University
of Glasgow

bl

Sundin, Lovisa (2022) Graphical scaffolding for the learning of data
wrangling APIs. PhD thesis.

https://theses.gla.ac.uk/83122/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/
research-enlighten@aglasgow.ac.uk

https://theses.gla.ac.uk/83122/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Graphical Scaffolding for the Learning of
Data Wrangling APIs

Lovisa Sundin

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

School of Computing Science
College of Science and Engineering

University of Glasgow

A Universit
of Glasgovg

||||||||||||||

October 2021

Abstract

In order for students across the sciences to avail themselves of modern data streams, they must
first know how to wrangle data: how to reshape ill-organised, tabular data into another for-
mat, and how to do this programmatically, in languages such as Python and R. Despite the
cross-departmental demand and the ubiquity of data wrangling in analytical workflows, the re-
search on how to optimise the instruction of it has been minimal. Although data wrangling
as a programming domain presents distinctive challenges - characterised by on-the-fly syntax
lookup and code example integration - it also presents opportunities. One such opportunity
is how tabular data structures are easily visualised. To leverage the inherent visualisability of
data wrangling, this dissertation evaluates three types of graphics that could be employed as
scaffolding for novices: subgoal graphics, thumbnail graphics, and parameter graphics. Using a
specially built e-learning platform, this dissertation documents a multi-institutional, randomised,
and controlled experiment that investigates the pedagogical effects of these. Our results indicate
that the graphics are well-received, that subgoal graphics boost the completion rate, and that
thumbnail graphics improve navigability within a command menu. We also obtained several
non-significant results, and indications that parameter graphics are counter-productive. We will
discuss these findings in the context of general scaffolding dilemmas, and how they fit into a

wider research programme on data wrangling instruction.

Contents

[Abstract i
[Acknowledgements| xvii
[Declaration| xviii
(I__Introduction 1
(L1 Motivationl. 2
(1.I.1 ~ Why 1s data wrangling important to research? 3

(1.1.2 Why 1s data wrangling important to teach?, 3

(1.1.3 Why 1s data wrangling education important to research?} 4

(1.1.4° Why are graphics as a scaffolding technique interesting to research? . . 4

(1.2 Thesis statement and research questions| 5
(1.3 Approach| 6
[L4_ Thesisstructure] 7

[2° Defining the scope| 9
2.1 Defining data wranghng| o oL 9
2.1.1 What data wrangling includes| 9

[2.1.2° What data wranglingisnot| 11

2.2 Learner characteristics and contexts| 12
[2.2.1 Majors and non-majors| Lo 12

222 Curricularcontextl Lo L 13

[2.2.3 End-user programmers| L. 13

[2.3 Data wrangling technologies| 14
[2.3.1 Relational databases & SQL| 14

[2.3.2 Spreadsheet software|, 14

233 Menu-driven softwarel oL 15

[2.3.4 Automated data wrangling| 15

2.4 Programming-based software| 15
[2.4.1 Language characteristics|, . 16

i

CONTENTS il

RAZ R . oo 17
243 Python| 18
[2.4.4 Summary| 19

3 Literature review| 20
[3.1 Conceptual barriers| 21
[3.1.1 Challenges with dataframes| 22
[3.1.2 Challenges with split-apply-combine, 24
[3.1.3 Challenges with vectors and matrices| 25
[3.1.4 Section summary|o 25

[3.2 Programming-related barriers|.o Lo 26
[3.2.1 Problem comprehension|, . 26
[3.2.2 Plancomposition| oo 29
(3.2.3 APllookup| 30
[3.2.4 Example adaptation|. o oL o 33
[3.2.5 Debuggingl 36
[3.2.6 Sectionsummary| e 38

[3.3 General learning theortes| L o o oo 39
[3.3.1 Cognitive load theory|. 39
[3.3.2 Scaffolding| 41
[3.3.3 Graphical scaffolding|. 44
[3.3.4 Sectionsummary| L Lo 46

[3.4 Graphics in data wranghng| oo oo 46
[3.4.1 Program visualisation| 47
[3.4.2 Query visualisation| L L o 47
[3.4.3 Explanatory diagrams|, 48
[3.4.4 Visual programming languages|. L. 49
[3.4.5 Node-link diagrams|. oo L 0oL, 49
[3.4.6 Dynamic previews| 49
347 Cheatsheets] 50
[3.4.8 Sectionsummary| L 52

[3.5 Scaffolding techniques| L. 53
[3.5.1 Plancomposition|o 53
[3.52 APIlookup| 56
[3.5.3 Example adaptation|. Lo oo 59
[3.5.4 Sectionsummary| 61

CONTENTS

4 Method

4.1 Breadth versusdepth|

4.2 Observational versus experimental designs|

4.3.1 Specificity of the intervention| oL,

4.3.2 'The choice between rigour and generalisability|

4.3.3 The logistics of separating conditions|

4.3.4 Designing a fair control condition| 0oL,

[4.3.5 Attention as a mediating variable|

[5 Parameter graphics|
[5.1 Background
[5.1.1 The split-attention effect|

[5.1.3 Parameter graphics in data wrangling|
[5.1.4 Multilingual cheat sheets|,

[5.2 Research questions| oL

[5.3 Tutorialdesign|

[5.6.1 Future implications| oo oo

[5.6.2 Methodological considerations|

v

62
62
63
64
64
65
65
66
67
67
68
68
69
70
71

CONTENTS

[6 Subgoal and thumbnail graphics materials|
[6.1 Menu design for API'lookup|
[6.1.1 Ontology design|
[6.1.2 Thumbnail graphics|
[6.1.3 Walkthrough of ontology|

[6.2 Subgoals for plan composition|o Lo Lo
[6.2.1 Subgoal labels|
[6.2.2 Subgoal graphics| oo oo

[6.3 Chaptersummary|

€S1ZN O 1C€ 1C€

[/.1.1 ~ Spring 2020 pilogo
(7.1.2 Autumn 2020 pilot version|,

[/.2 Recurring design considerations|

(7.2.3 Exercisedesign|
(7.3 Part I design|
[/.3.1 Operationcards|.

[7.3.2 Data wrangling exercises|
[7.4 Part2design|

[7/.4.1 Programming exercises|. 0.

(7.5 Part3design|

[7.6.1 Demographicsurvey| L.
[.6.2 Pretestl.

[7.6.3 Evaluationsurvey|. o oL

(7.7 Chapter summary| e e e

93
93
94
97
99
104
105
106
106

CONTENTS vi

(8 Slice N Dice pilot studies| 132
[8.1 Qualitative usability study|o oo 133
BI1.1 Methodl 134
8.1.2 Partlresults| 136
BI3 Part2results 143
814 Part3results] 147
8.1.5 Conclusion| 151

[8.2 Quantitative pilotstudy| 151
821 Methodl 151

822 Partlresults] 153
B23 Part23results 158

[8.3 Chapter summary| 162
9__Slice N Dice validation studies| 163
9.1 Subgoal graphic validationstudy| o000 164
O.1.1 Methodl 164
012 Results] 166

1 D1 100 . . e 168

(9.2 Thumbnail graphic validationstudy| 168
021 Method 168
022 Results] 172

2 D1 100 . . e e e e 177

9.3 Summary| L 178
10 Sl Dice resul 179
MO Methodo oo 179
(10.1.1 Design| 179
(10.1.2 Procedure| 180
(10.1.3 Participants| 182
(10.1.4 Analytical approach| L. 184
MOZ7Partd]l . . . o o oo 187
(10.2.1 Number of exercises completed, 187
(10.2.2 Inactivityevents| 187
(10.2.3 Operation card reading times| 189
(10.2.4 Tooltipevents|. 190

10.2.5 Timeontaskl 191
(10.2.6 Number of attempts|. 194

10.2.7 Evaluationl 196

CONTENTS vii

(10.3.1 Number of exercises completed, 200
(10.3.2 Timeoutevents| 202
10.3.3 Tabevents|. 203
(1034 Timeontaskl 205
[10.3.5 Tooltipevents|. 207
[10.3.6 Menuclickevents] 208
(10.3.7 Syntax errors| 210
(10.3.8 Semanticerrors| 211
(10.3.9 Hintusage| 213
(10.3.10 Unscatfolded exercise performance| 215
0311 Evaluationdatal 216

(10.4 Summary| e 220
(11 Slice N Dice secondary analyses| 222
(1.1 Wolunteerbias e 222
(11.2 Buganalysis|. e 223
(11.3 Correlational analysis| 225
IL3.1 Processmetrics o oo v i it 225
[11.3.2 The association between SLICE N DICE parts| 227
(11.3.3 The influence of experience on performance|. 228
[11.3.4 The influence of experience on the effect of graphics| 231

12 _Discussion| 234
(12.1 Summary of findings| 235
(12.1.1 |RQI[The effect of subgoal graphics| 235
(12.1.2 [RQ2t The effect of thumbnail graphics|. 235
(12.1.3 [RQ3f The effect of parameter graphics| 236

(12.2 Reflectionsl e 236
[(12.2.1 Subgoal graphics|o . 236
(12.2.2 Thumbnail graphics| 237
(12.2.3 Parameter graphics| o L. 238

(12.3 Implications| 239
[12.3.1 Should instructors use subgoal graphics? 239
(12.3.2 Should 1nstructors use thumbnail graphics? 239
(12.3.3 Should instructors use parameter graphics? 239

2.4 Limitations| e 240
(12.4.1 Tutorial improvements| 240
(12.4.2 Possible interface improvements| L. 241

[12.4.3 Possible data collection improvements|. 241

CONTENTS viii

2.5 Future workl oL 241

M2.6 Finalel o 242
[Appendix A Parameter graphic tutorial| 244
[Appendix B Multilingual cheat sheets| 247
[Appendix C Slice N Dice taxonomy| 250
[Appendix D Slice N Dice exercises| 252
[Appendix E Subgoal validation survey| 271

[Appendix F Thumbnail validation survey| 276

List of Tables

[8.1 ~Table describing the 8 participants involved 1n the usability study. Every partici- [
| pant was recorded using SLICE N DICE for 3-4h. Minimal < Basic < Intermediate.|l 34
(10.1 The dependent variables analysed in terms of group comparisons. G and =G rep-

resent the central tendencies of the graphical and non-graphical control condi-

tion, respectively. The hypothesis column thus indicates which direction we ex-

pect to see 1n the effect, 1.e. whether the graphical condition 1s larger or smaller

than the control condition. Some variables, labelled -, are not compared based

on subgoal graphic condition. Variables in bold are performance metrics. This

table does not include self-reported variables.|

(10.2 The number of exercises completed depending on condition. W = Wilcoxon

the direction of the group difference, where — indicates a lack of noteworthy

group difference. PS indicates effect sizes, given in probability of superiority

[1]. A dash (-) in PS indicates that no inference test was pursued on account

of descriptive statistics. Asterisk indicates significance at a=.05 (Part 3 tooltip

events were significant for permutation tests, but not Wilcoxon rank sum test).

None was significant at the Bonferroni-adjusted level (a=.0016). Bold metrics

indicate distal performance variables.| 000000

X

List of Figures

(1.1 Examples of tabular graphics| 2
(1.2 The research 1s focused on three aspects of the data wrangling workflow, each [
| of which 1s targeted by a graphical scaffolding feature,| 5
[2.1 The relative search volumes of data wrangling-related Google queries, smoothed. [
[Data wrangling 1s the lightest blue, on the rise in the bottom-right corner| . . . 10
[2.2 'The computational data life cycle adapted from Wickham and Grolemund [2, p.ix]| 10
[3.1 Ilustration of the tidy data format and 3 common violations of 1t.{. 23
[3.2 Data wrangling as a process consists of several distinct tasks that convert a prob- [
[lem statement 1into executable code. API lookup includes mental recall. Example |
| adaptation and debugging should be interpreted as probable rather than logically |
| NeCcessary activities.| e 26
[3.3 Word problems require the data analyst to draw upon domain knowledge 1n order [
[to interpret what the problem asksfor.| L. 28
[3.4 Diagram summarising Kelleher & Ichinki’s Collection and Organisation of In- |
[formation for Learning (COIL) model [3,4].]. 31
[3.5 A Pandas documentation entry, featuring a syntax summary, a short prose de- [
[scription, and a parameter list. Data wrangling functions tend to be highly con- |
| figurable. 34
[3.6 Code examples from official documentation sources|. 35
[3.7 The programmer needs to map elements 1n the documentation’s code example |
| to elements 1n the problem context. |o, 36
[3.8 Diagram by Baumer [5] illustrating a filter and pivot operation| 48
[3.9 Taipalus graphical notation for relational database queries [6].| 50
[3.10 QUERY VIZ visualises the meaning of a relational query using a novel notation [7]].| 50
[3.11 Kandel et al.'s WRANGLER uses colour cues to help their users understand [

the semantics of proposed operations [8, p.3366]. Seen are deletion of rows and [

a table pivot from long to wide format. | o000 51

LIST OF FIGURES xi

[3.12 In Zhang and Guo’s DS.JS, clicking on a function triggers a preview that sum- [

[marises the operation. These 1mages show filtering and grouping, respectively. |

| [9,p.697][. . . . o 51
[3.13 Snippet from RStudio’s cheat sheet for the data wrangling library dplyr [10]]. . 52
[3.14 A demonstration of how subgoal labels could be augmented with subgoal graph- [

| ics, for the example from Section|3.2.2(} 55
[3.15 Interface of Kandel et al. WRANGLER system [8]|. 57

4.1 CS education research generally faces a trade-off of whether to contribute to [

| theory advancement or design progress. This dissertation 1s mainly focused on [

| refining and evaluating a particular design feature (Design goals only). Diagram [
[adapted from Nelson and Ko [11,p.34].| 63

[5.1 Examples of educational resources where icons replace purely symbolic notation.| 75

[5.2 The parameter graphics provide placeholders for passing arguments and other [

| information that configure an APl command.| 76

[5.3 Excerpts from the tutorial booklet explaining each opertion 1n turn and introduc- [

| ing parameter graphics alongtheway,|o 0000, 79

[5.4 The two first exercises 1n the Python sheet. 'The second contains a real partici- [

[PANETESPONSE.| . .« v v v v v e e e e e e e e e e e e e e e 81

[5.5 Study 1 used a single-group design in which participants were first given the |

| tutorial, then the cheat sheet and exercise sets for each language, in counterbal- [

[5.6 Although some participants had basic experience with procedural Python, most |

| students had no experience in SQL or R, according to their own ratings (1="No [

| experience at all”, 5="I can do complex commands in1t”).| 83
[5.7 Plots relating to the total time on task im Study 1.| 85
[5.8 Plots relating to the accuracy distributions of Study 1. 86

[5.9 In Study 2, people were given one of two cheat sheet styles. Shown are excerpts [

| from the SQL cheat sheet. The tutorial booklet was similarly produced 1n two [

[5.10 The control group and experimental group had a mostly similar distribution of [

| experience, though the control group appeared more experienced with R (1="No [

| experience at all”, 5="I can do complex commands in1t”). | 88

[5.11 Differences 1n total score distribution between the experimental group (with pa- [

| rameter graphics) and the control group (without such graphics).| 89

[5.12 Dafferences 1in time on task score distribution between the experimental group |

| (with parameter graphics) and the control group (without such graphics).|. . . . 90

[6.1 An example of an ambiguous thumbnail.|. 99

LIST OF FIGURES xii
[6.2 The Create category| 100
[6.3 The Access category.| 101
[6.4 The Calculate category.| 103
[6.5 'The Combine category.| 104
[6.6 'The Restructure category.|. 105
[6.7 Examples of two exercises, complete with subgoal labels and subgoal graphics, |

| which are only visible for the SG condition.| 107
[/.1 ~SLICE N DICE incorporates two experimental factors: one that manipulates the [

| provision of subgoal graphics (SG, =SG) and thumbnail graphics (TG, = TG). [

| - 1ndicates absence of graphics. This produces 2x2 distinct conditions. | 109
[/.2 The system was implemented as a web application, using standard web tech- |

| nologies such as MongoDB, Express, Angular and Node (a MEAN stack). Dat- [

| aCamp Light (DCL) was an important external dependency that provides the [

[IDE front-end widget and back-end code execution.| 111
[7.3 'To balance pedagogical and methodological considerations, the application went [

| through multiple 1terations.| o oo L. 113
[7.4 The final structure of SLICE N DICE. Part 2 has been split into two parts and 3 |

| data wrangling programming exercises are unscaffolded - without subgoals for [

[the first IO minutes) 114
[7.5 The landing page reveals the effort to make SLICE N DICE intrinsically reward- [

[ing and attractive, to increase the likelithood of a participant making an effort |

[despite the low stakes. | L oo 115
[/.6 'The sidebar menu and a Part 1 operation card under the two conditions.| 118
[/.7 The thumbnail condition also influences the design of the tooltip that appears |

| when the user hovers their mouseover the thumbnail for longer than 1 second. [

| The contents of the tooltip are the same as the operation cards in Part 1.| 119
[7.8 Screenshot from Part | 1 the TG/SG condition, complete with both thumbnail |

| and subgoal graphics. The =SG condition would only have the labels.| 120
[7.9 After the autumn pilot study, a hint was added to Part 1 to curb excessively [

[frustraion. L e 121
[7.10 The interface of Part 2 has three main areas: a sidebar housing the menu and [

| documentation, an exercise description at the top, and a DCL coding widget at [

[the lower half. The menu 1s labelled 7Taxonomy.| 122
[7.11 In Part 3, the sidebar has three tabs that the user can move between. The first |

| panel - which 1s opened by default - displays the subgoal labels along with the [

| graphics and hints. The second panel (labelled Taxonomy) displays the menu, [
| which 1n turn hyperlinks to the third panel, which will contain the documentation |

| ENIIY. . . o e e e e e e e e e e e e e e 124

LIST OF FIGURES xiii
[7.12 Each subgoal corresponds to one, but occasionally more, data wrangling opera- [
[tions. Comments 1n the coding panel guides the user toward decomposing their |
[solution] L 125
[7.13 Examples of the feedback messages. The first two messages are produced by [
| DCL submission test library while the success message 1s hard-coded by me. [
| It 1s 1intended to reinforce a concept learnt from the exercise and motivate the |
[learner toproceed.| 126
[/.14 In Part 3, every subgoal 1s associated with three hints, which are accessed at [
[the user’s discretion. The first hint provides the relevant location in the menu, |
| the second hint provides further guidance on how to adapt the documentation [
| example, and the final hint provides the executable code. The layout here does [
[not reflect the actual interface: hints are made available 1n sequence and take up |
[thesamearea. | 128
[7.15 After the demographic survey, participants were given a short pretest to gauge [
| their programming experience more precisely. o000 L. 129
(8.1 During the usability study, the correct answer was immediately given once an [
[operation had been given to each subgoal and the solution submaitted.|. 136
(8.2 In the usability study, Part 2 concepts were introduced through explanatory cards [
| rather than as a documentation entry in the sidebar,| 144
(8.3 During Part 2 1n the usability study, a hint and solution were available. These [
| were removed afterwards. Both the hint strip and solution tab were built-in |
[features of DCL o 145
[8.4 Note the customised error message and hint, but lack of hints underneath each [
| subgoal| 147
[8.5 The self-rated prior experience in Python and R (1=Not at all, 2=A little bit, [
[3=Beginner’s level, 4=Intermediate, 5=Advanced).| 154
[8.6 Results relating to operation card reading times in Part 1| 155
[8.7 Results relating to ttme on task m Part 1.|. 155
[8.8 Results relating to correctness scoresmm Part 1.|. 156
[8.9 Results from five items 1n the evaluation survey, rated 1 (Not at all) to 5 (Very |
| much).l e e e 157

[8.10 Each horizontal bar represents the persistence of a participant, thus showing the

attrition of participants over time. The vertical line shows when basic program-

ming exercises turn into multi-command data wrangling exercises and 1s inclusive.|]159

[8.11 Results relating to time on task in Part 2/3.). 160
[8.12 Results relating to process metrics during Part 2/3.] 160
[8.13 Results from five items 1n the evaluation survey, rated 1 (Not at all) to 5 (Very |

much). Since Part 2 and 3 were merged into one, this survey refers to both.[. . . 161

LIST OF FIGURES Xiv

9.1 A snippet from the background section. Note the minimalist style of the graph- [

[1cs, carefully designed to avoid priming the participant.| 165
(9.2 The first subgoal graphic in the first exercise in the survey.| 166
(9.3 The relative proportions of 0-3 ratings for each subgoal exercise.| 167
[9.4 The four different variants presented in the variant exploration question.| 171
9.5 The two types of problems contained in the survey. | 171
[9.6 The prior experience of survey participants.| 172

[9.7 The correct operation-graphic mappings for the five matching problems. The [

[order of options was random and operations verbally formulated to be as self- |

| explanatory aspossible. | Lo o 173

[9.8 'The graphics that were most commonly misinterpreted.| 174

[9.9 The performance 1n interpretation problems, grouped by graphical type. With |

[means with data, Without means withoutdata. | 175
[9.10 The response distributions on a Likert scale of 1 (Not helpful at all) to 5 (Very [
| helpful) asking them how clear they thought the graphics were, with and without [

[9.11 Which of 4 variants that the participant prefers in a textbook explanation and [

[thumbnail graphic.| 176

(10.1 Although only 68% of Part 1 participants completed 1t in full, the ratio between [

| experimental conditions did not appear to change markedly upon completion.| . 188

[10.2 Tab changes and timeout events were only recorded for 30 participants, which |

[1s too few to base inferenceson.o Lo 189

[10.3 The TG group reads all cards 2 minutes faster on average, but this 1s not significant.]190

[10.4 The TG group uses the tooltip only half as often as the control group, an effect |

| thatis significant.| oL L L 191
[10.5 The difference in time between the two thumbnail conditions 1s negligible.|. . . 192
[10.6 The difference in time between the two subgoal conditions 1s negligible.| 193
(10.7 Data relating to a potential interaction in Part | ttmeon task.| 193
(10.8 The = TG group commits 33% more errors, but 1t 1s not significant.| 194
[10.9 The =SG group commits / more errors, but it 1s not significant.| 195
{10.10Data relating to a potential interaction in Part 1 number of attempts.| 195
[10.11Subjective ratings of how helpful participants found various scatfolding ele- [

[mentsof Part 1. 196
(10.12Evaluation survey items grouped by subgoal condition.| 198
(10.13Evaluation survey items grouped by thumbnail condition.| 198
(10.14Each vertical bar represents the number of people completing that exercise| . . 200

{10.15Thumbnail-related group differences in tendency to complete Part 3.| 201

LIST OF FIGURES XV

(10.16The SG condition 1s over-represented among participants who finish all 18 ex- [

[EICISES) .« v o e e e e 202
(10.17The TG 1s slightly more 1nactive, but not significantly or meaningfully so.| . . . 203
[10.18There are no evident group difference, although the =SG condition appears more [

[dispersed.| L 204
[10.19The TG 1s slightly lower 1n 1ts tab changes, but not significantly or meaningfully |

o Y 204
[10.20The SG 1s does slightly fewer tab changes, but not significantly or meaningfully [

0] o 205
(10.21'The TG 1s slightly faster, but not significantly or meaningfully so.[. 206
(10.22'The SG 1s faster by 3 minutes, but not significantly or meaningfully so.[. 206
(10.23Data relating to a potential interaction in Part 3 total ttme on task.| 207

[10.24 Tooltip usage appears less common in the TG group, and this 1s significant for a [

permutation test, but not a Wilcoxon rank sumtest.| 208

(10.25Why did so few participants click on the menu 1n order to access syntax infor- [

mation? The left scatterplot, which shows hint usage 1n relation to menu clicks, |

suggests that they relied on hints instead. The scatterplot to the right shows it in [

| relation to tab changes, for example reflecting googling of external resources. | . 209
10.26 The thumbnail condition clicks on the menu less often than the control condi- |
| tion, but only neghigiblyso.f. 0oL 209

(10.27The thumbnail condition commits fewer syntax errors, but not meaningfully or [

significantly so.| 210

(10.28'The thumbnail condition commits fewer syntax errors, but not meaningfully or [

significantly so.| Lo 211

{10.29'The thumbnail condition commits more semantic errors, but this 1s not significant.212

{10.30The graphical condition commits fewer semantic errors, but not significantly so.| 212

{10.31Data relating to a potential interaction in Part 3 total semantic errors.| 213

(10.32The thumbnail condition uses hints slightly more often, but this 1s not significant.| 214

(10.33The subgoal condition uses hints more often than the control, but this 1s not |

| significant.. L e e 214
(10.34The subgoal condition uses hints more often than the control, but this 1s not [
[significant.). L L e 215
[10.35Subjective ratings of how helpful participants found various scaffolding ele- [
[mentsof Part 3] 216
[10.36Evaluation survey items grouped by thumbnail condition.| 218
{10.37Evaluation survey items grouped by subgoal condition.| 218

[1T.1 Experience-related differences among people who began and completed Part 1|. 223

[11.2 The degree programmes that participants were enrolledmn.,| 223

LIST OF FIGURES

XVvi

13

The relative proportions of error types, among all Part 3 exceptions raised by

errors programming in Python. |.o oo 00000 oL

225

14

The crossed out coefficients indicate non-significant results (&¢t=.05) for Bonferroni- |

adjusted p-values. n depends on the variable, since entries of 0 are excluded.|. .

227

M3

Associations between parts 1n time on task, with lines of best fit obtained through

linearregression. | L. oL Lo

1.6

Associations between parts 1n the number of semantic errors, with lines of best

fit obtained through linear regression. |,

1.7

Boxplots showing the relationship between experience and performance, as mea-

sured by three different experience measures (their degree major, their pretest

score, their self-rated knowledge) and four performance metrics (the number of

syntax errors, the number of hints, the number of semantic errors, and the time

ontask,allmPart3)

230

1.8

Box plots showing group differences associated with subgoal graphic condition.

The box plots indicate medians and inter-quartile ranges. Each graph has been

truncated along the x-axis, omitting between | and 6 outliers 1n order to display

differences moreclearly| oo oo L.

[MT.9

Box plots showing group differences associated with thumbnail graphic condi-

tion. The box plots indicate medians and inter-quartile ranges. Each graph has

been truncated along the x-axis, omitting between 1 and 6 outliers in order to

display differences more clearly.| o0 oL

233

Acknowledgements

A PhD is a strange and solitary way for a person to spend 4 years. It takes a stable, supportive
village for it to be achievable even in the best of times, and I can imagine a hundred ways in
which the Universe could have intervened to derail it. Therefore, I am above all grateful for the
comfort, health and stability that the Universe afforded me and my family during these past 4
years, which the pandemic has reminded me never to take for granted.

I would like to thank Professor Quintin Cutts, my supervisor, for the opportunity he gave
me in taking me on as his PhD-student, for the trust he gave me in allowing me to try out new
research directions, and for his infectious enthusiasm that always kept my morale high. I would
similarly like to thank my secondary supervisor, Dr Jeremy Singer, for the opportunities he gave
me and the positivity he brought to every meeting.

I would like to thank my CCSE colleagues, for the laughter and commiserations we shared,
especially Jack Parkinson, Ethel Tshukudu, Dr Matthew Barr, Dr Joseph Maguire, Derek Somerville,
Elizabeth Cole, Peter Donaldson and Dr Steve Draper.

The research in this dissertation would not have been possible without the help of Dr Nouri
Sakr, Dr Juho Leinonen, Dr Eric Yao, Dr Syed Waqar Nabi, Dr Junaid Akhtar, and Professor
Briana Morrison.

Thank you to all the colleagues who buoyed my spirits during lockdown: Dr David Maxwell,
Dr William Pettersson, Jessica Ryan, and Tom Wallis.

My secret weapon during this entire journey has been Xavier. Thank you for everything.

Xvil

Declaration

With the exception of chapters 1, 2 and 3, which contain background material, all work in
this thesis was carried out by the author unless otherwise explicitly stated. This includes the
conception of all studies, the software development, and the data analysis.

Parts of the work documented in Chapter [5} [§] and [I0] have previously been published or
accepted for publication:

L. Sundin, N. Sakri, J. Leinonen, and Q. Cutts. “Facilitating API Lookup For Novices
Learning Data Wrangling Using Thumbnail Graphics,” in Foundations of Data Science (FoDS),
2021.

L. Sundin, N. Sakri, J. Leinonen, S. Aly, and Q. Cutts. “Visual recipes for slicing and
dicing data: teaching data wrangling using subgoal graphics,” in 21st Koli Calling International

Conference on Computing Education Research, pp. 1-10, 2021.

L. Sundin and Q. Cutts. “Introducing Data Wrangling using Graphical Subgoals-Findings
from an e-Learning Study,” in Proceedings of the Eighth ACM Conference on Learning@ Scale,
pp- 267-270, 2021.

L. Sundin and Q. Cutts. “Is it feasible to teach query programming in three different lan-
guages in a single session? A study on a pattern-oriented tutorial and cheat sheets,” in Proceed-
ings of the Ist UK Ireland Computing Education Research Conference (UKICER), pp. 1-7,
2019.

Also published by the author and relevant to the topic, but not included in the dissertation:
Z. Wang, L. Sundin, D. Murray-Rust, and B. Bach. “Cheat sheets for data visualization

techniques,” in Proceedings of the 2020 CHI Conference on Human Factors in Computing Sys-
tems, pp. 1-13, 2020.

Xviii

Chapter 1
Introduction

Few research fields have remained unaffected by the volumes of Big Data generated in the
past two decades. From geneticists studying micro-arrays, to meteorologists processing sensor
data, and linguists analysing Twitter feeds - it is up to incoming scientists to find creative ways
of merging and harnessing new data streams. There is one major bottleneck, however: these
streams are often poorly or inconsistently structured. If university-level students of biology,
meteorology and linguistics are to benefit from the size of modern data sets, they not only need
to know how to analyse it, but also how to wrangle the data into a format fit for analysis. And
they need to learn data wrangling sooner rather than later, most flexibly using programming, in
an already crowded curriculum.

For the pedagogical community, this presents a formidable challenge: how can we optimally
teach students programmatic data wrangling where dedicated time resources are scarce and prior
programming experience minimal? More realistically, can we design techniques and tutorials
that measurably increase the efficiency with which novices learn programmatic data wrangling?
Just as importantly, can we improve the subjective experience of learning data wrangling, to
make it more enjoyable and motivating?

That challenge forms the overarching research objective of the work presented in this disser-
tation. Because programmatic data wrangling represents relatively untrodden ground in terms
of prior research, the present dissertation takes a breadth-first approach. It reviews research on
an array of potential learner barriers inherent to the data wrangling process, before eventually
homing in on three critical stages: plan composition, syntax lookup, and code example adapta-
tion. For each stage, it proposes ideas for how they could be scaffolded, before evaluating them
experimentally.

This search for scaffolding devices is guided by one key observation: data wrangling opera-
tions, which tend to involve manipulations of tabular data structures, lend themselves readily to
tabular graphics. Tabular graphics are graphics that, with some degree of abstraction, convey
the shape of a data structure before and after a data operation is applied to it, and highlights the

change that took place. Examples of such graphics are shown in Figure[I.1]

CHAPTER 1. INTRODUCTION 2

°° [ID Var val|
ID Var Val
‘BN ,mm

>
= =]

Figure 1.1: Examples of tabular graphics

The visualisability of data wrangling operations hands instructional designers an important
lever to take advantage of. This could take the form of at least three possible interventions:
subgoal graphics that visualise the necessary steps in a solution, thumbnail graphics that
visualise the behaviour of API (application programming interface) commands, and parameter
graphics that visualise the argument that should be passed as an actual parameter to a command.

All three are explored and evaluated within this dissertation.

1.1 Motivation

In 2001, Purdue statistician Cleveland [12]] proposed an action plan for expanding the founda-
tions of statistics to also include computing, effectively reorganising statistics departments into
a new field that he declared would be called data science [[12, p.21]. Since then, commentators
have questioned what exactly makes data science so different from classical statistics [13,/14],
and whether it is a matter of re-branding or reflective of a more qualitative shift in practices.

The most noticeable change in practices is the increase in data volume. Where data histori-
cally were scarce and painstakingly acquired, in 2018 a DOMO report on data growth estimated
that, in 2020, “1.7MB of data will be created every second for every person on earth” [15]. An-
other, less frequently discussed feature of data science lies in the nature of those data-generating
mechanisms. Where previously data were often the result of carefully planned experiments,
modern data streams tend to be by-products of business processes [13]]: event logs accumulating
on website back-ends, or social media corpora growing as an inadvertent side-effect of digital
interactions. As a result, data analyses today are often ad hoc afterthoughts, which in turn means
that the data schema may not be appropriately organised, or otherwise fit for consumption by
statistical software.

This disorganisation of data implies that data wrangling is becoming an increasingly impor-
tant skill to master for scientists and knowledge workers of all kinds. By “data wrangling” we
mean the manipulation of array structures such as matrices and dataframes, usually in prepara-
tion for further analysis (we will refine this definition in Section [2.1)). It also implies that, for a
sociology major to make use of a crime data API in order to produce plots in Python, they will
also have to learn how to wrangle the data. As one data science workshop instructor was quoted

saying: “Most people I see have to learn to code in an absolute panic for their thesis™ [[16} p.5].

CHAPTER 1. INTRODUCTION 3

The educational research community must address this demand.

Even so, data wrangling is not an obvious choice for a research focus, especially considering
the magnitude of other challenges faced by students, such as their eventual data analysis [17].
Why focus on the analysis’ more menial, less glamorous precursor? And why focus specifically

on the role graphics could play in facilitating it?

1.1.1 Why is data wrangling important to research?

Data wrangling is time-consuming. Among business intelligence professionals, the disor-
ganisation of raw data formats and the “data janitor work™ it incurs are recognised as major
productivity bottlenecks [18]. Respondents in a 2016 survey of data scientists reported spend-
ing 60% of their time on data pre-processing tasks [19]. Another frequently cited estimate (but
whose provenance is unknown) places this figure at 80% [20]. Regardless of its true percent-
age, data wrangling is generally perceived as a time sink that detracts from the more interesting
activities downstream. It is therefore a matter of economic productivity to find ways of making

the data wrangling process more efficient.

1.1.2 Why is data wrangling important to teach?

Currently, data wrangling is often ignored in introductory data science modules. For
learners embarking on their first few research projects, this time sink is likely all the more
frustrating, and risks discouraging learners from pursuing data science altogether [21]. Despite
such risks, data wrangling is often ignored in introductory statistics courses [22,23]], which tend
to provide pre-cleaned data [24]. While understandable and often justified when the focus is on
statistical content, sanitised data present a misleading picture of actual research data [23]], and
may limit the ambition with which students can pursue their own projects using self-discovered
data sets. Additionally, failing to teach data wrangling explicitly may increase data error rates
in their research output [22].

Not all available data support the assertion that data wrangling is neglected. For example,
Hardin et al. [25] surveyed seven data science syllabi from primarily the U.S., and found that all

covered “data cleaning”. It is uncertain the extent to which this survey represents wider trends.

For many people, data wrangling is their first foray into programming. Data science skills
are increasingly expected among early-career researchers regardless of their discipline, but many
of them are tasked with learning it without formal training in computer science (CS) [16]. This
presents a challenge, but also an opportunity, as data wrangling could be an entry-point into
scientific computing. Array manipulation is the bread and butter of most scientific computing
and a facility with transforming vectors, matrices, and dataframes is useful not only for pre-

processing, but also for implementing the algorithms that constitute the eventual processing.

CHAPTER 1. INTRODUCTION 4

1.1.3 Why is data wrangling education important to research?

The number of potential beneficiaries is growing fast. The class of prospective learners
far exceeds those majoring in CS and statistics. Enrolment statistics indicate that an increas-
ing number of non-majors enrol in CS courses [26], often as a degree requirement [27]], and
survey data suggest their main goal is to apply programming to their own subject [28]. These
non-majors may be undergraduates, from biology to linguistics, who neither expected to pro-
gram as part of their degree, nor have an intrinsic motivation to do so [16]. These instructional
challenges are explored further in Section[2.2] Although some findings from programming edu-
cation research are likely to be transferable to non-majors learning data wrangling, those tightly
coupled to conventional CS1 curricula (i.e. procedural or object-oriented programming) may be

less applicable.

Data wrangling education is under-researched. 10 years ago, Kandel et al. referred to data
wrangling as the “elephant in the room of data analysis”, playing on the fact that the labour
invested in it usually goes unspoken. They also presented a list of data wrangling research
challenges they hoped the community would accept [21, p.286]. None of these challenges,
however, involved pedagogy. In the years since, major strides have been made in terms of API
design [29], the development of analytics tools to support advanced data preparation (e.g. [30]),
and end-to-end software for automated data wrangling (e.g. [31]). Meanwhile, the pedagogical
literature on data wrangling remains fragmented, sparse, and mostly anecdotal. There is, in other

words, a clear gap in the literature [32}33].

Data wrangling is theoretically interesting. Data wrangling has multiple computational and
conceptual properties that set it apart from the domains most programming education research is
focused on. Computationally, it is vectorised, API-reliant, highly parameterised, and generally
functional (see Section[2.4). Conceptually, it is tabular and consequently inherently visualisable
in a way that for example imperative programming struggles to match. Exploring the pedagog-
ical implications of this may carry insights over into other programming domains with shared
commonalities, such as web development (also API-reliant) and relational database management

(also tabular).

1.1.4 Why are graphics as a scaffolding technique interesting to research?

Focusing on tabular graphics may seem like an oddly specific aspect of a domain that so clearly
needs to be investigated comprehensively. However, an insistence on evaluating concrete and
reusable research products may increase the chances of actual adoption in other faculties. This
is particularly important, since surveys suggest that adoption of CS educational innovations is

often disappointingly low [34}|35]]. Related to this concern, tabular graphics benefit from the

CHAPTER 1. INTRODUCTION 5

Plan composition APIlookup Example adaptation
Subgoal graphics Thumbnail graphics Parameter graphics
hold of all stud ho both
?aeiltedotheoe:anft:nde ;: ‘:bgvec;t:'0cm in | v Access SELECT b ()
height (save to: failing tall) FROM
- . . ~ from vector GROUP BY
[oot ; . HAVING
N . Falled helght by index [»
p— T
tailing_tall by name ; » .

students

Figure 1.2: The research is focused on three aspects of the data wrangling workflow, each of
which is targeted by a graphical scaffolding feature.

following:

Tabular graphics are low-cost. Tabular graphics could be easily drawn on a whiteboard,
sketched on paper, and reused indefinitely. While creating polished vector graphics takes time,
their production could in theory be automated. Given this low cost, if graphics produce at least

a measurable improvement, they present a cost-effective intervention.

They have straightforward implications for IDE design. The interventions that are most
likely to affect programming performance are those inherent to the programming workflow it-
self. The interface of the IDE (integrated development environment) is one such place where
scaffolding features could be added unobtrusively. As will be demonstrated in this dissertation,
graphics could be incorporated into documentation menus as thumbnails and code examples, and
be used in more explicitly pedagogical features such as subgoal panels. In theory, open-source
IDEs like Visual Studio, Jupyter notebooks and RStudio could be augmented with educational
plugins that utilise tabular graphics.

1.2 Thesis statement and research questions

As hinted at in the introduction, this dissertation analyses the data wrangling workflow in terms
of three distinct stages: plan composition, API lookup, and example adaptation. Three kinds
of graphics have been developed to address each of these stages: subgoal graphics, thumbnail
graphics, and parameter graphics, respectively. This framework is illustrated in Figure [I.2]
Ultimately, the research goal is to evaluate whether the graphics improve data wrangling learning

among novices, which is why our thesis statement is formulated as follows:

Subgoal graphics, thumbnail graphics, and parameter graphics facilitate the

learning of programmatic data wrangling.

This thesis statement can be expanded into the following main research questions:

CHAPTER 1. INTRODUCTION 6

RQ1. What is the effect of subgoal graphics on the learning of data wrangling?

RQ2. What is the effect of thumbnail graphics on the learning of data wrangling?

RQ3. What is the effect of parameter graphics on the learning of data wrangling?

Each research question can in turn be expanded much further when we consider the full
complexity of what “learning” and “effects” really mean. With regards to learning: the graphics
will be evaluated by incorporating them into (primarily online) data wrangling tutorials, and
from the participants’ behaviours we will measure a broad array of dependent variables that
either reflect or mediate learning outcomes. Some of these are performance-related (e.g. the
number of incorrect attempts and time on task), while others will be more indirect process
proxies for learning efficiency (e.g. the number of API lookups). Still other metrics will be
subjective in nature (e.g. self-reported motivation). In asking about “the effect on learning”,
we mean the broader data pattern across these variables. For individual studies, these research
questions will therefore be addressed through study-specific sub-questions and metric-specific
hypotheses.

Implicit in the thesis statement is a claim of causation: we wish to ascertain that the provision
of graphical aids causes positive learning outcomes. Any such claim is a tall order, especially
in a complex domain like pedagogy, where learner preferences, prior experience, and other con-
textual factors all conceivably contribute to the observed effect. We are wise to moderate the
premise. For example, the population of learners we will investigate are university students or
end-user programmers with minimal experience in programming and/or data wrangling, who
are motivated to learn data wrangling. The set of circumstances in which we will investigate
graphics are mostly highly structured e-learning interventions, completed without human super-

vision.

1.3 Approach

The applicability of graphical aids to data wrangling could have been approached from a number
of angles, each with its own set of methodological trade-offs. The chosen approach will be

explained in greater depth in Chapter] but broadly it observes the following principles:

Breadth-first: Given how the current research does not fit snugly within a preexisting research
programme, it seems appropriate to sketch out a few landmarks in the design space, instead of
rendering a small corner of it in full detail, even though doing so trades off empirical reliability
for theoretical range.

As mentioned, three different graphical interventions will be evaluated. These scaffolding

features could be viewed as representing conceptual replications of a core thesis that tabular

CHAPTER 1. INTRODUCTION 7

graphics are helpful. Replications are considered conceptual when the manipulations and mea-
surements involved are different. Their purpose is to establish the range, robustness and bound-
ary conditions of a theoretical framework [36]. Conceptual replications can be contrasted with
the more depth-first approach of exact replications, whose purpose is to eradicate false positives

of a very specific phenomenon [36].

Experimental: Most of the undertaken research follows a randomised controlled trial (RCT)
design that compares a graphical condition with a non-graphical condition. In principle, RCT
designs isolate causal influences so that the effect size of graphics can be estimated without
confounds. However, to give a more nuanced account of how graphics are used and perceived,

subgoal graphics and thumbnail graphics will additionally be the subject of qualitative studies.

Reductionist: Educational RCTs often compare interventions that vary along so many dimen-
sions that it becomes impossible to attribute observed effects to any particular “active ingredi-
ent” [37]. In order to make the causal attribution straightforward, the experimental manipulation
is simple (the presence or absence of graphics), even though such a reductionist approach risks

making the true effect smaller and harder to detect.

Opportunistic: Unless data collection is embedded within an existing course, educational data
sets are high-priced commodities, as recruitment of participants has a price. It therefore makes
sense for a researcher to minimise data waste and subject the data set to secondary analyses,
even when they are not directly pertinent to the thesis statement. Any incidental findings judged

to be of interest to the wider community will therefore be documented.

1.4 Thesis structure

Data wrangling education has yet to coalesce as a field, so to give its boundaries more definition,
Chapter [2] provides a review of the terminology, academic contexts, and technologies involved.
This is followed by a literature review in Chapter 3] which collates empirical evidence regarding
the barriers novice data wranglers may face, how those barriers can be addressed, and the role
graphical scaffolding could play in overcoming them. Following the literature review, Chapter 4]
serves to explicate the methodological assumptions and priorities that underpinned the research.

Having thus described the challenge of learning data wrangling, and the a priori reasons
for believing that graphics could help mitigate it, the dissertation proceeds with documenting
a series of studies. The first of these, described in Chapter [5 is a pen-and-paper experiment
that explores the effect of parameter graphics (i.e. RQ3)) in the context of data wrangling cheat
sheets. This study inspired a move towards larger-scale, e-learning based research, which is

CHAPTER 1. INTRODUCTION 8

why the remainder of the dissertation documents the work related to a large capstone study that
simultaneously investigates the effect of both subgoal graphics and thumbnail graphics.

This capstone study was conducted using a specially built platform called SLICE N DICE.
We dedicate Chapter[6]to an explanation of the scaffolding materials involved in the study, espe-
cially the design considerations behind the subgoal graphics and thumbnail graphics. We then
describe the process and design justifications behind SLICE N DICE in Chapter [7] Following
this, we present two small validation studies meant as a sanity check regarding the quality and
interpretability of the graphics. We present the results from two pilot studies - one qualitative,
one quantitative - in Chapter[§] before ultimately presenting the results from SLICE N DICE as
they relate to research questions [RQI| and [RQ2] This is then followed by Chapter [T1, which
contains more exploratory analyses of the SLICE N DICE, with less immediate pertinence to the

research questions.
Finally, in Chapter we zoom out to discuss the findings, implications, and limitations
of the results, as well as how they fit into the continued research agenda of data wrangling

education.

Chapter 2
Defining the scope

In this chapter, we will define the scope of the present research by refining our working def-
inition of data wrangling, characterising the learner population, and justifying our choice of

programming technologies to focus on.

2.1 Defining data wrangling

For a systematic field of research to evolve, a precondition is that a relative consensus exists
on what terminology to use. The literature on what we will refer to as “data wrangling” is
still splintered, with a proliferation of near-synonyms like data munging, data preparation, data
transformation, data manipulation, data cleaning, data pre-processing, and data management.
With such a wide selection of terms, why settle for wrangling, a word that literally means “to
herd livestock™?

The term data wrangling appears to have been coined by Kimball [38]] in 2008, who de-
scribed the need to “lasso the data and get it under our control” and defined it as the steps
between the operational source and the business intelligence interface. Kandel et al. [8]] later
adopted this term in 2011, naming their data transformation software WRANGLER. Soon after,
McKinney [39], the original developer of Pandas (a key Python data wrangling library) followed
suit, as did Wickham and Grolemund [2f], developers of key data wrangling packages in R. In
the years since, at least 8 books have been published that bear this term in their title. Although
Google trend data suggest that data wrangling is not as widespread compared with more general
terms like data management or data cleaning (see Figure 2.1)), it is clear that data wrangling has

momentum and is applied fairly consistently by stakeholders in data science.

2.1.1 What data wrangling includes

What the aforementioned terms have in common is their approximate location in the data life

cycle. The workflow of a data analyst is often schematised as a cycle, starting with data acqui-

CHAPTER 2. DEFINING THE SCOPE 10

Popularity of term over time
80

— data cleaning

=)
=]

= data curation

= data management
data manipulation
data munging

[
(=]

data preprocessing

Relative number of searches
=
=

data wrangling
o ——— ”—

2005 2010 2015 2020
Year

Figure 2.1: The relative search volumes of data wrangling-related Google queries, smoothed.
Data wrangling is the lightest blue, on the rise in the bottom-right corner.

sition, pre-analysis preparations, then exploratory analysis, visualisation, inferential analyses,
model training, before culminating in a decision. Multiple variants exist of this cycle, for ex-
ample Wild and Pfannkuch’s [40] and Franklin et al.’s [41]], but it is telling that neither of these
conceptions contain data pre-processing, since at their time of their writing, the Big Data revo-
lution was only in its infancy.

A more modern alternative is therefore Wickham and Grolemund’s life cycle [2, p.ix], which
is focused on computational activities, ignoring stages like data acquisition and decision-making
(see Figure [2.2). It describes tidying as the process of matching “the semantics of the data set
with the way it is stored” and transforming as involving filtering, aggregating, and the derivation
of new variables, among other things. Data wrangling, according to them, is the combination of

these two.

Visualise
Import —» Tidy — Transform —» Communicate

Model

Figure 2.2: The computational data life cycle adapted from Wickham and Grolemund [2, p.ix]

Because Wickham and Grolemund (as well as Kandel et al. [§] and McKinney [39]) are
mainly concerned with tabular data (e.g. vectors, matrices, dataframes), we will formulate the

working definition as follows:
Data wrangling 1s the process of tidying and transforming tabular data

We will use this term mostly interchangeably with the other close synonyms, but are aware

of some of their semantic baggage. As Horton et al. [42] have noted, data manipulation connotes

CHAPTER 2. DEFINING THE SCOPE 11

deliberate misuse of data, while data munging connotes destructive changes. Data reformatting
overlooks that certain wrangling operations involve non-structural changes, such as the recoding
of values, while data transformation can imply mathematical functions like rank or log trans-

formations.

Sub-types of data wrangling

Data wrangling as a domain can be subdivided further. For example, Rattenbury et al. [43] dis-
tinguish between intra-record structuring and inter-record structuring. The former manipulate
rows or columns on an individual basis (e.g. reordering columns, creating new columns by ex-
tracting values, or combining multiple columns into one). The latter manipulate multiple rows
or columns at a time (e.g. filtering rows, aggregating rows, pivoting rows). We will be mainly,
but not exclusively, concerned with the latter.

Another example is Morcos et al. distinction between syntactic transformations, which refer
to format conversions that only require input and a closed formula (e.g. date format conversion),
and semantic transformations, which depend on external reference information, such as currency
conversion rates [44]]. We concern ourselves exclusively with the former, but are aware that, in

practice, semantic transformations feature prominently in data wrangling activities [45].

Other sKills involved

In refining the definition of data wrangling, we wish to carve out a domain that is relatively
distinctive in terms of the cognitive processes they draw upon. Programmatic array manipulation
is one such relatively cohesive domain. As a skill, it involves what Baumer has called “the ability
to think structurally about data and how to manipulate it” [25| p. 345] and a facility with turning
real-world objectives into tabular data operations.

Practical intermediate-level data wrangling, meanwhile, is a highly heterogeneous skill: it
requires a thorough understanding of different file formats (e.g. CSV, XML, JSON), date format
conventions (e.g. POSIXct, POSIXIt), regular expressions, low-level data types (e.g. floating-
point precision), and high-level data objects (e.g. the structure of Pandas DataFrame). Mem-
orising these conventions is a cognitively very different task from the process of manipulating
arrays. Since the former constitute declarative knowledge more than a procedural skill, we will

focus on the latter and mostly set aside the issue of teaching technical, declarative facts.

2.1.2 What data wrangling is not

A complementary approach to defining data wrangling is to exclude activities that feel qual-
itatively different, and consign them to their own domain. Though real-world usages have a

tendency to blur, we can differentiate data wrangling from the following:

CHAPTER 2. DEFINING THE SCOPE 12

Data cleaning: This tends to involve diagnosing errors (e.g. due to data entry, metric conver-
sion), logic and consistency checks, outlier detection, and handling of missing data [22].
In general, these draw upon quite sophisticated statistical concepts, as well as a thorough
understanding of the data acquisition context and problem domain. It is therefore far

broader than we want data wrangling to be.

Data pre-processing: This term can similarly refer to data quality assurance [22]], but is also
used to refer to parts of the modelling process, such as feature selection and feature engi-
neering (e.g. [46]). While these involve data wrangling, they also depend on data mining

content knowledge, which this thesis is not concerned with.

Data management: This is probably the most comprehensive term, and is usually deployed in
enterprise settings. Beyond data processing, it also covers governance, protection, and

long-term preservation of data assets [47], which we will not concern ourselves with.

2.2 Learner characteristics and contexts

Ideally, the choice of scaffolding approach should take into consideration who the learners are,
what motivations and experience they bring, and the contexts in which their training will happen.
In data wrangling, such characterisations are complicated by the range of prospective learners.
An interview study among data science teachers identified heterogeneity of student backgrounds,
and their varying levels of programming skills and motivation, as a key instructional challenge
[16]. Nevertheless, we may be able to make some general statements based on the academic
context a learner is in: whether they are a data science major or non-major, and whether they

learn it inside or outside of their formal education.

2.2.1 Majors and non-majors

Characteristics of data wranglers likely depend on their degree choice, since degree major con-
stitutes a filter where self-selection biases come into play. Students whose major is not in CS,
statistics, or related disciplines, are presumably less likely to have anticipated programming as
being part of their degree, and therefore may perceive it as less relevant to their career. Inter-
views with data science teachers suggest that students are generally motivated to solve concrete
data analytics problems, and consequently see programming as a tool rather than as an intrin-
sically enjoyable activity [16]. Not all psychologists or economists will have to program, for
example: a psychology class contains both future therapists and future artificial intelligence
researchers; an economics class both bank tellers and econometricians. Since programming
modules are often a curricular requirement for majors [27]], non-CS students may feel a lack of

autonomy in doing them. Add to this the well-documented prevalence of programming anxiety

CHAPTER 2. DEFINING THE SCOPE 13

among non-majors [48,149]] and it becomes understandable that many instructors until recently
have favoured point-and-click software over programming.

Compare this with majors of statistics or CS who presumably anticipated that their degree
would involve programming, and at the very least self-selected on the basis of their confidence to
learn it. They are also likely to be highly motivated [50] - either intrinsically, or by the promise
of postgraduate employment opportunities - to learn programming. While exceptions to this
exist, as evidenced by the drop-out rates in CS [51]], these presumed characteristics imply that

teachers can have a relatively light touch in their instructional approach for majors.

2.2.2 Curricular context

Data science is today taught in a variety of curricular configurations. Its Venn diagram qual-
ity (combining programming with statistics) leads to what Finzer has called the “data science
dilemma” [52]: it could either be integrated within every STEM subject’s own department, or
taught as a standalone, university-wide course, such as a CS1 module. The popularity of the lat-
ter option [27,,53]] has led some instructors to re-design CS1 courses to be more centred around
data analysis [54].

A full account of the advantages and disadvantages of either configuration is beyond the
scope of this dissertation (see e.g. [54]]), but it is worth comparing a typical, entry-level CS1
course with that of an introductory data science module. A CS1 course typically focuses on
imperative programming, including control and iteration structures, with minimal reliance on
on libraries beyond the basic run-time packages. By contrast, a typical data science module
begins with introducing rich libraries, and focuses on composing functional pipelines rather
than algorithms [54]. Moreover, CS1 courses tend to begin with artificial, toy-like data sets,
while data scientists often face authentic data sets [[54].

The dilemma of how to meet the demand for data science skills among non-majors runs
parallel to that of designing the curriculum of dedicated data science degrees. Much of current
data science education research is focused on such degrees, which have grown rapidly in number
over the last decade [55,56]], and whose entry-level course could serve as an introduction for

majors and non-majors alike [57].

2.2.3 End-user programmers

Another common population of learners in programming-related research is the notion of an
end-user programmer. It usually denotes someone who has not received professional training
or who does not consider programming to be their primary occupation [58|]. Nardi defines them
as developers who program in order to support their own profession, as opposed to developing
code for other end-users [[59]]. This may be STEM postdocs who attend local Software Carpen-

try workshops [16], mid-career professionals pivoting into Python, or self-taught citizen data

CHAPTER 2. DEFINING THE SCOPE 14

scientists [60]]. If the number of online course offerings is any indication - from MOOCSs hosted
at Udemy or Coursera, to specialised platforms like DataCamp and DataQuest - the number of

end-user data wranglers has grown dramatically in recent years.

2.3 Data wrangling technologies

While the term data wrangling is only barely in its teens [38]], the actual practice of formatting
tables has been around for much longer, and has been practised using a range of technologies.
Charting their history, advantages and drawbacks gives us a better understanding of why courses
are opting for teaching data wrangling programmatically, when other, more novice-friendly al-

ternatives exist.

2.3.1 Relational databases & SQL

An important precursor to modern data wrangling APIs is Codd’s relational model from 1969
[61], which proposed representing data in terms of tables (relations) and provided a set of op-
erators for deriving new tables from input tables. Codd’s model soon inspired SQL, a query
language for relational database management systems. SQL’s SELECT statements and support
for table and schema modifications (e.g. insertions or deletions of tuples or columns) can all be
said to constitute data wrangling, and are the most widely taught features of the language [62].
SQL remains a mainstay of data professionals - as of 2019, it was the second most popular
data scientific software in US job advertisements [63]. Many data wrangling tasks can be ac-
complished within SQL (modern SQL implementations even support operations like pivoting),

and SQL is often used to subset the data until it is small enough to be stored as a local file.

2.3.2 Spreadsheet software

Spreadsheet software been around since the late 1970s [64] and is the by far most widespread
data wrangling technology, since it is included in basic software packages like Microsoft Office
and G Suite. A 2015 O’Reilly survey found that more than 60% of data scientists use it routinely
(via [63]]). Spreadsheet interfaces allow data tables to be directly manipulated, with immediate
feedback and little-to-no syntax. Owing to this live feedback loop, the barrier of entry to spread-
sheets is low [65], making it a popular choice for introductory data science modules [[66H68].
The liveness comes at a cost, however. Since the original data is not a persistent object (any
manipulation modifies the original data) the workflow is not reproducible or easily audited [69],

leading to a high risk of error [70].

CHAPTER 2. DEFINING THE SCOPE 15

2.3.3 Menu-driven software

While spreadsheets require the user to work within a grid that stores both data input and out-
put, another group of software separates the two, and disallows direct manipulation. Like with
spreadsheets, however, the primary mode of interaction is via menus, through which the user can
access pre-defined functions and dialog windows to configure the functions further. Examples of
such menu-driven software include statistical packages like SPSS and SAS, and special-purpose
data wrangling systems like TRIFACTA [71].

SPSS is especially dominant, as the most popular data analytics software in social science
courses [/2,/73] and academic research [63]]. However, since 2010 SPSS’ popularity in academia
has been in decline [63]], which, given the lack of serious menu-based competitors, seems to

reflect a drift towards programming-based alternatives.

2.3.4 Automated data wrangling

For as long as the user retains fine-grained control over it, data wrangling is likely to remain
time-consuming [[74]. Within the last 10 years, this has spurred the development of automatic
end-to-end data wrangling tools. These lines of research generally involve programming by
example, where the program is synthesised based on user-provided input-output examples [75].
So far, these have primarily been successful for string and number processing (such as changing
phone number format) [76-78] and data extraction [79]], but also for table layout transformations
[80-82]. One such feature, called FLASHFILL, has been integrated into Microsoft Excel [83]].

2.4 Programming-based software

Given the power and promise of existing and future data wrangling technologies, why should
students be taught to do it programmatically? The most versatile and expressive way of speci-
fying a data wrangling procedure will always be to script it, using languages like Python or R.
Scripting affords reproducibility [69]] and, assuming the programming language in question is
popular enough, the ability to leverage libraries authored by others. Programming languages
also tend to be free to use (an important exception being Matlab) and far more attractive on the
job market: a 2019 analysis of US job advertisements found Python to be the most popular data
scientific software, followed by SQL, Java, and R [63]. While these were all mentioned more
than 10000 times, SPSS was mentioned less than 3000 times. Moreover, compared with two
years prior, Python more than doubled while R grew by 50% [63]].

University departments are beginning to take note. While there is a general lack of high-
quality data regarding the trends in programming-based versus menu-driven tools in introduc-
tory university courses, a 2019 survey of psychology courses in Canada reports that 19% of

intermediate courses, and 40% of graduate courses already use programming [73]. A com-

CHAPTER 2. DEFINING THE SCOPE 16

parable study of psychology courses 20 years earlier found that the software used was almost
completely menu-driven [72]. Combined with the numerous papers calling for a transition into
programming for non-CS majors (e.g. [84-92]), we may very well be approaching a watershed

moment in the technology an introductory statistics course is expected to teach.

2.4.1 Language characteristics

In this dissertation, we have chosen to focus on R and Python, since they are the most popular
data scientific programming languages today [63]], though other popular languages do exist (e.g.

Matlab, Julia). The data scientific APIs of these languages have a number of distinctive features:

Interpreted: The languages tend to be scripting languages, which means that they (usually) are
interpreted at run-time rather than compiled. This permits dynamic typing and interactive
shell programming, in which the user can write a command and immediately execute it.
This is known as a read—eval-print loop (REPL), and allows a data wrangler to inspect

the result of a data transformation interactively.

Vectorised: Vectorisation refers to the process of operating on an array as a whole, instead of
using iteration structures. This method allows the programmer to effectively parallelise
the computation. This stands in contrast to the imperative programming of most CS1

syllabi [93]], which instead uses loops.

Incidentally, whether a student learns loops or vectorised computations probably influ-
ences their ease of learning the other: Nolan and Temple report that loop-first students
in their course tended to ignore vectorised solutions [25] while many of Patitsas’ [94]
vector-first students “expressed a distaste” for loops, being already accustomed to the

convenience of array manipulations.

Functional: While the languages themselves are not purely functional, the key data science
libraries tend to rely on a wide set of pure functions that accept a data structure as argument
(either implicitly or explicitly) and return a new one. They also tend to include higher-
order functions [95]]. Pieces of functionality that for a CS1 procedural programmer would
be solved by an iteration-based pattern would for a data wrangler be solved using special-
purpose, vectorised functions. For example, “Does an array contain a 0?” could be solved

using a loop, but a data wrangler is more likely to use a function like any () .

Chainable syntax : Key libraries tend to support ways of chaining together functions involv-
ing the same object into a pipeline. This could work by way of method cascading or
specialised pipeline operators, and makes functions structurally easy to combine, without

the need for intermediate variables.

CHAPTER 2. DEFINING THE SCOPE 17

Highly parameterised : Because data scientific functions are often highly abstract, they need
to be parameterised [96]. This leads to a complex function interface, with numerous and
often opaque parameters, that may be either necessary or optional depending on other
parameters. For example, the R function reshape (), for pivoting dataframes, takes 12
arguments, while the Pandas equivalent pivot_table () accepts 10. Understanding
parameters often requires a low-level understanding of the data structures. For example,
to flatten a NumPy array using f1latten (), they could configure the order parameter
as either 'C' or 'F', representing C-style (row-major) or Fortran-style (column-major)

order, respectively - explanations that likely are of scant help to novices.

Heavy package reliance: Although R has vector structures in its basic run-time library, in gen-
eral a data analyst is likely to involve external APIs whose exact syntax they need to
look up on the fly. This is captured in an observation by Patitsas, who introduced a data
science API in her CS1 course before conditionals and loops: “from early on, students
got in the habit of looking up built-in functions rather than reinventing functions from
scratch” [94, p.333]. This implies that a data wrangler needs to use a much larger set of
primitives. Memorising this constitutes either a significant upfront investment of effort,

which is why details tend to be looked up on an as-necessary basis.

Of course, a programmer could get by through a smaller set of functions. APIs tend to
have a long tail of rarely used (and possibly under-utilised) convenience functions, with a
few functions representing as much as 90% of all method calls [97]]. Indeed, the creator of
the data wrangling package dplyr has claimed that its key verbs (see Section [2.4.2)) allow
the user to solve 95% of all data manipulation problems [98, p.203].

242 R

R is an open source programming language for scientific computing, created in 1991 by Gentle-
man and Thaka [99] at the University of Auckland and today maintained by the R Core Team.
Within academia, the popularity of R has increased steadily for the past 20 years, though its
growth is beginning to plateau [63]. It has a very active user-developer community, and a wealth
of well-vetted, user-contributed packages. Although R is normally used through scripting in the
open source IDE RStudio, point-and-click interfaces are also available [[100], as are computa-
tional notebooks [101]. The standard packages of R come with a large number of statistical
functions and data structures, among them vector, matrix, which are both homogeneous

arrays, and data . frame, which stores mixed-type data in equal-length columns.

Tidyverse

One collection of packages, called Tidyverse [29], has had particularly notable influence in

popularising R. The packages in this collection share a set of design principles, inspired by the

CHAPTER 2. DEFINING THE SCOPE 18

UNIX command line [[102]], which stipulates that functions should return the same kind of data
structure as they accept, allowing data to be piped from one function to the next [102]]. Functions
generally serve a well-defined class of problems, are highly configurable, and usually has a name
in the form of a verb (e.g. select, mutate). The core data wrangling libraries are dplyr [[103]]
and tidyr [104]], which together form what they call a “grammar of data manipulation”. An
example of its syntax is shown below, in which two columns (A,B) are selected from a dataframe
and grouped by A, the B column is averaged, and the resultant mean values filtered based on

whether they exceed 3.

df %>%
select (A,B) %>%
group_by (A) %>%
summarise (mean=mean (B)) %>%
filter (mean>3)
R learnability

Numerous educators - primarily in psychology and biology - have published calls for transition-
ing from spreadsheets and SPSS into R [89-92]. Some have even called for it to be introduced
in high schools [105]]. Experience reports from introductory statistics classes that use R suggest
it can be done with high levels of student satisfaction, despite the steeper learning curve [[106].
A small but growing literature exists for empirically evaluating R’s learnability. For example,
Stemock, et al. split STEM majors into an R and SPSS group and found that the R group con-
sistently earned higher grades in statistics assessments, though not at a significant level [107].
Counsell and Cribbie [[108] surveyed psychology undergraduate and postgraduate attitudes to-
ward R and found that students, on average, viewed the language positively, but that students
who were low in motivation found it too difficult. Another study directly compared students’
interpreter errors when using Base R with using Tidyverse, but found no significant differences

in relative frequencies [[109].

2.4.3 Python

Python is an open-source, general-purpose programming language designed by Van Rossum in
the early 1990s [110]. The language supports multiple paradigms, but is generally considered
object-oriented at its core [110]. For data wrangling purposes, the most common libraries are
NumPy and Pandas, which are frequently used as part of a computational notebook, such as
Jupyter [111].

NumPy: (NUMerical PYthon) is the foundational array programming API in Python. It
emerged in 2005, based on an earlier array-based Python package [112]. The library centres

CHAPTER 2. DEFINING THE SCOPE 19

on a data structure known as the NumPy array, often referred to as an ndarray (as in n-
dimensional). These arrays are technically tensors, in that they can support any number of

dimensions, and are homogeneously typed.

Pandas: (PANel DAta) is a library for handling heterogeneous datasets through a structure
called DataFrame, which is explicitly inspired by its R counterpart [113]. It also provides a
one-dimensional structure called Series, which unlike ndarray objects allow string indices.

An example code snippet, equivalent to then one seen in R, is shown below:

df[['A',"B"]]
.groupby ('A'") ['B']
.agg (mean=('B', 'mean'))\

.query ("mean>3")

Python learnability

Although many calls for teaching Python in introductory statistics or research methods modules
have been published (e.g. [84-88]) little research has been conducted on the Python data science
stack. Patitsas [94] published a report detailing her experience teaching a NumPy-first course
for non-majors where NumPy was introduced before conditionals and loops. No formal data
collection was reported, but Patitsas observed that, assuming the students were familiar with
linear algebra, NumPy in some ways behaved more intuitively than basic Python. For example,

+ adds two arrays together in NumPy, but concatenates two lists in basic Python.

2.4.4 Summary

» We use data wrangling to refer to the process of tidying and transforming tabular data.
For the sake of cohesion, we will exclude statistical analysis, data visualisation and more

declarative knowledge (e.g. file formats) from this local definition.

» Data science modules today are often open to both majors (in data science or CS) and
non-majors, and the two groups are likely to differ in the motivation and anxiety they feel
towards learning programmatic data wrangling. Another important learner population is

end-user programmers outside or within academia.

* Data wrangling has its origins in SQL, which remains popular, alongside spreadsheet
software and menu-driven software like SPSS. Programmatic data wrangling is increasing
in popularity, however, and associated APIs have a number of characteristics that are
pedagogically relevant: they tend to be interpreted, vectorised, functional, chainable, and
highly parameterised. R and Python are the most popular programming languages for data

science, and are the ones we will focus on.

Chapter 3
Literature review

The broader question that this dissertation seeks to answer is whether tabular graphics can fa-
cilitate novices’ introduction to data wrangling. The question can be resolved into two parts:
the real-world problem we seek to address (i.e. novices’ introduction to data wrangling) and the
potential solution we seek to explore and evaluate (i.e. tabular graphics).

To evaluate graphics as a solution, our first step must be understanding the real-world prob-
lem, by reviewing literature on the conceptual and programming-related barriers faced by data
wrangling novices (these are reviewed in Section [3.1)and [3.2] respectively). “Programming bar-
riers” is an expansive topic at immediate risk of scope creep, but we will limit our discussion to
barriers that are characteristic of (if not necessarily unique to) data wrangling, and organise our
discussion in terms of five programming activities: problem comprehension, plan composition,
API lookup, example adaptation and debugging.

Following this, in Section [3.3] we will review literature pertaining to solutions. It will begin
by outlining general learning theories on cognitive load and scaffolding, which provide frame-
works for predicting which factors exacerbate learners’ cognitive effort, which design principles
could reduce it, as well as the numerous trade-offs that come into play in instructional design.
These frameworks will then be brought to bear on a review of how graphics could serve a scaf-
folding role. We focus on graphics not because they form the only strategy worth investigating,
but because they - as will be argued - present particularly low-hanging fruit.

These two strands of literature - data wrangling barriers and general scaffolding theory -
will then intersect in Section [3.4] where we catalogue previous examples of how graphics have
played a scaffolding role in data wrangling workflows. Eventually, in Section[3.5] we will revisit
the programming barriers of Section [3.2]and offer concrete proposals for how three stages - plan
composition, API lookup and example adaptation - could be graphically scaffolded. Finally,
these proposals home in on three intervention ideas - subgoal graphics, thumbnail graphics, and

parameter graphics - which form the focal points of our research.

20

CHAPTER 3. LITERATURE REVIEW 21

The current state of the field

Over the course of our review, we discovered that the literature on data wrangling pedagogy is
small but nascent. Only a small sliver of data wrangling research is experimental - most of it
takes the form of experience reports. The most relevant work has been published in the last four
years (e.g. [24,|109,|114]). This is partially explained by the youth of the technologies them-
selves: the key data wrangling APIs (i.e. NumPy, Pandas, Tidyverse) came about after 2005 and
became dominant much later. Another factor is the lack of dedicated venues. Although the num-
ber of journals and conferences interested in data science education is on the rise, many of them
focus on data science majors, similar to how CS education journals focus on CS majors, and
how a programming educator in biology may prefer to publish in a biology education journal.
Due to this degree-aligned publishing landscape, novice-centred data wrangling pedagogy as a
field has yet to unify its terminology and priorities into a coherent programme. Since no single
search string is yet capable of efficiently capturing it, our review method has mainly relied on
backward snowballing (i.e. tracing citations backwards) and recommendation engines.

To provide a more coherent picture, we will also review findings from neighbouring domains
on the assumption that they will generalise. For example, the CS education community, though
mostly focused on imperative programming [93], has a rich empirical and theoretical literature
on how novices learn programming, the barriers they encounter when practising it, and which
scaffolding interventions could help learners overcome them. The Human-Computer Interaction
(HCI) literature is meanwhile dense with innovations aimed at boosting the productivity of end-
user programmers working with complex APIs. The learner populations that these two domains
are concerned with - CS students and experienced end-user programmers - do not perfectly
overlap with novice data wranglers. However, the core information-processing barriers they are
confronted with, and the solutions for surmounting them, are likely to be at least analogous to

each other.

3.1 Conceptual barriers

If data wrangling is defined as the manipulation of tabular data structures, then a good conceptual
grasp of such structures is an important prerequisite for it. According to Thayer et al.’s theory of
robust API knowledge [115]], effective API usage requires an understanding of domain concepts,
1.e. the entities an API attempts to model. Understanding such concepts is believed to help
programmers imagine what is possible in the API, and provides a basis for determining which
API commands may be relevant to their goals [115, 8:6]. We will therefore begin by reviewing
conceptual aspects of data wrangling that may pose difficulties for the learner, independently of
the programming-related barriers.

In the case of data science, the main API entities are vectors, matrices, and dataframes,

which in turn are abstractions of real-world entities. Understanding these data structures is not a

CHAPTER 3. LITERATURE REVIEW 22

trivial matter. Even though two-dimensional tables are pervasive in everyday life, and have been
used since ancient Babylonia [[116], their structural principles are often left implicit. As Konold
et al. have noted, research into the comprehension of data tables has been sparse, as “tables
are so ubiquitous we tend to take them for granted” [117, p. 192]. In the sections that follow,
we explicate why and how exactly that learners may struggle conceptually with manipulating
tables.

3.1.1 Challenges with dataframes

Many scientific disciplines are primarily concerned with collections of heterogeneous data, in
which each sample is measured along multiple variables. These datasets tend to be represented
through dataframes (Dat aFrame in Pandas, data. frame in R). To standardise the way data
is formatted within such structures, Wickham introduced the notion of tidy data, a format where
each column represents one variable (attribute), each row one unit of observation (e.g. partici-
pant, trial, case), and where each value has its own cell |'|[[119]. Tidy data could be understood
as the desired output of most data wrangling processes, precisely because modern data science
APIs have evolved to expect them. However, real-life tables - such as tables of contents, nutri-
tional content labels, or even most spreadsheets - are meant for human consumption, not API
consumption, and the informality in the day-to-day usage of the word “table” means that these
principles may not be instinctively obvious.

Real-life tables are often in violation of tidy principles. For example: columns may represent
conjoined attributes. If a column called Name stores first names concatenated with last names,
you cannot easily sort by last name unless you first separate the two. Word processors and
spreadsheets allow you to split and merge cells to create hierarchical tables, but this would
violate the “one value per cell” principle. In day-to-day calculations, as well as many display
tables, we store sums of each column at the margin, for example in a bottom row. That would
be in violation of “each row represents one case” principle. Illustrations of these violations are
shown in Figure [3.1]

Multiple studies suggest that these tabular conventions do not come naturally to us, and
require some degree of explicit training. Falbel and Hancock [120]] found in a data entry task
that pre-teen students struggled to create a table in the expected format. The correct data table
would have listed a set of humans and put their gender in a Gender column, but the children
instead placed girls and boys in separate columns. The authors proposed that students are more
intuitively drawn to set-based structures that explicitly split up discernible groups, such as a
hierarchy, as opposed to a property-based structure, like a table.

Another study, by Konold et al. [[117], asked a group of middle school, high school, college

students and teachers to create “an organised record” (without specifying format) of the infor-

! A more general and formal formulation of this principle states that each row should represent a unique relational
mapping between values of independent variables to values of dependent variables [[118, p.148].

CHAPTER 3. LITERATURE REVIEW 23

True N

“B” 2 True “B_2"
“c” 6 False “C_6"
Tidy data Conjoined attributes Hierarchical tables Marginal tables

Figure 3.1: Illustration of the tidy data format and 3 common violations of it.

mation displayed within an image. They found that only 26% represented the data as a single
flat table, while 58% created multiple flat tables, splitting the total data set based on a grouping
variable. 14% - all by adults - created hierarchical tables. Overall, the likelihood of choosing
a table increased with educational level. This suggests that, even despite extensive schooling,

hierarchical data representations may come more naturally to us than tidy data.

Common table formats

For a sense of just how unintuitive flat tables can be, consider the notion of a case, unit of ob-
servation or unit of analysis. Konold et al. defines this as “the physical record of one repetition
of a repeatable observational process” [117, p.194], but beyond the more archetypal examples
of cases - individuals, physical objects, die throws - many units are either superordinate or sub-
ordinate to the level of abstraction we normally think in terms of. For example, when mice from
different breeds have their weight measured weekly, there is an implicit three-level structure to
that data: breed, mouse, and week. Out of these, mouse is likely to be the most natural unit of
analysis, since it is what cognitive psychologists refer to as a basic-level category: it has high
levels of within-category similarity and low levels of between-category similarity, which makes
it perceptually more salient [[121,/122]. If the data is then presented on a “one week per row”
format, this may throw learners off, though research admittedly is scant. At least one case study,
featuring a 7th-grade student, found that the student struggled with comprehending a graph in
which points represented group-level attributes like maximum values [[123]].

Wide data. Time series data, or repeated measures data, are usually represented using a wide
format, where each column indicates the measured value (e.g. height) at a unique time point,
and each row refers to the system undergoing change over time (e.g. a child). This allows the
user to conveniently follow the progression of values. From a processing point of view, however,
it is problematic: if you wish to aggregate all measurements, it would require you to select all

the relevant columns.

Long data. An alternative format is known as long format. It effectively lowers the level of
observation from object to time point. The time point is pivoted from being a column name,

to the value of a time point column, and a child is no longer represented through a single row,

CHAPTER 3. LITERATURE REVIEW 24

but through a group of rows sharing the same value in a child identifier column (e.g. Child).
Other examples of where long format may be counter-intuitive include shapefiles, where each
row may represent an edge between two vertices and groups of rows together define a polygon,

and network datasets that similarly represent edges as rows.

Nested data. Since the primary data exchange format of the modern web is JSON, many
system developers choose databases that store data as JSON documents rather than relational
tables. JSON is therefore an increasingly common data format that novice data scientists should
know about. JSON is explicitly hierarchical, with arrays and objects (sets of attributes) nested
inside other arrays/objects. Unlike CSV files, this means that data cannot be read in a way that
immediately adheres to the tidy data condition of one value per cell. Instead dataframes are

usually nested inside other dataframes, and need to be unnested into separate objects.

3.1.2 Challenges with split-apply-combine

Multi-level data, meaning data featuring categorical variables, are frequently subjected to ag-
gregation operations that reduce many values into one. Tables can hold both raw data (case
data tables) and aggregates (summary tables), and indeed one of the most common patterns in
data wrangling involves transforming the former into the latter. This pattern is often known as

split-apply-combine [124] and consists of three steps:

1. Split the rows into groups based on a categorical variable
2. Apply an aggregate function to one or multiple columns for each group of rows

3. Combine the aggregates into a summary table

This, when combined with table joining and row filtering, is also the general form of SQL
SELECT queries, which the set of data wrangling-related transformations could be considered a
rich superset of. For students who encounter data wrangling as part of an introductory statistics
course, SQL-query equivalents in R or Python are likely to make up a large portion of their
activities.

SQL operations on their own may not be conceptually that complex. Children as young as
5 years old have been observed to apply data wrangling operations like grouping, sorting, or
row filtering in unplugged activities [125]], and school children aged 11-13 have been observed
to spontaneously use them in order to enhance data visualisations [[126]. However, when repre-
sented through textual syntax, as they are in SQL, query writing is prone to numerous semantic
errors [[127]. Split-apply-combine operations can be far from trivial: they can involve multiple
grouping variables, multiple aggregation functions, and implicit groupings that the learner may

not realise. A recent bug analysis study of SQL queries by Taipalus found that semantic errors

CHAPTER 3. LITERATURE REVIEW 25

involving aggregations tended to be associated with a lack of grouping, which the author at-
tributes to a lack of understanding when grouping is necessary [128]]. Similar results were found
by Reisner [[129] and Ahadi et al. [130].

3.1.3 Challenges with vectors and matrices

Although a social scientist’s research is likely to be dominated by dataframes, since they mainly
deal with scalar measures, they will inevitably also deal with vectors, if only because dataframe
columns are usually made up of vectors. For budding neuroscientists, physicists or geographers,
matrices are likely just as important a data structure to be familiar with, primarily as a way of
storing inherently two-dimensional data (e.g. brain imaging, geographic data). While data wran-
gling should be considered separate from linear algebra (and therefore does not cover algebraic
concepts like matrix multiplication), even a novice data wrangler is sure to come across matrices,
for example as square matrices that store summary statistics for different variable combinations
(e.g. correlation and co-variance matrices).

For something so ubiquitous in science and statistics, remarkably little attention has been
given to students’ conception of what vectors and matrices are and what they are used for. Wor-
rall has suggested that students tend to think of matrices as “nothing more than abstract rows
and columns” [[131} p.46], rather than as a representation of something in the real world. More-
over, the operations for dealing with vectors and matrices are generally different from those of
a dataframe, in how they require a facility with indexing (dataframes are generally accessed
through Boolean conditions). Data wrangling APIs tend to support a variety of different meth-
ods for indexing data, including numerical index, alphanumeric names, conditions or explicit
Boolean masks. Murphy and Williams [132]] suggest that students tend to mistake the index
of elements with their value, and in their exam data found that their students struggled with

combining array operations into coherent solutions.

3.1.4 Section summary

* The conventions of how data tables are formatted are not intuitively obvious, especially
when it comes to grouping variables, multi-level data, long versus wide data, and raw
versus aggregated data. These concepts and conventions need to be explicitly taught and

not taken for granted.

e Although data wrangling operations may be simple enough for a child to understand,
identifying relevant operations and combining them into a typical split-apply-combine

pattern is non-trivial, as shown by semantic error studies from learners of SQL.

» Novice comprehension of vectors and matrices has received little prior research attention.

CHAPTER 3. LITERATURE REVIEW 26

API lookup &

Problem Plan example adaptation &
comprehension composition debugging

v
v
v
!

TN

Problem Informal Formalised Plan Code
statement mental model mental model

Figure 3.2: Data wrangling as a process consists of several distinct tasks that convert a problem
statement into executable code. API lookup includes mental recall. Example adaptation and
debugging should be interpreted as probable rather than logically necessary activities.

3.2 Programming-related barriers

Since our goal is to facilitate the process of data wrangling, our first step will be to tease apart
the various sub-tasks and intermediate representations that this process involves. Each such task
could be conceived of as a potential barrier, or pain point, and therefore a locus for potential
scaffolding interventions.

The process model we will use mainly serves an organisational role, of unifying facts into a
coherent framework. In other words, it is not a falsifiable assertion, but merely an analysis of the
logical steps that data wrangling typically involves. According to this model, shown in Figure
the programmer begins with comprehending the problem by translating an informal problem
description into a more formal mental representation. This representation is then used to plan a
solution in terms of a sequence of data operations. For each such step, the programmer looks up
the API command for implementing it, by either searching through external sources or a mental
cache to find a code example and/or documentation, which the programmer subsequently adapts
to integrate the command into their code solution, a process that likely involves debugging. As
noted in Section[3.2.2] the process is realistically not strictly top-down, but also involves bottom-
up, code-driven elements. Each step of the model will be analysed in terms of the barriers it risks

introducing, as suggested by earlier literature.

3.2.1 Problem comprehension

The first step of a data wrangling problem is, as with any problem, to comprehend it. What
does a data wrangling problem look like? A data wrangling task ultimately involves mapping
an input data format to an output data format. In its barest form, a data wrangling problem

simply supplies an initial schema and an expected schema (e.g. the schema expected by a

CHAPTER 3. LITERATURE REVIEW 27

bar chart library function), requiring the learner to compare the pre-wrangling state with the
post-wrangling state and then reverse-engineer their own problem statement (e.g. “separate the
Name column into Forename and Surname”). This may constitute the most authentic problem
format, since in actual practice, problem statements rarely come served on a platter, but are rather
something the data analyst need to formulate themselves. However, in educational settings, it
is usually convenient to specify a particular format implicitly, through some kind of natural
language prompt, effectively turning it into a word problem.

Suppose the word problem were the following and that the data set stores income on a citizen
level (see Figure[3.3):

How much richer (in median terms) is the wealthiest region compared with the

poorest region?

Whether this constitutes a data wrangling problem is debatable, since the difference in in-
come is a concrete, meaningful answer rather than a reformatted data set, but since the solution
involves manipulations of tabular data, it offers a convenient stand-in for a more realistic refor-
matting problem. Regardless, what does it mean to “comprehend” the problem in this context?

Without an accurate interpretation of the problem prompt, the search for solutions may be
too vague or misdirected to succeed, and once a candidate solution is found, its correctness
cannot be verified. Multiple studies from the CS education literature suggest that problem mis-
interpretation is a common source of semantic errors and that students may be reluctant to re-
consider their interpretation of a problem unless prompted to do so [[133,|134]. The parsing of
word problems, and the presentational aspects that influence it, have been extensively studied in
mathematics [135]], but less so in programming.

According to Nathan et al.’s theory of word problem comprehension in algebra, compre-
hension involves establishing a correspondence between the formal system (a quantitative men-
tal model) and the learner’s informal understanding of the problem domain (their gualitative
model) [[135} p.330]. For example, “wealthiest” becomes formalised as “has the highest median
income” and “how much richer” becomes formalised as “calculate the difference”, transforming

the problem into the following:
What is the difference between the highest regional income median and the lowest?

Ultimately, this formalisation needs to connect with the schema of the provided data set.
This is a key point of Reisner’s 1977 model of database query writing [[129], which states that
the user begins with looking for clues in the problem sentence for translating natural language
words into data schema labels, for example mapping the regional-level “income” to the citizen-

level income column of the dataset (see Figure[3.3).

CHAPTER 3. LITERATURE REVIEW 28

Data Real-world domain
id region income
%} %] 866.740402
1 1 678.886152
2 2 94.708969
3 3 B 1491.389626
4 4 B 638.901997
5 5 B 443.981960
6 6 C 434.351276
7 7 C 2205.930083 - £ £
8 8 C 2186.786089

Figure 3.3: Word problems require the data analyst to draw upon domain knowledge in order to
interpret what the problem asks for.

Domain knowledge barriers

The comprehension of a word problem generally draws upon informal real-world knowledge,
which could be as basic as “region-level income is determined by the income of its citizens”,
but could likewise involve terms or quantities that the programmer does not know. In data
wrangling, this is a common occurrence: Morcos et al. define semantic transformations as data
transformations that depend on external reference information [44]], which could be everything
from currency conversion rates to the exact formula for a metric.

Even absent such unknowns, simply the addition of a detailed domain description could
interfere with problem-solving. Evidence for such a problem description effect is inconclusive
however. Bouvier, et al. conducted a multi-institutional study that compared performance in a
context-rich versus context-free version of the same programming problem, but did not detect
a statistical difference [136]], a result that was later replicated in a follow-up study [137]. Craig
et al. compared performances on five different problems involving an already familiar context
[138], with inconclusive results. Leinonen et al. [139] conducted a similarly comparative study
but with more mathematically oriented problems. They found that contextual versions were

easier, but generally produced longer completion time.

Incongruity barriers

Independently of the amount of context provided, linguistic aspects of the problem sentence,
including both its structure and content, can influence the facility with which the problem is
solved. This has been studied in the context of database query writing. Reisner’s model predicts
that if the phrasing is lexically or structurally incongruous with the actual schema (e.g. asks
for surname when the database column is called family name, or birthday when the column
is called dob), then this will impede the problem-solving [129]. We find recent evidence for
this in a 2021 study by Miedema et al. [[127], which reported that students of SQL “struggled

CHAPTER 3. LITERATURE REVIEW 29

significantly” when the data demand did not easily match the database schema.

Reisner’s own data also indicated a reliance on superficial clues in comprehending the con-
ditions that the results should satisfy. For example, the error rate increased in exercises whose
formulation mapped awkwardly onto programming syntax (e.g. “all pugs and poodles” would
formally become breed="pug' OR breed='poodle")[129]. Conversely, if the phrasing
contains explicit clues of the syntactic roles of various elements, the error rate decreased. For ex-
ample, if the problem asks for “the average weight of dogs, grouped by breed” that is more struc-
turally and lexically analogous to SELECT AVG (weight) FROM Dogs GROUP BY breed

than “each breed’s mean mass”.

3.2.2 Plan composition

Starting with the cognitive revolution of the 1960s [140]], problem-solving has been frequently
conceptualised as the progressive decomposition of a problem statement into subproblems, or
equivalently, as a breadth-first process of plan composition, from a high-level plan to lower-
level steps. The terminal nodes of this expansion would be steps sufficiently atomic that the
user would feel confident a corresponding API primitive exists. In data wrangling the primitives
in question would mostly be functions, combined in their logical order. In the example from

before, such an plan could be:

1. Split rows based on region
2. Calculate the median income of each region
3. Take the largest and smallest median

4. Subtract the smallest from the largest

There is nothing absolute about this particular plan - it is but a single point in a design space
of possible plans, some of which may employ a more pseudocode-esque language closer to API
terminology (e.g. "Group records by region" instead of "Split rows"), assume a different set of
API commands (e.g. if no max () function exists, they may have to sort the medians first) or
use a different granularity (e.g. someone comfortable with split-apply-combine may collapse
steps 1 and 2 into a single step). What matters is that the plan constrains the later search for
corresponding commands, as part of a means-end analysis.

When a set of problems share high-level similarities in their composition, these can be
abstracted into reusable problem-solving plans, also known as templates [141]], or schemata
[142,143] (not to be confused with the data schema). These plans can be retrieved from the pro-
grammer’s memory (when abstracted from past problems or taught explicitly) or created if no
appropriate plan exists. According to Soloway and Ehrlich [144], expertise can be characterised

as having a large and well-organised mental library of such abstract, context-independent plans.

CHAPTER 3. LITERATURE REVIEW 30

The model of programming as breadth-first, step-wise refinement is an idealisation. In prac-
tice, plan composition draws upon both top-down (memory-driven) and bottom-up (code-driven)
processes. For example, implementation details could serve as memory cues, and both semantic
or syntactic errors could reveal the chosen plan to be incorrect, leading to the plan being modi-
fied. If no plan exists, learners may search for a core computation, implement it, and then expand
that solution bottom-up [[145]]. Indeed, moving back-and-forth between the plan- and code-level
could help novices avoid committing prematurely to a plan and encourage them to reconsider it.
This was suggested by a recent think-aloud study by Castro and Fisler [146]], which found that
CS1 students who used a more cyclical approach tended to outperform participants with a strict

top-down or bottom-up approach.

Plan retrieval barriers

Plan retrieval is associated with several barriers. As pointed out by Glaser et al. [[147], students
can choose the wrong plan, or the plan could be too rigid, such that programmers fail to adapt it.
There have been attempts to quantify the extent to which plan-related mistakes are to blame for
bugs. In an early example by Spohrer and Soloway [148,|149], plan-related bugs were found to
significantly outnumber bugs relating to misunderstanding of concepts, however given its focus
on imperative programming, it is difficult to generalise to data wrangling. A more recent analysis
of more than 160,000 SQL snapshots found that 40% were semantically incorrect (compared
with 54% of syntactically incorrect snapshots) [130]], suggesting that planning may be less of a
barrier than the actual programming in data wrangling, or at least in its query-related subset of

operations.

3.2.3 APIlookup

Once a plan has been composed, it remains for the programmer to translate its steps into exe-
cutable code. Norman has referred to this mapping problem - of “compiling” a high-level intent
into low-level commands - as the Gulf of Execution [150]]. Fangohr has argued that, from an
educator perspective, bridging this gulf is less interesting than plan composition, since it is “in
principle, an algorithmic procedure” [[151, p.1212]. While that may be true for an experienced
programmer, for a novice end-programmer, that very same gulf can appear much wider [152]].

One complication that has already been discussed in Section [2.4.1] is that data wrangling
APIs tend to be rich in specialised functions and therefore present a far wider menu of primitives
than a CS1 course that limits itself to built-in language constructs. Although one could use the
indexing operator to access the diagonal elements of a matrix, it is far more robust to rely on a
convenience function like diag (), but it is also an onerous task to walk through and memorise
all such commands.

Because of the number of operations, storage of API command syntax is likely externalised,

CHAPTER 3. LITERATURE REVIEW 31

Information > Information > Solution

Subgoal > collection organisation testing

Figure 3.4: Diagram summarising Kelleher & Ichinki’s Collection and Organisation of Infor-
mation for Learning (COIL) model [3.4].

meaning that programmers do not memorise the syntax, because the reliability and low cost of
retrieval render memorisation unnecessary. Because it is externalised, selection of API com-
mands is likely preceded by an exploration or search for candidate commands, whether through
a search engine, within-page hyperlinks, structured API representations like menus, manual
search within page results, or other external aids (e.g. cheat sheets, lecture slideshows). We also
note the widespread presence of inherent documentation (discussed in Section [3.5.3), such as
tab completion or tooltips, that somewhat blur the distinction between internal and external API
lookup, as the learner may never actually leave the IDE.

Recently, Kelleher and Ichinki proposed a model for describing the usage of external re-
sources, called the Collection and Organisation of Information for Learning (COIL) model
[3,4]], which segments the selection process into three stages. In the first stage, information
collection, the programmer searches for relevant information and continually judges its rele-
vance. In the second stage, information organisation, they store and organise this information to
prepare for later use, for example by grouping tabs, copy-pasting, or simply keeping the resource
open for cross-referencing. In the final stage, solution testing, they integrate the new informa-
tion into their solution and debug it. The COIL model, summarised in Figure [3.4] is especially
interesting for its emphasis on the strategies used to avoid burdening the working memory with
API syntax (e.g. by copy-pasting code), in addition to externalising the long-term memory.

The most important form of external memory, and the one underpinning the most qualitative
change in programmer habits for the past two decades, has been the Internet. Even for an expert
programmer, foraging social media, forums, code repositories, and search engines for instructive
code snippets is a natural part of the workflow. This kind of interleaved programming, which
repeatedly or even predominantly consists of finding and integrating code snippets, is sometimes
called opportunistic programming [153]]. It tends to be used when robustness or performance
can be sacrificed in favour of greater development speed, and the behaviour has mostly been
studied among web developers and designers [154,/155]], for whom the priority is to finish a
prototype quickly. While we have not found any research specifically focused on the retrieval
strategies used by data scientists, we posit that a novice-to-intermediate end-user programmer
working on a data wrangling script is similarly likely to rely on opportunistic strategies.

Just how important is API lookup to modern programming workflows? Studies with expe-
rienced web developers suggest that they spend between a fifth [153]] and half [156] of the time
searching the web. Highly experienced programmers have confessed in interviews to repeatedly

copy-pasting the same snippet of code “hundreds of times” [[153]. One interview study quoted a

CHAPTER 3. LITERATURE REVIEW 32

student as saying that CS “can feel like a more advanced googling degree” [157, p.219].
Research on novices’ information retrieval behaviours has received little attention in CS ed-
ucational communities, however end-user programmers’ learning of unfamiliar APIs has been
documented elsewhere. For example, Ko et al. [[158] observed that end-user programmers of-
ten struggled with determining which API command to use, in what the authors referred to as
a selection barrier. In one interview study with CS students on their web usage, conducted
by Ben-David and Ma’ayan, students reported that the Internet could feel overwhelming, like
shooting “in the dark™ [[157, p.222], and that they experienced cognitive overload. One study
that tracked CS students’ Internet usage during a lab exam found that, while high-performing
students frequently visited StackOverflow, low-performing students instead tended to revisit
their old solutions [[159], plausibly to avoid feeling overwhelmed by new information. We will

therefore review potential causes as to why API lookup can be so overwhelming.

Query formulation barriers

While browsing through search engine results is intrinsically complex, the feelings of overload
are probably compounded by novices’ inexperience in formulating queries and overall lack of
a mental model on how an API works. Unfamiliar terminology could pose one source of diffi-
culties, since formulating a query requires knowledge of appropriate keywords to yield relevant
results. The target API’s terminology may be far removed from natural languages, and could be
misaligned with other APIs that the programmer may be familiar with. There are plenty of such
misalignment examples in data wrangling, where select () is not intuitively about columns
(as opposed to rows) while in other contexts is known as projection. APIs have local terminol-
ogy - for example, what is known as indexing in Python is often called subsetting in R, and fancy
indexing in Python does not map onto a neat term in R. Pivoting is sometimes called reshaping,
spreading, or gathering depending on context; to aggregate is variously called to summarise or
reduce.

Evidence for the jargon barrier can be found in at least two observational studies. In a think-
aloud study by Ko and Riche, CS students were asked to assess software requirements involving
unknown networking APIs, and several of the participants verbalised their struggle to find right
keywords [160]. Participants who already had a conceptual understanding of the domain (i.e.
domain concepts [115]), formed more effective queries, apparently because they judged the
relevance of web resources more efficiently.

In the other study, by Wang et al. [[152]], researchers studied novices’ use of a searchable
example gallery while completing an open-ended project in a block-based programming envi-
ronment. Their data suggested that for almost 40% of the queries, the student never opened
the code example. Qualitative analyses found that many of these dead-ends were due to a mis-
alignment between how students articulated something, and how the gallery described it. They

moreover found that failure to find the correct entry appeared to have a discouraging effect,

CHAPTER 3. LITERATURE REVIEW 33

making students less likely to use examples later on.

A related barrier may be brought on by difficulties with refining their query when it is unsuc-
cessful. In the previously mentioned interview study by Ben-David and Ma’ayan [[157], students
further along in their programming journey described having developed strategies for managing
information overload, such as gradually broadening their search after trying to write as specific
a query as possible. It is plausible that a lack of such strategies among novices contribute to
them feeling overwhelmed. In one study with web developers with varying degrees of expertise,

novices were found to rarely conduct query refinements or to follow up on the results [[155].

API usability barriers

API designers face many trade-offs, and libraries vary in their inherent usability and complex-
ity. This affects how novice-friendly the documentation appears, and how easily the novice
can comprehend a candidate API command’s run-time behaviour. To illustrate the anatomy of
a documentation entry, we show an example of the Pandas groupby function in Figure [3.5]
An entry typically consists of a function signature showing all the parameters with their default
values, followed by a brief prose description. This is followed by a parameter list that explains
each parameter and specifies the expected value types and what the return value type is. As men-
tioned in Section [2.4.1] the parameters are often numerous and interdependent. The groupby
function, for example, has no fewer than 9 parameters, and can accept its main argument - the
column(s) to group by - in four different ways. This high degree of parameterisation has been
hypothesised by Olney and Fleming to be a key barrier for novice data scientists [96]. We find
evidence for this in formative interviews conducted by Zhang and Guo [9], which suggest that

novices tend to find production-grade data science APIs opaque and difficult to understand.

3.2.4 Example adaptation

Having identified an API operation and source as relevant, for example Pandas’ groupby, the
programmer needs to integrate that information into their partial solution. This requires storing
and retrieving the information to/from external memory, for example by using copy-paste or
leaving browser tabs open (what the COIL model would call information organisation [3,4]).
Ultimately, the code example must be adapted - the variable names substituted, the parameters
properly configured - so as to serve its role within the programmer’s own solution code.
Although the programming education literature has a rich and multi-decade long tradition of
studying how novices make use of worked examples, this literature mainly deals with sample
solutions that feature programming patterns of a procedural or imperative nature [[161]. With
high-level APIs, chances are that such patterns have already been encapsulated into their own
convenience function. It is therefore important to distinguish between worked examples that aim

to illustrate an abstract plan, and code examples that aim to illustrate the behaviour of a function

CHAPTER 3. LITERATURE REVIEW 34

pandas.DataFrame.groupby T

DataFrame.group by (by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True,
squeeze=<object object>, observed=False, dropna=True) [source]

Group DataFrame using a mapper or by a Series of columns.

A groupby operation involves some combination of splitting the object, applying a function, and
combining the results. This can be used to group large amounts of data and compute operations on

these groups.

Parameters: by : mapping, function, label, or list of labels

Used to determine the groups for the groupby. If by is a function, it's called on

Figure 3.5: A Pandas documentation entry, featuring a syntax summary, a short prose descrip-
tion, and a parameter list. Data wrangling functions tend to be highly configurable.

or API usage pattern. For opportunistic programming workflows to be efficient, the programmer
needs to be able to quickly interpret a code example, estimate its relevance, and utilise it within

their solution, a process open to several different impediments.

Example comprehension barriers

Because of the highly configurable nature of data science functions, the number of examples
in a documentation entry can easily exceed a dozen. Difficulties in understanding these code
examples would also make it difficult to utilise them. In terms of Ko et al. end-user programmer
barrier scheme [[158], complex examples can produce use barriers and coordination barriers,
referring to a lack of understanding in how to use and combine the selected commands, re-
spectively. Another scheme, by Wang et al. [152], calls the same phenomenon understanding
barriers.

Little research has been published that rigorously analyses novices’ issues with API code
examples, but a first step is surveying the design and formatting choices made in popular APIs.
For example, to be reproducible and easily copy-pasted, the code example typically includes the
creation of toy data structures or the importing of external data sets, alongside other necessary
boilerplate code such as the setting of random seeds [162]. Sometimes, as with Pandas (Figure
[3.64), the input data structure is explicitly printed out and displayed as it would look in an in-
teractive shell. Other times, as with Tidyverse (Figure [3.6b)), it is left to the user to either run
the code or infer the dataset’s structure from its construction. In some places, as with Pandas,
the data structure is usually of the toy variety, and as minimal and self-explanatory as possible,

with consistently used metasyntactic variable names such as df that signal their roles as place-

CHAPTER 3. LITERATURE REVIEW 35

by_cyl <- mtcars %% group_by(cyl)
»>»> df = pd.DataFrame({ Animal’: ['Falcon', 'Falcon’,

‘Parrot’, 'Parrot’],

'Max Speed': [3B@., 370., 24., 26.]}) # grouping doesn't change how the data looks (apart f
»>> df L .y) ..

Animal Max Speed # how it's grouped}:
@ Falcon 380.@ by_cyl
1 Falcon 379.8 .
2 Parrot 24.0 #>
3 Parrot 26.8 #>

> .gr y{["Animal’]).mean()
e g:]::p:iégd N #> mpg cyl disp hp drat wt gsec V5
Animal >
Falcon 375.0
Parrot 25.8 #> 21 6 160 118 3.9 2.62 16.5 @

E> 21 6 160 118 3.9 2.88 17.0 @

(a) Pandas official documentation (b) Tidyverse official documentation

Figure 3.6: Code examples from official documentation sources

holders [163]]. Meanwhile, Tidyverse’s official documentation illustrates functions using built-in
datasets, some with 14 columns, which can be cumbersome to visually parse [49].

Another aspect of official API documentation is that entries tend to focus on one API element
at a time [3]], which makes it harder to integrate them. To pre-empt coordination barriers, a
reference source may also provide API usage patterns [115]: more extensive code snippets
that demonstrate how an element works in the context of other API commands. The entry in
Figure [3.64] already does this to some extent, by showing how it works in combination with an
aggregation function (mean ()).

If an API usage pattern contains too many unfamiliar elements, this could backfire: Wang
et al. [[152] found that the likelihood of a novice integrating an example, while completing an
open-ended code project, systematically decreased as the number of unfamiliar API elements
increased in the example. In a data science setting, this echoes interview data from Zhang and
Guo [9], who found that novices struggled with understanding chains of functional API calls,
and had to resort to manually inspecting the intermediate states. The same authors [9] surveyed
a small sample of textbooks, finding that most code examples feature long method chains within

a single line.

Example integration barriers

Both the exploration and exploitation of API elements require the programmer to mentally,
and then actually, map elements in the example code with that of their problem context. This
becomes a matter of accurately configuring the parameters and substituting the variable names.
Failing to establish the correct correspondences could lead to what Wang, et al. have called a
mapping barrier, while failure to accurately adapt the example would be a modification barrier
[152].

For example, in our running example of comparing the richest and poorest region (see Sec-
tion [3.2)), the programmer must use Pandas’ groupby to split the rows based on region. The

API documentation example, however, involves a dataframe storing a set of animals and their

CHAPTER 3. LITERATURE REVIEW 36

Documentation Problem context

>>» df In [2]:

Animal Max Speed out[2]:
@ Falcon 38@.0 =
1 Falcon 3709 income
2 Parrot 24.8 region
3 Parrgk 26.8 ; . oF .
eSS df.graupb}r(['ﬁmimal'])— A L 86l.7548%6

Max Speed B 4 1771.533165

Animal C 7 699.877235
Falcon 375.0
Parrot 25.8

Figure 3.7: The programmer needs to map elements in the documentation’s code example to
elements in the problem context.

maximum speed. To leverage the example, the programmer must identify the Animal column as
playing a similar role as the region column, then substitute 'Animal' for 'region', and so
forth, as illustrated in Figure

In the same example we also notice that subtle differences between the code example and
problem contexts can reveal themselves: the code example only has one numeric column, but
the problem dataset has two. median () will by default calculate the median of both, leading
to an id column in the summary table. This exposes a vulnerability of copy-pasting. As cap-
tured by Thayer et al.’s notion of robust API knowledge [115]], the more brittle the underlying
understanding of the API is, the less flexibility they will have in adapting the code example. In
this case, they will need to understand that the columns that should be aggregated need to be
selected after the grouping (i.e. groupby ('region') .income).

Research by Ichinco et al. [[164] suggests that, although mapping success matters, it is no
guarantee of successful integration. They asked school children to modify a set of programs
based on an on-screen example, in a block-based environment, and to also indicate the corre-
spondences using pen and paper. The authors found that the correlation between task success
and mapping success was low, which they interpreted as indicating that example adaptation

needs to be plan-driven in order to be successful.

3.2.5 Debugging

Once the data wrangler has a solution, they run it and evaluate the results. Even assuming
that they have composed an appropriate set of steps and, for each step, identified the correct
API command, chances are that syntactic wrinkles remain to be ironed out. This may require
IDE-focused debugging activities, or a renewed search for external resources, such as looking
up an error message online. Errors can be broadly classified based on whether they execute
(i.e. are syntactically valid) or not [[165]. Unlike syntactic errors, semantic errors cannot be

detected through interpreter error messages. As has been frequently noted, error messages tend

CHAPTER 3. LITERATURE REVIEW 37

to be written to support proficient programmers and can elicit strong feelings of anxiety and
frustration in novices [166]. One large-scale study on SQL students found that 51% of them
abandoned a question when they were unable to resolve syntax errors [167]. What are the

causes behind bugs generally, and data wrangling bugs specifically?

Information barriers

Information barriers refers to the inability to probe the internal value of a variable or behaviour
of a program [158]], such as verifying that the problem indeed was solved, or at the very least,
that the program behaved as intended. This can be seen as a matter of bridging what Norman
has termed the Gulf of Evaluation [[150].

In spreadsheets, this issue is addressed through a live data view that reactively updates in re-
sponse to value changes. Some standard IDEs incorporate similar tools for data wrangling, most
notably RStudio. Others require that the programmers either mentally simulate an operation,
explicitly print it, or use debugger tools. Since both R and Python are interpreted, programmers
can use the read-evaluate-print loop (REPL) interface to test single-line commands. In notebook
environments, they are moreover able to execute individual chunks, which theoretically could
be leveraged to inspect intermediate output. However, as Rode and Ringel [49] have noted, R
console output can be visually intimidating due to its closely clustered and often misaligned
output. In a study of theirs, novices in R reported significantly higher anxiety about parsing R
output compared with the more neatly formatted SPSS output, although this levelled out towards
the end of a semester.

Overall, it is not known how instinctively this workflow, of implementing and inspecting,
comes to novices. In a review study on debugging by McCauley et al. [168]], the emerging
finding was that novices suffer from a less coherent and hierarchical mental representation of
the program’s purpose, which prevented them from chunking the program in a way that helps
them diagnose probable causes of errors. As a result, novices tend to take a depth-first approach,
focusing on locating the error without regarding the program as a whole. An eye-tracking study
featuring Java programmers found that more experienced programmers attended more to the
source code than novices, and also switched between code, output, and a program visualisation

more frequently [169], suggesting that experts use a more interrogative approach.

Understanding barriers

According to Ko et al.’s barrier scheme [158]], understanding barriers refer to confusion about
a program’s external behaviour, such as run-time errors. These barriers are often studied by
analysing relative frequencies of bug classes and theorising about their underlying causes, and
several have been conducted for SQL [128,|167,/170]. Although most bug analyses are too dif-
ferent in their exercise sets and schemes to be aggregated, one emerging pattern is that syntactic

bugs are more common than semantic bugs: Ahadi et al. [167] found that 54% of code snapshots

CHAPTER 3. LITERATURE REVIEW 38

resulted in a syntactic error, and that five PostgreSQL error codes accounted for more than 53%
of all syntax errors. Besides typos, these included references to undefined columns and grouping
errors. Another consistent finding is that semantic bugs are more likely in complex programs.
Smelcer [[170] found that the likelihood of omitting a join clause rose with query complexity,
while Ahadi et al. found that the most semantically incorrect concepts were, in order, self-joins,
correlated sub-queries, GROUP BY... HAVING, simple subqueries and natural joins [[130],
all of which are conceptually non-trivial and likely cognitively taxing.

To the best of our knowledge, only two in-depth bug analyses that has been published for
data wrangling. Rafalski, et al. [109] invited students to solve a collection of R tasks and found
that the students struggled with interpreting R’s error messages. Their bug analysis found that
the most common syntax error was misnaming or misplacement of variable names, followed by
extra characters. Other common errors were mistyping function names and missing arguments.
Overall, they interpreted this to imply that naming conventions pose a significant barrier to
novices in R. The authors also compared CS majors and non-majors in their error rates, and
found that CS majors produced significantly (albeit marginally) fewer errors, suggesting that
prior, imperative programming experience provides some benefit.

The second study, by Yarygina [171], collected error logs from three non-major students
enrolled in an introductory data science course in R. The students varied in their academic and
mathematical background, but the author found no meaningful differences in error proportions
- for all of them, around half of all errors related to mistypings (this includes incorrectly spelled
arguments or functions) while around 15% was made up of content errors (e.g. missing argu-

ments).

3.2.6 Section summary

Plan retrieval barriers: Novices are less likely to have well-organised plans to draw from in

approaching a problem.

Query formulation barriers: Novices may lack the keywords and API domain concepts nec-
essary to formulate productive queries. They are also more likely to be overwhelmed by

search engine results.

API usability barriers: Data wrangling APIs are highly parameterised, which add to their in-
trinsic complexity and can make syntax documentation difficult to parse.

Example comprehension barriers: Code examples are often formatted in ways that make them

hard to comprehend, for example including boilerplate code and large sample data sets.

Example integration barriers: A programmer may fail to successfully modify an example, for
example doing the correct variable substitutions. This could be due to a lack of robust API

knowledge, or a lack of a coherent plan.

CHAPTER 3. LITERATURE REVIEW 39

Information barriers: Novices are less likely to have a hierarchical program comprehension,
and are therefore less efficient at debugging. The lack of a live view of a data structure re-
quires the programmer to repeatedly inspect the state through a console, but the console’s

bare, textual format can be anxiety-inducing.

Understanding barriers: Syntactic bugs are more common than semantic bugs in data wran-

gling. Analyses of R bug suggest that most syntax errors are attributable to mistypings.

3.3 General learning theories

The process of learning data wrangling draws upon general cognitive activities that the learning
science community has already developed sturdy, conceptual frameworks for. While not the
principal subject of investigation, any work in instructional design finds a natural point of de-
parture in cognitive load theory (CLT). The concept, first introduced by Sweller in 1988 [172],
is today among the most referenced theories in educational psychology at large [[173] and CS
education specifically [174]]. Following a review of foundational concepts, we will explore how

they relate directly to the design of data wrangling-related instruction.

3.3.1 Cognitive load theory

CLT rests on the well-established fact that human working memory is severely limited in its ca-
pacity and that cognition incurs a “load” that could exceed this capacity. However, by abstracting
information into higher-order cognitive structures called schemata (also known as plans, tem-
plates, chunks), cognitive activities could instead be offloaded to the virtually unlimited long-
term memory. This long-term storage is what constitutes learning, automation, and ultimately
expertise [175].

In its original form [[176], the theory holds that learning materials could incur two different
types of load, which add up to the total cognitive load. They are defined in terms of their effect

on the learning outcome:

Intrinsic This is inherent to the learning task itself, and completely determined by the interac-
tivity of its elements (i.e. complexity). Note, however, that what counts as an element is
learner-dependent: an expert would chunk a problem into more abstract entities, which
would lower the element interactivity. Intrinsic load is thus conditioned on the learner’s

expertise.

Extraneous This is defined as cognitive demands that are unnecessary to - and therefore de-
tracting from - the task. A typical example of extraneous load is the effort associated with

information retrieval and cross-referencing. If information sources that need to be men-

CHAPTER 3. LITERATURE REVIEW 40

tally integrated are located far apart, for example a caption far removed from the figure it

is meant to explain, then the extraneous load would increase.

It is worth noting that these definitions hinge crucially on what is considered relevant, and
in turn, the definition of the task itself. For example, many instructors advocate introducing
programming via block-based languages. The argument for block-based languages often states
that the spelling out of textual syntax correctly is a skill that is irrelevant, or at least secondary,
to the development of program composition skills [[177,/178]]. For that reason, we should seek
to eliminate the incidence of syntax errors by making composition block-based. However, the
assumption that the skill of typing syntactically valid code has less priority than composition
is difficult to empirically determine. Similarly, one could argue that API lookup skills are sec-
ondary to programming skills in data wrangling, and that instructional settings should inform
the students of all necessary syntax rather than have them look it up themselves. On the other
hand, one could argue that the ability to independently find syntax information and comprehend
less-than-ideal API resources is an equally essential skill. In short: what counts as “intrinsic”
and “extraneous” complexity depends on which skill an instructor chooses to prioritise.

An important insight of CLT is that the goal of instructional design becomes one of removing
irrelevant steps, elements, and inefficiencies from the target skill, since the intrinsic load is con-
sidered fixed [175]. Usually instructional guidelines, such as “Reduce the cognitive demands of
cross-referencing”, come with caveats and boundary conditions, however. For example, if you
cram too much information into the same display to avoid the costs of cross-referencing (also
known as the spatial contiguity principle [179]), this would soon come up against other prin-
ciples, such as the gestalt principle of using white space to group related information together
(also known as the segmenting principle [179]). The practical implications of CLT are therefore
far from strict prescriptions, but unavoidably a matter of trading off one source of extraneous

load for another, such as locating sweet spots between too much and too little white space.

Germane cognitive load

The idea of instruction as aimed at minimising extraneous load changed somewhat with Sweller’s
introduction of germane load in 1998 [180]]. The observation prompting this was that, although
a task’s inherent complexity could be considered fixed, not all of that complexity is directly per-
tinent to the development of cognitive schemata. Cognitive demands are considered germane
when they are relevant to the abstraction of schemata that would generalise to novel and variable
problems. The addition of germane load to CLT could thus be seen as defining a new category
of relevance: relevance to schemata acquisition.

Because schema acquisition is precisely what most learning tasks hope to achieve, it could
be considered a desirable form of cognitive load that should be increased rather than minimised,
at least until it exceeds the working memory capacity. The concept has served a role in gener-

ating techniques for imparting a more abstract understanding that succeeds in a more variable

CHAPTER 3. LITERATURE REVIEW 41

task domain [181]]. Examples of germane load-maximising interventions tend to involve some
form of explicitly guided abstraction, for example worked examples, subgoal labels, and self-

explanations.

Criticisms of CLT

Although CLT provides a useful framework for instructional design, and helps discipline re-
searchers into making explicit what they deem relevant, the question of whether or not it should
be regarded as a scientific theory is controversial. One frequently raised criticism is that CLT is
unfalsifiable, and therefore not a true theory in Popper’s sense of the word [[182]]. For example,
both the discovery that reducing white space improves learning outcomes and its negation could
be seen as supporting CLT, depending on whether you test the spatial contiguity principle or
segmenting principle. Another reason is that measurements of cognitive load - ranging from
physiological, to subjective, and performance-based - all assume the theory’s own assumptions,
namely that extraneous load inhibits learning and is caused by poor instructional design [183]].
As many have noted, defining extraneous load as the cause of poor instructional design, and
subsequently arguing that it is caused by poor instructional design, amounts to a circular re-
statement [183]].

Although CLT may not be a theory in a Popperian sense, Gerjets et al. [[183]] have argued that
CLT should still be considered a valid theory in a structuralist sense [[184]]. By this they mean
that CLT can be used to generate testable empirical predictions when considered in combination
with more specific theoretical assumptions. As an example they mention how CLT predicts that
approaches that emphasise abstract aspects of worked examples will lead to improved perfor-
mance in unseen problems. However, this is arguably no less of a circular restatement: if the
goal is to solve a variable set of problems, the fact that focusing learners’ attention on invariant
aspects of problems (i.e. abstraction) serves that goal well should not be surprising.

Although this short review of CLT is far from exhaustive or conclusive, it will have impli-
cations for the rest of the dissertation. We will make occasional mention of cognitive load to
denote “mental strain”, and view it as an important goal to identify and remove cognitive de-
mands that are secondary to our stated learning objective, namely of enabling novices to write
executable data wrangling scripts. However, we will be wary of arguing that the reason an inter-
vention may or may not work is due to a reduction of extraneous load, since we are uncertain of

whether that has explanatory value.

3.3.2 Scaffolding

CLT is intimately tied to the notion of scaffolding. Scaffolding refers to an intervention with two
properties: it enables a learner to accomplish a task that they could not succeed at unassisted,

and it facilitates continued success for when the scaffolding is eventually removed [185]. The

CHAPTER 3. LITERATURE REVIEW 42

term is generally credited to Wood et al. [186], though the underlying ideas back much fur-
ther [187]]. According to the original formulation of Wood, et al. [186, p.98], scaffolding is not
a purely cognitive process. Besides simplifying the task, highlighting critical features and expli-
cating the problem-solving process, a scaffolding tutor should also serve a mood-regulating and
motivational role. For example, they should elicit the learner’s interest, reduce their frustration,
and help them to maintain their focus [186].

Scaffolding is inherently good, in the sense that it is defined as something that is helpful -
something that enables someone to do something they otherwise would not be able to, initially
assisted, but eventually unassisted. It is possible to help a novice programmer solve a prob-
lem by simply giving them a solution, but that would hardly empower them to solve the next
problem unaided. We must therefore distinguish between idealised scaffolding and purported
scaffolding. This distinction could help resolve some of the tensions within the learning sci-
ences, where different theories are in apparent conflict on whether scaffolding is necessary or

counter-productive.

The scaffolding debate

Consider the minimal guidance stance, which draws upon Piaget’s constructivist theory of learn-
ing, according to which learning happens through active exploration, interaction, and play. In
the context of programming, this idea takes its most influential form in Papert’s constructionism,
which emphasises the need for letting the learner create their own knowledge organisation and
artefacts [[188]]. It therefore advocates problem-based or project-based learning, where students
are given an outlet for their own exploration. As of 2014, constructivism/constructionism was
the most commonly used theoretical framework in CS education [[174]. It has been argued by
for example Hermans and Smit [[189] that the community of programming instructors probably
over-represents learners who themselves enjoy discovery-based learning and that, as a result,
many instructors’ approach is “implicitly constructionist” [189, p. 88].

Now consider the alternative stance, associated with Kirschner and Sweller [[190,191]], which
emphasises explicit guidance. This idea is closely tied with that of germane cognitive load: if
the goal is X, why not simply tell them how to do X, rather than wait for them to arrive there
themselves through exploration? A common example is Biederman and Shiffrar’s 1987 chick-
sexing study [[192], in which novices’ chick-sexing ability was greatly accelerated when taught
explicitly what sex characteristics to look for.

If the goal of educational research is to investigate whether purported scaffolding amounts
to idealised scaffolding - to investigate when, what, and for whom an educational intervention
is necessary and sufficient for inducing a specific competency - then much of the controversy
relating to minimal versus explicit guidance is resolved. While this dissertation is focused on
evaluating purported scaffolding techniques, it is not interested in making a stronger case that

purported scaffolding techniques are always desirable, or that they cannot be counter-productive.

CHAPTER 3. LITERATURE REVIEW 43

The scaffolding debate in data wrangling education

Where an instructor falls on the constructivism—explicit guidance continuum is likely to influ-
ence their instructional design choices. Within the data wrangling sphere, we find echoes of
the same debate on a number of important design dimensions, such as language choice, data set

choice, documentation choice, and exercise type.

Language Many data science instructors have chosen small toy languages or sub-languages
instead of production-grade APIs. For example, Zhang and Guo [9] used a pedagogical API
known as datascience.py for their work, the block-based TIDYBLOCKS [193] uses a
Tidyverse-like syntax, while the creators of BLOCKPY [114] (another block-based data sci-
ence environment) opted for their own custom API. Such intermediate technologies incur an
overhead that may very well be justified, assuming they attract more students than they put off,
and make learning of the production-grade API faster enough to compensate for the time spent
on the didactic API. An alternative scaffolding approach would be to manipulate the exposure to
API elements than the API itself, or otherwise address the API lookup barriers of Section[3.2.3]

Data set The data sets used in data wrangling instruction could be rich in contextual details
and annotations, or self-explanatory and devoid of context. Domain knowledge is arguably
extraneous to data wrangling as defined in this dissertation, and may interfere with the problem-
solving, as argued by the previously discussed problem description effect [138]. On the other
hand, authentic data sets are probably integral to developing a robust data literacy, critical think-
ing, and an appreciation for statistical variability [194]. Moreover, there are studies to suggest
that authentic data sets, if pre-cleaned, could serve a motivational role. The CORGIS project by
Bart et al. has collected pre-cleaned datasets relevant to all major subjects [[195, 196] In are-
cent paper, the CORGIS organisers reported survey results that indicated that most participants
found the data very interesting and useful [197]. The trade-off between simplicity and motiva-
tion could be approached through faded scaffolding, where data complexity and authenticity is
increased incrementally [[194].

Documentation When solving an exercise, should information about the relevant API com-
mands be provided for convenience, or should the student look them up themselves? As Robert-
son has argued [198]], it could be considered a core learning objective that students should be
able to search through information sources on their own. These information sources could be
authentic, for example an official API documentation or plain search engine, or they could be
carefully formatted and organised to be usable by novices. Which documentation source is pre-
ferred depends on whether program composition or online syntax retrieval skills is having higher

priority in the instructional sequence.

2Collection Of Really Great and Interesting dataSets, think.cs.vt.edu/corgis

think.cs.vt.edu/corgis

CHAPTER 3. LITERATURE REVIEW 44

Exercise type A related dilemma is that of whether to provide closed-response exercises or to
let students conduct their own open-ended data wrangling projects. At least one interview study
on non-CS majors found that project-based assessments were perceived as more fair, authentic,
and more conducive of personal pride [199]. One could also argue that a fluency with real-world
problems is a top priority, and that it therefore should be introduced from the beginning. On the
other hand, as noted by Guzdial, “If you’re spending time on the context, you’re not spending

time on the content” [200, p.5].

3.3.3 Graphical scaffolding

Having thus outlined the general scaffolding theories, we will turn our focus towards graphical
scaffolding. Graphical aids are frequently employed within instruction to scaffold schema acqui-
sition, but data wrangling is unusually amenable to them. Vectors, matrices and dataframes are
all two—dimensiona]ﬂ Tabular data structures are therefore inherently visualisable - an attribute
that a learner or instructional designer could choose to exploit, whether in the form of men-
tal imagery, student-generated graphics, or external representations provided by instructional

materials or IDE features.

The benefits of graphics

The source of graphics’ scaffolding potential relates to the architecture of the working mem-
ory. According to Paivio’s dual coding theory [201]], the working memory has two distinct
information-processing pathways - one verbal and one visual. If a learner is overloaded with
linguistic information, they still have a visual channel available at their disposal, effectively
increasing their cognitive capacity. The central prediction made by dual coding theory is there-
fore that all learners (assuming they have functioning eyesight) can process and retain more
information if visual information is presented alongside linguistic information [202].

Visual media also have inherent advantages that textual media lack. Graphical design can
draw upon a number of more or less universally understandable variables for encoding abstract
relations. Whereas textual accounts require the reader to construct a mental model from a purely
arbitrary, linear string of symbols, graphics can represent non-linear relationships and complex
correspondences through their own visual structure. They can represent containment via nesting,
change through a sequence of snapshots, and motion through arrows. Another key affordance
is colour: as observed by Tufte [203]], colour can be used to represent quantity (by gradation)
and category (by hue). Colour can also be used to highlight information by being selectively
applied. Similarly, gestalt principles such as proximity and similarity could be used to organ-
ise information and make visual search more efficient [204,205]. Finally, graphics can make

use of arbitrary diagrammatic notations or textual annotations, allowing them to expand their

3Technically, dataframes could be tensors and exceed two dimensions.

CHAPTER 3. LITERATURE REVIEW 45

expressivity even further.

Multiple representations

Graphical representations may also work synergistically with other kinds of representation, by
promoting more relational and abstract processing. This is argued by Ainsworth in her DeFT
framework on multiple external representations [206]. According to this framework, external
representations (whether iconic or symbolic) serve different functions. They can provide con-
crete information to be simply read off (e.g. a photo), they can reduce cognitive effort by fa-
cilitating search (e.g. a family tree), and they can influence problem-solving by constraining
the range of inferences (e.g. a construction manual) [206]. When multiple representations are
presented together, the nature of their relationship could also vary in purpose. They could com-
plement each other or constrain the interpretation of each other [206]. Furthermore, the very
existence of multiple representations could encourage the learner to integrate them into a deeper
understanding, for example comparing the formulaic and graphical representation of a mathe-

matical function.

Scaffolding in graphic design

The learning scenarios in which graphical aids have been used and studied range from anatom-
ical illustrations to mechanical diagrams, so we should exercise caution in estimating how di-
rectly applicable their findings are to data wrangling. It almost certainly makes no sense to treat
graphics as its own cohesive category that is either uniformly good or uniformly bad. Well-
designed graphics certainly are, while poorly designed graphics most definitely are not.
Nevertheless, some graphical design principles are robust enough to be broadly applicable
to tabular data graphics. The literature and debate on these principles present something of a
scaffolding debate in miniature. A graphic could be authentically messy and disorganised, or
it could be meticulously designed to highlight the most relevant content and relationships. The
former would appeal to a constructionist, while the latter would appeal to an explicit guidance
advocate. The former prevents learners from depending on well-designed graphics as a crutch,
while the latter guides the learner more directly towards the target schema. In a 2017 review by

Mayer [|179], the following multimedia principles are listed as especially robust and effectiveﬂ

Coherence principle: Learning is improved if learning-irrelevant details are removed, includ-

ing decorative elements.

Signalling principle: Learning is improved if task-relevant elements are highlighted through

arrows, colour or spotlights.

4We have constrained our review to static graphics, for which reason other principles relating to animations or
interactivity have not been included.

CHAPTER 3. LITERATURE REVIEW 46

Segmenting principle: Segmented, self-paced lessons improve learning compared with con-

tinuous lessons. This can be regarded as a form of aided chunking [207]].

Spatial contiguity principle: Words should be placed close to the corresponding graphical el-

ement and distances for cross-referencing should be reduced.

Each principle has associated boundary conditions [179]. For example, segmentation is pre-
ferred until a lesson becomes so disjointed it begins disrupting the learner’s mental connections
and focus. A schematic diagram without any decorative details is preferred until it becomes so
boring that the reader loses interest and abandons it. Highlights can be effective - but only up
to a point. Without a massive, corporation-scaled A/B-testing apparatus to experimentally opti-
mise graphics, or a diagram-generating neural network, graphical design remains more of an art
than a science. But once created, the task of evaluating graphics becomes one of determining

for what purpose exactly, in what context, and for whom.

3.3.4 Section summary

» Cognitive load theory is a central framework in education. It classifies cognitive demands
as either relevant (intrinsic) or irrelevant (extraneous) to a particular learning objective.
The cognitive demands conducive to more abstract schemata development is called ger-

mane.

* Scaffolding refers to an intervention that enables a person to do something single-handedly
that they otherwise would not be able to do. In practice, scaffolding typically involves
explicit guidance towards the target schema.

* Scaffolding resides on a continuum, with explicit guidance on one end, and construction-
ist approaches on the other. Many dimensions of data wrangling instruction (e.g. the

language taught, the data sets used) could be seen as instances of this continuum.

* Graphics present a way of presenting the target schema more directly, and can encour-
age more germane processing. Research into multimedia design has identified several

principles that reliably increase the germane processing.

3.4 Graphics in data wrangling

The insight that tabular data structures are visualisable - and that graphics depicting them could
serve a function within data wrangling workflows - is not a novel one. What follows here is a

review of the ways in which tabular graphics have been employed previously.

CHAPTER 3. LITERATURE REVIEW 47

3.4.1 Program visualisation

Program visualisation systems - software that visualises the run-time behaviour of programs -
present one relatively well-explored, visualisation-related area within programming education.
Generally these visualise low-level behaviours such as the changing state of the stack or mem-
ory heap, in order to explain concepts like local variables, pointers, control flow, and function
calls. Such systems are therefore less relevant to high-level functional programming like data
wrangling. A 2013 review of program visualisation by Sorva et al. [208]], as well as a 2016
review by Hidalgo-Cespedes et al. [209]], exclusively concern themselves with imperative and
object-oriented programming, probably because functional array manipulation is considered to
be too abstract to belong to the category.

Another category is that of algorithm visualisation (AV). This has been an active area of
research since the 1980s, but it appears to have converged on a particular class of algorithms
common to object-oriented CS courses, such as sorting, graph traversal, tree manipulation and
dynamic programming algorithms. That was the case for Hundhausen’s influential AV meta-
review from 2002, and is still adhered to in AV studies from the past few years (e.g. [210]).
These algorithms have in common that they are general-purpose without any particular data
context in mind and that they do not involve relational operations. Thus viewed, both program

and algorithm visualisation appear to be of limited relevance to data wrangling.

3.4.2 Query visualisation

Multiple program visualisation systems exist for visualising SQL queries. Most of these sys-
tems are research prototypes deployed in individual courses, and few of them have been em-
pirically evaluated. According to a recent systematic review of SQL education [62], only two

visualisation-related studies included scientific data.

eSQL [211]]: The first query visualisation software is probably the eSQL system from 1997.
It shows a step-by-step display of how the result of a query is evaluated, intended for small
databases of educational use. A query like SELECT ... WHERE ... GROUP BY

will return an intermediate data table highlighting the rows satisfying the WHERE condition, and
another intermediate table highlighting the column selected from that subset, with blank rows

separating each group. The system was not empirically evaluated.

SAVI [212]: Like eSQL, it visualises a query through a step-by-step display in the same tabular
format, but unlike eSQL, it is browser-based and incorporates reversible animations to transition
between intermediate states, in addition to simple colour highlights and explanatory messages.

No pedagogical evaluation was reported.

CHAPTER 3. LITERATURE REVIEW 48

Figure 3.8: Diagram by Baumer [5]] illustrating a filter and pivot operation

Dietric etal. [213]: This unnamed system introduced interactive animations that explain database
concepts (e.g. decomposition, normalisation, primary and foreign keys) as well as how queries
work. Visually, the design is similar to eSQL and SAVI, in that the data is visible, and high-
lighting is used to indicate correspondences. A single-group study found that their assessment

scores increased significantly when using it.

SQL in Steps [214]: This is an online environment that allows users to develop queries in-
crementally, step by step. The user goes through a series of tabs corresponding to the possible
operators and specifies arguments via a menu. A live view of the result is visible, although it does

not incorporate any icons or multimedia principles. No pedagogical evaluation was reported.

viSQLizer [215]: A master’s thesis project that visualises query processing in a similar way
to SAVI, but with more selective animations that make them quicker to run. A small user study
compared it with another online tutorial lacking animations, and found that the results were

similar.

3.4.3 Explanatory diagrams

Graphics serve a central explanatory role in many textbooks and online resources that seek to
explain the semantics of various data operations. Baumer [5]] reported his experience teaching
a small data science course for liberal arts students with some programming experience. In his
course, 3 weeks were dedicated to data wrangling in R and SQL. He asked the students “to think
about a physical representation of what these operations do” and provided them with diagrams

like the ones shown in Figure [3.8] though no formal feedback was reported.

CHAPTER 3. LITERATURE REVIEW 49

3.4.4 Visual programming languages

Another strand of research concerns visual programming languages (VPLs), which refer to lan-
guages that are specified using a graphical interface, as opposed to mere visualisations of syn-
tactic code. This includes visual query languages (e.g. [216]]) and visual array manipulation
languages (e.g. [217,[218]). Most research in this area dates back to the early 1990s, and most
VPLs involve idiosyncratic visual grammars that are more symbolic than depictive, and there-
fore require considerable practice before making sense. Though interesting in their own right,

we will not explore these further, since our goal is to teach syntax-based programming.

3.4.5 Node-link diagrams

Node-link diagrams could be used to depict the structure of inter-related datasets, as with entity-
relationship diagrams. They can also be used to indicate dynamical relationships, such as the
transition between computational steps, for example depicting the data flow from one function
to the next [219]. Dataflow programming languages let users configure a digraph whose nodes
represent processing steps and whose links represent data flow. Modern, GUI-driven data mining
platforms for academic or professional use generally adhere to the visual dataflow paradigm.
These include RAPIDMINER [220], WEKA [221]], ORANGE [222]], KNIME [223]] and RED-
R [224]]. It is worth noting that, in these systems, the nodes themselves are generally black
boxes, though sometimes decorated with icons (e.g. [224]). As such, they may be well-suited for
orchestrating complex analytical pipelines, but less so for pre-processing tasks. No pedagogical
studies of these have been published.

Another flow-based innovation are the various visual formalisms that have been created to
facilitate SQL query writing and comprehension. For example, Taipalus has introduced a no-
tation for planning SQL queries [6] that captures the logic of the query, by representing it as
a graph where nodes are tables, edges are joins and specific columns or expressions appear as
properties (see Figure[3.9). Another formalism is used in the QUERY VIZ system [7] (see Figure
[3.10), which succinctly shows the attributes and relations relevant to a particular query, and var-
1ous line types and bounding box elements to represent SQL constructs. Neither system appears

to have been evaluated.

3.4.6 Dynamic previews

Kandel et al.’s WRANGLER system (which TRIFACTA is based on, mentioned in Section [2.3.3)
recommends data wrangling operations to the user via a menu. Each operation can be previewed
as a ghosted overlay within the data panel itself. This preview employs colour cues in various
ways to convey operation semantics. For example, as seen in Figure[3.11] deletion will highlight
the rows-to-be-deleted in red, and a table pivot will use colour to show correspondences between

the pre- and post-transformation states. Their user study observed that “users relied almost

CHAPTER 3. LITERATURE REVIEW 50

fname, sname fname, sname, alias

SELECT a.fname, a.sname,
r.fhame, r.sname, r.alias
FROM actor a, roler,
movie m, acts ac
WHERE a.actno = ac.actno
AND r.rolno = ac.rolno
AND ac.movno = m.movno
AND m.mname = ‘Physics 101°;

movno

mname

Figure 3.9: Taipalus graphical notation for relational database queries [6].

Iname="Bacon'

Y

A H

H

i id H
fname="Kevin'| |

[|

fname

Iname Iname="Bacon’] |
J

i
T |Inames

where yal.fnase = ‘Bevin
and yal.lname = 'Bacen')

Figure 3.10: QUERY V1Z visualises the meaning of a relational query using a novel notation [7].

entirely on the previews” with one participant noting they “just look at the picture” [8, p.3371].
This feature was in fact rated as significantly more useful than the direct manipulation interface.

Another preview functionality is provided by Zhang and Guo’s DS.JS system [9], a plugin
for manipulating data embedded within websites. DS.JS allows the user to click on a function
within the code, which will trigger a visual preview of the transformation accomplished by
it. The preview utilises cues such as highlighting to indicate selection, spatial separation to
indicate grouping, and arrows to signify transition (see Figure[3.12)). In their user study, featuring
learners with prior data analysis experience, it was reported that participants used the previews
extensively while acquainting themselves with the API. Among their suggestions, participants
suggested an ability to “freeze-frame” intermediate tables to have them persist after clicking on

an operation, suggesting a desire for more static visualisations.

3.4.7 Cheat sheets

RStudio hosts a popular collection of almost 60 cheat sheets that describe key R libraries and
APIs [10]. Most of them incorporate graphical thumbnails and mnemonics to illustrate oper-
ations and core mental models, alongside simple code examples, see Figure 3.13] On their

GitHub page El they outline a set of visual design principles for contributors to conform to. This

Shttps://github.com/rstudio/cheatsheets

https://github.com/rstudio/cheatsheets

CHAPTER 3. LITERATURE REVIEW 51

L]
o ne
3 L £
. Year n Property _crime_rate S et
O Reported crime in Alabama 1 18T W70
1.0 m
| ll | T TR
» i a3
2 Zaa4 4029 3 . was
1T 3710
3 Z@as joge i ewin_
10 e a1
4 2896 3037 11 s il
17 e aras @
5Z@a7 3o74.9 11 T]
11 e T
 FARR ARAR1 9
| ;-I | | I] - u] (]]
8 Reported crime in Alaska
[l | |
10 Zaad 33ve.9

Figure 3.11: Kandel et al.’s WRANGLER uses colour cues to help their users understand the
semantics of proposed operations [8|, p.3366]. Seen are deletion of rows and a table pivot from
long to wide format.

A R AL s DR e TR SEERUN QLR TEAM

PLAYER Praubew for greuphy(TEAM')

Figure 3.12: In Zhang and Guo’s DS.Js, clicking on a function triggers a preview that sum-
marises the operation. These images show filtering and grouping, respectively. IEI, p.697]

includes the use of a single highlight colour to be used throughout, a second colour for differ-
entiating groupings, clear groupings using boxes and background colours, and plenty of white
space. As they write, the cheat sheets are not meant as documentation, but as a quick reference
for just-in-time learning:

“A cheat sheet is more like a well-organized computer menu bar that leads you to a

command than like a manual that documents each command.”

The project is under a creative commons license and has, as of June 2021, 56 unique con-
tributors, 900+ forks and more than 2900 GitHub stars. While the cheat sheets have not been
subject to any formal evaluations that we are aware of, these metrics indicate an organically
grown popularity in the R community and beyond: Pandas has since released their own version
of a data wrangling cheat sheetEI, while DataCamp has created cheat sheets for NumPyﬂ Entire
communities exist that are dedicated to programming cheat sheets Elbut they do not necessarily
incorporate thumbnail graphics to the same extent.

6https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

Thttps://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy Python
Cheat_Sheet.pdf

8http://www.cheat-sheets.org/|and
https://opensource.com/downloads/cheat-sheets

https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
http://www.cheat-sheets.org/
https://opensource.com/downloads/cheat-sheets

CHAPTER 3. LITERATURE REVIEW 52

[| | o]] - data_frame(a=1:3, b= 4:6)
— |] - Combine vectors into data frame
= = (optimized).
— - arrange(mtcars, mpg)
gather(cases, "year", "n", 2:4) spread(pollution, size, amount) ﬁ';i'ffo"fﬁﬁ?‘f values of a column
Gather columns into rows. Spread rows into columns. arrange(mtcars, desc(mpg))
- Tl EEE = Order rows by values of a column
—> —> (high to low).
nem n "o an H rename{tb, y=year}
separate{storms., date, c("y","m", "d")) : unite(data, col, e sep) Rename the columns of 2 data
Separate one column into several. Unite several columns into one. frame.

Figure 3.13: Snippet from RStudio’s cheat sheet for the data wrangling library dplyr [10]

How are cheat sheets used in real life? A recent interview study with professional pro-
grammers suggests that programmers tend to use cheat sheets when switching between lan-
guages [225]. Pedagogical research into programming-related cheat sheets has mostly investi-
gated them as student-generated crib sheets to bring into exams. Hsiao and Lopez [226] found,
in the context of an object-oriented course, that these sheets tended to be organised and be more
likely to contain code examples than other kinds of syntax description. The average cheat sheet
only devoted 8% of the space to graphics but 40% of students systematically used highlighting
to emphasise content. In the exam, the level of organisation predicted performance in declarative
exercises, but not in exercises requiring procedural skills. De Raadt similarly permitted cheat
sheets in an introductory programming course and found that students who included abstract
representations (including diagrams) tended to perform better [227], while Hamouda and Shat-
fer [228]], in a similar context, found that cheat sheet level of organisation was predictive only for
comprehension, but not application. Of course, these observational studies do not reveal whether
the sheet design led to performance improvements, or if those who created diagrammatic and

well-structured sheets were already high-performing students.

3.4.8 Section summary

e The literature on programming and algorithm visualisation systems is mostly limited
to imperative and object-oriented programming of general-purpose algorithms. Several

query visualisation tools exist, but have usually not been empirically evaluated.

 Several dataflow programming technologies exist in which the user creates a data process-
ing pipeline by directly manipulating a node-link interface. Furthermore, diagrammatic
node-link notations exist for supporting query writing and comprehension. Again, these

have not been pedagogically evaluated.

* Dynamic previews, illustrating how a data transformation will operate, have shown to be

helpful and popular in two usability studies.

CHAPTER 3. LITERATURE REVIEW 53

* Cheat sheets, which typically feature thumbnail graphics, are a popular resource in data

science communities, but have not received much scholarly attention.

3.5 Scaffolding techniques

In this section, we will review instructional design innovations that focus on three stages of the
programming process - plan composition, API lookup, and example adaptation - since these are
the most amenable to graphical scaffolding. For each stage, we will discuss the role graphics
could serve in augmenting various scaffolding techniques, and propose a specific graphical in-
tervention. These proposals feed directly into our thesis statement, which states that subgoal

graphics, thumbnail graphics, and parameter graphics facilitate programmatic data wrangling.

3.5.1 Plan composition

Plan composition and program design have frequently been scaffolded by guiding learners to-
wards the type of top-down, breadth-first programming approach that research ascribes to ex-
perts. Pedagogical approaches on this theme have a long history, but have mainly been confined

to object-oriented software engineering and imperative programming.

Pattern-oriented instruction

Within imperative programming, top-down approaches have often assumed the form of pattern-
oriented instruction, which focuses on teaching transferable program design patterns explicitly.
The approach is most closely associated with the composition of algorithms that combine loop-
related patterns through nesting or interleaving (e.g. variants of loop with sentinel, loop with
flag) [144,229-231].

Such patterns are often practised through worked examples, a signature pedagogy in pro-
gramming education [161]]. Patterns could also be available for browsing within the IDE through
pattern libraries, as with Ebrahimi’s VPCL (Visual Plan Construct Language) [232] and Guzdial
et al.”’s GPCEDITOR [183]]

Examples of pattern-oriented SQL instruction do exist. Al-Shuaily [233]] developed a set of
patterns (e.g. dynamic filtering, subquery, self-join) where each pattern was described in terms
of its purpose, when it is applicable, and a set of query examples. An evaluation study suggested
that the pattern-oriented group had higher post-test scores compared with a control group given
standard lecture notes.

Overall, we would expect pattern-oriented approaches to have limited applicability in data
wrangling, since high-level patterns have mostly already been encapsulated by a function, (e.g.
map (), any (), all()). Because the functions are in general highly optimised, they can

be combined using simple pipeline sequences, without nestings or interleavings. The main

CHAPTER 3. LITERATURE REVIEW 54

challenge in data wrangling would instead be identifying the sequence of steps necessary to

accomplish the task.

Subgoal labels

Another well-documented scaffolding technique in CS education is subgoal labelling, which
refers to a way of augmenting worked examples by segmenting them into meaningful sets of
steps and annotating each segment with a short description. It can thus be seen as a form of
chunking. By making the structure more salient and the problem decomposition more explicit,
subgoal labels are believed to assist with schema formation [234]].

In multiple studies by Margulieux et al. [235-237]], subgoal labels were used to scaffold the
learning of block-based app development. In that context, subgoal labels were used to group
interface instructions (e.g. “l. Click on X, 2. Click on Y”) into more meaningful steps (e.g.
“Create component”). Across these studies, subgoal labels have been associated with higher
instruction completion rate and faster subgoal completion [234-236]] though not all studies have
replicated the result [238]].

In another manifestation of the scaffolding dilemma, some indications exist that self-generated
labels outperform instructor-generated labels [234], especially if encouraged through label place-
holders [239]. However, this has been partially contradicted by another study by Morrison et
al. [240]. That study involved loop patterns instead of app development, and subgoal labels
were instead of the type “Initialise variables” and “Determine loop conditions”. The experi-
mental group received subgoal labels, while a control group was given placeholders for writing
their own, self-generated labels, but no main effect was detected. In another study, this time us-
ing Parsons puzzles, those given labels performed higher [241]. In yet another study from 1998,
self-generated subgoal labels were incorporated as a feature of Guzdial et al.’s GPCEDITOR sys-
tem [[185]] where they were visualised as a tree in a separate panel. In their evaluation study, they
noticed that higher-ability students tended to skip past the subgoal-labelling step [185]. Over-
all this data pattern suggests that conclusions of whether instructor-provided or self-generated
subgoal labels are more useful are premature, and likely to depend on prior ability, domain, and
subgoal design.

It is worth noting that this subgoal-related research has mainly focused on labelling worked
examples presented before or simultaneous with the actual exercise. The provision of subgoal
labels without an accompanying solution - meaning, when there is no worked problem to base
the solution on, only subgoal labels - has not been explored. This label-only scenario may be
more applicable to API-reliant forms of programming like data wrangling, in which the learner

routinely seeks external information of how to implement a subgoal.

CHAPTER 3. LITERATURE REVIEW 55

1. Split rows based on region

2. Calculate the median income of each region

region median

>__

3. Take the largest and smallest median

region median

> |
4. Subtract the smallest from the largest

.

Figure 3.14: A demonstration of how subgoal labels could be augmented with subgoal graphics,
for the example from Section[3.2.2]

Subgoal graphics

In the programming domains that previous subgoal label research has been focused on - block-
based app development [234]], imperative loop patterns [240], and object-oriented Java pro-
gramming [242] - subgoals have not necessarily implied a visible change to a data structure.
A subgoal label like “Determine loop conditions” is difficult to visualise, but a data wrangling
label like “Filter the rows” produces an intermediate table that is straightforward to visualise
and highlight.

If we revisit the example running through Section [3.2] on the difference in median income
between the richest and poorest region, then we could use the proposed plan of Section [3.2.2]
as subgoal labels. Moreover, we could augment those labels with subgoal graphics (see Figure
[3.14) that visualise the state before and after a subgoal is accomplished, with colour used to

emphasise the structural change it necessitates.

CHAPTER 3. LITERATURE REVIEW 56

Such a feature would be consistent with the previous review of graphical scaffolding. When
viewed through Ainsworth’s DeFT framework [206]], a subgoal graphic can facilitate search
for information relevant to their understanding of the solution and help constrain the range of
inferences of what a subgoal label implies (e.g. how a subgoal modifies a data structure) .
Viewed thus, subgoal graphics serve a complementary role to subgoal labels. Moreover, in
providing a complementary representation, Ainsworth’s framework predicts that it can promote
deeper, more schema-conducive processing [206]].

Subgoal graphics are also consistent with the previously reviewed multimedia principles
[179] (see Section [3.3.3). Consistent with the segmenting principle, subgoal graphics segment
the solution. If placed immediately below subgoal labels, they observe the spatial contiguity
principle, and if they use colour to highlight subgoal-relevant changes, they observe the sig-
nalling principle. If exact data values are omitted, they also adhere to coherence principle, by
ignoring subgoal-irrelevant information.

We find no direct precedents for this idea in the review of data wrangling graphics in Section
[3.4] However, it is evident that SQL query visualisation tools like SAVI [212] and QUERY VIZ
[7] serve similar roles of visualising the logic of a solution, and theoretically could be used
to scaffold plan composition. It is also clear that the dynamic previews in WRANGLER (8]
and DS.JS [9] serve a similar purpose, albeit in that case of visualising a potentially promising
operation, not the solution. Neither instance features subgoal labels.

What potential impact would subgoal graphics have within the API-reliant workflow of a
data wrangler? When subgoal labels are formulated at an abstract level far removed from the data
structure, such as “Find each region’s median income” instead of “Split rows...”, then subgoal
graphics would constrain the translation of that label into data operations (i.e. a split-apply-
combine operation). Beyond plan composition, this could help learners formulate productive
queries when they are unfamiliar with the API’s preferred terminology, perhaps leading them
to search for “Split rows based on column”. Subgoal graphics may therefore help learners with
the last compilation step in converting the problem statement into executable code. Finally, it

allows them to verify the soundness of intermediate results.

3.5.2 APIlookup

We noted in Section [3.2.3] that implementing a program often requires looking up the syntax of
relevant operations on-the-fly, which is hampered by a lack of awareness of API-specific key-
words, difficulties with formulating and refining queries, and with deciding whether retrieved
documentation resources are relevant or not. Tools aimed at mitigating these hurdles are gen-
erally focused on reducing the need for text-based search, by either passively or proactively
displaying which operations are available and relevant. Moreover, to facilitate relevance judge-

ments, the tools generally attempt to provide short summaries of how each operation works.

CHAPTER 3. LITERATURE REVIEW 57

Transform Script import Export [l

» Split data repeatedly on newline into
rows

ED) Year Property_crime_rate
0 Reported crime in Alabama
1

> Split split repeatedly on ', 22004 4029.3
32005 3900
> Promote row 0 to header 42006 3937
Text Columns Rows Table Clear 512007 3974.9
62008 4081.9
7
Delete row 7 8 Reported crime in Alaska
9
Delete empty rows 10 2004 3370.9
11 2005 3615
Fill row 7 by copying values from above 12 2006 3582

Figure 3.15: Interface of Kandel et al. WRANGLER system [8]]

Mixed-initiative interfaces

Within data wrangling, one previously researched approach is mixed-initiative interfaces. These
are interfaces that proactively recommend data operations, often ranking them based on esti-
mated relevance [243]], as with the WRANGLER [8]] and DS.JS [9] systems (see Section |37_13[)
Usually these relevance estimates are based on community data-derived associations between
API commands and certain code blocks. Such a ranked list could be integrated into IDEs to
appear as a menu, within tooltips or through automatic code-completion.

The WRANGLER system, shown in Figure[3.13] has been evaluated twice, both times through
small studies featuring professional programmers. The first was a within-group study that com-
pared performance in Excel with a non-proactive version of WRANGLER that only recommends
operations based on user interactions (e.g. manual row selections) [8]. It found that WRAN-
GLER led to faster completion time, but that the efficacy of the mixed-initiative interface was
ultimately bounded by participants’ conceptual understanding of the operation and its relevance
to their problem. Otherwise, the authors notices, users risked getting stuck in a cul-de-sac:
upon choosing an incorrect operation, they would then be recommended further inappropriate
operations. In the second study, the same non-proactive version was compared with a proactive
version that suggested operations based on static analysis [243]]. The authors found that partic-
ipants often ignored proactive suggestions and only used them as a last resort, perhaps due to
insufficient visibility or a general distrust of popups.

Outside of data wrangling, the HCI field has experimented with IDE plugins that automati-
cally search for applicable code examples and retrieve them in an easily auto-integrated format.
One such system, BLUEPRINT by Brandt et al. [244]], was evaluated in a user study with profes-
sional programmers, and found that programmers performed better than the control group.

There are also some examples of recommendation engines for novices. Ichinko et al. de-
veloped a system called the THE EXAMPLE GURU that, based on static analysis of the current
code state, suggests context-relevant API commands [245,246]. The API in question was the

CHAPTER 3. LITERATURE REVIEW 58

Looking Glass API for 3D animations, which is programmed using a block-based editor. They
compared the use of the THE EXAMPLE GURU with a control condition that simply featured an
embedded documentation panel, and found that novice programmers used more than twice as
many novel API commands with the Guru. Importantly, the project was an open-ended project,

and did not have a clear end state the way a data wrangling task usually has.

Menu-based solutions

In less open-ended environments - as an educational workbench with a well-defined syllabus
is likely to be - the set of operations may be small enough for a static, menu-based solution
to be feasible. This approach tends to be used in block-based programming interfaces. Block
interfaces typically feature a palette - a static toolbox, usually displayed in a left-side pane, that
is designed to make the available commands easier to browse through. Often these are organ-
ised categorically or hierarchically [[177], and this structure could help scaffold the learner’s
own mental organisation of the domain. Moreover, Weintrop and Wilensky have noted [177]],
browsable categories form an easily navigable “memory cache” to inspire solutions and enhance
discoverability.

The cheat sheets reviewed in Section could be viewed as analogue versions of such a
palette - indeed, RStudio’s GitHub page characterise them as such [[10]. Following their finding
that most of their students’ R interpreter errors were due to misnaming of variable names, Rafal-
ski et al. [109] suggest providing cheat sheets of syntax and naming conventions as a teaching
tool. Therefore, although menu-based solutions have received little attention outside of block-
based contexts, there are reasons for believing that they could be an effective way of providing
documentation. This assumes that the programming domain is closed-ended, as with an educa-

tional syllabus, since more open-ended projects would require access to search engines.

Thumbnail graphics

For a static menu to be navigable, its overall structural organisation and the purpose of each in-
dividual command needs to be transparent. In block-based programming, the shape, colour and
names of blocks help signal their function. More generally, thumbnail graphics, graphical sum-
maries, are a common aid for facilitating the user’s evaluation of the contents’ relevance [247].
We already saw them in the context of documentation cheat sheets, in which they were used
to succinctly illustrate API commands’ behaviour. The dynamic previews of WRANGLER (8]
and DS.Js [9] can also be seen as instances of such thumbnails, and their user studies revealed
that those previews were extensively relied upon. While they have never been the subject of
their own dedicated experiment, there are reasons for believing that thumbnail graphics could

meaningfully enhance the navigability of a command menu.

CHAPTER 3. LITERATURE REVIEW 59

3.5.3 Example adaptation

In Section |3.2.4f we noted that the eventual step of code implementation can be hampered by
opaque API documentation, a failure to understand code examples, and difficulties in making
the necessary adaptations to code examples in order to integrate them into the solution. Scaf-
folding aimed at lowering these barriers would presumably guide the example adaptation either
directly, by providing a partial example-to-problem mapping, or indirectly, by improving the

visual presentation of code examples.

Inherent documentation

Modern APIs already come equipped with extensive inherent documentation [69] that integrates
documentation into the IDE, via intelligent code-completion and tooltips that show a function’s
syntax signature when a function is clicked upon within the code. This prevents the user from
having to continually cross-reference with an external documentation source, which in turn is
likely to facilitate example integration. The efficacy of these is ultimately bounded by the clarity
of the API: if the parameter names are unclear, and if the documentation is verbose, they would
be of limited utility. Even if the future makes auto-parameterisation of functions an IDE standard
(as with the SNIPMATCH plugin [248]]), the user needs to be able to verify the soundness of its

suggestions.

Fill-in-the-blank exercises

In online data wrangling platforms like DATACAMP (datacamp . com) and DATAQUEST
(dataquest . io0), a typical course consists of slideshows that present example code snippets
of a particular API command, and then asks of the learner to invoke that command on another
data set. In DATACAMP, the exercises are often scaffolded by providing a partial solution with
fill-in-the-blank fields, leaving a few function names or arguments blank. Often more and more
steps are omitted over time, to help students transition into independent problem-solving, as
with faded worked examples [249]. Fill-in-the-blank exercises thus serve to constrain the range
of possible errors that a participant can make in their configuration of an API command. Such
exercises can be automatically generated [250], and computational notebooks like Jupyter are
well-suited for delivering them [251]].

Theoretically, this could be scaffolded even further, by narrowing down the possible argu-
ments into a multiple-choice question. Block-based editors provide their own version of this: the
creators of BLOCKPY argued that, since block primitives can be configured through drop-down
menus and togglers, they are especially well-suited to the heavily parameterised design of data
science APIs [96].

Whether fill-in-the-blank exercises are preferable ultimately depends on the value attached

to keeping the programming experience authentic or not. Encountering an empty code editor is

datacamp.com
dataquest.io

CHAPTER 3. LITERATURE REVIEW 60

likely to arouse anxiety in a complete novice, but this could be theoretically mitigated by other
means, for example by gradually increasing the complexity of the problem, and through the

provision of subgoal labels.

Code example design

Examples can be made easier to comprehend through certain design considerations. For exam-
ple, syntax highlighting is a near-ubiquitous feature in code editors and syntax documentation
alike, and serve to visually separate language keywords from variable identifiers and arguments.
There are also other design dimensions worth considering. A study analysed the characteris-
tics of popular answers on StackOverflow and found that, compared with low-scoring answers,
popular answers tended to be concise and to omit less relevant code [252], consistent with the
coherence principle of multimedia theory [[179]]. Examples also tended to highlight the most crit-
ical elements (observing the signalling principle) and to divide the code into smaller steps (the
segmenting principle). Another finding was that popular answers tended to use the same context
as the question, effectively saving the poster the effort of having to do the example adaptations.
Others have experimented with visual formatting dimensions. Ichinco and Kelleher [253]]
asked children what they noticed in a set of block-based example code snippets, which varied in
their style of visual emphasis: using a drop shadow, arrows, or outlines combined with fading.
They found that students were most successful when critical code snippets were given a drop
shadow. Another study by the same authors [254] tested the ease with which programmers
recalled elements from block-based versus textual code examples. While the code examples in
blocks used bounded boxes to visually separate keywords from arguments, the textual code only
used syntax highlighting. The study found no strong differences associated with format.
Providing a prose explanation of how the code example works is not necessarily beneficial
to the example integration. In yet another study, Ichinco et al. [164] explored three ways of an-
notating examples within block-based environments. This included providing a brief summary
of code behaviour, line-specific annotations, and highlighting of critical code elements. The
study found that the three types are better than a complete absence of annotations, but that the
three styles did not significantly differ in their associated performance levels. Another study, by
Thayer et al. [[115], manipulated the extent to which participants received explanatory annota-
tions while completing tasks in unknown JavaScript APIs. They obtained mixed results, where

annotations improved progress only in some tasks, possibly due to annotation quality.

Parameter graphics

Example adaptation requires the learner to mentally map the example context to their problem
context. This presumably would be easier if the learner had a clear expectation of the param-
eters defining a particular command, and if the representation of these parameters remained

consistent across APIs. For example, metasyntactic variables like foo and bar are used across

CHAPTER 3. LITERATURE REVIEW 61

languages [163] and, by the same token, variable names like df for dataframes and col for a
column identifier could theoretically be standardised for data wrangling APIs. Alternatively, the
role of a variable could be signalled within the documentation through a graphic that visualises
the parameter (e.g. the dataframe or column). Graphics could thus serve as placeholders to sig-
nal to the user “what goes where”, reducing the need to peruse lengthy documentation entries.

Parameter graphics have not been previously explored in the literature.

3.5.4 Section summary

* Plan composition in data wrangling problems is highly amenable to subgoal labelling,
since the plans are usually simple sequences of steps. Subgoal labels could theoretically

be combined with subgoal graphics that visualise each step.

* In educational settings, API lookup can be scaffolded through menu-based solutions,
which could be either static or powered by a recommendation engine. Thumbnail graphics

could theoretically make the menu entries easier to comprehend.

» Example adaptation could be scaffolded by providing partial example-problem mappings,
as with fill-in-the-blank exercises. The visual appearance of examples, such as segmenting
and highlighting, could also benefit the process. Consistent parameter names or parameter
graphics that depict the parameter could help the user comprehend which value should be

passed where.

3.6 Conclusion

Data wrangling involves a complex, iterative workflow with three core stages: plan composition,
API lookup, and example adaptation. Each of these involve cognitive demands that vary in their
relevance to the task and to schema acquisition. Various graphical scaffolding strategies could
be used to increase the salience of more schema-relevant information. For example, plan com-
position could be scaffolded through subgoal labels and subgoal graphics. API lookup can be
scaffolded through menu-based solutions that incorporate thumbnail graphics. Example adapta-
tion can be scaffolded through documentation sources that utilise multimedia design principles,
and potentially also parameter graphics that illustrate the argument that should be passed to a
particular parameter. However, whether subgoal graphics, thumbnail graphics and parameter
graphics have added pedagogical value, beyond that provided by simple text, has not been pre-
viously researched, and forms the research subject of the current dissertation. Hence, our thesis
statement is that subgoal graphics, thumbnail graphics, and parameter graphics facilitate

the learning of programmatic data wrangling.

Chapter 4

Method

A research programme is shaped by a number of considerations. Some of these concern value
judgements regarding which methodological properties should take priority over others. Others
concern philosophical commitments regarding what abstract concepts like population, effect and
measurement actually mean in a particular context. Still others involve practical realities, such
as the cost of recruitment, logistics and other resource constraints. This chapter aims to make
these background assumptions explicit and justify the chosen research method, which is a series

of small exploratory studies culminating in a larger, more summative capstone study.

4.1 Breadth versus depth

One of the most consequential dilemmas a researcher is presented with is the exploration-
exploitation trade-off: whether to allocate limited resources in a deep or broad fashion. A
depth-first research programme would focus on providing a maximally reliable answer to a sin-
gle question, which would involve an extensive validation process and repeated replications.
By contrast, a breadth-first approach would spread the focus more widely, answering multiple
questions, but sacrificing their answers’ reliability in the process.

Nelson and Ko offer a useful framework for describing how CS educational researchers
can choose to allocate their resources [11]]. In Figure {4.1] three different allocation patterns
are shown. If the goal is to advance a learning theoretical explanation, then an educational
intervention only needs to be adequate, not a perfectly polished ‘“high-fidelity” intervention,
and most resources are instead spent on validating measures and conducting a high-powered
experiment (the top pattern). However, if the goal is to optimise learning in a specific domain
such as data wrangling, it makes sense to focus on broad design explorations, sampling as many
parts of the design space as possible (the bottom pattern), without ambitions to test a general
learning theory.

This dissertation is concerned with evaluating the impact of a particular pedagogical inter-

vention, namely graphics describing data wrangling operations. Such graphics inhabit a design

62

CHAPTER 4. METHOD 63

Nelson & Ko (2018) Framework of
CS Education Theory Use

Fixed resources to allocate Contribution to:

: L 7 Desi
. Design Explanation . Experiment eory Lesign

Explanatory goals only - _ ‘ .
Explanatory & design goals _ - ' .
pesign gous oy [mmmm o @

Figure 4.1: CS education research generally faces a trade-off of whether to contribute to theory
advancement or design progress. This dissertation is mainly focused on refining and evaluating a
particular design feature (Design goals only). Diagram adapted from Nelson and Ko [11, p.34].

space, defined by dimensions like colour palette, whether or not data are included, whether high-
lights are used, and so forth. These graphics will be embedded in an instructional design context
that is likewise subject number to a long sequence of design choices. Although digital platforms
routinely make such fine-grained design choices on an empirical basis using A/B testing, that ba-
sis is often made up of 10,000s of roaming online visitors. Without such a vast participant pool,
it is down to exploratory studies and the experimenter’s own intuitions to develop the materials.

In this case, this means that the intervention (the graphics) and the accompanying apparatus
(a data wrangling tutorial) will be developed with relatively little rigour, based on the literature,
small pilots, and to some extent personal judgement. However, once this exploratory design
process has converged on a particular design, the task becomes one of creating generalisable,
reliable knowledge regarding the pedagogical effects of data wrangling graphics. After a main
design variant of the graphics and apparatus has been chosen, even though it represents a virtual
sliver of the design space, it will therefore be submitted to a large summative trial. Most of
the remaining chapter will discuss considerations regarding this larger capstone study involving

SLICE N DICE, our e-learning platform for data wrangling instruction.

4.2 Observational versus experimental designs

This dissertation is interested in making causal claims: do tabular graphics cause educationally
relevant effects? Such causal questions could be answered with varying degrees of rigour. By
rigour we mean the design’s ability to eliminate competing, equally plausible candidate expla-
nations for any observed effect.

One approach we could have chosen would have been to make use of naturally occurring

data, as part of an observational design. For example, the graphical aids could have been made

CHAPTER 4. METHOD 64

available for students to use, and the number of times they were accessed online could have
been correlated with the observed performance in a data wrangling assignment. Such a design
would be unobtrusive, naturalistic, and cheap to administer. However, it is likely that those
seeking graphical aids are more motivated or curious than those who do not. Observational
educational studies are likely to overestimate effects [255]], even when potential confounds have
been controlled for [256]].

This is why the capstone SLICE N DICE study will follow an experimental design. It is
worth remembering, however, that causation is not the only aspect that matters when evalu-
ating an intervention: whether students voluntarily seek out graphical aids, and whether they
are organically popular, remain important predictors for actual usage and adoption. For these

questions, which we will not cover, observational data do have an important role to serve.

4.3 Randomised controlled trials

In designing educational experiments, an implicit analogy is often drawn between the evaluation
of an education intervention, and that of a therapeutic intervention. The latter are typically
conducted using a randomised controlled trial (RCT) design. Generally considered a “gold
standard” in medical research, an RCT effectively simulates a counterfactual: using random
assignment, systematic differences in baseline characteristics are removed between groups. Any
group differences that result are therefore attributable to the treatment, making RCTs an ideal
instrument for causal inference.

RCTs are rare in CS education research, however: according to a 2016 review, they made up
only 3-8% of recently published research [257]]. Several structural reasons could help account
for this: educational RCTs are resource-intensive to conduct, and face obstacles that clinical
RCTs do not have. In this section we will identify such issues and specify how they will be

addressed.

4.3.1 Specificity of the intervention

In a clinical trial the intervention is generally reproducible - little will vary from one vaccine
injection to the next - but the administration of an educational intervention is rarely codified to
that degree [37,258]. This is especially the case when the intervention is human-delivered, as
teachers could interpret the intervention differently [259]. To ensure the intervention’s integrity,
the most scalable solution would be to computerise it completely, which is what we will do.

It is important to note that such a specificity in the intervention also implies a specificity in
the claim. In using a completely fixed intervention, we are not testing the “effect of graphics”,
but rather the effect of a specific set of graphics in a very specific task. Theoretically, this lack of
generality could be ameliorated by loosening up the design specifications, or by seeking repli-

cations by others [258,,260]. For example, we could have recruited a group of teachers to create

CHAPTER 4. METHOD 65

their own graphics and evaluated those, to gauge whether the description of subgoal graphics
and thumbnail graphics are reproducible enough. However, such a range is not necessarily a
priority, since the graphics themselves could be reused. In our case, we content ourselves with
knowing that the materials will be made available, and remain cautious of extrapolating any

claims beyond this particular set of graphics.

4.3.2 The choice between rigour and generalisability

The degree of control in the intervention has a close analogue in the degree of control over the
circumstances in which participants engage with it. Within clinical trial design, efficacy trials
take place under laboratory conditions that are kept as consistent as possible, to maximise the
statistical power and rigour. Effectiveness trials, meanwhile, strive for field-based settings rep-
resentative of the target environment in which learning is likely to occur, to ensure that that the
effect remains meaningful across variable contexts. The trade-off between rigour and general-
isability mirrors that between depth and breadth: the more robust you want a finding to be, the
noisier conditions you will have to test the intervention in and, muddling the causal account.

We have already established the intention to computerise the study, but computerised studies
vary in their control. An ideal efficacy trial would have taken place in a laboratory setting,
where the student sits in an isolated booth, instructed to leave the smartphone in the pocket and
to concentrate on the task at hand. A more naturalistic study would be more like a MOOC,
where the participants choose their location and schedule their practice as they please.

How robust do we want our documented effect of data wrangling graphics to be? Both
efficacy and effectiveness trials face up against recruitment as a limiting factor. In principle, a
highly controlled efficacy trial would have been the more desirable option, for reasons that have
to do with the need for statistical power (see Section@). However, such a strict experimental
protocol would have been difficult to recruit for: laboratory conditions, even where remote, incur
a degree of discomfort, making it unlikely for volunteers to sign up to it without compensation,
which for multi-hour tutorials quickly become prohibitively expensive. They would also be
inappropriate during COVID-19, and not scaleable.

Therefore, we settled for an online at-home study, which arguably hits a sweet spot that rep-
resents a realistic learning scenario in which many end-user programmers learn data wrangling
today, while also being relatively shielded from extraneous factors like collaboration among

participants, or excessive tutor assistance.

4.3.3 The logistics of separating conditions

The decision to computerise the study and let students complete it at home helps address another
issue: that of randomly allocating and then blinding participants to their assignment [261]]. Even

for computer-mediated interventions, if embedded within a physical classroom, there is a risk

CHAPTER 4. METHOD 66

of students peeking on each others’ monitors and thus inferring the experimental manipulation.
While a clinical trial participant is unlikely to understand the details of their treatment, university
students may have sophisticated understandings of pedagogy themselves, and therefore second-
guess the manipulation. Solutions to this generally require physical separation, such as letting
students complete the experiment from home, in which case the only risk to participant blinding

would be if they share their screens with each other.

4.3.4 Designing a fair control condition

An RCT implies a control group, which in medicine is straightforward enough: the patient
receives a biochemically inert placebo, or the currently mainstream treatment benchmark. In
education, however, there is rarely an “inert” condition available, or a standard practice default.
This makes the idea of comparative effectiveness - of optimising education through head-to-head
comparisons among alternatives - difficult to implement.

It is probably for this reason that CS education research is dominated by single group de-
signs, with neither a control group nor baseline [257]. The issue with such designs is that, as
stated by Cook, they effectively ask “If you teach them, will they learn?”, which in itself is not
informative, as teaching tends to beget at least some learning [262]]. Equally, if an educational
study has a control group that is not given any intervention, it just confirms that learning is
possible [258]. To constitute a fair comparison, the control group must be given materials that
appear to be just as pedagogically potent, and what Larkin and Simon have called information-
ally equivalent [204]: the control group cannot be denied information that is necessary, or an
obvious shortcut, for succeeding in the task.

A related issue is the need for effect interpretability [258]]. If an intervention and its control
condition vary along more than one dimension, we cannot know which dimension we should
attribute the effect to. If one object is blue and square, and the other is red and round, we do not
know whether the preference for the latter is due to its shape or colour. If we gave 50% of the
participants a carefully designed tutorial that incorporated graphics, and gave the other 50% an
excerpt from a standard textbook, we do not know whether the superiority of one is due to its
use of graphics or other characteristics.

What would an appropriate control condition be for data wrangling graphics? The most
straightforward control condition would be textual subgoal labels and menu descriptions, and
for the treatment condition provide subgoal graphics and thumbnail graphics in place of text,
by way of a 2x2 factorial design. This would allow us to state that one kind of representation is
superior to the other, assuming that they were kept reasonably informationally equivalent.

Providing text is not incompatible with providing graphics, however. On the contrary,
Ainsworth’s theory of multiple representations [206]] suggests that text and graphics could act
in synergy by complementing each other. It would therefore be more informative to let the ex-

perimental conditions provide graphics in addition to (not in place of) textual descriptions. This

CHAPTER 4. METHOD 67

means that performance improvements can be directly attributed to the addition of graphics, and
allows us to potentially measure their “added value”.

The second choice - which is the one used in SLICE N DICH] - is not immune to criticism.
One could argue that providing two complementary representations biases the comparison, by
giving the experimental group access to more information. However, the provision of an ad-
ditional representation is not a guaranteed bonus: it could be both redundant and distracting.
Another drawback is that the subtlety of the experimental manipulation can make any true effect
difficult to pick up. This drawback, which is a serious one, will be addressed in Section @

4.3.5 Attention as a mediating variable

In clinical trials, it can generally be ascertained whether the treatment was properly received
by the patient. By contrast, a student’s engagement with data wrangling graphics is largely
covert [37]]. By itself, a simple RCT design cannot disentangle whether an intervention’s null
effect was due to inherent defects, or whether the learner simply ignored it. To do so, one would
have to measure the participants’ attention to the intervention, since attention mediates its effect.

Conversely, if there is a measurable effect, but attention levels are higher in the treatment
condition, that would suggest that it is its motivational properties, rather than cognitive proper-
ties, that is the “active ingredient”. One could also argue that the distinction between “failure to
teach” and “failure to motivate” is inconsequential, because motivation is a necessary prerequi-
site for learning. However, if the graphics merely serve to motivate, educators could search for
cheaper and more targeted ways to motivate, such as verbal encouragement.

A computer-based apparatus allows us to capture engagement metrics such as cursor move-
ments and keyboard presses. Short of brain imaging and eye tracking, digital instrumentation
presents the most scaleable way of measuring whether data wrangling graphics are actually at-

tended to, which is the approach we have gone for.

4.3.6 The lack of educational measurements

In a clinical trial, the dependent variable could be hospitalisation rate or blood pressure. In
education, the dependent variable is generally a complex and vague knowledge construct, op-
erationalised through an arbitrary set of exercises. Even a quantitative metric, such as time on
taskﬂ or the proportion of correct responses, is only interpretable in the context of that specific
set.

Because of the arbitrariness inherent to educational measurements, and the lack of obvious
controls in educational research, there is a high risk of using treatment-inherent measures [263]).

For example, if one group is taught data wrangling using graphics, while the control group is not,

"With one exception: in SLICE N DICE’s operation cards, the descriptions will be either graphical or use a
syntax-like representation.
>We use time on task to denote completion time, to distinguish it from time off task such as time of inactivity.

CHAPTER 4. METHOD 68

then a treatment-inherent measure would be one that asks participants to depict their solution
graphically, or to identify a graphically depicted solution. This creates a circularity: if the test
involves graphics, then the most effective training will almost certainly also involve graphics.
As a result, experimenter-made measures are associated with inflated effect sizes [264].

One way of mitigating this in theory is to use standardised instruments or concept inventories
as shared benchmarks. Unfortunately, the scarcity of such instruments in CS education severely
restricts which research can be done [2635]]. Validating an instrument is a long, iterative process
that requires a sample size of several hundreds [266]. Once validated, it is at immediate risk of
saturation (e.g. being made accessible online [267]) and Goodhart’s Law (i.e. becoming a target
that the educator overfits the intervention to). For the purpose of evaluating graphics, it is simply
not cost-effective.

The way we have addressed this issue is by measuring performance through an actual pro-
gramming task, for example using time on task, completion rate, and number of incorrect at-
tempts. These are still intrinsically meaningless (in the sense that they only make sense in terms

of the specific exercise set), but are at least neutral with respect to graphics.

4.3.7 Ethical implications

In an RCT, a clinician may assign some people to a potentially detrimental treatment, or withhold
a superior treatment from them. For this reason, RCTs should ostensibly only be conducted
when there is genuine uncertainty regarding the therapies’ relative merits (so-called equipoise
[268]). However, because directional hypotheses tend to be what justifies a study in the first
place, genuine equipoise is rare [269]].

At first sight, there are few ethical issues attached to educational RCTs - certainly noth-
ing comparable to those faced by medical researchers. Educational interventions are generally
non-invasive, and impart at least some benefit - just more or less of it. Nevertheless, course
performances contribute to grade averages, and grade averages matter to career success. To mit-
igate any such inequities, the British Educational Research Association (BERA) recommends
delivering the intervention to the control group after the study has been concluded [270].

In the current case, we do not have true equipoise - based on the literature review and subjec-
tive beliefs, we have stated directional hypotheses that subgoal and thumbnail graphics improve
a variety of metrics. Consistent with BERA’s recommendations, we will offer participants a
post-experiment remedial resource that includes graphics, so that the control group also can

avail themselves of them.

4.3.8 Recruitment of volunteers

To ensure the availability of participants, the most efficient way of recruiting would be to embed

SLICE N DICE into the delivery of a course, perhaps even measuring performance via the mid-

CHAPTER 4. METHOD 69

term or final exams, thus guaranteeing both recruitment and retention at no added cost. But when
the design is an RCT, and when the task is cognitively taxing or of no direct relevance to their
course performance, this becomes harder to justify. Furthermore, it depends on the sustained
and extensive involvement of a lecturer in co-designing and organising the tests and materials.
A stressed academic may have little incentive to do unless education is their primary research
field.

This leaves us with unpaid volunteers and a non-credit bearing opt-in mechanism. The
dependence on unpaid volunteers presents its own threat to validity, however, as the more in-
trinsically motivated students would be more likely to volunteer for it - the very students who
could probably learn the topic successfully on their own anyway. Attrition may similarly be
non-random. Such volunteer biases may be partially mitigated through post-hoc analyses, but
will unavoidably haunt any volunteer-dependent RCT. Furthermore, the lack of direct, academic
stakes could also affect data quality, as participants may not be motivated to do their best.

Another issue with relying on volunteers is that, to obtain high retention rates, a minimally
viable research prototype probably would not be enough: SLICE N DICE would have to be as
sleek, attractive, and intrinsically rewarding as possible. Relying on volunteers to sign up also
means the researcher has to divert significant resources towards marketing.

Despite the numerous drawbacks and validity threats associated with volunteer-based edu-
cation research, it is the only affordable solution for a mid- to large-scale RCT. The diversion
of resources into making the intervention attractive could be touted as a benefit: it makes the
materials more directly reusable, since it does not require instructors to create their own polished

implementation of it.

4.3.9 Process metrics and product metrics

In a typical educational RCT, there is a distinct training stage, in which the intervention is
manipulated and where mediating variables such as engagement and other interactions may be
recorded. This is then followed by a test stage, where the scaffolding and feedback mechanisms
are removed, and which is designed to test more durable learning achievement. Metrics of the
former kind are sometimes called process data, while the latter kind is called product data. In
their review of CS educational measurements, Marguliex et al. [271] called for researchers to
include both, which computerised instrumentation readily permits.

In our study, we were wary of a design that separated training from testing. The issue mostly
arose from the reliance on volunteers: asking of participants to complete tests without any feed-
back would require them to commit time to something they did not learn from immediately, and
may trigger frustration or test anxiety, increasing the risk that they drop out. Although we did
introduce one test-like condition in which scaffolding was temporarily removed for a certain
time limit, mostly we were interested in making the learning process itself more efficient. We

argue that, if data wrangling graphics improve the efficiency with which participants look up

CHAPTER 4. METHOD 70

syntax and infer which operations to use, then that fluency would translate to shorter time on
task and fewer errors when aggregated across the entire exercise set.

Expensive as independent samples are to acquire, we also decided to collect a wide array
of subjective metrics from each participant. This is not pure data greed: it is possible that
the behavioural, cognitive and attitudinal effects of an intervention vary in their magnitude or
direction. However, since it is difficult to make confident, well-supported predictions for all

such variables, the study also becomes more exploratory than strictly confirmatory.

4.3.10 The challenge of statistical power

Looming large among the discussion of RCTs is the statistical concept of power, i.e. the proba-
bility of an experiment detecting a true effect. The issue of under-powered studies has dominated
meta-scientific commentary for more than 30 years [272]. Much of this discussion has revolved
around sample size. In psychology, the median cell size in 2011 was 24 [273]. A CS educa-
tion review of 2013-2017 papers, conducted by Margulieux et al. [271]], found that quantitative
studies had a mean size of 401 and a median of 100 participants (probably on account of quasi-
experimental classroom interventions). Because small samples have higher standard errors, they
have a higher false negative rate and a higher false positive rate, meaning that the observed effect
is more likely to be a fluke [274].

The sample size necessary for a study depends on a priori estimates of the effect size. How-
ever, unless a study forms part of a long series of replications (which are very rare in CS educa-
tion [275])), there is usually little to anchor this estimate in. Furthermore, effect sizes are highly
context and procedure-dependent [255]: perhaps counter-intuitively, rigorous RCT designs tend
to show smaller effect sizes [264]. A 2019 meta-analysis of large-scale (n>1000) educational
RCTs suggests that average effect size is around 0.06 SDs [276], which, if used for sample size
calculations, would mean that 20,000 participants would be necessary [276]. Even for regular
“small” effect sizes, the required sample size (for a power of 0.8) is around 800.

One reason for the disappointing effect sizes of large RCTs is that multi-institutional stud-
ies are inevitably nested into smaller classes such that sample heterogeneity risks offsetting
any gains in precision conferred by the larger sample size [37]. As a result, according to Nor-
man [37]], interventions “will likely be lost in a sea of unexplained variance” and are often not
worthwhile. As a solution to this catch-22, Norman proposes focusing instead on reductionist
efficacy trials with homogeneous samples [37] that are then replicated across many labs [277].
However, this brings us back to the expenses and logistical challenges of recruiting for efficacy
trials, leaving us between a rock and a hard place.

The work undertaken in this dissertation lacks a clear precedent to base a priori sample size
calculations on. Given its randomised, experimental, and reductionist nature, we should expect
the potential effect to be small. Though we aimed to recruit widely to achieve a sample size of

at least 200, take-up within each individual cohort it was advertised to was not large enough for

CHAPTER 4. METHOD 71

Norman’s vision of a homogeneous sample [37] to be feasible. Instead we recruited small num-
bers from multiple institutions, and relaxed homogeneity restrictions. To boost power, our main
strategy will instead be to collect interaction data from the experiment, since short-term vari-
ables and process variables tend to be more responsive to interventions than post-test achieve-
ment variables [255,276]. Ultimately, however, we must face up to hard, practical constraints
and accept that even an educational RCT with hundreds of participants may fall shy of desir-
able power benchmarks, and that pedagogical effects are realistically smaller than the existing

publication record may suggest [255]].

4.4 Conclusion

From our review of methodological considerations, and from our experience in conducting the
parameter graphic study of Chapter [5] a research programme emerges that begins with an ex-
ploratory, iterative refinement process, and ends with a large RCT. This RCT will be admin-
istered through an e-learning platform, called SLICE N DICE, since e-learning permits easy
randomisation, reduces contamination, and ensures reproducibility. To economise with partici-
pant requirements, it will manipulate the provision of subgoal graphics and thumbnail graphics
as independent factors of the same study. Numerous dependent variables will be measured,
to capture multiple aspects of data wrangling graphics’ impact, and because proximal process
variables are more statistically powerful than product variables.

Theoretically such a tutorial could be integrated into an existing course. That has many
benefits (participant supply among them) but it could also be open to roaming online visitors.
To appeal to as broad an audience as possible, and fit into as many course contexts as possible,
it would need to be short and generally applicable (i.e. not tailored to a particular subject). One
could think of such an e-learning tutorial as a “capsule intervention”, to be slotted into a variety
of contexts.

A capsule intervention would incur no extra effort on the lecturer’s behalf (indeed, it would
potentially save them effort) or any risks of interfering with a pre-existing curriculum. It could be
embedded in a tutorial, as preparatory reading before the course starts, or simply as homework.
Depending on local ethical guidance, it could provide formative feedback or simply exist as an
optional activity. This allows the study to be more easily launched in multiple institutions, and
thus adds generalisability, albeit at the cost of statistical power.

An open capsule tutorial like SLICE N DICE would not be without weaknesses. Like any
low-stakes voluntary activity, it would have to be carefully designed to be intrinsically enjoyable.
It may have to support multiple programming languages in order to have wide enough appeal,
and volunteer bias is likely to be an issue.

Chapter 5
Parameter graphics

This chapter documents two studies undertaken within the first third of the doctoral programme,
which resulted in a 2019 publication [278]]. Both studies involve a paper-based experiment in
which volunteers completed example adaptation exercises in three different languages (SQL, R,
and Python), aided by a short tutorial and a set of syntax cheat sheets. The cheat sheets incor-
porated parameter graphics: small icon graphics representing the type of value that should
be passed to a particular placeholder slot within the API command syntax. Study 1 presents a
single-group study that trials the use of parameter graphcis, while in Study 2, a random sam-
ple of the participants were given a control condition in which these parameter graphics were
removed, thus forming an RCT. The main goal was to measure whether the parameter graphics
improved example adaptation performance, to address

Like later research, this project centres API lookup and code example adaptation as skills that
can be explicitly taught, and presents a graphical scaffolding technique to facilitate it. Unlike
subgoal or thumbnail graphics, however, parameter graphics do not visualise a data structure
being wrangled. Rather, they visualise something more abstract: information needed to con-
figure the data operation. As such, they are not directly continuous with later research, but the
studies nonetheless played a formative role in shaping the remainder of the research programme,
by laying bare the logistical challenges of “unplugged” programming research, which will be

discussed towards the end of the chapter.

5.1 Background

The act of looking up API syntax requires continually comparing API documentation and exam-
ple code with a particular problem context. This requires parsing code examples to understand
what each identifier represents. Suppose you have searched for “How to average each group”,

with the intention of aggregating the prices of various car brands, and the results yield the fol-

"'While the order of the research questions reflect the programming workflow, the dissertation is chiefly organ-
ised in chronological order.

72

CHAPTER 5. PARAMETER GRAPHICS 73
lowing sample snippet:
animals.groupby ('species') ["height'] .mean ()

Adapting this example to your current problem context involves analogising, a process that
Gentner called structure-mapping [279], in which species and car brands are brought into align-
ment as corresponding attributes, and as instances of the more abstract placeholder column to
group by.

The challenge of parsing a code example could be characterised as one of cross-referencing:
it requires spatially separated, mutually analogous sources of information to be continually com-
pared. Itis spatially separated, because a description of the API syntax may be either completely
absent, embedded in surrounding documentation paragraphs, or put in lengthy parameter de-
scription lists. Similarly, your own problem context may be in a separate IDE window and not
easily juxtaposed with the code example. The process of figuring out “what goes where” in
a function signature consequently involves cross-referencing between the code example, code
example explanations, and problem context. If cross-referencing is cumbersome, it presents one
of the most straightforward sources of extraneous cognitive load, as already discussed in Section
When multiple pieces of information need to be integrated, the distance between them has
no intrinsic value, except possibly training the working memory. Reducing this burden would
be especially pertinent to programming novices whose working memory is more likely to be

already near capacity.

5.1.1 The split-attention effect

Within multimedia design theory, the phenomenon of cross-referencing as a source of task-
irrelevant cognitive load is referred to as the split-attention effect, or equivalently, the spatial
contiguity effect. It is most typically exemplified by the case of a picture and explanatory caption,
for which the effect predicts that spatial adjacency leads to better performance in tasks that
depend on the working memory [280]]. Experimentally, the evidence for this effect is robust:
a recent meta-analysis by Shroeder and Cenkci found that integrated designs perform better
in a variety of different domains [281]. The reason for this is that spatial separation requires
the learner to repeatedly search for related information, a search that exacts a cognitive cost
and further requires them to store information in working memory for longer [282]]. The cost
incurred by spatial distances appears to cause learners to avoid engaging in integrative activities,
as indicated by eye-tracking studies [280], and consequently leads to measurably worse learning
outcomes [281]]. While this research has not covered programming education specifically, it
provides plausible grounds for believing that spatially scattered API documentation hampers

the learning thereof, as well as programming productivity in general.

CHAPTER 5. PARAMETER GRAPHICS 74

Solutions to the split-attention effect

The split-attention effect has been addressed throughout distant and recent history via an assort-
ment of typographical and digital innovations that facilitate the search. Consider the footnote, a
late 16th-century device for avoiding the clutter of marginal or interlinear annotations [283]]. Tra-
ditionally, footnotes linked references to their referents by way of arbitrary symbols (e.g. * or)
or numbered superscripts. Another technique common in technical diagrams are pointer lines or
arrows connecting graphical components with corresponding explanations, which eye-tracking
analysis has suggested leads to more integrative eye movements [284]. Another technique is to
highlight corresponding element with the same colour, which is associated with higher scores
on multiple-choice post-tests [285] and retention tests [286].

On paper media, these solutions would all have to be static, which means that graphical
features meant to connect elements add clutter that potentially could distract the user. With
hypermedia, more adaptive and action-dependent solutions become possible. For example, con-
necting lines or colour codes may appear only when the user hovers over an element. Another
solution is to use fooltips: text boxes that pop up by the cursor upon hovering to help resolve the
referent.

More specific to the API lookup case, we discussed in Section [3.5.3lhow code example adap-
tation could be facilitated by various design conventions for argument placeholders. One such
convention is metasyntactic variables [163]], where identifiers are replaced with standardised
names like s (for a Pandas Series object) and df (for a DataFrame object). Another such
convention is to standardise the data set, so that variables have context-specific names, but from
a familiar context, the most popular probably being Fisher’s iris data set [287], which is often
used in the Tidyverse documentation. A third convention is to use self-documenting identifiers,
such as dataframe. Each of these solutions has its own advantages and drawbacks. Meta-
syntactic variables are succinct but tend to require at least some upfront learning to make sense.
Standardised data sets likewise require upfront learning of its schema, and are mostly useful
for reproducible code snippets (since they do not require structures to be built from scratch).
Self-documenting identifiers do not require learning, but risk being verbose and - unless syntax
highlighting is employed and learned in advance - may be difficult to distinguish from keywords

and syntactic elements.

5.1.2 Icon-based API cheat sheets

One potential way to achieve both succinctness and semantic clarity is to use icons. Iconic rep-
resentations as stand-ins for textual syntax have previously been used in geometry. Consider the
1847 edition of Euclid’s Elements by the Irish mathematician Oliver Byrne [288]]. The edition is
remarkable in how it replaces all letters representing geometric elements with colourful graphics

of the same shape and colour as them, shown in Figure Byrne claimed his method meant

CHAPTER 5. PARAMETER GRAPHICS 75

For, fince and . are, cach of them, in A”ay methods cheatsheet d5itips
a femicircle, they are right angles (B. 3. pr. 31), 77 CO-0)
- u — (B. 1. pr. 28): L’DDH map . OOOO
and in like manner ——] " . -
. OAOA sweo a0
And becaule ‘ ! (contt.), and ;
) e
........... S Y - Y @XC RN 7) 7
o — S — (B 1. pr. 4):
and fince the adjacent fides and angles of the parallelo- O D O D Findzndle L T) 3
(a) Excerpt from Byrne’s edition of Euclid’s el- (b) Sutkowski’s JavaScript API cheat sheet on
p y p
ements [288, p.131] array methods [290]].

Figure 5.1: Examples of educational resources where icons replace purely symbolic notation.

that the book could now be “acquired in less than one third the time usually employed, and the
retention by the memory is much more permanent” [288, p.ix], an intuition that although empir-
ically untested foreshadows the split-attention effect. Byrne’s work has been given pedagogical
attention before [289]], but the efficacy thereof has never been addressed through an experimental
design.

Without apparent connection to Byrne, similarly styled resources have recently gained pop-
ularity in JavaScript online communities, in the form of API cheat sheets. For example, in 2020
software engineer Tomek Sutkowski authored a widely shared E| tweet with a cheat sheet for
array methods, where colour was used to identify the positional identity of an array element,
and shape represented an arbitrary second characteristic [290]]. The cheat sheet, seen in Figure
[5.1b] has since spawned various adaptations. As a metric, social media popularity is sensitive
to several confounds, but it does provide a meaningful signal that a broad class of learners find
the resource intuitively helpful and valuable, and the likelihood of adoption is high. Could an
equivalent resource be developed for data wrangling?

5.1.3 Parameter graphics in data wrangling

In the domain of data wrangling, a closer analogue to Byrne’s graphics would be graphics repre-
senting the arguments used to configure an API command. We may refer to such representations
as parameter graphics. For example, if we limit ourselves to operations involved in the typical
split-apply-combine pattern or SQL SELECT query, we may identify the following pieces of
information as candidates for parameter graphics (“parameters” in a loose sense, since not all

are explicit function parameters):

Columns to join by: if we wish to perform an inner join on two tables, using SQL’s INNER JOIN,
then this requires the user to specify which columns to join by. It could be represented as

two matching columns (1),

ZAs of August 30th 2021, it has received more than 9400 likes and been shared more than 3200 times [290]].

CHAPTER 5. PARAMETER GRAPHICS 76

SELECT b () SELECT AVG(Age)

FROM FROM Table

GROUP BY GROUP BY Class
HAVING HAVING AVG(Age) > 25;

Figure 5.2: The parameter graphics provide placeholders for passing arguments and other infor-
mation that configure an API command.

Condition to filter rows by: a row filtering command like SQL’s WHERE. . . . requires the user

to specify a condition, which could be represented graphically as a row (==).

Columns to select: a column selection like SQL’s SELECT . . . requires the user to specify the

labels of a set of columns, which could be represented graphically as a column ().

Columns to group by: a grouping like SQL’s GROUP BY. .. requires the user to specify the
labels of a set of columns to split rows by, which could be represented graphically as three

rows, representing groups (==).

Function for aggregating: an aggregation like SQL’s AVG (. . .) requires the user to specify
the function to use when aggregating rows. It could be represented as a triangle, evoking

a many-to-one operation ().

Condition to filter aggregates by: after an aggregation a user may wish to filter the resultant
aggregates using SQL’s HAVING, which requires the user to specify the condition. It could

be represented as a rounded triangle, similarly evoking a many-to-one operation ().

To be understood, these graphics would still require some degree of upfront learning, but
they can be captured by short examples, such as that shown in Figure[5.2] Having learnt them, it
is furthermore possible that they would facilitate query planning by encouraging the participant
to parse elements in the problem context in terms of them. To use the example in Figure
upon reading an exercise prompt like “What is the average age of all classes whose average age
exceeds 25?7, the learner may tentatively try out which parameter graphic “average age exceeds
25 or “classes” correspond to. This could be compared to the technique used by Qian [291]],
who described explicitly training students to consider keywords like “who are...” as a cue for a
WHERE clause, “return the...” as a cue for the SELECT columns, and “per/each/every” as a cue

for GROUP BY. The learner may thus be sensitised to a particular schema.

5.1.4 Multilingual cheat sheets

By making salient the various inputs a particular operation requires, on a level of abstraction
higher than that of a specific programming language, parameter graphics may also be well-

positioned to serve as keys to a Rosetta stone for writing scripts in multiple data scientific lan-

CHAPTER 5. PARAMETER GRAPHICS 77

guages. This reflects the fast-paced reality of modern data science workplaces where practi-
tioners are expected to be programming polyglots. The structural similarities between the three
languages have been taken advantage of before. For example, Baumer [5] and Broatch et al. [24]
have reported teaching SQL and R in conjunction, and found that students mostly enjoyed it. In
the studies described later in this chapter, cheat sheets will be created for SQL, Python (Pandas)
and R (dplyr). This also creates an incidental within-subjects variable, which we could oppor-
tunistically explore in terms of whether certain languages are more amenable to the cheat sheet
treatment than others.

As discussed in Section [2.4] SQL, Pandas and dplyr all have strong commonalities due to
their shared roots in Codd’s relational algebra [[119,292]. As a result, they all offer convenient
support for the above-mentioned data operations. However, they also have syntactic character-
istics that set them apart. SQL is distinctly declarative in how it specifies what output is wanted
instead of how to achieve it, and combines commands through nesting rather than sequencing.
This feature could mean that commands are harder to combine. Compare this with R’s dplyr,
which is usually used with a pipe operator, allowing functions to be chained together into a
sequence (e.g. df %>% group_by (A)). Python Pandas too allows methods to be chained,
but using the dot operator (e.g. df .groupby ('A")). It is plausible that the functional and
segmented nature of R and Python makes them more appropriate for cheat sheets, since a cheat
sheet can only fit a finite number of code examples, and with a chained rather than nested syntax,

it may be easier to generalise how to combine operations.

5.2 Research questions

On the topic of parameter graphics, and their role as a key for multilingual code examples, there

are several research questions we would like to ask:

RQ3a. Using parameter graphics, could a beginner in data science implement queries in

three unfamiliar languages in less than 2 hours?

For a sense of how rapidly beginners can become versed in parameter graphics and use them
to author short data wrangling scripts, some benchmark is required. One option is to choose an
educationally relevant time cut-off. 2 hours represents a common tutorial duration length, and
if participants could demonstrably author relational queries in 3 unknown languages within that

time frame, the activity would seem well-suited as a tutorial assignment.

RQ3b. Do learners score worse in SQL compared with the other languages?

Does SQL’s nested syntax make parameter graphics and cheat sheets harder to utilise? We

hypothesise that performance scores will be lower with SQL than with Pandas and dplyr.

CHAPTER 5. PARAMETER GRAPHICS 78

RQ3c. Will a learner’s accuracy increase if they are trained using parameter graphics?

If the effect of parameter graphics is experimentally isolated, does it provide measurable value
beyond what a graphics-free set of materials would? We hypothesise that total performance

scores will be higher in a sample that uses parameter graphics.

RQ3d. Will a learner’s time on task decrease if they are trained using parameter graphics?

All else being equal, we want the time taken to accomplish a task to be short. If parameter
graphics reduce the time taken to see correspondences among code examples and problem con-
text, and similarly reduce the time it takes to look up the meaning of code example parameters,

then we expect time on task to be shorter for participants given such graphics.

5.3 Tutorial design

To probe the effect of parameter graphics, they would have to be embedded within an instruc-
tional context. A tutorial was designed with the goal of teaching beginners how to author queries
using relational operations in three languages. This tutorial was accompanied by a set of cheat
sheets and exercises for each language (R dplyr, Python Pandas, and SQL). All of these tutorial
components formed part of the intervention, and so the dependent measure was the performance

in the exercises rather than a separate post-test.

5.3.1 Tutorial

The tutorial was designed as a six-page paper booklet. It was paper-based in order to allow anno-
tation and reduce distractions. Since many participants would be complete beginners, there was
arisk of them being stalled by compiler errors or becoming stuck in a monkeys-and-typewriters
situation. There was therefore no code execution or direct feedback available.

The tutorial assumed no prior knowledge of relational operations, and therefore began with
explaining the concept of a table, and all the six operations mentioned above. Each operation
was explained using a graphic featuring sample input and output, with colour highlights to draw
attention to selections and correspondences. Along the way, the tutorial introduced the parameter
graphics and the entities they represent (e.g. the conditions to filter by, the columns to join by).
To scaffold the participant’s parsing of an exercise (see Section [5.3.3)), six worked examples
were provided that explicitly identified which entities in the problem context corresponded to
the parameter graphics. Finally, there were six practice exercises where participants could try
out identifying the entities themselves. Two pages from the tutorial are shown in Figure[5.3]and
the full version is in Appendix

CHAPTER 5. PARAMETER GRAPHICS

Querying tables:

The following are the main operations used for (A 5 C i
queries. Each has an associated “component”. oy that
Selecting rows S eion I

Sometimes we wish to select certain rows based on a cri-
terion. For example, we only want the cases whose Date is
later than 2000-01-01. RSB C

Let's symbolise this criterion as a green row:== Other possi-

ble criteria are: -
e Directoris “James Cameron”

e Name is not “Mamma Mia!”

e Dateisin January

Selecting column C.

i C |
Selecting columns
We may only be inferested in one or several atiributes (col-
umns). For example, we may ultimately only be interested
in the Directors.

Let's symbolise this list of columns as an orange col-
umn: . Other possible lists are:
e Date
o Al
e Date, Name
Summing column C:

Aggregating columns
We often want to “aggregate™ one or several columns. This
means finding a single-value summary for it. For example,

we may want to find the number (count) of all directors.

Let's symbolise this aggregation function as a cyan

rectangle: . Other functions are:

e Sum

e Average (mean)

® Max
Grouping dataframe by cok-
umn A%

Grouping rows before aggregation AB C

Whenever we aggregate a column, we often wish to have
a separate summary value for each separate group of

data. For example, suppose the Movie table had a column AB C
“Genre". Then we may want a count of all movies in the]
thriller-genre, in the romcom-genre and so on. =

Let's symbolise the column we “group by" as a red rectan- AB C
gle:

(a) Page 4 in the tutorial booklet.

Piecing the operations together:

In order to process a query, we need to translate a natural English sentence into
these types of query components. For example, a typical query would be:

aggregated? We cansstart annotafingt....

“For dll cases where BEGbOVe 4, what is th

for al cases,

This is the uggregq/ Cis lhesmumn we

We only seem Amust be a cate.

concerned with tion function eventually want the gorical attribute that
rowswhere B>4 required averge splits all rows into
We can summarise what Then, have alook athow
each types of component Columns c these components are used
cormesponds do: Row citteda Bs4 for a sequence of operations
that start with the original
Aggtunction [Average table and retums the informa-
Groupby == A fion that the query asks for.

1. Selecting rows
i

inis a group atribute
ou group based on
-value

==

Don't care too much about ordering. Our focus is on the ability to translate Eng-
lish into our list of components.

(b) Page 5 in the tutorial booklet.

79

Figure 5.3: Excerpts from the tutorial booklet explaining each opertion in turn and introducing

parameter graphics along the way.

CHAPTER 5. PARAMETER GRAPHICS 80

5.3.2 Cheat sheets

The tutorial teaches students an abstract schema on how relational operations can be chained
together, and trains them to parse problem descriptions in terms of the parameter graphics. In
order to turn these abstract solutions into API-specific syntax, it remains for the participant
to consult a cheat sheet. These sheets were meant as a superficial lookup table: it does not
explain how the language’s paradigm or basic constructs work, nor does it discuss details in data
structures and related API concepts. In terms of Thayer et al.’s concept of robust API knowledge,
the understanding conferred would be necessarily brittle [1135].

Each cheat sheet contains seven usage patterns, which may contain one or more operations
and are meant to exemplify how operations in the language are combined. In order, it contains
column selection, row filtering, row filtering and column selection, aggregation, split-apply-
combine, split-apply-combine and aggregate filtering, and finally joining. For each entry, there
is a thumbnail (the same explanatory graphic as in the tutorial sheet), a code example with
parameter graphics, and a code example without them. For an example, see Figure [5.9a] The

cheat sheets can also be found in appendix

5.3.3 Exercises

Three exercise sheets - one per language - were created containing six exercises each. As shown
in Figure [5.4] the participant is given the schema of two tables as the problem context, which
all six exercises will be about. Alongside each exercise there is a list of all parameter graphics,
meant as cues to scaffold the participant’s structure mapping, just as they had been doing in the
tutorial.

The exercises get progressively more difficult: in each sheet, the first exercise always in-
volved a simple selection or filtering, the second exercise a combination of these, the third a
simple aggregation, the fourth a grouping and aggregation, the fifth two operations together with
a join, and the sixth a join and filter aggregate (i.e. HAVING. . .). Each language had its own
unique set of exercises. For example, Python exercises dealt with recipes while SQL exercises
dealt with flights. The computational and linguistic complexity of exercises were controlled
manually to ensure that they were equally difficult. This control procedure involved grouping
operators based on complexity (e.g. column selection and row filtering were regarded as equal,
join and grouping were regarded as equal) and equalising the number of instances per group
across exercises.

Exercises were meant to be accompanied by cheat sheets, and are either isomorphic to one of
the patterns provided on the cheat sheet, or they require the participant to attempt a combination

of operations that is not featured explicitly in the cheat sheets.

CHAPTER 5. PARAMETER GRAPHICS 81

Recipes Cookbooks

N@me Author Nr_served Type C Bookname Author Cuisine

LA A BB R AL R R R R R RN EREREEENENENENENL EE NN E R R SRS

Which recipes are of type dessert? What are the cuisines of Jamie Oliver's

books?
Tabie Table [l GG k Lﬁ?“ﬁ,
Columns Columns a‘_,_lay neg

Row crilerio e AUJ’LQ("'_J?"" e O“W

Agg funclicn

Row criteria
Agg function
Group by Group by E:-_v
Janingcondiicn || Joringeonditon ||
Agg-crifeda g

Cgok!szS [A‘"H"'"' “Ja""""’— OL‘I"’“"] .Cuisine

Agg-oritenia

Figure 5.4: The two first exercises in the Python sheet. The second contains a real participant
response.

Marking scheme

A marking scheme was developed to assess the accuracy of participants’ responses. This mark-
ing scheme emphasised the correct selection and ordering of operations, as well as the correct
choice and location of parameter values. Crucially, the scheme ignored errors attributable to
obvious typos, or to information they impossibly could have known, such that AVG in SQL cor-
responds to mean in R (any function name suggesting the computation of an average would
have qualified). Similarly, the fact that the equality operator = in SQL is expressed as == in
R was ignored (they were free to express their condition using pseudo-code, as long as it was
comprehensible). The rationale behind these were that these errors that could easily have been
corrected in response to feedback in an execution environment, or that were due to omission of
information, given the scope of a 2-hour experiment and single A4 cheat sheet.

The scheme worked similar to edit distance in that 1 point was deducted for each instance
of substitution, omission, or irrelevant insertion of an operation. Additionally, 1 point was
deducted for the incorrect choice of parameter values (e.g. wrong filtering criteria). Half a
point was deducted for a redundant operation that did not impact the result. The six questions
were weighted 1,2,2,3,6 and 8 points, respectively. This means that the maximum score per
language was 22, and the maximum possible score overall was 66. The minimum possible score
was 0. The scoring was done by a single rater. When the same rater rated a sample of 10 exercise
sheets 2 years later to gauge intra-rater reliability, scores were the same for 54 of the 60 exercises

(90%), with unreliability mainly in the last exercise of the exercise sheets.

CHAPTER 5. PARAMETER GRAPHICS 82

Counterbalanced

|
Tutorial SQL Python R

Figure 5.5: Study 1 used a single-group design in which participants were first given the tutorial,
then the cheat sheet and exercise sets for each language, in counterbalanced order.

5.4 Study1

The first study involved a sample of participants that consisted exclusively of beginners, as this
would allow us to see whether example adaptation exercises would require prior programming
experience in order to be feasible. All participants in this study were given materials with

parameter graphics.

5.4.1 Method
Design

A single-group design was used with one independent within-subjects variable (language). Two
dependent variables were measured: one product measure (the score) and one process measure
(time on task). Although this single-group design allows of no comparison-based claims re-
garding parameter graphics’ efficacy, we will reserve RCT designs for Study 2 and here use a

within-subjects design to heighten power and reduce ethical concerns.

Procedure

Ethical approval was obtained by the local college’s ethical review board. Participants signed
up to a 2-hour time slot on a one-by-one basis and were welcomed into a quiet room on campus.
They were asked to read through a consent form. To reduce evaluation apprehension, this form
underscored that it was not an aptitude test, but a usability study for evaluating the materials.
Following this, they were handed a short demographic survey and the tutorial booklet. They
were instructed to read it at their own pace, but were also told that it was not recommended to
take more than 40 minutes to read it. Upon finishing the tutorial, they had the opportunity to
ask questions, and were subsequently handed the first exercise booklet with the accompanying
cheat sheet. Languages were counter-balanced for each participant to prevent order effects (see
Figure [5.5), but not counter-balanced with respect to exercises (e.g. Python was always paired
with the same exercise set). Participants were instructed to “take their time, but if they ever got
stuck, to skip past it”.

Time on task was recorded by the experimenter, from the moment that participants were

CHAPTER 5. PARAMETER GRAPHICS 83

Self-reported prior experience

SQL R
3 4 5 1 2 3 4

Self-reported experience

Excel

3 4 5 1 2 1 2 3 4 5

Figure 5.6: Although some participants had basic experience with procedural Python, most
students had no experience in SQL or R, according to their own ratings (1="No experience at
all”, 5="I can do complex commands in it”).

Python

—
n

ot
=)

Number of participants
9]

2

(=]
I-‘-

5

given the tutorial booklet until they completed the entire exercise set. We therefore did not
record time per language, which would have allowed us to compare languages in how quickly
their exercises were completed. Although we had left the schedule empty to allow participants to
complete the task at their own pace, the next slot sometimes came directly afterwards, leading to
occasionally overlapping sessions with two participants in the room simultaneously. Of course,
we could not prevent participants from scheduling in appointments after the agreed-upon time
slot, leading to a natural time frame within which completion was implicitly expected. Upon

completion, the participant received £5 in compensation for their time.

Participants and recruitment

27 participants were recruited from a local CSO0 introductory course in programming that just had
begun covering basic Python (procedural, not data wrangling), as well as a third-year engineer-
ing class that covered elements of procedural C programming. Out of these, only 20 participants
(15 women, 5 men, median age=19) remained for the analysis, as 5 withdrew mid-experiment
for different reasons, 1 participant misunderstood the task, and for 1 participant time on task
was not recorded. All participants were recruited on an extra-curricular basis; participation was
not credit-bearing. Everyone had some previous exposure to programming, as confirmed via a
questionnaire, but could nevertheless be characterised as beginners. Figure 5.6 shows the result
of a survey Likert-scale item asking participants to rate their experience (1="No experience at
all”, 5="T can do complex commands in it”) in 4 data-related technologies: respondents mostly
lacked any experienced in R and SQL, but some reported intermediate Python experience. We

assume this reflects the basic Python competence in the CSO course.

CHAPTER 5. PARAMETER GRAPHICS 84

5.4.2 Results

RQ3a. Using parameter graphics, could a beginner in data science implement queries in

three unfamiliar languages in less than 2 hours?

RQ3a posed what amounted to a feasibility test: is it possible to complete the example adaptation
exercises within 2 hours? We noted previously that the 2 hour threshold, though ultimately
arbitrary, represents a common tutorial length, and means that the activity could be completed
in a single tutorial session.

When looking at the distribution (Figure[5.7a), the overall time on task (reading the tutorial +
completing the booklets) was, in median terms, 108 minutes (range=44-161min, IQR=30min).
It appears that, 10 minutes before the scheduled slot was about to end, participants tended to
hand in their materials. 70% (14 out of 20) handed in the cheat sheets within 120 minutes.
While that ratio is impressive, time on task in our context indicates the time taken until they
handed it in - not until all exercises were correctly completed. It is possible that they handed in
a haphazardly completed booklet set, especially given that the payment was unconditioned on
accuracy and stakes overall low. Therefore, an additional threshold needs to be set for the score.
If we set this threshold to be 45, they scored on average 15 (out of 22, i.e. 68%) in each of
the three sets. This intersection of criteria - visualised in Figure - leaves 8 participants out
of 20. Seen this way, only 40% successfully completed the task within 2 hours. If the limit is
placed at 43, this becomes 50% - not insignificant for a group of participants with either minimal

or zero prior knowledge in programming.

Discussion. Whether the observed completion ratio is satisfactory or not will, absent a control
group, depend on the criteria we set. It is clearly possible for complete beginners to solve simple
to moderately complex queries example adaptation problems in unfamiliar languages, and for at
least half of the participants, it is feasible within 2 hours. As a threat to validity, the actual time
spent was presumably influenced by external cues, such as their other scheduled commitments

and participants arriving for the next slot.

RQ3b. Do learners score worse in SQL compared with the other languages?

To determine whether languages differed in the ease with which example adaptation was per-
formed, we begin by plotting the three score distributions as box plots (Figure [5.8b). We had
hypothesised that SQL would have lower scores, but it is visually clear that SQL scores are con-
centrated towards the upper bound (median=20, IQR=2.9), while scores in R (median=12.75,
IQR=4.9) and Python (median=13.25, IQR=4.6) are scattered more widely.

To determine the effect of language, we sought to perform a one-way within-subject ANOVA.
Following the removal of the left-extreme outlier seen in Figure [5.8a] normality was tested

through a Shapiro-Wilks test, which found that, except for SQL, group distributions were not

CHAPTER 5. PARAMETER GRAPHICS 85

Time on task in minutes The relationship between
s time and score
£ 60 ® e
2 g e
=4 1
e 2 50 e %
~—
i E 40 lo® | At
2 = o
S : ° o °
S o 1
7] [}
21 70 '
= &= 20 1
Z |
0 o |
40 80 120 160 40 80 120 160
Time of task (min) Time on task (min)

(a) The distribution of time of task durations. Dashed (b) The association between time and score.
line shows the median. Light blue means a time below 120 and
score above 45.

Figure 5.7: Plots relating to the total time on task in Study 1.

significantly different from the normal. Mauchly’s Test of Sphericity indicated that the assump-
tion of sphericity had not been violated (W=.93, p=.52). The result indicated that there was a
significant language effect F'(2,36)= 37.8 (p<.05). We can therefore reject the null hypothesis
that language does not influence accuracy scores. As an example of a post-hoc paired 7-test,
SQL has significantly higher scores than Python #(18)=8.2 (p<.001) 95% CI [4.2,7] with a mean
difference of 5.6.

Discussion. Despite the fact that exercises had been carefully controlled for the intrinsic com-
plexity between languages, the study found a significant main effect in language, with SQL
ranking the highest in accuracy. This is contrary to expectation, which reasoned that partici-
pants would struggle with its nested syntax. The result could mean that the English-like nature
of SQL syntax overrides any confusion relating to the nesting of statements, but alternative ex-
planations are also viable, including that the R pipe-operator or Pandas method-chaining are
confusing. It is also possible that the high score for SQL is a subtle selection effect: key opera-
tors were chosen based on the Venn overlap between the three languages, and given that SQL is

the least expressive language, SQL is also more optimised for these operations.

5.5 Study 2

To address RQ3c and RQ3d, which sought to evaluate parameter graphics from a comparative
effectiveness perspective, a second study was conducted that introduced a control condition. As

a matter of pragmatism, it was necessary to recruit participants from more experienced classes,

CHAPTER 5. PARAMETER GRAPHICS 86

Total score Score depending on language
2 1
= 20
=
2 ! s
[3) o
o = 2 =]
Z ' S —a®
s l E |8 °
e 2
E 1 é 12
=
=
4
0 8 ®
20 30 40 50 60 R SOL Python
Total score (out of 66) Language
(a) The distribution of total accuracy scores. Dashed (b) Box plots with the distribution of scores
line shows the median. for each language. Boxes indicate medians
and IQR.

Figure 5.8: Plots relating to the accuracy distributions of Study 1.

since those students tended to be more intrinsically motivated and therefore more likely to sign
up. Unlike Study 1, the participants here are likely to have had some prior data wrangling

experience in R.

5.5.1 Method
Design

Study 2 follows an RCT design in which participants were randomly assigned to one of two
conditions as a result of manual booklet shuffling. The first condition contained parameter
graphics, and was identical to that of Study 1. Designing the control condition presented the age-
old methodological dilemma, where too subtle a change makes the effect undetectable, and too
large and multi-dimensional manipulations reduce informational equivalence of the conditions
[204] and therefore the experiment’s internal validity. The approach we settled on was to keep
the difference small: the control booklet contained the same examples and practice exercises
on how to recognise the required operations, but without mention of the icons (see Figures [5.94]
and[5.9b). Again to assert informational equivalence, exercise sheets contained concrete sample

input and output for each operation, instead of thumbnail graphics with parameter graphics.

Procedure

Procedurally, Study 2 was identical to Study 1, except that participants were also allocated to
a condition based on the physical shuffling of experimental materials. There was one small

difference: as participants mostly had previous R experience, R was consistently given as the

CHAPTER 5. PARAMETER GRAPHICS 87

Syntax:
. . Selecting columns . SELECT Name
Syntax: Example: FROM Students;
Selecting columns
o @ .
= SELECT SELECT Name
: FROM [; FROM Table;
X : Selecting rows . SELECT*
Selecting rows . . —
ot : . FROM Students Darivs | 19 2
S SELECT * SELECT * o WHEREAge>18;) i
FROM FROM Table .
m . WHERE = ; WHERE Age > 18; Selecting both . SELECT Name
- : + FROM Students Darivs
: + WHERE Age > 18; o
Selecting both . N
¢ SELECT SELECT Name .
© FROM FROM Table i :
M 3 Aggregating columns ¢+ SELECT AVG(Age]
= * WHERE = WHERE Age > 18; . FROM S,Ude(mg) ﬁ
ting col .
Aggregating columns *SELECT) (1) SELECT AVG(Age) . .
= . FROM FROM Table; Grouping rows before = SELECT AVG(Age) Class_ mean(Age)
= = : aggregation + FROM Students 0 | 16
g - GROUP BY Class; n v
Grouping_rows before 21k
°99'99°"°"-_ S OSEECT b (1) SELECT AVG(Age)
] © FROM FROM Table " N
F GROUPBY = GROUP BY Class; Fitedng aggregates 2 iggﬁTsi\u\gi(r:??e) Clos mwn
- : : 2 | es
| o . : GROUP BY Class
) = . « HAVING AVG(Age) > 17;
Filtering aggregates . .
0 aggreg S SELECT b (1) SELECT AVG(Age) :
: FR}SMP . g?é‘ag%?lecloss Joining tables . SELECT*
. : SA%%G = HAVING AVG(Age] > 25: . FROM Students INNER JOIN Classes | auarey | 16 10 2
o : » ’ . ONTablel.Name = Table2.Name; won | 7 | 1 »
Joining tables . SELECT* SELECT * . Cecy [18 | 12 2
© FROMIIINNER JOIN FROM Table] INNER JOIN Table2 vais | 19 | 12 | 2
ON ON Table1.Name = Table2.Name; :
u U7gg
(5]

(a) The experimental condition contains param- (b) The control contains a code example and
eter graphics as well as a code example and post-state graphic for each operation.
thumbnail graphics.

Figure 5.9: In Study 2, people were given one of two cheat sheet styles. Shown are excerpts
from the SQL cheat sheet. The tutorial booklet was similarly produced in two variants.

CHAPTER 5. PARAMETER GRAPHICS 88

Self-reported prior experience

Il Control [l Experimental

Excel SQL R Python

ipants

15

5
, Hm IIIII- —||I-|l ..IIIIII _||II-
2 3 4 5§ 1 2 3 4 5§ 1 2 3 4 5§ 1 2 3 4 5§

1

Number of partic
s

Self-reported experience

Figure 5.10: The control group and experimental group had a mostly similar distribution of
experience, though the control group appeared more experienced with R (1="No experience at
all”, 5=“I can do complex commands in it”).

first exercise sheet, with only SQL and Python mutually counter-balanced.

Participants and recruitment

44 participants were recruited through email advertisements at introductory programming courses
offered at the local university, during the first three weeks of the semester. We focused re-
cruitment on non-CS programming courses (including statistics, psychology, biology and data
science) since the students were likely to have an intrinsic motivation to learn programming,
and were representative of the target audience. By manually shuffling the experimental book-
lets, participants were randomly assigned to either the parameter graphic condition (n=19, 13
female) or the control condition (n=25, 16 female). The unbalanced cell sizes reflect the fact
that we employed pseudo-random assignment, as opposed to alternating assignment, and that
recruitment ceased once all local programming courses of relevance had been contacted. In Fig-
ure[5.10} showing responses to the same experience survey as in Study 1, we see as expected that
participants report having R experience. The samples exhibit similar experience levels regarding
Python and SQL, but the experimental group appears slightly more experienced in Excel, and
less experienced in R. We are satisfied that baseline differences are unlikely to confound the

results.

5.5.2 Results

RQ3c. Will a learner’s accuracy increase if they are trained using parameter graphics?

We had hypothesised that participants with parameter graphics would perform more accurately
in the exercises. To compare the two groups in their performance, we began by plotting the

distributions, shown in Figure [5.11] The control group appears to have a wider distribution

CHAPTER 5. PARAMETER GRAPHICS 89

Score depending on condition Total score
3
60 o od
ho . g g
. = =
Q 4 ®, 21 g
) o® — £ S,
S o=
2 50 " @ £
= y 0
o =
e \ 53
g o® N = -
S | 2 >
40 Z =3
1 5
Il -
=4
o 0
Control Experimental 40 50 60
Condition Total score (out of 66)
(a) Box plot showing the group differences. (b) Histogram showing the group differences.

Figure 5.11: Differences in total score distribution between the experimental group (with pa-
rameter graphics) and the control group (without such graphics).

(median=50, IQR=15) compared with the experimental group (median=53, IQR=10.25). The
difference in central tendency does not translate to a clear group separation in the density of
scores, as neither distribution conforms visually to a normal distribution. As determined by a
Wilcoxon rank sum test, the two distributions are not significantly different (W=213, p=.57).
We therefore lack sufficient basis for rejecting the null hypothesis that parameter graphics do

not affect scores.

Discussion. If the null hypothesis is true, one conceivable explanation is that the parameter
graphics added cognitive load by introducing partially arbitrary graphical jargon. However, with
so few (7) icons to memorise, it is not a satisfying one. Another possibility is that the slightly
higher prior experience of the control group offset any pedagogical benefits of the experimental
group. The null effect could also be a methodological artefact: it is possible that our choice
of control condition erred on the side of being too subtle for the difference to be picked up,
especially by an outcome measure that, besides being able to substitute variables, also depends
on the ability to abstract problems and combine operations. It is possible that a more proximal

process metric would have been more affected by the inclusion of parameter graphics.

RQ3d. Will a learner’s time on task decrease if they are trained using parameter graphics?

Our prediction had been that parameter graphics would lead to shorter time on task. Upon in-
specting the distributions of Figure [5.12] the data appear to show the opposite pattern, where
the control group (median=8 1min, IQR=22) appears to concentrate around a shorter time dura-

tion than the group with parameter graphics (median=103min, IQR=20.5). Since Shapiro-Wilks

CHAPTER 5. PARAMETER GRAPHICS 90

Time on task depending on condition Time on task by condition
Y] C 4
3
120 g, g
—_~ = =3
= ® i g
3 1 1T n |
£ ° <
=] s 4
o 80 = 53
E 83 2
o— £ ?D
= 52 s,
60 z g
1 5
i~
® 0
Control Experimental 40 60 80 100 120
Condition Time on task (min)
(a) Box plot showing the group differences. (b) Histogram showing the group differences.

Figure 5.12: Differences in time on task score distribution between the experimental group (with
parameter graphics) and the control group (without such graphics).

test suggested that both distributions are normal, a Welch’s two-sample #-test was conducted,
1(41.56)=-3.7 (p<.001) with a 95% confidence interval of [-29.4, -8.7] and a Cohen’s d of -1.1
(Hedge’s g of -1.08). While mindful of the small sample size, we cautiously interpret this as
evidence for an effect in opposite direction to the hypothesis, meaning that parameter graphics

increase the time on task.

Discussion. Why did the data contradict the hypothesis? The time on task estimates of Study
2 are subject to the same caveats as those in Study 1. Absolute values are likely influenced
by external factors such as scheduling, however those factors would operate equally on both
groups due to the randomisation. Reading parameter graphics incurred a certain overhead cost
in the time taken to learn it, and it is possible that, while using them, participants repeatedly
sought to verify their interpretation, which cost additional time. It also required time to write
out which problem context entity a particular icon corresponded to. Another explanation is that
the experimental condition was longer because the cheat sheets contained more information: in
addition to a code example, it featured thumbnail graphics as well as parameter graphics, while

the control only contained example output.

5.6 Discussion

The study involved multiple pedagogical tools that are either under-explored or wholly unex-
plored in the literature. The results do not provide evidence favourable to the proposed interven-

tion of parameter graphics since time on task was significantly higher than the control condition

CHAPTER 5. PARAMETER GRAPHICS 91

(RQ3d), and the null hypothesis remains plausible in the case of performance scores (RQ3c).
This does not constitute a complete cul-de-sac, since no hypothesis could ever be answered
without replication when confidence intervals as wide as ours are involved. Other dependent
variables that are not investigated in the study, such as motivational ones, could very well be
sensitive to the graphics.

Another pedagogical tool in the study were the cheat sheets and example adaptation exercise
sheets. Using these tools, our data suggest that complete beginners could adapt code examples
in three unfamiliar languages within a single 2-hour session (RQ3a) and that it is especially
effective in the case of SQL (RQ3b). While we do not have data on how the training afforded
by these activities transfers to “real” programming, we do know that beginners will be able to
write moderately complex queries in that time frame. We therefore propose integrating it as an

introductory activity in a database course.

5.6.1 Future implications

Researchers interested in the potential of parameter graphics could expand upon the current
studies by adding a post-test without parameter graphics for both groups. In such a post-test,
cheat sheets would presumably remain, since their raison d’etre is to remove the need for mem-
orisation. Another augmentation in future research would be to collect attitudinal data, to get a
sense of whether graphics are perceived as helpful, in addition to (or in spite of) their objectively
measured efficacy.

In our line of research we will not investigate parameter graphics further. Consistent with
our design-centred priority of breadth over depth, we will redirect our future attention to other
types of graphics, namely subgoal graphics and thumbnail graphics. Another reason for this
is doubts about parameter graphics’ extensibility: relational operations are but a small subset
of data wrangling, and while parameter graphics may be relatively simple and interpretable for
SQL, adapting it for other functions in Pandas or dplyr may make the number of icons far too

large and ambiguous to justify memorising them.

5.6.2 Methodological considerations

The experience of running this study foregrounded a number of issues and challenges that led
us to re-evaluate and adjust our methodological approach. Most of the issues ultimately relate
to the intervention being paper-based.

While the pen-and-paper medium in theory has many benefits (e.g. low setup costs, no con-
figuration and an absence of distractions for the participant), it does not permit easy collection
of process metrics. Although time on task was measured, we could not easily record more fine-
grained milestones like time per exercise. Besides time on task, many other behavioural data

would have been useful to collect, and would have enhanced the cost-effectiveness of the study:

CHAPTER 5. PARAMETER GRAPHICS 92

for example, the number of times the tutorial and cheat sheets were referenced, and whether
participants actually engaged with the graphics and not just the code examples.

Paper-based studies do not support program execution. Informally, we noted that several
participants expressed exasperation at not being able to test their solution and receive immediate
feedback, and voiced disappointment at not learning “actual programming” instead. It is true
that, given the lack of error message feedback, participants also derived less intrinsic value
from the study, since they may proceed to repeat the same mistakes without corrections. If
“programming’ requires writing syntactically precise, typo-free code, then it is also true that the
marking scheme (which did not penalise obvious typos) did not measure it, but rather a slightly
more higher-level kind of problem-solving. As a matter of construct validity, it may therefore be
more accurate to describe the study as measuring pseudo-code composition than programming.

In general, paper-based studies are labour-intensive and imprecise: even though we at-
tempted to represent all possible mistakes and errors in the marking scheme, it was not com-
pletely unambiguous, reducing its intra-rater reliability. Since time collection was not auto-
mated, it was also error-prone: exactly how much measurement error it added cannot easily
be established without multiple observers, and ultimately measured when participants chose
to announce their completion. Furthermore, paper-based studies mostly require a physical co-
presence of the experimenter and the participant, which does not scale well, and leads to the
scheduling bias discussed in relation to RQ3a where participants adjust their response metic-
ulousness to complete it within the scheduled slot. All of these issues can be addressed with

computerised instrumentation, which was the approach chosen for subsequent studies.

Chapter 6
Subgoal and thumbnail graphics materials

As a design-focused research project, this dissertation revolves around a set of core materials,
all of which will be incorporated into SLICE N DICE, the platform built for the capstone study.
These fall into two categories: non-graphical scaffolding features that we have identified as
relevant to data wrangling, and graphical scaffolding features that we posit would make those
features even more effective. The non-graphical features include subgoal labels, which po-
tentially could be augmented with subgoal graphics, and a command menu, which could be
improved with thumbnail graphics. To fairly represent the context in which the graphics may
ultimately be employed, and for the purpose of retaining participants, it was crucial that all of
these materials were user-friendly. If the menu were too confusing, or the subgoal labels too
opaque, then it is possible they would be so distracting that the graphics would end up being
ignored altogether. Their design is informed by prior research literature, personal judgement, as
well feedback from the two pilot studies described in further depth within Chapter [§} Some of
that feedback will be previewed here to account for how the materials reached their final form.
This chapter discusses the design of both the non-graphical features and their graphical aug-
mentations. Since the menu will be how participants look up data operations throughout SLICE
N DICE, we will begin by describing its design, before describing the thumbnail graphics. Fol-

lowing this, we will describe the subgoal labels and graphics.

6.1 Menu design for API lookup

In our literature review and discussion of novices’ barriers to API lookup, we observed how
palettes in block-based programming environment provide a constrained and browsable way of
exposing available API commands. While real-life projects and open-ended school projects may
not respect such hard constraints on the command set, in closed-response instructional contexts
constraints may help preventing the learner from feeling overloaded. A command menu also
encourages educators to define the learning domain more formally: it implies that the class of

problems that a student should be able to solve corresponds to the class of problems solvable

93

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 94

using a (reasonably complex) combination of the available commands. By formalising a domain,
any associated resources can also reused and shared more easily.

An explicit representation of a learning domain is sometimes called an educational ontology
[293]]. In computing, an ontology is defined by Swartout et al. as a “hierarchically structured set
of terms for describing a domain” [[294, p.138]. In practice, they range from simple, controlled
vocabularies, to complex graphs containing relationships of many different kinds. An ontology
is generally understood to be in a machine-understandable format, such as the Web Ontology
Language (OWL), though in this case we will store it as a simple JSON file.

In our discussion of how we designed it, we will use the term ontology to refer to the abstract
structure and contents of the learning domain. We will use menu to refer to digital widget within

SLICE N DICE that instantiates that ontology.

6.1.1 Ontology design

Several methodologies for engineering educational ontologies have been proposed [295,296].
Sosnovsky and Gavrilova’s approach [293] is particularly relevant, as they applied theirs in the
context of a C-programming ontology. They propose a five-step approach that begins with glos-
sary development (elicitation of essential concepts) and laddering (the definition of abstraction
levels), then assigns concepts to the right abstraction levels, by either breaking them down (dis-
integration) or grouping them (categorisation). Finally, the ontology is refined, for example by
removing any residual redundancies, ambiguities or contradictions.

There are also more automated approaches available for deriving ontologies. For example,
one could crawl through semi-structured data such as textbooks and API references [297-299]
or through software repositories [300]. In our case, however, we had a number of constraints
relating to the ontology’s role as an experimental instrument and educational resource, which
an automated approach would be less useful for. We therefore largely followed the process
recommended by Sosnovsky and Gavrilova. To elicit concepts, Sosnovsky and Gavrilova used
an authoritative textbook [293]]. Similarly, our glossary development used Python for Data
Analysis [39] by Wes McKinney (the creator of Pandas) and R Cookbook [301] by Paul Teetor,
two comprehensive and popular textbooks published O’Reilly Media. We based the ontology’s
contents on NumPy 1.18.0, Pandas 1.2.0 (both for Python 3) and Base R 4.0.3

Design requirements

An ontology has a number of non-functional requirements [293]]. Some of these relate to its

contents, which should also be abstract enough to outlive any low-level changes in the API, and

'Notably, we did not base it on Tidyverse, due to two reasons. Firstly, Base R is more analogous to
NumPy/Pandas. The second reason related to recruitment-related concerns: several local courses that we sought
to recruit participants from used Tidyverse, and by offering a complementary rather than completely overlapping
resource, we could allay lecturers’ concerns about interfering with their pedagogy, and increased the chance that
the participants would still be relatively naive to the APL.

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 95

ideally apply to more languages than one. Because Python and R are both dominant languages
in data science, it would be useful if the ontology were multilingual, allowing it to serve as
a Rosetta stone for translating a command from one language into the other. This appears
achievable, given how the two have co-evolved and share considerable similarities.

Another set of requirements relates to its size and shape. The ontology should be navigable
and efficient in terms of the number of decisions that would have to be made before the correct
entry is located. Given its role as a menu backbone, it therefore makes sense to structure it as a
tree. This tree should be small enough to be learned within approximately 30 minutes, but large
enough to challenge a participant with some previous background knowledge. If traversed, the
ontology should not feel overly repetitive or too concerned with minutiae. It should also be sym-
metrical and well-balanced, with Sosnovsky and Gavrilova [293]] mentioning design heuristics

such as keeping the number of branches per node to Miller’s number of 7+2.

Organisational layout

When the novice is in the process of imagining which type of operation would be necessary
to accomplish a particular subgoal, we assume that this mental conception takes the form of
informal wordings like “Attach the vector to the dataframe”. However, it would be unwieldy to
include “Attach vector to dataframe” as its own, top-level entry, since that would result in a flat
and impracticably wide ontology. Instead, the ontology would have multiple levels, presenting a
sequence of choices that the participants would need to make in order to retrieve the operation.
One possible solution would be to let the first choice be about the high-level objective, the

second choice about the data structure, and the third choice about the particular operation:

High-level objective: What is the overall purpose of the operation that is being searched for?
Early in the design process, we settled on five such categories: Create, Access, Calculate,
Combine, and Restructure. “Attach the vector to a dataframe” would fall into the Combine

category, since it is combining a vector with a dataframe.

Data structure: We had early on decided to limit ourselves to vectors, matrices and dataframes.
However, “Attach vector to a dataframe” could conceivably fall into both the vector and
dataframe category: a strict tree does not permit an easy way to accommodate this, except
redundantly adding the entry to both subcategories. In the end, we stuck to the princi-
ple of placing operations involving different data structures under the most complex data
structure. That way, the navigation path for “Attach vector to a dataframe” would begin

Combine > dataframes.

Operation: The action verb used spontaneously by the user (e.g. “Attach”) may or may not
be congruent with the terminology of the API: examples of more API-congruent verbs

would be “bind” or “concatenate” (in R, the relevant function would be cbind () while

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 96

in Python it would be concat ()). To label the leaf-nodes, we took care to choose words
that were as jargon-free and unambiguous as possible. For example, instead of concate-
nate, we simply use with vector, such that the path becomes Combine > dataframes > with

vector.

Note how this final path through the menu traces out the sentence. This was deliberate,
and although most paths form awkward sentences at best, it turns the user’s task into
one of formalising their own formulation “Attach vector to dataframe” into the available

Combine > dataframes > with vector operation.

The semantic relationship of a parent-child link in the ontology could be regarded as an
implicit is-a relationship, in the sense that the Combine > dataframes element represents a class
of “operations for combining dataframes”, of which with vector is a member. As such, the
ontology is technically a taxonomy.

One drawback with this structure is that it produced redundancies. For example, it required
separate entries for element-wise arithmetic involving vectors, matrices and dataframes, even
though all three operations are syntactically identical. However, there are other cases in which
the syntax would vary depending on data structure (e.g. positional indexing looks different for
dataframes and matrices in Python), so these redundancies were kept in the interest of consis-
tency.

We concede that there cases in which a more syntax-based ontology would make more sense.
For example, if the user has already committed to a function (e.g. reshape ()), moves on, and
then later wants to debug it, it would be useful if the user could access the documentation based
on that name. As a menu, a more comprehensive solution may have been a faceted classifica-
tion system in which the user creates browsable trees on the fly [302]], by choosing which facet
(i.e. categorical level) to organise the tree around: objective, data structure, operation or syntax.
This could theoretically be augmented with a built-in search engine that, for phrases like “Ac-
cess row”, infers the intended syntax. Neither faceted nor search-based features were seriously
explored in our line of research, however, since graphics - not ontology structure - were the

primary object of investigation.

Different iterations

The above-mentioned structure describes the final version of the ontology, but earlier versions
did not consistently use the three levels. For example, it did not consistently subdivide objective-
level categories with data structure categories, and occasionally broke down third-level operation
entries into even finer categories, usually based on axis (e.g. bind > by row/by column or pivot
> wide to longllong to wide). Following our usability study (see Section [8.1)), this taxonomic
depth was found to confuse users. Empirical studies that have investigated the trade-off between

depth and breadth in menu design suggest that, in order to reduce search times and error, they

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 97

should minimise the number of hierarchical levels, ideally not beyond two, with at most eight
items per level [303304]]. Together, this prompted the reorganisation of the new version, which
adhered to the same objective-structure-operation organisation throughout. In order to avoid
exceeding three levels, the finer operation categories were either coalesced so that they instead
were explained inside the documentation entry, or given their own third-level entries (e.g. pivot

long to wide and pivot wide to long became their own operations).

Ontology contents

Having thus explained the ontology’s structure, it remains to explain the considerations factored
into the selection of operations. We had constrained the ontology contents to vectors, matrices,
and dataframes, since these are tabular and easy to visualise in two dimensions. The ontology
therefore excludes tensors with more than two dimensions, or non-tabular data such as trees.
Notably, the ontology refers to structures on a conceptual level - i.e. as vectors, matrices, and
dataframes - since those terms are not tied to any particular API implementation. Occasionally,
documentation entries would briefly describe other structures like 11 st and tuple, since some
functions require them as arguments.

As previously noted, we sought to make the ontology language-agnostic, such that it maps
easily onto commands in both Python (NumPy, Pandas) and R (Base R). We therefore elicited
important commands from two textbooks, placed them within the ontology schema outlined
above, and discarded entries that lacked a clear analogue in either of the languages (note that we
did not seek congruity with other languages, such as Julia or Matlab). For example, in R matrix
rows and columns can be given alphanumeric names, but NumPy ndarrays’ rows do not - hence
operations involving names in matrices had to be discarded from the ontology.

This multilingual requirement sometimes created tensions. Consider the decision to cat-
egorise operations based on whether they concern vectors, matrices and dataframes. In R,
the correspondence with the three data structures is straightforward, since the relevant object
classes are called vector, matrix and data.frame. In Python APIs however, both vec-
tors and matrices are implemented as ndarray. This sometimes led to duplication, where
vector and matrix-related entries mapped onto near-identical code. Furthermore, vectors could
also be implemented as Pandas Series, which is the data structure that makes up the column
in DataFrame objects. For this reason, vector-related documentation entries had to contain

information about both.

6.1.2 Thumbnail graphics

The ontology serves as a backbone for a command menu in SLICE N DICE, used for accessing
syntax documentation. To facilitate visual scanning, and to minimise any remaining ambiguity

regarding the behaviour of the command, each operation within the menu was also assigned a

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 98

thumbnail graphic. Each graphic displays a pre-operation and post-operation state. For the pro-
grammer to quickly judge an operation as relevant and differentiate it from other, behaviourally

similar functions, thumbnails need to be designed with several considerations in mind:

Spatial constraints: Thumbnails need to be small, only about 1.5cm in height. For this reason,
the data structures displayed within them must be necessarily small, rarely exceeding six
elements in length, and do not include any actual data. Although a number of operations
could effectively be visualised using arrows (for example, a zigzag arrow to indicate the
folding of a vector), such details would not fit comfortably within the limited area, and

therefore were generally not used.

Widely used conventions: The less learning overhead required to interpret a graphic, the bet-
ter. For that reason, the graphics rely only minimally on arbitrary symbols not found

elsewhere.

Colour: Colour, in particular, is leveraged to convey the command’s behaviour. Occasionally it
is used to indicate selection, but elsewhere colour is used to indicate correspondences and
categorical groups. In still other cases, colour saturation is used to indicate the relative
magnitude of a value. This reliance on colour unfortunately means that the graphics may

be less accessible to colour-blind learners and not easily printed in black and white.

General visual design principles: In their own cheat sheets, RStudio provides 9 visual design
principles. Among those principles the recommendation is to choose a single highlight
colour and a secondary, sparingly used colour for the sake of differentiation [10]. These

principles will be applied to our thumbnails as well.

Archetypal: In practice, operations could involve data structures of any shape. It would not be
possible for a thumbnail to encompass all possible instances. Instead, an archetypal shape
had to be chosen. For example, element-wise vector arithmetic is illustrated using two

input data structures of length 4, and not using an edge case such as vectors of length 1.

Ambiguity: In deciding which shape and data structure to use in a thumbnail graphic, it is
important to minimise the risk that the user under-generalises or over-generalises the in-
tended meaning. To illustrate this, suppose you were looking for a way to filter rows based
on a condition and see the thumbnail in Figure[6.1] It could mean “Return rows where C
(or B) equals 77, but it could also mean “Return the row named ’e’”’, “Return the fourth
row” or even more plausibly, “Return the last row”. Removal of such ambiguity requires
that the graphics observe tacitly held assumptions about visual communication, for ex-
ample the assumption that a graphic only includes relevant information and that any edge

cases (which may cause under-generalisation) are not accidental.

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 99

A B C
‘a’ 1 4 4
‘m’ 2 5 5
‘e’ 2 7 7

Figure 6.1: An example of an ambiguous thumbnail.

6.1.3 Walkthrough of ontology

What follows now is a tour of the ontology (and associated thumbnails) as it looked in its final
shape, which is the version that was used in the SLICE N DICE project described in Chapter
The tour proceeds through the high-level categories, one by one, describing its contents, use

cases, and thumbnail graphic design. The full version is available in Appendix

Create

Structure. Introductions to APIs often begin by showing how to construct the fundamental ob-
jects involved. In the current case, that would mean the three data structures. In actual practice,
data sets are unlikely to be created manually, but are rather read in from local files or database
endpoints. However, on-the-fly data structure creation is common enough to justify learning it,
especially for instructional purposes, since reproducible code examples in documentation tend to
feature them. Other common cases are creating placeholder arrays for storing computational re-
sults, or generating an index vector, such as an arithmetic sequence for the purpose of accessing

every third element. The Create category is represented in Figure [6.2]

Thumbnail graphics. The thumbnail graphics associated with the Create category are sur-
rounded by sunbursts in the corners. These sunbursts were deemed necessary since some of the
operations in this category create a structure from nothing, and therefore have no “pre-state”.
Simply displaying a static vector would seem to suggest that no change had taken place.

Some of the vector-creating functions operations produce distinctive relationships among
the values. For example, an arithmetic sequence is archetypally one with ascending values: to
indicate this, the shade of vector cells increases at regular intervals. Similarly, a vector with
repeating elements would display a sub-vector repeated twice, with shade used to indicate cor-
respondences.

In some cases the operation creates a new structure from simpler data structure In these

2These operations could also qualify for the Combine category. Though their current placement within Create
adds a degree of inconsistency, it serves a purpose within SLICE N DICE for providing more possible operations in
the first few exercises of Part 1.

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 100

Create EEEE EEEE

vectors

s Create vectors Create vectors
without names without names with names
with names
arithmetic sequence .- - .
from smaller vectors Create an arith- Create vectors by
by repeating vectors metic sequence repeating vectors

matrices EEE o
by foldmg a vector v EEE EEE
from multiple vectors Ll EEE)EER

dataframes - EEE EEE
from vectors Create a matrix by Create a dataframe
from a matrix folding a vectors from vectors

(a) The Create category contains 9 data (b) A subset of the Create thumbnails. Sunbursts help indi-
operations. cate change when there is no clear pre-transformation state.

Figure 6.2: The Create category.

cases, shape is generally sufficient to convey the change. One exception is Create a matrix
by folding a vector, since it requires shading to indicate correspondence between the value’s
position in the vector, and the value’s position in the matrix. A subset of the thumbnails are
shown in Figure [6.2b]

Access

Structure. Subsetting and indexing operations - what we call accessing here, to minimise
unfamiliar jargon - forms a ubiquitous task in data wrangling. It includes tasks as simple as
accessing the third element in a vector, to accessing elements based on any arbitrary number
of conditions. In general terms, there are three types of accessing methods: position-based
(i.e. using an index), label-based (i.e. using an alphanumeric label), and Boolean indexing
(which could either be direct, via a Boolean mask, or indirect, via a logical condition). For a
specific data structure, there is usually an idiosyncratic way of accessing values that reflects the
data structure’s purpose. For example, dataframe columns are usually accessed via their label
and dataframe rows based on their value (via a condition). The ontology’s contents (seen in
Figure [6.3a)) prioritises the most common use cases, but also makes a point out of distinguishing
between frequently overlooked subtleties. For example, there is a difference between accessing a
combination of rows and columns in a matrix (mat [0:1, 0: 1] in NumPy) and a collection of
individually specified elements (mat [[[0, 1], [0, 11]11). Another example is the difference
between accessing values based on a condition (x [x==2]) and accessing the indices where the
condition passes (np.where (x==2)).

Access-related operations are not only used for accessing, but also for modifying (x [0]=5)

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 101

and incrementing values (x [0]=x [0] +5) in the structure. These were not regarded as distinct

operations, but the documentation entries will make that distinction internally.
Thumbnails. Access-related operations have in common that only a subset of cells (usually)
remains after they have been applied. As is already ubiquitous in spreadsheets and the graphical
scaffolding examples surveyed in the literature review, one intuitive design choice is to high-
light the selected subset. That convention has been used here too, but colour highlights are not
sufficient to distinguish between Boolean, label-based and position-based indexing. Some ad-
ditional graphical elements were therefore needed. For position-based indexing, a black circle
was added. For label-based indexing, a black square was used (for dataframe columns, a col-
umn label was included). For Boolean indexing, a black-and-white mask was shown for masking
operations, while for condition-based access, the values were highlighted without any other ele-
ments included, to emphasise that the subset was determined by the contents. A selection of the

thumbnails are shown in Figure [6.3b]

([N J [J | I)
Access EE B >EEE .g
Acoess . > BN
vectors ccess from vectors by index [J .
by index W N Access multiple values
by name e from a matrix
by condition H N
by mask Access from vectors by mask ® . ..
indices by condition v
matrices ane .- , HER
single value Access from vectors by condition A .ess rows or
multiple values P °® columns from a matrix
{
rows or columns Bl B » eeoe)
row ﬁOhlII]Il Access from vector indices by C
comoma s
condition
by condition ellE»N
by mask H R >]
indices by condition B [] Access value from
dataframes dataframes by index

column(s) by name
element by index
rows/columns by index
rows by condition
rows by mask

indices by condition

Access from matrices by mask

N s
BN e UEEE Lo
= m>rpn N " BNl
HE B g U BDEE

Access column(s) by name ﬁ:‘;ﬁss dataframe rows by

(a) The Access category contains 18 (b) The Access thumbnails use colour highlighting to indicate
selection and black circles to indicate index.

data operations.

Figure 6.3: The Access category.

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 102

Calculate

Structure. Data wrangling-related calculations can be distinguished by their arity and cardi-
nality. Element-wise operations are characterised by their one-to-one relationship, in how the
first element of one vector is added to the first element of the other. Element-wise arithmetic
could involve unary (np.floor (x)), binary (np.add (x, y), i.e. x+y) or higher-arity func-
tions, but in the ontology, element-wise formed its own third-level category. In both R and
NumPy, arithmetic between an array structure and a scalar causes the scalar to be broadcast so
as to effectively form an element-wise operation: to draw attention to this edge case, it was given
its own category (with single value).

Another common calculation is defined by a many-to-one relationship, namely aggregation.
The typical example is summing all elements in a vector to obtain a single scalar representing
the sum. Aggregations could be applied to an entire data structure or to subsets of elements. In
matrices they could also be done on a column-wise or row-wise basis, while in a dataframe they
could additionally be done on a group-wise basis, where groups are defined by a categorical
variable. In the ontology (Figure [6.4a)), these types of aggregations have been given their own
entries.

Other operations included the derivation of a new column in a dataframe, as well as pair-wise
arithmetic, in which each element of one structure is combined with every element in another,

to produce a matrix that stores the combination of each possible pair.

Thumbnails. As mentioned, we primarily distinguish calculations based on whether values
are processed in parallel or aggregated to produce a single value. Shape is generally sufficient
to represent this, but when the calculation involves subsets, colour is needed to distinguish those
subsets. In the case of row- or column-wise aggregations, shade is used, since the columns
tend to be of the same numeric kind. In the group-wise case, hue is additionally used to dis-
tinguish variables from one another. Group-wise aggregations present an especially interest-
ing case, since it actually implies three stages (i.e. split, apply, and combine). The grouping
generally produces an intermediate data structure in which rows are internally grouped (e.g.
DataFrameGroupBy in Pandas). In the thumbnails, this intermediate state is included. The

graphics are shown in Figure [6.4b]

Combine

Structure. Data structures can be combined in two main ways - either bound together along
their vertical or horizontal axis (i.e. concatenated), or merged. Although several different joins

exist (e.g. outer joins, left joins), we limited the ontology to inner joins. The structure is shown

in Figure[6.54

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 103

L]] o > =
Calculate N (4
vectors \ 4 Calculating a mask
with single value BEERER B
elementwise Calculate with a vector [T]
aggregation and a single value Bl
pairwise HEEEN 1
matrices v v
with single value B
elementwise Aggregating a vector Calculating a column-
: WISC a, cgation
aggregation EEEEE EEICS
mask
rowwise aggregation EEEEN
columnwise v
aggregation
dataframes Calculating element- Calculating anew
with single value wise arithmetic column in a dataframe
clementise EEEEE .
ca{culatmg new
columin H EEEEE R
aggregation N EESEE
rowwise aggregation - = =--== u
golugn%l T H BEEEEE Calculating a group-
geregal . . wise aggregation in a
§r0u wise Calculating pairwise dataframe
geregation arithmetic

(a) The Calculate category contains 17 (b) The Calculate graphics mainly rely on shape to convey
data operations. its logic.

Figure 6.4: The Calculate category.

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 104

T e x vl x zZJlX Y z

Combine EEE EEE
) » BEE O >
matrices ——— O HEN
binding vertically P 0
binding horizontally Binding dataframes
dataframes vertically Merge dataframes
. EEE BEE
with vector EEE EEE . —
binding vertically S A === = > ====
binding horizontally [[~
by mersi Binding matrices Combine a dataframe
y gimg horizontally with a column

(a) The Combine category contains 6 (b) The Combine graphics mainly rely on shape, except for
data operations. merging.

Figure 6.5: The Combine category.

Thumbnails. For operations that involve binding, shape is sufficient to convey the operation’s
logic. Merging is more difficult, since it involves binding together observations that may be in
different order, and the discarding of observations that do not appear is both structures. In the

end, shade was used to identify rows. The graphics are shown in Figure [6.5b]

Restructure

Structure. Restructuring refers to any rearrangement of values within the data structure. This
includes sorting vectors, transposing and flattening matrices, as well as pivoting dataframes

between a long to a wide format. The category’s structure is shown in Figure[6.6al

Thumbnails. In conveying how an operation rearranges the values, the key lies in establishing
a correspondence between an element in its prior position and the element in its subsequent
position. This was again done using shading. However, as with the group-wise aggregations,
since pivoting involves columns that carry distinct roles, the columns were also given distinct

hues. Subsets of rows within those columns were then indicated by shading (Figure [6.6D)).

6.2 Subgoals for plan composition

Subgoals are the second instructional feature that graphics are hypothesised to improve. They
consist of two main components: subgoal labels and subgoal graphics. The subgoals are meant
to provide a high-level plan that the learner could base their solution implementation around.
They are therefore specially made for a particular exercise. This could be contrasted with Mar-
gulieux et al. [234]], where subgoals are used to augment structurally isomorphic worked prob-
lems. One reason for applying subgoal labels to the exercises, as opposed to separate worked

examples, is that worked examples would require the number of problems that a user is given

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 105

Restructure Sorting a vector o >
vectors _ EEE BN Sorting a dataframe
by sorting T 1 } BN by a column
matﬂrltfes L
attening Rotating a matrix (D]
rotating EEE >
dataframes []] - =
sorting by column o
votine | to wid v Pivoting a column from
p}VO 1 1g opg 0 wide EEEEEE wide to long format
pivoting wide to long

Flattening a matrix

(a) The Restructure category contains 6 (b) The Restructure graphics mainly rely on shading to con-
data operations. vey its logic.

Figure 6.6: The Restructure category.

to be effectively doubled. Moreover, as discussed in the literature review, data wrangling as a
programming domain is less pattern-governed and more functional than the domains covered by

previous subgoal labelling research, which gives worked examples less of a reuse value.

6.2.1 Subgoal labels

After creating a set of data wrangling exercises (the design considerations of which are explained
in Chapter([7)), each exercise was decomposed into a series of subgoal labels. This decomposition

process was governed by three main constraints:

Correspondence with a single operation: Each subgoal was mostly constructed so as to map
onto one operation from the ontology. The reason for this was to help stylise the workflow
so as to (hypothetically) require one ontology lookup cycle per subgoal, which would
make any downstream analyses of the workflow easier to interpret. In early exercises,
this constraint was occasionally a source of awkwardness, usually due to a mismatch be-
tween different APIs. For example, in NumPy the repetition of entire arrays and repetition
of values are accomplished through separate functions (np.tile and np.repeat, re-
spectively), which would imply separate subgoals. Meanwhile, in R the rep function
can be configured to accomplish both at the same time. In R, the choice of having two

subgoals may therefore appear contrived.

For later exercises, this constraint was loosened somewhat to reflect how the learner may
chunk common usage patterns. For example, to aggregate a variable group-wise, the
correct column would first need to be accessed. A subgoal would then correspond to both

the column selection and the subsequent aggregation.

Phrased at the problem context level: Another consideration was the need to not “spoil” which

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 106

API command to use so as to effectively provide the solution. To accomplish this, we took
care to express the subgoals in plain English and preferably in terms closer to the particular
problem context. Exercises ranged in their realism - from context-free to highly contex-
tualised - and this dictated the highest possible abstraction level. For example, subgoal
labels in an artificial problem could be expressed in terms of rows and columns (Fig-
ure [6.7a) while more realistic problems have subgoals using problem context terms (e.g.
countries and heights, see Figure[6.70).

Independent of the graphics: Finally, in order for the control group (i.e. the group without
graphics) to not be at a disadvantage, the labels had to be self-contained so as to not
depend on information within the graphics. Otherwise, we would not be able to claim that

the experimental group and a control group were informationally equivalent.

6.2.2 Subgoal graphics

In the experimental group, subgoal labels are accompanied by subgoal graphics. For each la-
bel, there would be a corresponding graphic that visualises the necessary data transformations.
These graphics are meant to provide a structural intuition of the necessary change, by for ex-
ample indicating whether vectors should be combined vertically or horizontally, and whether a
particular calculation results in a single value (i.e. aggregation) or a structure with the same size
as the input (i.e. element-wise). In contrast with thumbnail graphics, which are meant to be
archetypal, the subgoal graphics are tailored to the particular problem and data set.

To avoid confusion, it was important to make the subgoal graphics stylistically consistent
with the thumbnail graphics. Although subgoal graphics can be larger than thumbnail graphics,
it would still be unwieldy to display real data within the structures. The subgoal graphics there-
fore show the pre- and post-operation states of a data structure primarily using highlighting and
shapes. This is possible since all the data sets are small enough to fit within a graphic - with
larger, real-life data sets, these shapes would have to be abstracted further.

In addition to showing the pre- and post-operation shapes, the graphics occasionally include
annotations to specify which condition is applied (e.g. “Women who scored above 70%”) and
which arithmetic operator is used (e.g. “Add”). This is so that the graphics do not depend on
the subgoal labels in order to be interpreted. Again, these were expressed in natural language in
order to not reveal fully which API command to use. Two data wrangling problems are shown

in Figure along with subgoal graphics and subgoal labels.

6.3 Chapter summary

* The SLICE N DICE system will involve two non-graphical scaffolding features: subgoal

labels and a command menu. These will be augmented with subgoal graphics and thumb-

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 107

Suppose you have a dataframe (called
ﬁ) containing the number of kids that

each woman has, along with their income

How would you access all and the countries they lived in.
the dlagona! elements bl s — In the countries with more than 2 kids per
from a matrix , from et e P B0t woman on average, what is the mean
the top-left to the bottom- < = 1 « answer income?
: 2 mat
Tight comer

1 ‘€1 & 200
. Get the number of rows in mat 2 o 2 300
e @ o ow o)

N 4 ©r 4 200 250
5 ¥ 5 50]
6 ‘c¥ 5 100
women

1. Categorise each country's average

number of kids and average income
2. Use n to create a sequence that

contains every row index, up until
N (save to: seq)

(save to: means with column names
'mean_kids' and ‘'mean_income’)

country nr_kids Income
country mean_kids mean_income

P = >
Construct a matrix containing seq - - eans

twice as rows, so as to indicate the
row and column indices of the

] 2. Get hold of the countries that have,
desired elements (save to: ind)

on average, more than two kids (save
to: means_above2)

m , e —
seq ind e | N I S
: : T —— ||
Use that matrix as index for mat means means_above?

(save to: answer)

3. Obtain those countries’ income

means as a single column dataframe

B } n (save to: answer)
ind - . .. » a.nsw.et. ’
mat mat I
l'nearls_above2 answer

(a) Exercise 6 in Part 3 is relatively artificial. It
asks of participants to extract the diagonal without (b) Exercise 13 in Part 3 is a more realistic task,
any convenience function such as diag. similar to SQL.

Figure 6.7: Examples of two exercises, complete with subgoal labels and subgoal graphics,
which are only visible for the SG condition.

CHAPTER 6. SUBGOAL AND THUMBNAIL GRAPHICS MATERIALS 108

nail graphics, respectively.

* The menu will be organised as a three-level ontology. The first level represents high-level

objective, the second represents data structure, and the third level represents operations.

» Operations are language-neutral concepts that map onto analogous API commands in both
Python (NumPy/Pandas) and Base R.

* Thumbnail graphics are small, archetypal depictions of an operation’s behaviour. They do
not include data and mainly rely on colour and shape.

» Subgoal labels are steps in the solution plan for a particular problem. They are expressed
in as abstract and natural-language terms as possible, to avoid spoiling exactly which

operation is meant to be used.

 Subgoal graphics are superficially similar to thumbnails, but are tailored to a specific prob-
lem. Just like thumbnail graphics, they do not display data, but unlike thumbnail graphics,
their shapes reflect the shapes of the actual data structures. Moreover, the subgoal graphics

may contain short annotations to communicate exactly which calculation is necessary.

Chapter 7
Design of Slice N Dice

Our methodological discussion of Chapter [4| concluded that, to address the research questions,
computer-based instrumentation was necessary in both the delivery of the intervention, and the
collection of behavioural data that result from it. Moreover, given how volunteer supply is
such a limiting factor in human-subject experimental research, it would be more cost-effective
if the system simultaneously evaluated the effect of both subgoal graphics (to address
and thumbnail graphics (RQ2), using 2x2 factorial between-subject design. The system would
therefore exist in four different variants. The subgoal graphic condition will be referred to as
SG (indicating that graphics were present) and =SG (indicating absence), while the thumbnail
graphic condition is referred to as TG (presence) and =TG (absence). This is represented in
Figure

We conceived of the system as an accelerated tutorial to get programming novices up and
running quickly with authoring short data wrangling scripts. Such a software artefact could
take many potential forms, for example an IDE plugin or a standalone desktop application.
Others have found that the installation and configuration of software often pose a major hurdle

to novices’ introduction to data science [9)]. For this reason, and because it would be time-

Subgoals
SG —SG

TG

Thumbnails

TG

Figure 7.1: SLICE N DICE incorporates two experimental factors: one that manipulates the pro-
vision of subgoal graphics (SG, =SG) and thumbnail graphics (TG, =TG). - indicates absence
of graphics. This produces 2x2 distinct conditions.

109

CHAPTER 7. DESIGN OF SLICE N DICE 110

consuming to assist participants remotely with their software setup, the experimental platform
was implemented as a web application. As such, a participant could simply access the website -
called SLICE N DICE - via a URL within their browser[1]

This chapter will detail the design and evolution of the data wrangling tutorial built into
SLICE N DICE, as well as the user interface. Its structure evolved over the course of multiple
pilot studies, described in Chapter [§] In this chapter, the platform will mostly be discussed

component by component, with early iterations briefly described along the way.

Technology stack

The SLICE N DICE web application was developed by me using the MEAN stack (MongoDB
as the database, Express as the web framework, Angular for the front-end and Node for the
back-end). We sought to make the system self-contained, such that the user would not have to
switch between multiple applications or tabs. To accomplish this, we surveyed various plugins
that allow the user to author and execute R and Python scripts in the browser. While there
are several in-browser Python implementations (e.g. Skulptﬂ Brythorﬂ) and at least one that
supports NumPy and Pandas (Pyodideﬁb, fewer options exist for R. Because of the anticipated
need to attract participants with preferences for either language, it was deemed important to
support both. The service we settled for, called DataCamp Light E] (DCL), is an open-source
plugin that lets the developer embed IDE widgets within the HTML, and have the code (both
Python and R are supported) execute server-side. DCL was created by DataCamp, a data science
MOOC company that handles the back-end execution of the programming sessions. The widget
contains a scripting area and an interactive shell, and can moreover include assessment elements
such as submission tests, hints, and solutions. It was therefore well-suited to the needs of SLICE
N DICE, although a few modifications were made to the DCL source code that will be discussed

later. The tech stack is summarised in Figure[7.2]

7.1 Opverall structure

The desired learning outcome of SLICE N DICE was the ability to write short scripts for wran-
gling data programmatically. This target skill combines two distinct competencies: the ability
to accurately identify and combine data wrangling operations, and the ability to look up API
commands and accurately combine those commands into an executable script. We will refer to

these as non-programmatic data wrangling and programming, respectively. We reasoned that

! Assuming the browser is Chrome, FireFox or Edge, and has cookies and JavaScript enabled.

“nttps://skulpt.org/

3https://brython.info/

4https://pyodide.org/

3Available at https://github.com/datacamp/datacamp-1light|and protected by GNU Affero
General Public License.

https://skulpt.org/
https://brython.info/
https://pyodide.org/
https://github.com/datacamp/datacamp-light

CHAPTER 7. DESIGN OF SLICE N DICE 111

DataCamp
Light
A
Q v
Angular Node/Express MongoDB
frontend backend database

Figure 7.2: The system was implemented as a web application, using standard web technologies
such as MongoDB, Express, Angular and Node (a MEAN stack). DataCamp Light (DCL) was
an important external dependency that provides the IDE front-end widget and back-end code
execution.

both skills had to be securely in place before the learner begins specialising in data wrangling
API syntax, since no prior knowledge would be presumed. As a result, in all iterations, SLICE
N DICE took on a segmented structure, with a preliminary block of training activities that the
learner would have to go through before being exposed to data wrangling API syntax.

The platform is centred around a menu of data operations, which is detailed in Section [6.1]
From the beginning, the idea was that SLICE N DICE would contain a foundational part that in-
troduces the user to the menu’s contents by traversing it, operation-by-operation, while display-
ing a short, conceptual description of the current operation within an operation card. Different
SLICE N DICE iterations have either interleaved programming concepts within these operation
cards, or introduced programming after the learner has been familiarised with the menu contents

on a non-programmatic level.

7.1.1 Spring 2020 pilot

In the first prototype to be tested by student volunteers, the app consisted of two main parts: a
preparatory Part 1 and a main Part 2. Originally, this Part 1 was organised as a deck of operation
cards that contained both a conceptual explanation and corresponding code syntax. After every
five cards, a multiple-choice question would appear that asked them about the syntax of one of
the recently presented operations. After inviting a handful of pilot participants to try out the app
in person, it was clear that learners were frustrated at being confined to MCQ exercises about the
syntax and not having the opportunity to program immediately. Moreover, the need to memorise
syntax contradicted the menu’s role as an external memory for syntax.

In response to this feedback, Part 1 was re-designed to instead include 59 programming
exercises, one following each operation card. Within such an exercise, the participant was shown

the documentation entry and asked to apply the code example for a new context. The exercises

CHAPTER 7. DESIGN OF SLICE N DICE 112

were technically optional - the learner could simply flick through them - and the correct solution
was available. Part 2 meanwhile consisted of 8 data wrangling programming problems, and
constituted the main part in which subgoal graphics would become available.

This version (represented in Figure was trialled during Spring 2020 using a blended
delivery mode, where student volunteers from across the university signed up to attend in-person
sessions in a computer laboratory. At this point, the ontology and the set of exercises was dif-
ferent than the final structure outlined in Section Additionally, due to sample size concerns,
subgoal and thumbnail graphics were manipulated as a within-subject variable: each exercise
was randomly assigned to one of the 4 conditions.

Although it was clear from informal observations during this pilot that this structure was
motivationally effective - volunteers signed up with the aim to learn data scientific programming
and immediately got exposed to it - it suffered from two important methodological flaws. The
first was that, by interleaving the exposure to programming concepts within the introduction
of data wrangling concepts, we would not be able to measure the comparative influence of
conceptual versus programmatic skills on data wrangling performance. It therefore wasted an
opportunity for collecting data relevant to theory-building.

Secondly, because Part 1 was meant as a preparatory part, it did not feature any experimental
manipulation and therefore could not address the research questions. This became a problem
when - probably due in part to Part 1’s repetitive design - many students dropped out before
even reaching Part 2. It is impossible to estimate how severe the attrition was, since COVID-
19 caused this study to be abruptly discontinued, but out of 88 participants who began Part 1,
only one participant completed Part 2. Consequently, this iteration yielded little valuable data
and underscored the importance of designing the application with participant engagement and
retention in mind. It was clear that the “preparatory” part had to be either shortened, made
more engaging, or made to incorporate an experimental manipulation relevant to the research

question, so that incomplete data would still be valuable.

7.1.2 Autumn 2020 pilot version

Following this feedback, the structure of the app was overhauled. Part 1 remained a deck of op-
eration cards that the learner systematically traverses through. However, in order to shorten its
duration, the 59 programming exercises were replaced by 10 non-programmatic data wran-
gling tasks scattered throughout the card deck. In these tasks, the user is presented with a data
wrangling exercise that has already been broken down into a set of subgoals, complete with la-
bels and (for the SG group) graphics. For each subgoal, the user is asked to identify and select
the operation that is required to accomplish the subgoal. Since the introduction to programming
was removed from Part 1, it was placed in Part 2, as a set of simple programming exercises that
transition into more complex data wrangling programming exercises.

This design (shown in Figure was used in a small usability study during Autumn 2020,

CHAPTER 7. DESIGN OF SLICE N DICE 113

(a) The structure of a spring 2020 pilot. (b) The structure of a autumn 2020 pilot.

Figure 7.3: To balance pedagogical and methodological considerations, the application went
through multiple iterations.

which was focused on refining and vetting the exercises, as well as a more extensive, subsequent
pilot study. Both are described in Chapter[8] At this point, confidence in our ability to recruit and
retain participants had grown and the experimental conditions were turned into between-subjects
conditions, in order to reduce any spillover effects. Furthermore, the ontology and the graphics

were improved, along with smaller interface modifications described later in the chapter.

7.1.3 Final version

The final version remained largely the same as that of the autumn 2020 pilot study, but redis-
tributed the data wrangling exercises of Part 2 into their own part. This allowed participants with
prior programming experience (but without a data wrangling background) to skip exercises they
may have found too easy. This allowed SLICE N DICE to appeal to a larger audience. Addi-
tionally, an explicit three-part structure - where non-programmatic data wrangling, introductory
programming, and programmatic data wrangling all had their own dedicated part - reinforces
the idea that SLICE N DICE trains and tests distinct competencies in isolation from each other.

One second design modification of note was the inclusion of unscaffolded exercises in Part
3. “Unscaffolded” means that subgoals (and any graphics and hints associated with them) were
removed for a limited duration. This afforded us the ability to, as a dependent variable, see
whether subgoal graphics would influence the ability to plan a solution single-handedly, when
the “training wheels” are taken off. The menu and thumbnails remained present during these
exercises. The final design is summarised in Figure It contains 9 data wrangling exercises
in Part 1, 10 programming exercises in Part 2, and 18 programmatic data wrangling exercises in
Part 3, 3 of which are unscaffolded.

CHAPTER 7. DESIGN OF SLICE N DICE 114

Figure 7.4: The final structure of SLICE N DICE. Part 2 has been split into two parts and 3 data
wrangling programming exercises are unscaffolded - without subgoals for the first 10 minutes.

7.2 Recurring design considerations

Throughout the design of SLICE N DICE, a number of constraints and considerations loomed
large, mirroring the trade-offs explored in Chapter[d] Since their implications spanned across all

three parts, we will discuss them here, in advance of our more in-depth description of each part.

7.2.1 The problem of low stakes

Since participation in SLICE N DICE will not carry any academic credit or impact participants’
grade, it is a low-stakes assessment. As a result, the learner may not be motivated enough to exert
their best effort [[305]]. This, in turn, means that the recorded performance levels would under-
represent the true ability of low-effort participants, and introduces a major confound where
high-ability/low-effort learners may perform at the same level as low-ability/high-effort learners.
How could participants be encouraged to exert more effort, despite the lack of stakes?

According to Eccles-Wigfield expectancy-value model of learning motivation, the effort a
student chooses to invest depends on their own perceived competence, the perceived task diffi-
culty and costs, how relevant it is to their future (utility value), how much performance matters
(attainment value), and how enjoyable it is (intrinsic value) [306]. This model suggests several
levers for increasing participant effort. For example, the platform should be high in its direct
utility for the participants (not just for the experimenter) and marketed as such.

Although SLICE N DICE is principally an experimental vehicle, as opposed to an educa-
tional service, the line between experiment and service becomes blurry given that, to recruit
an adequate number of participants, the study would have to be as intrinsically rewarding and

attractive as possible. Considerable time and effort therefore went into honing the platform be-

CHAPTER 7. DESIGN OF SLICE N DICE 115

"I really enjoyed it honestly and | "I thought the app was really great, very user friendly, clear instructions "This helped me understand
think it will be great help in my and the graphics helped so much when trying to decide which strategy to data frames so much
project.” use." better.”

Figure 7.5: The landing page reveals the effort to make SLICE N DICE intrinsically rewarding
and attractive, to increase the likelihood of a participant making an effort despite the low stakes.

yond what the scientific objectives technically would require. For this reason, the result is at
once a high-fidelity education product, designed to be directly useful, and a research prototype,
designed to answer research questions. This is exemplified through the visual appearance of
the platform (including its landing page, Figure[7.3), which mimics that of popular tech compa-
nies, as well as the marketing effort, which involved video advertisements and the creation of a

bespoke data wrangling cheat sheet e-book to incentivise completion.

7.2.2 The assistance dilemma

Another impact of the issue of low stakes was a fear of ever putting a participant in a situation
where they perceived a task to be too difficult (or themselves as too incompetent), causing them
to drop out. To prevent this, the app had to include some measure of guidance if the student ever
gets stuck. All three parts therefore include hints of different kinds.

The provision of hints opens up what Koedinger and Aleven have called the “assistance
dilemma” between giving and withholding information p.239]. It is a well-documented
phenomenon that learners sometimes make unproductive use of hints, for example requesting
help before even trying, or mindlessly clicking through them [308]. Unconditional hints there-
fore reduce the attainment value, since participants’ effort matters less to their ability to progress
within the course, reducing overall learning gains. Methodologically, the provision of hints in-
troduces a troublesome co-variate, since a patient (i.e. hint-averse) participant would take longer
to solve an exercise than a less patient participant of similar ability. And yet, if excessive frus-
tration is not averted, only a disciplined few would persist.

Several theoretical solutions exist to the dilemma. The simplest would be to explicitly in-
struct against excessive hint use. Another would be to gamify the application so as to penalise

hint use by deducting points from an experience point score (a technique used by DATACAMP).

CHAPTER 7. DESIGN OF SLICE N DICE 116

A more sophisticated solution would condition the hints’ availability based on the learner’s per-
formance level, meta-cognitive skills, or motivational state, the way a skilled human tutor can.
This was far beyond the scope of the current research questions, however. Generally, hints will
be provided unconditionally but with decreasing availability: in Part 1 and 2, they are presented
automatically upon error as feedback, while in Part 3 they require the participant to actively

request them, one subgoal at a time.

7.2.3 Exercise design

Although the task type changes from non-programmatic in Part 1 to programmatic in Part 3, the
data wrangling exercises themselves remain consistent in style. Each exercise presents an image
of the data structure in its initial state, as well as the data structure in its required state, and
the exercise description is written in plain English, avoiding technical API terminology. The
exercises required between 2 and 6 data operations in order to be solved, and were generally
sequenced so that later exercises were more complex (involved more operations), contextualised,
and linguistically incongruous with with solution than early ones. An example of an early,
artificial exercise 1s “Given matrix mat, square every number and sort the sums of each row
from large to small”. An example of a later, contextualised exercise is “Which country has the
highest male average BMI?”. We thus employed a faded scaffolding technique. Only operations
from the ontology would be necessary, so that SLICE N DICE was completely self-contained.
We deliberately chose data sets that were small enough for a solution to be verified mentally,
since Part 1 was non-programmatic. Finally, the exercises are well-structured, in the sense that
they have a fixed answer. In both Part 1 and 3, test cases were embedded to check the correctness
of their response. All exercises can be found in appendix [D]

These exercises were drafted and refined in response to feedback from the usability study and
the autumn pilot study. Any exercises deemed too simple, difficult, or confusing were removed
or modified prior to the spring 2021 capstone study. Furthermore, a web form was embedded
that allowed participants to directly report any lingering bugs or errors in the exercises. Although
the exercises and accompanying problem-solving content (e.g. graphics, test cases, subgoals)
were handcrafted, there is no obvious reason for why such exercises could not be auto-generated

in the future.

7.3 Part1 design

Part 1 consists of a deck of 65 operation cards, with 9 data wrangling exercises interspersed
among them. The overall goal of Part 1 is to cultivate structural intuitions about how a data
wrangling problem can be decomposed into a sequence of operations, as well as to familiarise
the participant with the contents and structure of the menu, and with the style of the thumbnail

graphics, subgoal labels and subgoal graphics. A participant should therefore arrive at Part 3

CHAPTER 7. DESIGN OF SLICE N DICE 117

well-acquainted with the scaffolding features and with all the data operations. We will now

discuss the design behind the operation cards and exercises.

7.3.1 Operation cards

The interface in which operation cards are displayed shows the menu in a sidebar to the left,
along with thumbnails in the TG condition. As the deck of cards is browsed, the ontology is
virtually traversed from top to bottom. The menu is automatically opened to reveal the current
operation, which additionally is highlighted. The card itself contains a short explanation of
how the operation works, along with an example. Since we sought to clearly separate data
wrangling from programming, this example is not a code example: rather, it simply displays the
pre-operation and post-operation state of the data structure.

Initially, in the spring pilot study, this example was textual for every participant, with a shell-
like representation that uses a style similar to that of standard shell output (e.g. [4 5 6]).
However, because the operation card was synchronised with the menu, the operation card ex-
ample also seemed like a good opportunity to reinforce the impact of thumbnail graphics, by
representing the example graphically. We therefore added an additional detail to the TG con-
dition, conjoined with the presence of thumbnail graphics, that we refer to as operation card
graphics (see Figure [7.6a). These graphics were in the same style, and contained the same
content as the shell-like representation given to =TG (Figure [7.6b)). This therefore afforded us
an opportunity to test whether operation cards were faster to read when the example was repre-

sented graphically.

Tooltips

Importantly, the goal with SLICE N DICE was not to measure working memory and memorisa-
tion. Indeed, the user was informed, via an interactive on-boarding tour, that they did not have
to memorise anything. To make the operation card explanations available within the data wran-
gling tasks, we instead experimented with tooltips. In early iterations (up until the pilot study),
the tooltip was a simple strip containing the operation’s name (e.g. Create a dataframe from a
matrix). This was not deemed to be informative enough, so in the final version the tooltip was
fitted with the contents of the operation cards. As with the operation cards, this meant that the
TG condition also had a graphical tooltip (Figure[7.74) and that the TG group had a shell-like
representation (Figure [7.7b)), with the text content being the same. This tooltip was triggered
when the user moused over the thumbnail. Users were informed of the tooltip feature via a
guided tour.

CHAPTER 7. DESIGN OF SLICE N DICE 118

v Create
v vector Creating a vector by repeating
\ sub-vectors
without T
___hames 112 2 112 2 11 22
with names EEEN X
arithmetic Suppose you have a vector and want to repeat each
sequence .. element twice, and the entire string three times. The
q
~ result is shown above.
from smaller ..v..
vectors EEEN
by
repeating | [|
vectors

(a) The TG condition features thumbnail graphics and operation cards with similarly styled
graphic with data.

v Create
‘ Creating a vector by repeating
v vector
; sub-vectors
without names
. before
‘ [12]
with names —Ero
N [L12211221122]
arithmetic
\ sequence Suppose you have a vector m and want to repeat each
from smaller elemerﬂ twice, and the entire string three times. The
vectors result is shown above.
by repeating
vectors <

(b) The -TG condition displays question marks instead of thumbnails and the operation card
displays its example using a shell-like representation.

Figure 7.6: The sidebar menu and a Part 1 operation card under the two conditions.

CHAPTER 7. DESIGN OF SLICE N DICE 119

script.py scrint.ov

Creating a dataframe from a matrix
Creating a dataframe from a matrix 9

L You may convert a numerical matrix into a dataframe
You may convert a numerical matrix into a dataframe.

m
] 1 41
T o
|

1 4 1 4 [3 611
df

w
o
w
o
N R e
WK
NG -]

(a) In the TG condition, the thumbnail is graphical (b) In the =TG condition, the thumbnail is a simple
and the tooltip contains a similar graphic, albeit question mark and the tooltip contains a shell-like
populated with data. representation.

Figure 7.7: The thumbnail condition also influences the design of the tooltip that appears when
the user hovers their mouseover the thumbnail for longer than 1 second. The contents of the
tooltip are the same as the operation cards in Part 1.

7.3.2 Data wrangling exercises

Each of the 9 exercises in Part 1 presents a data wrangling task that could be accomplished
using a sequence of the operations covered by operation cards up until that point. The task could
be described as an operation selection task. The problem has been decomposed already into
a series of subgoals, with labels and graphics (for SG). These labels are, as noted in Section
[6.2.1] expressed in natural language, with as little reference to formal data wrangling concepts
as possible, and with care taken not to “spoil” which operation is required to implement it.
Participants are asked to identify the corresponding operation from the menu (or rather, the
subsection of the menu covered up until that point). As such, the task shares characteristics with
many other types of programming tasks: the menu presents a series of options or distractors,
similar to a multiple choice question or Parsons puzzle.

Superficially, the task looks like block-based programming: the operations in the menu are
draggable and the user drags them into a drop-zone associated with each subgoal label. A
screenshot is shown in Figure There is no code execution triggered by this action, how-
ever: under the hood, the operation selection is simply checked against a pre-specified answer.
Although early stage iterations experimented with making the selections executable, it was ul-
timately deemed unnecessary for the goals of Part 1, since it risked stalling the participants and

would take considerable time to implement.

Hints

In the autumn pilot study, participants were required to make a selection for every subgoal in a

task and then submit it before receiving any feedback and being allowed to proceed. Usability

CHAPTER 7. DESIGN OF SLICE N DICE 120

Report bugs or issues Replay tour Home Log out

v Create Which operations, in order, are required to transform vectors g and s into matrix«? |FIEN

\

Select operations from the Create section of the taxonomy by holding in the (8]1][s]1]
v vector handle ::: and dragging the operation to the corresponding subgoal.]]
. without EEEE
** names
3% with names T 1T 1. Join g and s together, into [6 8 8 1]
\
e EE m.
** sequence g S
s from smaller " _ue l
— - EEEE
\

by
i repeating | ||

EE EE
vectors h

Create vector from smaller vectors

> matrix

\. Your solution is correct!

> dataframe

‘ > Access

~—

2. Duplicate s, into [8 18 1]

‘ > Calculate

‘ > Combine

Figure 7.8: Screenshot from Part 1 in the TG/SG condition, complete with both thumbnail and
subgoal graphics. The =SG condition would only have the labels.

study feedback suggested that, being stuck on a problem without any guidance was a significant
source of irritation. As a result, modifications were made so that participants received feedback
on a subgoal basis. Once an operation had been dropped in a drop-zone, the participant was
immediately made aware whether it was correct (it would glow green) or incorrect (it would glow
red). Moreover, if incorrect, a hard-coded hint would appear in order to constrain the operation
search space. Although this risked making the task too easy, familiarising the participant without
stalling them was considered a higher priority. Both scenarios are shown in Figure[7.9] Once all
subgoals have been correctly solved in an exercise, the participant is allowed to proceed to the

next exercise (or operation card).

7.4 Part 2 design

The objective of Part 2 was to give participants without any programming experience a foun-
dational understanding of the programming workflow. This includes basic concepts such as
variables, data types, and conditions, as well as a facility within the API lookup cycle of refer-
encing syntax documentation, adapting code examples, and testing the solution.

The interface of Part 2 looks similar to Part 1, with a menu sidebar and an exercise descrip-
tion at the top. The main difference is that the sidebar now houses both the menu and the syntax
documentation, in separate tabs. The menu’s data operations are no longer draggable: instead,
clicking on them triggers a corresponding syntax documentation entry to slide into the frame.

The second important difference is that the subgoals are now gone and replaced with a DCL

CHAPTER 7. DESIGN OF SLICE N DICE 121

2. For each person's four timepoint
scores, calculate the median score

1. Join the two dataframes together

timeprina?

Combine dataframes binding horizontally -

—
- . . EEEE =
Caleulzte dataframes rowwise a ggregation mEEn »]

Hint: You want all columns (i1, t2, t3, t4) to line

Your solution is correct! up vertically.

(a) If correct, the drop-zone will immediately glow (b) If incorrect, the drop-zone will glow red and a
green. hint will immediately appear.

Figure 7.9: After the autumn pilot study, a hint was added to Part 1 to curb excessively frustra-
tion.

programming widget. The interface is shown in Figure [7.10] Other details include a progress
bar and a button for re-loading the exercise. Once the solution has been correctly submitted, the

user is allowed to progress to the next exercise.

7.4.1 Programming exercises

The programming exercises are deliberately simple, mostly one-liners, and expected to take less
than 5 minutes each for a novice to solve. They generally steer clear of data wrangling concepts,
and are focused on giving participants the practical minimum of knowledge necessary to begin

solving programmatic data wrangling problems. These concepts are, in sequence:

1. Variables: The concept of variable assignment and evaluation is fundamental to program-
ming. The first exercise asks of participants to assign values to variables and then make a

calculation referencing those variables.

2. Scripting and the interactive shell: The programming widget contains both a scripting
area and an interactive shell. The shell provides both a way of inspecting the current state
of the data structures, and a place to experiment with API commands. The second exercise
teaches the participant to utilise both.

3. Scalar arithmetic: The third exercise asks the learner to make a succession of simple

arithmetic calculations while saving the results to intermediate variables.

4. Data types: The fourth exercise involves three data types: numbers, strings and Booleans

(logicals), by simply asking participants to practise assigning such variables.

CHAPTER 7. DESIGN OF SLICE N DICE 122

Report bugs or issues Replay tour Home Log out

Taxonomy Documentation You have completed 7 out of 10 exerci
You have three vectors - a, b, and c, each with four elements.
Inspect them either by printing them or typing their name to the right.

. L o Solve the exercises below. If you accidentally overwrite a vector, copy your code and refresh the console using the button at the right.
Accessing, assigning, modifying

In Python, elements in data structures
have addresses known as indices
(singular: index). The index allows you
to access specific data elements, to
assign new values to them, and to
modify existing values.

script.py IPython Shell
1 Access the last element in a (save to: last_a) In [1]:
2

Accessing 3 # Assign the last_a value to the first value in b

4

Suppose you have a vector of length 5 5 # Double the second element in c

and want to access the second element.

Since indexing in Python starts with 0,

the indices are 0,1,2,3,4. This means you

access the second element using index

1.

x
[87834]
x[1]

7

Assigning

: N Submit Run @
Using the same syntax, you can assign a <

Figure 7.10: The interface of Part 2 has three main areas: a sidebar housing the menu and
documentation, an exercise description at the top, and a DCL coding widget at the lower half.
The menu is labelled Taxonomy.

5. Logical conditions: Participants were introduced to comparison operators and logical

operators.

6. Vectors: Users learning Python are taught to create an ndarray while R-users create a
vector. The structures are only superficially covered - the user is given no insight into
their object attributes or methods, for example. The participant is also asked to perform
element-wise arithmetic by looking up the entry in the menu on their own. They are told

where in the menu to look: the intention is to reinforce the API lookup workflow.

7. Functions: The participant is introduced to the concept of a function, and then asked to
look up and apply two functions from the menu to a pre-loaded vector. They are again

told where in the menu to look.

8. Accessing and modifying vectors: Learners are introduced to indexing, and taught how
indexing can be used to access values, modify them, and update (e.g. increment) them.

They are tasked with practising all three.

9. Matrices: As with vectors, they are introduced to the 2D ndarray/ mat rix structures.
They are again guided to look up two API commands from the menu and apply them to

the matrix.

10. Dataframes: The learner is introduced to the DataFrame/ data. frame structure, and

again guided to look up API commands for the solution.

Upon loading an exercise, the sidebar is by default opened at a documentation entry that both

explains the current concept and provides directly applicable code examples. When arriving at

CHAPTER 7. DESIGN OF SLICE N DICE 123

the exercise on accessing and modifying vector elements, the sidebar looks as shown in Figure
These documentation entries were also accessible from the menu, where they feature as
their own top-level category The basics.

Under the hood, the programming session is pre-loaded with any data structures required by
the exercise. The participant has two ways of testing their solution: a Run button triggers the
script to execute and output to display, and a Submit button that additionally triggers a suite of
hard-coded submission test cases. The participant is only allowed to proceed if all the test cases
are correct. As is discussed in Section there is no explicit time limit, but the Next button

is quietly enabled after 15 minutes.

7.4.2 Documentation

The documentation entries used in SLICE N DICE had been purpose-built to be as minimalist and
novice-friendly as possible, including only relevant information and with unnecessary, technical
details mostly stripped away. Each entry - examples of which are seen in Figures and
- begins with a short prose paragraph describing the API command, its parameters, and
any other background information that may be necessary. The documentation used semantic
markup, emboldening key information and making code syntax visually distinct.

One or more illustrative code examples are provided in each documentation entry. These
examples are structured like interactive shell sessions, with commands in bold and output in
grey. The examples are not reproducible, since that would require setup boilerplate code to be
included, which would risk confusing a novice. The examples are deliberately context-free, with
minimal toy datasets, and also follow widespread conventions in using metasyntactic variables

like df for dataframes. Parameter graphics were thus not employed.

7.4.3 Hints

To address the risk of excessive frustration and consequent attrition, a hint in the form of an
error message was automatically displayed at the bottom of the IDE if the solution failed to pass
the test case upon first attempt. These messages are generated by the DCL package and simply
inform the user if any expected variables are missing or incorrect, as shown in Figure If
correct, a hard-coded success message will appear reinforcing a concept they will have learned
by then, for example: “Fantastic! It is easy to forget to add quotation signs around strings, or to

remove them when using logical values. Click on Next to proceed.”

7.5 Part 3 design

The main part of SLICE N DICE is made up of 18 programmatic data wrangling exercises.

The targeted skill is the ability to author short scripts to solve data wrangling problems. These

CHAPTER 7. DESIGN OF SLICE N DICE 124

Subgoals Taxonomy Documentation Subgoals Taxonomy Documentation Subgoals Taxonomy Documentation

1. Get hold of all students who both

failed the exam and are above 170cm in ‘ > The basics
height (save to: failing tall) ‘ s C t Accessing values from dataframe
- . ® reate by masking
T
I I I faled_—heigh ‘ v Access

(1 [1] ’ ==== \ In Python, when you pass a list or ndarray
failing_tall « from vector of values as index in a
dataframe, every row corresponding to
- o LI will be returned. Such am
by index] »m array is often called a mask.

students

2. Given those students, find the

maximum days of absence (save to: ~ ‘ by name = > m df
answer) L A B C
e 1 5 3
L] [(] " 12 4 2
‘ by condition H N »>EE 2 35 5
== 5
. mas:
I > [P = mmd [True False True]
- answer by mask ram df[mask]
failing_tall s A B C
. 0 1 5 3
indices by se o
‘ condition HE B > oo e

‘ > from matrix
‘ > from dataframe

| > Calenlata e

Figure 7.11: In Part 3, the sidebar has three tabs that the user can move between. The first panel
- which is opened by default - displays the subgoal labels along with the graphics and hints.
The second panel (labelled Taxonomy) displays the menu, which in turn hyperlinks to the third
panel, which will contain the documentation entry.

problems require multiple data operations to be identified and sequenced correctly, and mapped
onto API syntax. The exercises were ordered so as to increase in complexity, with the first
4 exercises limited to vectors, the next 6 also involving matrices, and the last 8 potentially
involving all three data structures.

The interface of Part 3 - shown in Figure - looks very similar to Part 2, with the im-
portant difference that the sidebar now contains an additional tab, labelled Subgoals, in which
the subgoal labels (and graphics) are displayed. The menu, documentation, and coding area

otherwise remain the same.

7.5.1 Subgoals

The subgoals are meant to help structure the plan composition, by verbally and/or visually cuing
the type of data operation required. Each subgoal label recommends a variable name for storing
the resultant value or data structure (e.g. “Save the result to failing_tall”) while the last
subgoal always says “Save the result to answexr”. This affords a way to verify intermediate
results: the submission test cases check whether these intermediate variables exist and whether
their values are correct. The coding area moreover contains comments to help structure the
solution into corresponding steps, see Figure The subgoals are displayed all at once, not
revealed one by one, in order for the learner to form a holistic understanding of the program plan.

However, subgoals that had been correctly solved (as detected by the submission test cases) will

CHAPTER 7. DESIGN OF SLICE N DICE 125

1. Get hold of all students who both failed i ctan 1 femum e Faiiin
. . # Step 1 (save to: failing tall)
the exam a"d- are above 170cm in height failing_tall = students[(students.failed
(save to: failing_tall) ==) & (students.height > 170)]

I m

2. Given those students, find the maximum # step 2 (save to: answer)
da_ys of absence (save to: answer‘) answer = failing tall.absence.max()

Figure 7.12: Each subgoal corresponds to one, but occasionally more, data wrangling operations.
Comments in the coding panel guides the user toward decomposing their solution

turn green in order to indicate partial progress.

The subgoals tab is opened by default when an exercise is loaded, and the sidebar will
automatically return to it after 1 min. This was meant to nudge the participants into engaging
with the subgoals as much as possible. In the spring 2020 pilot study, the subgoals were in a
separate panel that had to be actively triggered in order to be displayed. As a result, the feature
was rarely used. Similarly, in the usability study (Chapter [§), the entire subgoal labels were
written inside the coding area as comments. This led them to neglect the subgoal pane and
consequently also the subgoal graphics, hence the more minimal inline comments.

There is a drawback to making the subgoals as visible as possible for the purpose of boosting
the effect size. By being the default, there was no obvious way of measuring the extent to which
participants voluntarily made us of it and consciously attended to it. We experimented with
various methods that made the graphics visible but not completely visible, so that some action
on the part of the user would be required to view the graphics clearly. In one version, the
graphics were blurred and resolved only when hovered over; in another, the graphics were too
small but magnified when moused over. Ultimately, these were deemed too obtrusive: the final
version displays graphics somewhat too small to clearly resolve text, and clicking on a graphic

causes it to enlarge within a modal window.

7.5.2 Time limits

One theoretical solution for enhancing student concentration is to impose an explicit time limit.
This could take the form of simply informing them “You have 10 minutes to solve this exercise”
or through a visible countdown clock, after which the learner either automatically progresses
or is presented with the correct solution. Such a time limit could be generous or intentionally
severe, so as to create a speed-accuracy trade-off. When Rafalski et al. [109] conducted an
experiment featuring a data wrangling task, they imposed a generous 20 minute limit, since
there is no point in having participants continue in perpetuity.

A time limit also comes with drawbacks. Because our tasks are organised to be progres-
sively more difficult, if a student stalls on a simple exercise, letting them proceed on to a more
complicated exercise after a timeout would only cause them to stall again. Moreover, if they

were presented with the solution after the time limit expires, they may choose to wait passively

CHAPTER 7. DESIGN OF SLICE N DICE 126

The user has forgotten a variable

Did you define the variable failing tall without errors?

The user implemented the subgoal incorrectly

Did you correctly define the variable failing tall :

Expected something different.

The user has solved the exercise successfully.

Nice work! Note how it is possible to apply multiple conditions on rows.

Click on NEXT to proceed.

Figure 7.13: Examples of the feedback messages. The first two messages are produced by
DCL submission test library while the success message is hard-coded by me. It is intended to
reinforce a concept learnt from the exercise and motivate the learner to proceed.

until it appears. Time limits require participants to continually monitor the time remaining, in-
troducing time management as a potential confound. If a participant fails to solve the exercise
under a potentially ill-calibrated time limit, they may be discouraged from continuing, believ-
ing themselves to be far below average in aptitude. The experience of learning programming is
already fraught with anxiety for many, and a time limit-induced test anxiety could impair this
learning process even further [309,310]. It could also discourage volunteers from signing up
to the study, as only a dispositionally competitive learner may choose to undergo such stress
without recompense.

Ultimately we settled on a compromise, in which the Next button initially is disabled and
greyed out, but silently becomes functional after 15 minutes. More importantly, since the so-
lution will be made available (see Section[7.5.4)), there should be no risk of getting completely
stalled.

7.5.3 Feedback

As previously described, both Part 2 and 3 include test cases used for verifying the learner’s
script when they click Submit. These test cases were authored using libraries provided by DCL.
For each subgoal, the test cases test whether the result variable exists, whether it is correct,
and whether the entire exercise has been solved correctly. This produces automated feedback
messages, shown in Figure [7.13] The success messages were customised for each exercise to

summarise what had been learnt from each exercise, in order to motivate the learner.

CHAPTER 7. DESIGN OF SLICE N DICE 127

7.5.4 Hints

To address the assistance dilemma, the instructions ask of participants to ‘“Please use as few hints
as possible” and the provided hints need to be actively accessed one by one. By associating hints
with specific subgoals, the hope was to deter participants from looking up the entire solution im-
mediately, and instead only request a hint for the specific subgoal they struggled with. Similarly,
we made use of graded hints, in which hints are arranged as a cascading sequence that gets pro-
gressively closer to the solution [311,312]. This again added an intermediate layer that the user
would have to click through before the solution is available. Each subgoal was associated with

three hints, which adhered to the following pattern:

Hint 1 : targets difficulties in API lookup. It informs the user where in the menu they can find
an operation relevant to the subgoal. It is formulated as (by way of example) “Have a look
at Create > vectors > by repeating vectors” and also functioned as a hyperlink that, when
clicked, opened up the relevant documentation entry. This feature was deemed relevant
from a usability point of view, in that the actions it substituted for would have been a

mechanical lookup anyway.

Hint 2 : targets difficulties in example adaptation. It goes into greater detail regarding the
syntax, commenting on which function to use and which parameter values to pass, without

ever providing the actual code.

Hint 3 : targets debugging difficulties, and simply contained the solution, i.e. the executable
code corresponding to the subgoal. This was made available as a last resort, to prevent

frustration. The code still had to be either transcribed or copy-pasted.

An example set of hints is shown in Figure

7.5.5 Unscaffolded exercises

Another feature of Part 3 was the inclusion of 3 unscaffolded exercises. This was motivated
by a desire to measure performance and planning ability once the training wheels were off, and
subgoals (including their graphics and hints) could no longer be depended upon. Performance in
unscaffolded exercises was regarded as a dependent variable (i.e. scaffolding was not regarded as
an additional independent variable). The same exercises were unscaffolded for every participant,
namely the last vector exercise (the 6th exercise), the last matrix exercise (the 10th) and the last
dataframe exercise (the 18th).

The unscaffolded exercises are effectively post-tests interspersed among training exercises,
but once again introduces a risk of frustration and attrition. A compromise was struck in which
the subgoals were unavailable for a duration of 10 minutes, which was deemed sufficiently long
for the exercise to conceivably be solved, and short enough for a participant at a complete loss

to not drop out in frustration. After that, the subgoals and associated hints will appear.

CHAPTER 7. DESIGN OF SLICE N DICE

1. Get hold of all students who both failed

the exam and are above 170cm in height
(save to: failing tall)

& [L
Have a look at Access > from dataframe > rows by
condition.

2. Given those students, find the maximum
days of absence (save to: answer)

4 o o
Have a look at Access > from dataframe >
column(s) by name and Calculate > vectors >
aggregation.

4 & L

You have two conditions that you need to chain
together using the AND-operator g Don't forget

& 4 o

You want to access from
ACENELT- @R U808 and then run the

the brackets! function, which you can simply chain on to the

ELELL TS column.

& & &

failing tall =
students[(students.failed == True) &
(students.height > 170)]

answer = failing_tall.absence.max()

Figure 7.14: In Part 3, every subgoal is associated with three hints, which are accessed at the
user’s discretion. The first hint provides the relevant location in the menu, the second hint pro-
vides further guidance on how to adapt the documentation example, and the final hint provides
the executable code. The layout here does not reflect the actual interface: hints are made avail-
able in sequence and take up the same area.

7.6 Further data collection

SLICE N DICE was equipped with rich logging capabilities of behavioural data, including the
content and timestamp of code executions, clicks and mouse-overs in the menu and documenta-
tion, key presses in the coding area, and interactions with graphics. As mentioned in Chapter |1}
we also sought subjective feedback, in order to determine if graphics made the data wrangling
experience more enjoyable or motivating. Such data would need to be elicited explicitly via a
survey, rather than through logging. Furthermore, we wanted to collect data about learner char-
acteristics - such as degree programme, gender and prior experience - both to determine whether
randomisation had balanced the conditions appropriately, and to explore them in a co-variate

capacity. In this section, we describe the surveys embedded in SLICE N DICE.

7.6.1 Demographic survey

At the very beginning, after signing up, participants are given a demographic form asking them
about their gender, which recruitment group they belong to, what their degree major is, what
their reason for participating is, as well as the language they wish to complete SLICE N DICE
in. This was to get a sense of where participants came from and what their motivations were.

There were also 5 Likert-scale questions. The first of these aimed to observe whether the

CHAPTER 7. DESIGN OF SLICE N DICE 129

Please indicate whether you are familiar with the
following:

Note that programming language doesn't matter

[] programming interactively with a shell/console

(] writing multiline programs

[] data types like logicals (also called Booleans) and strings
(] logical operators such as AND, OR, and ==

[] how functions (e.g. parameters, return values) work

[] indexing array structures (e.g. lists, vectors)

[] matrices and their use in mathematics

[] dataframes/data tables in for example Excel

SUBMIT

Figure 7.15: After the demographic survey, participants were given a short pretest to gauge their
programming experience more precisely.

participant was normally drawn to visual media in their learning. It asked participants “How
often do you seek or create graphics when learning new material?” (Very often, Sometimes,
Rarely, Very rarely, Never). The second question asked them about their English comprehension,
in order to check whether particular subgroups could have under-performed due to a language
barrier. Participants were asked “How often do you struggle with understanding English?” (Very
often, Sometimes, Rarely, Very rarely, Never).

The last three questions asked participants to rate their experience in Excel, R, and Python
NumPy/Pandas (Not at all, A little bit, Beginner’s level, Intermediate, Advanced). While we
were under no delusions that a single, self-reported Likert-scale offered a reliable or precise
measure of previous experience, front-loading the tutorial with an objective assessment could

have deterred participants from continuing.

7.6.2 Pretest

To give another, more quantitative measure, the demographic survey was followed by a 8-item
checkbox pretest in which participants indicated whether they were familiar with a context (mir-
roring the programming concepts of Part 2). This pretest is shown in Figure[7.15] If the partici-

pant scored above 5, they were advised that Part 2 was optional to them.

CHAPTER 7. DESIGN OF SLICE N DICE 130

7.6.3 Evaluation survey

At the end of each part, participants were moreover given a short evaluation survey, asking them
to rate their experience along several dimensions, and to raise any other ideas or feedback they
had in an open-ended response item. The ratings were given on a scale of 1 (Not at all) to 5

(Very much) on the following dimensions:

* Enjoyability: How enjoyable did they find the part? Presumably, the degree of enjoya-
bility predicts the likelihood of adoption.

 Effort: How effortful did they find it? Effort has been shown to influence test performance
[305], and is usually measured by post-test self-report items [305]]. A desirable outcome

would see graphical conditions being perceived as less effortful.
* Motivation: How motivated were they while completing the part?

* Concentration: How concentrated were they? Although concentration and effort are

closely linked, concentration arguably reflects a more deliberate form of exertion.

* Subgoal helpfulness: How helpful did they find the subgoals? This was asked to all

participants.
* Hint helpfulness: How helpful were the hints? This was also asked to all participants.

* Thumbnail graphics helpfulness: How helpful were the thumbnail graphics? Only the
TG group was asked about this. Although it carried the risk of demand characteristics, by
being embedded among so many other items the risk was reduced of participants deducing

the research hypothesis.

* Subgoal graphics helpfulness: How helpful were the subgoal graphics? This was only
asked to the SG group.

There are several validity risks attendant to these measures. With effort, for example, stu-
dents could attribute failure to a lack of effort [313]] and social desirability bias may lead them to
overestimate their effort. Moreover, effort may vary dynamically over the course of the tutorial,
which a single scalar measure cannot capture [313]]. To mitigate response fixedness, some items

had a 5 signify a positive response, while elsewhere a 5 indicated a negative response.

7.7 Chapter summary

» SLICE N DICE is a special-built web application that contains three parts and has two fixed
variables embedded: the provision of subgoal graphics and the provision of thumbnail

graphics.

CHAPTER 7. DESIGN OF SLICE N DICE 131

» Part 1 consists of a set of operation cards and 9 data wrangling exercises. The exercises
are non-programmatic and require the participant to select operations from the menu that
match each subgoal.

* Part 2 provides a foundation to programming, featuring 10 programming exercises that
cover topics like variable assignment and data types. There are no subgoals associated

with this part, but the learner is trained in the API lookup workflow.

 Part 3 contains 18 programmatic data wrangling exercises. Each has a set of subgoals and,
for each subgoal, 3 hints. 3 exercises are unscaffolded (i.e. without subgoals for the first
10 minutes).

Chapter 8
Slice N Dice pilot studies

Rolling out SLICE N DICE into multiple classrooms and asking of people to dedicate their time
to complete it would require assurances that both the front-end and back-end data collection
worked correctly. For pedagogical and methodological reasons, the interface would need to be
intuitive, the instructions unambiguous, and the exercises calibrated so as to be neither too diffi-
cult nor too easy. Furthermore, since much of the content of SLICE N DICE - including graphics,
documentation, and exercises - were manually created, there were numerous opportunities for
human errors to creep in. Finally, before large-scale recruitment began in earnest, we needed
some reality check, however crude, that the graphics were subjectively useful in this context,
and could not be outright dismissed as an intervention.

For these reasons, the present chapter describes two studies conducted during the autumn
semester of 2020 involving early versions of SLICE N DICE (the main study, described in Chap-
ter took place in the spring of 2021ﬂ The first study’s chief goal was to elicit ideas of how
the user experience and tutorial contents could be improved, and to gather qualitative reflections
on the role graphics played in their problem-solving process. The second study was a quan-
titative pilot study meant to give us a glimpse of the data patterns and distributions to expect,
although it was too small in sample size to carry much inferential weight. The pilot study was
also instrumental in refining the data schema and deciding how to operationalise the dependent
variables.

The chapter presents the studies in the order they were conducted: first the qualitative usabil-
ity study, then the quantitative study. The outcomes of these studies have already been hinted
at in Chapter [/| since they informed the final design. However, we believe there is value in
situating this formative feedback in its proper context, and in reporting the results in greater
detail.

''As noted in Chapter we also conducted another study in Spring 2020 that could be regarded as a pilot study.
However, though influenced by this earlier study, SLICE N DICE was built from scratch. Moreover, due to study’s
COVID-19-related discontinuation, we will not describe it any further.

132

CHAPTER 8. SLICE N DICE PILOT STUDIES 133

8.1 Qualitative usability study

We noted in our methodological discussion (Chapter |4) that, as our line of research is design-
based as opposed to theory-focused, qualitative methods serve an essential role in providing
quick, low-cost feedback to different design iterations. Since many of the variables we care
about - motivation, enjoyment, confusion, and learning - are not directly observable (and at least
the first three are fundamentally subjective), it makes sense to conduct such a design explo-
ration using interviews. As a research method, user interviews are not without shortcomings, as
responses are inevitably biased towards the easy-to-verbalise and socially desirable. However,
when coupled with observational data, it can readily flag features of the app that are confusing,
off-putting, malfunctioning, or unnoticed.

The objectives of the study range from the low-level to the high-level. At the lowest level,
we want to detect bugs, typos, and errors in the tutorial contents. Although crucial to the app
development and subsequently addressed, we will not remark upon such minutiae at length. At
the middle level, we sought to remove or modify items that were too confusing or difficult.
We will similarly not recount the evolution to individual exercises. Finally, at the high level, we
sought feedback on how the overall task, interface design, and graphical features were perceived.
The write-up of the usability study will be focused on such high-level concerns, and centred on

the following research questions:

Are the explanations understandable? In Part 1, a card contains a prose explanation and
example, the latter of which is represented either graphically or using a shell-like notation. Do

people appreciate the card design, and do they prefer the graphical or textual version?

Is the task sufficiently clear? The operation selection task of Part 1 is a relatively unproven
type of exercise, while the coding environment in Part 2 and 3 necessitate workflows quite
unlike that of a standard IDE. To work effectively as an exercise and assessment, the role of the
scripting and shell areas, the hint mechanism, and the documentation all have to be clear. Are

the instructions and the interface clear enough for the participants to progress without issues?

Is the menu sufficiently navigable? Can participants navigate the menu efficiently to find
operations in Part 1 and syntax in Part 2 and 3? To what extent do they rely on thumbnail

graphics when doing so?

How are the subgoals and subgoal graphics perceived and utilised? Are the subgoal graph-

ics perceived as helpful, indispensable, redundant or annoying?

Do participants appreciate the task? Part 1 was designed with many considerations in mind,

among them its benefits to theory development and its role as an advance organiser. However,

CHAPTER 8. SLICE N DICE PILOT STUDIES 134

Usability study participants

ID Subject Gender Experience

P1 | Engineering | Female Basic experience in C, Matlab
P2 | Engineering | Female Basic experience in Matlab

P3 | Engineering | Male Minimal experience in R

P4 Physics Female Basic experience in Matlab

PS5 | Chemistry | Female None

P6 Physics Male Basic experience in Matlab

P7 Biology Female None

P8 | Engineering | Female | Intermediate experience in C, Matlab

Table 8.1: Table describing the 8 participants involved in the usability study. Every participant
was recorded using SLICE N DICE for 3-4h. Minimal < Basic < Intermediate.

it is possible that participants view the part as blocking more productive activities by delaying
their introduction to programming. Is this an issue we need to be worried about? Meanwhile, the
programming exercises of Part 2/3 are hardly authentic: they involve toy data sets and contrived
problem contexts. They also offer ample scaffolding features, some of them optional. Are
participants bothered by the lack of realism, and is the availabiliy of scaffolding appropriate or

excessive?

8.1.1 Method
Participants

This study took place before the autumn semester had started, hence there were no undergraduate
students available to recruit. Instead, we aimed our recruitment effort at non-CS PhD-students
in STEM subjects, as these too are likely motivated to learn programming. The study was adver-
tised through an email-list for STEM PhD-students. The only exclusion criterion we applied was
that they were not experienced in Python or R, as it proved difficult to find STEM PhD-students
without any programming background whatsoever. In the end, 10 participants were recruited.
Because 2 participants withdrew mid-study for unknown reasons, we present the remaining 8
participants in Table[8.1] Out of these, 6 had some basic programming knowledge. 3 participants
(P3, PS5, and P7) chose to do it in R, while the rest chose Python.

Procedure

Participants were booked in for 4x1h sessions, separated by a week. They were compensated
with a £10 Amazon voucher per hour. The sessions took place remotely using screen-share
via Zoom. With participants’ informed consent, sessions were recorded and transcripts auto-

generated.

CHAPTER 8. SLICE N DICE PILOT STUDIES 135

The first session began with me explaining the purpose of the app. The goal with the study
was to “raise any confusions, bugs, errors, or ideas for how to improve it”. Participants were en-
couraged to voice out loud any feedback or ideas they had as they proceeded, using a think-aloud
protocol. Before starting, they were asked about their previous experience in programming, what
challenges they had perceived having in the past, and what subject they studied. Towards the end
of Part 1, participants were asked whether they found the task helpful, which representation on
the operation cards they preferred, whether they made use of the graphics, how navigable they
found the menu to be, and whether they in real life would be tempted to skip past Part 1. At the
end of Part 3 they were asked the same questions (except the last). The interview technique was
semi-structured: although the same questions were repeated for participants, follow-up ques-
tions were also posed.

Since this was the first time SLICE N DICE was tested by people external to the project, we
had little insight into how long it would take to complete the app. To fit the sessions within the
target duration of 4h, the following protocol was established. Unless participants had interme-
diate previous experience (in which case they could skip it), the first session would be spent on
Part 1. The second session would be spent on foundational programming (i.e. Part 2) and the
third and fourth on programmatic data wrangling (Part 3).

To ensure that feedback was provided on as many exercises as possible, participants would
receive verbal hints and guidance by me in debugging their solution. Since they received addi-
tional support, the circumstances are not fully representative of those in which SLICE N DICE
eventually would be completed in. This downside was accepted due to time limitations and the
need to vet exercises; the quantitative study featuring the vetted exercises would later contribute
with more realistic time estimates.

As with the main study, participants were randomly allocated to a condition with subgoal
graphics and thumbnail graphics either present or absent, independently of each other. However,
two toggles were also added to the interface so that, mid-way though each part, participants got
to experience the opposite condition. Each participant therefore experienced both the presence

and absence of either type of graphic.

Analytical procedure

Low- and mid-level suggestions (e.g. typos, unclear wordings) were noted down during the
session and generally addressed through modifications immediately afterwards. To collate ut-
terances and behaviours relevant to the high-level research questions, each screen-share record-
ing was re-watched by me, and pertinent material transcribed and included for analysis. The
methodology can be characterised as a form of grounded theory, in search for emergent themes

instead of hypothesis-testing.

CHAPTER 8. SLICE N DICE PILOT STUDIES 136

1. Form a series [37 11 15]

CROR o=
Create vector with names = [(|

This may be correct, but the expected answer would be Create
vector from arithmetic sequence.

Figure 8.1: During the usability study, the correct answer was immediately given once an oper-
ation had been given to each subgoal and the solution submitted.

8.1.2 Part 1 results

The version of SLICE N DICE that the participants received was different from the final one
presented in Chapter [7] It was also ever-changing, with changes suggested by one participant
sometimes immediately implemented before the arrival of the next participant. In Part 1, the
main differences were in the ontology underpinning the menu, which at the beginning had not
yet received the regular three-tier structure (described in Chapter|[6) that was introduced towards
the end as it became clear the ontology was too nested. Another difference was tooltips, which
initially did not exist at all, and also introduced towards the end. Initially, there was no feedback
at all upon submission and participants were taken immediately to the next exercise, but even-
tually the correct answer was displayed upon submission, as shown in Figure [8.1] The exercise
set was also slightly different, and larger: the 12 exercises of the usability study was eventually
reduced to 9. Originally some subgoals mapped onto several operations, but this number was

eventually constrained to 1 per subgoal.

Are the operation cards understandable?

The operation cards were generally read without obvious impediments. Occasionally, partici-
pants engaged in extensive backtracking to compare operations with each other. Three partici-
pants explicitly commented on the cards, with P7 noting that the examples are “easy to under-
stand”, P6 saying that “these kind of short, sharp descriptions are quite good”, and P5 noting
(emphasis added):

“There’s a lot of information to unpack, but it’s all obviously written very clearly.”

Among the operations, pivoting and group-wise aggregations appeared to be the operations
to cause the slowest reading. P5, a beginner (and native English speaker), occasionally expressed
confusion over terminology such as element, value, and aggregation, and suggested a lookup
table to gather such words in one place. P2 similarly commented that many of the words, such as
matrix, may be difficult to a beginner. On other occasions, the example was ambiguous, causing
people to later under-generalise: for example, P3 wondered whether an aggregation referred

specifically to addition, since the example featured addition. P1, meanwhile, suggested adding

CHAPTER 8. SLICE N DICE PILOT STUDIES 137

more signposting within the deck, such as a card indicating when the user enters a new section,
for example from vectors to matrices. Another issue arose from the attempt to disentangle and
delay the introduction of programming concepts. Some of the operation cards required the
mention of data types and indices, which provoked questions among the complete beginners.
Regarding the operation card graphics, three people spontaneously expressed liking them.
P1, upon first seeing them, said they “like the little illustration, that’s good”, while P7, upon
toggling to see it, stated “that’s much easier to visualise now". P6 called them “definitely useful”.
Moreover, when asked explicitly whether they preferred the graphical version or the textual one,

most participants preferred the graphics:

“I think I preferred the graphics. The graphics made it seem like a bit less infor-
mation. Yeah, definitely graphics.” (P5)

“I’d say the graphics because it was easier for me to visualise.” (P7)
Two stated that they wished to have access to both representations:

“I think I probably preferred the graphics, but it would have been good to be able
to toggle.” (P6)

“I think I liked both because having the text sometimes you just don’t wanna read
it but having the graphics you kind of want something to help you explain it so, a
bit of both to be honest” (P3)

In addition to these general reflections, there was also highly specific feedback. For example,
in an Access graphic where the post-state (i.e. the accessed elements) lacked the highlights of the
pre-state, P5 was confused by which elements ultimately were accessed. In another instance, a
graphic featured elements that had the same value as their index (e.g. the first element had value

1), causing confusion over whether it was the indices or values that were being accessed.

Discussion. The graphical versions of operation card examples seem to be subjectively pre-
ferred over the shell-like notation, and the bite-sized organisation of the card deck and succinct
descriptions appear to be appreciated. As a result, the design of this part went mostly unchanged,

but the texts and examples were examined anew to minimise jargon and ambiguity.

Is the task sufficiently clear?

Since it was unlikely that participants had encountered anything resembling Part 1’s operation
selection task before, we were very interested in whether the instructions and interface were clear
enough for them to proceed unassisted. Despite the interactive tour guiding participants through

each necessary step and interface component, and one participant (P1) calling the instructions

CHAPTER 8. SLICE N DICE PILOT STUDIES 138

“really clear”, it soon became evident that this was not sufficient. Once the tour had concluded,
most participants were confused about how to proceed. P5 did not initially understand she was
meant to drag the operations. P2 was similarly at a loss how to proceed at first, but with the
two types of graphics activated, found the task straightforward, eventually saying “I think the

interface made perfect sense”. Expanding on this point, she said:

“I think initially it was difficult for me to understand what I was meant to do,

but that process got a lot more easier the more I did it.” (P2)

One participant, P3, struggled considerably with the interface and what he was meant to do.
In part this may have been caused by how the drop-zone looked like a text input field (“Are
you supposed to drag or type, which is it?”), by how the drag handle did not appear obviously
draggable, and by a confusion of terminology. P3 was confused by the use of "operation" and
thought it referred to the data structures. He also appeared to be overwhelmed by the menu,

which he had almost fully expanded, and as a result began selecting operations haphazardly.

“If you hadn’t told me, there was no way for me to know that it was drag and
drop.” (P3)

When asked about it, P3 did not remember the tour, and suggested that a text should be
added to each exercise reminding them of the drag-and-drop. It is worth noting that he initially
lacked subgoal graphics, which could have contributed to the confusion. At least some of this

confusion appeared to be more diffuse:

“A lot of the technicalities, like... you said it’s meant for novices but to me, some
of the analogies seem to be by or for someone who is familiar with R who would
understand that, but as a novice I didn’t understand what it actually meant.” (P3)

Another recurring issue was that several participants (P1, P5) did not understand that they
were only meant to choose operations among the categories previously covered. There were also
several concrete suggestions. P1 commented that it was not clear when an exercise was correct,
because the border went only subtly green. P5 suggested that it would be good to be able to

revisit past exercises.

Discussion. The feedback prompted us to make the instructions explicit in the description of
every single exercise, including what to do (“Select operations from the menu by dragging the
::: handle”) and which categories to choose from. Furthermore, the tour was made replayable.
Feedback was provided upon submission, and correct answers were given a more noticeable
green glow, while red answers would glow red. The number of exercises was also reduced, from

12 to 9, removing the ones found to be too ambiguous.

CHAPTER 8. SLICE N DICE PILOT STUDIES 139

Is the menu sufficiently navigable?

As noted, the ontology was restructured and pruned over the course of the usability study, be-
cause it soon became evident that the inconsistent and deep nestings of the early ontology it-
eration complicated navigation. Often it prevented participants from even seeing all operations
available since they were reluctant to explore the deepest levels. Despite the need for revision,
participants reported having a systematic workflow that consisted of determining the top-level
category first, and then using the thumbnails and/or tooltips to select the specific operation.

Determining top-level category mostly appears to have been straightforward:

“I would use it where I did not necessarily know under which subheading, but I
would know I would find it in the Calculate section, and then I would look for the
right subsection.” (P2)

“Whether it was Access or Calculate, it was very easy to see where you’d have to
be in it.” (P5)

“I would go for the specific group first, and from there, vaguely scan over the words,
but really then look for then picture that was kind of in my mind.” (P6)

Sometimes this strategy failed, due in part to incorrect assumptions about the menu’s struc-
ture. For example, in a calculation-related subgoal, P5 reasoned (correctly) that the input values
initially would have to be accessed, and therefore looked under Access. Elsewhere, the operation
imagined as necessary to fulfil a subgoal was too specific and the participant failed to generalise
the search. For example, when one subgoal was stated as “Add the two vectors in reverse order”,
two participants (P1, P6) went looking for an “add in reverse order”” operation, even though the
“Create a vector from smaller vectors” would work. The subgoal thus constrained their search
incorrectly, but looking through the menu they eventually found the correct operation unaided.

Interestingly, later in Part 3, P1 commented that the dragging of relatively abstract operations
also could have the effect of attaching a too narrow meaning to the operation. P1, when reading
the subgoal “Calculate product of the array” said she was unsure what to do. After guided

towards the aggregation, she said:

“I think, because previously aggregation was tied to things like addition and mean,
that I didn’t really understood it could be used for product. /.../ Because previously,
instead of typing out the function for mean and instead simply taking an aggregation
block, it hadn’t really dawned on me that... there would be different functions

within the aggregation part of the documentation.” (P1)

Recall that the menu’s appearance changed throughout, with tooltips initially being absent,

then simply being the operation’s title, and eventually featuring the full operation card contents.

CHAPTER 8. SLICE N DICE PILOT STUDIES 140

Regarding thumbnail graphics, there were some unprompted comments. For example, P7 called
them “very helpful” and used them systematically to locate operations. P1 occasionally made

strategic use of the thumbnails and surveyed the tooltip before selecting an operation, saying:

“T also like having a copy of these [tooltip] illustrations because it is sort of like...
you have the title... and then I [hover] to see what is in there. It is really good.” (P1)

Among those who completed the study before tooltips were introduced, P2 often asked ques-
tions that a tooltip is likely to have answered, for example what an aggregation or pairwise calcu-
lation meant. P6 found the thumbnails to be too light against the white background and therefore
difficult to read. Another aspect worth considering is that, in being overly nested, the menu may
also have made the thumbnails less effective, since they were only visible if the super-ordinate

node was expanded.

Discussion. By the time of the last participant, the menu had settled into a structure very sim-
ilar to its final form. It is difficult to evaluate whether this made a qualitative difference to
their navigational efficiency, and the design of the study afforded no way for the participant to
compare them directly, but we are satisfied that its new regular form was an improvement. The
perception of the thumbnails also seems broadly positive. It was impossible to observe directly
when and whether participants glanced at thumbnails (since this glancing may not translate to a
cursor movement), but it was clear that the tooltips were used strategically to clarify what an op-
eration meant. We are therefore also satisfied that the tooltips were a substantial improvement.
One pedagogical-methodological trade-off we remain unsure of is whether to keep the menu
collapsible or not. On the one hand, a collapsible menu allows for a neater, less overwhelming
appearance. On the other hand, a collapsed menu provides fewer opportunities for the thumb-
nails to be visible and thus effective. In the end, we kept it collapsible to prevent information

overload in Part 1.

How are the subgoal graphics perceived?

Unprompted comments regarding the subgoal graphics were generally positive, with P5 saying
that she “really enjoyed” them and P2 saying that “the images really help - they kind of make
the words make more sense”. Several participants described the graphics as “important” to their
process (P1, P7). P5S was concerned over the risk of over-scaffolding, saying that she “probably
looked at the graphics a bit more than I would have liked to”. She appeared conflicted over

whether the graphics were simply helpful or oo helpful:

“It just feels... not like cheating because I'm really glad it’s there, but obviously
you could just look at the pictures. Actually that helps because if you get stuck
you can just look at the pictures and that makes you realise why that’s the right

answer. So yeah, I like it.” (P5)

CHAPTER 8. SLICE N DICE PILOT STUDIES 141

“It did make it easier, but it was good to start without them and have them either be
optional, because I think otherwise I would have relied on them completely, and
maybe that would have meant I would have relied on them without understanding
as much.” (P5)

In the quotes above, P5 appears to have used the graphics productively as a cue for self-
explanation, and also as a way to verify her tentative solution. P2 also reflected on the meta-

cognitive self-regulation needed to use the graphics productively, and not depend on them:

“I think in the beginning I was relying on [the graphics] quite heavily, but the further
I got through, I was trying to find the thing I was looking for based on my
understanding and then use the image to check whether I was right. 1 would

try to find the subgoal I was looking for, and then see if I was correct.” (P2)
To P7, the availability of graphics implied the option to engage or disengage with them:

“I thought the images were helpful because you can make it as easy or hard as you
want.” (P7)

Discussion. The participants appear to be conscious of the assistance dilemma, and the poten-
tial for unproductive use of the graphics. It is true that, especially in the TG/SG condition, the
subgoal graphics may be only simply compared with the thumbnail graphics, to locate the cor-
rect operation, and that reflecting on its relationship with the subgoal label and problem domain
requires a degree of self-control. Such an effect could be revealed by an interaction analysis.

Nevertheless, the subgoal graphics appear to be perceived as valuable, important, and enjoyable.

Do participants appreciate the task?

At the very end, participants were asked explicitly about the fact that Part 1 did not include any
programming, whether it was frustrating to them, and whether they would have felt tempted to
skip it. The opinion here appeared to be fairly split among those who saw it as relevant and those
who did not. P6, who had some previous Matlab experience, reported finding the task “maybe a
little frustrating”. In real life, he believed he would probably skip past it, saying that he would
“rather just see it run and then find out why”. He furthermore explained:

“It didn’t feel like I was programming, if you know what I mean? It felt like
I was hunting for things, I guess, but I am still thinking about the operations more

pictorially rather than thinking about seeing it run.” (P6)

P2, another participant with previous Matlab background, similarly expressed an urge to
program immediately, even though she thought that “it is quite helpful to learn what you are
gonna be doing before you do it” and that she probably would have completed the Part 1 in real

life anyway, since there were exercises in it. She explained:

CHAPTER 8. SLICE N DICE PILOT STUDIES 142

“I think it helps to go and do it right away, because I think it helps to see output
and then understand what is happening. I think probably reading before is more
valuable but, typically for me, I would try and do it to understand what a specific

instruction actually does.”(P2)

P5, who was a complete beginner, believed the exercise was useful, but that it initially was
difficult to understand its relevance, since it did not fit the mental image of what programming

entails:

“I think I would have been overwhelmed with straight away trying to code
something. The only thing that would be useful is having something that said how
this relates to programming. Especially for a complete beginner, you think of pro-
gramming as someone typing code. It can be hard to see the connection. But it

definitely makes it an easier introduction and less scary.”(P5)
Despite now believing in its relevance, she thinks she probably would have skipped past it:

“Yeah, I think [I was] quite tempted [to skip it]. I have done online courses before
where in the beginning you have these text boxes, and you have to read and press
Next. It’s easy then, unless you’re really motivated, to just skip through them

and get to the first question.”(P5)

Several participants echoed P5’s impression that the non-programmatic introduction of Part

1 could help mitigate feelings of information overload, by building up a more robust foundation:

“When learning a new language, you are sometimes bogged down with syntax,
and so to have an idea of the rules of the language without having to worry about
those errors, especially when it comes to learning as you go... you may not know
if the error is due to the syntax or if the operation you are trying to do isn’t carried
out that way. Having it begin this way (without programming) sort of removed
that ambiguity. It made it very clear which rules of the language I understood and
which I didn’t.”(P1)

“I definitely learnt a lot of things that I didn’t know. /../ Even when I thought I
knew how I would go about answering things, I was proven wrong, that I didn’t
know what to do.” (P1)

“I think this was very helpful because I guess you need to understand how some
basic functions work before you do actual programming. And this helps visu-
alise the next steps.” (P7)

CHAPTER 8. SLICE N DICE PILOT STUDIES 143

Interestingly, P3, the participant who previously had struggled with understanding the inter-
face and started off frustrated by it, appeared to have warmed to the task. After completing it he

said:

“Obviously you need to know the basics of it before you go into programming. In
my opinion, it’s better to learn to cook [before attempting to] start cooking. Some
people would say ‘You learn as you go’ but if you know the basics of it, then
it would give you a better understanding of what you are actually doing, as
opposed to someone saying ‘Just type this code.’. That way when you go into
programming you have some slight clue of what you are actually doing. So when
you create a dataframe you go ‘Oh, I just created a dataframe’ as opposed to if you
just jumped straight to the code, and don’t know what a dataframe really is. So in

my opinion, this approach is good.” (P3)

Discussion. The range of attitudes on the utility of a non-programmatic, concept-first part
was expected, but it was interesting that the opinion did not neatly align with expertise: both
complete beginners and prior programmers preferred code-first or concept-first structures. The
instructional sequence does not have to be that strict, but is here motivated by the desire to
separate conceptual skills from programmatic skills. The disagreement does suggest that, at
the cost of some added variance in the data, SLICE N DICE should make Part 1 optional and

technically allow participants to start with Part 2.

8.1.3 Part 2 results

At mentioned in Chapter [/, what we in the main version refer to as Part 2 (programming) and
Part 3 (programmatic data wrangling) were in the usability study merged into a single Part
2. Part 2 was at this point nested into sections: clusters of exercises that were preceded by
an explanatory card that introduced a programming concept. The first few sections concerned
foundational programming concepts (e.g. variables, functions, data types) and we will use “Part
2” to refer to these, and “Part 3” to refer to the later sections, which involved data wrangling
exercises.

For an example of these explanatory cards, see Figure[8.2] which shows the card for script-
ing. This card contained the same information as the corresponding entry in the sidebar menu,
but it was left to the user to look it up. Unlike the main study, the relevant entry in the documen-
tation was not directly opened by default.

At this point, the scaffolding in Part 2 was similar to the final version in how it contained
a hint, however the hint was not embedded in the error message, but rather available through
a Hint button. The hint simply informed participants of where in the menu they would find

relevant information. Additionally, and in contrast with the final function, there was also a

CHAPTER 8. SLICE N DICE PILOT STUDIES 144

i GEO GT Guide Home Log out

Scripts and consoles

In Pythor, thens aee two majos wiys of pogramiming: you can
write: one bong, multiine code chunk (3 scoript] and then
elicking “Run” to see the final result.

-3
- 4

- 34
#or printiz)

Yo wieskdri® really be able b "sea” 2 until you write the
wariable you wish 1o print on & rew, orinside o print ()
Tunction, in line 4, which causes it to be printed into the shell
(scematimes called consobs).

The console is also an area Mv:reywcan code one line at a
time. Simply writing the variable on the line will print its value

Figure 8.2: In the usability study, Part 2 concepts were introduced through explanatory cards
rather than as a documentation entry in the sidebar.

Solution button available that displayed a sample solution. Both of these features were part of
the DCL plugin and are shown in Figure [8.3] For the purpose of the usability study, progress
was not conditional - they could simply click Next if they felt satisfied they understood it.

Is the task sufficiently clear?

The explanatory cards were read without issues, except in instances where they referred to com-
ponents in the programming interface (e.g. references to the scripting area or the console), P1
wished for them to be visible. The fact that explanatory cards removed them from the IDE con-
text (see Figure caused some irritation. Several participants did not initially realise they
were meant to look at the menu at all, and were therefore completely stumped.

When in the coding interface, the interactive tour and the explicit instructions of the first
few exercises appeared to have made the task straightforward enough. To some, like P1, it was
not immediately not obvious that, via the menu, they still had access to the explanatory card
preceding the exercise.

Programmers with experience, like P4, proceeded efficiently through the initial program-
ming exercises. For complete beginners, the early exercises also involved near enough transfer
to not stall them excessively. Even so, several recurring errors had to be addressed through
explication in the documentation and less ambiguous exercises. For example, when asked to
create a variable with a particular value, beginners sometimes confused the variable identifier
with the value. Not knowing what to assume as fixed and what to assume as flexible in the

documentation, beginners sometimes drew incorrect generalisations about syntactic rules. For

CHAPTER 8. SLICE N DICE PILOT STUDIES 145

script.py

script.py solution.py
1 x='name'#Create name #'}"Qat’; name

1

2 2 name='Jog’

3 age =9;fCreate age 3 #Create age

o 4 age=52

5 isMarried=true#Create isMarried 5 #Create isMarried
6 isMarried=

The basics > of data types The basics > of data types
Run Run

(a) The hint showed as a strip at the bottom of the (b) The solution was made available after clicking
script. on the hint.

Figure 8.3: During Part 2 in the usability study, a hint and solution were available. These were
removed afterwards. Both the hint strip and solution tab were built-in features of DCL.

example, two participants placed blank spaces within variable names, between function name
and the subsequent brackets, and used keywords for variable names.

Participants were repeatedly confused at not seeing any output even though they had no print
statements in their script (only assignments). It was also clear that beginners had to be explicitly
guided through the workflow of saving intermediate results in variables, printing them to the
console, inspecting its state and moving onto the next step.

The sequencing of concepts was at times awkward. For example, np.array () was in-
troduced before explaining the concept of libraries and without explaining object-oriented con-
cepts. Since the documentation was deliberately superficial and refrained from diving into low-
level logic of either API, participants (P1, P5, P4, P7) were sometimes frustrated by things left
unexplained. For example, the method for accessing the number of rows in a matrix m in R
was simply given as dim (m) [1], without explaining that dim () returns an integer vector in
which the number of rows is the first element, which frustrated P7. Other questions concerned

how method chaining really worked in Python and the rules for how functions could be nested.

Discussion. Many of the issues relating to participant confusion prompted small, incremental
improvements to the documentation and how questions were formulated. In response to feed-
back, the Next button as moved to a more visible place, and the pre- and post-state of the sample
data in each exercise was visualised in the exercise description, to help remove ambiguity. Later,
after the pilot study but before the main study, the issue of participants not exploring the menu
was addressed by making the relevant entry open up by default in the sidebar, replacing the
explanatory card.

Regarding participants’ frustration with shallow documentation, it is difficult to imagine
ways of satisfying this curiosity without incorporating external resources such as the official

documentation, or allowing participants to use Google as part of the workflow. Ultimately, the

CHAPTER 8. SLICE N DICE PILOT STUDIES 146

simplicity of the documentation was a deliberate choice meant to prevent cognitive overload

among complete beginners, but for high-curiosity learners, it is possible that could backfire.

Is the menu sufficiently navigable?

During Part 2, there was little menu exploration, which is not that surprising given that the
exercises rarely required information not available in the explanatory card. Perhaps partly due
to the time confines, it was common for participants to go straight to the hints to see where
in the menu to find relevant material. P4, even with previous programming experience, often
used hints “to check”. Therefore, most time appeared spent on code example adaptation, and
not operation selection. These concerns notwithstanding, P7 found the navigation experience
“smooth”. At one point, when thumbnails had been deactivated, P5 said that she preferred how
it was before, “when one could see what [the operation] is doing”, presumably referring to the

thumbnail graphics.

Discussion. The lack of exploration in the menu during Part 2 is not a big issue, since focus
should be on learning to code and to adapt code examples, not on composing multi-operation

scripts, which would require further navigation.

Do participants appreciate the task?

Perhaps due to its higher fidelity to real-world programming, participants were generally moti-
vated throughout Part 2. P6, who had previously expressed reservations about Part 1, said that

he believed “this would be the ideal way to learn™:

“I much preferred to this. You can kind of see written down examples and you
can try to apply that to your problem and, if you get stuck, you have the hints and
the solution. Otherwise you can spend a lot of time messing around, trying to
visualise it. Last time I was doing a lot of visualising but this, I think, was a lot
better.” (P6)

He especially appreciated being able to see the correct solution:

“Not only are you trying to extrapolate, you actually have the solution. Often there
are many ways of doing it and this way you can see if you have over-complicated
it.” (P6)

P4 also seemed to benefit from seeing a solution, and repeatedly toggling back and forth

between the script and solution tab as soon as she seemed confused.

CHAPTER 8. SLICE N DICE PILOT STUDIES 147

® GE ® GT Guide Home Logout

Subgoals Taxonomy Documentation : o : country ne_kids
Suppose you have a dataframe (called women) containing the number of kids
that each woman has, along with their income and the countries they lived in.

maan_income

In the countries with more than 2 kids per woman on average, what is the mean

income?
[]
] nids me.
' | ’ — script.R R Console
| — — i
L - — mesns 1 means <- aggregate(list(income=womens$income, Marning message: argument is not numeric or logical: -
women —— nr_kids=womenSnr_kids), by=list(country

returning NA

=womenicountry), mean)

. Warning message: argument is not numeric or logical:
- 3 wWCategorisze each country's average number of returning NA
I’?TQVE,_OI'I average, more than two kids and average income (save to: means) Warning message: argument is not numeric or logical:
kids (save to me. bove2) 4 returning NA
Sy : 5 Warning message: argument is not numeric or logical:
.Obtain those c 5" income & E L t
DL ‘t__o. . S EL: 6 #Get hold of the countries that have, on average T TR
means (save to answer) = e g
» more than two kids (save to: means_abovel)
7
& Parsing error in script.R:1:69: unexpected *,°
9 WObtain those countri€s’ income means (save to: 1° means <- aggregate(list(income-womenSincome, nr_kids
The contents of the variable seans aren't correct. X
Remember that you have want to group rows by country and average both nr_kigs and income . Have alook at Calculate >
dataframes > groupwise aggregation.
e s

Figure 8.4: Note the customised error message and hint, but lack of hints underneath each
subgoal

Discussion. Overall, despite its brevity, Part 2 does appear sufficient to instill in participants an
iterative workflow of looking up documentation, adapting code examples, and debugging their

solution, which forms its chief purpose.

8.1.4 Part 3 results

Part 3 was at this point similar to the final version in that the sidebar contained a tab where sub-
goal labels and graphics were displayed. Unlike the final version, however, there were no hints
associated with the subgoals: instead, a hard-coded hint displayed as a strip in the IDE once the
participant submitted an incorrect solution. The hint anticipated a common error and suggested
where in the menu to look for information (see Figure [8.4). As shown in the same Figure, the
subgoals were also available as in-line comments within the IDE. Finally, unscaffolded exercises
had not yet been introduced into SLICE N DICE, but was rather a post-pilot addition.

Like with Part 2, most spontaneous think-aloud commentary during this part related closely
to specific exercises, and it was mostly in the post-interview that reflections and suggestions

were elicited.

Is the task sufficiently clear?

Despite the complexity of the interface, there were no direct complaints about it. P2 commented
that “Once you kind of get used to it, it makes sense” and that the tutorial helps mitigate the
complexity. She especially liked the multi-tab sidebar:

“I think it worked well having it there on the side so you can look at it and then you

would have an idea of the task you were trying to do./.../ It was quite good having

CHAPTER 8. SLICE N DICE PILOT STUDIES 148

it all in one place.” (P2)

Concrete suggestions for interface improvements included a progress bar, more space to
type, and the ability to backtrack through past exercises. P5, a beginner, asked for “more exam-

ples or a bit of a slower pace”.

Discussion. Part 2 probably served participants well as a warm-up in how the interface largely
remained the same. In light of the positive feedback, no major changes were subsequently made

to the interface.

Is the menu sufficiently navigable?

Participants again engaged in little menu exploration and appeared to rely extensively on the
hints in order to locate the relevant entry. The readiness with which they consulted hints could
mean that they did not see the ability to retrieve information unaided as intrinsically useful,
giving them little incentive to opt out of that scaffolding. It could also mean that they were
genuinely overwhelmed, and the hints provided some optional relief from that, allowing them to

focus on the coding.

“I’d be much happier with myself if I managed to figure out how the code works.
As opposed to, if I'm stuck, I’d have to scroll through all of this documentation
and I don’t actually know which one is right. And it would be my choice whether

or not to use it. Maybe after a while I'd stop using them.” (P3)

PS5 described feeling overwhelmed by the sheer number of operations, and the possibility
that any of them might be relevant, saying that “It felt like quite a big jump from last week.” (i.e.
Part 2). To what extent did she make use of the thumbnails? P5, when asked about it, reported
still using the thumbnail graphics:

“Quite a lot, like, I probably wouldn’t know what Access > from dataframe > rows
or columns by index would mean, but with the graphics you do. And I like that they
get bigger when you hover over them.” (P5)

Even so, P5 still relied more on hints:

“I think they [i.e. graphics] are really good, and they show you what to do, but at
least for me, having the hints is definitely helpful because... the taxonomy, it makes
sense, and if I were familiar with it all, it would make sense to find everything but

because I am not, I still needed to know where to look in it for the right things.”

P3 suggested giving participants a hint on what part of the documentation to look in (for

example, which category) instead of precisely which entry.

CHAPTER 8. SLICE N DICE PILOT STUDIES 149

Discussion. The reluctance to properly familiarise oneself with the menu and navigating it
unaided is in some sense rational. The menu, while useful as a mental organisation of the
domain, will not be present in their post-SLICE N DICE coding, and knowledge thereof was
not tested as a goal in itself. However, the ability to mentally clarify what operation is needed
to implement a subgoal is important, and excessive reliance on hints is therefore undesirable.
The way we addressed this problem was to place the hints in the sidebar to ensure they see the
subgoal graphic before using it. Moreover, hints are broken down by subgoal, such that the

taxonomy locations are not presented all at once.

How are the subgoal graphics perceived?

The participants appeared to make consistent use of the subgoals written inside the IDE as green

in-line comments:

“The words in green really helped. They were really useful when there was no
hint. Before that [was just reading the hints.” (P8)

However, one surprising observation was how rarely participants clicked on the subgoals tab
to view the subgoal graphics, and used the in-line comments in their stead. This was consistent

with participants’ own reflections when asked about the subgoals:

“First I was using subgoals. But then I kind of stopped using them because [was
referring to things I had done before that worked.” (P6)

“The graphics are good and they are very helpful in how you have a visual of the
dataframes. /../ I looked at the graphics when I was reading the question at the
beginning and in the script part of the program. I was relying on the little bit there
to guide me as well.” (P7)

“I think, honestly, the way this has been laid out is really good. I did have a
tendency to go straight to the taxonomy without really looking at the subgoals
that much, but that is my own fault. /../ When I remembered to look at the
graphics, I found them helpful, but I mostly relied on the verbal cues.” (P1)

When asked about whether her inattention to the subgoals were due to their location, P1
suggested replacing the in-code subgoals with a simple “Step 1" and “Step 2” to remind people
to look at the subgoals, as well as to “remind them that you don’t have to tackle all of this in
one go, there are separate steps that you can take”. This suggests that the subgoals could play a
psychological role in making the task feel more surmountable.

Several other participants also expressed a positive perception of the subgoal graphics:.

CHAPTER 8. SLICE N DICE PILOT STUDIES 150

“They are very helpful. It is good to see a graphical representation before you
give it a go. It kind of hints... whereabout to look for it. Because you kind of get an
idea of what it is you are trying to do before you want to do it. /.../ I definitely think
the graphical things helped, to explain when you know you wanna do something
but not understanding the steps that you need to take to do that.” (P2)

Discussion. To increase participants’ engagement with the subgoal graphics, P1’s idea of re-
moving the full subgoal labels from the IDE was adopted. Moreover, to spatially collect all
hints, the hints were moved from the strip at the bottom of the IDE, to the sidebar where they

were placed next to each subgoal.

Do participants appreciate the task?

Despite its intrinsic complexity in applying programming to data wrangling problems, partici-
pants appear to have found Part 3 relevant and helpful. P6 noted that “These exercises kind of
throw you at the deep end, which is good for learning”. Participants appeared to agree that the

level of difficulty was reasonable, even when it was challenging:

“Definitely a reasonable difficulty. I found it quite challenging but it’s useful things,
things you would like to use if you were coding. /.../ Maybe if you are a complete
beginner it might be tricky to begin with but that would depend on the user. I like
the level of difficulty because I would have to think a bit for all of them.” (P2)

The opportunity to choose whether or not to use hints was positively received among partic-

ipants who had some prior experience:

“I enjoyed on being able to rely more on running it in the shell, because that feels
more like what you’d really be doing if you were trying to program. So the
opportunity to use that to debug instead of just looking at the hints was very helpful.
/... It is definitely important to have a place where people can practice without hints

to work it out for themselves.” (P1)

Since the only hints provided indicated where in the menu to look (apart from the subgoals),
quite extensive verbal guidance was often necessary to ensure participants solved the exercise
within a reasonable time. There were occasional worries that, without guidance external to the

app, they would be stalled:

“That was the thing I struggled with, when I couldn’t work it out. But the

information was definitely there for me.” (P1)

CHAPTER 8. SLICE N DICE PILOT STUDIES 151

Discussion. It seems like this sample of participants enjoyed the challenge, but we cannot say
whether their attitude would have been different if the human guidance was removed, as is the
case in the main study. It was in response to such concerns that the hint provision was expanded

upon, as mentioned earlier, to prevent participants from getting stuck.

8.1.5 Conclusion

The usability study, despite its small size and the difference in circumstances compared with
those faced by main study participants, proved to be an effective way of improving the interface
and refining the materials. We were confident that the instructions and the interface were clear
enough for the exercises to be solvable in practice. There were also strong indications that
the graphical elements were subjectively helpful, and that through the modifications to SLICE
N DICE implemented in response to the study, we had increased the likelihood of participants
engaging meaningfully with them. What remained was now to trial SLICE N DICE and ascertain

whether the data it generated were appropriate for the research questions.

8.2 Quantitative pilot study

After implementing the changes suggested by the usability study, the next step was to run a
miniature version of the study in our local institution. This pilot study took place the semester
before SLICE N DICE was due to be launched, and has been the subject of a 2021 publica-
tion [314]. The primary goal was to catch any further software issues that may arise in less
supervised sessions, and to verify that the schema of data collection was appropriate for the re-
search questions. The purpose of the pilot was not hypothesis testing, nor will its results be used
for calculating the sample size of the follow-up study. This is because the group sizes will be
far too small to yield an accurate estimate. The objective was also not to gauge how promising
the intervention seemed, since making the choice of whether to conduct higher-powered stud-
ies contingent on preliminary (and inaccurate) estimates risk introducing follow-up bias [315]].
For these reasons, it is primarily the overall distributions that are of interest - not the group

differences.

8.2.1 Method

The version of SLICE N DICE presented to participants in the pilot was largely the same as
that of the main study, including the graphics and exercises, with some notable exceptions. As
with the usability study, what the main version refers to as Part 2 (programming) and Part 3
(programmatic data wrangling) were merged into a single Part 2. We will use “Part 2/3” to refer
to this part. Other differences, some of which were directly in response to findings from the

pilot, included:

CHAPTER 8. SLICE N DICE PILOT STUDIES 152

e Part 1 scoring: in the pilot, participants only receive feedback on Part 1 exercises once
they have submitted their solutions, whereas in the main study they need to re-attempt

each subgoal until it is correct.

* Part 2 documentation: in the pilot, the relevant documentation entry was not automati-
cally opened in introductory programming exercises, but instead showed as a card before

the programming exercise was presented.

» Hint navigation: in the pilot, hints regarding where in the menu to find a relevant com-
mand did not work as hyper-links that they could click on to directly open the documen-
tation entry.

» Evaluation surveys: the pilot study’s evaluation surveys were shorter, and did not include

questions that asked explicitly about the features of interest (e.g. subgoal graphics).

* No unscaffolded exercises: the pilot study presented subgoal scaffolding alongside ev-
ery single data wrangling programming, but the main additionally created 3 temporarily

unscaffolded problems.

* Data back-end: the pilot study collected fewer interaction data variables and, unlike the
main study, did not record time off task (e.g. the tab losing focus), which leads to inflated

time on task measurements.

Finally, graphics and exercise wordings were at this stage less refined, and were subject to

various minor modifications before the main study.

Design

The pilot study’s SLICE N DICE version technically had the same built-in experimental structure
as the main study, involving two binary independent variables - the presence of subgoal graphics
(SG/=SG) and thumbnail graphics (TG/=TG) - however we will mostly aggregate data across
these variables and inspect overall dependent variable distributions and disaggregate them by
exercise. The main performance metrics of interest are time on task and the number of attempts,

but we will also explore subjective evaluation data.

Participants & recruitment

Following ethics approval by the local institution, participants were recruited from the local
undergraduate population via an introductory CSO programming course, a preparatory module
for master’s students about to begin a CS conversion course, and a campus-wide email campaign
to the STEM-related departments. In the two courses, participation was voluntary and non-

credit bearing. In the CSO course, participation was completely opt-in, while for the conversion

CHAPTER 8. SLICE N DICE PILOT STUDIES 153

course, SLICE N DICE was integrated as a voluntary classroom laboratory. As with the final
study, respondents were offered a data wrangling e-book as an incentive to complete the study,
but unlike the final study, they also received a £10 voucher as compensation. This payment was
to accelerate recruitment, and to encourage completion even in the presence of bugs, however
the choice to offer it implies that the pilot study is likely to overestimate the completion rate and

recruitment success of the follow-up study.

Procedure

Due to COVID-19, all participants undertook the study remotely and asynchronously, by access-
ing the URL at a time of their own convenience. A channel was set up in a learning management
system where participants could ask questions and inform us about bugs or confusions. The only
exception was the conversion course students, for whom participation started off synchronously
with a short lecture, delivered by me, and two tutorial sessions in which I was available to answer

questions.

8.2.2 Part 1 results

Part 1 contains 64 operation cards and, interspersed among them, 9 non-programmatic data
wrangling exercises. We were interested to see if participants progressed smoothly through the
deck or whether they are ever stalled, and whether the performance measures produce a wide

enough distribution to differentiate different levels of ability, without floor or ceiling effects.

Participant characteristics

Out of 55 participants who completed at least one exercise in Part 1, 44 participants completed
Part 1 fully. There does not appear to be a particular point at which the participants chose to
withdraw. As revealed by the initial demographic survey, among the 44 participants, 24 were
female and 18 male, with 2 of unspecified gender. Participants represented a broad range of
disciplines, from chemical physics, to digital media, economics, and zoology. 7 reported being
CS students: based on the recruitment efforts, these would presumably be in the beginning of
their first-year introductory course. 36 chose to do it in Python, while 8 chose R. Students’
self-ratings of their ability to program in a language, which were Likert-scale items rated from
1 (Not at all) to 5 (Advanced), indicate that those who signed up and completed Part 1 generally
had some prior exposure to programming in either procedural Python or R (see Figure[8.5]). This
probably reflects the fact that those who have been exposed to programming are more likely to

see its value, and are therefore intrinsically motivated to sign up.

CHAPTER 8. SLICE N DICE PILOT STUDIES 154

Prior experience

[}

~—

g Python experience R experience
B

2

£ 20

<

(=%

s 10

: ll il
£ 0 [[
E 2 3 4 5 1 2 3 4 5§

Experience

Figure 8.5: The self-rated prior experience in Python and R (1=Not at all, 2=A little bit, 3=Be-
ginner’s level, 4=Intermediate, S=Advanced).

Operation cards

Part 1 contains a deck of 64 operation cards. The time taken to read each card was recorded
and summed into a total reading time (shown in Figure [8.6a), to give us a sense of how quickly
they made progress through the deck. The median total reading time was 1387s (/23 min,
IQR=725s). As common with response time distributions, we find suggestions of a long tail. 5
participants took less than 6 minutes - interestingly all of these were in the TG condition and
thus had explanatory graphics on the card.

When looking at duration times card by card and sorting them by their order of occurrence
(Figure [8.6b), we find that individual cards are generally read in less than 20 seconds, and that
these became shorter and more stable with time, which could reflect both fatigue or learning.
A few cards take exceptionally long to read: these include calculating a matrix through pair-
wise arithmetic, group-wise aggregation, merging, sorting a dataframe by column, and pivoting.
Since these cards are presented in a sequential context, and later cards are presumably faster
to read due to learning effects, these reading times do not provide an absolute metric by which
to measure the complexity of an operation. It is interesting, however, to see intuitively more

complex operations appear more time-consuming to read.

Time on task

The time spent solving an exercise, from when the exercise is presented until the participant
hits Submit, would inform us about is participants are stalling at an exercise, and how easy one
person finds the task overall relative to others.

Participants’ total time on task data, seen in Figure [8.7a] indicates a slight positive skew,
centred at around 19 min (median=1148s, IQR=991s), but with 6 participants taking more than
double that amount. These could reflect confusion over the interface, or them taking a break,
but interestingly all but 1 of these outliers were completely without graphics (=TG/=SG). Note
that if, on average, the exercises take 19 minutes and the operation cards take 23 minutes, Part 1

could comfortably be completed within 1 hour. When time on task is plotted exercise by exercise

CHAPTER 8. SLICE N DICE PILOT STUDIES 155

. . . Operation card reading times
Operation card reading times P £

LJ].I] ;‘Mh;;# M&L@Q |

1000 2000 3000 Card
Total reading time (s)

w £ 9]

Duration (s)

[]

Number of participants

<

(b) Median reading times per card (error bars show IQR).
(a) The distribution of operation card Dashed lines indicate change in top-level category (e.g.
reading times. Access).

Figure 8.6: Results relating to operation card reading times in Part 1.

Part 1 time on task

Time on task in Part 1
500
400
H|l|l %é%éé%
0
1 2 3 7

=~ 2]

w

~
w
>
=]

[3
(=3
=]

Duration (s)

Number of participants

0

1000 1500 2000 2500
Total time on task (s)

Exercise

(a) The distribution of Part 1 total duration,
summed for all exercises. Two outliers (>2500s) (b) Box plots indicating the distribution of times
are cut out. on task per exercise.

Figure 8.7: Results relating to time on task in Part 1.

(Figure [8.7a)), we should remember that exercises contain different numbers of subgoals (in
order: 3,4,2,3,2,2,2,4,2). One finds that exercises on average take under 2 min to complete,
except the first exercise, where participants presumably are familiarising themselves with the

nature of the task, and exercise 8, which at 4 subgoals is relatively complex.

Number of correct operations

Unlike the final study, where feedback regarding the subgoal correctness is given on a subgoal-
by-subgoal basis, the pilot only gave feedback once the participant had given an answer to every
subgoal. Consequently, performance could only be operationalised as the number of correctly
selected operations (“‘correct subgoals™) on the first attempt, and not as the number of incorrect
attempts. The maximum possible score was 24, but the maximum score achieved was 21 (me-

dian=14.5, IQR=6.75). The distribution appears concentrated towards the upper bound, with few

CHAPTER 8. SLICE N DICE PILOT STUDIES 156

Part 1 performance Mean proportion of correct subgoals
P 08 L4
153
g, &
<o o
= S [
=3 H []
o £ 0.6
=3
S 2
5 £)
-g 1 £05 [®
E} 2 ® o
4
0 0.4 °
012345678910111213141516171819202122 I 2 3 4 5 6 7 8 9
Total number of correct subgoals Exercise

(a) The distribution of Part 1 scores, calculated as (b) Mean proportion of the number of correct sub-
the number of correct subgoals. goals per exercise.

Figure 8.8: Results relating to correctness scores in Part 1.

(7) people achieving scores below 10. The skew is not extreme enough to constitute a ceiling
effect however: the measurement still reveals a range of performance levels.

The left tail may be more problematic. It could be in spite of genuine effort: out of 7
participants who scored less than 10, all but 1 were in the =SG condition, which could mean
that an absence of subgoal graphics has a crippling effect on performance. However, it is also
possible that it reflects a lack of genuine effort. Since in this version, the participant is allowed
to proceed regardless of correctness, they may be tempted to choose random operations, which
also would undercut the informativeness of the time on task metric.

Upon looking at performance broken down by subgoal, we must remember that exercises
contain a different number of subgoals. For that reason, the proportion of correct subgoals per
exercise has been averaged across all participants: the result is shown in Figure [8.8b] We find
that correctness goes down over time, from .8 to .4, which could be due to fatigue, reduced
motivation to perform, but also due to intrinsic exercise complexity. Modifying the performance
metric into number of incorrect attempts before finding the correct solution would presumably

be less confounded by motivation-related factors.

Attitudinal data

In the evaluation survey given at the end, participants were asked to rate how concentrated and
motivated they felt, as well as how enjoyable, effortful, and worthwhile they found the task
to be. These ratings, which ranged from 1 (Not at all) to 5 (Very much), are summarised in
Figure Participants mostly gave a middle score of 3 when rating their concentration and
the effort that the task demanded, suggesting that the difficulty level was well-calibrated and did
not require excessive exertion. The enjoyability and motivation distributions tended towards a
rating of 4. The high motivation could be due to monetary compensation, but the enjoyability
scores are especially encouraging, as they reflect a more intrinsic property that would likely

improve participant retention. Finally, the flat distribution of worthwhileness ratings suggests

CHAPTER 8. SLICE N DICE PILOT STUDIES 157

Part 1 evaluation data

Concentrated Effortful Enjoyable Motivated ‘Worthwhile

abhids

12345 12345 12345 12345 12345

15

10

5

0

Number of participants

Figure 8.9: Results from five items in the evaluation survey, rated 1 (Not at all) to 5 (Very much).

disagreement. It is conceivable that the choice of featuring a non-programmatic introduction

would polarise people based on dimensions such as prior coding experience.

Open-ended feedback

14 participants chose to leave feedback in the free-text field of the survey. Among these, two
people commented on graphics specifically, although it is not exactly clear whether it is subgoal

graphics or thumbnail graphics they refer to (emphasis added):

“The graphic were really helpful for answering the questions! And I think the

interactive parts have really made me understand the concepts.”

“I tried not to rely on the graphics because I found them to act somewhat as a
‘match the shape’ type problem. Possibly would have been better if the graphics
were able to be toggled.”

The second person comparing it with a “match the shape” problem was in the TG/SG con-
dition, which to them may have introduced excessive scaffolding.
The nature of the task itself - that of operation selection - interestingly did not receive much

commentary, except for the following:

“The drag and drop thing in the exercises was a bit confusing at first but it made

sense after a while.”
Two people requested that Part 1 would introduce programming immediately:

“Would have liked to have seen how each of the operations could be done in Python,

like what should be typed in when performing each operation.”

CHAPTER 8. SLICE N DICE PILOT STUDIES 158

“I think it would be nice to be able to perform each action while you’re learning

about it to make it more clear what it does.”
A specific suggestion was the ability to try again when a subgoal was incorrect:

“Could be more helpful if you got to have a 2nd attempt without the answer showing

up - to encourage problem solving.”

Four participants asked for the problems and in particular their wordings to be clarified.

Implications

In light of the feedback, all exercises and their wordings were reviewed for clarification, with
one data science novice consulted for feedback on the revised wordings. Additionally, the fea-
ture request of permitting multiple attempts was addressed, leading to the subgoal-by-subgoal
feedback mechanism of the final SLICE N DICE iteration. However, the more drastic change of
adding code execution to Part 1 was not implemented, since the time that would take was not
available. To gather more feedback directly relevant to the subgoals and graphics, additional

items were added to the evaluation surveys.

8.2.3 Part 2/3 results

Recall that, for this version, Part 2 and 3 were merged together. This meant a total of 21 pro-
gramming exercises, the first 6 of which were introductory programming exercises, covering

concepts like variables and functions.

Participant characteristics

Out of 41 participants who solved at least one exercise, only 16 finished all 21 exercises. The
drop-off in participants is visualised in Figure There appears to be two points at which
several chose to drop out: the first is during exercise 3, which is about expressing logical condi-
tions, while the second is during exercise 18, which is when the data wrangling exercises begin
to get relatively complex, featuring more than 4 operations per solution.

6 of the participants who completed the study were females and 10 were males. These
participants did not appear to over-represent those with prior experience, or a particular degree
major: only 1 was a CS student. This allays some fears about potential attrition biases where the

most experienced participants persevere.

Time on task

Given the small sample size, it is difficult to make projections of what the time on task distribu-

tion will look like. What emerges from the observed times on task (shown in Figure 8.11b) is

CHAPTER 8. SLICE N DICE PILOT STUDIES 159

Drop-out over time

Data wrangling exercises

Participant

=]
9]

10 15 20
Nr exercises solved

Figure 8.10: Each horizontal bar represents the persistence of a participant, thus showing the
attrition of participants over time. The vertical line shows when basic programming exercises
turn into multi-command data wrangling exercises and is inclusive.

a positively skewed distribution with a median of 11336s (=3h 9min). While this number may
seem high, it is actually close to the estimated duration, which is 4h for the entire study (since
Part 2 and 3 are merged here, they would together take up 3h). Additionally, these recorded
times do not factor in mid-exercise breaks (i.e. signs of inactivity). Nevertheless, we should be
mindful of the fact that 7 participants recorded times on task of more than 4 hours, although 4
of those are outlier values (>7h) that almost certainly reflect breaks.

If we break down time on task data on an exercise basis, as shown in Figure and also
include incomplete observations (i.e. participants who did not complete all 21 exercises) we find
that exercises generally take between 100-500s to solve, and that the time required grows as the
exercises become more complex. However, it is notable that, although the last few exercises are
more difficult, time on task ceases to grow. This could be a reflection of a greater reliance on
hints due to fatigue, a learning effect, or a selection effect (the sample of the later exercises is

smaller).

Code executions and hint usage

Mid-way through the pilot study, the logging system was equipped with functionality to collect
code executions and the number of times hints were referenced. Due to it being added later, the
data is available for only for 36 participants, 10 of whom provided complete data. In the boxplot
charts of Figure these metrics are shown for each exercise on a per-participant basis (since
hints only existed for data wrangling exercises, Figure [8.12b] only features exercise 6-21). The
charts indicate that, while time on task went down for the last exercises, so did the number of
attempts, but the hint usage increased. This suggests that, for the later exercises, participants

did indeed choose to rely unproductively on hints, rather than attempt to solve the exercises in

CHAPTER 8. SLICE N DICE PILOT STUDIES 160

Part 2/3 time on task Part 2/3 time on task
. 600
& = :
E 2 & 400 é
g : H H
%)
3 £
g 1 S 200
<
Z =
0
10000 20000 30000 12345678 9101112131415161718192021
Total time on task (s) Exercise
(a) The distribution of Part 2/3 total dura- (b) Time on task (s) per exercise.

tion, summed for all exercises. Four outliers
(>25000s) are cut out.

Figure 8.11: Results relating to time on task in Part 2/3.

Number of code attempts in Part 2/3 Hint use in Part 2/3

N
n

15

‘]]_

p—
2]
=]

°

Nr of hints used

Nr of attempts
p—
<>
T 1

n
h

1234567 89101112131415161718192021 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Exercise Exercise

(a) Number of code executions (attempts) per ex- (b) The number of times hints used per exercise
ercise and person. and person.

Figure 8.12: Results relating to process metrics during Part 2/3.

earnest.

Attitudinal data

The evaluation survey at the end contained the same items as that after Part 1. Due to the time-
out built into Part 2 which enables the user to proceed despite not completing an exercise, more
participants completed the evaluation survey than finished each exercise: the sample size was
26. Compared with Part 1, it shows similarly middling scores on concentration, but a marked
movement towards the higher bound in how effortful the task was rated: most participants rated
itas a 5 (Very much). The mode rating in enjoyability is no longer a 4, but a 3. The programmatic
data wrangling exercises are intrinsically more difficult than the operation selection tasks of Part
1, so the high effort is not surprising, but may play a part in the attrition. It is also a cause
of some concern that motivation and worthwhileness levels have shifted somewhat leftwards

compared with Part 1, although the difference is slight.

CHAPTER 8. SLICE N DICE PILOT STUDIES 161

Part 2/3 evaluation data

Concentrated Effortful Enjoyable Motivated ‘Worthwhile

14dlL A

12345 12345 12345 12345 12345

10

Number of participants

Figure 8.13: Results from five items in the evaluation survey, rated 1 (Not at all) to 5 (Very
much). Since Part 2 and 3 were merged into one, this survey refers to both.

Open-ended feedback. Only 8 participants chose to leave free-text feedback. Of these, two

expressed enjoying the task:

“I have really enjoyed this so far! I am not a strong programmer and struggle to

remember the necessary steps so this is great for me.”

The following participant (TG/=SG) provides a clear example of the target audience, and

explicitly commented on the subgoals:

“I study Chemistry and I have been looking at some data analysis graduate jobs
which look really interesting but I have no experience in programming. I was con-
sidering trying to find somewhere to learn the basics when you emailed about your
app! I thought the interactive exercises were so useful for understanding the con-
cepts and breaking the task down into subgoals really helped, so did the hints
for if you were really stuck. I did find it really difficult towards the end, I think the
hardest part for me was trying to use the right brackets. I found with a lot of them I
basically had the right thing but it was just the type of brackets or use of ” that were
confusing me. But overall I thought the app was really great, very user friendly,
clear instructions and the graphics helped so much when trying to decide which

strategy to use.”

However, not everyone agreed with this sentiment. Two participants requested better for-
mulation of the questions and one person requested the ability to review past answers in order
to reuse strategies. The following participant (SG/-TG) felt demotivated due to the use of API

commands they did not get to understand in depth:

“I thought the course was useful however the exercises jumped massively in dif-

ficulty from the intro courses to the actual programming. All of the sudden being

CHAPTER 8. SLICE N DICE PILOT STUDIES 162

asked to use complicated functions never seen before was challenging to a degree

that I found it very demotivating.”

The following participant, who in the =“TG/=SG condition lacked graphics completely, wrote
the following:

“There was no graphics, which I found very difficult and it made it hard for me
to follow what was happening to the dataframes/ numbers. As a complete begin-
ner to python, I found this course quite difficult and confusing at times! I didn’t
always understand what the questions were asking me to do and found finding in-
formation in the taxonomy to be difficult sometimes, as there is alot of jargon

"’

and information isnt always where i would expect it to be as a newbie

It is plausible that thumbnail graphics could have remedied some of their navigation issues,

and subgoal graphics remedied their issues of “following what was happening”.

Implications

The results relating to Part 2/3 suggest that the time estimate for completing SLICE N DICE is
reasonable and that several participants found the subgoals and graphics helpful. One cause of
concern was found in how, for later exercises, the effort appears to go down, since hint usage
increased while the time on task and number of code executions decreased. This could be due
to fatigue or a feeling of defeat. There ratings of perceived effort were also high, and in the
discussion, some participants reported feelings of low motivation. This prompted another round
of revisions to the exercises and feedback, but may mean that the later exercises will be less

reflective of true effort.

8.3 Chapter summary

* Two pilot studies were conducted in order to determine that the front-end was usable,
whether the graphics were perceived as helpful, and how various process metrics changed

over the course of Slice N Dice.

* The qualitative usability study prompted improvements in the clarity of the Part 1 inter-
face and the displacement of where the subgoals were located in Part 3 to ensure that
participants engaged with it more. The interviews also suggested a broad appreciation for

all three types of graphics (subgoal, thumbnail, and operation card graphics).

» The quantitative pilot study prompted improvements in the wording of various questions,
the back-end data schema, and raised some concerns regarding low motivation in the last

few exercises.

Chapter 9
Slice N Dice validation studies

The results of the SLICE N DICE usability study, documented in Chapter (8 gave us confidence
that the graphical elements were perceived as helpful and appreciated. However, except as a
possible motivational boost, this does not imply that the graphics are objectively helpful. To be
the latter, then at a minimum the graphics must be interpretable. By this term we mean that,
upon reading them, a person is able to infer the behavioural logic of the operation that the graphic
is intended to represent. Establishing such interpretability by comparing user interpretations
with a ground truth is essential, as learners’ own meta-cognitive intuitions are not necessarily
accurate. Furthermore, without such assurances, a null effect would not necessarily mean that
graphics added no further pedagogical value - it could also mean that they simply were not
comprehensible.

Interpretability is difficult to define operationally. It is highly extrinsic, in the sense that it
depends on factors beyond their graphical characteristics: for example, prior experience, famil-
iarity with various graphical conventions, and whether interpretation is completely open-ended
or constrained.

To be clear, we do not have strong a priori reasons for doubting the interpretability of the
graphics. Firstly, Part 1 was deliberately designed as an on-ramp for familiarising participants
with the graphical system. Secondly, the graphical notation is “literal” in how it represents data
structures in the same way as the API conceptualises them (i.e. as 1 or 2-dimensional tables). It
introduces few syntactic novelties beyond employing colour using conventions that are already
ubiquitous in everyday life: to highlight, to connect, and to signify relative magnitude. Thirdly,
if the interpretability of the graphics were seriously in question, we would expect at least one
participant from the studies in Chapter [§|to have voiced concerns. Nevertheless, interpretability
is a fundamental requirement of the graphics, and should be addressed directly.

For this reason, this chapter presents two studies, for probing the validity of subgoal graphics
and thumbnail graphics, respectively. Although both were administered as surveys, they tested
validity in different ways: subgoal graphics were interpreted through participant-authored sub-

goal labels, and thumbnail graphics were interpreted through multiple-choice items.

163

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 164
9.1 Subgoal graphic validation study

The goal of subgoal graphics is to facilitate a participant’s comprehension of a solution in terms
of the data structure manipulations they require (i.e. plan composition), inspiring ideas of which
operations to search for in documentation resources. Ideally, this comprehension would also
transfer to unseen problems. In this study, we sought to ascertain their interpretability, in par-
ticular wondering if participants’ understanding of the operation depicted in a subgoal graphic
matches the logic we intended to illustrate. This feeds into [RQI] on the pedagogical effects of
subgoal graphics.

9.1.1 Method

The study took the form of an online survey (a copy of which is in Appendix [E). The survey
began with a participant information form and consent form. Within this form, our stated goal
was to “evaluate the usability of graphics that describe data operations”. It was emphasised
that it was the graphics that were evaluated, and it was not an aptitude measure of any kind.
This was followed by a short demographic section that asked participants about their previous
programming experience in Python, SQL, and Excel, followed by two sections that are described

below.

Background section

The survey needed to establish some baseline knowledge of concepts and terminology before
it could ask of participants to interpret graphics in terms of it. Ideally, they would have been
taught the behaviour of all data operations in a non-graphical way. However, to prevent partici-
pant fatigue, we limited ourselves to a background section that explained the fundamental logic
of a vector, matrix, and dataframe, the three main methods for indexing array structures (by
index, by mask, by condition), the three categories of arithmetic (an aggregation, element-wise
arithmetic, and arithmetic with scalars), and three methods for combining dataframes (merging,
concatenating, and adding a new column). This section illustrated all concepts using minimalist
diagrams that visualised the pre- and post-operation state of a data structure, populated with
values, and without the colour highlights or other graphical elements used in subgoal graphics
(see Figure [9.1). The omission of further graphical elements was by design: although the op-
erations needed to be exemplified somehow, it was important not to prime them with the more

idiosyncratic style choices proposed for subgoal graphics.

Exercises

To gauge the interpretability of the subgoal graphics, we gave participants a sample of five

exercises from SLICE N DICE, chosen to represent the range in difficulty. For each exercise, the

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 165

You can access values from a vector via this index, for example, here
you access the value 5 by specifying the index 2.

1T 2 3 4 5

5 0 4 1 } 5

Figure 9.1: A snippet from the background section. Note the minimalist style of the graphics,
carefully designed to avoid priming the participant.

participant is presented with a problem description and a list of subgoal graphics, but without any
subgoal labels. Instead, the participant is asked to write their own subgoal labels in open-ended
text fields. We reasoned that if their subgoal labels are reasonably equivalent with ours, the labels
can be regarded as interpretable. To clarify what was asked of them, the five exercises were
preceded by a worked example. The instruction was formulated as follows: “Try to interpret the
graphic in terms of what action it represents and provide a text label for it. There is no exact
right answer, and no programming syntax is needed: simply provide human-friendly labels like
Rotate the matrix, Take the row whose B-column equals 3, Calculate the mean.” An example
of a subgoal label field is shown in Figure [9.2] Some annotations had been removed from the
graphics to prevent the task from being overly simple, but data structure labels were kept. There
were 5 exercises and 18 subgoals to label in total. For each exercise there was also an open text
field to provide general feedback.

To measure the equivalence of the participant-authored and instructor-authored subgoal la-
bels, we decided upon an ordinal scale that rated each subgoal label (i.e. interpretation) as
follows: (0) entirely incomplete or incorrect, (1) mostly incomplete or incorrect, (2) somewhat
incomplete or correct, or (3) largely correct. This scale recognises that provided labels can differ
on at least two dimensions: completeness, since participants may vary in the detail or ambiguity
they formulate their labels with (e.g. saying Aggregate instead of Calculate the mean of each
country’s income) and correctness, since the inferred behaviour may be plainly wrong (e.g. Sort
instead of Flatten). Since participants had not received an introduction to all the operations, we
could not expect them to specify exact operations. Likewise, since subgoal labels themselves
have numerous degrees of freedom in their formulation, we could not expect word by word
equivalence, but rather focus on the deeper meaning being expressed. Although we did rate
the provided responses, we view this mainly as a qualitative study, allowing us to flag potential

issues in how novices comprehend the graphics.

CHAPTER 9. SLICE N DICE VALIDATION STUDIES

What proportion (out of all 5s in the entire matrix) does each column in

matrix m have?

5 5 12
7 7 6
S 13 14
15 5 93
14 5 61

10 17
5 4
8 5 ’ 0.28 0.42 0.00 0.14 0.14

Z 15 answer
3 19

166

m

1.1. What action does the following graphic suggest? *

o 1]
m HEE BN
] ¥) EEE
O H EER
O H EEN
m mask

Ditt svar
Figure 9.2: The first subgoal graphic in the first exercise in the survey.

Participants & Recruitment

The study was advertised during a lecture in a CSO course offered at the local university, about
4 weeks into the semester. This CSO course was aimed at complete beginners in programming,
predominantly for freshmen, and at this time point they would be expected to have a basic
understanding of procedural Python. The only exclusion criterion applied was that participants
had to be over 18 years old. 15 participants ended up completing the survey online. Via a
Likert scale, all participants reported having less than 1 year of experience in Python, all but two
had experience with SQL, and a median of 1 year of experience in spreadsheets. Respondents

entered a lottery where 4 people won £30 each in vouchers.

9.1.2 Results

The subgoal labels were rated according to the above-mentioned scheme. When summed for
each participant, the mean score was 38.47 (out of a maximum possible score of 54, SD=14.7),
which is more than 70%. Aggregates of ordinal data provide a very coarse measure, however. If
we disaggregate the data based on subgoal, as done in Figure[9.3] we find a large variance among
them. Since the score distribution of any given subgoal reflects differences in both inherent
complexity and the specific graphic, any two subgoals are not directly comparable. Nevertheless,
6 subgoals stand out as particularly error-prone: 1.1, 1.4-2.2, 3.2, and 5.2. These involve matrix
masking, element-wise arithmetic with single value, pair-wise arithmetic, matrix flattening, row-

wise aggregation and group-wise aggregation, respectively. Several of these are intrinsically

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 167

Response scores per subgoal

} SNRRENN "R
=10 ! K
H B
£ L]
~ 5 D 3
0

1.1 1.2 1.3 1.4 2.1 2.2 23 24 3.1 3.2 3.3 41 42 43 5.1 5.2 5.3 54
Subgoal

Figure 9.3: The relative proportions of 0-3 ratings for each subgoal exercise.

complex, which accounts for some of the misinterpretations. From inspecting the submitted

labels further, we notice the following three sources of error:

The need for annotations. Recall that subgoal graphics within SLICE N DICE occasionally
contain annotations to clarify which calculation is being performed (e.g. whether it is addition
or multiplication) but that these were removed in this survey to prevent the task from being too
simple. To some participants, it is clear that these annotations were necessary: for one graphic
that displayed a vector and a single value being transformed into another vector, 5 participants

expressed being confused by what it meant, which an annotation could have remedied.

Overly literal interpretations. There were several instances of interpretations that reasoned
that the colours represented literal colours. For example, in the subgoal shown in Figure[9.2] one
person interpreted it as “Filter the graph by blue as true and grey as false” while another person
interpreted it as “Leave 5s blank, anything else black”. For these participants, it was apparently
not evident that black represented False and blue represented the presence of 5s. While a

small minority, it indicates that graphical conventions may not be as universal as presumed.

Confusion about colour. Since colour represented different relationships depending on con-
text, this inconsistency occasionally led to incorrect references. For example, in a graphic repre-
senting column-wise aggregation, every column had a different shade of blue, but because this
shading increased in intensity for each column, two participants interpreted it as meaning that it

somehow involved sorting.

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 168

9.1.3 Discussion

Though we have seen that the graphics are not universally self-evident, we believe that the pro-
portion of correct interpretations is overall adequate, especially given the participants’ low prior
experience and the lack of realism in the context that the graphics were presented in. Whereas
actual SLICE N DICE participants would become accustomed to the available operations and
the graphical style throughout Part 1, and moreover have the command menu available to con-
strain the possible interpretations, participants of the survey would only have had a 5-minute
whirlwind introduction to the concept of tabular data and operations thereof. Their interpreta-
tions would therefore be much less constrained, hence the validation test is relatively severe and

likely underestimates the graphics’ interpretability in a more realistic context.

9.2 Thumbnail graphic validation study

Recall that thumbnail graphics are small, simple graphics that depict an operation but that do
not contain data, in part due to the spatial constraints of a computer menu and in part for the
sake of making the thumbnails readable at a glance. Unlike subgoal graphics, they are also
not tailored to specific exercises, but rather illustrate archetypal toy examples of an operation.
We could imagine that there is a trade-off in the speed and interpretability, since readability
increases with less information, and interpretability with more information. In the survey study
described below, we pose the following research questions, which all feed into RQ2] on the

effect of thumbnail graphics:

RQ2a: How easily can learners interpret the meaning of a thumbnail graphic?
RQ2b: What is the effect on interpretability in adding data to the graphics?

RQ2c: Which graphic design do learners prefer as thumbnails?

9.2.1 Method

Similar to the subgoal graphics survey, the thumbnail validation survey (a copy of which is in
Appendix [F) began with a participant information form and consent form. Within this form,
our stated goal was to “evaluate the usability of graphics that describe data operations” and it
was emphasised that it was the graphics that were evaluated, and it was not an aptitude measure
of any kind. This was followed by a short demographic section that asked participants about
their gender and previous programming experience, followed by a number of sections that are

described below.

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 169

Matching problems To establish the baseline knowledge for the task, the survey contained the
same background section as the subgoal survey, except there were also 5 matching problems.
For such problems, the participant is presented with three thumbnail graphics, and is asked to
select which of three easily confused operations that each graphic is meant to represent. As
an example, see Figure [9.5a Such a line-up could be viewed as testing the ambiguity of the
graphic: if a graphic repeatedly gets interpreted as representing the wrong operation, then such
a graphic is not fit for purpose.

The reasons for why we included matching problems instead of just multiple-choice ques-
tions (what we call interpretation problems, see below) are three-fold. Firstly, they are more
efficient in how they cover multiple operations at once and therefore make the survey less labo-
rious to complete. Secondly, they reflect the fact that the meaning of certain graphics depend
on the user contrasting them with other graphics. For example, the graphic for positional in-
dexing (Access by index, see the bottom graphic in Figure has a small circle denoting the
index, while Access by condition does not. As a result, the absence of an element that exists in a
related graphic becomes meaningful, and this absence would only be noticed when juxtaposed
with Access by index. Thirdly, the spatial juxtaposition of related graphics is representative of
the context in which interpretation will ultimately take place, namely in a menu with adjacent
thumbnails.

We are also conscious of the drawbacks matching problems carry: since within an exercise,
every pairing reduces the number of options in the next pairing, a process of elimination could
be applied. Matching problems are consequently much easier to solve than if graphics were
interpreted in isolation from each other. For this reason, matching problems were only used to
validate graphics that were fundamental enough that other operations depended on them. To

avoid repetition, these questions will be described in more detail in the results (Section [9.2.2).

Interpretation problems without data In the second section, the participant is presented
with 8 multiple choice interpretation problems. These problems present a single thumbnail
graphic and asks of the participant to select which operation (out of 4 options) that the graphic
represents. It is thus different from a matching problem in that they could no longer adopt a
strategy of elimination, by pairing up the most obvious correspondences first. Instead it features
3 distractor items, all of which were chosen to be seriously plausible candidates. Compared
with the matching problems, the interpretation problems therefore offer a relatively severe test
of a graphical readability. An example of such a problem is shown in Figure [9.5b] Note that
participants do not receive feedback to their response.

It would be infeasible and superfluous to pose this question for every single operation in the
ontology. Since 15 had already been covered by the matching problems, and many graphics
across data structures are similar enough, we selected 8 operations deemed to be at particular

risk of ambiguity. These judgements were based on earlier feedback from the usability study and

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 170

from a more exhaustive version of the survey given to 4 participants as a formative mini-pilot.

Interpretation problems with data In the third part, the exact same 8 interpretation problems
are presented again - in the same order, and with the same options - except the thumbnail graph-
ics are now populated with data, similar to the tooltips and operation cards in SLICE N DICE.
This provides a way of measuring intra-rater consistency, as a way of gauging response quality,
and also a way of measuring whether the additional information helps resolve the remaining

ambiguity.

Variant exploration In the next section, we sought to probe the design space more widely, by
asking participants directly which graphical style, out of a set of 4 variants, that they prefer. The
4 variants are illustrated by example graphics displayed in Figure [0.4] and are characterised by
the following:

Image 1: This is the representation most typically seen in textbooks and API documentation,
namely how the data structure prints in the standard output. It consequently has no high-
light colour or shading to separate values from indices. Vectors are printed horizontally,

and indices are shown regardless of their relevance to the operation.

Image 2: This style is the same as used in the graphics of the background section. The dataframe
header and elements are visually distinct, vectors are vertical to emphasise the correspon-
dence with the column, and the graphic is populated with sample data. Importantly, there

are no colour highlights.

Image 3: This style is similar to Image 2, but with colour highlights to further emphasise the

relationship between the pre-operation state and the post-operation state.

Image 4: This style is similar to Image 3, but without data.

Participants were asked to select which style they preferred in two different contexts: “A
thumbnail in a computer menu for accessing the corresponding computer command” and “A
textbook illustration to explain how an operation works”. Our expectation was that Image 3,
which combines highlights with data, would be preferred for textbooks, but that the smaller and

more minimalist Image 4 would be preferred as thumbnails.

End section Towards the end, participants were asked to rate, on a scale of 1 (Not helpful at
all) to 5 (Very helpful), how helpful they found the graphics without data, and the graphics with
data.

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 171

fec L=
1153 _ 1088 5 . H m
2264 ’“156"' 2&4’6 :=;>= B }.
3375 3 7 5 7 dt . .

Image 1 Image 2 Image 3 Image 4

Figure 9.4: The four different variants presented in the variant exploration question.

Which image represents the following access operations? *

Image 1 B B 2

Image 2 .E.E.P [] |

3. What does the following graphic represent? *

[J
mage3 W > W EEN) nEE
Image 1 Image 2 Image 3
O Shuffling a vector
Access from vector
by index O O O O . .
Reversing the order in a vector

Access from vector

O O O
by (e @ Sorting a vector
Access from vector
by condition o o O

O Duplicating a vector

(a) An example of a matching problem, which (b) An example of an interpretation problem,
asks of the participant to match three graphics which asks of the participant to select one of four
with three operations. operations as the graphic’s intended meaning.

Figure 9.5: The two types of problems contained in the survey.

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 172

Years of experience Experience level
Excel Python
26 Advanced
= 2 Intermediate
= 5 .
'S = Beginner
T4 .2 None at all
=9 St
— <
S oy
5 S
g2 & Advanced
Z £ Intermediate
= .
I I I Z Beginner
0 None at all
0 10 20 30 10 15
Programming Experience Experience
(a) Years of programming experi- (b) Self-rated experience in specific programming languages.

ence.

Figure 9.6: The prior experience of survey participants.

Procedure & Recruitment

A convenience sample of acquaintances were recruited (n=35), from friend networks in Egypt,
Finland, Sweden and United Kingdom. Participation was anonymous and remote, via Google
Forms. Participants did not receive monetary compensation. The survey had received ethical

approval from our local ethics board.

9.2.2 Results

Among the participants, 19 were female and 15 were male (1 was of unspecified gender). Impor-
tantly, the participants were not complete beginners: the median years of programming experi-
ence was 5 (see Figure for the distribution). They were especially experienced with general
Python, but generally also had intermediate Excel, R, and SQL experience (Figure 0.6b)).

Matching problems

The matching problems are shown in Figure The operation-to-graphic mappings given by
participants were overwhelmingly correct. For Q1-Q3, which concerned methods for accessing
values, 32 responses (out of 35) were completely accurate. For Q4 (about distinguishing ag-
gregations from element-wise arithmetic) and Q5 (distinguishing merging from concatenation),
30 were completely accurate. We therefore find that, when juxtaposed with each other, these

thumbnail graphics were straightforward to interpret.

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 173

Matching problems
Question 1 (Vectors) Question 2 (Matrices) Question 3 (Dataframes)
o o I
o o
= rn |, g "HE cEEE>EEE
Access from vector by index Access from matrix by index Access dataframe rows by index

L
5EEE | > NN lll' EEE

Access from vector by condition | Access from matrix by condition = Access dataframe rows by condition

[[Om ™ o SES -
am"EN ghp"EE & oo

Access from vector by mask Access from matrix by mask Access dataframe rows by mask

(a) The first three questions, which all concerned Access operations.

Question 4 (Calculation) Question 5 (Combination)
4
nen PR EEE L, EEEE'EEE EEE BN
HEN v
Aggregating a > EEE | o —
dataframe ER Lan erging two data-]
T T] frames so that the] |
= 1]] result only has rows Binding two data-
[] that appear in both frames by row
Epn R . . .
] B m Element-wise arithmetic
4 BEE with dataframes I o
EEE HEE B, EEER

Adding a new column to a
dataframe

Element-wise arithmetic with
dataframe and single value

(b) The last two exercises, concerning calculation and combination, respectively.

Figure 9.7: The correct operation-graphic mappings for the five matching problems. The order
of options was random and operations verbally formulated to be as self-explanatory as possible.

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 174

Q1 Q4 Q5 Qs
—/ (] L[[
e NN | v R (D
P oo]| B . e
g | [N Il
Q3 h 4

HEN) iEE

Figure 9.8: The graphics that were most commonly misinterpreted.

Interpretation problems

Recall that we had 8 graphics tested using interpretation problems, first without data and then
with data. Each problem had 4 options, one of which was correct. Looking at the proportion of
correct responses broken down by exercise (see the light blue bars in Figure [9.9a), we find that
it ranges from 21 to 33 (out of 35), with a mean of 25.9. This means that between 60% and 94%

of responses were correct. The graphics with the lowest accuracy were the following (see the
graphics in Figure [9.8):

Q1: 22 correctly interpreted it as meaning Access indices from a dataframe based on a condi-
tion, but 7 participants interpreted the graphic to mean Access rows from a dataframe by
index. This appears to be a failure to notice the black circles, representing indices in the

post-operation state.

Q3: 22 interpreted it correctly as Sorting a vector, but 10 misinterpreted it as Shuffling a vector.
This appears to be a failure to attend to the shade of blue, which is incrementally darker

in the post-state.

Q4: 24 correctly interpreted it as Aggregating each column in a matrix while 5 misinterpreted
it as Aggregating each row in a matrix. This could be due to a misunderstanding of

“aggregating each row” and meaning “producing a row of column aggregates”.

QS: 25 correctly interpreted it as Folding a vector into a matrix column-by-column, but 4 misin-
terpreted it as being row-by-row. This again seems to be a failure to notice the systematic

shade, which here is used to indicate correspondence of values from pre- to post-state.

Q8: 21 correctly interpreted it as Pivoting a dataframe so that each unique ID has its own row
(long-to-wide) while 7 misinterpreted it as Aggregating dataframe rows group-wise. This
could be due to confusion over what Var contains, and participants over-relying on the

heuristic that a smaller post-operation state implies an aggregation.

In terms of the influence of introducing data to the graphics, we find that the median number

of correct responses per participant shifts from 6 to 7 as participants receive graphics with data

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 175

Number of correct responses per exercise Correct responses per participant

- With . Without

£ 210
2% g z
£ g 5 z
520 2
2 g (
s 3
E 10 E 10 :$:
E E 5)
= = =
4 z g

0 0 |

1 2 3 4 5 6 7 8 0 2 4 6 8
Exercise Total number of correct exercises

(a) The number of correct responses in total, per graphical (b) The total score per participant and
type, out of 35. graphical type.

Figure 9.9: The performance in interpretation problems, grouped by graphical type. With means
with data, Without means without data.

(see Figure [9.9b). When broken down by exercise (Figure [9.9a)), we find that adding data to
the graphics improved response accuracy for all exercises except Q1 and Q8. In mean terms, it

increased the number of correct responses by 2.25 points.

Variant exploration

In presenting the participant with four different graphical styles, we had expected that they
preferred the minimalist Image 4 for the purpose of a menu thumbnail, and the more informative
Image 3 for the purpose of a textbook illustration. The survey item allowed participants to select
multiple versions, so the number of responses exceeded 35.

The results are shown in Figure 0.T1] They show, interestingly, that participants prefer Im-
age 3 in both contexts. It is worth observing that, for textbook illustration purposes, Image 3
is clearly dominant, and the format most typically seen - Image 1 - is the least popular. This
suggests that textbook and documentation authors can make their materials much more appeal-
ing by changing the visual appearance of their examples. We find the thumbnail preferences
surprising, however: Image 1 - what we had considered the least suitable design for thumbnails

- is second to Image 3 in popularity, albeit with the simple Image 4 as a close third.

Ratings

The final section asked participants directly about how “clear” they would rate the two types of
graphics (with or without data) to be. It is obvious from the response distributions of Figure
9.10]that participants found the graphics with data to be clearer, as the mode rating shifts from 3
to 5. 24 out of 35 gave the graphics with data a rating of 5.

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 176

Number of participants

Subjective clarity

With data Without data
25
20
15
10
5
0
2 3 4 5 2 3 4 5
Rating

Figure 9.10: The response distributions on a Likert scale of 1 (Not helpful at all) to 5 (Very
helpful) asking them how clear they thought the graphics were, with and without data in them.

-
I IIIH
v

w & w K
M L]]

,h...
=

w N =
- & @

[1] 567

Noaum [N .-
W wooesw
v v

(TN

Image for thumbnail Image for textbook
Image 4
Image 3
Image 2
Image 1
0 5 10 15 0 5 10 15 20 25
Number of participants Number of participants

Figure 9.11: Which of 4 variants that the participant prefers in a textbook explanation and

thumbnail graphic.

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 177

9.2.3 Discussion

The primary objective of this validation study was to gauge whether the thumbnail graphics
were clear enough for the behaviour of represented operation to be easily interpreted. We know
that indexing methods, calculation operations and combination operations are trivially easy to
identify in the context of matching problems. We also know that, even with three carefully
selected distractors, at least 60% always chose the correct interpretation for thumbnail graphics
in interpretation problems. We would expect this clarity to be even greater in the context of
SLICE N DICE, as that would afford a longer and more immersive engagement with the graphical
system, compared with a 15-minute survey. Overall, we are satisfied that the thumbnail graphics

are fit for purpose.

With or without data?

As a secondary research question, we were interested in whether interpretations become more
successful when the graphics have data. When exercises are considered on an individual basis,
the proportion of correct responses generally increases when data are added to the graphics.
We also find this to translate into a slight improvement in the number of correct responses per
participant. Given that the order in which graphics with or without data were presented was not
counter-balanced, it is important to remember that this improved accuracy could have been an
order effect: by the time they see the graphics for the second round, they could simply have
become more comfortable interpreting them.

There were also two sources of subjective data: the variant preferences and the final clarity
ratings. The variant preference data reveal that, for both thumbnails and textbook illustrations,
people prefer graphics with colour highlights and with data. From the ratings it is furthermore
evident that the graphics with data are subjectively clearer. This is not a trivial result: populating
graphics with data adds potentially distracting details, but also more information for resolving
ambiguity. We should note, however, that the ratings difference could also have been influenced
by order effects: the choice to present the graphics with data last could have influenced them to
think of them as a corrective.

Overall, we view these results as supporting our decision to augment thumbnails with tooltips:
despite their simplicity, it is clear that participants wish to have tooltips available for clarifica-
tion. This makes sense if we remember that the highlights are still available and could be relied
upon, and the data could be ignored if necessary, but that their presence offers more information

if the highlights proved insufficient.

Threats to validity

This validation study was not without weaknesses. For one, we did not test their understanding

of operations independently from their association with graphics. It is possible that they did

CHAPTER 9. SLICE N DICE VALIDATION STUDIES 178

not fully comprehend the notion of an aggregation, and that they relied on a more superficial
comparison with the examples in the background section. Another weakness is the lack of
formal equating of the difficulty posed by the distractor set in interpretation problems. It is
possible that some items had much more dismissible distractors. Arguably, the most concerning
weakness is that of the participants’ prior experience: although 8 (out of 35) had programmed
for at most a year, the majority were seasoned programmers, who likely already had a well-
organised mental model of the available operations. This is likely to have made interpreting the
graphics easier, and therefore a sample of novices would probably have been less accurate in

their responses.

9.3 Summary

* In a survey study validating subgoal graphics, a sample of 15 programming novices were
asked to provide their own interpretations of a sequence of subgoal labels. Response rat-
ings indicate that their interpretation accuracy was generally adequate, but also observed
several recurring sources of confusion, such as overly literal interpretations and misinter-
pretations of colour. We believe these errors are less likely in the context of SLICE N
DICE.

* Another study validated thumbnail graphics by asking 35 people of varying program-
ming experience to interpret thumbnail graphics without and with data. These responses
were given through multiple choice items. The results indicate that participants tended to
choose the correct interpretation, and that accuracy increased somewhat once populated
with data. Subjectively, participants appear to prefer graphics with data for both thumb-
nails and textbook illustrations.

Chapter 10
Slice N Dice results

In Chapters [[6] and [7] we documented the groundwork of a large, summative capstone study
addressing our two main research questions: what is the pedagogical effect of subgoal graphics
and thumbnail graphics (RQ2)? In this chapter we describe the procedure used when
administering SLICE N DICE to an international, multi-institutional sample of almost 300 par-
ticipants, and present the results comparing the control group with the graphical group on a va-
riety of pedagogically relevant metrics. The subgoal-related results [316] and thumbnail-related

results [317] have been accepted for separate publications.

10.1 Method

10.1.1 Design

Recall that SLICE N DICE incorporates all the components of an RCT: participants are randomly
assigned to one of 2x2 conditions, which persist throughout and constitute between-subjects
variables. As dependent variables, a plethora of behavioural data are collected under the hood,

along with self-reported survey data.

Independent variables

The two main independent variables are whether subgoal graphics are provided (SG, =SG) and
whether thumbnail graphics are provided (TG, =-TG). As noted in Chapter [/, these manipula-
tions mostly imply a comparison between the presence and absence of graphics, thus effectively
measuring the “added value” provided by graphics, which conceivably could be both redundant
or counter-productive. There were two minor departures from the clean presence/absence di-
vide: the thumbnail manipulation also changed the appearance of Part 1’s operation cards and
the menu’s tooltips, which in TG featured graphics, and in = TG featured a shell-like representa-
tion of how a particular data operation works. Thus, the TG condition can be seen as as a more

consistently graphical menu experience.

179

CHAPTER 10. SLICE N DICE RESULTS 180

Dependent variables

In Chapter 4{ we discussed our intentions to capture data for a wide set of dependent variables.

These dependent variables could be divided into two sets:

* Performance metrics: These are generally process metrics, reflecting the learning pro-
cess as it unfolds [271]. We have noted previously that SLICE N DICE does not follow a
post-test design, but rather focuses on measuring the speed and efficiency of the learning
process. The data collected two variables that, as a matter of face validity, measure perfor-
mance: time on task (i.e. the time taken to finish all exercises) and number of incorrect

attempts (i.e. the attempts taken before getting the exercise solution correct).

* Mediating metrics: In addition to performance, a number of other metrics were collected
that could not be said to capture data wrangling performance as a construct in its entirety.
For example, the fewer times a user solicits a tooltip for clarification, the better their un-
derstanding of data operations could be assumed to be. Howeve