinite, given that we arrived at the OUF covariance function starting from the
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general definition of a covariance matrix given in Equation 4.51, and we know that any covari-
ance matrix is positive-semidefinite.

OU-Foraging model and its covariance function: Different derivation

We present a novel approach to derive the OUF covariance function. This new derivation is
based on Särkkä et al. [2013]’s approach to convert a state space model to a covariance function.
The methods of converting a state space model to a covariance function and vice-versa have
been reviewed in Section 2.3.3.

Differentiating Equation 4.53 with respect to t one more time, we get that

d2

dt2 x(t) =− 1
τH

d
dt

x(t)+
d
dt

u(t)

=− 1
τH

d
dt

x(t)+a(t)− 1
τF

u(t) (by using Equation 4.54).
(4.66)

Rearranging terms we get

d2

dt2 x(t)+
1

τH

d
dt

x(t)+
1

τF
u(t) = a(t). (4.67)

However, from Equation 4.53 we get that

u(t) =
d
dt

x(t)+
1

τH
[x(t)−µ]. (4.68)

From Equation 4.68 we get that

1
τF

u(t) =
1

τF

d
dt

x(t)+
1

τFτH
[x(t)−µ]. (4.69)

Therefore,

d2

dt2 x(t)+
1

τH

d
dt

x(t)+
1

τF

d
dt

x(t)+
1

τFτH
x(t)− µ

τFτH
= a(t)

=
d2

dt2 x(t)+
(

1
τH

+
1

τF

)
d
dt

x(t)+
1

τFτH
x(t)− µ

τFτH
.

(4.70)

We can denote the coefficients in front of the derivatives of x(t): a2 = 1 , a1 =
1

τH
+ 1

τF
, a0 =

1
τHτF

.

We ignore the extra constant (as we can choose µ = 0). Following the procedure outlined in
Särkkä et al. [2013] we get that the spectral factorisation of the OUF process is

S(a) = qc|G(ia)|2, (4.71)

where qc is the spectral factorisation of the white noise process a(t) and G(ia)= 1
a2(ia)2+a1(ia)+a0

.
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From Equation 4.71, we get that

S(a) =
qc

|−a2a2 +(a1i)a+a0)|2
=

qc

(−a2a2 +a0)
2
+(a1a)2

=
qc

a2
2a4 +

(
a2

1−2a2a0
)

a2 +a2
0
.

(4.72)

The stationary covariance function of the process is given by the inverse Fourier transform of
the spectral density

C(t) =
1

2π

∫
S(a)exp(iat)da. (4.73)

From Equation 4.72, we denote f (a) = a2
2a4 +

(
a2

1−2a2a0
)

a2 + a2
0. We denote a2 = w2, A =

a2
2 = 1, B = a1

2−2a2a0, and C = a2
0 to get to a standard quadratic reduced equation form. We

then get the following equation

f (w) = A
(

w2 +
B

2A

)2

− B2−4AC
4A2 . (4.74)

The Equation 4.74 is of the following form: (w2+constant1)2−constant2. Thus, Equation 4.72
is of the following form

S(w) =
constant3

(w2 + constant4)2 + constant5
. (4.75)

Since Equation 4.75 does not have an inverse Fourier transformation, in order to use inverse
Fourier transformations to solve Equation 4.73, we use partial fractions. The solutions to Equa-
tion 4.74 are of the form w =±α1 and w =±α2. Therefore,

f (w) = A(w−α1)(w+α1)(w−α2)(w+α2)

= A(w2−α
2
1 )(w

2−α
2
2 )

= (w2−α
2
1 )(w

2−α
2
2 ).

(4.76)

Thus, Equation 4.75 has the form

S(w) =
constant6
w−α1

+
constant7
w+α1

+
constant8
w−α2

+
constant9
w+α2

=
constant10

(w2−α2
1 )(w

2−α2
2 )

=
constant11

w2−α2
1

+
constant12

w2−α2
2

.

(4.77)

We can replace the constants in Equation 4.74 with A = a2
2 = 1, B = a2

1− 2a2a0 and C = a2
0,

where a1 =
(

1
τH

+ 1
τF

)
and a0 =

1
τHτF

. From Equation 4.74, we start calculating the two terms



CHAPTER 4. MOVEMENT MODELS AND THEIR COVARIANCE FUNCTIONS 91

in the RHS of the equation. Firstly, we have

B
2A

=
1
2

[(
1

τH
+

1
τF

)2

− 2
τHτF

]
=

1
2

[
(τH + τF)

2

(τHτF)2 −
2τHτF

(τHτF)2

]
=

1
2

[
τ2

H + τ2
F

(τHτF)2

]
=

1
2

(
1

τ2
H
+

1
τ2

F

)
.

(4.78)

Secondly, we calculate the term

B2−4AC
4A2 =

B2−4C
4

=

(
a2

1−2a0
)2−4a2

0
4

=
1
4

[(
1

τH
+

1
τF

)2

− 2
τHτF

]2

− 1

(τHτF)
2

=
1
4

[
(τH + τF)

2

(τHτF)
2 −

2τHτF

(τHτF)
2

]2

− 1

(τHτF)
2

=
1
4

[
τ2

H + τ2
F

(τHτF)
2

]2

− 1

(τHτF)
2

=
1
4

(
1

τ2
H
+

1
τ2

F

)2

− 1

(τHτF)
2

=

1
τ4

H
+ 1

τ4
F
+ 2

τ2
Hτ2

F
− 4

(τHτF )
2

4

=

1
τ4

H
+ 1

τ4
F
− 2

τ2
Hτ2

F

4

=

 1
τ2

H
− 1

τF2

2

2

.

(4.79)

Therefore, solving Equation 4.74 gives

w2 +

(
1

τ2
H
+ 1

τ2
F

)
2

=±
1

τ2
H
− 1

τ2
F

2
. (4.80)

Solving Equation 4.80 we get that

α
2
1 =
−1
τ2

H
. (4.81)

α
2
2 =
−1
τ2

F
. (4.82)
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Plugging the roots into Equation 4.77 and using Equation 4.72 we get

S(w) =
qc(

w2 + 1
τ2

H

)(
w2 + 1

τ2
F

) = qc

 D
w2 + 1

τ2
H

+
E

w2 + 1
τ2

F

 , (4.83)

where D and E are constants to be determined. Multiplying Equation 4.83 by w2 + 1
τ2

H
and

equating w2 = − 1
τ2

H
gives us that D = 1

− 1
τ2
H
+ 1

τ2
F

= 1
−τ2

F
τ2
F τ2

H
+

τ2
H

τ2
F τ2

H

=
τ2

Hτ2
F

(τH−τF )(τH+τF )
. Similarly, E =

τ2
Hτ2

F
(τF−τH)(τH+τF )

. Therefore, from Equation 4.83 we get

S(w) =
qc
(
τ2

Hτ2
F
)

(τH− τF)(τH + τF)

 1
w2 + 1

τ2
H

− 1
w2 + 1

τ2
F

 . (4.84)

The inverse Fourier transform of S(w) = 2α

α2+w2 is e−α|t|, where α is a constant. The constant
α can be a complex number, with Re(α)> 0. Adding in Equation 4.84 the constants needed to
perform the Fourier inverse transformations we get that

C(t) =
1
2

qc
(
τ2

Hτ2
F
)

(τH− τF)(τH + τF)

(
τHe

−1
τH
|t|− τFe

−1
τF
|t|
)
.

= Γ
τHe

−1
τH
|t|− τFe

−1
τF
|t|

τH− τF
,

(4.85)

where Γ is a constant. The corresponding covariance function is k(t, t ′) = C(t− t ′). From the
previous relation and Equation 4.85 we obtain the OUF covariance function found in Equation
4.65, where σa = qc.

In conclusion, we have discovered a small error in the final formula of Fleming et al. [2014a]
covariance function found in Equation 4.60 compared to Equations 4.65 and 4.85, the constant
in front of the kernel being the only difference. The formulas in Equations 4.65 and 4.85 have
been derived using two different approaches, and this provides evidence that the results obtained
in the aforementioned equations are derived correctly.

4.3 Numerical covariance and theoretical covariance of the
movement models comparison

In this section we test whether our theoretical covariance functions for all the different movement
models are correct by plotting the theoretical covariance values against the numerical covariance
values obtained from simulating the respective model.
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4.3.1 Brownian motion numerical covariance and theoretical covariance
comparison

In Figure 4.1 we plot the numerical covariance function values computed from multiple simula-
tions and the theoretical covariance function values obtained from Equation 4.5 for the Brownian
motion. The two functions are in very close agreement.

Figure 4.1: Brownian motion covariance plots, computed numerically from 100,000 simulations
and theoretically from Equation 4.5. The covariance functions were computed from the pairs
with indices 10 to 110 and 50 to 150 respectively.

The numerical covariance function was computed by using the following formula

Cov(xs,xt) = E[(xs−E(xs))(xt−E(xt))] = E(xsxt), (4.86)

given that the mean of the Brownian motion particle at position x at any time t is 0. Therefore,
we simulate Brownian motion at positions x’s for randomly chosen time indices. To calculate
the expectation, we simulate the process multiple times, calculate the product xsxt each time, for
t and s, the indices of interest, and then take the average.

4.3.2 OU numerical covariance and theoretical covariance comparison

We simulate an OU process using the Euler-Maruyama method with a time step ∆t = 0.1, σ =

a = 1. The time step was chosen such that the algorithm converges to the true solution. At a
computational cost, the time step can be chosen to be smaller in order to ensure convergence of
the algorithm. The numerical OU covariance function was calculated as in the previous section
and the theoretical covariance function was computed from the last equation in Equation 4.22.
In Figure 4.2 we plot the numerical and theoretical OU covariance function values, which agree
almost perfectly.
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(a) (b)

Figure 4.2: OU covariance plots, computed numerically from 100,000 simulations and theoret-
ically from the last equation in Equation 4.22. The covariance functions were computed from
the pairs with indices 10 to 110 and 10 i.e. Cov((x[10],. . . , x[110]), x[10]). Figure (a) focuses
more on the first few pairs, while Figure (b) shows the covariance functions plotted for all pairs
mentioned above.

4.3.3 OUV model numerical covariance and theoretical covariance com-
parison

We simulate the OUV model by using the Euler-Maruyama method with a time step ∆t = 0.01
(smaller value than in the previous subsection, chosen such that the algorithm converges to the
true solution) and σ = a = 1. The numerical covariance function was computed in the same
manner as in the previous sections and the theoretical covariance function was computed from
Equation 4.49. In Figure 4.3 we plot the numerical against the theoretical covariance functions
for different time points and the fit is very good.
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Figure 4.3: On the first column: OUV model covariance plots, computed numerically from
2,000,000 simulations (with the time step ∆t = 0.01) and theoretically from Equation 4.49. The
covariance functions on the first row were computed from the pairs with indices 10 to 110 and
10 i.e. Cov((x[10],. . . , x[110]), x[10]), while the covariance functions on the second row were
computed from the pairs with indices 40 to 50 and 40 i.e. Cov((x[40],. . . , x[50]), x[40]). On the
second column: difference between the OUV model covariance plots obtained from the same
pairs.

4.3.4 OU-Foraging model theoretical and numerical covariance compari-
son

We simulate the OUF model by using the Euler-Maruyama method with a time step ∆t = 0.1,
chosen such that the algorithm converges, and by using the Equations 4.53 and 4.54. The nu-
merical covariance function was computed in a similar manner to previous sections and the
theoretical covariance function was computed in two ways using Equation 4.60 (Fleming et al.
[2014a]’s OUF formula) and Equation 4.65 (the formula derived in this thesis). We plot the the-
oretical covariance functions against the numerical covariance function at different time points
using different parameter values in Figure 4.4. There is a noticeable discrepancy between the
plots, as Equation 4.60 does not have the appropriate factor in front of the equation. As the
fit using the formula derived in this thesis is very good in all cases, we can now be confident
that the true theoretical covariance function for the OUF model is given by Equation 4.65, not
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Equation 4.60 and there is an error in latter formula.

Figure 4.4: On the first column: OUF covariance functions plotted, computed numerically
from 100,000 simulations (with the time step ∆t = 0.1), the theoretical covariance computed us-
ing Equation 4.65 and the theoretical covariance function using Fleming’s covariance formula,
Equation 4.60. The indices 10 to 110 and 10 i.e. Cov((x[10],. . . , x[110]), x[10]) and parameter
values of τH = 4, τF = 1 and σa = 1 have been used to produce the covariance functions. Sim-
ilarly, on the second column: OUF covariance functions plotted, computed numerically from
200,000 simulations (with the time step ∆t = 0.1), the theoretical covariance computed using
Equation 4.65 and the theoretical covariance function using Fleming’s covariance formula 4.60.
The indices 80 to 90 and 80 i.e. Cov((x[80],. . . , x[90]), x[80]) and parameter values of τH = 11,
τF = 7 and σa = 1 have been used to produce the covariance functions using Equation 4.65.

4.4 Conclusions

In this chapter we fully derived the theoretical covariance functions for known movement mod-
els such as OU, OUV and OUF models. We also proved that these covariance functions are
correct by comparing them to the numerical covariance functions values obtained from simulat-
ing their corresponding movement model. Reformulating the continuous movement models as
a GP grants us the benefits of working with a non-parametric probabilistic, flexible and pow-
erful model that can detect multiscale patterns and trends in the data. Moreover, we can easily
perform inference and quantify uncertainty for the parameters of interest using methods such
as MCMC and variational inference in a quick manner using machine learning libraries such as
TensorFlow in a Bayesian inference framework.



Chapter 5

Spatial latent field inference using a
hierarchical GP

Understanding the spatial dynamics of animal movement is an essential component of main-
taining ecological connectivity, conserving key habitats, and mitigating the impacts of anthro-
pogenic disturbance. Altered movement and migratory patterns are often an early warning sign
of the effects of environmental disturbance, and a precursor to population declines. Here, we
present a hierarchical Bayesian framework based on Gaussian processes for analysing the spatial
characteristics of animal movement. At the heart of our approach is a novel covariance kernel
that links the spatially-varying parameters of a continuous-time velocity model with GPS lo-
cations from multiple individuals. We demonstrate the effectiveness of our framework by first
applying it to a synthetic dataset, then by analysing telemetry data from the Serengeti wildebeest
migration. Through the application of our approach, we are able to identify the key pathways
of the wildebeest migration as well as revealing the impacts of human presence on movement
behaviour.

Note: This chapter is based on the paper ‘Inferring spatially-varying animal movement charac-
teristics using a hierarchical continuous-time velocity model’ submitted to the journal ‘Ecology
Letters’ and has been accepted for publication. The paper is a collaboration formed by Ionut
Paun (first author), Colin J. Torney, Dirk Husmeier and J. Grant C. Hopcraft. Colin Torney, Dirk
Husmeier and Ionut Paun designed the study, Ionut Paun performed the analysis, Ionut Paun and
Colin Torney wrote the manuscript with inputs from Dirk Husmeier and J. Grant C. Hopcraft,
and J. Grant C. Hopcraft collected the data. I confirm that my contribution to each section of the
chapter is more than 50%.
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5.1 Introduction

Increasingly, animals are moving through human-altered landscapes [Tucker et al., 2018]. In-
frastructure, growing human populations, and artificial boundaries, such as fences or roads, are
disrupting animal movement patterns [Wittemyer et al., 2008a, Løvschal et al., 2017, Doherty
et al., 2021] and consequently, many far-ranging or migratory species are in decline [Wilcove
and Wikelski, 2008, Harris et al., 2009, Campbell et al., 2021, Studds et al., 2017]. In order
to effectively protect these species it is essential to understand how animals respond to envi-
ronmental disturbances and further, to identify the areas, such as migratory corridors, stop-over
sites, or foraging grounds, that are vital for the survival of a species.

In recent years, there has been a rapid advance in our ability to collect fine scale data on
the movement and behaviour of animals [Brown et al., 2013, Kays et al., 2015, Wilmers et al.,
2015]. Allied with the increase in data availability has been the development of statistical mod-
els [Hooten et al., 2017] that are able to infer key characteristics of movement and identify the
drivers of observed movement patterns, one of the core aims of movement ecology [Nathan et al.,
2008]. A fundamental component in the statistical analysis of movement has been the random
walk model [Fagan and Calabrese, 2014, Codling et al., 2008, Kareiva and Shigesada, 1983].
Using both continuous and discrete time formulations, this approach has been employed to de-
tect different behavioural modes, such as encamped or exploratory, in movement data [Morales
et al., 2004], to refine home range estimates based on the autocorrelation present in trajecto-
ries [Fleming et al., 2015], to detect spatially or temporally shifting migration routes [Gurarie
et al., 2017], and to evaluate the role of social interactions in driving movement decisions [Tor-
ney et al., 2018b, Haydon et al., 2008].

Examining the landscape level drivers of movement has typically employed parametric func-
tions of environmental covariates via HMMs [Langrock et al., 2012], or step selection func-
tions [Thurfjell et al., 2014, Avgar et al., 2016]. Multistate random walks can be used to rep-
resent different behavioural modes with exploratory, transit states characterised by large step-
lengths and high directional persistence, while encamped or foraging states display shorter step-
lengths and greater tortuosity. Incorporating covariates into these models may be achieved by
specifying state transition rates as functions of the environment [Morales et al., 2004, Patterson
et al., 2009] or linking the random walk distributions themselves to the covariates [Hopcraft
et al., 2014]. More recently flexible non-parametric approaches have been proposed that allow
continuous and dynamic movement parameters to be incorporated into models [Torney et al.,
2021, Michelot et al., 2021], opening the way for the development of hierarchical models of
movement that are driven by latent spatial fields.

Within statistical ecology, Gaussian random fields (equivalently GPs) are a popular tool
for the modelling and analysis of spatial data [Banerjee et al., 2004, Rue et al., 2009]. As
opposed to semi-parametric approaches, such as splines or radial basis functions, a random field
models a two-dimensional surface (representing a latent field or spatially correlated residuals)
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as a realization of a stochastic process [Gelfand and Schliep, 2016]. If every finite collection of
random variables that form this stochastic process has a multivariate Normal distribution, then
the random field is a Gaussian random field, or a GP.

As all linear SDEs can be expressed as GPs with an appropriate covariance structure [Särkkä
et al., 2013], all random walk movement models that can be formulated as a linear SDE are
also equivalent to GPs [Hooten and Johnson, 2017, Torney et al., 2021]. Hence, linking spatial
Gaussian random fields with a continuous-time movement model involves linking one GP with
another, and is an example of multi-layered GP regression. Inference with multi-layer GPs is
an active area of research in the machine learning community and several different approaches
have been employed. If the output from one GP forms the input of another, then this forms
a deeper GP [Damianou and Lawrence, 2013] and including multiple layers of GPs may be
considered analogous to a deep neural network. Multiple GPs may also be combined within the
likelihood function [Saul et al., 2016], for example if both the location and scale parameters of
a distribution were allowed to vary over time or space. Finally, the outputs from multiple low
level GPs can be used to define the covariance structure of a high-level GP [Heinonen et al.,
2016] leading to a non-stationary stochastic process at the highest level. This final approach
can be used to model data that has characteristics, such as autocorrelation or variance, that
vary over time or space. It is this final approach that we adopt in this work to learn multiple
latent spatial fields that define the parameters of a continuous-time velocity model of animal
movement [Johnson et al., 2008]. The spatial fields are therefore the lower level GPs which
provide the parameters of a covariance function of a higher level GP. These parameters have a
clear ecological interpretability, representing the directional persistence and average speed of
individuals at each location of the landscape.

In what follows, we introduce a non-stationary covariance matrix that allows us to link the
spatial Gaussian random fields defining the parameters of the movement model with observed
GPS locations. The covariance matrix we derive enables us to infer the spatially-varying param-
eters of a velocity model using irregularly sampled positional data with observation noise. We
next describe the computational inference methodology we employ to fit the model to data and
provide two example studies. In the first, we generate a synthetic dataset with known properties
that we infer with our framework. In our second case study, we apply the framework to teleme-
try data collected over a period of 6 years from a long-term study of the Serengeti wildebeest
migration.
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5.2 Methods

5.2.1 A covariance matrix for non-stationary correlated velocity models

The bedrock of all movement models is the discrete-time CRW [Morales et al., 2004, McClin-
tock et al., 2012] and was discussed and applied in Chapter 3. The standard OUV model is the
closest continuous-time equivalent to the discrete time CRW, and unlike the latter model it can
fit irregularly sampled data [Johnson et al., 2008]. The OUV model is also called the correlated
velocity model or the integrated OU model and was discussed in Chapter 4. Given that we are
dealing with non-stationary data we wish to derive a non-stationary version of the correlated
velocity model, that is, we wish to derive a covariance matrix that represents the correlation
structure in positional observations of an animal following an autocorrelated continuous-time
random walk with varying parameters. Our starting point is therefore an assumed movement
model for the animal that is a non-stationary OUV model described by the following equations,

dx = vdt,

dv =−a(t)vdt +b(t)dWt , (5.1)

where x is the true location of the animal, v is its velocity, Wt is a Wiener process, and a(t) and
b(t) are time-varying coefficients that determine the mean-reversion rate and volatility of the
OU process respectively.

While our movement model is a two-dimensional model we will present the derivation of the
covariance matrix in the one-dimensional case to simplify notation and calculations. In the case
of constant parameters of the movement process, i.e. a(t) = a and b(t) = b, the covariance func-
tion of the OU process was derived in Chapter 4 and is equivalent to the exponential covariance
function after relaxation of transients terms,

Cov(vt ,vs) =
b2

2a
exp[(−a|t− s|)]. (5.2)

To relate the covariance of the velocity process to the covariance of the positions, we note
that for a zero-mean position process

Cov(xt ,xs) = E(xtxs) = E
(∫ t

0
vudu

∫ s

0
vrdr

)
. (5.3)

(The zero-mean assumption can always be satisfied by a change of coordinates so that the initial
location is at the origin). Through changing the order of integration and application of Fubini’s
theorem, Equation 5.3 leads to

Cov(xt ,xs) =
∫ t

0

∫ s

0
Cov(vu,vr)dudr. (5.4)
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Hence, the covariance of the position process can be found by performing the double integra-
tion of the covariance of the velocity process. For constant parameters of the velocity process
the covariance function defined by Equation 5.2 may be substituted into Equation 5.4 and the
integral is tractable.

In this work, we are interested in time-varying velocity characteristics and we therefore
employ a non-stationary version of Equation 5.2 proposed in Paciorek and Schervish [2004] as

Cov(vt ,vs) = σ
2
st exp

[(
−|t− s|

lst

)]
, (5.5)

where

σ
2
st = σ(s)σ(t)

√
2l(s)l(t)

l(s)2 + l(t)2 ,

lst =

√
l(s)2 + l(t)2

2
, (5.6)

and l(t),σ(t) are the values at time t of the time-varying kernel lengthscale and amplitude pa-
rameters respectively. Note that the parameterisation used here differs from that of Equation 5.2,
but there is a direct correspondence between the two.

Substituting Equation 5.5 into Equation 5.4 gives

Cov(xt ,xs) =
∫ t

0

∫ s

0
σ

2
ru exp

[(
−|r−u|

lru

)]
dudr, (5.7)

which contains an intractable integral due to the non-constant nature of l and σ . To approximate
a numerical solution to the double integral we make the following assumption. As we have
observations of the animal trajectory at discrete, known time points, we assume that between
two successive observations the parameters of the movement process are constant and this will
provide good approximations if the data is sufficiently dense and relatively uniform. This as-
sumption means that if we have n observations, the non-stationary OU process will be split into
n−1 piecewise OU processes, with each process having constant parameters. The advantage of
this approach is that we can break down the integrals of Equation 5.4 into segments correspond-
ing to the intervals between observations. Each segment has constant l and σ values, therefore
the integral can be solved. We then sum over segments to obtain the full integral.

In more detail, given observations at discrete time points t1, t2,. . . , tn, where n is the total
number of observations, we have

Cov
(
xi,x j

)
=
∫ ti

t1

∫ t j

t1
σ

2
ru exp

[(
−|r−u|

lru

)]
dudr. (5.8)

The inner integral can be written as a sum of integrals with limits corresponding to observation
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times, ∫ t2

t1
σ

2
ru exp

[(
−|r−u|

lru

)]
du+

∫ t3

t2
σ

2
ru exp

[(
−|r−u|

lru

)]
du

· · ·+
∫ t j

t j−1

σ
2
ru exp

[(
−|r−u|

lru

)]
du, (5.9)

with a similar decomposition employed for the outer integral. Combined this leads to

Cov
(
xi,x j

)
=

i−1

∑
q=1

j−1

∑
p=1

∫ tq+1

tq

∫ tp+1

tp

σ
2
ru exp

[(
−|r−u|

lru

)]
dudr. (5.10)

As each term of the summation corresponds to a pair of between-observation intervals (p,q),
the parameters of the movement process are assumed to be constant. Within interval p, corre-
sponding to the interval between tp and tp+1, we take the mean at the endpoints as the constant
parameter value so that

lp =
1
2
[
l (tp)+ l

(
tp+1

)]
,

σp =
1
2
[
σ (tp)+σ

(
tp+1

)]
. (5.11)

To obtain the parameters required for the non-stationary covariance kernel, we combine Equa-
tion 5.11 with Equation 5.6 to define,

σ
2
pq = σpσq

√
2lplq

l2
p + l2

q
,

lpq =

√
l2
p + l2

q

2
. (5.12)

Finally, we end up with a covariance matrix defined as a summation over a sequence of tractable
integrals,

Cov
(
xi,x j

)
=

i−1

∑
q=1

j−1

∑
p=1

∫ tq+1

tq

∫ tp+1

tp

σ
2
ru exp

[(
−|r−u|

lru

)]
dudr, (5.13)

where the parameters σpq and lpq are constant within the limits of integration.
To solve this equation, we now consider three cases: p = q, p > q and p < q. This is done

due to the modulus inside the double integral, as we need to consider the relationship between u

and r, and consequently the relationship between p and q. Due to symmetry, the latter two cases
will be analogous. We denote the double integral term inside Equation 5.13 as I for simplicity.

Firstly, if p = q, then we have within the integration interval a region where u < r and a
region where u > r. To account for the modulus term |r−u|, we split the inner integral into two
integrals with appropriate integral bounds such that the modulus disappears. We then calculate
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the integrals individually. This gives,

I = σ
2
pp

∫ tp+1

tp

∫ tp+1

tp

exp
(
−|u− r|

lpp

)
dudr

= σ
2
pp

∫ tp+1
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[∫ r

tp

exp
(
−(r−u)

lpp

)
du+

∫ tp+1

r
exp
(
−(u− r)

lpp

)
du

]
dr

= σ
2
pp
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tp

[
lpp exp

(
−(r−u)

lpp

)∣∣∣∣∣
r
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− lpp exp
(
−(u− r)

lpp
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r

]
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2
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1− exp
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−
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)
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−
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)
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]
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−
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)
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[
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(
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)
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)
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)
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(
−
(
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)
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)
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]
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(5.14)

In the second case, when p > q, we have that tp ≥ tq+1 and hence u > r throughout the
interval and the modulus term can be replaced with u− r. We calculate each integral in turn to
give,

I = σ
2
pq

∫ tq+1

tq

∫ tp+1

tp

exp
(
−(u− r)

lpq

)
dudr = σ

2
pq

∫ tq+1

tq
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(
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(
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.

(5.15)
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Keeping in mind the symmetry in p and q we can rewrite the last equation as

I = σ
2
pql2

pq

[
exp

(
−
∣∣tp− tq+1
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)
− exp
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)]
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(5.16)

Therefore, the covariance matrix of the non-stationary integrated OU process for the positions
is

Cov
(
xi,x j

)
=

i−1

∑
q=0

j−1

∑
p=0

σ
2
pql2

pq

[
2δpq
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(5.17)

where σ2
pq = σpσq

√
2lplq
l2
p+l2

q
, lpq =

√
l2
p+l2

q
2 and δpq = 1 when p = q, and 0 otherwise, δpq is the

Kronecker delta term.

5.2.2 Model formulation

In this work, we develop a two-layer hierarchical GP model using the non-stationary integrated
OU kernel matrix derived above. In this formulation the lengthscale parameter (corresponding
to directional persistence) and the variance parameter (corresponding to speed) are modelled by
GPs, however we assume that the measurement error is homogeneous, since we use the same
kind of telemetry equipment to record all the observations. The spatial location x = x(t) is a
2-dimensional matrix composed of latitude and longitude coordinates, while our observations
consist of a vector y= y(t) that is an n × 2 matrix of locations at times t. We assume a regression
model for the top layer of our GP hierarchy as,

y = x(t)+ εεε, (5.18)

where εεε ∼N
(
0,ω2I

)
is a random observation noise vector term that follows a Normal distri-

bution with variance ω2. The latent function x corresponds to the (unknown) true location of the
animal and we place a GP prior on this vector-valued function,

x(t)∼ G P
(
y0,kNS

(
t, t′
))

, (5.19)

where y0 is the location of the animal at the first time point and kNS(t, t′) is the integrated non-
stationary kernel defined by Equation 5.17. We refer to this as the first (or top) layer of our
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hierarchy and this corresponds to assuming that the animal is following an unbiased correlated
random walk [Johnson et al., 2008] with varying characteristics.

Implicit in the specification of the GP prior is the dependence of kNS(t, t′) on two lower-
level GPs. This is the second layer of our hierarchy. The lengthscale and variance parameters
are modelled as latent functions dependent on the dummy variables h and we place separate GP
priors on these functions,

l̃ (h)∼ G P
(
µl,kl

(
h,h′

))
,

σ̃ (h)∼ G P
(
µσ ,kσ

(
h,h′

))
. (5.20)

To link the two layers, we make use of the fact that the latent functions l̃ and σ̃ have a first-
order dependence on the variables h and a second-order dependence on time t. Thus, we first
pass the latent functions through an exponential transform to ensure positivity, then we translate
the dependence on h of the latent functions to the temporal dependence of the non-stationary
kernel via a composition of functions, i.e.

l(t) = exp
{[

l̃ (h(t))
]}
,

σ(t) = exp{[σ̃ (h(t))]}. (5.21)

These values are time-dependent, but mediated by the variables h at time t. They enter the
first layer GP via Equations 5.11 and 5.17 of the non-stationary kernel definition, thus linking
Section 5.2.1 to Section 5.2.2.

The set of dummy variables h = h(t) introduced in Eq. 5.20 could be temperature, precipi-
tation, or some record of the animal’s time-dependent spatial preferences (e.g. elicited from the
literature or collated from a wider field study). If the variables h are assumed independent of
the data y, then the model is methodologically accurate and probabilistically valid, and can be
consistently represented by a directed acyclic graph (DAG). However, in this chapter, we have
set the dummy variables h(t) equal to y(t), i.e. there is an undirected edge connecting h and y.
This violates the DAG constraint by creating a cyclic structure as the data y is the output and the
input. Thus, we cannot apply the DAG factorisation rule of the joint probability distribution, i.e.
the model is not a probabilistic generative model.

If the undirected edge between h and y is removed, then the resulting simplified model is
an approximation, but conceptually is a proper probabilistic generative model that can be con-
sistently represented by a DAG. This approach has been used to probabilistically model ODEs
(the GP-ODE model) [Barber and Wang, 2014], however it can lead to identifiability problems
when data are systematically missing [Macdonald et al., 2015]. Moreover, the pseudolikeli-
hood method introduced by Besag [1975] as an approximation to the likelihood function in the
context of inferring a Markov random spatial field corresponds to the application of the DAG
factorisation rule to a cyclic structure since the model is based on a lattice with undirected edges
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between nodes. This model has been widely used as an approximation for modelling probability
distributions over lattices. Similarly, while the model presented in this chapter is an approxi-
mation, it is in line with other model approximations from the machine learning and statistics
literature [Besag, 1975, Barber and Wang, 2014, Macdonald et al., 2015] and the benefits gained
by introducing an approximate model capable to link locations with spatial GPs defining the pa-
rameters of the movement model are substantial. The hierarchical model’s structure is illustrated
in Figure 5.1.

To complete the model formulation it remains to specify the covariance kernels of the lower
level GPs, kl and kσ . These kernels control the covariance structure of the latent spatial fields
and we employ a standard RBF kernel [Rasmussen and Williams, 2006] for the empirical data
study and a periodic kernel for the synthetic data. This latter choice is dictated by the periodic
boundaries of the simulations (see Section 5.2.5 for details) and would not be an appropriate
choice for our empirical data.

The total log probability density of a trajectory segment is calculated by adding the log
marginal likelihood of the data (log marginal likelihood of the first layer of the GP hierarchy)
with the log probability probability density of the latent functions (log probability density of the
second layer of the GP hierarchy). The formula is given by

L = log
(
N
(
y|y0,kNS +ω

2I
))

+ log
(
N
(
l̃|µl,kl

))
+ log(N (σ̃σσ |µσ ,kσ )) , (5.22)

where I is an n×n×2 identity matrix and the two dimensions of the data y are independent.
The new covariance kernel represents a notable advance over previous research since it al-

lows linking location data with a latent spatial field that defines the shared movement character-
istics of multiple individuals. While previous works, including Torney et al. [2021], have applied
hierarchical Gaussian processes to animal movement, in this chapter a novel contribution is ob-
tained by linking a velocity-based movement model to a spatial random field via an integrated
covariance kernel. Further, it avoids the noise amplification inherent in numerical differentiation
that would be required for obtaining velocities from location-based movement models.

5.2.3 Model inference

To fit the model to data we implement our framework using TensorFlow Probability, a prob-
abilistic programming library that is built on TensorFlow, an open-source deep learning plat-
form [Abadi et al., 2016]. A key advantage of working with this library is that it provides access
to TensorFlow’s automatic differentiation capacity which allows us to efficiently compute gradi-
ents of the total log probability density of the model (marginal log likelihood of the data and the
log probability density of the prior distributions over the latent functions) given by the Equation
5.22 with respect to model parameters. We use this capacity in two stages of inference. Firstly,
we use a gradient-based optimiser to calculate MAP values for the latent functions of the model,



CHAPTER 5. SPATIAL LATENT FIELD INFERENCE USING A HIERARCHICAL GP 107

y

x(t)∼ G P(y0,kNS) εεε ∼N (0,ω2I)

l(h(t))∼ G P(µl,kl) σ2(h(t))∼ G P(µσ ,kσ )

h(t)

Figure 5.1: This figure shows the structure of the hierarchical Bayesian model proposed in this
chapter, where we assume that the lengthscale, signal variance are also modelled by a GP. The
circle nodes denote variables and the rectangle nodes denote fixed values or observations. y are
the recorded locations at times t, h = h(t) is a set of dummy variables that is set to y in this
chapter.
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for the low level kernel parameters and the observation noise, adopting an empirical Bayes ap-
proach to specifying these latter ‘nuisance’ parameters of the model. Secondly, we employ HMC
[Neal, 1992] for sampling from the posterior distribution of the latent fields, while the rest of
parameters are kept fixed at the MAP values. This is a gradient-based sampler that improves
efficiency by biasing MCMC proposals to move in the direction of increasing likelihood.

In general, one type of problems that can be encountered while performing maximum marginal
likelihood estimation for the hyperparameters of a GP are identifiability issues. While the result-
ing predictions are not affected, the poor estimation of the lengthscale and signal variance pa-
rameters might cause a loss of inference robustness and a lack of model interpretability [Plumlee
and Joseph, 2016, Hang, 2004]. Identifiability issues can be addressed by adding more informa-
tion into the model by incorporating informative priors on the hyperparameters [Brynjarsdóttir
and O’Hagan, 2014]. Within the domain of statistical ecology, the appropriate choice of priors
has been discussed in the literature [Wesner and Pomeranz, 2020, Lemoine, 2019, McCarthy
and Masters, 2005, Banner et al., 2020, Ellison, 2004]. A good choice of a prior distribution
should yield biological plausible values on the scale of the response variables.

Another limitation of GP regression is that it does not scale well to large datasets because
training requires O

(
N3) time due to the inversion of the covariance matrix. Once the inversion

is complete, prediction is O (N) for the predictive mean and O
(
N2) for the predictive variance

per new test sample. To ensure our framework is able to run efficiently with large numbers
of observations (of the order of 100,000 samples), we take certain steps in order to reduce
computational complexity to manageable levels.

Firstly, we approximate the full likelihood using trajectory segmentation, where we segment
individual trajectories into smaller, more computationally manageable sections. This approach
extends the assumption that each GPS collar provides a trajectory that is conditionally indepen-
dent of others given the latent spatial fields by further breaking trajectories from the same indi-
vidual into multiple segments. For example, given a trajectory consisting of 4,000 observations
spanning 2 years, we break this trajectory into 8 segments of 500 observations each spanning a
3-month period. This method, also known as a mixture of Gaussian process experts [Rasmussen
and Ghahramani, 2002], has been applied successfully to movement data [Torney et al., 2021],
and provides an accurate approximation to the true likelihood if the length of the trajectory
segment is large compared to the autocorrelation length of the GP [Snelson and Ghahramani,
2007]. In the context of animal movement, this corresponds to selecting trajectory segments with
a length greater than the maximum time scale over which directional persistence is observed.

Secondly, rather than learning a latent spatial field value for each location of a GPS fix, we
define a grid of locations xgrid within a fixed domain at which we define the function values
for the lower level Gaussian fields. To obtain the values of the lengthscale and variance at the
location of an animal (required for Equation 5.21) we compute the conditional probabilities of
the function values at that location given the grid of latent values. This approach reduces the
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number of latent function values we need to infer and further provides a method for these values
to be shared across trajectory segments. More specifically, we use Equations 2.29-2.31 from
Chapter 2, replicated and adapted below for clarity

p(g|x,xgrid,ggrid) = N (g|µµµ,ΣΣΣ) . (5.23)

µµµ = µ(x)+K
T

g∗K
−1
grid(ggrid−µ(xgrid)). (5.24)

ΣΣΣ = K−K
T

g∗K
−1
gridKg∗, (5.25)

where the latent function g is the lengthscale or the signal variance latent function, ggrid is
the latent function g evaluated at the grid of locations xgrid, µ(x) = µµµ , the mean at the actual
observed locations x, Kgrid = K(xgrid,xgrid), Kg∗ = K(x,xgrid) and K = K(x,x). The covariance
matrix K is calculated by using the kernels kl or kσ from Equations 5.20, depending whether the
latent function g is the lengthscale, or the signal variance.

In this chapter, the focus is on inferring the movement behaviour of an individual animal
while traversing a domain. Thus, we infer the lengthscale and signal variance functions as these
functions can be related to the directional persistence and average speed of individual animals.
Similarly, we do not predict an individual animals’ future locations y∗, but we predict the latent
functions l∗ and σσσ∗ at new time points t∗ and positions x∗. That is, we are not interested where
an individual animal will be at new time points, but how will it behave in the future at new
locations.

Finally, we can model the movement of multiple animals by assigning to each individual an
unique ID. Then, we group observations from the same individual into batches. Observations
from different individuals will not be grouped in the same batch, but will be assigned to different
batches. If observations from the same individual are not sufficient (less than than the size of a
batch), then that individual is dropped.

5.2.4 Empirical data collection

GPS collars (Followit, formerly ‘Televilt,’ GSM or Iridium transmitters with GPS location) were
deployed on 31 migratory wildebeest (Connochaetes taurinus) in Serengeti National park, Tan-
zania. Animals were immobilized by veterinarians from the Tanzania Wildlife Research Institute
(TAWIRI) or the Tanzania National Parks (TANAPA) using an injectable dart containing 4-6 mg
of etorphine and 80–100 mg of azaperone, fired from a veterinary rifle from a stationary vehicle
near the animal. Veterinarians followed the handling and care protocols established by TAWIRI.

Collared animals were healthy reproductively active adult females (>2 years old) that were
selected at random with an attempt to ensure collars were distributed throughout the main aggre-
gations of the herds. A total of 85,000 GPS observations were obtained between June 2013 and
June 2019. Collars were either collected after 2-3 years of deployment using a remote-release
mechanism, or collected in the field after a mortality event. Collars were continually redeployed
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Figure 5.2: Telemetry locations and inference grid. A map of the Serengeti National Park
with GPS locations shown as blue points. The red dots show the inducing grid (xgrid) used for
inference of the latent spatial fields.

during the study with the last deployment occurring in March 2018. Animals included in the
study were tracked for periods ranging from 183 days to 1119 days. Figure 5.2 shows a map of
the Serengeti National Park along with the recorded locations of wildebeest. The grid of latent
function locations xgrid used for inference is also shown on the map.

5.2.5 Synthetic data generation

For the generation of the synthetic dataset, we simulate from a non-stationary correlated random
walk model, where the parameters of the velocity process, mean-reversion, a, and the volatility
of the OU process, b are position-dependent,

dx = vdt,

dv =−a(x)vdt +b(x)dWt . (5.26)

The movement process gives rise to positional observations of the animal at discrete time points
that are subject to observation error, so that y = x+ εεε , where εεε is a white noise vector term. We
create the spatial fields for a(x) and b(x) using a two-dimensional version of the warped sine
function,

wsin(v) =

√
1+α2

1+α2 sin2(2πv)
sin(2πv), (5.27)
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Figure 5.3: Simulation model inference. (A) and (B) show the inferred kernel variance and
approximate ground truth value of the kernel variance respectively. (D) and (E) show the inferred
lengthscale and the approximate ground truth kernel lengthscale respectively. (C) and (F) show a
one-dimensional profile with uncertainty; the black dashed line is the approximate ground truth
value of the parameters, the red line is the HMC mean and the dark blue region is the 50% CI
and the light blue region is the 90% CI.

where α = 2 gives a flattened sine wave that provides a more patch-like environment. More
specifically, the spatial fields are given by

a(x) = c1 log(1+ exp(c2wsin(2Fπx)wsin(2Fπy))),

b(x) = c3 log(1+ exp(c4wsin(2Fπx)wsin(2Fπy))),

where ci are constants, i ∈ {1,2,3,4}, x, y are the spatial coordinates and F is the frequency
of the patches in the domain. We simulate x and the latent functions a(x), b(x) recursively,
where the first location x0 is a randomly chosen point within the domain. The spatial field
used to generate the movement trajectories are shown in Figure 5.3. The grid of latent function
locations xgrid used for inference is formed of 400 equally distanced pairs of points between 0
and 10.

To account for the finite simulation domain, we introduce periodic boundary conditions for
the environment. This creates an infinite domain on which the simulated animals move, but they
encounter a repeating, tiled spatial field if they cross the boundaries of the environment. We
simulate 200 individuals moving across an environment and collect 500 positional observations
from each individual.
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Figure 5.4: Empirical data inference. (A) Posterior mean kernel variance (speed) calculated
from HMC samples. (B) Posterior mean directional persistence. (C) Kernel variance (speed)
standard deviation of HMC samples. (D) Directional persistence standard deviation of HMC
samples.

5.3 Results

To fit the hierarchical model to data and infer the latent spatial fields, we firstly optimise the hy-
perparameters of the low level GP kernels and the variance parameter of measurement error us-
ing the Adam optimiser [Kingma and Ba, 2017]. We then fix these parameters and employ HMC
sampling to sample from the posterior distributions of the latent fields. To ensure convergence
and mixing of MCMC chains we report effective sample sizes and potential scale reduction fac-
tors [Brooks and Gelman, 1998] (also, discussed in Section 2.6.2). The convergence diagnostics
plots are shown in Figure 5.6 for the synthetic data and in Figure 5.7 for the wildeebest data.
The potential scale reduction factors for all the parameters are less than 1.1, thus there is no
indication of non-convergence and the effective sample size for all the parameters is sufficiently
large.
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Figure 5.5: Inference of real environment. (A) and (B) show the lower and upper 95% credible
intervals for the average speed. (C) and (D) show the lower and upper 95% credible intervals
for the directional persistence.

5.3.1 Simulation model

Following the optimisation of hyperparameters, we ran 10 independent HMC chains, each con-
sisting of 500 samples, after a burn-in period of 200 samples. This procedure was followed for
4 warm-up runs during which the momentum distribution of the HMC sampler was tuned. This
was an essential step to ensure effective mixing of the final chain.

The mean of the posterior distributions of the latent spatial fields are shown in Figure 5.3.
As we are using simulated data, this can be compared to the values used to create the movement
trajectories. We observe a very close agreement between the inferred values and the simulated
environment. It should be noted that there is not an exact match between the hierarchical GP
model and the simulation model, however we are able to accurately locate the regions of different
movement characteristics and recover the parameter values within the regions. The model is
unable to perfectly capture the shape of the lengthscale function as it transitions between regions
and this is due to the transient dynamics in the velocity process when an animal enters a region
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Figure 5.6: Convergence diagnostics of the synthetic environment inference: (A) and (B) show
the effective sample size for the latent variables. (C) and (D) show the potential scale reduction
factor for the latent variables.

Figure 5.7: Convergence diagnostics of the empirical environment inference. (A) and (B) show
the effective sample size for the latent variables. (C) and (D) show the potential scale reduction
factor for the latent variables.

where its directional persistence alters. When the degree of persistence alters there is a delay
before this is detectable in the data, and hence a blurring of the borders between regions.

As we employ a Bayesian framework we are able to quantify the uncertainty in the latent
spatial fields. To visualize the uncertainty quantification we show the one-dimension profiles of
the true environment, inferred values, and credible intervals in Figures 5.3C, 5.3F.
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5.3.2 Wildebeest movement

Inferring the spatial characteristics of the wildebeest migration followed a similar approach to
the synthetic data. Full movement trajectories of the wildebeest were split into trajectory seg-
ments consisting of 500 points which equated to roughly 3-months depending on the sampling
schedule of the collar. We ran 10 independent HMC chains after first optimizing kernel hy-
perparameters as before. Each chain consisted of 2000 steps following a burn-in of 200 steps.
We again ran multiple warm-up chains in order to improve mixing by specifying the proposal
distribution of the sampler to match the target posterior.

Inferred posterior means for the latent fields are shown in Figure 5.4. For uncertainty quan-
tification we also show the posterior standard deviation of the field, along with the 95% credible
intervals for the posterior samples in Figure 5.5. Our results reveal the migratory pathways
of the wildebeest; regions of high directional persistence can be found in a circuit around the
southern extent of the Serengeti, corresponding to the main pathway that moves south along the
east of the park and then north through the western corridor. A region of high speeds, but low
directional persistence can be found at the centre of the migration where the long grass plains of
the Serengeti are found. We expect that this pattern can be attributed to rapid forays by animals
either moving towards or retreating from the ephemeral but nutrient-rich short grass plains in
the south-east, as observed by Hopcraft et al. [2014].

We further detect significantly different movement behaviour in the north west of the park
close to the boundary and south of the Tanzania-Kenya border. Here, we observe high speeds and
high directional persistence, meaning we can identify a region through which wildebeest move
directly and rapidly. This is a region of high human density and, while we can not attribute
causality, our results are strongly suggestive of an effect of human presence on the movement
behaviour of wildebeest [Rija and Kideghesho, 2020]. Finally, we note that uncertainty in the
spatial fields is in general low. High uncertainty is only found at the edges of the wildebeest’s
migratory range in regions of very little data. This highlights a key advantage of our Bayesian
approach. We observe high speeds at three main locations, the centre of the park, in the north-
west close to villages and human activity, and at the northern border of the Masai Mara region
in Kenya. Two of these locations have low uncertainty and we can be confident that we are de-
tecting regions of significantly different movement behaviour, however there is high uncertainty
associated with the high speed region in the north where data is very sparse so we are unable to
draw any firm conclusions.

5.4 Discussion

In this chapter, we present a Bayesian hiearchical framework for learning the latent spatial fields
that underlie observed animal movement patterns. Our framework links two fundamental con-
cepts in statistical ecology; spatial random fields and correlated random walk models of animal
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movement. As both these methods can be formulated as GPs, we adopt a multi-layer GP ap-
proach implemented within the high-performance machine learning package, TensorFlow.

Our framework has several advantages over existing approaches to animal movement mod-
elling. Notably, multi-layer GPs offer a flexible, non-parametric method of inferring latent spa-
tial fields. We are not required to make any restrictive assumptions about the functional form of
the underlying field, however we can encode prior knowledge into the kernels of the low level
GPs by employing appropriate covariance kernels.

Other popular approaches in the movement ecology literature make significant assumptions
about the scale over which animal movement decisions are made, or have to select specific
environmental covariates on which to regress movement parameters. As animal movement is
inherently a multiscale process [Torney et al., 2018a] in which animals respond to multiple, often
contradictory cues [Hopcraft et al., 2014], a latent spatial field approach can offer key insights
into the different behaviours that animals exhibit across a landscape. This can be achieved
without having to make decisions about which environmental features to include in a model,
or how to discretise movement data into the individual choices of an animal. While our model
accepts spatial location as inputs, it could in principle be adapted to accept specific covariates
if required. For example, if distance to a protected area boundary was a priori the key factor
of interest, it would be straightforward to substitute this metric in place of the two-dimensional
spatial coordinate.

As our framework accepts irregularly sampled data with measurement error, is scalable to
relatively large datasets, and formally quantifies uncertainty in inferred values, it may be applica-
ble to many movement ecology studies. Of particular interest would be to investigate the effects
of natural versus man-made barriers to movement, or the spatial charateristics of the movement
behaviours of predatory species. While we have shown that we are able to analyse datasets
consisting of 100,000 observations using Markov chain Monte Carlo sampling, when consid-
ering very high-frequency, long-term telemetry studies generating millions of observations it is
unlikely that MCMC approaches will be practical. However, variational inference [Blei et al.,
2017] offers a potential solution to this issue and has been applied to GP inference for very large
datasets [Hensman et al., 2013]. Applying variational inference to multi-layer GP models of
animal movement is a promising avenue of future research. Moreover, switching from a hier-
archical model presented in this chapter to a deep Gaussian process [Damianou and Lawrence,
2013, Dunlop et al., 2017], which combines a deep neural network with a Gaussian process, and
where the independent GP priors are set on each stochastic function can be a viable and exciting
prospect for inferring complicated patterns in large movement datasets.



Chapter 6

Variational inference for a non-stationary
GP

A natural extension to standard Gaussian processes (GP) is the non-stationary Gaussian process,
an approach where the parameters of the covariance kernel are allowed to vary in time or space.
The non-stationary GP is a realistic and flexible model that relaxes the strong prior assumption
of standard GP regression, that parameters are constant across the input space. Non-stationary
GPs typically model varying kernel parameters as further lower-level GPs, thereby enabling
sampling-based inference. However, due to the high computational costs of sampling associated
with the non-stationary GPs, these methods do not scale to large datasets. Here we develop a
variational inference approach to fitting non-stationary GPs that combines sparse GP regression
with a trajectory segmentation technique. Our method is scalable to large datasets containing
potential millions of data points. We demonstrate the effectiveness of our approach on both
synthetic and real world datasets.

Note: The chapter is a collaboration formed by Ionut Paun (first author), Colin J. Torney,
Dirk Husmeier. Colin Torney, Dirk Husmeier and Ionut Paun designed the study, Ionut Paun
performed the analysis, Ionut Paun wrote the manuscript with inputs from Colin Torney and
Dirk Husmeier. I confirm that my contribution to each section of the chapter is more than 50%.

6.1 Introduction

Gaussian process models represent a non-parametric supervised learning approach frequently
used in the machine learning community for both regression and classification purposes. Learn-
ing from data using Gaussian processes involves specifying a covariance structure for the process
via a covariance kernel, inferring the parameters of the kernel, then calculating or sampling from
the posterior distribution of the process conditional on observed data. Typically, a stationary GP
is used so that the covariance kernel parameters depend only on the difference between data
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points i.e. they are invariant to translations in the input space [Rasmussen and Williams, 2006].
A disadvantage of stationary GPs is that they lack the flexibility to fit non-stationary data,

where the characteristics of the function differs across the input domain [Paciorek and Schervish,
2004, Gibbs, 1997, MacKay, 1997]. For these types of data, a non-stationary GP, where all or a
subset of the kernel parameters are allowed to vary may be more appropriate. For example, in the
context of tracking animal movement the error in position estimates may depend on the animal’s
location within a receiver array [Guzzo et al., 2018], meaning the observation noise parameter
(or nugget term) of the covariance kernel will be spatially varying. Observed phenomena may
also have varying smoothness or amplitude. This could be due to temporal drivers of the process
which lead to periods of rapid change and high volatility [Blum and Riedmiller, 2013], the
nonlinear dynamics underlying the observed variables [Heinonen et al., 2015], or varying spatial
characteristics such as differences in elevation and in the nature of the environment [Lang et al.,
2007].

To model data that presents characteristics with varying degrees of smoothness, Heinonen
et al. [2016] proposed a non-stationary GP, where all or a subset of the kernel covariance parame-
ters are input-dependent and modelled by other GPs. The hierarchical structure presented by this
model is intrinsically linked with deep Gaussian Processes (DGP) [Damianou and Lawrence,
2013, Salimbeni and Deisenroth, 2017]. DGP models are a multi-layer generalisation of a GP,
where the prior is defined recursively on multiple stochastic functions [Damianou and Lawrence,
2013, Salimbeni and Deisenroth, 2017, Wang et al., 2016] and the outputs from one layer be-
come the inputs of the next layer. This is in contrast to the hierarchical model introduced by
Heinonen et al. [2016] as in this case the outputs of the lower layers specify the kernel parame-
ters of the final layer GP.

GPs have a high computational complexity, scaling cubically with the number of training
points, which makes them impractical to implement when the datasets are large. To overcome
this limitation, sparse GPs that make use of a set of m inducing points have been developed in
the literature [Lázaro-Gredilla and Titsias, 2011, Titsias, 2009, Monterrubio-Gòmez et al., 2019,
Hensman et al., 2013, Snelson and Ghahramani, 2006]. Thus, the computational complexity
will be reduced from O(n3) to O(n2m).

Using a small set of inducing points, popular variational inference methods [Hensman et al.,
2013, Titsias, 2009, Lázaro-Gredilla and Titsias, 2011] construct an approximate posterior dis-
tribution to the true posterior. The distance between the true posterior and the approximate
posterior is then minimised by maximising a lower bound on the marginal log likelihood. This
is equivalent to minimising the Kullback-Leibler (K L ) divergence between the true posterior
and the variational distribution.

Titsias [2009] defines the inducing variables as variational parameters that get inferred to-
gether with the hyperparameters either by applying continuous optimisation or by using a vari-
ational EM algorithm. However, Hensman et al. [2013] retain an explicit representation of
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the inducing variables that get treated as global variables, thus defining a model suitable for
stochastic variational inference (SVI). Another difference between these approaches lies in the
approximation to the lower bound on the log likelihood, with the approach by Titsias [2009]
resulting in a tighter lower bound to the true posterior distribution than Hensman et al. [2013]’s
SVI method. However, the latter lower bound factorises, which allows the implementation of
methods such as mixtures of experts [Rasmussen and Ghahramani, 2002] making the method
scalable to large datasets. The variational parameters and the kernel hyperparameters are then
inferred via stochastic optimisation with standard gradient descent methods [Hensman et al.,
2013].

In this chapter, we adapt the inference method of Hensman et al. [2013] to the hierarchical
GP model of Heinonen et al. [2016]. To make our method scalable to very large datasets, we use
the mixture of GP experts technique [Rasmussen and Ghahramani, 2002] to approximate the full
likelihood by using trajectory segmentation into smaller and more computationally manageable
sections. We demonstrate that this novel combination leads to a substantial boost in computa-
tional efficiency at sustained high accuracy and enables large-scale applications that neither of
these methods could have tackled on its own.

6.2 Methods

6.2.1 Model formulation

In this chapter, we use a double-layer non-stationary GP, where the lengthscale and the signal
variance parameters are also modelled by GPs. We assume that the observation noise variance
parameter is kept at a constant value in the examples we consider but it is straightforward to
extend the method to include heteroscedasticity in the final layer GP. More specifically, we
assume a regression model, yi = f (ti)+ εi, where yi is the observation at a random time point ti
and εi ∼N

(
0,ω2). We then place a zero mean GP prior on the latent function f (t),

f (t)∼ G P
(
0,K f

(
ti, t j
))

, (6.1)

where K f
(
ti, t j
)
= k f (ti, t j) is a covariance matrix, and k f (ti, t j) is the Matérn 1/2 non-stationary

kernel [Paciorek and Schervish, 2004] evaluated at random times ti and t j, given by the following
relationship

k f (ti, t j) = σiσ j

√
2lil j

l2
i + l2

j
exp

(
−
√

2di j

l2
i + l2

j

)
, (6.2)

where di j = (ti− t j)
2, σi, li are the signal variance, respectively lengthscale parameters at the

time point ti. This formula is derived in the Appendix, Section D.4. This is referred as the first
layer of the hierarchical GP. Through the kernel k f , which is dependent on the latent parameters
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lengthscale and signal variance, the chain between the two layers of the GP is constructed, as
we set separate GP priors on the aforementioned latent functions. This is referred as the second
layer of the hierarchical GP such that we have

P̃(t)∼ G P
(
µP,KP

(
ti, t j
))

, (6.3)

where P∈{l,σ2} and KP(ti, t j)= kP(ti, t j) is a covariance matrix. In order to ensure positivity of
these functions, we use a softplus transformation1 such that we have P(t)≡ log

[
1+ exp

(
µP + P̃(t)

)]
.

For the synthetic data inference, shown in Section 6.4.1, the chosen kernel for the latent param-
eters is RBF for each parameter,

kP(ti, t j) = α
2
P exp

(
−
(ti− t j)

2

2β 2
P

)
, (6.4)

where P ∈ {l,σ2}, α2 is the signal variance and β is the lengthscale. For the empirical data
inference, shown in Section 6.4.2, the kernel for each parameter is a periodical kernel, namely
Exponential Sine Squared

kP(ti, t j) = α
2
P exp

(
− 2

β 2
P

sin2
(

π
|ti− t j|

p

))
, (6.5)

where P ∈ {l,σ2}, α2
P is the signal variance, βP is the lengthscale and p is the period. The total

log probability density of the hierarchical GP model is calculated by summing the log likelihood
of the data on the first layer and the log probability density of the GP priors on the second layer,

L = log
(
N
(
y|0,K f +ω

2I
))

+ log
(
N
(
l̃|µl,Kl

))
+ log(N (σ̃σσ |µσ ,Kσ2)) . (6.6)

The model developed by Heinonen et al. [2016] and used in this chapter has the likelihood
function depend on one latent function f, as shown in Equation 6.1, which in turn depends on
two latent functions l and σσσ modelled by GPs, as shown in Equation 6.3. However, the model
described by Saul et al. [2016] has the likelihood function depend directly on two independent
latent functions f and g modelled by GPs. Moreover, in a hierarchical non-stationary GP model
[Heinonen et al., 2016], the likelihood does not factorise over the data as it does in a standard GP
model or in the model used by Saul et al. [2016] (illustrated in Chapter 2, Equations 2.162 and
2.166), as the observations yi, given the latent parameters are dependent. Our goal in this chapter
is to combine the hierarchical non-stationary GP model developed by Heinonen et al. [2016]
with the variational inference framework for multiple latent functions by Saul et al. [2016].

1A log transformation can potentially be used as well.
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6.2.2 Variational inference for non-stationary hierarchical Gaussian pro-
cesses

The variational inference method for a standard GP and for the chained GP model employed by
Saul et al. [2016] was illustrated in Chapter 2, Section 2.6.3. Now, we extend the variational
inference framework from a simple GP to a double-layer hierarchical GP model. Therefore, at
the inducing points z, the corresponding latent functions are lz and σσσ z. Likewise, at the training
points x, the corresponding latent function values are l and σσσ . We do not define a set of inducing
points for the function f, and the latent function f is not inferred, as the primary focus is to infer
the latent functions l and σσσ . However, it is straightforward to extend the method to infer the
function f. More details are presented in Section 6.2.3.

We first state our model assumptions. We assume that the latent functions l and σσσ are a priori
independent and that the prior distributions p(lz) and p(σσσ z) are multivariate Normal distributions
i.e.

p(lz)∼N (ml,Klmm) . (6.7)

p(σσσ z)∼N (mσ ,Kσmm) , (6.8)

where m is the number of inducing points z. To derive the variational lower bound to the true
posterior distribution we further assume that the the following relationship holds

p(l,σσσ |lz,σσσ) = p(l|lz)p(σσσ |σσσ z). (6.9)

Using the previous assumptions, the following relationship regarding the posterior distribution
of the latent functions at the training points holds

p(l,σσσ , lz,σσσ z|y) = p(l|lz)p(σσσ |σσσ z)p(lz,σσσ z|y), (6.10)

where p(lz,σσσ z|y) is the joint posterior distributions at the inducing points and p(l|lz), p(σσσ |σσσ z)

can be found in closed form by using conditional probabilities of Gaussian distributions.
To perform variational inference, we introduce a variational approximation distribution φ to

the posterior distribution,

p(l,σσσ , lz,σσσ z|y)≈ p(l|lz)p(σσσ |σσσ z)φ(lz,σσσ z), (6.11)

where we take the variational distributions to be of the following form

φ(lz,σσσ zzz)∼N
(

µµµq,Kq

)
. (6.12)

Our aim is to infer the parameters of the joint variational distribution, µµµq and Kq.
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The marginal log-likelihood has the following formula

log p(y) = log
∫∫∫∫

p(y|l,σσσ)p(l,σσσ |lz,σσσ z)p(lz)p(σσσ z)dldσσσdlzdσσσ z, (6.13)

and using Equation 6.9 we get that

log p(y) = log
∫∫∫∫

p(y|l,σσσ)p(l|lz)p(σσσ |σσσ z)p(lz)p(σσσ z)dldσσσdlzdσσσ z. (6.14)

Furthermore, to perform variational inference we obtain a lower bound on the marginal log
likelihood using Jensen’s inequality

log p(y)≥
∫∫

log p(y|l,σσσ)q(l,σσσ)dldσσσ −K L (φ(lz,σσσ z)||p(lz)p(σσσ z)), (6.15)

where q(l,σσσ) =
∫∫

p(σσσ |σσσ z)p(l|lz)φ(lz,σσσ z)dlzdσσσ z.

To make our method scalable to large datasets, we use a trajectory segmentation technique
such that the data is split into L independent segments of equal length. However, inside a seg-
ment, the observations yi, given li, σσσ i are dependent, since we work within a non-stationary GP
framework. The gradients and the log likelihood of each segment can be added up to get a good
approximation to the full gradients and the log likelihood provided that the domain of the local
GP is sufficiently large compared to the lengthscale of the GP being fitted. Thus, given that the
likelihood factorises over segments we can use stochastic variational inference [Hensman et al.,
2013].

The likelihood factorises across L segments such that we get

p(y|l,σσσ) =
L

∏
i=1

p(yi|li,σσσ i), (6.16)

where yi denotes the observation segment i, and li, σσσ i the segment i of parameters. Then, we
have that the integral in Equation 6.15 can also be factorised such that we have

∫∫
log p(y|l,σσσ)q(l)q(σσσ)dldσσσ =

∫∫
log

L

∏
i=1

p(yi|li,σσσ i)q(l,σσσ)dldσσσ

=
L

∑
i=1

∫∫
log p(yi|li,σσσ i)q(li,σσσ i)dlidσσσ i.

(6.17)

Hence, Equation 6.15 becomes

log p(y)≥
L

∑
i=1

∫∫
log p(yi|li,σσσ i)q(li,σσσ i)dlidσσσ i−K L (φ(lz,σσσ z)||p(lz)p(σσσ z))

= Eq(li,σσσ i)

L

∑
i=1

p(yi|li,σσσ i)−K L (φ(lz,σσσ z)||p(lz)p(σσσ z)).

(6.18)



CHAPTER 6. VARIATIONAL INFERENCE FOR A NON-STATIONARY GP 123

In a general case, the integral (the expected log-likelihood) in Equation 6.18 is intractable
and methods such as Gauss-Hermite quadrature [Hensman et al., 2015] or Monte Carlo sampling
[Salimbeni and Deisenroth, 2017, Bonilla et al., 2018] can generally be used to calculate the
expectation. The Gaussian-Hermite quadrature method is poor in a non-stationary GP model
[Monterrubio-Gòmez et al., 2019, Monterrubio-Gòmez and Wade, 2021]. Also, in our case,
the multi-dimensional integral in Equation 6.18 can not be computed using the Gauss-Hermite
approach, since the observations yi inside a segment i, are not independent given the parameters
li and σσσ i. Thus, the multi-dimensional integral can not be split into multiple one-dimensional
integrals given the non-stationary GP framework.

The Monte Carlo sampling method is used in Salimbeni and Deisenroth [2017], Saul et al.
[2016] to calculate the expected log likelihood and this is the approach that we are following
here. More specifically, given Equation 6.12, we draw samples li j and σi j from the multivariate
Normal distributions, given standard properties of Gaussian distributions, q(li j,σi j). Then, we
calculate the log likelihood of a trajectory segment log p(yi|li j,σi j) per each sample we draw,
where yi is the segment i of observations and li j,σi j are the j-th sample of the respective param-
eter for segment i. We then proceed to take the average over all the samples drawn to calculate
the expected log likelihood term in Equation 6.18. Moreover, in Equation 6.18, we have closed
form expressions for the K L divergence terms, as φ(lz,σσσ z), together with p(lz) and p(σσσ z) are
multivariate Normal distributions, as shown in Equations 6.7-6.8 and Equation 6.12. Thus, once
the lower bound is calculated, it can be maximised using stochastic optimisation to determine
the optimal parameters of the joint variational distributions φ(lz,σσσ z) and other parameters of
interest such as the lengthscale, signal variance parameters l and σσσ on the first layer of the GP.
Also, all of the hyperparameters of the second layer of the GP such as α2

P and βP are inferred.
The inducing points are chosen as evenly spaced across the domain (about 50 points, one in-
ducing point every half an hour for the empirical data) and can potentially be inferred too, but
in this chapter they are kept fixed as the number of inducing points is sufficiently dense for the
domain.

6.2.3 Model inference

We implement our variational framework inference in TensorFlow, an open-source deep learning
library [Abadi et al., 2016], using the package TensorFlow Probability. Using the TensorFlow
library has multiple advantages including access to automatic differentiation for an efficient and
easy method to calculate the gradients, without the specification of analytical formulae. It also
facilitates access to GPU-accelerated calculations. To process large amounts of data, we use a
trajectory segmentation technique, where we break the individual trajectories into multiple and
computationally more accessible segments.

We use one set of inducing points z for each segment, shared by each latent parameter l
and σσσ . These are kept fixed and are not inferred using the rest of the parameters. Using the
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inducing points z, we define the latent function values for the lower level Gaussian GPs. To
obtain the values of the lengthscale and the variance on the first layer of the GP, we predict the
latent function values at the observed data points, given the inducing points locations.

In this paper we infer only the latent functions l and σσσ , but not the function f. For the
empirical dataset inference, this is because we are interested in the behaviour of the power
consumption over a period time, and this is controlled by the parameters l and σσσ . The period
of time usually considered in an ordinary energy bill is a quarter or a year, but in this paper we
analyse the evolution of the power consumption over a day. It is straightforward to adapt the
method to study the behaviour of the power consumption over a larger period of time.

6.3 Data

6.3.1 Synthetic data generation

We generate synthetic data from a non-stationary GP model, with mean zero and the covariance
kernel given by the non-stationary Mátern 1/2 kernel defined in Equation 6.2 with constant
observation error. We generate l and σσσ by taking a sample from a GP prior with an RBF kernel,
such that there is no mismatch between our inference model and the synthetic data.

We simulate from our model trajectories of 1, 8, respectively 128 individuals and collect
about 8,000 observations per individual. In Figure 6.1, we show the observed synthetic dataset
for 1 individual, and the values of the lengthscale and amplitude parameters generated from the
RBF kernels. The values of these parameters are then used to generate data from a GP with the
non-stationary Mátern 1/2 kernel, shown in Equation 6.2.
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Figure 6.1: Synthetic data: (A) shows the observed synthetic data for 1 individual. (B) and (C)
show the true lengthscale parameter, respectively the true amplitude parameter that generated
the dataset shown in (A).

6.3.2 Empirical data

We apply our methods to empirical data, where the observations are the average power consump-
tion usage per minute (in watts) [Dua and Graff, 2017] recorded in one individual household in



CHAPTER 6. VARIATIONAL INFERENCE FOR A NON-STATIONARY GP 125

Paris, France. Our dataset consists of 44,640 readings recorded every single minute for a month,
October 2017.

6.4 Results

We fit our non-stationary GP and we apply a variational inference method. We optimise the
lower bound derived in Equation 6.18 using the Adam optimiser [Kingma and Ba, 2017]. All the
parameters of the hierarchical GP are optimised, together with the parameters of the variational
distributions φ(lz,σσσ z) in Equation 6.12.
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Figure 6.2: Synthetic inference: (A), (C), (E) show the inferred mean lengthscale parameter
(blue line) for 1 individual, 8 individuals, respectively 128 individuals datasets. (B), (D), (F)
show the inferred mean amplitude parameter (blue line) for 1 individual, 8 individuals, respec-
tively 128 individuals datasets. The black dashed line represents the true parameter value. The
blue regions (from dark to light) represent the 80%, 95%, respectively 99% credible intervals.
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Figure 6.3: Synthetic inference kernel density estimation: Figures A and C show the pdfs of
the difference, respectively of the standardized difference between the true and the predicted
lengthscale. Figures B and D show the pdfs of the difference, respectively of the standardized
difference between the true and predicted amplitude. The purple line is the pdf for the 1 indi-
vidual dataset, the blue line is the pdf for the 8 individuals dataset and the red line is the pdf for
the 128 individuals dataset. The blacked dashed line in Figures C and D represents the pdf of a
standard Normal distribution.

6.4.1 Synthetic model inference results

The inference results for the synthetic model are shown in Figure 6.2 for 1, 8, respectively 128
individuals simulated trajectories. The means of the posterior distributions are shown together
with the uncertainty quantification (80%, 95%, respectively 99% credible intervals) and with the
ground-truth values. As more data is added (increasingly from top to bottom), the uncertainty
decreases for both parameters, as expected. There is a very close agreement, between the in-
ferred means of the parameters and the true values and almost all of the deviations from the true
parameter values are within the credible intervals. In Figure 6.3 we show the pdfs for the differ-
ence and standardized differences between the true and the predicted parameters. To produce the
plots we simulate 5 replicate datasets consisting of 1 individual, 8 individuals, respectively 128
individuals observations, perform inference for the parameters, compute the differences and the
standardized differences between the true and the predicted parameters (computed by dividing
the differences by the standard deviation of the posterior samples) for each dataset. Then, we
calculate the pdfs using kernel density estimation after concatenating the differences/standard
differences (the bandwith was selected using cross-validation). In Figures 6.3 A and B, as ex-
pected, the pdfs get more peaked around 0 as we add more data, signifying less differences
between the true values of the parameters and the predicted parameters as more data is being
analysed. In Figure 6.3 C, given the increasingly small standard deviation as more data is being
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added, the pdf for the 8 individuals dataset (blue line) is more peaked around 0 than the pdfs
for the 128 individuals dataset (red line) and for the 1 individual (purple line) dataset. In both
Figures 6.3 C and D, there is a small discrepancy between our expectations and our results. In
a case, where the gold standard is met, we would expect that all the pdfs would be overlapping
and be perfectly bell-shaped and be centered around 0 with a standard deviation of 1, as is the
pdf of a standardised Normal distribution (black dashed line).

6.4.2 Empirical data inference results

The inference results for the empirical model are shown in Figure 6.4. Figure 6.4 A measures
how likely the average power consumption is to remain constant over a period of time. The
power persistence is high during the night (12AM-5AM), given that the power usage remains
constantly low during this time period. This is consistent with the low variance values and rela-
tively low uncertainty in Figure 6.4 B during the same time frame. In Figure 6.4 A, from 7AM
until midnight, the average power consumption persistence remains constantly low, signifying a
fairly steady consumption of energy during these hours and this is in agreement with the steady
average power consumption variance values in Figure 6.4 B, although there is higher uncertainty
than during the night hours.
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Figure 6.4: Empirical dataset inference: (A) shows the mean power consumption persistence
(blue line). (B) shows the mean variance power usage (blue line). The blue regions (from dark
to light) represent the 80%, 95%, respectively 99% credible intervals.

6.5 Conclusions

In this chapter we presented a variational Bayesian inference method within a hierarchical non-
stationary GP framework. We combined the flexibility and robustness of non-stationary GP
models with the computationally efficient variational inference scheme and with the mixture-



CHAPTER 6. VARIATIONAL INFERENCE FOR A NON-STATIONARY GP 128

of-experts technique to make the model scalable to large datasets. We successfully applied our
method to synthetic and empirical datasets producing reliable and intuitive results.

Our method presents significant advantages compared to other methods developed in the
literature. The variational inference scheme is faster compared to MCMC methods that are dif-
ficult to sample efficiently from when using a non-stationary GP model, and unlike the MAP
method that produces only point-estimates, it quantifies uncertainty. Moreover, using the mix-
ture of experts technique, our method is scalable to large datasets compared to the small datasets’
size used by Heinonen et al. [2016]. While the inference method is the same as Hensman et al.
[2013], the model used is not a standard GP, but a hierarchical GP, which is more flexible than
the standard GP and has strong real life applications potential in various domains where there
is a lot of function variability in the input space, such as modelling animal movement or terrain
surfaces. Future work might include changing the inference framework from a sparse variational
Bayesian framework to a state-space formulation that performs inference in linear time [Grig-
orievskiy et al., 2016]. Moreover, future work might also consist in applying MCMC inference
methods to the current model and data and drawing a comparison between the MCMC method
and the current variational inference approach.



Chapter 7

Discussion and future work

Statistical models of movement data are divided into two types, based on its time-formulations
- discrete-time or continuous-time. The discrete-time movement models such as the random
walk and its extensions are the bedrock of movement models, and are preferred by ecologists
since they are easy to understand and to implement. The continuous-time movement models
arise as solutions to SDEs, and can more easily deal with irregular or missing observations than
the discrete-time movement models. The more realistic continuous movement models, where
various drivers of movement such as internal state or environmental characteristics are accounted
for have seen a limited use by the ecologists due to their complexity in formulation, the reduced
scalability of the inference methods to large datasets and high computational demands. Hence, in
this thesis, I develop inference methods that are scalable to large movement datasets, where the
autocorrelated nature of movement data and its multiscale complexity driven by environmental
characteristics are addressed.

Original contributions start in Chapter 3 when through a study I illustrate one major disad-
vantage when working with discrete-time movement models - the specification in advance of
the unknown discretisation-step. Hence, for the rest of the thesis, I work with continuous-time
movement models, that do not present such limitations. I focus exclusively on non-parametric
probabilistic methods, namely GPs, since their flexibility in choosing a covariance functions
makes them equivalent to many continuous-time movement models. I show this fact in Chapter
4, where I demonstrate how popular and widely implemented movement models such as OUF
[Fleming et al., 2014a] or OUV [Johnson et al., 2008] can be reintroduced as GPs. Among
the benefits are working within a non-parametric Bayesian framework with access to powerful
machine learning libraries such as TensorFlow [Abadi et al., 2016].

A parametric alternative to the non-parametric approach represented by GPs that is particu-
larly popular and has been applied to animal movement [Whetten, 2021] is the splines model.
An advantage that splines have over GPs is the reduction in computation complexity, which
is linear rather than cubic in the data samples size. However, among the disadvantages of the
splines model is the lack of flexibility in specifying the covariance function, which is not explic-
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itly specified by the modeller. Another disadvantage is the lack of uncertainty quantification as
the splines model is equivalent to the MAP point estimate of a GP [Rasmussen and Williams,
2006], Section 6.3.

Regarding modelling animal movement, GPs have been used recently [Cobb et al., 2017,
Torney et al., 2021]. Fleming et al. [2014a] illustrate a flexible and rigorous method that makes
use of the first two cumulants of a stochastic process (the mean and autocorrelation function,
thus, basically defining a GP). Another important example is Hooten and Johnson [2017], where
the authors make use of basis functions and convolutions to obtain smooth continuous-time
movement models (thus, leading to a GP), called functional movement models.

In Chapters 5-6, I extend the stationary GP to a hierarchical non-stationary GP, by having
a subset of the parameters be modelled by another GPs [Heinonen et al., 2016]. The non-
stationary GPs are capable of modelling non-stationary data, where there are different levels
of function smoothness in the input space and can be considered a continuous-time alterna-
tive to the discrete-time model HMM. In the literature, continuous-time movement models that
incorporate different drivers of movement are called state-switching models [Harris and Black-
well, 2013, Blackwell et al., 2016]. Other flexible models make use of potential functions,
which incorporate attraction points and landscape characteristics. These models have been been
developed using stochastic differential equations [Preisler et al., 2001, 2004, 2013, Brillinger
et al., 2001, 2002, 2004, Brillinger, 2010]. Other methods that incorporate the landscape char-
acteristics are wavelet analysis [Wittemyer et al., 2008b], step-selection functions [Michelot
et al., 2020, Thurfjell et al., 2014] and integrated step-selection analysis [Avgar et al., 2016,
Prokopenko et al., 2017]. An interesting example is presented in Cobb et al. [2017], where the
authors use a different approach, namely a GP to infer a spatio-temporal vector field from ob-
served trajectories of an animal. Arguably, my approach is more flexible, due to the hierarchical
nature of the GP models, as it allows to model a variety of behavioural states that the animals
can exhibit in a smooth and continuous manner. This is done through the selection of preferred
covariance functions on the second layer of the hierarchical GP that control the smoothness and
structure of the movement parameters on the first layer.

More specifically, in Chapter 5, I consider a spatial hierarchical non-stationary GP model,
where the parameters on the first-layer of the GP depend on the actual telemetry locations. I fit
the model to relate these latent fields to simulated trajectories in a sinusoidal environment and
in empirical movement tracks of wildebeest by using a non-stationary version of the correlated
velocity model. The model is used to analyse the wildebeest migration and detect regions of high
and low directional persistence and speed. The scalability of the model is improved to relatively
large datasets and to accomplish this, I implement it in an open-source deep learning platform,
TensorFlow [Abadi et al., 2016]. TensorFlow has multiple advantages over other packages that
implement GPs such as GPy as it uses automatic differentiation to calculate the gradients of
the log likelihood with respect to the parameters in a straightforward manner. Also, it provides
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a significant computational boost as it allows fast computations on GPU, unlike GPy or other
libraries that implement GPs, that perform calculations on CPU. To make the method able to
process large amounts of data I use the method of trajectory segmentation, where I divide the
individual trajectories into multiple and computationally more accessible sections. I follow a
sparse GP approach, where I define the GP using a set of inducing or support points in order to
reduce the computational complexity of O(N3) of a GP. Moreover, I perform distributed training
of my data on multiple GPUs, further increasing the inference speed on large datasets. However,
this method is not scalable to millions of datapoints as it has the drawback that sampling based
methods such as MCMC are computationally expensive, might mix poorly and have trouble
reaching convergence.

In Chapter 6, I develop a model scalable to potential millions of points. I accomplish this by
modifying the inference scheme used in Chapter 5. Instead of using sampling-based methods
such as MCMC, I employ variational inference methods. While I infer just an approximate
posterior distribution that is constructed and optimised to get as close as possible to the true
posterior distribution, the method is now scalable to very large datasets. I test the methods on
multiple synthetic and real world datasets.

Future work for Chapter 5 might include model checking that the GP model is a good fit to
the real data. I could use a similar approach to the one used in Chapter 3 by using summary
statistics and posterior predictive p-values. I could compare the observed lengthscale with the
simulated lengthscales, or compare the observed environmental characteristics with the simu-
lated environmental characteristics. If the posterior predictive values are close to the extremes,
this could indicate a systematic model mismatch. In addition, I could use the variational infer-
ence method instead of the slow-mixing MCMC to infer the spatial-latent fields. Comparisons
between the accuracy and the speed of the MCMC versus the variational inference method could
be performed. Further work could be done by introducing various covariates into the hierarchi-
cal GP model such as distance to boundaries, richness of soil, quantity of rainfall, numbers of
tourists visiting the site, location of human settlements, etc.. While the model currently accepts
spatial location as inputs, it can be modified such that the inputs can be the environmental covari-
ates aforementioned. The goal would be to improve the general contribution of my framework
to gain new insights in the movement ecology and behaviour of individual animals. Moreover,
another significant research topic that could be further developed is to make the framework ac-
cessible to ecologists by creating a package that can implement non-stationary hierarchical GPs
to model tracking data. Furthermore, allowing for the inclusion of environmental covariates
might make my approach suitable to a wider ecological audience. A similar R package that
implements HMMs in an easy and accessible manner to ecologists was developed by Miche-
lot et al. [2016]. Future work for Chapter 6 might include changing the variational inference
method to MCMC and subsequently a comparison could be made between these two methods.
The aforementioned ideas are a promising and fascinating area for future research.
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Appendix section for Chapter 2

A.1 Induction proof

I prove by induction that the identity in Equation 2.115 holds. Let

P(N) : a0+a1(iw)2+· · ·+aN(iw)2N =
(
b0 +b1(iw)+ · · ·+bN(iw)N)(b0 +b1(−iw)+ · · ·+bN(−iw)N) .

(A.1)
I check first if the statement holds for N = 1. I have that

a0 +a1(iw)2 = (b0 +b1(iw))(b0−b1(iw)). (A.2)

Equating the coefficients results we have

a0 = b2
0. (A.3)

a1 =−b2
1. (A.4)

Therefore, the coefficients b0 an b1 can be found such that P(N) for N = 1 holds.
I prove that P(N)→ P(N +1). I have

P(N +1) : a0 +a1(iw)2 + · · ·+aN(iw)2N +aN+1(iw)2N+2

=
(
b0 +b1(iw)+ · · ·+bN(iw)N +bN+1(iw)N+1)

×
(
b0 +b1(−iw)+ · · ·+bN(−iw)N +bN+1(−iw)N+1) . (A.5)

For simplicity let k = b0 + b1(iw) + · · ·+ bN(iw)N and l = b0 + b1(−iw) + · · ·+ bN(−iw)N .
Therefore, the RHS of P(N +1) is

RHS =
(
k+bN+1(iw)N+1)(l +bN+1(−iw)N+1)

= kl + kbN+1(−iw)N+1 + lbN+1(iw)N+1 +b2
N+1(−1)N+1(iw)2N+2.

(A.6)
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Now the induction step can be used. The coefficients ci exist such that the following relationship
holds

kl = c0 + c1(iw)2 + · · ·+ cN(iw)2N . (A.7)

I calculate the second and third terms in Equation A.6 by replacing k and l and I get(
b0 +b1(iw)+ · · ·+bN(iw)N)bN+1(−iw)N+1 +

(
b0 +b1(−iw)+ · · ·+bN(−iw)N)bN+1(iw)N+1

= b0bN+1(−iw)N+1 +b1bN+1(−iw)N+1(iw)+ · · ·+bNbN+1(iw)N(−iw)N+1 +b0bN+1(iw)N+1

+b1bN+1(−iw)(iw)N+1 + · · ·+bNbN+1(−1)N+1(iw)2N

= b0bN+1(iw)N+1 ((−1)N+1 +1
)
+b1bN+1(iw)N+2 ((−1)N+1−1

)
+ · · ·+

+bNbN+1(iw)2N+1 ((−1)N+1 +(−1)N) .
(A.8)

From this equation, it can be seen that whether N is even or odd, the odd powers of (iw) dis-
appear. Combining Equations A.5, A.6, A.7 and A.8, the coefficients bi’s can always be found
such that Equation A.5 holds. Therefore, the identity in Equation 2.115 or Equation A.1 is true.
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Appendix for Chapter 3

B.1 Validating the first model

Introduction

In this section we validate the first model from Chapter 3, Section 3.2.2 by using a different prior
than a uniform distribution for the scale parameter of the Weibull distribution. The new prior
chosen is the Inverse-Gamma distribution, which is a conjugate prior for the scale parameter of
the Weibull distribution when the shape parameter is kept fixed. Using this prior allows the cal-
culation of the analytical posterior distribution of the scale parameter. The MCMC algorithm of
choice is the MH instead of the natural MCMC method, Gibbs sampling, because the aim is to
test the MH implementation by comparing the posterior samples distribution against the analyti-
cal posterior pdf (more details are offered in Chapter 3, Section 3.2.4). A Kolmogorov–Smirnov
[Hodges, 1958] test is calculated that checks whether the underlying distribution of the posterior
samples is identical to the analytical posterior distribution. If the KS test returns a small KS
statistic or a high p-value, then the null hypothesis that the underlying distribution of the pos-
terior samples is identical to the analytical posterior distribution cannot be rejected in favour of
the alternative, that is the underlying distribution of the posterior samples is not identical to the
analytical posterior distribution.

Data

Step-lengths data is simulated from a Weibull distribution with shape parameter 4 and scale
parameter 1 and the turning angles data is simulated from a Uniform (0,2π) distribution. The
dataset size is 5000 for each component.
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Models

We implement the first model from Section 3.2.2. Let rt represent the observed step-lengths and
let θt represent the associated observed turning angle. The model considered is

rt ∼Weibull(a,b),

θt ∼ Uniform(0,2π).

The pdf of the Weibull distribution is

p(r|a,b) = ara−1

b
exp
(
−ra

b

)
, (B.1)

where r ≥ 0, a is the shape parameter and b is the scale parameter, both positive parameters.

Prior distribution

We set an Inverse-Gamma (1,1) prior on the scale parameter b. The pdf of the Inverse-Gamma(α ,
β ) distribution is

p(b|α,β ) =
β α

Γ(α)
b−α−1 exp

(
−β

b

)
, (B.2)

where α > 0 is the shape parameter and β > 0 is the scale parameter.

Likelihood calculation

Suppose the step-lengths r1, . . . ,rn are independent and identically distributed draws from a
Weibull distribution, where the scale parameter b is unknown and the shape parameter a is
known. The likelihood function is proportional to

L (b;r) ∝ b−n exp
(
−∑

n
i=1 ra

i
b

)
. (B.3)

Using the prior distribution defined in Section B.1 and keeping in mind that the posterior proba-
bility is proportional to the likelihood multiplied by the prior probability we get that the posterior
distribution π(b|a′,b′) is Inverse-Gamma with shape a′ and scale b′

a′ = α +n. (B.4)

b′ = β +
n

∑
i=1

ra
i . (B.5)

Inference

The algorithm chosen to infer the scale parameter is the MH and the proposal distribution is a
symmetric Normal distribution. The number of iterations is 10,000.
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(a) Histogram of the step-lengths from the syn-
thetic data and the analytical pdf of Weibull
(4,1) (orange line).

(b) Plot of the analytical posterior pdf of the
scale parameter (blue line) and the histogram
of the marginal posterior samples of the scale
parameter.

(c) Traceplots of the scale parameter of the
Weibull distribution starting from different ini-
tialisations.

Figure B.1: Inference and convergence plots when the prior is the Inverse-Gamma distribution.

Results of the inference

In Figure B.1a we plot the distribution of step-lengths from the data and the analytical pdf of
Weibull (4,1) distribution. In Figure B.1b we plot the marginal posterior samples for the scale
parameter and we fit the analytical posterior pdf using Equation B.2 with the corresponding
shape and scale parameters from Section B.1, Equations B.4 and B.5. There is an agreement
with the two plots and this is confirmed by the KS test which returned a KS statistic value
of 0.048 and a p-value of 0.199. Since the p-value is not extreme, we cannot reject the null
hypothesis that the underlying distribution of the posterior samples is identical to the analytical
posterior distribution.

Assessing convergence

The Gelman-Rubin statistic for the scale parameter is R̂ = 1.009, which is smaller than 1.1,
indicating that the chain does not show a lack of convergence. Also, by analysing the traceplots



APPENDIX B. APPENDIX FOR CHAPTER 3 137

in Figure B.1c, we do not detect a lack of convergence.

B.2 Conclusions

In this section we fitted the first model from Section 3.2.2 with a conjugate prior for the scale pa-
rameter while keeping the shape parameter fixed at 4. After performing inference using the MH
algorithm and checking for convergence, the posterior samples were compared to the analytical
posterior distribution. A KS test was calculated and the null hypothesis that the underlying dis-
tribution of the posterior samples is identical to the analytical posterior distribution could not be
rejected. Thus, the MH algorithm implementation was successful.
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Appendix section for Chapter 4

C.1 Brownian bridge covariance function derivation

In this subsection we show the Brownian bridge covariance function derivation. This derivation
is based on Ibe [2016], Chapter 9, Section 9.9, pages 270-271.

The Brownian bridge model is Brownian motion restricted on the interval [0,1] and can be
defined as follows

{W (t), t ∈ [0,1]|W (1) = 0}, (C.1)

where W (t) is the Brownian motion process realisation at time t. We can redefine the Brownian
bridge process as

x(t) =W (t)− tW (1), 0≤ t ≤ 1, (C.2)

where x(t) is the realisation of the Brownian bridge process at time t. From Equation 4.1 we can
deduce that E[x(t)] = 0, given that E [W (t)] = 0 at any time t. We have that for 0 ≤ s < t ≤ 1,
the covariance of x(t) and x(s) is given by

Cov[x(s),x(t)] = E[{x(s)−E[x(s)]}]{x(t)−E[x(t)]}= E[x(t)x(s)]

= E[{W (s)− sW (1)}{W (t)− tW (1)}]

= E[W (s)W (t)− tW (s)W (1)− sW (t)W (1)+ stW 2(1)]

= σ
2 min(s, t)−σ

2t min(s,1)−σ
2smin(t,1)+σ

2st

= σ
2{s− st− st + st}= σ

2(s− st)

= σ
2s(1− t),

(C.3)

where we used the fact that E [W (s)W (t)] = σ2 min(s, t).
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C.2 Multivariate OU process covariance function derivation

We might be interested using a multivariate OU process instead of the univariate case. The
multivariate stochastic differential equation of the OU process is

dxt = a(b−xt)dt +σσσdWt , (C.4)

where a is a n×n invertible matrix, b is a n-dimensional real vector, σσσ is a n×m positive real
matrix and Wt is a m-dimensional Wiener process at a time point t.

Following a similar procedure to the univariate case or by following the method used by Vati-
wutipong and Phewchean [2019] the n-dimensional OU process xt has a n-dimensional Normal
distribution with mean vector

mt = e−atx0 +
(
I− e−at)b, (C.5)

and covariance matrix
ΣΣΣt =

∫ t

0
ea(s−t)

σσσσσσ
T eaT (s−t)ds, (C.6)

for a time point t. We can obtain the covariance between two points xs and xt either by following
the procedure as in the univariate case or by using Theorem 2 of Vatiwutipong and Phewchean
[2019]

Cov(xs,xt) =
∫ min(s,t)

0
e−a(s−u)

σσσσσσ
T e−aT (t−u)du. (C.7)

We can do further work on the previous results such that the following relationship holds

Cov(xs,xt) = σσσσσσ
T e−(as+aT t)

∫ min(s,t)

0
eu(a+aT )du

= σσσσσσ
T e−(as+aT t) (a+aT)−1

eu(a+aT )

∣∣∣∣∣
u = min(s,t)

u = 0

= σσσσσσ
T e−(as+aT t) (a+aT)−1

(
emin(s,t)(a+aT )−1

)
= σσσσσσ

T (a+aT)−1
(

e
−(a+aT)

2 ((s+t−|s−t|)−(as+aT t)− e−(as+aT t)

)
.

(C.8)

As s and t grow large, we have that

Cov(xs,xt) = σσσσσσ
T (a+aT)−1

e−
(a+aT)|s−t|

2 . (C.9)
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C.3 OUF kernel function implementation in GPy

In this Appendix section, we implement the OUF kernel in GPy, a library that can implement
GPs. In order to do this, we simulate OUF data using the Equations 4.53 and 4.54 and then fit
a GP with the OUF kernel function derived in Equation 4.65. The OUF kernel is not a standard
kernel implemented in GPy, therefore we create a new kernel inside the package. Since we want
to do inference either by using an optimiser or HMC, we need the derivatives of the OUF kernel
in Equation 4.65 with respect to all the parameters of interest that we want to infer. We show all
the derivations in the following subsections.

OUF kernel derivatives with respect to the parameters

The OUF kernel formula, reproduced here again for clarity is

k(t, t ′) =
σaτ2

Hτ2
F

2(τF + τH)

τHe
−|t−t′|

τH − τFe
−|t−t′|

τF

τH− τF

 . (C.10)

We denote

rH =
|t− t ′|

τH
. (C.11)

rF =
|t− t ′|

τF
. (C.12)

Let

Ke(τH) = Ke(τF) =
τHe

−|t−t′|
τH − τFe

−|t−t′|
τF

τH− τF
=

τHe−rH − τFe−rF

τH− τF
, (C.13)

and let
f (τH) = f (τF) = τHe

−|t−t′|
τH − τFe

−|t−t′|
τF = τHe−rH − τFe−rF . (C.14)

Also, we denote

g(τH) = g(τF) =
σaτ2

Hτ2
F

2(τF + τH)
. (C.15)

We calculate first the derivative of the OUF kernel with respect to the σa parameter such that
we have

dk
dσa

=
τ2

Hτ2
F

2(τF + τH)
×Ke. (C.16)

The derivative with respect to the τH parameter is

dk
dτH

= (g(τH)×Ke(τH))
′ = g′(τH)×Ke(τH)+Ke′(τH)×g(τH). (C.17)
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We calculate the derivatives separately and we get

g′(τH) =
σaτ2

F
2

2τH(τH + τF)− τ2
H

(τH + τF)2

=
σaτ2

F
2

τ2
H +2τHτF

(τH + τF)2 .

(C.18)

We calculate the derivative of Ke with respect to τH and we obtain

Ke′(τH) =
f ′(τH)(τH− τF)− f (τH)

(τH− τF)2 , (C.19)

where we have that f = τHe−rH − τFe−rF . We compute the derivative of f with respect to τH

and we get

f ′(τH) = (τHe−rH )′ = e−rH + τHe−rH (−rH)
′

= e−rH + e−rH rH

= e−rH (1+ rH),

(C.20)

where we used the fact (rH)
′ = −1

τ2
H
|t− t ′|. Inserting the derivative of f into Equation C.19 we

get that

Ke′(τH) =
e−rH (1+ rH)(τH− τF)− (τHe−rH − τFe−rF )

(τH− τF)2 . (C.21)

We have that k(τH) = g(τH)×Ke(τH). Therefore, dk
τH

= g′(τH)×Ke(τH)+ g(τH)×Ke′(τH).
Then, using the derivatives of g and Ke we get that

dk
τH

=
σaτ2

F
2

τ2
H +2τHτF

(τH + τF)2
τHe−rH − τFe−rF

τH− τF

+
σaτ2

Hτ2
F

2(τF + τH)

e−rH (1+ rH)(τH− τF)− (τHe−rH − τFe−rF )

(τH− τF)2 .

(C.22)

Similarly, we calculate the derivative of k with respect to τF , and we obtain that

dk
dτF

= (g(τF)×Ke(τF))
′ = g′(τF)×Ke(τF)+Ke′(τF)×g(τF), (C.23)

We calculate the derivatives separately, and we get that

g′(τF) =
σaτ2

H
2

2τF(τH + τF)− τ2
F

(τH + τF)2

=
σaτ2

H
2

τ2
F +2τHτF

(τH + τF)2 .

(C.24)



APPENDIX C. APPENDIX SECTION FOR CHAPTER 4 142

We compute the derivative of Ke with respect to τF , and we obtain that

Ke′(τF) =
f ′(τF)× (τH− τF)+ f (τF)

(τH− τF)2 . (C.25)

We have that f (τF) = τHe−rH −τFe−rF . We calculate the derivative of f with respect to τF such
that we have

f ′(τF) =−(τFe−rF )′ =−
(
e−rF + τFe−rF (−rF)

′)
=−e−rF − e−rF rF

=−e−rF (1+ rF),

(C.26)

where we used the fact (rF)
′ = −1

τ2
F
|t− t ′|. Inserting the derivative of f into Equation C.25 we get

that
Ke′(τF) =

−e−rF (1+ rF)(τH− τF)+(τHe−rH − τFe−rF )

(τH− τF)2 . (C.27)

We have that k(τF) = g(τF)×Ke(τF). Therefore, dk
τF

= g′(τF)×Ke(τF)+g(τF)×Ke′(τF), and
using the derivatives of g and Ke we get that

dk
τF

=
σaτ2

H
2

τ2
F +2τHτF

(τH + τF)2
τHe−rH − τFe−rF

τH− τF

+
σaτ2

Hτ2
F

2(τF + τH)

−e−rF (1+ rF)(τH− τF)+(τHe−rH − τFe−rF )

(τH− τF)2 .

(C.28)

OUF kernel rewritten

We rewrite the OUF kernel from Equation 4.65 to allow for the difference τH − τF to be always
different from zero. We choose the difference τH − τF to be always positive. We do this by
defining another parameter δ = τH−τF and use a log exp transformation to make the parameter
δ to be always positive. We also rewrite the OUF kernel formula from Equation 4.65 in terms
of the parameters σa,τF and δ .

K =
σa(τF +δ )2τ2

F
2(2τF +δ )

(τF +δ )e−rδF − τFe−rF

δ
, (C.29)

where we have that

rδF =
|t− t ′|
δ + τF

. (C.30)

rF =
|t− t ′|

τF
. (C.31)
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We denote

Ke(δ ) = Ke(τF) =
(τF +δ )e

−|t−t′|
τF+δ − τFe

−|t−t′|
τF

δ
=

(τF +δ )e−rδF − τFe−rF

δ
, (C.32)

and let

f (δ ) = f (τF) = (τF +δ )e
−|t−t′|
τF+δ − τFe

−|t−t′|
τF = (τF +δ )e−rδF − τFe−rF . (C.33)

Also, we denote

g(δ ) = g(τF) =
σa(τF +δ )2τ2

F
2(2τF +δ )

. (C.34)

Firstly, we calculate the derivative of the OUF kernel with respect to the σa parameter such
that

dk
dσa

=
(τF +δ )2τ2

F
2(2τF +δ )

×Ke. (C.35)

We compute the derivative with respect to the δ parameter and we get

dk
dδ

= (g(δ )×Ke(δ ))′ = g′(δ )×Ke(δ )+Ke′(δ )×g(δ ), (C.36)

and we calculate the derivatives separately to obtain

g′(δ ) =
σaτ2

F
2

2(τF +δ )(2τF +δ )− (τF +δ )2

(2τF +δ )2

=
σaτ2

F
2

3τ2
F +4τFδ +δ 2

(2τF +δ )2 .

(C.37)

We compute the derivative of Ke with respect to δ and we get

Ke′(δ ) =
f ′(δ )δ − f (δ )

δ 2 , (C.38)

where we have that f = (τF + δ )e−rδF − τFe−rF . Now, we calculate the derivative of f with
respect to δ such that we obtain

f ′(δ ) = ((τF +δ )e−rδF )′ = e−rδF +(τF +δ )e−rδF (−rδF)
′

= e−rδF + e−rδF rδF = e−rδF (1+ rδF),
(C.39)

where we used the fact (rδF)
′ = −1

(δ+τF )2 |t− t ′|. Inserting the derivative of f into Equation C.38
results in

Ke′(δ ) =
e−rδF (1+ rδF)δ − ((τF +δ )e−rδF − τFe−rF )

δ 2 . (C.40)

We have that k(δ ) = g(δ )×Ke(δ ). Therefore, dk
dδ

= g′(δ )×Ke(δ )+g(δ )×Ke′(δ ). Using the
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derivatives of g and Ke we obtain

dk
dδ

=
σaτ2

F
2

3τ2
F +4τFδ +δ 2

(2τF +δ )2
(τF +δ )e−rδF − τFe−rF

δ

+
σa(τF +δ )2τ2

F
2(2τF +δ )

e−rδF (1+ rδF)δ − ((τF +δ )e−rδF − τFe−rF )

δ 2 .

(C.41)

Similarly, we calculate the derivative of k with respect to τF to get

dk
dτF

= (g(τF)×Ke(τF))
′ = g′(τF)×Ke(τF)+Ke′(τF)×g(τF). (C.42)

We calculate the derivatives separately, and we obtain

g′(τF) =
σa

2
u′(2τF +δ )−2u

(2τF +δ )2 , (C.43)

where u(τF) = (τF + δ )2τ2
F = (τ2

F + δτF)
2. We compute the derivative of u with respect to τF

such that

du
dτF

= 2(τ2
F +δτF)(2τF +δ )

= 2(2τ
3
F +δτ

2
F +2δτ

2
F +δ

2
τF)

= 4τ
3
F +6δτ

2
F +2δ

2
τF .

(C.44)

Therefore, we get that

g′(τF) =
σa

2
(4τ3

F +6τ2
Fδ +2δ 2τF)(2τF +δ )−2(τ2

F +δτF)
2

(2τF +δ )2 . (C.45)

We calculate the derivative of Ke with respect to τF , and we obtain

Ke′(τF) =
f ′(τF)

δ
. (C.46)

We have that f (τF) = (τF + δ )e−rδF − τFe−rF . Then, we calculate the derivative of f with
respect to τF such that

f ′(τF) =
(
(τF +δ )e−rδF − τFe−rF

)′
= e

−r
τF+δ +(τF +δ )

(
e
−r

τF+δ

)′
−
(

e
−r
τF + τF

(
e
−r
τF

)′)
= e

−r
τF+δ + rδFe−rδF − (e

−r
τF + e

−r
τF rF)

= e−rδF (1+ rδF)− e−rF (1+ rF),

(C.47)

where we used the fact (rF)
′ = −1

τ2
F
|t− t ′|, (rδF)

′ = −1
(δ+τF )2 |t− t ′|, and we denoted |t− t ′| = r.
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Inserting the derivative of f into Equation C.46 we get that

Ke′(τF) =
e−rδF (1+ rδF)− e−rF (1+ rF)

δ
. (C.48)

We have that k(τF) = g(τF)×Ke(τF). Therefore, dk
τF

= g′(τF)×Ke(τF) + g(τF)×Ke′(τF).
Finally, using the derivatives of g and Ke we get that

dk
τF

=
σa

2
(4τ3

F +6τ2
Fδ +2δ 2τF)(2τF +δ )−2(τ2

F +δτ2
F)

(2τF +δ )2
(τF +δ )e−rδF − τFe−rF

δ

+
e−rδF (1+ rδF)− e−rF (1+ rF)

δ

σa(τF +δ )2τ2
F

2(2τF +δ )
.

(C.49)

OUF model implemented in GPy

In this subsection, we simulate noiseless OUF data, and then fit a GP model with the OUF
kernel. In Figures C.1 we plot the optimised model for a different number of time points (de-
creasing number of points from left to right, top to bottom). As expected, the uncertainty around
the points is very small in Figure C.1 top left plot and increases in the Figure C.1 top right plot
around the data points. Moreover, in Figures C.1 the uncertainty increases significantly in re-
gions where there is no data. This is exactly the behaviour that we expected if our kernel was
well defined.

Figure C.1: Optimised GP model with the OUF kernel with varying number of datapoints.



Appendix D

Appendix section for Chapter 5

In this Appendix section we derive the derivatives formulas when the model is a hierarchical
non-stationary GP with the kernels on the first-layer being non-stationary RBF kernel, respec-
tively non-stationary Matérn 1/2. We also illustrate the mistakes in the implementation of the
RBF non-stationary model in Heinonen et al. [2016] and derive the Matérn 1/2 non-stationary
kernel formula.

D.1 Non-stationary Gaussian process model with a RBF ker-
nel

Suppose y is a n× 2 vector of observations over x inputs of size n× 1. We assume an additive
regression model,

y = f (x)+ εεε, εεε ∼N (0,ω2I). (D.1)

We then place a zero mean GP prior on the latent function f (x),

f (x)∼ G P(0,k f (x,x′)), (D.2)

where k f (x,x′) is the kernel of the function f evaluated at x and x′.
The RBF non-stationary formula [Heinonen et al., 2016] for the covariance function evalu-

ated at points x and x′ is

k f (x,x′) = σ(x)σ(x′)

√
2l(x)l(x′)

l(x)2 + l(x′)2 exp
(
− (x−x′)2

l(x)2 + l(x′)2

)
, (D.3)

where x,x′ ∈ Rn and σ2(x) and l(x) are input-dependent amplitude (or signal variance) and
lengthscale functions, respectively. We also put separate GP priors on the lengthscale and signal
variance functions. In order to ensure positivity of these functions, we set the priors on the

146
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logarithms

log(l(x))≡ l̃(x)∼ G P(0,kl(x,x′)). (D.4)

log
(
σσσ

2(x)
)
≡ σ̃σσ

2(x)∼ G P(0,kσ2(x,x′)). (D.5)

The chosen kernel for these two functions is a RBF kernel for each

kl(x,x′) = α
2
l exp

(
−||x−x′||2

2β 2
l

)
. (D.6)

kσ2(x,x′) = α
2
σ2 exp

(
−||x−x′||2

2β 2
σ2

)
. (D.7)

D.1.1 Derivatives of the parameters for the RBF non-stationary Gaussian
process model

In order to optimise this model or perform HMC sampling we need the derivatives of the log
likelihood with respect to all the parameters. Let K f , Kl and Kσ2 be the covariance matrices
given by the kernels k f , kl , respectively kσ2 evaluated at the datapoints x.

The likelihood of the model using Bayes rule is

L = p(y|l̃, σ̃σσ2,ω)p(l̃, σ̃σσ2). (D.8)

We can calculate these quantities by using the fact

y∼N (0,Ky), Ky = K f +ΩΩΩ, ΩΩΩ = diag(ω2). (D.9)

l̃∼N (0,Kl). (D.10)

σ̃σσ
2 ∼N (0,Kσ2). (D.11)

Derivative of the lengthscale parameter l̃i

Using the standard formula for the derivative of log likelihood with respect to a parameter [Ras-
mussen and Williams, 2006], Equation 5.9, page 114, we calculate the derivative of the length-
scale parameter l̃i i.e. the derivative of the lengthscale vector l̃ at input i such that we have

∂ logL

∂ l̃i
=

1
2

tr
((

αααααα
T −K−1

y
) ∂Ky

∂ l̃i

)
− [K−1

l l̃]i, (D.12)

where ααα = K−1
y y.

The first term of Equation D.12 is derived from differentiating log p(y|l̃, σ̃σσ2,ω) with respect
to l̃ conforming to Rasmussen and Williams [2006], equation 5.9, page 114. The second term of
Equation D.12 comes from differentiating log p(l̃|0,Kl) with respect to l̃. We prove this below.
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We have l̃∼N (0,Kl). Therefore,

log p(l̃|0,Kl) =−
1
2

l̃tK−1
l l̃− 1

2
log |Kl|−

n
2

log(2π). (D.13)

Differentiating the previous term with respect to l̃ we get that d log p(l̃|0,Kl)

d l̃ = −K−1
l l̃, since the

other terms are independent of l̃. We now calculate the inner matrix ∂Ky

∂ l̃i
from Equation D.12.

We have Ky = K f +ΩΩΩ, where ΩΩΩ is a diagonal matrix formed of the noise variance parameter
ω2, i.e. ΩΩΩ = diag(ω2). Therefore, we get that

∂ [Ky]i j

∂ l̃i
=

∂ [K f ]i j

∂ l̃i
= σiσ j

∂ [Tl]i j

∂ log li
, where [Tl]i j =

√
2l(xi)l(x j)

l(xi)2 + l(x j)2 exp
(
−

(xi− x j)
2

l(xi)2 + l(x j)2

)
.

(D.14)
For simplification, we denote l(xi) = li and (xi− x j)

2 = di j. We start calculating the partial
derivative by first taking the diagonal case i = j and we obtain

∂ [Tl]ii

∂ l̃i
=

∂ [Tl]ii
∂ log li

=

∂

(√
2li2

2li2
exp
(
− di j

2li2

))
∂ log li

= 0, since di j = 0. (D.15)

In the second case, we assume i ̸= j. We have that

∂ [Tl]i j

∂ l̃i
=

∂ [Tl]i j

∂ log li
=

∂

(√
2lil j

li2+l j
2 exp

(
− di j

li2+l j
2

))
∂ log li

.
(D.16)

Using the chain rule we get that

∂ [Tl]i j

∂ log li
=

∂ [Tl]i j

∂ li

∂ li
∂ log li

=
∂ [Tl]i j

∂ li
li. (D.17)
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We calculate

∂ [Tl]i j

∂ li
= exp

(
−

di j

li2 + l j
2

)∂

√
2lil j

li2+l j
2

∂ li
+

√
2lil j

li2 + l j
2

∂ exp
(
− di j

li2+l j
2

)
∂ li

=
1
2

exp

(
−

di j

li2 + l j
2

)(
2lil j

li2 + l j
2

)− 1
2 2l j(li2 + l j

2)−2li2lil j

(li2 + l j
2)

2

+

√
2lil j

li2 + l j
2 exp

(
−

di j

li2 + l j
2

)
(−di j)

(−2li)

(li2 + l j
2)

2

=
1
2

exp

(
−

di j

li2 + l j
2

)
1√
2lil j

li2+l j
2

2l j(li2 + l j
2−2l2

i )

(li2 + l j
2)

2

+

√
2lil j

li2 + l j
2 exp

(
−

di j

li2 + l j
2

)
(2di jli)

(li2 + l j
2)

2

= exp

(
−

di j

li2 + l j
2

)
1√
2lil j

li2+l j
2

l j(l j
2− li2)

(li2 + l j
2)

2

+

√
2lil j

li2 + l j
2 exp

(
−

di j

li2 + l j
2

)
(2di jli)

(li2 + l j
2)

2

= exp

(
−

di j

li2 + l j
2

)
1

(li2 + l j
2)

2

 1√
2lil j

li2+l j
2

l j(l j
2− li2)+

√
2lil j

li2 + l j
2 2di jli)


= exp

(
−

di j

li2 + l j
2

)
1

(li2 + l j
2)

2

√
2lil j

li2 + l j
2

(
li2 + l j

2

2lil j
l j(l j

2− li2)+2di jli

)

=
1
2

exp

(
−

di j

li2 + l j
2

)
1

(li2 + l j
2)

2

√
2lil j

li2 + l j
2

(
(li2 + l j

2)(l j
2− li2)

li
+4di jli

)

=
1
2

exp

(
−

di j

li2 + l j
2

)
1

(li2 + l j
2)

2

√
2lil j

li2 + l j
2

(
4di jli2− li4 + l j

4

li

)
.

(D.18)

As shown in Equation D.17 we multiply the last equation by li to get to the final form

∂ [Tl]i j

∂ log li
=

1
2

exp

(
−

di j

li2 + l j
2

)
1

(li2 + l j
2)

2

√
2lil j

li2 + l j
2

(
4di jli2− li4 + l j

4) . (D.19)
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Finally, multiplying the previous equation by σiσ j we get that

∂ [Ky]i j

∂ l̃i
=

1
2

σiσ j exp

(
−

di j

li2 + l j
2

)
1

(li2 + l j
2)

2

√
2lil j

li2 + l j
2

(
4di jli2− li4 + l j

4) . (D.20)

In Heinonen et al. [2016] the lengthscale derivative for the RBF non-stationary kernel shown
in the supplemental material is the following

∂ [Ky]i j

∂ l̃i
=

Si jEi j

Ri jL3
i j

lil j
(
4di jl2

i − l4
i + l4

j
)
, (D.21)

where di j = (xi−x j)
2, and x is the input data. Also, Si j = σiσ j, Ri j =

√
2lil j

l2
i +l2

j
, Ei j = exp

(
−di j

l2
i +l2

j

)
and Li j = l2

i + l2
j . We analyse the differences in Equations D.20 and D.21, and prove that these

two equations are equivalent. Taking only the terms that are not common between these two
equations we have (starting from Equation D.21)

1√
2lil j

l2
i +l2

j

1

(l2
i + l2

j )
3 lil j =

1

(l2
i + l2

j )
2

1
(l2

i + l2
j )

√
l2
i + l2

j√
2lil j

lil j

=
1

(l2
i + l2

j )
2

1√
l2
i + l2

j

√
2lil j

1
2

=
1
2

1

(l2
i + l2

j )
2

√
2lil j

l2
i + l2

j
.

(D.22)

Therefore, Equations D.20 and D.21 are equivalent.
We are interested in calculating the inner matrix ∂Ky

∂ l̃i
from Equation D.12. To calculate this

we make use of Equation D.20 reproduced again here for clarity

∂ [Ky]i j

∂ l̃i
=

1
2

σiσ j exp

(
−

di j

li2 + l j
2

)
1

(li2 + l j
2)

2

√
2lil j

li2 + l j
2

(
4di jli2− li4 + l j

4) . (D.23)

∂ logL

∂ l̃i
=

1
2

tr
((

αααααα
T −K−1

y
) ∂Ky

∂ l̃i

)
− [K−1

l l̃]i. (D.24)

To calculate the inner matrix ∂Ky

∂ l̃i
we form a sparse matrix from the matrix calculated from

∂ [Ky]i j

∂ l̃i
for all i’s and j’s. We call the latter matrix dK. This matrix will contain all the relevant

information to calculate the partial derivative of Ky with respect to all l̃i’s. We compute the
sparse matrix by using the i-th row of dK. The sparse matrix will be symmetric given that the
i-th row and i-th column are equal to the i-th row of dK. The inner matrix will be a ‘plus’
matrix where only the i-th row and i-th column are different from 0. For further clarification
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of why that is we take a simple example. Suppose we have x1, x2 two input points. Therefore,
we have two corresponding lengthscale parameters l1, l2 and two corresponding signal variance
parameters σ2

1 and σ2
2 . Given that K f is a proper covariance matrix, then K f is a symmetric

matrix, thus Ky is also a symmetric matrix. We calculate the derivative of Ky with respect to l̃1,
where l̃1 = log(l1) and we obtain

∂Ky

∂ l̃1
=

∂Ky(x1,x1)

∂ l̃1

∂Ky(x1,x2)

∂ l̃1
∂Ky(x2,x1)

∂ l̃1

∂Ky(x2,x2)

∂ l̃1

=

∂Ky(x1,x1)

∂ l̃1

∂Ky(x1,x2)

∂ l̃1
∂Ky(x2,x1)

∂ l̃1
0


=

∂Ky(x1,x1)

∂ l̃1

∂Ky(x1,x2)

∂ l̃1
∂Ky(x1,x2)

∂ l̃1
0

 .

(D.25)

given that Ky is a symmetric matrix, therefore ∂Ky(x1,x2)

∂ l̃1
=

∂Ky(x2,x1)

∂ l̃1
. The last entry in the matrix

is zero, because we do not have a l1 in the formula of Ky(x2,x2), therefore the partial derivative
of it with respect to l1 is zero.

It remains to explain how to get the quantities present inside the matrix. We will make use
of Equation D.20. For this example, we calculate the matrix given by ∂Ky

∂ l̃i
for all i’s and j’s i.e.

the matrix dK

dK =

∂ [Ky]11
∂ l̃1

∂ [Ky]12
∂ l̃1

∂ [Ky]21
∂ l̃2

∂ [Ky]22
∂ l̃2

 . (D.26)

Using Equations D.15 and D.20

∂ [Ky]11

∂ l̃1
= 0. (D.27)

∂ [Ky]22

∂ l̃2
= 0. (D.28)

Also,

∂ [Ky]12

∂ l̃1
=

1
2

σ1σ2 exp

(
−(x1− x2)

2

l12 + l22

)
1

(l12 + l22)
2

√
2l1l2

l12 + l22

(
4(x1− x2)

2l12− l14 + l24
)
.

(D.29)

∂ [Ky]21

∂ l̃2
=

1
2

σ1σ2 exp

(
−(x1− x2)

2

l12 + l22

)
1

(l12 + l22)
2

√
2l1l2

l12 + l22

(
4(x1− x2)

2l22− l24 + l14
)
.

(D.30)

Is important to notice that the order of the indices is given by li’s not by xi’s, given that K f is a
symmetric covariance matrix. However, the matrix generated by Equation D.20 is not symmet-
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ric, given the last term:
(

4di jl2
i − l4

i + l4
j

)
is not symmetric for all i’s and j’s in this equation.

Therefore, once we compute the matrix of derivatives dK using Equation D.20 for all i’s and j’s,
we only need to select the i-th row of this matrix, given that we need the derivative of Ky with
respect to li. We also use the fact that the inner matrix is symmetric.

Signal variance derivative

We proceed similarly as in the lengthscale derivative, the log likelihood derivative with respect
to the signal variance parameter is the following

∂ logL

∂ σ̃2
i

=
1
2

tr
((

αααααα
T −K−1

y
) ∂Ky

∂ σ̃2
i

)
− [K−1

σσσ2 σ̃σσ
2]i, (D.31)

where ααα =Ky
−1y. We are interested in calculating the inner matrix ∂Ky

∂ σ̃2
i

. We have Ky =K f +ΩΩΩ,

where ΩΩΩ = diag(w2), and hence ∂Ky

∂ σ̃2
i
=

∂K f

∂ σ̃2
i

. Firstly, we consider the case when i ̸= j. We denote

[L f ]i j =

√
2lil j

l2
i +l2

j
exp
(
− (xi−x j)

2

l2
i +l2

j

)
for simplification and using Equation D.3 we have that

∂ [K f ]i j

∂ logσ2
i
= [L f ]i j

∂σiσ j

∂ logσ2
i
=

1
2
[L f ]i jσ j

∂σi

∂ logσi

=
1
2
[L f ]i jσ j×1/

∂ logσi

∂σi

=
1
2
[L f ]i jσ j×1/

1
σi

=
1
2
[K f ]i j.

(D.32)

Secondly, we consider the case when we are on the diagonal i.e. i = j and we obtain

∂ [K f ]ii

∂ logσ2
i
=

∂σ2
i [L f ]ii

∂ logσ2
i

= [L f ]ii×1/
∂ logσ2

i

∂σ2
i

= [L f ]ii×1/
1

σ2
i
= σ

2
i [L f ]ii = [K f ]ii.

(D.33)

In conclusion we have,

∂ [K f ]i j

∂ logσ2
i
=


[K f ]i j, for i = j.
1
2 [K f ]i j, for xi,x j, i ̸= j.

0, for xk, k ̸= i.

(D.34)

We now try to find a more convenient formula to use when trying to compute the signal
variance derivative. We start by denoting M = ααααααT −K−1

y and we want to prove that M is
symmetric. We use the fact that (AB)T = BT AT (A, B random square matrices), and that Ky is
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symmetric, therefore Ky = KT
y . We obtain

MT = (αααααα
T −K−1

y )T

= (αααααα
T )T − (K−1

y )T

= (αααT )T
ααα

T −K−1
y

= αααααα
T −K−1

y

= M.

(D.35)

For simplicity we assume that i = 1. Making use of Equation D.34 we have that

∂K f

∂ logσ2
1
=


∂K f (x1,x1)

∂ logσ2
1

. . . . . .
∂K f (x1,xn)

∂ logσ2
1... . . . . . . ...

∂K f (xn,x1)

∂ logσ2
1

. . . . . . 0



=


K f (x1, x1) . . . . . . 1

2K f (x1,xn)
... . . . . . . ...

1
2K f (xn,x1) . . . . . . 0

 .

(D.36)

Let

M =


m11 m12 . . . . . . m1n

... . . . . . . . . . ...
mn1 mn2 . . . . . . mnn

 . (D.37)

We calculate

tr
(

M
∂K f

∂ logσ2
1

)
= m11K f (x1,x1)+

1
2

K f (x2,x1)+ · · ·+
1
2

m1nK f (xn,x1)

+
1
2

m21K f (x1,x2)+ · · ·+
1
2

mn1K f (x1,xn)

= m11K f (x1,x1)+m12K f (x1,x2)+ · · ·+m1nK f (x1,xn)

= diag(MK f ).

(D.38)

In the previous equation we made use of the symmetry of the matrices K f and M. Similarly, for
other i’s we get

tr
(

M
∂K f

∂ logσ2
i

)
= diag(MK f ). (D.39)

Thus, now we can make use of the previous relation in Equation D.31.
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Derivative of the log likelihood with respect to the noise variance ω2

Since we do not have a GP prior on ω2, the derivative of the log likelihood with respect to ω2

has a simplified version. As in the previous cases we get

∂ logL

∂ω2 =
1
2

tr
(
(αααααα

T −K−1
y )

∂Ky

∂ω2

)
. (D.40)

We have that Ky = K f +ΩΩΩ, where ΩΩΩ = diag(ω2). Therefore, we get ∂Ky
∂ω2 = ∂ΩΩΩ

∂ω2 = I. We can
further simplify Equation D.40 to obtain the following

∂ logL

∂ω2 =
1
2

tr(M),where M = (αααααα
T −K−1

y ). (D.41)

Derivatives of the hyperparameters

The kernels of choice on the lower level layer of the non-stationary GP are RBF kernels

kl(x,x′) = α
2
l exp

(
−||x−x′||2

2β 2
l

)
. (D.42)

kσ2(x,x′) = α
2
σ2 exp

(
−||x−x′||2

2β 2
σ2

)
. (D.43)

In general, for k a RBF kernel, we have that

∂k(x,x′)
∂α2 = exp

(
−||x−x′||2

2β 2

)
=

k(x,x′)
α2 . (D.44)

∂k(x,x′)
∂β

= k(x,x′)
−||x−x′||2

2
(−2)β−3 = k(x,x′)||x−x′||2β

−3. (D.45)

Let Kl and Kσ2 be the covariance matrices given by the kernels kl , respectively kσ2 evaluated
at the datapoints x. As in previous cases, to calculate the derivative of the log likelihood with
respect to the hyperparameters we make use of the formulas found in Rasmussen and Williams
[2006] and we obtain

∂ logL

∂α2
l

=
1
2

tr
(
(alaT

l −K−1
l )

∂Kl

∂α2
l

)
. (D.46)

∂ logL

∂α2
σ2

=
1
2

tr

(
(avaraT

var−K−1
σ2 )

∂Kσ2

∂α2
σ2

)
, (D.47)
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where al = K−1
l l̃ and avar = K−1

varσ̃σσ
2. Similarly, we obtain

∂ logL

∂βl
=

1
2

tr
(
(alaT

l −K−1
l )

∂Kl

∂βl

)
. (D.48)

∂ logL

∂βσ2
=

1
2

tr
(
(avaraT

var−K−1
σ2 )

∂Kσ2

∂βσ2

)
. (D.49)

D.2 Non-stationary Gaussian process model with a Matérn
1/2 kernel

The Matérn 1/2 non-stationary covariance function [Paciorek and Schervish, 2004] evaluated at
the points xi and x j is1

k f (xi,x j) = σiσ j

√
2lil j

l2
i + l2

j
exp

(
−
√

2di j

l2
i + l2

j

)
, (D.50)

where di j = (xi− x j)
2, σi, li are the signal variance, respectively lengthscale parameters at the

input point xi, for every i. As before, to optimise the model, or perform MCMC sampling, we
need the derivative of the log likelihood of the model with respect to all the parameters. The
only derivative that is different will be the lengthscale derivative. The other derivatives have the
same formula as for the RBF non-stationary kernel.

Derivative of the log likelihood with respect to the lengthscale parameter

We have that

∂ [L f ]i j

∂ li
=

1
2

exp

(
−
√

2di j

l2
i + l2

j

)
2l j

(
li

l2
i + l2

j

)′(
2lil j

l2
i + l2

j

)− 1
2

+ exp

(
−
√

2di j

l2
i + l2

j

)
−1
2

(
2di j

l2
i + l2

j

)− 1
2
(

2di j

l2
i + l2

j

)′√
2lil j

l2
i + l2

j
,

(D.51)

1We offer a derivation of this formula in the Appendix, Section D.4.
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where [L f ]i j =

√
2lil j

l2
i +l2

j
exp
(
−
√

2di j

l2
i +l2

j

)
. For simplicity, we denote E = exp

(
−
√

2di j

l2
i +l2

j

)
, R =√

2lil j

l2
i +l2

j
. Therefore, we have

∂ [L f ]i j

∂ li
= El j

l2
i + l2

j −2l2
i

(l2
i + l2

j )
2

1
R
+RE

−1
2

√
l2
i + l2

j

2di j
2di j

−2li
(l2

i + l2
j )

2

= El j
l2

j − l2
i

(l2
i + l2

j )
2

1
R
+ER

√
l2

j + l2
i

√
2di j

li
(l2

i + l2
j )

2

= E
1

(l2
i + l2

j )
2

(
l j(l2

j − l2
i )

R
+2li

√
di jlil j

)
.

(D.52)

Thus, the derivative of the Matérn 1/2 non-stationary kernel with respect to l̃i, where log(li) = l̃i
is

∂ [Ky]i j

∂ l̃i
= σiσ jli exp

(
−
√

2di j

l2
i + l2

j

)
1

(l2
j + l2

i )
2

 l j(l2
j − l2

i )√
2lil j

l2
i +l2

j

+2li
√

di jlil j

 . (D.53)

As before we used the fact that

∂ [L f ]i j

∂ log li
=

∂ [L f ]i j

∂ li

∂ li
∂ log li

=
∂ [L f ]i j

∂ li
li. (D.54)

Then, we proceed as in the previous cases to calculate the derivative of log likelihood of the
model with respect to the other parameters and hyperparameters.

Posterior whitening

We represent the latent function values by centered (whitened) variables. If we denote the
whitened variables v, we have

v∼N (0,I). (D.55)

f = Lv+m, where LLT = K, and m is a mean function. (D.56)

We perform whitening on the top layer of the non-stationary GP in order to reduce the
correlation between variables so that the HMC sampling can be done more efficiently. In our
case we have that

l̊ = L−1
l l̃, Kl = LlLT

l . (D.57)

σ̊σσ
2 = L−1

σ2 σ̃
2, Kσ2 = Lσ2LT

σ2. (D.58)
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We can calculate the derivatives of the log likelihood with respect to the whitened parameters
by multiplying the derivatives by the transpose of the Choleski decomposition. For example, for
the whitened lengthscale parameter we have

∂ logL

∂ l̊
=

∂ logL

∂ l̃
∂ l̃
∂ l̊

=
∂ logL

∂ l̃
∂Ll l̊
∂ l̊

= LT
l

∂ logL

∂ l̃
. (D.59)

In the previous equation, we made use of the chain rule and the fact that ∂Ll l̊
∂ l̊

= Ll (Ll is a
constant with respect to l̊). Since we want the derivatives as column vectors we transpose Ll and
put it at the beginning of the equation.

Lengthscale derivative

Regarding the lengthscale derivative of the log likelihood with respect to the lengthscale param-
eter l̃i we reached the same formula for the lengthscale derivative as Heinonen et al. [2016].
The derivative of K f with respect to l̃i is found in the Supplemental Material of Heinonen et al.
[2016], however the formula has an important typo and is unclear about what d is. We corrected
the formula using Heinonen et al. [2016]’s Matlab code and our own formula, which correspond
i.e.

∂ [Ky]i j

∂ l̃i
=

Si jEi j

Ri jL3
i j

lil j
(
4di jl2

i − l4
i + l4

j
)
, (D.60)

where di j = (xi−x j)
2, and x is the input data. Also, Si j = σiσ j, Ri j =

√
2lil j

l2
i +l2

j
, Ei j = exp

(
−di j

l2
i +l2

j

)
and Li j = l2

i + l2
j .

The derivative of the log likelihood with respect to l̃i is

∂ logL

∂ l̃i
=

1
2

tr
((

αααααα
T −K−1

y
) ∂Ky

∂ l̃i

)
− [K−1

l (l̃−µµµ l)]i. (D.61)

The derivative ∂Ky

∂ l̃i
is a ‘plus’ matrix where only the i-th column and row are non-zero. Given

that Ky is a symmetric covariance matrix, its derivative with respect to l̃i, for a certain i, is also
a symmetric matrix.

D.3 Heinonen et al. [2016]’s implementation errors: Matlab
code

In this section we highlight the mistakes in Heinonen et al. [2016]’s implementation in Matlab.
In Figure D.1, the Matlab code will create the matrix dK, given by the formula in equation
D.21. In Figure D.2, the Matlab code is trying to compute the derivative of the log likelihood
with respect to the parameter l̃i, shown in Equation D.61. In line 66, in Figure D.1, the first sum
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corresponds to the trace term in Equation D.61. In the same equation the multiplication of the
matrix A = ααααααT −K−1

y with the sparse matrix, created by the ‘sparse’ command is given by
the command ‘sum’ of the dot product between the matrix A and the sparse matrix. In general,
the command ‘sum(C,2)’ returns a column vector containing the sum of each row, where C is
a matrix. In any case, lines 66 and 70 should reproduce exactly Equation D.61, whether a dot
product or matrix multiplication is used. The problem with Heinonen et al. [2016]’s code is line
66, highlighted part. Given that dK is not a symmetric matrix, selecting the i-th columns and the
i-th rows will not result in a symmetric matrix, as it should. The correct code would be [dK(i,:)
dK(i,:)’]), resulting in a inner symmetric matrix.

In Figure D.3 we show the implementation of the derivative of the log likelihood with respect
to σi parameter. This is the Matlab implementation of Equation 4, (second equation) on page
734 in Heinonen et al. [2016]. It has a factor of two in front of the first term. However, this is
an error, as the formula in Equation 4 is correct, and this can be proven either by following the
same procedure used here or by using Equations D.31 and D.39.

Figure D.1: Heinonen et al. [2016]’s Matlab code, creation of the matrix ∂ [Ky]i j

∂ l̃i
for all i’s and j’s

i.e. the matrix dK.
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Figure D.2: The derivative of the log likelihood with respect to l̃i [Heinonen et al., 2016].

Figure D.3: The derivative of the log likelihood with respect to σ̃i [Heinonen et al., 2016].

D.4 Deriving the non-stationary Matérn 1/2 kernel formula

To derive the non-stationary Matérn 1/2 kernel formula we make use of the Equations 2 and 3
in Paciorek and Schervish [2004]. We have that

Cov(xi,x j) =
√

lil j

(
l2
i + l2

j

2

)− 1
2

σiσ j exp
(
−
√

Qi j
)

= σiσ j

√
2lil j

l2
i + l2

j
exp

(
−
√

2(xi− x j)2

l2
i + l2

j

)
,

(D.62)
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where we used the fact that Σi in Paciorek and Schervish [2004] in one-dimension is equal to
the square of the lengthscale at that time point i.e. Σi = l2

i . Also, we have used the fact that the
stationary Matérn 1/2 kernel formula is the following

k(ti, t j) = exp

(
−
∣∣ti− t j

∣∣
l

)
. (D.63)
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