

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Learning From Alternative Sources of

Supervision

Harrison Edwards

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2022

Abstract

With the rise of the internet, data of many varieties including: images, audio, text

and video are abundant. Unfortunately for a very specific task one might have, the

data for that problem is not typically abundant unless you are lucky. Typically one

might have only a small amount of labelled data, or only noisy labels, or labels for a

different task, or perhaps a simulator and reward function but no demonstrations, or

even a simulator but no reward function at all. However, arguably no task is truly novel

and so it is often possible for neural networks to benefit from the abundant data that

is related to your current task. This thesis documents three methods for learning from

alternative sources of supervision, an alternative to the more preferable case of simply

having unlimited amounts of direct examples of your task. Firstly we show how having

data from many related tasks could be described with a simple graphical model and

fit using a Variational-Autoencoder - directly modelling and representing the relations

amongst tasks. Secondly we investigate various forms of prediction-based intrinsic

rewards for agents in a simulator with no extrinsic rewards. Thirdly we introduce a

novel intrinsic reward and investigate how to best combine it with an extrinsic reward

for best performance.

iii

Acknowledgements

I dedicate this thesis to my wife Sarah, my daughter Ada, my unborn son Dylan and,

just to be safe, any other children I may have in the future who might one day read this

and wonder why they were left out. I would like to especially thank my advisor Amos

Storkey for his mentorship and stimulating discussions. I would also like to thank all

my coauthors for their hard work and insights, and my colleagues at the University of

Edinburgh and OpenAI for their support and community.

iv

Declaration

I declare that the thesis has been composed by myself and that the work has not be

submitted for any other degree or professional qualification. I confirm that the work

submitted is my own, except where work which has formed part of jointly-authored

publications has been included. My contribution and those of the other authors to this

work have been explicitly indicated below. I confirm that appropriate credit has been

given within this thesis where reference has been made to the work of others.

The work presented in Chapter 3 was previously published in International Con-

ference on Representation Learning as ‘Towards a Neural Statistician’ by Harrison

Edwards (thesis author) and Amos Storkey (supervisor). This study was conceived by

all of the authors. I carried out all experimentation and jointly wrote the paper with my

supervisor.

The work presented in Chapter 4 was previously published in International Confer-

ence on Representation Learning as ‘Large-Scale Study of Curiosity-Driven Learning’

by Harrison Edwards (thesis author), Yuri Burda, Deepak Pathak, Amos Storkey (su-

pervisor), Trevor Darrell and Alexei A. Efros. Yuri Burda, Deepak Pathak and myself

were joint first-authors on this work. My contribution was to initiate the project with

an initial experimental proof of concept, followed by refining the approach with Yuri

and writing and running all the code with Yuri and Deepak. The paper writing was a

collaborative effort with all the coauthors.

The work presented in Chapter 5 was previously published in International Con-

ference on Representation Learning as ‘Exploration by Random Network Distillation’

by Harrison Edwards (thesis author), Yuri Burda, Amos Storkey (supervisor) and Oleg

Klimov. Yuri Burda and myself were joint first-authors on this work. My contribution

was to propose the algorithm and run some initial experiments, followed by refining the

approach with Yuri and writing and running all the code with Yuri. The paper writing

was a collaborative effort with all the coauthors.

(Harrison Edwards)

v

Table of Contents

1 Introduction 1

2 Background 5

2.1 Supervised Learning . 5

2.2 Transfer Learning . 6

2.3 Meta-learning . 7

2.4 Self-supervised Learning . 8

2.5 Variational Autoencoders . 9

2.6 Reinforcement Learning . 11

3 Towards a Neural Statistician 15

3.1 Introduction . 15

3.2 Problem Statement . 16

3.3 Neural Statistician . 16

3.3.1 Variational Autoencoder . 16

3.3.2 Basic Model . 17

3.3.3 Full Model . 18

3.3.4 Statistic Network . 19

3.4 Related Work . 20

3.5 Experimental Results . 22

3.5.1 Simple 1-D Distributions . 22

3.5.2 Spatial MNIST . 23

3.5.3 Omniglot . 25

3.5.4 Youtube Faces . 26

3.6 Conclusion . 28

3.7 2021 Retrospective . 29

vii

4 Large-Scale Study of Curiosity-Driven Learning 31

4.1 Introduction . 31

4.2 Dynamics-based Curiosity-driven Learning 33

4.2.1 Feature spaces for forward dynamics 34

4.2.2 Practical considerations in training an agent driven purely by

curiosity . 36

4.2.3 ‘Death is not the end’: discounted curiosity with infinite horizon 37

4.3 Experiments . 38

4.3.1 Curiosity-driven learning without extrinsic rewards 39

4.3.2 Generalization across novel levels in Super Mario Bros. . . . 43

4.3.3 Curiosity with Sparse External Reward 44

4.4 Related Work . 45

4.5 Discussion . 47

4.6 2021 Retrospective . 50

5 Exploration by Random Network Distillation 53

5.1 Introduction . 53

5.2 Method . 56

5.2.1 Exploration bonuses . 56

5.2.2 Random Network Distillation 57

5.2.3 Combining intrinsic and extrinsic returns 59

5.2.4 Reward and Observation Normalization 60

5.3 Experiments . 60

5.3.1 Pure exploration . 61

5.3.2 Combining episodic and non-episodic returns 62

5.3.3 Discount factors . 63

5.3.4 Scaling up training . 63

5.3.5 Recurrence . 64

5.3.6 Comparison to baselines . 65

5.3.7 Qualitative Analysis: Dancing with skulls 66

5.4 Related Work . 67

5.5 Discussion . 69

5.6 2021 Retrospective . 69

6 Conclusion 73

viii

A Towards a Neural Statistician 75
A.1 Pseudocode . 75

A.2 Further Experimental Details . 76

A.2.1 Omniglot . 76

A.2.2 Youtube faces . 78

B Large-Scale Study of Curiosity-Driven Learning 81
B.1 Implementation Details . 81

B.2 Additional Results . 82

B.2.1 Atari . 82

B.2.2 Mario . 82

C Exploration by Random Distillation 87
C.1 Reinforcement Learning Algorithm 87

C.2 RND Pseudo-code . 87

C.3 Preprocessing details . 87

C.4 PPO and RND hyperparameters . 89

C.5 Architectures . 90

C.6 Additional experimental results . 90

C.7 Additional Experimental Details . 91

Bibliography 93

ix

Chapter 1

Introduction

Deep learning is by now a well-established umbrella of methods for turning a large pile

of labelled data into, for instance, a highly accurate classifier. The day to day business

of a deep-learning practitioner or researcher is in eking out a few more percentage

points of accuracy by improvements to the optimisation procedure or architecture, but

often times the labelled data you wish you had is just not available. In these cases

sometimes a more creative approach is called for and you might consider unsupervised

(for example learning representations with a Variational Autoencoder Kingma and

Welling (2013a), self-supervised (for example using a pretext task like rearranging a

shuffled image Noroozi and Favaro (2016)), semi-supervised (combining both labelled

and unlabelled data, for example using the Kingma et al. (2014)) or weakly-supervised

methods (for example making use of noisy image tagging labels as pretraining for

classification Mahajan et al. (2018)). This involves learning from an alternative source

of supervision to do useful representation learning which can then later be used for

transfer learning to the main task of interest, or, in the case of reinforcement learning,

instead of representation learning the useful product of alternatively-supervised learning

might be the discovery of interesting and useful behaviours or states in the environment

(for example a robot may in an unsupervised way through exploration learn useful

behaviors such as "go to the kitchen", "go up the stairs" etc).

This thesis will present three papers treating the problem of limited or unusual forms

of supervision. We will present each paper as a chapter. Each chapter will begin with

the paper as written in its published form, followed by a retrospective section where I

will reflect on the paper and discuss how it has interacted with later work in the field.

On each of these papers I was a first author.

The first paper ‘Towards a Neural Statistician’ (Edwards and Storkey, 2016) con-

1

2 Chapter 1. Introduction

cerns the setting where data points are presented as collections of sets or datasets and

is an early example of the deep-learning approach to meta-learning. The premise of

transfer learning is that datasets and tasks are more or less related and so by first training

on a related task we might improve performance on a target task. In this paper we

directly model the space of datasets, aiming to learn a latent space where each point is

a dataset or distribution and thereby be able to ask questions like how similar are two

datasets? We can also generate new examples from a novel dataset at test time, or sam-

ple new datasets. As a concrete example, consider various 1 dimensional distributions

that might be introduced in a probability course: the Gaussian, Laplacian, Exponential

and Uniform distributions. Each kind of distribution has various parameters like mean

and variance that characterize them. Each choice of family and parameters will specify

a distribution and if we sample from it a dataset. The Neural Statistician method would

learn a representation space where each dataset is a point, and would arrange them

in representation space in ways intuitively obvious, the means of the dataset would

be one direction, the dataset family (Exponential vs Gaussian for example) would

represent well-defined clusters, and so on. The idea to directly represent the space of

datasets was a novel contribution of this work. Technically it also demonstrated how

to implement neural generative models for processes with hierarchical and non-trivial

graphical models.

The second paper ’Large-Scale Study of Curiosity-Driven Learning’ (Burda et al.,

2018a) concerns the setting where we have access to an environment, be it a simulation

of a robot, or an Atari game, but no reward function. We consider a large number of

different environments and several intrinsic rewards derived from prediction problems

and study the resulting behaviours exhibited by agents optimising these intrinsic rewards.

We find that useful behaviors emerge from these intrinsic reward functions, in fact they

often end up (in videogames) collecting a nontrivial amount of extrinsic reward, since

typically the richest dynamics in a simple game are observed by working towards the

game’s objective. The main contribution of this work was demonstrating the breadth of

behaviors one could learn in a purely unsupervised manner, and set the stage for later

work which would aim to quantify the and optimize the extent to which one could learn

useful behaviors or representations for downstream tasks.

The third paper ’Exploration by Random Network Distillation’ (Burda et al., 2018c)

builds on some of the ideas in the second paper. We propose a new prediction task

from which derive an exploration bonus designed to avoid problems we observed with

stochastic environments in the earlier work. In this paper we consider the sparse-reward

3

setting rather than the no-reward setting, and show how combining the proposed intrinsic

reward function with a sparse extrinsic reward function leads to improvements on several

environments known to be difficult exploration problems. Prior to this work the state

of the art on a particular environment called Montezuma’s Revenge had been stagnant

for several years, and had come to be synonymous with the difficulty of exploration in

reinforcement learning, and so a primary contribution of this work was making progress

on a problem widely considered to be difficult by the community. Another contribution

was its utility as an easy-to-implement component and baseline. It now features as a

standard baseline for new exploration methods, and is an important part of current state

of the art methods as a component.

Chapter 2

Background

In this chapter I will provide useful background material for understanding the chapters

that follow. This thesis concerns approaches for dealing with the difference between the

data you wish you had and the data you actually have. Let’s first begin by discussing

the ideal case.

2.1 Supervised Learning

A common task is classification where we map inputs x ∈ Rd to a label y ∈ Rl . In this

case the input space may be images of a given resolution, and the label space may

consist of 1-hot vectors (vectors taking values in 0,1 and having exactly one non-zero

entry) where the non-zero element indicates the class of the image. The generative

model underlying this mapping in most cases is the result of asking humans to label an

input which gives a conditional distribution over the label space for each input p(y|x).
In the completely deterministic case this distribution will have all mass on one label,

but for more realistic cases there is irreducible randomness resulting from human error,

or genuine ambiguity as to which label is most appropriate. In supervised learning we

parameterize a classifier, a neural network taking an input to a distribution over labels

p(y|x;θ), and use optimization to find a good value for θ.

The most common approach to optimization is to use a gradient-based optimizer

such as Stochastic Gradient Descent (SGD) to minimize the log-loss

L(θ) =−Ex,y log p(y|x;θ) (2.1)

where the expectation is taken over the joint distribution over inputs and labels, in

practice this means the sample of (x,y) pairs in your training data. If using Gradient

5

6 Chapter 2. Background

Descent as an optimizer, one would calculate the gradient ∇θL(θ) and follow the rule:

θt+1 = θt−λ∇θt L(θt)

where λ ∈ R+ is the learning rate. More likely one would instead use SGD where one

uses a Monte-Carlo estimate of the true gradient by sampling a minibatch of examples

from the training data.

In the case where you have a large number (millions) of labelled examples in a well-

understood modality (text, images) then fitting a deep neural network with parameters θ

using this approach will often give you a reasonable level of performance. For example

modern ImageNet classifiers (Deng et al., 2009) are able to achieve a top-1 accuracy

of around 90% (Zhai et al., 2021). However this performance will rapidly deteriorate

when tested under non-standard conditions that differ from the curated training data (for

example with objects not being in the center of the frame.)

In the case where you have a small number of labelled examples then fitting a neural

network from scratch on only these labels is not feasible, and alternative approaches

must be considered.

2.2 Transfer Learning

In some situations you may have a small dataset of interest, for example you may wish

to estimate the dimensions of a Welsh corgi from a photo for the purpose of producing

a tailored coat for a dog. If you have had thousands of previous customers then you

will have thousands of tuples of the form (photos of dog, measured dimensions of dog)

which you could train a neural network to predict. Doing this from scratch would be

hopeless, but if instead of randomly initializing the parameters of your neural network

in the optimization process, you used the parameters of a neural network trained for

a related task with more abundant data, then often this will lead to a large gain in

performance over the baseline of training from randomly initialized parameters. In

this example using a model trained to do ImageNet classification might be a good idea

because there are a large number of images of dogs in the dataset. There might not

be a large number of Welsh corgis specifically, and the task is classification and not

predicting the dimensions of the object, but the intuition is that many of the features

useful for doing the more general task can be repurposed for your task.

Typically the transfer learning training process is done in two stages: a pretraining

phase where a neural network is trained on a task with abundant data from a random

2.3. Meta-learning 7

initialization, and a finetuning phase where the neural network is then fit to a task with

scarce data with the previous parameter vector used as an initialization. An alternative

to the pretraining then finetuning procedure could be to do multitask training, whereby

one trains the network on the mixture of the abundant data and the small dataset. In

practice this is not done as often since the computational expense of training on the

abundant data is large, and having a parameter vector trained only on the abundant

pretraining data can be reused for many different downstream tasks.

The pretraining task is typically broader than the finetuning task. Examples include:

Pretrain task Finetune task

Imagenet classification Corgi pose estimation

Next word prediction Amazon review sentiment prediction

Next frame video prediction Towel folding robot action prediction

A common source of pretraining tasks comes from data that can be scraped from

the internet and social media since it is enormous. For example Common Crawl (com,

2021) is a project that archives a portion of the internet. It contains petabytes of data,

and adds several billion pages per month to its collection.

2.3 Meta-learning

Instead of pretraining on one task and finetuning on another, one could attempt to

optimize directly for quickly learning a new task. Since this can be considered learning

how to learn it is often called ‘metalearning’. This can be done if you have a large

collection of tasks, typically with small amounts of data per task. In this case we

would have training datasets D1, . . . ,Dn where each dataset is a set of tuples Di =

{(x1,y1), . . . ,(xNi,yNi)}. At test time we would be given a few labelled examples from

a novel task Dtest and be asked to make predictions about held-out examples xtest /∈Dtest

from the same task.

The typical setup for this in metalearning papers is to create few-shot classification

datasets, that is image classification tasks with a small number of categories and only a

few examples per class. At test time the model will be asked to make predictions about

previously unseen object categories.

In order to accomplish this goal a neural network is required that can be rapidly fit

to a new task. This can be done in a variety of ways. One straightforward approach is to

8 Chapter 2. Background

treat each dataset as a sequence and use architectures capable of dealing with sequences

such as recurrent neural networks (Santoro et al., 2016a), (Duan et al., 2016). Another is

to observe that the ordering of a dataset is not important and to learn an order-invariant

representation appropriate for sets by using symmetric pooling operations (Vinyals

et al., 2016b), (Snell et al., 2017). Yet another is to directly optimize for θ such that

taking a few gradient steps with respect to the loss on Di improves the loss on held

out examples from Di, this involves differentiating through a small number of gradient

steps (Finn et al., 2017).

Finally although I have presented metalearning as being about learning supervised

tasks quickly it can just as easily be applied to generative modelling where the task is to

quickly learn a density, or a model capable of producing samples from a distribution,

or a policy that quickly learns to maximize reward in a new environment. The reader

wishing for a more detailed overview of meta-learning in the deep learning era is

referred to Hospedales et al. (2021).

2.4 Self-supervised Learning

Self-supervised learning describes a situation where you have a large quantity of

unlabelled data and you create tasks through various means to learn representations on

this data.

Standard approaches for creating such tasks are to learn generative models of

the data. A common approach is to use an autoregressive model that predicts each

coordinate of the datum given the previous ones fitting p(xd+1|xd, . . . ,x1) for each

index d. The ordering of the data dimensions can be arbitrary but there are often

reasonable choices suggested by the modality such as left to right for English text and

raster order for images. Examples of such works for images include: NADE (Uria

et al., 2016), MADE (Germain et al., 2015), PixelCNN and PixelRNN (Van Oord et al.,

2016) and GPT-I (Chen et al., 2020). For text data the GPT papers (Radford et al.,

2018), (Radford et al., 2019), (Brown et al., 2020) are prominent examples using the

transformer architecture (Vaswani et al., 2017) and there is a long history of using

recurrent neural networks as language models (Mikolov et al., 2010). Other kinds of

generative models are also possible, one of which, Variational Autoencoders, are treated

in the next section.

An alternative approach is create pretext tasks such as: denoising noised images

(Vincent et al., 2008), infilling patches of an image (Pathak et al., 2016), rearranging

2.5. Variational Autoencoders 9

patches of an image into the correct spatial relationship (Noroozi and Favaro, 2016),

predicting the color of a black and white image (Larsson et al., 2016), predicting

whether an image has been rotated, infilling words (Mikolov et al., 2013) (Devlin

et al., 2019) etc. More recent approaches to self-supervised learning typically take a

contrastive approach: given a datum x, create several views of x, p1, . . . , pk by applying

data augmentations appropriate to the modality (for images this means rotations, crops,

etc) then learn an encoder with a representation that is required to be similar for x and pi

and dissimilar to other randomly chosen encoded data points. Examples of this include

Oord et al. (2018), Grill et al. (2020), He et al. (2020).

All of these are examples of transfer learning where the pretraining task is generic

to the modality, as opposed to doing supervised learning on a different labelled dataset.

2.5 Variational Autoencoders

A commonly used class of generative models parameterized by deep neural networks are

variational autoencoders Kingma and Welling (2013a), Rezende et al. (2014a). These

are latent variable models that jointly learn a distribution p(x,z;θ) over observed data

x and latent variables z. Sampling from such a distribution is done by first sampling a

latent variable from the prior distribution z∼ p(z;θ), often a simple isotropic Gaussian

distribution with no learnable parameters, then sampling from the conditional distribu-

tion p(x|z;θ). The neural network parameterizing the conditional distribution is called

the decoder. The variational autoencoder is central to the work in Chapter 3 where it is

extended in a hierarchical fashion. Although other generative models could potentially

have been used, variational inference handles latent variables in a natural and flexible

way that lent itself to this work.

A straightforward approach to fit the parameters of a generative model is called

maximum likeihood estimation. The likelihood L(θ) of data x1, . . . ,xn is the density of

the data

L(θ) := p(x1, . . . ,xn;θ)

which, assuming the data are drawn independently from the distribution, can be written

as the product
n

∏
i=1

p(xi;θ).

Since the logarithm function is monotonic, maximizing the log of likelihood l(θ) :=

10 Chapter 2. Background

log(L(θ)) is equivalent to maximizing the likelihood where

l(θ) =
n

∑
i=1

log p(xi;θ)

becomes a sum. To optimize the log-likelihood we take gradients of this with respect to

θ

∇θl(θ) =
n

∑
i=1

∇θ log p(xi;θ).

Hence to fit θ we just need to compute the gradient of the log-density of a data point.

For latent variable models the log-density log p(x;θ) is not straightforward to cal-

culate, but there is a well-known way to compute a lower bound. First we observe

that

log(p(x;θ)) = log
(∫

z
p(x,z;θ)dz

)
by integrating out the latent variable z. Next we decompose the joint distribution

log(p(x;θ)) = log
(∫

z
p(x|z;θ)p(z;θ)dz

)
into the decoder and prior parts. Now we introduce a density q(z) called the approximate

posterior

log(p(x;θ)) = log
(∫

z
p(x|z;θ)p(z;θ)

q(z)
q(z)

dz
)

then rewrite the integral as an expectation under q, and apply Jensen’s inequality (since

the logarithm is concave) to take the logarithm inside the integral

log
(∫

z

(
p(x|z;θ)

p(z;θ)

q(z)

)
q(z)dz

)
≥

∫
z
log
(

p(x|z;θ)
p(z;θ)

q(z)

)
q(z)dz.

The final step is to split the integral into two pieces∫
z
log(p(x|z;θ))q(z)dz+

∫
z
log
(

p(z;θ)

q(z)

)
q(z)dz.

The first term is the expected log-likelihood of x given z where the expectation is taken

under q. The second term is Kullback-Leibler divergence of q(z) and p(z;θ). Since

this is a lower-bound, maximizing the lower-bound will also increase the log-likeihood.

In fact this bound will be maximized when q(z) is equal to the true posterior p(z|x;θ).

Optimizing this term with respect to q must balance two forces, from the first term the

pressure to concentrate q(z) over z that decode to x, from the second term the pressure to

match the prior. The lower-bound given is called the variational lower bound. Standard

2.6. Reinforcement Learning 11

practice before the VAE paper was to learn a parametric q(z) for each data point x

separately, the chief innovation of the paper was to introduce amortized variational

inference with an encoder network q(z|x;φ) with parameters φ. This encoder network

must produce for x an approximate posterior over z, mostly commonly the encoder

outputs vectors parameterizing a diagonal Gaussian distribution.

2.6 Reinforcement Learning

In reinforcement learning an agent interacts with an environment by applying actions,

the environment in turn responds with observations and rewards. For example if the

environment were a simple videogame then the observations would be the pixels of the

screen rendering it, the actions might be up, down, left, right, A and B and the rewards

would be changes to your score.

More formally there is a transition distribution

p(xt+1,rt+1|xt ,rt ,at , . . . ,x0,r0,a0)

where xt is observation at time t, rt is the reward at time t and at is the action at time t.

A policy is a distribution over actions for each possible history of actions, observa-

tions and rewards

π(at+1|xt+1,rt+1,at , . . . ,x0,r0,a0).

Commonly there is also a termination state like "Game Over" or simply a time limit,

and the goal of optimization is to produce a policy πθ that maximizes the expected sum

of rewards. The total reward collected by a policy in an episode is called the return. A

summary of the history of the trajectory sufficient for making all future predictions is

called the state. A value function is a prediction of the expected future return of a policy

starting in a particular state Vπ(s).

Reinforcement learning is a classic case of the data you have being rather different

than the data you wish you had. Typically you wish you had many examples showing

exactly which action should be taken in each situation in order to maximize the reward.

You could then learn to predict these actions via supervised learning. In this context

this is known as behavior cloning. What you have instead is a way of measuring the

quality of a trajectory (the rewards), but the relationship of the rewards to the actions

taken is opaque.

There are many approaches in the literature for optimizing π, a straightforward way

of proceeding is to use policy gradient methods (and this is the approach we take in all

12 Chapter 2. Background

experiments in the thesis, in particular in Chapters 5 and 4). The basic version is simply

to optimize the expected reward with SGD. If we use τ to denote a trajectory and R(τ)

to be the return, then we are trying to maximize

Ep,π [R(τ)]

where the expectation is both over the dynamics of the environment p and the policy π.

For convienience let’s introduce a notation for the probability of the trajectory

P(τ) := π(a0|s0)× p(s0)× p(s1|a0,s0)× p(a1|s1)×·· ·× p(sT |sT−1,aT−1)×π(aT−1|sT−1),

now we can rewrite the expected return as

EP [R(τ)] =
∫

R(τ)P(τ)dτ

Now if we let θ be a parameterization of the policy and take gradients with respect to it

we find:

∇θEp,π [R(τ)] = ∇θ

∫
R(τ)P(τ)dτ

=
∫

∇θ (R(τ)P(τ)) dτ

=
∫

R(τ)∇θP(τ)dτ

noting that we can take the return outside the gradient since R(τ) has no dependence on

the policy. We then proceed to use the ‘log derivative trick’ (x′ = x · log′(x))

=
∫

R(τ)P(τ)∇θ logP(τ)dτ

= EP [R(τ) ·∇θ logP(τ)] .

This is often called the policy gradient theorem. So what have we achieved by this

manipulation? The utility is that we have written the gradient as an expectation (under

the policy) of the return times the gradient of the log-prob of the trajectory. This means

we can approximate the gradient by simply sampling trajectories using the policy (often

called doing a rollout) several times and computing the return and gradient of the

log-prob of the trajectory.

Policy gradient methods can be contrasted with value-based methods, where instead

of optimizing a parameterization of the policy one instead learns to predict the value

2.6. Reinforcement Learning 13

(expected return) of each state and action pair under the optimal policy. Since the

experiments in this thesis all concern policy gradient methods we won’t go into more

detail on value-based approaches, but I will mention that there is no clear consensus in

the literature about which approach may be better and when, and that it is extremely

likely that all the experiments in the thesis could be redone with this approach with

little important change to the results.

Also note the difference to supervised learning. In a supervised learning case we

would just have a sum of gradients of log-probs of expert trajectories. Here we weight

these terms by the returns, and the trajectories themselves are sampled with the policy

given by θ. The practical importance of sampling from the current policy is that the

variance of the gradient can be extremely large, so that a large batch size, meaning

sampling many trajectories, would be required in order to adequately approximate the

gradient.

For example imagine an environment which is a simple 1 dimensional grid of states

s1, . . . ,sN and two actions ‘left’ and ‘right’ which respectively decrement and increment

your state index. This has the topology of a line segment with boundaries at s1 and sN .

Further suppose the environment starts in state s1, an episode lasts N timesteps, and the

reward is 1 when the state is sN and is zero otherwise. Then the only trajectory that

achieves a non-zero reward is one where every action is ‘right’.

If we assume that the policy is initialized to be uniformly random, then we can

see that the probability of sampling a sequence with a positive reward is 2−N . All

other trajectories contribute nothing to the policy gradient integral, since they have zero

reward. Any monte-carlo approximation to the gradient then will be highly sensitive to

whether we sampled that trajectory or not, and to expect to see such a trajectory we will

need on the order of 2N trajectories. This simple example illustrates what is also called

the exploration problem.

The papers in this thesis use a variant of the policy gradient called ‘Proximal Policy

Optimization’ Schulman et al. (2017). This method uses a learned value function as

a baseline to reduce the variance of the gradient, and it adds clipping of the policy to

prevent the policy from diverging too much from the previous iteration of the policy

during optimization. The clipping increases the stability of optimization.

Chapter 3

Towards a Neural Statistician

3.1 Introduction

The machine learning community is well-practised at learning representations of data-

points and sequences. A middle-ground between these two is representing, or sum-

marizing, datasets - unordered collections of vectors, such as photos of a particular

person, recordings of a given speaker or a document as a bag-of-words. Where these

sets take the form of i.i.d samples from some distribution, such summaries are called

statistics. We explore the idea of using neural networks to learn statistics and we refer

to our approach as a neural statistician.

The key result of our approach is a statistic network that takes as input a set of

vectors and outputs a vector of summary statistics specifying a generative model of that

set - a mean and variance specifying a Gaussian distribution in a latent space we term

the context. The advantages of our approach are that it is:

• Unsupervised: It provides principled and unsupervised way to learn summary

statistics as the output of a variational encoder of a generative model.

• Data efficient: If one has a large number of small but related datasets, modelling

the datasets jointly enables us to gain statistical strength.

• Parameter Efficient: By using summary statistics instead of say categorical

labellings of each dataset, we decouple the number of parameters of the model

from the number of datasets.

• Capable of few-shot learning: If the datasets correspond to examples from

different classes, class embeddings (summary statistics associated with examples

15

16 Chapter 3. Towards a Neural Statistician

from a class), allow us to handle new classes at test time.

3.2 Problem Statement

We are given datasets Di for i ∈ I . Each dataset Di = {x1, . . . ,xki} consists of a number

of i.i.d samples from an associated distribution pi over Rn. The task can be split into

learning and inference components. The learning component is to produce a generative

model p̂i for each dataset Di. We assume there is a common underlying generative

process p such that pi = p(·|ci) for ci ∈Rl drawn from p(c). We refer to c as the context.

The inference component is to give an approximate posterior over the context q(c|D)

for a given dataset produced by a statistic network.

3.3 Neural Statistician

In order to exploit the assumption of a hierarchical generative process over datasets

we will use a ‘parameter-transfer approach’ (see Pan and Yang, 2010) to extend the

variational autoencoder model of Kingma and Welling (2013a).

xz

c
c

z3

x

z2 z1

vµc σ2
c

e2e1 e3

x1 x2 x3

Figure 3.1: Left : basic hierarchical model, where the plate encodes the fact that the

context variable c is shared across each item in a given dataset. Center : full neural

statistician model with three latent layers z1,z2,z3. Each collection of incoming edges to

a node is implemented as a neural network, the input of which is the concatenation of

the edges’ sources, the output of which is a parameterization of a distribution over the

random variable represented by that node. Right : The statistic network, which combines

the data via an exchangeable statistic layer.

3.3.1 Variational Autoencoder

The variational autoencoder is a latent variable model p(x|z;θ) (often called the decoder)

with parameters θ. For each observed x, a corresponding latent variable z is drawn from

3.3. Neural Statistician 17

p(z) so that

p(x) =
∫

p(x|z;θ)p(z)dz. (3.1)

The generative parameters θ are learned by introducing a recognition network (also

called an encoder) q(z|x;φ) with parameters φ. The recognition network gives an

approximate posterior over the latent variables that can then be used to give the standard

variational lower bound (Saul and Jordan, 1996) on the single-datum log-likelihood. I.e.

logP(x|θ)≥ Lx, where

Lx = Eq(z|x,φ) [log p(x|z;θ)]−DKL (q(z|x;φ)‖p(z)) . (3.2)

Likewise the full-data log likelihood is lower bounded by the sum of the Lx terms over

the whole dataset. We can then optimize this lower bound with respect to φ and θ using

the reparameterization trick introduced by Kingma and Welling (2013a) and Rezende

et al. (2014b) to get a Monte-Carlo estimate of the gradient.

3.3.2 Basic Model

We extend the variational autoencoder to the model depicted on the left in Figure 3.1.

This includes a latent variable c, the context, that varies between different datasets

but is constant, a priori, for items within the same dataset. Now, the likelihood of the

parameters θ for one single particular dataset D is given by

p(D) =
∫

p(c)

[
∏
x∈D

∫
p(x|z;θ)p(z|c;θ)dz

]
dc. (3.3)

The prior p(c) is chosen to be a spherical Gaussian with zero mean and unit variance.

The conditional p(z|c;θ) is Gaussian with diagonal covariance, where all the mean and

variance parameters depend on c through a neural network. Similarly the observation

model p(x|z;θ) will be a simple likelihood function appropriate to the data modality

with dependence on z parameterized by a neural network. For example, with real valued

data, a diagonal Gaussian likelihood could be used where the mean and log variance of

x are created from z via a neural network.

We use approximate inference networks q(z|x,c;φ), q(c|D;φ), with parameters

collected into φ, to once again enable the calculation and optimization of a variational

lower bound on the log-likelihood. The single dataset log likelihood lower bound is

18 Chapter 3. Towards a Neural Statistician

given by

LD = Eq(c|D;φ)

[
∑
x∈d

Eq(z|c,x;φ) [log p(x|z;θ)]−DKL (q(z|c,x;φ)‖p(z|c;θ))

]
−DKL (q(c|D;φ)‖p(c)) . (3.4)

As with the generative distributions, the likelihood forms for q(z|x,c;φ) and q(c|D;φ)

are diagonal Gaussian distributions, where all the mean and log variance parameters in

each distribution are produced by a neural network taking the conditioning variables

as inputs. Note that q(c|D;φ) accepts as input a dataset D and we refer to this as the

statistic network. We describe this in Subsection 3.3.4.

The full-data variational bound is given by summing the variational bound for each

dataset in our collection of datasets. It is by learning the difference of the within-dataset

and between-dataset distributions that we are able to discover an appropriate statistic

network.

3.3.3 Full Model

The basic model works well for modelling simple datasets, but struggles when the

datasets have complex internal structure. To increase the sophistication of the model

we use multiple stochastic layers z1, . . . ,zk and introduce skip-connections for both the

inference and generative networks. The generative model is shown graphically in Figure

3.1 in the center. The probability of a dataset D is then given by

p(D) =
∫

p(c)∏
x∈D

∫
p(x|c,z1:L;θ)p(zL|c;θ)

L−1

∏
i=1

p(zi|zi+1,c;θ)dz1:L dc (3.5)

where the p(zi|zi+1,c,θ) are again Gaussian distributions where the mean and log

variance are given as the output of neural networks. The generative process for the full

model is described in Algorithm 1.

The full approximate posterior factorizes analogously as

q(c,z1:L|D;φ) = q(c|D;φ)∏
x∈D

q(zL|x,c;φ)
L−1

∏
i=1

q(zi|zi+1,x,c;φ). (3.6)

For convenience we give the variational lower bound as sum of a three parts, a

3.3. Neural Statistician 19

reconstruction term RD, a context divergence CD and a latent divergence LD:

LD = RD +CD +LD with (3.7)

RD = Eq(c|D;φ) ∑
x∈D

Eq(z1:L|c,x;φ) log p(x|z1:L,c;θ) (3.8)

CD = DKL (q(c|D;φ)‖p(c)) (3.9)

LD = Eq(c,z1:L|D;φ)

[
∑
x∈D

DKL (q(zL|c,x;φ)‖p(zL|c;θ))

+
L−1

∑
i=1

DKL (q(zi|zi+1,c,x;φ)‖p(zi|zi+1,c;θ))

]
. (3.10)

The skip-connections p(zi|zi+1,c;θ) and q(zi|zi+1,x;φ) allow the context to specify

a more precise distribution for each latent variable by explaining-away more generic

aspects of the dataset at each stochastic layer. This architecture was inspired by recent

work on probabilistic ladder networks in Kaae Sønderby et al. (2016). Complementing

these are the skip-connections from each latent variable to the observation p(x|z1:L,c;θ),

the intuition here is that each stochastic layer can focus on representing a certain level

of abstraction, since its information does not need to be copied into the next layer, a

similar approach was used in Maaløe et al. (2016).

Once again, note that we are maximizing the lower bound to the log likelihood

over many datasets D: we want to maximize the expectation of LD over all datasets.

We do this optimization using stochastic gradient descent. In contrast to a variational

autoencoder where a minibatch would consist of a subsample of datapoints from the

dataset, we use minibatches consisting of a subsample of datasets - tensors of shape

(batch size, sample size, number of features).

3.3.4 Statistic Network

In addition to the standard inference networks we require a statistic network q(c|D;φ)

to give an approximate posterior over the context c given a dataset D = {x1, . . . ,xk} .

This inference network must capture the exchangeability of the data in D.

We use a feedforward neural network consisting of three main elements:

• An instance encoder E that takes each individual datapoint xi to a vector ei =

E(xi).

• An exchangeable instance pooling layer that collapses the matrix (e1, . . . ,ek)

to a single pre-statistic vector v. Examples include elementwise means, sums,

20 Chapter 3. Towards a Neural Statistician

products, geometric means and maximum. We use the sample mean for all

experiments.

• A final post-pooling network that takes v to a parameterization of a diagonal

Gaussian.

The graphical model for this is given at the right of Figure 3.1.

We note that the humble sample mean already gives the statistic network a great

deal of representational power due to the fact that the instance encoder can learn a

representation where averaging makes sense. For example since the instance encoder

can approximate a polynomial on a compact domain, and so can the post-pooling

network, a statistic network can approximate any moment of a distribution.

3.4 Related Work

Due to the general nature of the problem considered, our work touches on many different

topics which we now attempt to summarize.

Topic models and graphical models The form of the graphical model in Figure 3.1

on the left is equivalent to that of a standard topic model. In contrast to traditional

topic models we do not use discrete latent variables, or restrict to discrete data. Work

such as that by Ranganath et al. (2014) has extended topic models in various directions,

but importantly we use flexible conditional distributions and dependency structures

parameterized by deep neural networks. Recent work has explored neural networks

for document models (see e.g. Miao et al., 2016) but has been limited to modelling

datapoints with little internal structure. Along related lines are ‘structured variational

autoencoders’ (see Johnson et al., 2016), where they treat the general problem of

integrating graphical models with variational autoencoders.

Transfer learning There is a considerable literature on transfer learning, for a survey

see Pan and Yang (2010). There they discuss ‘parameter-transfer’ approaches whereby

parameters or priors are shared across datasets, and our work fits into that paradigm.

For examples see Lawrence and Platt (2004) where share they priors between Gaussian

processes, and Evgeniou and Pontil (2004) where they take an SVM-like approach to

share kernels.

3.4. Related Work 21

One-shot Learning Learning quickly from small amounts of data is a topic of great

interest. Lake et al. (2015) use Bayesian program induction for one-shot generation and

classification, and Koch (2015) train a Siamese (Chopra et al. (2005)) convolutional net-

work for one-shot image classification. We note the relation to the recent work (Rezende

et al., 2016) in which the authors use a conditional recurrent variational autoencoder

capable of one-shot generalization by taking as extra input a conditioning data point.

The important differences here are that we jointly model datasets and datapoints and

consider datasets of any size. Recent approaches to one-shot classification are match-

ing networks (Vinyals et al., 2016b) (which was concurrent with the initial preprint

of this work), and related previous work (Santoro et al., 2016b). The former can be

considered a kind of differentiable nearest neighbour classifier, and the latter augments

their network with memory to store information about the classification problem. Both

are trained end-to-end for the classification problem, whereas the present work is a

general approach to learning representations of datasets. Probably the closest previous

work is by Salakhutdinov et al. (2012) where the authors learn a topic model over

the activations of a DBM for one-shot learning. Compared with their work we use

modern architectures and easier to train VAEs, in particular we have fast and amortized

feedforward inference for test (and training) datasets, avoiding the need for MCMC.

Multiple-Instance Learning There is previous work on classifying sets in multiple-

instance learning, for a useful survey see Cheplygina et al. (2015). Typical approaches

involve adapting kernel based methods such as support measure machines (Muandet

et al., 2012), support distribution machines (Póczos et al., 2012) and multiple-instance-

kernels (Gartner et al., 2002). We do not consider applications to multiple-instance

learning type problems here, but it may be fruitful to do so in the future.

Set2Seq In very related work, Vinyals et al. (2016a) explore architectures for mapping

sets to sequences. There they use an LSTM to repeatedly compute weighted-averages

of the datapoints and use this to tackle problems such as sorting a list of numbers.

The main difference between their work and ours is that they primarily consider su-

pervised problems, whereas we present a general unsupervised method for learning

representations of sets of i.i.d instances. In future work we may also explore recurrently

computing statistics.

22 Chapter 3. Towards a Neural Statistician

ABC There has also been work on learning summary statistics for Approximate

Bayesian Computation by either learning to predict the parameters generating a sample

as a supervised problem, or by using kernel embeddings as infinite dimensional summary

statistics. See the work by Fukumizu et al. (2013) for an example of kernel-based

approaches. More recently Jiang et al. (2017) used deep neural networks to predict

the parameters generating the data. The crucial differences are that their problem is

supervised, they do not leverage any exchangeability properties the data may have, nor

can it deal with varying sample sizes.

3.5 Experimental Results

Given an input set x1, . . .xk we can use the statistic network to calculate an approximate

posterior over contexts q(c|x1, . . . ,xk;φ). Under the generative model, each context c

specifies a conditional model p(x|c;θ). To get samples from the model corresponding to

the most likely posterior value of c, we set c to the mean of the approximate posterior and

then sample directly from the conditional distributions. This is described in Algorithm

2. We use this process in our experiments to show samples. In all experiments, we use

the Adam optimization algorithm (Kingma and Ba, 2014) to optimize the parameters of

the generative models and variational approximations. Batch normalization (Ioffe and

Szegedy, 2015a) is implemented for convolutional layers and we always use a batch

size of 16. We primarily use the Theano (Theano Development Team, 2016) framework

with the Lasagne (Dieleman et al., 2015) library, but the final experiments with face

data were done using Tensorflow (Abadi et al., 2015). In all cases experiments were

terminated after a given number of epochs when training appeared to have sufficiently

converged (300 epochs for omniglot, youtube and spatial MNIST examples, and 50

epochs for the synthetic experiment).

3.5.1 Simple 1-D Distributions

In our first experiment we wanted to know if the neural statistician will learn to cluster

synthetic 1-D datasets by distribution family. We generated a collection of synthetic

1-D datasets each containing 200 samples. Datasets consist of samples from either an

Exponential, Gaussian, Uniform or Laplacian distribution with equal probability. Means

and variances are sampled from U [−1,1] and U [0.5,2] respectively. The training data

contains 10K sets.

3.5. Experimental Results 23

Figure 3.2: Three different views of the same data. Each point is the mean of the

approximate posterior over the context q(c|D;φ) where c ∈ R3. Each point is a sum-

mary statistic for a single dataset with 200 samples. Top plot shows points colored by

distribution family, left plot colored by the mean and right plot colored by the variance.

The plots have been rotated to illustrative angles.

The architecture for this experiment contains a single stochastic layer with 32 units

for z and 3 units for c, . The model p(x|z,c;θ) and variational approximation q(z|x,c;φ)

are each a diagonal Gaussian distribution with all mean and log variance parameters

given by a network composed of three dense layers with ReLU activations and 128 units.

The statistic network determining the mean and log variance parameters of posterior

over context variables is composed of three dense layers before and after pooling, each

with 128 units with Rectified Linear Unit (ReLU) activations.

Figure 3.2 shows 3-D scatter plots of the summary statistics learned. Notice that the

different families of distribution cluster. It is interesting to observe that the Exponential

cluster is differently orientated to the others, perhaps reflecting the fact that it is the

only non-symmetric distribution. We also see that between the Gaussian and Laplacian

clusters there is an area of ambiguity which is as one might expect. We also see that

within each cluster the mean and variance are mapped to orthogonal directions.

3.5.2 Spatial MNIST

Building on the previous experiments we investigate 2-D datasets that have complex

structure, but the datapoints contain little information by themselves, making it a good

24 Chapter 3. Towards a Neural Statistician

Figure 3.4: Conditioned samples from spatial MNIST data. Blue and red digits are

the input sets, black digits above correspond to samples given the input. Red points

correspond to a 6-sample summary of the dataset

test of the statistic network. We created a dataset called spatial MNIST. In spatial

MNIST each image from MNIST (LeCun et al., 1998) is turned into a dataset by

interpreting the normalized pixel intensities as a probability density and sampling

coordinate values. An example is shown in Figure 3.3. This creates two-dimensional

spatial datasets. We used a sample size of 50. Note that since the pixel coordinates

are discrete, it is necessary to dequantize them by adding uniform noise u∼U [0,1] to

the coordinates if one models them as real numbers, else you can get arbitrarily high

densities (see Theis et al. (2016) for a discussion of this point).

Figure 3.3: An image from

MNIST on the left, trans-

formed to a set of 50 (x,y)

coordinates, shown as a

scatter plot on the right.

The generative architecture for this experiment con-

tains 3 stochastic z layers, each with 2 units, and a single

c layer with 64 units. The means and log variances of

the Gaussian likelihood for p(x|z1:3,c;θ), and each sub-

network for z in both the encoder and decoder contained

3 dense layers with 256 ReLU units each. The statistic

network also contained 3 dense layers pre-pooling and 3

dense layers post pooling with 256 ReLU units.

In addition to being able to sample from the model

conditioned on a set of inputs, we can also summarize a

dataset by choosing a subset S⊆ D to minimise the KL divergence of q(C|D;φ) from

q(C|S;φ). We do this greedily by iteratively discarding points from the full sample.

Pseudocode for this process is given in Algorithm 3. The results are shown in Figure

3.4. We see that the model is capable of handling complex arrangements of datapoints.

We also see that it can select sensible subsets of a dataset as a summary.

3.5. Experimental Results 25

3.5.3 Omniglot

Next we work with the OMNIGLOT data (Lake et al., 2015). This contains 1628 classes

of handwritten characters but with just 20 examples per class. This makes it an excellent

test-bed for transfer / few-shot learning. We constructed datasets by splitting each class

into datasets of size 5. We train on datasets drawn from 1200 classes and reserve the

remaining classes to test few-shot sampling and classification. We created new classes

by rotating and reflecting characters. We resized the images to 28×28. We sampled

a binarization of each image for each epoch. We also randomly applied the dilation

operator from computer vision as further data augmentation since we observed that the

stroke widths are quite uniform in the OMNIGLOT data, whereas there is substantial

variation in MNIST, this augmentation improved the visual quality of the few-shot

MNIST samples considerably and increased the few-shot classification accuracy by

about 3 percent. Finally we used ‘sample dropout’ whereby a random subset of each

dataset was removed from the pooling in the statistic network, and then included the

number of samples remaining as an extra feature. This was beneficial since it reduced

overfitting and also allowed the statistic network to learn to adjust the approximate

posterior over c based on the number of samples.

We used a single stochastic layer with 16 units for z, and 512 units for c. We used

a shared convolutional encoder between the inference and statistic networks and a

deconvolutional decoder network. Full details of the networks are given in Appendix

A.2.1. The decoder used a Bernoulli likelihood.

In Figure 3.5 we show two examples of few-shot learning by conditioning on

samples of unseen characters from OMNIGLOT, and conditioning on samples of digits

from MNIST. The samples are mostly of a high-quality, and this shows that the neural

statistician can generalize even to new datasets.

As a further test we considered few-shot classification of both unseen OMNIGLOT

characters and MNIST digits. Given a sets of labelled examples of each class D0, . . . ,D9

(for MNIST say), we computed the approximate posteriors q(C|Di;φ) using the statistic

network. Then for each test image x we also computed the posterior q(C|x;φ) and

classified it according to the training dataset Di minimizing the KL divergence from

the test context to the training context. This process is described in Algorithm 4. We

tried this with either 1 or 5 labelled examples per class and either 5 or 20 classes. For

each trial we randomly select K classes, randomly select training examples for each

class, and test on the remaining examples. This process is repeated 100 times and the

26 Chapter 3. Towards a Neural Statistician

Figure 3.5: Few-shot learning Left : Few-shot learning from OMNIGLOT to MNIST. Left

rows are input sets, right rows are samples given the inputs. Right : Few-shot learning

from with OMNIGLOT data to unseen classes. Left rows are input sets, right rows are

samples given the inputs. Black-white inversion is applied for ease of viewing.

results averaged. The results are shown in Table 3.1. We compare to a number of results

reported in Vinyals et al. (2016b) including Santoro et al. (2016b) and Koch (2015).

Overall we see that the neural statistician model can be used as a strong classifier,

particularly for the 5-way tasks, but performs worse than matching networks for the

20-way tasks. One important advantage that matching networks have is that, whilst

each class is processed independently in our model, the representation in matching

networks is conditioned on all of the classes in the few-shot problem. This means that it

can exaggerate differences between similar classes, which are more likely to appear in

a 20-way problem than a 5-way problem.

3.5.4 Youtube Faces

Finally, we provide a proof of concept for generating faces of a particular person. We

use the Youtube Faces Database from Wolf et al. (2011). It contains 3,245 videos

of 1,595 different people. We use the aligned and cropped to face version, resized

to 64×64. The validation and test sets contain 100 unique people each, and there is

no overlap of persons between data splits. The sets were created by sampling frames

randomly without replacement from each video, we use a set size of 5 frames. We

resample the sets for the training data each epoch.

Our architecture for this problem is based on one presented in Lamb et al. (2016).

We used a single stochastic layer with 500 dimensional latent c and 16 dimensional z

variable. The statistic network and the inference network q(z|x,c;φ) share a common

3.5. Experimental Results 27

Task Method
Test Dataset K Shot K Way Siamese MANN Matching Ours

MNIST 1 10 70 - 72 78.6
MNIST 5 10 - - - 93.2

OMNIGLOT 1 5 97.3 82.8 98.1 98.1
OMNIGLOT 5 5 98.4 94.9 98.9 99.5
OMNIGLOT 1 20 88.1 - 93.8 93.2

OMNIGLOT 5 20 97.0 - 98.7 98.1

Table 3.1: The table shows the classification accuracies of various few-shot learning

tasks. Models are trained on OMNIGLOT data and tested on either unseen OMNIGLOT

classes or MNIST with varying numbers of samples per class (K-shot) with varying

numbers of classes (K-way). Comparisons are to Vinyals et al. (2016b) (Matching),

Santoro et al. (2016b) (MANN) and Koch (2015) (Siamese). 5-shot MNIST results are

included for completeness.

Figure 3.6: Few-shot learning for face data. Samples are from model trained on Youtube

Faces Database. Left : Each row shows an input set of size 5. Center : Each row shows 5

samples from the model corresponding to the input set on the left. Right : Imagined new

faces generated by sampling contexts from the prior. Each row consists of 5 samples

from the model given a particular sampled context.

28 Chapter 3. Towards a Neural Statistician

convolutional encoder, and the deocder uses deconvolutional layers. For full details

see Appendix A.2.2. The likelihood function is a Gaussian, but where the variance

parameters are shared across all datapoints, this was found to make training faster and

more stable.

The results are shown in Figure 3.6. Whilst there is room for improvement, we see

that it is possible to specify a complex distribution on-the-fly with a set of photos of a

previously unseen person. The samples conditioned on an input set have a reasonable

likeness of the input faces. We also show the ability of the model to generate new

datasets and see that the samples have a consistent identity and varied poses.

3.6 Conclusion

We have demonstrated a highly flexible model on a variety of tasks. Going forward our

approach will naturally benefit from advances in generative models as we can simply

upgrade our base generative model, and so future work will pursue this. Compared

with some other approaches in the literature for few-shot learning, our requirement for

supervision is weaker: we only ask at training time that we are given datasets, but we do

not need labels for the datasets, nor even information on whether two datasets represent

the same or different classes. It would be interesting then to explore application areas

where only this weaker form of supervision is available. There are two important

limitations to this work, firstly that the method is dataset hungry: it will likely not learn

useful representations of datasets given only a small number of them. Secondly at test

time the few-shot fit of the generative model will not be greatly improved by using

larger datasets unless the model was also trained on similarly large datasets. The latter

limitation seems like a promising future research direction - bridging the gap between

fast adaptation and slow training.

Acknowledgments

This work was supported in part by the EPSRC Centre for Doctoral Training in Data

Science, funded by the UK Engineering and Physical Sciences Research Council (grant

EP/L016427/1) and the University of Edinburgh.

3.7. 2021 Retrospective 29

3.7 2021 Retrospective

In the paper the motivation and experiments were mostly discussed in abstract terms or

in terms of commonly used academic benchmarks (Omniglot for example), but it may

be more useful to consider a more vivid and practical vision. A holy grail in robotics

has long been a practical domestic assistant, a general purpose machine that doesn’t

assume a special and static layout of a house, doesn’t assume special amenities, one

that is safe around pets and children, a machine that can do the dishes, make a cup of

coffee, do the laundry and vacuum. Every house, every apartment, every room has its

own unique layout, both in terms of where say the downstairs bathroom is, and in terms

of where the remote control for a TV may reside that day. In this sense every home is its

own dataset, and for a general purpose robot to work it must be capable of explicitly or

implicitly inferring the parameters describing the house in order to do its tasks. In this

setting we can imagine using the Neural Statistician approach to learn representations

of homes which would have a number of uses. Firstly by learning the relations amongst

homes, the representation for a new home could be learned with a small amount of

data. Secondly the uncertainty in the distribution over the home latent variable could

be used to guide an exploration policy that may be used when a robot first arrives in a

new home, or do a survey of the home’s current state. Thirdly the representation itself

could be used to condition a robot policy, or perhaps to condition a world model of the

dynamics that could be used to do planning. Finally generation of novel home latent

variables could be used to create synthetic training data for training robot policies.

This paper was one of the early approaches to meta-learning using deep learning,

and, as it was put on arxiv more than four years ago at the time of writing, it is

interesting to reflect on where the field has gone since then. In the paper I considered

the most interesting part to be the idea of learning representations of datasets rather than

datapoints as is usual practice. As such I emphasised qualitative investigations of these

representations such as visualising the representations and looking for expected factors

of variation, and showing few-shot generation samples on unseen visual datasets. The

results on few-shot classification were added for completeness. Since then the field has

focused heavily on few-shot classification benchmarks and less on few-shot generation.

The most direct follow-up work was the ‘Variational Homoencoder’ (Hewitt et al.,

2018) that, amongst other contributions, shows how to modify the objective to deal with

datasets that are too large to be passed through the neural network all at once at training

time, and instead makes a stochastic lower bound that only requires sub-samples of

30 Chapter 3. Towards a Neural Statistician

datasets. Another line of work building on the Neural Statistician are ’Neural Processes’

(Garnelo et al., 2018b), (Garnelo et al., 2018a), (Kim et al., 2018) which can be a seen

as a natural generalisation to the case of learning representations of functions rather

than sets.

I think that one of the most interesting prospects for structured representations or

latent variables could be in situations where one has a distribution over environments.

A simple example could be distribution over 2d mazes that an agent can move through.

One could apply a similar approach to learning a generative model of forward dynamics,

that is a mapping from a history of states and actions to a distribution over the next state.

By doing so one could have a latent variable representing the specifics of one maze

versus another. An approximate posterior over such a latent variable could provide

the basis for a principled method for ’meta-exploration’, that is where the task is to

quickly explore a novel environment at test-time. For example if Dt is the information

collected from the environment over the first t timesteps, then a divergence between

the approximate posteriors q(C|Dt+1) and q(C|Dt), where C is the latent variable

representing the environment, would be a measurement of the information gained about

the environment, in our example it would be information about the layout of the maze.

Chapter 4

Large-Scale Study of Curiosity-Driven

Learning

4.1 Introduction

Reinforcement learning (RL) has emerged as a popular method for training agents to

perform complex tasks. In RL, the agent policy is trained by maximizing a reward

function that is designed to align with the task. The rewards are extrinsic to the agent

and specific to the environment they are defined for. Most of the success in RL has been

achieved when this reward function is dense and well-shaped, e.g., a running “score” in

a video game (Mnih et al., 2015a). However, designing a well-shaped reward function is

a notoriously challenging engineering problem. An alternative to “shaping” an extrinsic

reward is to supplement it with dense intrinsic rewards (Oudeyer and Kaplan, 2009),

that is, rewards that are generated by the agent itself. Examples of intrinsic reward

include “curiosity” (Mohamed and Rezende, 2015; Schmidhuber, 1991b; Singh et al.,

2005; Houthooft et al., 2016; Pathak et al., 2017) which uses prediction error as reward

signal, and “visitation counts” (Bellemare et al., 2016; Ostrovski et al., 2018a; Poupart

et al., 2006; Lopes et al., 2012) which discourages the agent from revisiting the same

states. The idea is that these intrinsic rewards will bridge the gaps between sparse

extrinsic rewards by guiding the agent to efficiently explore the environment to find the

next extrinsic reward.

But what about scenarios with no extrinsic reward at all? This is not as strange as it

sounds. Developmental psychologists talk about intrinsic motivation (i.e., curiosity) as

the primary driver in the early stages of development (Smith and Gasser, 2005; Ryan,

2000): babies appear to employ goal-less exploration to learn skills that will be useful

31

32 Chapter 4. Large-Scale Study of Curiosity-Driven Learning

Figure 4.1: A snapshot of the 54 environments investigated in the paper. We show that

agents are able to make progress using no extrinsic reward, or end-of-episode signal, and

only using curiosity. Video results, code and models at https://pathak22.github.io/

large-scale-curiosity/.

later on in life. There are plenty of other examples, from playing Minecraft to visiting

your local zoo, where no extrinsic rewards are required. Indeed, there is evidence that

pre-training an agent on a given environment using only intrinsic rewards allows it

to learn much faster when fine-tuned to a novel task in a novel environment (Pathak

et al., 2017, 2018). Yet, so far, there has been no systematic study of learning with only

intrinsic rewards.

In this paper, we perform a large-scale empirical study of agents driven purely by

intrinsic rewards across a range of diverse simulated environments. In particular, we

choose the dynamics-based curiosity model of intrinsic reward presented in Pathak

et al. (2017) because it is scalable and trivially parallelizable, making it ideal for large-

scale experimentation. The central idea is to represent intrinsic reward as the error

in predicting the consequence of the agent’s action given its current state, i.e., the

prediction error of learned forward-dynamics of the agent. We thoroughly investigate

the dynamics-based curiosity across 54 environments: video games, physics engine

simulations, and virtual 3D navigation tasks, shown in Figure 4.1.

To develop a better understanding of curiosity-driven learning, we further study the

crucial factors that determine its performance. In particular, predicting the future state in

the high dimensional raw observation space (e.g., images) is a challenging problem and,

https://pathak22.github.io/large-scale-curiosity/
https://pathak22.github.io/large-scale-curiosity/

4.2. Dynamics-based Curiosity-driven Learning 33

as shown by recent works (Pathak et al., 2017; Stadie et al., 2015), learning dynamics in

an auxiliary feature space leads to improved results. However, how one should choose

such an embedding space is a critical, yet open research problem. Through a systematic

ablation, we examine the role of different ways to encode agent’s observation such that

an agent can perform well driven purely by its own curiosity. To ensure stable online

training of dynamics, we argue that the desired embedding space should: (a) be compact

in terms of dimensionality, (b) preserve sufficient information about the observation, and

(c) be a stationary function of the observations. We show that encoding observations via

a random network turn out to be a simple, yet effective technique for modeling curiosity

across many popular RL benchmarks. This might suggest that many popular RL video

game test-beds are not as visually sophisticated as commonly thought. Interestingly, we

discover that although random features are sufficient for good performance at training,

the learned features appear to generalize better (e.g., to novel game levels in Super

Mario Bros.).

In summary: (a) We perform a large-scale study of curiosity-driven exploration

across a variety of environments including: the set of Atari games (Bellemare et al.,

2013), Super Mario Bros., virtual 3D navigation in Unity (Juliani et al., 2018), multi-

player Pong, and Roboschool (Schulman et al., 2017) environments. (b) We exten-

sively investigate different feature spaces for learning the dynamics-based curiosity:

random features, pixels, inverse-dynamics (Pathak et al., 2017) and variational auto-

encoders (Kingma and Welling, 2013b) and evaluate generalization to unseen environ-

ments. (c) We conclude by discussing some limitations of a direct prediction-error

based curiosity formulation. We observe that if the agent itself is the source of stochas-

ticity in the environment, it can reward itself without making any actual progress. We

empirically demonstrate this limitation in a 3D navigation task where the agent controls

different parts of the environment.

4.2 Dynamics-based Curiosity-driven Learning

Consider an agent that sees an observation xt , takes an action at and transitions to

the next state with observation xt+1. We want to incentivize this agent with a reward

rt relating to how informative the transition was. To provide this reward, we use

an exploration bonus involving the following elements: (a) a network to embed ob-

servations into representations φ(x), (b) a forward dynamics network to predict the

representation of the next state conditioned on the previous observation and action

34 Chapter 4. Large-Scale Study of Curiosity-Driven Learning

p(φ(xt+1)|xt ,at). Given a transition tuple {xt ,xt+1,at}, the exploration reward is then

defined as rt = − log p(φ(xt+1)|xt ,at), also called the surprisal (Achiam and Sastry,

2017).

An agent trained to maximize this reward will favor transitions with high prediction

error, which will be higher in areas where the agent has spent less time, or in areas with

complex dynamics. Such a dynamics-based curiosity has been shown to perform quite

well across scenarios (Pathak et al., 2017) especially when the dynamics are learned in

an embedding space rather than raw observations. In this paper, we explore dynamics-

based curiosity and use mean-squared error corresponding to a fixed-variance Gaussian

density as surprisal, i.e., ‖ f (xt ,at)−φ(xt+1)‖2
2 where f is the learned dynamics model.

However, any other density model could be used.

4.2.1 Feature spaces for forward dynamics

Consider the representation φ in the curiosity formulation above. If φ(x) = x, the

forward dynamics model makes predictions in the observation space. A good choice

of feature space can make the prediction task more tractable and filter out irrelevant

aspects of the observation space. But, what makes a good feature space for dynamics

driven curiosity? We narrow down a few qualities that a good feature space should

have:

• Compact: The features should be easy to model by being low(er)-dimensional

and filtering out irrelevant parts of the observation space.

• Sufficient: The features should contain all the important information. Otherwise,

the agent may fail to be rewarded for exploring some relevant aspect of the

environment.

• Stable: Non-stationary rewards make it difficult for reinforcement agents to learn.

Exploration bonuses by necessity introduce non-stationarity since what is new

and novel becomes old and boring with time. In a dynamics-based curiosity

formulation, there are two sources of non-stationarity: the forward dynamics

model is evolving over time as it is trained and the features are changing as they

learn. The former is intrinsic to the method, and the latter should be minimized

where possible

In this work, we systematically investigate the efficacy of a number of feature learning

methods, summarized briefly as follows:

4.2. Dynamics-based Curiosity-driven Learning 35

Pixels The simplest case is where φ(x) = x and we fit our forward dynamics model in

the observation space. Pixels are sufficient, since no information has been thrown away,

and stable since there is no feature learning component. However, learning from pixels

is tricky because the observation space may be high-dimensional and complex.

Random Features (RF) The next simplest case is where we take our embedding

network, a convolutional network, and fix it after random initialization. Because

the network is fixed, the features are stable. The features can be made compact in

dimensionality, but they are not constrained to be. However, random features may fail to

be sufficient. As discussed in 4.4 randomly initialized convnets have been shown to give

useful features for image classification task since the induction bias of the architecture is

appropriate for images (in particular the meaning a patch in one location is often highly

related to the meaning of that same patch in a different spatial location, and the convnet

encodes these equivariances to some extent). Because of this the dynamics model will

be able to generalize when making predictions about an object it has previously seen in

one location to another, without having to relearn this object in every possible location.

For this reason the prediction error will not lead to the agent being endlessly fascinated

with every patch of pixels appearing in every location.

VAE IDF RF Pixels

Stable No No Yes Yes

Compact Yes Yes Maybe No

Sufficient Yes Maybe Maybe Yes

Table 4.1: Table summarizing the categorization

of

different kinds of feature spaces considered.

Variational Autoencoders (VAE) VAEs

were introduced in (Kingma and Welling,

2013b; Rezende et al., 2014a) to fit la-

tent variable generative models p(x,z)

for observed data x and latent variable

z with prior p(z) using variational infer-

ence. The method calls for an inference

network q(z|x) that approximates the pos-

terior p(z|x). This is a feedforward net-

work that takes an observation as input and outputs a mean and variance vector describ-

ing a Gaussian distribution with diagonal covariance. We can then use the mapping to

the mean as our embedding network φ. These features will be a low-dimensional ap-

proximately sufficient summary of the observation since they are trained to reconstruct

the input (although it is possibly that the encoder may elect to remove some important

aspects in order to balance the objective in principle), but they may still contain some

irrelevant details such as noise, and the features will change over time as the VAE trains.

36 Chapter 4. Large-Scale Study of Curiosity-Driven Learning

Inverse Dynamics Features (IDF) Given a transition (st ,st+1,at) the inverse dynam-

ics task is to predict the action at given the previous and next states st and st+1. Features

are learned using a common neural network φ to first embed st and st+1. The intuition

is that the features learned should correspond to aspects of the environment that are

under the agent’s immediate control. This feature learning method is easy to implement

and in principle should be invariant to certain kinds of noise (see (Pathak et al., 2017)

for a discussion). A potential downside could be that the features learned may not be

sufficient, that is they do not represent important aspects of the environment that the

agent cannot immediately affect.

A summary of these characteristics is provided in Table 4.1. Note that the learned

features are not stable because their distribution changes as learning progresses. One

way to achieve stability could be to pre-train VAE or IDF networks. However, unless

one has access to the internal state of the game, it is not possible to get a representative

data of the game scenes to train the features. One way is to act randomly to collect data,

but then it will be biased to where the agent started, and won’t generalize further. Since

all the features involve some trade-off of desirable properties, it becomes an empirical

question as to how effective each of them is across environments.

4.2.2 Practical considerations in training an agent driven purely by

curiosity

Deciding upon a feature space is only first part of the puzzle in implementing a practical

system. Here, we detail the critical choices we made in the learning algorithm. Our

goal was to reduce non-stationarity in order to make learning more stable and consistent

across environments. Through the following considerations outlined below, we are

able to get exploration to work reliably for different feature learning methods and

environments with minimal changes to the hyper-parameters.

• PPO. In general, we have found the PPO algorithm (Schulman et al., 2017) to be

a robust learning algorithm that requires little hyper-parameter tuning and so we

stick to it for our experiments.

• Reward normalization. Since the reward function is non-stationary, it is useful to

normalize the scale of the rewards so that the value function can learn quickly. We

did this by dividing the rewards by a running estimate of the standard deviation

of the sum of discounted rewards.

4.2. Dynamics-based Curiosity-driven Learning 37

• Advantage normalization. While training with PPO, we normalize the advan-

tages (Sutton and Barto, 1998) in a batch to have a mean of 0 and a standard

deviation of 1.

• Observation normalization. We run a random agent on our target environment for

10000 steps, then calculate the mean and standard deviation of the observation

and use these to normalize the observations when training. This is useful to ensure

that the features do not have very small variance at initialization, and also ensure

features have less variation across different environments.

• More actors. The stability of the method is greatly increased by increasing the

number of parallel actors (which affects the batch-size) used. We typically use

128 parallel runs of the same environment for data collection while training an

agent.

• Normalizing the features. In combining intrinsic and extrinsic rewards, we found

it useful to ensure that the scale of the intrinsic reward was consistent across state

space. We achieved this by using batch-normalization (Ioffe and Szegedy, 2015b)

in the feature embedding network.

4.2.3 ‘Death is not the end’: discounted curiosity with infinite hori-

zon

One important point is that the use of an end-of-episode signal, sometimes called a

‘done’, can often leak information about the true reward function. If we don’t remove

the ‘done’ signal, many of the Atari games become too simple. For example, a simple

strategy of giving +1 artificial reward at every time-step when the agent is alive and 0

on death is sufficient to obtain a high score in some games, for instance, the Atari game

‘Breakout’ where it will seek to maximize the episode length and hence its score. In the

case of negative rewards, the agent will try to end the episode as quickly as possible.

In light of this, if we want to study the behavior of pure exploration agents, we

should not bias the agent. In the infinite horizon setting (i.e., the discounted returns

are not truncated at the end of the episode and always bootstrapped using the value

function), death is just another transition to the agent, to be avoided only if it is boring.

Therefore, we removed ‘done’ to separate the gains of an agent’s exploration from

merely that of the death signal. In practice, we do find that the agent avoids dying in

the games since that brings it back to the beginning of the game, an area it has already

38 Chapter 4. Large-Scale Study of Curiosity-Driven Learning

Figure 4.2: A comparison of feature learning methods on 8 selected Atari games and the Super

Mario Bros. These evaluation curves show the mean reward (with standard error) of agents

trained purely by curiosity, without reward or an end-of-episode signal. We see that our purely

curiosity-driven agent is able to gather rewards in these environments without using any extrinsic

reward at training. Results on all of the Atari games are in the appendix in Figure B.2. We find

curiosity model trained on pixels does not work well across any environment and VAE features

perform either same or worse than random and inverse dynamics features. Further, inverse

dynamics-trained features perform better than random features in 55% of the Atari games. An

interesting outcome of this analysis is that random features for modeling curiosity are a simple,

yet surprisingly strong baseline and likely to work well in half of the Atari games.

seen many times and where it can predict the dynamics well. This subtlety has been

neglected by previous works showing experiments without extrinsic rewards.

4.3 Experiments

In all of our experiments, both the policy and the embedding network work directly from

pixels. For our implementation details including hyper-parameters and architectures,

please refer to the Appendix B.1. Unless stated otherwise, all curves are the average of

three runs with different seeds, and the shaded areas are standard errors of the mean.

We have released the code and videos of a purely curious agent playing across all

environments on the website 1.

1https://pathak22.github.io/large-scale-curiosity/

https://pathak22.github.io/large-scale-curiosity/

4.3. Experiments 39

4.3.1 Curiosity-driven learning without extrinsic rewards

We begin by scaling up a pure curiosity-driven learning to a large number of environ-

ments without using any extrinsic rewards. We pick a total of 54 diverse simulated

environments, as shown in Figure 4.1, including 48 Atari games, Super Mario Bros., 2

Roboschool scenarios (learning Ant controller and Juggling), Two-player Pong, 2 Unity

mazes (with and without a TV controlled by the agent). The goal of this large-scale

analysis is to investigate the following questions: (a) What actually happens when you

run a pure curiosity-driven agent on a variety of games without any extrinsic rewards?

(b) What kinds of behaviors can you expect from these agents? (c) What is the effect of

the different feature learning variants in dynamics-based curiosity on these behaviors?

Atari Games To answer these questions, we began with a collection of well-known

Atari games and ran a suite of experiments with different feature learning methods. One

way to measure how well a purely curious agent performs is to measure the extrinsic

reward it is able to achieve, i.e. how good is the agent at playing the game. We show the

evaluation curves of mean extrinsic reward in on 8 common Atari games in Figure 4.2

and all 48 Atari suite in Figure B.2 in the appendix. It is important to note that the

extrinsic reward is only used for evaluation, not for training. However, this is just a

proxy for pure exploration because the game rewards could be arbitrary and might not

align at all with how the agent explores out of curiosity.

The first thing to notice from the curves is: most of them are going up. This shows

that a pure curiosity-driven agent can learn to obtain external rewards even without

using any extrinsic rewards during training. It is remarkable that agents with no extrinsic

reward and no end of episode signal can learn to get scores comparable in some cases to

learning with the extrinsic reward. For instance, in Breakout, the game score increases

on hitting the ball with the paddle into bricks which disappear and give points when

struck. The more times the bricks are struck in a row by the ball, the more complicated

the pattern of bricks remaining becomes, making the agent more curious to explore

further, hence, collecting points as a bi-product. Further, when the agent runs out of

lives, the bricks are reset to a uniform structure again that has been seen by the agent

many times before and is hence very predictable, so the agent tries to stay alive to be

curious by avoiding reset by death.

This is an unexpected result and might suggest that many popular RL test-beds

do not need an external reward. Perhaps game designers (similar to architects, urban

planners, gardeners, etc.) are good at setting up curricula to guide agents through the

40 Chapter 4. Large-Scale Study of Curiosity-Driven Learning

task. This could explain the reason curiosity-like objective decently aligns with the

extrinsic reward in many human-designed environments (Lazzaro, 2004; Costikyan,

2013; Hunicke et al., 2004; Wouters et al., 2011). However, this is not always the case,

and sometimes a curious agent can even do worse than random agent! This happens

when the extrinsic reward has little correlation with the agent’s exploration, or when the

agent fails to explore efficiently (e.g. see games ‘Atlantis’, ‘IceHockey’ in Figure B.2).

We further encourage the reader to refer to the game-play videos of the agent available

on the website for a better understanding of the learned skills.

Comparison of feature learning methods: We compare four feature learning

methods in Figure 4.2: raw pixels, random features, inverse dynamics features and VAE

features. Training dynamics on raw-pixels performs bad across all the environments,

while encoding pixels into features does better. This is likely because it is hard to learn

a good dynamics model in pixel space, and prediction errors may be dominated by

small irrelevant details.

Surprisingly, random features (RF) perform quite well across tasks and sometimes

better than using learned features. One reason for good performance is that the random

features are kept frozen (stable), the dynamics model learned on top of them has an

easier time because of the stationarity of the target. In general, random features should

work well in the domains where visual observations are simple enough, and random

features can preserve enough information about the raw signal, for instance, Atari games.

Interestingly, we find that while random features work well at training, IDF learned

features appear to generalize better in Mario Bros. (see Section 4.3.2 for details).

The VAE method also performed well but was somewhat unstable, so we decided

to use RF and IDF for further experiments. The detailed result in appendix Figure B.2

compares IDF vs. RF across the full Atari suite. To quantify the learned behaviors, we

compared our curious agents to a randomly acting agent. We found that an IDF-curious

agent collects more game reward than a random agent in 75% of the Atari games, an

RF-curious agent does better in 70%. Further, IDF does better than RF in 55% of the

games. Overall, random features and inverse dynamics features worked well in general.

Further details in the appendix.

Super Mario Bros. We compare different feature learning methods in Mario Bros.

in Figure 4.2. Super Mario Bros has already been studied in the context of extrinsic

reward free learning (Pathak et al., 2017) in small-scale experiments, and so we were

keen to see how far curiosity alone can push the agent. We use an efficient version

4.3. Experiments 41

of Mario simulator faster to scale up for longer training keeping observation space,

actions, dynamics of the game intact. Due to 100x longer training and using PPO for

optimization, our agent is able to pass several levels of the game, significantly improving

over prior exploration results on Mario Bros.

Could we further push the performance of a purely curious agent by making the

underlying optimization more stable? One way is to scale up the batch-size. We do so

by increasing the number of parallel threads for running environments from 128 to 1024.

We show the comparison between training using 128 and 1024 parallel environment

threads in Figure 4.3(a). As apparent from the graph, training with large batch-size

using 1024 parallel environment threads performs much better. In fact, the agent is able

to explore much more of the game: discovering 11 different levels of the game, finding

secret rooms and defeating bosses. Note that the x-axis in the figure is the number of

gradient steps, not the number of frames, since the point of this large-scale experiment

is not a claim about sample-efficiency, but performance with respect to training the

agent. This result suggests that the performance of a purely curiosity-driven agent

would improve as the training of base RL algorithm (which is PPO in our case) gets

better. The video is on the website.

Roboschool Juggling We modified the Pong environment from the Roboschool

framework to only have one paddle and to have two balls. The action space is continuous

with two-dimensions, and we discretized the action space into 5 bins per dimension

giving a total of 25 actions. Both the policy and embedding network are trained on pixel

observation space (note: not state space). This environment is more difficult to control

than the toy physics used in games, but the agent learns to intercept and strike the balls

when it comes into its area. We monitored the number of bounces of the balls as a proxy

for interaction with the environment, as shown in Figure 4.3(b). See the video on the

project website.

Roboschool Ant Robot We also explored using the Ant environment which consists

of an Ant with 8 controllable joints on a track. We again discretized the action space

and trained policy and embedding network on raw pixels (not state space). However, in

this case, it was less easy to measure exploration because the extrinsic distance reward

measures progress along the racetrack, but a purely curious agent is free to move in any

direction. We find that a walking like behavior emerges purely out of a curiosity-driven

training. We refer the reader to the result video showing that the agent is meaningfully

42 Chapter 4. Large-Scale Study of Curiosity-Driven Learning

(a) Mario w/ large batch (b) Juggling (Roboschool)

(c) Two-player Pong

Figure 4.3: (a) Left: A comparison of the RF method on Mario with different batch sizes.

Results are without using extrinsic reward. (b) Center: Number of ball bounces in the Juggling

(Roboschool) environment. (c) Right: Mean episode length in the multiplayer Pong environment.

The discontinuous jump on the graph corresponds to the agent reaching a limit of the environment

- after a certain number of steps in the environment the Atari Pong emulator starts randomly

cycling through background colors and becomes unresponsive to agent’s actions

4.3. Experiments 43

interacting with the environment.

Multi-agent curiosity in Two-player Pong We have already seen that a purely curiosity-

driven agent learns to play several Atari games without reward, but we wonder how

much of that behavior is caused by the fact that the opposing player is a computer-agent

with hardcoded strategy. What would happen if we were to make both the teams playing

against each other to be curious? To find out, we take Two-player Pong game where

both the sides (paddles of pong) of the game are controlled by curiosity-driven agents.

We share the initial layers of both the agent and have different action heads, i.e., total

action space is now the cross product of the actions of player 1 by the actions of player

2.

Note that the extrinsic reward is meaningless in this context since the agent is

playing both sides, so instead, we show the length of the episode. The results are shown

in Figure 4.3(c). We see from the episode length that the agent learns to have more and

longer rallies over time, learning to play pong without any teacher – purely by curiosity

on both sides. In fact, the game rallies eventually get so long that they break our Atari

emulator causing the colors to change radically, which crashes the policy as shown in

the plot.

4.3.2 Generalization across novel levels in Super Mario Bros.

In the previous section, we showed that our purely curious agent can learn to explore

efficiently and learn useful skills, e.g., game playing behaviour in games, walking

behaviour in Ant etc. So far, these skills were shown in the environment where the

agent was trained on. However, one advantage of developing reward-free learning is

that one should then be able to utilize abundant “unlabeled” environments without

reward functions by showing generalization to novel environments. To test this, we

first pre-train our agent using curiosity only in the Level 1-1 of Mario Bros. We

investigate how well RF and IDF-based curiosity agents generalize to novel levels of

Mario. In Figure 4.4, we show two examples of training on one level of Mario and

finetuning on another testing level, and compare to learning on the testing level from

scratch. The training signal in all the cases is only curiosity reward. In the first case,

from Level 1-1 to Level 1-2, the global statistics of the environments match (both are

‘day’ environment in games, i.e., blue background) but levels have different enemies,

geometry and difficulty level. We see that there is strong transfer from for both methods

44 Chapter 4. Large-Scale Study of Curiosity-Driven Learning

in this scenario. However, the transfer performance is weaker in the second scenario

from Level 1-1 to Level 1-3. This is so because the problem is considerably harder for

the latter level pairing as there is a color scheme shift from day to night, as shown in

Figure 4.4.

We further note that IDF-learned features transfer in both the cases and random

features transfer in the first case, but do not transfer in the second scenario from day to

night. These results might suggest that while random features perform well on training

environments, learned features appear to generalize better to novel levels. However, this

needs more analysis in the future across a large variety of environments. Overall, we

find some promising evidence showing that skills learned by curiosity help our agent

explore efficiently in novel environments.

0 10 20 300

250

500

750

1000

1250

1500

1750

2000

World 1 level 1 to world 2 level 1

0 10 20 300

250

500

750

1000

1250

1500

1750

2000

World 1 level 1 to world 3 level 1

Frames (millions)

Ex
tri

ns
ic

Re
wa

rd
 p

er
 E

pi
so

de

IDF scratch
IDF transfer

RF scratch
RF transfer

Figure 4.4: Mario generalization experiments. On

the left we show transfer results from Level 1-1 to

Level 1-2, and on the right we show transfer results

from Level 1-1 to Level 1-3. Underneath each plot

is a map of the source and target environments. All

agents are trained without extrinsic reward.

Figure 4.5: Mean extrinsic re-

ward in the Unity environment

while training with terminal extrin-

sic + curiosity reward. Note that

the curve for extrinsic reward only

training is constantly zero.

4.3.3 Curiosity with Sparse External Reward

In all our experiments so far, we have shown that our agents can learn useful skills

without any extrinsic rewards driven purely by curiosity. However, in many scenarios,

we might want the agent to perform some particular task of interest. This is usually

conveyed to the agent by defining extrinsic rewards. When rewards are dense (e.g. game

score at every frame), classic RL works well and intrinsic rewards generally should

not help performance. However, designing dense rewards is a challenging engineering

4.4. Related Work 45

problem (see introduction for details). In this section, we evaluate how well curiosity

can help an agent perform a task in presence of sparse, or just terminal, rewards.

Terminal reward setting: For many real problems, e.g. navigation, the only

terminal reward is available, a setting where classic RL typically performs poorly.

Hence, we consider the 3D navigation in a maze designed in the Unity ML-agent

framework with 9 rooms and a sparse terminal reward. There is a discrete action space

consisting of: move forwards, look left 15 degrees, look right 15 degrees and no-op.

The agent starts in the room-1, which is furthest away from room-9 which contains the

goal of the agent. We compare an agent trained with extrinsic reward (+1 when the goal

is reached, 0 otherwise) to an agent trained with extrinsic + intrinsic reward. Extrinsic

only (classic RL) never finds the goal in all our trials which means it is impossible

to get any meaningful gradients. Whereas extrinsic+intrinsic typically converges to

getting the reward every time. Results in Figure 4.5 show results for vanilla PPO, PPO

+ IDF-curiosity and PPO + RF-curiosity.

Sparse reward setting: In preliminary experiments, we picked 5 Atari games

which have sparse rewards (as categorized by (Bellemare et al., 2016)), and compared

extrinsic (classic RL) vs. extrinsic+intrinsic (ours) reward performance. In 4 games out

of 5, curiosity bonus improves performance (see Table B.1 in the appendix, the higher

score is better). We would like to emphasize that this is not the focus of the paper,

and these experiments are provided just for completeness. We just combined extrinsic

(coefficient 1.0) and intrinsic reward (coefficient 0.01) directly without any tuning. We

leave the question on how to optimally combine extrinsic and intrinsic rewards as a

future direction.

4.4 Related Work

Intrinsic Motivation: A family of approaches to intrinsic motivation reward an agent

based on prediction error (Schmidhuber, 1991c; Stadie et al., 2015; Pathak et al., 2017;

Achiam and Sastry, 2017), prediction uncertainty (Still and Precup, 2012; Houthooft

et al., 2016), or improvement (Schmidhuber, 1991a; Lopes et al., 2012) of a forward

dynamics model of the environment that gets trained along with the agent’s policy.

As a result the agent is driven to reach regions of the environment that are difficult to

predict for the forward dynamics model, while the model improves its predictions in

these regions. This adversarial and non-stationary dynamics can give rise to complex

behaviors. Relatively little work has been done in this area on the pure exploration

46 Chapter 4. Large-Scale Study of Curiosity-Driven Learning

setting where there is no external reward. Of these mostly closely related are those that

use a forward dynamics model of a feature space such as Stadie et al. (2015) where

they use autoencoder features, and Pathak et al. (2017) where they use features trained

with an inverse dynamics task. These correspond roughly to the VAE and IDF methods

detailed in Section 4.2.1.

Smoothed versions of state visitation counts can be used for intrinsic rewards

(Bellemare et al., 2016; Fu et al., 2017; Ostrovski et al., 2018a; Tang et al., 2017b).

Count-based methods have already shown very strong results when combining with

extrinsic rewards such as setting the state of the art in the Atari game Montezuma’s

Revenge (Bellemare et al., 2016), and also showing significant exploration of the game

without using the extrinsic reward. It is not yet clear in which situations count-based

approaches should be preferred over dynamics-based approaches; we chose to focus

on dynamics-based bonuses in this paper since we found them straightforward to scale

and parallelize. In our preliminary experiments, we did not have sufficient success with

already existing count-based implementations in scaling up for a large-scale study.

Learning without extrinsic rewards or fitness functions has also been studied exten-

sively in the evolutionary computing where it is referred to as ‘novelty search’ (Lehman

and Stanley, 2008, 2011; Stanley and Lehman, 2015). There the novelty of an event

is often defined as the distance of the event to the nearest neighbor amongst previous

events, using some statistics of the event to compute distances. One interesting finding

from this literature is that often much more interesting solutions can be found by not

solely optimizing for fitness.

Other methods of exploration are designed to work in combination with maximizing

a reward function, such as those utilizing uncertainty about value function estimates

(Osband et al., 2016; Chen et al., 2017), or those using perturbations of the policy

for exploration (Fortunato et al., 2018; Plappert et al., 2018). Schmidhuber (2010)

and Oudeyer and Kaplan (2009); Oudeyer (2018) provide a great review of some

of the earlier work on approaches to intrinsic motivation. Alternative methods of

exploration include Sukhbaatar et al. (2018) where they utilize an adversarial game

between two agents for exploration. In Gregor et al. (2017), they optimize a quantity

called empowerment which is a measurement of the control an agent has over the state.

In a concurrent work, diversity is used as a measure to learn skills without reward

functions Eysenbach et al. (2018).

Random Features: One of the findings in this paper is the surprising effectiveness

of random features, and there is a substantial literature on random projections and more

4.5. Discussion 47

generally randomly initialized neural networks. Much of the literature has focused on

using random features for classification (Saxe et al., 2011; Jarrett et al., 2009; Yang

et al., 2015) where the typical finding is that whilst random features can work well for

simpler problems, feature learning performs much better once the problem becomes

sufficiently complex. Whilst we expect this pattern to also hold true for dynamics-based

exploration, we have some preliminary evidence showing that learned features appear

to generalize better to novel levels in Mario Bros.

4.5 Discussion

We have shown that our agents trained purely with a curiosity reward are able to learn

useful behaviours: (a) Agent being able to play many atari games without using any

rewards. (b) Mario being able to cross over over 11 levels without reward. (c) Walking

like behavior emerged in the Ant environment. (d) Juggling like behavior in Robo-

school environment (e) Rally-making behavior in Two-player Pong with curiosity-driven

agent on both sides. But this is not always true as there are some Atari games where

exploring the environment does not correspond to extrinsic reward.

More generally, these results suggest that, in environments designed by humans,

the extrinsic reward is perhaps often aligned with the objective of seeking novelty. The

game designers set up curriculums to guide users while playing the game explaining

the reason Curiosity-like objective decently aligns with the extrinsic reward in many

human-designed games (Costikyan, 2013; Hunicke et al., 2004; Wouters et al., 2011;

Lazzaro, 2004).

Limitation of prediction error based curiosity: A more serious potential limita-

tion is the handling of stochastic dynamics. If the transitions in the environment are

random, then even with a perfect dynamics model, the expected reward will be the

entropy of the transition, and the agent will seek out transitions with the highest entropy.

Even if the environment is not truly random, unpredictability caused by a poor learning

algorithm, an impoverished model class or partial observability can lead to exactly

the same problem. We did not observe this effect in our experiments on games so we

designed an environment to illustrate the point.

We return to the maze of Section 4.3.3 to empirically validate a common thought

experiment called the noisy-TV problem. The idea is that local sources of entropy in an

environment like a TV that randomly changes channels when an action is taken should

prove to be an irresistible attraction to our agent. We take this thought experiment

48 Chapter 4. Large-Scale Study of Curiosity-Driven Learning

Figure 4.6: We add a noisy TV to the unity environment in Section 4.3.3. We compare

IDF and RF with and without the TV.

literally and add a TV to the maze along with an action to change the channel. In Figure

4.6 we show how adding the noisy-TV affects the performance of IDF and RF. As

expected the presence of the TV drastically slows down learning, but we note that if

you run the experiment for long enough the agents do sometimes converge to getting

the extrinsic reward consistently. We have shown empirically that stochasticity can be

a problem, and so it is important for future work to address this issue in an efficient

manner.

Future Work: We have presented a simple and scalable approach that can learn

nontrivial behaviors across a diverse range of environments without any reward function

or end-of-episode signal. One surprising finding of this paper is that random features

perform quite well, but learned features appear to generalize better. Whilst we believe

that learning features will become important once the environment is complex enough,

we leave that up to future work to explore.

Our wider goal, however, is to show that we can take advantage of many unlabeled

(i.e., not having an engineered reward function) environments to improve performance

on a task of interest. Given this goal, showing performance in environments with a

generic reward function is just the first step, and future work could investigate transfer

from unlabeled to labeled environments.

Acknowledgments

We would like to thank Chris Lu for helping with the Unity environment, Oleg Klimov

for helping with the Roboschool environments and Phillip Isola and Alex Nichol for

4.5. Discussion 49

feedback on the paper. We are grateful to the members of BAIR and OpenAI for fruitful

discussions. DP is supported by the Facebook graduate fellowship.

50 Chapter 4. Large-Scale Study of Curiosity-Driven Learning

4.6 2021 Retrospective

Upon reflection I think that the most important contribution of this paper was to focus

solely on ‘unsupervised reinforcement learning’ (meaning not making use of any reward

functions associated with the environment). Prior to this paper this question had not been

investigated extensively, especially across a large variety of environments. Investigating

a variety of non-toy environments showed that all sorts of interesting behaviours could

come from an unsupervised approach.

Most of the environments considered in this chapter are simple in the sense of

having simple visuals, have little or no stochasticity and often being fully-observable (or

almost fully-observable). Having richer visuals can presumably be handled through the

use of better features, perhaps coming from a larger encoder pretrained on something

like Imagenet or video data. Partial-observability could be addressed by using dynamics

model that is recurrent. The lack of stochasticity is harder to address and indeed

we would expect the baseline methods explored here to fail in such environments.

Nevertheless I think we learn a lot about the remarkable behaviors that can be elicited

through simple objectives, and so we learn a lot about the kinds of things we can expect

to see once that problem is solved. Indeed I suspect that many potential reward functions

will cause the agent to learn useful behaviors if they are not completely trivial, since

basic things like learning to avoid obstacles, moving between areas, increasing control

other the environment etc, are almost universally useful.

Uncertainty in predictions is often described as being epistemic or aleatoric. Epis-

temic uncertainty comes from uncertainty over the parameters of the model you are

fitting translated into predictive uncertainty. Aleatoric uncertainty comes from true

stochasticity in the variable you are predicting. So for example if one is fitting a

Bernoulli distribution to a sequence of coin-flips, then the epistemic uncertainty comes

from not having seen enough coin flips leading to uncertainty in your estimation of

the probability of heads. Aleatoric uncertainty comes from the fact that no matter how

certain you are about the probability of heads, unless the probability is zero or one

you will not be able to guess the outcome correctly every time. Rather than think in

terms of epistemic and aleatoric I find it more useful to think in terms of irreducible

and reducible error. The reducible error goes to zero as you observe an infinite amount

of data, whereas the irreducible error converges to some positive number (unless you

are in the rare case with no irreducible error, normally a toy problem of some sort). I

prefer this because aleatoric suggests some fact about the environment itself, whereas

4.6. 2021 Retrospective 51

it could just as well be a fact about the model class you have chosen (for example a

non-recurrent versus recurrent dynamics model).

For simple environments where that are deterministic and fully-observable, the

irreducible error ought to be close to zero, and so any prediction error observed can be

assumed to be ‘interesting’ in the sense of resulting from imperfect estimation of the

parameters. For environments like these one can expect simple prediction error to work

well as an intrinsic reward. For environments with localized sources of irreducible error,

we expect that agents trained with this reward to be drawn to them like a moth to flame.

The disadvantage of a purely unsupervised approach is that it is hard to quantify

progress. Subsequent works have adopted an approach analogous to that taken in

unsupervised computer vision papers, where the benefits of unsupervised objectives

on unlabelled data are demonstrated through their utility as a pre-training step prior to

fine-tuning on a potentially small number of labelled examples. In the reinforcement

learning setting the analogy would be to first allow a large amount of unsupervised

interaction environment, then measure the improvement this gives to sample complexity

when used as an initialisation for learning with the extrinsic rewards. A recent example

is ‘Fast Task Inference with Variational Intrinsic Successor Features’ (Hansen et al.,

2019).

Despite recent progress on unsupervised reinforcement learning I think using it

only for feature learning can only improve sample efficiency so far. I think the real

breakthrough in unsupervised pre-training will come when we can discover useful

behaviours in an unsupervised way and transfer them to a new task. One line of work in

this direction is to consider build latent variable models where the variable encodes a

policy/trajectory/skill, and where high mutual information between the latent variable

and trajectory is enforced. Through appropriate choices of amortized inference networks

some degree over the semantics of the latent variable can be enforced. For example if

the inference network must infer the latent variable independently from each state of

the trajectory (see for example (Eysenbach et al., 2018)), then each latent variable will

correspond to a trajectory that preferentially occupies a subset of states. If the inference

network must infer the latent variable only from the final state of the trajectory then

each latent variable will correspond to trajectories that end in certain states (see for

example (Gregor et al., 2017)). We can also go further and ask to maximize the mutual

information between the latent variable and the start state given the ending state as in

(Baumli et al., 2021), which will yield latent variables yielding a predictable change of

start from beginning to end.

52 Chapter 4. Large-Scale Study of Curiosity-Driven Learning

Another contribution that I think turned out to be useful was making a vivid demon-

stration of the noisy-TV problem for prediction-based exploration bonuses. Although

the problem had been discussed before, I think that the attitude was that although it was

theoretically a problem in practice it might not be worth worrying about. On this point

a contribution of the paper, and associated blog post 2, was firstly to clearly explain

the noisy-TV problem, and show a video of an agent really getting distracted by a

noisy-TV in a 3d environment. Secondly we show that even in environments with small

amounts of randomness, say Montezuma’s Revenge with ‘sticky-actions’ (this is where

with a small probability the previous action taken is repeated), an agent trained only

with a prediction error reward can learn to find states that amplify this stochasticity as

much as possible (by moving to the boundary of two rooms and hopping back and forth

between them, the transition between rooms is hard to predict because it will depend on

whether the sticky action condition is triggered). This maximises the change in pixels

as a result of the stochasticity, which, for simple dynamics models which cannot handle

multi-modal distributions, will reliably give high errors. Thirdly it was suggested in

(Pathak et al., 2017) that by predicting the dynamics in an appropriate choice of feature

space, the noisy-TV problem can be avoided by using features where stochastic parts

of the environment are removed. In our twist on the noisy-TV the agent has a ‘remote’

that gives a ‘change the channel’ action, but the channel will be chosen randomly. The

point is that the randomness is partially under the agent’s control, and so the image on

the TV is predictive of the agent’s action, which makes it a counter-example for the

particular feature space suggested in (Pathak et al., 2017) (features learned by predicting

inverse dynamics). A potential remedy for the noisy-TV problem is discussed in the

next chapter.

2https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/

https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/

Chapter 5

Exploration by Random Network

Distillation

5.1 Introduction

Reinforcement learning (RL) methods work by maximizing the expected return of a

policy. This works well when the environment has dense rewards that are easy to find

by taking random sequences of actions, but tends to fail when the rewards are sparse

and hard to find. In reality it is often impractical to engineer dense reward functions for

every task one wants an RL agent to solve. In these situations methods that explore the

environment in a directed way are necessary.

Recent developments in RL seem to suggest that solving the most challenging

tasks (Silver et al., 2016; Zoph and Le, 2016; Horgan et al., 2018; Espeholt et al.,

2018; OpenAI, 2018; Andrychowicz et al., 2020) requires processing large numbers of

samples obtained from running many copies of the environment in parallel. In light of

this it is desirable to have exploration methods that scale well with large amounts of

experience. However many of the recently introduced exploration methods based on

counts, pseudo-counts, information gain or prediction gain are difficult to scale up to

large numbers of parallel environments.

This paper introduces an exploration bonus that is particularly simple to implement,

works well with high-dimensional observations, can be used with any policy optimiza-

tion algorithm, and is efficient to compute as it requires only a single forward pass

of a neural network on a batch of experience. Our exploration bonus is based on the

observation that neural networks tend to have significantly lower prediction errors on

examples similar to those on which they have been trained. This motivates the use

53

54 Chapter 5. Exploration by Random Network Distillation

1

2
3

4 5
6 7 8

9
10

11
12

13
14

15 16

17
18

19-21

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21

Steps

In
tri

ns
ic

 re
w

ar
d

Figure 5.1: RND exploration bonus over the course of the first episode where the agent

picks up the torch (19-21). To do so the agent passes 17 rooms and collects gems,

keys, a sword, an amulet, and opens two doors. Many of the spikes in the exploration

bonus correspond to meaningful events: losing a life (2,8,10,21), narrowly escaping

an enemy (3,5,6,11,12,13,14,15), passing a difficult obstacle (7,9,18), or picking up

an object (20,21). The large spike at the end corresponds to a novel experience of

interacting with the torch, while the smaller spikes correspond to relatively rare events

that the agent has nevertheless experienced multiple times. See here for videos.

https://github.com/openai/random-network-distillation

5.1. Introduction 55

of prediction errors of networks trained on the agent’s past experience to quantify the

novelty of new experience.

As pointed out by many authors, agents that maximize such prediction errors tend

to get attracted to transitions where the answer to the prediction problem is a stochastic

function of the inputs. For example if the prediction problem is that of predicting the

next observation given the current observation and agent’s action (forward dynamics), an

agent trying to maximize this prediction error will tend to seek out stochastic transitions,

like those involving randomly changing static noise on a TV, or outcomes of random

events such as coin tosses. This observation motivated the use of methods that quantify

the relative improvement of the prediction, rather than its absolute error. Unfortunately,

as previously mentioned, such methods are hard to implement efficiently.

We propose an alternative solution to this undesirable stochasticity by defining

an exploration bonus using a prediction problem where the answer is a deterministic

function of its inputs. Namely we predict the output of a fixed randomly initialized

neural network on the current observation.

Atari games have been a standard benchmark for deep reinforcement learning al-

gorithms since the pioneering work by Mnih et al. (2013). Bellemare et al. (2016)

identified among these games the hard exploration games with sparse rewards: Free-

way, Gravitar, Montezuma’s Revenge, Pitfall!, Private Eye, Solaris, and Venture. RL

algorithms tend to struggle on these games, often not finding even a single positive

reward.

In particular, Montezuma’s Revenge is considered to be a difficult problem for RL

agents, requiring a combination of mastery of multiple in-game skills to avoid deadly

obstacles, and finding rewards that are hundreds of steps apart from each other even

under optimal play. Significant progress has been achieved by methods with access

to either expert demonstrations (Pohlen et al., 2018; Aytar et al., 2018; Garmulewicz

et al., 2018), special access to the underlying emulator state (Tang et al., 2017a; Stanton

and Clune, 2018), or both (Salimans and Chen, 2018). However without such aids,

progress on the exploration problem in Montezuma’s Revenge has been slow, with the

best methods finding about half the rooms (Bellemare et al., 2016). For these reasons

we provide extensive ablations of our method on this environment.

We find that even when disregarding the extrinsic reward altogether, an agent

maximizing the RND exploration bonus consistently finds more than half of the rooms

in Montezuma’s Revenge. To combine the exploration bonus with the extrinsic rewards

we introduce a modification of Proximal Policy Optimization (PPO, Schulman et al.

56 Chapter 5. Exploration by Random Network Distillation

(2017)) that uses two value heads for the two reward streams. This allows the use

of different discount rates for the different rewards, and combining episodic and non-

episodic returns. With this additional flexibility, our best agent often finds 22 out of

the 24 rooms on the first level in Montezuma’s Revenge, and occasionally (though not

frequently) passes the first level. The same method gets state of the art performance on

Venture and Gravitar.

5.2 Method

5.2.1 Exploration bonuses

Exploration bonuses are a class of methods that encourage an agent to explore even

when the environment’s reward et is sparse. They do so by replacing et with a new

reward rt = et + it , where it is the exploration bonus associated with the transition at

time t.

To encourage the agent to visit novel states, it is desirable for it to be higher in

novel states than in frequently visited ones. Count-based exploration methods provide

an example of such bonuses. In a tabular setting with a finite number of states one

can define it to be a decreasing function of the visitation count nt(sss) of the state sss. In

particular it = 1/nt(sss) and it = 1/
√

nt(sss) have been used in prior work (Bellemare

et al., 2016; Ostrovski et al., 2018b). In non-tabular cases it is not straightforward to

produce counts, as most states will be visited at most once. One possible generalization

of counts to non-tabular settings is pseudo-counts (Bellemare et al., 2016) which uses

changes in state density estimates as an exploration bonus. In this way the counts

derived from the density model can be positive even for states that have not been visited

in the past, provided they are similar to previously visited states.

An alternative is to define it as the prediction error for a problem related to the

agent’s transitions. Generic examples of such problems include forward dynamics

(Schmidhuber, 1991c; Stadie et al., 2015; Achiam and Sastry, 2017; Pathak et al., 2017;

Burda et al., 2018b) and inverse dynamics (Haber et al., 2018). Non-generic prediction

problems can also be used if specialized information about the environment is available,

like predicting physical properties of objects the agent interacts with (Denil et al., 2016).

Such prediction errors tend to decrease as the agent collects more experience similar

to the current one. For this reason even trivial prediction problems like predicting a

constant zero function can work as exploration bonuses (Fox et al., 2018).

5.2. Method 57

5.2.2 Random Network Distillation

This paper introduces a different approach where the prediction problem is randomly

generated. This involves two neural networks: a fixed and randomly initialized target

network which sets the prediction problem, and a predictor network trained on data

collected by the agent. The target network takes an observation to an embedding

f : O→ Rk and the predictor neural network f̂ : O→ Rk is trained by gradient descent

to minimize the expected MSE ‖ f̂ (x;θ)− f (x)‖2 with respect to its parameters θ f̂ . This

process distills a randomly initialized neural network into a trained one. The prediction

error is expected to be higher for novel states dissimilar to the ones the predictor has

been trained on.

To build intuition we consider a toy model of this process on MNIST. We train a

predictor neural network to mimic a randomly initialized target network on training

data consisting of a mixture of images with the label 0 and of a target class, varying the

proportion of the classes, but not the total number of training examples. We then test the

predictor network on the unseen test examples of the target class and report the MSE. In

this model the zeros are playing the role of states that have been seen many times before,

and the target class is playing the role of states that have been visited infrequently. The

results are shown in Figure 5.2. The figure shows that test error decreases as a function

of the number of training examples in the target class, suggesting that this method can

be used to detect novelty. Figure 5.1 shows that the intrinsic reward is high in novel

states in an episode of Montezuma’s Revenge.

One objection to this method is that a sufficiently powerful optimization algorithm

might find a predictor that mimics the target random network perfectly on any input

(for example the target network itself would be such a predictor). However the above

experiment on MNIST shows that standard gradient-based methods don’t overgeneralize

in this undesirable way.

5.2.2.1 Sources of prediction errors

In general, prediction errors can be attributed to a number of factors:

1. Amount of training data. Prediction error is high where few similar examples

were seen by the predictor (epistemic uncertainty).

2. Stochasticity. Prediction error is high because the target function is stochastic

(aleatoric uncertainty). Stochastic transitions are a source of such error for forward

dynamics prediction.

58 Chapter 5. Exploration by Random Network Distillation

3. Model misspecification. Prediction error is high because necessary information

is missing, or the model class is too limited to fit the complexity of the target

function.

4. Learning dynamics. Prediction error is high because the optimization process fails

to find a predictor in the model class that best approximates the target function.

Factor 1 is what allows one to use prediction error as an exploration bonus. In

practice the prediction error is caused by a combination of all of these factors, not all of

them desirable.

For instance if the prediction problem is forward dynamics, then factor 2 results in

the ‘noisy-TV’ problem. This is the thought experiment where an agent that is rewarded

for errors in the prediction of its forward dynamics model gets attracted to local sources

of entropy in the environment. A TV showing white noise would be such an attractor,

as would a coin flip.

To avoid the undesirable factors 2 and 3, methods such as those by Schmidhuber

(1991a); Oudeyer et al. (2007); Lopes et al. (2012); Achiam and Sastry (2017) instead

use a measurement of how much the prediction model improves upon seeing a new

datapoint. However these approaches tend to be computationally expensive and hence

difficult to scale.

RND obviates factors 2 and 3 since the target network can be chosen to be deter-

ministic and inside the model-class of the predictor network.

5.2.2.2 Relation to uncertainty quantification

RND prediction error is related to an uncertainty quantification method introduced by

Osband et al. (2018). Namely, consider a regression problem with data distribution D =

{xi,yi}i. In the Bayesian setting we would consider a prior p(θ∗) over the parameters

of a mapping fθ∗ and calculate the posterior after updating on the evidence.

Let F be the distribution over functions gθ = fθ + fθ∗ , where θ∗ is drawn from

p(θ∗) and θ is given by minimizing the expected prediction error

θ = argmin
θ

E(xi,yi)∼D‖ fθ(xi)+ fθ∗(xi)− yi‖2 +R (θ), (5.1)

where R (θ) is a regularization term coming from the prior (see Lemma 3, Osband

et al. (2018)). Osband et al. (2018) argue (by analogy to the case of Bayesian linear

regression) that the ensemble F is an approximation of the posterior.

5.2. Method 59

If we specialize the regression targets yi to be zero, then the optimization problem

argminθE(xi,yi)∼D‖ fθ(xi)+ fθ∗(xi)‖2 is equivalent to distilling a randomly drawn func-

tion from the prior. Seen from this perspective, each coordinate of the output of the

predictor and target networks would correspond to a member of an ensemble (with

parameter sharing amongst the ensemble), and the MSE would be an estimate of the

predictive variance of the ensemble (assuming the ensemble is unbiased). In other

words the distillation error could be seen as a quantification of uncertainty in predicting

the constant zero function.

5.2.3 Combining intrinsic and extrinsic returns

In preliminary experiments that used only intrinsic rewards, treating the problem as

non-episodic resulted in better exploration. In that setting the return is not truncated

at “game over". We argue that this is a natural way to do exploration in simulated

environments, since the agent’s intrinsic return should be related to all the novel states

that it could find in the future, regardless of whether they all occur in one episode or

are spread over several. It is also argued in (Burda et al., 2018b) that using episodic

intrinsic rewards can leak information about the task to the agent.

We also argue that this is closer to how humans explore games. For example let’s say

Alice is playing a videogame and is attempting a tricky maneuver to reach a suspected

secret room. Because the maneuver is tricky the chance of a game over is high, but

the payoff to Alice’s curiosity will be high if she succeeds. If Alice is modelled as an

episodic reinforcement learning agent, then her future return will be exactly zero if she

gets a game over, which might make her overly risk averse. The real cost of a game

over to Alice is the opportunity cost incurred by having to play through the game from

the beginning (which is presumably less interesting to Alice having played the game for

some time).

However using non-episodic returns for extrinsic rewards could be exploited by a

strategy that finds a reward close to the beginning of the game, deliberately restarts the

game by getting a game over, and repeats this in an endless cycle.

It is not obvious how to estimate the combined value of the non-episodic stream

of intrinsic rewards it and the episodic stream of extrinsic rewards et . Our solution is

to observe that the return is linear in the rewards and so can be decomposed as a sum

R = RE +RI of the extrinsic and intrinsic returns respectively. Hence we can fit two

value heads VE and VI separately using their respective returns, and combine them to

60 Chapter 5. Exploration by Random Network Distillation

give the value function V =VE +VI . This same idea can also be used to combine reward

streams with different discount factors.

Note that even where one is not trying to combine episodic and non-episodic reward

streams, or reward streams with different discount factors, there may still be a benefit

to having separate value functions since there is an additional supervisory signal to

the value function. This may be especially important for exploration bonuses since

the extrinsic reward function is stationary whereas the intrinsic reward function is

non-stationary.

5.2.4 Reward and Observation Normalization

One issue with using prediction error as an exploration bonus is that the scale of the

reward can vary greatly between different environments and at different points in time,

making it difficult to choose hyperparameters that work in all settings. In order to keep

the rewards on a consistent scale we normalized the intrinsic reward by dividing it by a

running estimate of the standard deviations of the intrinsic returns.

Observation normalization is often important in deep learning but it is crucial when

using a random neural network as a target, since the parameters are frozen and hence

cannot adjust to the scale of different datasets. Lack of normalization can result in the

variance of the embedding being extremely low and carrying little information about

the inputs. To address this issue we use an observation normalization scheme often

used in continuous control problems whereby we whiten each dimension by subtracting

the running mean and then dividing by the running standard deviation. We then clip

the normalized observations to be between -5 and 5. We initialize the normalization

parameters by stepping a random agent in the environment for a small number of steps

before beginning optimization. We use the same observation normalization for both

predictor and target networks but not the policy network.

5.3 Experiments

We begin with an intrinsic reward only experiment on Montezuma’s Revenge in Section

5.3.1 to isolate the inductive bias of the RND bonus, follow by extensive ablations of

RND on Montezuma’s Revenge in Sections 5.3.2-5.3.4 to understand the factors that

contribute to RND’s performance, and conclude with a comparison to baseline methods

on 6 hard exploration Atari games in Section 5.3.6. For details of hyperparameters and

5.3. Experiments 61

Figure 5.2: Novelty detection on MNIST: a

predictor network mimics a randomly initial-

ized target network. The training data con-

sists of varying proportions of images from

class “0” and a target class. Each curve

shows the test MSE on held out target class

examples plotted against the number of train-

ing examples of the target class (log scale).

Figure 5.3: Mean episodic return and

number of rooms found by pure explo-

ration agents on Montezuma’s Revenge

trained without access to the extrinsic re-

ward. The agents explores more in the

non-episodic setting (see also Section

5.2.3)

architectures we refer the reader to Appendices C.3 and C.4. Most experiments are run

for 30K rollouts of length 128 per environment with 128 parallel environments, for a

total of 1.97 billion frames of experience.

5.3.1 Pure exploration

In this section we explore the performance of RND in the absence of any extrinsic

reward. In Section 5.2.3 we argued that exploration with RND might be more natural

in the non-episodic setting. By comparing the performance of the pure exploration

agent in episodic and non-episodic settings we can see if this observation translates to

improved exploration performance.

We report two measures of exploration performance in Figure 5.3: mean episodic

return, and the number of rooms the agent finds over the training run. Since the pure

exploration agent is not aware of the extrinsic rewards or number of rooms, it is not

directly optimizing for any of these measures. However obtaining some rewards in

Montezuma’s Revenge (like getting the key to open a door) is required for accessing

more interesting states in new rooms, and hence we observe the extrinsic reward

increasing over time up to some point. The best return is achieved when the agent

interacts with some of the objects, but the agent has no incentive to keep doing the same

once such interactions become repetitive, hence returns are not consistently high.

We clearly see in Figure 5.3 that on both measures of exploration the non-episodic

agent performs best, consistent with the discussion in Section 5.2.3. The non-episodic

62 Chapter 5. Exploration by Random Network Distillation

setting with γI = 0.999 explores more rooms than γI = 0.99, with one of the runs

exploring 21 rooms. The best return achieved by 4 out 5 runs of this setting was 6,700.

5.3.2 Combining episodic and non-episodic returns

In Section 5.3.1 we saw that the non-episodic setting resulted in more exploration than

the episodic setting when exploring without any extrinsic rewards. Next we consider

whether this holds in the case where we combine intrinsic and extrinsic rewards. As

discussed in Section 5.2.3 in order to combine episodic and non-episodic reward streams

we require two value heads. This also raises the question of whether it is better to have

two value heads even when both reward streams are episodic. In Figure 5.4 we compare

episodic intrinsic rewards to non-episodic intrinsic rewards combined with episodic

extrinsic rewards, and additionally two value heads versus one for the episodic case.

The discount factors are γI = γE = 0.99.

(a) RNN policies (b) CNN policies

Figure 5.4: Different ways of combining intrinsic and extrinsic rewards. Combining

non-episodic stream of intrinsic rewards with the episodic stream of extrinsic rewards

outperforms combining episodic versions of both steams in terms of number of explored

rooms, but performs similarly in terms of mean return. Single value estimate of the

combined stream of episodic returns performs a little better than the dual value estimate.

The differences are more pronounced with RNN policies. CNN runs are more stable

than the RNN counterparts.

In Figure 5.4 we see that using a non-episodic intrinsic reward stream increases

the number of rooms explored for both CNN and RNN policies, consistent with the

experiments in Section 5.3.1, but that the difference is less dramatic, likely because the

extrinsic reward is able to preserve useful behaviors. We also see that the difference

is less pronounced for the CNN experiments, and that the RNN results tend to be less

stable and perform worse for γE = 0.99.

5.3. Experiments 63

Figure 5.5: Performance of different dis-

count factors for intrinsic and extrinsic re-

ward streams. A higher discount factor for

the extrinsic rewards leads to better perfor-

mance, while for intrinsic rewards it hurts

exploration.

Figure 5.6: Mean episodic return im-

proves as the number of parallel environ-

ments used for collecting the experience

increases for both the CNN policy (left)

and the RNN policy (right). The runs have

processed 0.5,2, and 16B frames.

Contrary to our expectations (Section 5.2.3) using two value heads did not show

any benefit over a single head in the episodic setting. Nevertheless having two value

heads is necessary for combining reward streams with different characteristics, and so

all further experiments use two value heads.

5.3.3 Discount factors

Previous experiments (Salimans and Chen, 2018; Pohlen et al., 2018; Garmulewicz et al.,

2018) solving Montezuma’s Revenge using expert demonstrations used a high discount

factor to achieve the best performance, enabling the agent to anticipate rewards far into

the future. We compare the performance of the RND agent with γE ∈ {0.99,0.999}
and γI = 0.99. We also investigate the effect of increasing γI to 0.999. The results are

shown in Figure 5.5.

In Figure 5.5 we see that increasing γE to 0.999 while holding γI at 0.99 greatly

improves performance. We also see that further increasing γI to 0.999 hurts performance.

This is at odds with the results in Figure 5.3 where increasing γI did not significantly

impact performance.

5.3.4 Scaling up training

In this section we report experiments showing the effect of increased scale on training.

The intrinsic rewards are non-episodic with γI = 0.99, and γE = 0.999.

To hold the rate at which the intrinsic reward decreases over time constant across

64 Chapter 5. Exploration by Random Network Distillation

experiments with different numbers of parallel environments, we downsample the batch

size when training the predictor to match the batch size with 32 parallel environments

(for full details see Appendix C.4). Larger numbers of environments results in larger

batch sizes per update for training the policy, whereas the predictor network batch

size remains constant. Since the intrinsic reward disappears over time it is important

for the policy to learn to find and exploit these transitory rewards, since they act as

stepping-stones to nearby novel states.

Figure 5.6 shows that agents trained with larger batches of experience collected

from more parallel environments obtain higher mean returns after similar numbers of

updates. They also achieve better final performance. This effect seems to saturate earlier

for the CNN policy than for the RNN policy.

We allowed the RNN experiment with 32 parallel environments to run for more

time, eventually reaching a mean return of 7,570 after processing 1.6 billion frames

over 1.6 million parameter updates. One of these runs visited all 24 rooms, and passed

the first level once, achieving a best return of 17,500. The RNN experiment with 1024

parallel environments had mean return of 10,070 at the end of training, and yielded one

run with mean return of 14,415.

5.3.5 Recurrence

Montezuma’s Revenge is a partially observable environment even though large parts

of the game state can be inferred from the screen. For example the number of keys

the agent has appears on the screen, but not where they come from, how many keys

have been used in the past, or what doors have been opened. To deal with this partial

observability, an agent should maintain a state summarizing the past, for example the

state of a recurrent policy. Hence it would be natural to hope for better performance

from agents with recurrent policies. Contrary to expectations in Figure 5.4 recurrent

policies performed worse than non-recurrent counterparts with γE = 0.99. However in

Figure 5.6 the RNN policy with γE = 0.999 outperformed the CNN counterpart at each

scale1. Comparison of Figures 5.7 and C.2 shows that across multiple games the RNN

1The results in Figure 5.5 for the CNN policy were obtained as an average of 5 random seeds. When

we ran 10 different seeds for the best performing setting for Figure 5.6 we found a large discrepancy

in performance. This discrepancy is likely explained by the fact that the distribution of results on

Montezuma’s Revenge dominated by effects of discrete choices (such as going left or right from the first

room), and hence contains a preponderance of outliers. In addition, the results in Figure 5.5 were run

with an earlier version of our code base and it is possible that subtle differences between that version and

5.3. Experiments 65

policy outperforms the CNN more frequently than the other way around.

5.3.6 Comparison to baselines

In this section we compare RND to two baselines: PPO without an exploration bonus and

an alternative exploration bonus based on forward dynamics error. We evaluate RND’s

performance on six hard exploration Atari games: Gravitar, Montezuma’s Revenge,

Pitfall!, Private Eye, Solaris, and Venture. We first compare to the performance of a

baseline PPO implementation without intrinsic reward. For RND the intrinsic rewards

are non-episodic with γI = 0.99, while γE = 0.999 for both PPO and RND. The results

are shown in Figure 5.7 for the RNN policy and summarized in Table 5.1 (see also

Figure C.2 for the CNN policy).

Figure 5.7: Mean episodic return of RNN-based policies: RND, dynamics-based explo-

ration method, and PPO with extrinsic reward only on 6 hard exploration Atari games.

RND achieves state of the art performance on Gravitar, Montezuma’s Revenge, and

Venture, significantly outperforming PPO on the latter two.

In Gravitar we see that RND does not consistently exceed the performance of

PPO. However both exceed average human performance with an RNN policy, as

well as the previous state of the art. On Montezuma’s Revenge and Venture RND

significantly outperforms PPO, and exceeds state of the art performance and average

human performance. On Pitfall! both algorithms fail to find any positive rewards. This

is a typical result for this game, as the extrinsic positive reward is very sparse. On

the publicly released one have contributed to the discrepancy. The results in Figure 5.6 were reproduced

with the publicly released code and so we suggest that future work compares against these results.

https://github.com/openai/random-network-distillation

66 Chapter 5. Exploration by Random Network Distillation

Private Eye RND’s performance exceeds that of PPO. On Solaris RND’s performance

is comparable to that of PPO.

Next we consider an alternative exploration bonus based on forward dynamics

error. There are numerous previous works using such a bonus (Schmidhuber, 1991c;

Stadie et al., 2015; Achiam and Sastry, 2017; Pathak et al., 2017; Burda et al., 2018b).

Fortuitously Burda et al. (2018b) show that training a forward dynamics model in a

random feature space typically works as well as any other feature space when used

to create an exploration bonus. This means that we can easily implement an apples

to apples comparison and change the loss in RND so the predictor network predicts

the random features of the next observation given the current observation and action,

while holding fixed all other parts of our method such as dual value heads, non-episodic

intrinsic returns, normalization schemes etc. This provides an ablation of the prediction

problem defining the exploration bonus, while also being representative of a class of

prior work using forward dynamics error. Our expectation was that these methods

should be fairly similar except where the dynamics-based agent is able to exploit

non-determinism in the environment to get intrinsic reward.

Figure 5.7 shows that dynamics-based exploration performs significantly worse than

RND with the same CNN policy on Montezuma’s Revenge, PrivateEye, and Solaris,

and performs similarly on Venture, Pitfall, and Gravitar. By analyzing agent’s behavior

at convergence we notice that in Montezuma’s Revenge the agent oscillates between

two rooms. This leads to an irreducibly high prediction error, as the non-determinism of

sticky actions makes it impossible to know whether, once the agent is close to crossing

a room boundary, making one extra step will result in it staying in the same room, or

crossing to the next one. This is a manifestation of the ‘noisy TV’ problem, or aleatoric

uncertainty discussed in Section 5.2.2.1. Similar behavior emerges in PrivateEye and

Pitfall!. In Table 5.1 the final training performance for each algorithm is listed, alongside

the state of the art from previous work and average human performance.

5.3.7 Qualitative Analysis: Dancing with skulls

By observing the RND agent, we notice that frequently once it obtains all the extrinsic

rewards that it knows how to obtain reliably (as judged by the extrinsic value function),

the agent settles into a pattern of behavior where it keeps interacting with potentially

dangerous objects. For instance in Montezuma’s Revenge the agent jumps back and

forth over a moving skull, moves in between laser gates, and gets on and off disappearing

https://github.com/openai/random-network-distillation
https://github.com/openai/random-network-distillation

5.4. Related Work 67

Gravitar Montezuma’s Revenge Pitfall! PrivateEye Solaris Venture

RND 3,906 8,152 -3 8,666 3,282 1,859
PPO 3,426 2,497 0 105 3,387 0

Dynamics 3,371 400 0 33 3,246 1,712

SOTA 2,2091 3,7002 0 15,8062 12,3801 1,8133

Avg. Human 3,351 4,753 6,464 69,571 12,327 1,188

Table 5.1: Comparison to baselines results. Final mean performance for various methods.

State of the art results taken from: [1] (Fortunato et al., 2018) [2] (Bellemare et al., 2016)

[3] (Horgan et al., 2018)

bridges. We also observe similar behavior in Pitfall!. It might be related to the very fact

that such dangerous states are difficult to achieve, and hence are rarely represented in

agent’s past experience compared to safer states.

5.4 Related Work

Exploration. Count-based exploration bonuses are a natural and effective way to do

exploration (Strehl and Littman, 2008) and a lot of work has studied how to tractably

generalize count bonuses to large state spaces (Bellemare et al., 2016; Fu et al., 2017;

Ostrovski et al., 2018a; Tang et al., 2017a; Machado et al., 2020; Fox et al., 2018).

Another class of exploration methods rely on errors in predicting dynamics (Schmid-

huber, 1991c; Stadie et al., 2015; Achiam and Sastry, 2017; Pathak et al., 2017; Burda

et al., 2018b). As discussed in Section 5.2.2, these methods are subject to the ‘noisy

TV’ problem in stochastic or partially-observable environments. This has motivated

work on exploration via quantification of uncertainty (Still and Precup, 2012; Houthooft

et al., 2016) or prediction improvement measures (Schmidhuber, 1991a; Oudeyer et al.,

2007; Lopes et al., 2012; Achiam and Sastry, 2017).

Other methods of exploration include adversarial self-play (Sukhbaatar et al., 2018),

maximizing empowerment (Gregor et al., 2017), parameter noise (Plappert et al., 2018;

Fortunato et al., 2018), identifying diverse policies (Eysenbach et al., 2018; Achiam

et al., 2018), and using ensembles of value functions (Osband et al., 2018, 2016; Chen

et al., 2017).

Montezuma’s Revenge. Early neural-network based reinforcement learning algo-

rithms that were successful on a significant portion of Atari games (Mnih et al., 2015b,

68 Chapter 5. Exploration by Random Network Distillation

2016; Hessel et al., 2018) failed to make meaningful progress on Montezuma’s Revenge,

not finding a way out of the first room reliably. This is not necessarily a failure of

exploration, as even a random agent finds the key in the first room once every few

hundred thousand steps, and escapes the first room every few million steps. Indeed, a

mean return of about 2,500 can be reliably achieved without special exploration methods

(Horgan et al., 2018; Espeholt et al., 2018; Oh et al., 2018).

Combining DQN with a pseudo-count exploration bonus Bellemare et al. (2016) set

a new state of the art performance, exploring 15 rooms and getting best return of 6,600.

Since then a number of other works have achieved similar performance (O’Donoghue

et al., 2018; Ostrovski et al., 2018b; Machado et al., 2020; Osband et al., 2018), without

exceeding it.

Special access to the underlying RAM state can also be used to improve exploration

by using it to hand-craft exploration bonuses (Kulkarni et al., 2016; Tang et al., 2017a;

Stanton and Clune, 2018). Even with such access previous work achieves performance

inferior to average human performance.

Expert demonstrations can be used effectively to simplify the exploration problem

in Montezuma’s Revenge, and a number of works (Salimans and Chen, 2018; Pohlen

et al., 2018; Aytar et al., 2018; Garmulewicz et al., 2018) have achieved performance

comparable to or better than that of human experts. Learning from expert demonstrations

benefits from the game’s determinism. The suggested training method (Machado et al.,

2018) to prevent an agent from simply memorizing the correct sequence of actions is to

use sticky actions (i.e. randomly repeating previous action) has not been used in these

works. In this work we use sticky actions and thus don’t rely on determinism.

Random features. Features of randomly initialized neural networks have been

extensively studied in the context of supervised learning (Rahimi and Recht, 2008; Saxe

et al., 2011; Jarrett et al., 2009; Yang et al., 2015). More recently they have been used in

the context of exploration (Osband et al., 2018; Burda et al., 2018b). The work Osband

et al. (2018) provides motivation for random network distillation as discussed in Section

5.2.2.

Vectorized value functions. Pong et al. (2018) find that a vectorized value function

(with coordinates corresponding to additive factors of the reward) improves their method.

Bellemare et al. (2017) parametrize the value as a linear combination of value heads

that estimate probabilities of discretized returns. However the Bellman backup equation

used there is not itself vectorized.

5.5. Discussion 69

5.5 Discussion

This paper introduced an exploration method based on random network distillation and

experimentally showed that the method is capable of performing directed exploration on

several Atari games with very sparse rewards. These experiments suggest that progress

on hard exploration games is possible with relatively simple generic methods, especially

when applied at scale. They also suggest that methods that are able to treat the stream

of intrinsic rewards separately from the stream of extrinsic rewards (for instance by

having separate value heads) can benefit from such flexibility.

We find that the RND exploration bonus is sufficient to deal with local exploration,

i.e. exploring the consequences of short-term decisions, like whether to interact with

a particular object, or avoid it. However global exploration that involves coordinated

decisions over long time horizons is beyond the reach of our method.

To solve the first level of Montezuma’s Revenge, the agent must enter a room locked

behind two doors. There are four keys and six doors spread throughout the level. Any

of the four keys can open any of the six doors, but are consumed in the process. To

open the final two doors the agent must therefore forego opening two of the doors that

are easier to find and that would immediately reward it for opening them.

To incentivize this behavior the agent should receive enough intrinsic reward for

saving the keys to balance the loss of extrinsic reward from using them early on. From

our analysis of the RND agent’s behavior, it does not get a large enough incentive to try

this strategy, and only stumbles upon it rarely.

Solving this and similar problems that require high level exploration is an important

direction for future work.

5.6 2021 Retrospective

The paper introduced an easy to implement and computationally cheap method for

computing an exploration bonus that gave good results in Atari games. For this reason

it is now a commonly used baseline in exploration papers (a recent example would

be (Guo et al., 2021)), and also used as a component of more complex state of the art

systems (see for example (Badia et al., 2019) where it is used as their ‘life-long novelty

module’ and the follow-up work ‘Agent 57’ the first paper to exceed the human baseline

on all Atari games (Badia et al., 2020)).

A number of papers have considered within-episode exploration an alternative

70 Chapter 5. Exploration by Random Network Distillation

or complement to across-episode exploration. Across-episode exploration tries to

maximize the information gain or novelty across all the trajectories that the agent

accumulates throughout optimization. One issue with this approach is, by design, things

that were previously rewarding to agent become unrewarding as they get observed

multiple times, and in principle in the limit all intrinsic reward would go to zero and

one would end up only with an agent that acted randomly. Even before this theoretical

behavior, in practice the agent may lose track of the frontier of interesting states because

the reward for getting there is decreasing, a problem referred to as ‘detachment’ (Ecoffet

et al., 2021). By contrast a within-episode exploration objective, such as maxmizing the

number of distinct states seen in an episode. An advantage of this approach is that the

reward can lead to a stable behavior at convergence (for example a maximally efficient

tour of the environment) that be more useful as an initialization for finetuning. One

example of within-episode exploration could be (Savinov et al., 2018). State of the

art approaches to curiosity often combine these two signals, the across-episode signal

leading to eventually seeing everything there is to see, and the within-episode signal

stabilizing the learning and preserving useful exploratory behaviors (Badia et al., 2019).

In addition to using RND for exploration in reinforcement learning there have been

a number of papers using it for outlier detection. A recent example of outlier detection

would be (Choi and Chung, 2019) where they use an RND-derived score to detect out

of distribution images. A related recent work (Fowl et al., 2020) uses an RND score to

detect the distance between distributions of text, and show that you can use this score to

tell apart real text from model generated text, for example.

In the paper we noted the connection to a work on randomized prior functions

(Osband et al., 2018) which shows that regressing on random networks, in the case of

Bayesian linear regression, recovers the correct uncertainty. This result is only shown

for linear networks however and so its use for deep nonlinear networks is justified only

by analogy to this case. In (Ciosek et al., 2019) they show an interesting extension of

the linear case to arbitrary neural networks and show that the uncertainty estimates from

RND-like bonuses are conservative in expectation, that is the uncertainty estimates are

higher than the true uncertainty, but at the same time they will eventually go to zero in

the limit of infinite data. The strongest results in the paper rely on the idea that large

randomly initialised networks can be approximated by Gaussian processes which is

reasonable for randomly initialised networks since there are a number of papers showing

this connection, but not for the case of trained neural networks. Using an ensemble of

trained neural networks is one natural way to think about having an informative prior in

5.6. 2021 Retrospective 71

this setting which could be one way to encode extra information about the task if we

have any. This would be an interesting direction to explore in future work.

Chapter 6

Conclusion

In this thesis I have given three examples of learning from alternative sources of

supervision. The first involved learning when data is given as a collection of sets. The

second was unsupervised reinforcement learning where predicting the dynamics of the

environment gave a pretext task from which to derive an exploration bonus. The third

used an alternative pretext task in the reinforcement learning setting combined with a

sparse extrinsic reward signal. The overall contribution was to push the frontier of what

was known to be possible at the time when dealing with extreme cases of learning from

alternative supervision, as well as practical and technical tips and tricks for achieving

such results.

Whilst it is gratifying to see interesting results from unsupervised learning, from a

more practical point of view, purely unsupervised learning rarely makes sense. Except

in rare cases, it is always possible to invest resources into acquiring labelled examples.

Thus I think that the key challenge for research in this area is how to best improve

the sample complexity of learning a particular task through the use of unsupervised

learning, or alternative sources of supervision, and how to most efficiently allocate

one’s resources to the acquisition of labelled data. The former case is the purview of

semi-supervised learning, transfer learning and multi-task learning and was partially

explored in the RND paper (Burda et al., 2018c). A systematic study of the transfer

sample-efficiency gains from first training on dataset A and finetuning on dataset B

for the case of language models was recently investigated in (Hernandez et al., 2021).

The latter case is active learning which has been extensively studied for the case of

classification but less so for generative modelling and reinforcement learning.

A related point on exploration objectives is that although progress has been made

on exploration bonuses for reinforcement learning that are computationally tractable

73

74 Chapter 6. Conclusion

and tend to improve sample-complexity on highly sparse reward tasks, I have come to

think it unlikely that we will be able to find a perfect unsupervised objective that acts as

expected in all cases. For example various thought-experiments and simulations show

that using the prediction error of a forward dynamics model as an exploration bonus

can have undesirable side effects such as the ’noisy-TV’ problem, since there will be

irreducible sources of entropy in any realistic environment that will persist no matter

how much data the agent is able to gather. Thus to the extent that such approaches work

we have gotten lucky.

The natural principled approach to exploration is to use Bayesian methods for learn-

ing a dynamics model and using as a reward the amount of information gained about

the parameters of the dynamics model. In practice this approach is rarely taken because

of the computational expense of Bayesian neural networks. Even if we were able to

implement this approach efficiently, I argue that we would still often be disappointed

with the results since there is no reason why a generic information gathering objective

will prioritise the most important bits in an environment, and for more realistic environ-

ments, the amount of things that could be learned about it is, to practical intents and

purposes, unbounded. Thus whilst we might wish a curious agent to learn the most

natural things like how to navigate, the layout of its environment and how to manipulate

a variety of objects effectively, it may instead choose to specialise in predicting the way

dust moves in the air.

Given this I think we will eventually need to move beyond generic approaches to

objectives flexibly tailored to human wishes. One simple way to begin such a research

direction to elicit a novelty kernel from human experts, that is a mapping k(s,s′) that

specifies how novel or interestingly different state/observation/trajectory s is from s′.

This can then be used to derive simple exploration bonuses. This idea relates to work

on learning reward functions from human preferences (Christiano et al., 2017), but is a

dynamic reward that is a function of the agent’s whole collection of experiences rather

than a function of a transition or state.

Overall, now that we have seen in many areas, including in the papers contributed

to this thesis, that weakly-supervised, unsupervised and semi-supervised learning is

having a beneficial effect, especially for modalities that are ‘internet-scale’ such as

images and text, I hope that attention will turn to maximizing use of our most limited

resource: human time.

Appendix A

Towards a Neural Statistician

A.1 Pseudocode

Algorithm 1 Sampling a dataset of size k

sample c∼ p(c)

for i = 1 to k do
sample zi,L ∼ p(zL|c;θ)

for j = L−1 to 1 do
sample zi, j ∼ p(z j|zi, j+1,c;θ)

end for
sample xi ∼ p(x|zi,1, . . . ,zi,L,c;θ)

end for

Algorithm 2 Sampling a dataset of size k conditioned on a dataset of size m

µc,σ
2
c ← q(c|x1, . . . ,xm;φ) {Calculate approximate posterior over c using statistic

network.}

c← µc {Set c to be the mean of the approximate posterior.}

for i = 1 to k do
sample zi,L ∼ p(zL|c;θ)

for j = L−1 to 1 do
sample zi, j ∼ p(z j|zi, j+1,c;θ)

end for
sample xi ∼ p(x|zi,1, . . . ,zi,L,c;θ)

end for

75

76 Appendix A. Towards a Neural Statistician

Algorithm 3 Selecting a representative sample of size k

S←{x1, . . . ,xm}
I←{1, . . . ,m}
SI = {xi ∈ S : i ∈ I}
NSI ← q(c|SI;φ) {Calculate approximate posterior over c using statistic network.}

for i = 1 to k do
t← argmin j∈IDKL

(
NS‖NSI− j

)
I← I− t

end for

Algorithm 4 K-way few-shot classification
D0, . . . ,DK ← sets of labelled examples for each class

x← datapoint to be classified

Nx← q(c|x;φ) {approximate posterior over c given query point}

for i = 1 to K do
Ni← q(c|Di;φ)

end for
ŷ← argminiDKL (Ni‖Nx)

A.2 Further Experimental Details

A.2.1 Omniglot

Shared encoder x→ h

2× { conv2d 64 feature maps with 3×3 kernels and ELU activations }

conv2d 64 feature maps with 3×3 kernels, stride 2 and ELU activations

2× {conv2d 128 feature maps with 3×3 kernels and ELU activations }

conv2d 128 feature maps with 3×3 kernels, stride 2 and ELU activations

2× { conv2d 256 feature maps with 3×3 kernels and ELU activations }

conv2d 256 feature maps with 3×3 kernels, stride 2 and ELU activations

A.2. Further Experimental Details 77

Statistic network q(c|D;φ) : h1, . . . ,hk→ µc,σ
2
c

fully-connected layer with 256 units and ELU activations

sample-dropout and concatenation with number of samples

average pooling within each dataset

2× {fully-connected layer with 256 units and ELU activations }

fully-connected linear layers to µc and logσ2
c

Inference network q(z|x,c;φ) : h,c→ µz,σ
2
z

concatenate c and h

3× {fully-connected layer with 256 units and ELU activations }

fully-connected linear layers to µz and logσ2
z

Latent decoder network p(z|c;θ) : c→ µz,σ
2
z

3× {fully-connected layer with 256 units and ELU activations }

fully-connected linear layers to µz and logσ2
z

Observation decoder network p(x|c,z;θ) : c,z→ µx

concatenate z and c

fully-connected linear layers with 4 ·4 ·256 units

2× { conv2d 256 feature maps with 3×3 kernels and ELU activations }

deconv2d 256 feature maps with 2×2 kernels, stride 2, ELU activations

2× { conv2d 128 feature maps with 3×3 kernels and ELU activations }

deconv2d 128 feature maps with 2×2 kernels, stride 2, ELU activations

2× { conv2d 64 feature maps with 3×3 kernels and ELU activations }

deconv2d 64 feature maps with 2×2 kernels, stride 2, ELU activations

conv2d 1 feature map with 1×1 kernels, sigmoid activations

78 Appendix A. Towards a Neural Statistician

A.2.2 Youtube faces

Shared encoder x→ h

2× { conv2d 32 feature maps with 3×3 kernels and ELU activations }

conv2d 32 feature maps with 3×3 kernels, stride 2 and ELU activations

2× {conv2d 64 feature maps with 3×3 kernels and ELU activations }

conv2d 64 feature maps with 3×3 kernels, stride 2 and ELU activations

2× { conv2d 128 feature maps with 3×3 kernels and ELU activations }

conv2d 128 feature maps with 3×3 kernels, stride 2 and ELU activations

2× { conv2d 256 feature maps with 3×3 kernels and ELU activations }

conv2d 256 feature maps with 3×3 kernels, stride 2 and ELU activations

Statistic network q(c|D,φ) : h1, . . . ,hk→ µc,σ
2
c

fully-connected layer with 1000 units and ELU activations

average pooling within each dataset

fully-connected linear layers to µc and logσ2
c

Inference network q(z|x,c,φ) : h,c→ µz,σ
2
z

concatenate c and h

fully-connected layer with 1000 units and ELU activations

fully-connected linear layers to µz and logσ2
z

Latent decoder network p(z|c, ;θ) : c→ µz,σ
2
z

fully-connected layer with 1000 units and ELU activations

fully-connected linear layers to µz and logσ2
z

A.2. Further Experimental Details 79

Observation decoder network p(x|c,z;θ) : c,z→ µx

concatenate z and c

fully-connected layer with 1000 units and ELU activations

fully-connected linear layer with 8 ·8 ·256 units

2× { conv2d 256 feature maps with 3×3 kernels and ELU activations }

deconv2d 256 feature maps with 2×2 kernels, stride 2, ELU activations

2× { conv2d 128 feature maps with 3×3 kernels and ELU activations }

deconv2d 128 feature maps with 2×2 kernels, stride 2, ELU activations

2× { conv2d 64 feature maps with 3×3 kernels and ELU activations }

deconv2d 64 feature maps with 2×2 kernels, stride 2, ELU activations

2× { conv2d 32 feature maps with 3×3 kernels and ELU activations }

deconv2d 32 feature maps with 2×2 kernels, stride 2, ELU activations

conv2d 3 feature maps with 1×1 kernels, sigmoid activations

Appendix B

Large-Scale Study of Curiosity-Driven

Learning

B.1 Implementation Details

We have released the training code and environments on our website 1. For full details,

we refer the reader to our code and video results in the website.

Pre-processing: All experiments were done with pixels. We converted all images to

grayscale and resized to size 84x84. We learn the agent’s policy and forward dynamics

function both on a stack of historical observations [xt−3,xt−2,xt−1,xt] instead of only

using the current observation. This is to capture partial observability in these games. In

the case of Super Mario Bros and Atari experiments, we also used a standard frameskip

wrapper that repeats each action 4 times.

Architectures: Our embedding network and policy networks had identical architec-

tures and were based on the standard convolutional networks used in Atari experiments.

The layer we take as features in the embedding network had dimension 512 in all

experiments and no nonlinearity. To keep the scale of the prediction error consistent

relative to extrinsic reward, in the Unity experiments we applied batchnorm to the

embedding network. We also did this for the Mario generalization experiments to

reduce covariate shift from level to level. For the VAE auxiliary task and pixel method,

we used a similar deconvolutional architecture the exact details of which can be found

1Website at https://pathak22.github.io/large-scale-curiosity/

81

https://pathak22.github.io/large-scale-curiosity/

82 Appendix B. Large-Scale Study of Curiosity-Driven Learning

in our code submission. The IDF and forward dynamics networks were heads on top of

the embedding network with several extra fully-connected layers of dimensionality 512.

Hyper-parameters: We used a learning rate of 0.0001 for all networks. In most

experiments, we used 128 parallel environments with the exceptions of the Unity and

Roboschool experiments where we could only run 32 parallel environments, and the

large scale Mario experiment where we used 1024. We used rollouts of length 128 in all

experiments except for the Unity experiments where we used 512 length rollouts so that

the network could quickly latch onto the sparse reward. In the initial 9 experiments on

Mario and Atari, we used 3 optimization epochs per rollout in the interest of speed. In

the Mario scaling, generalization experiments, as well as the Roboschool experiments,

we used 6 epochs. In the Unity experiments, we used 8 epochs, again to more quickly

take advantage of sparse rewards.

B.2 Additional Results

B.2.1 Atari

To better measure the amount of exploration, we provide the best return of curiosity-

driven agents in figure B.1(a) and the episode lengths in figure B.1(b). Notably on Pong

the increasing episode length combined with a plateau in returns shows that the agent

maximizes the number of ball bounces, rather than the reward.

Figure B.2 shows the performance of curiosity-driven agents based on Inverse

Dynamics and Random features on 48 Atari games.

Although not the focus of this paper, for completeness we include some results on

combining intrinsic and extrinsic reward on several sparse reward Atari games. When

combining with extrinsic rewards, we use the end of the episode signal. The reward

used is the extrinsic reward plus 0.01 times the intrinsic reward. The results are shown

in Table B.1. We don’t observe a large difference between the settings, likely because

the combination of intrinsic and extrinsic reward needs to be tuned. We did observe

that one of the intrinsic+extrinsic runs on Montezuma’s Revenge explored 10 rooms.

B.2.2 Mario

We show the analogue of the plot shown in Figure 4.3(a) showing max extrinsic returns.

See Figure B.3.

B.2. Additional Results 83

(a) Best returns (b) Episode length

Figure B.1: (a) Left: Best extrinsic returns on eight Atari games and Mario. (c) Right: Mean

episode lengths on eight Atari games and Mario.

Reward Gravitar Freeway Venture PrivateEye MontezumaRevenge

Ext Only 999.3±220.7 33.3±0.6 0±0 5020.3±395 1783±691.7

Ext + Int 1165.1±53.6 32.8±0.3 416±416 3036.5±952.1 2504.6±4.6

Table B.1: These results compare the mean reward (± std-error) after 100 million frames

across 3 seeds for an agent trained with intrinsic plus extrinsic reward versus extrinsic

reward only. The extrinsic (coefficient 1.0) and intrinsic reward (coefficient 0.01) were

directly combined without any hyper-parameter tuning. We leave the question on how to

optimally combine extrinsic and intrinsic rewards up to future work. This is to emphasize

that combining extrinsic with intrinsic rewards is not the focus of the paper, and these

experiments are provided just for completeness.

84 Appendix B. Large-Scale Study of Curiosity-Driven Learning

Figure B.2: Pure curiosity-driven exploration (no extrinsic reward, or end-of-episode signal) on

48 Atari games. We observe that the extrinsic returns of curiosity-driven agents often increases

despite the agents having no access to the extrinsic return or end of episode signal. In multiple

environments, the performance of the curiosity-driven agents is significantly better than that of

a random agent, although there are environments where the behavior of the agent is close to

random, or in fact seems to minimize the return, rather than maximize it. For the majority of the

training process RF perform better than a random agent in about 67% of the environments, while

IDF perform better than a random agent in about 71% of the environments.

B.2. Additional Results 85

Figure B.3: Best extrinsic returns on the Mario scaling experiments. We observe that larger

batches allow the agent to explore more effectively, reaching the same performance in less

parameter updates, and also achieving better ultimate scores.

86 Appendix B. Large-Scale Study of Curiosity-Driven Learning

Algorithm 5 Curiosity-driven Learning
Initialize the networks f (xt ,at ;θ f), π(xt ;θπ) and φ(x;θφ)

D = {}
for iteration i = 1 to . . . do

for envs in parallel t = 1 to 128 do
for iteration t = 1 to 128 do

Sample a∼ π(xt ;θπ) and act using a in the environment

D⇐ D+(xt ,at ,xt+1,rt) where rt = ‖ f (xt ,at ;θ f)−φ(xt+1;θφ)‖2
2

end

end
for steps k = 1 to 64 do

Sample batch size of 2048 from D and update using ADAM as follows:

θ
′
f := θ f −η1 ∇θ f E

[
‖ f (xt ,at ;θ f)−φ(xt+1;θφ)‖2

2
]

θ
′
φ

:= θφ−η2 ∇θφ
E
[
‖ . . .‖2

2
]
: some auxiliary task

θ
′
π := θπ +η3 ∇θπ

Eπ(xt ;θπ)

[
∑t rt

]
: use PPO with discounted returns

θ f ⇐ θ
′
f

θφ⇐ θ
′
φ

θπ⇐ θ
′
π

end

end

Appendix C

Exploration by Random Distillation

C.1 Reinforcement Learning Algorithm

An exploration bonus can be used with any RL algorithm by modifying the rewards

used to train the model (i.e., rt = it + et). We combine our proposed exploration bonus

with a baseline reinforcement learning algorithm PPO (Schulman et al., 2017). PPO is a

policy gradient method that we have found to require little tuning for good performance.

For algorithmic details see Algorithm 6.

C.2 RND Pseudo-code

Algorithm 6 gives an overall picture of the RND method. Exact details of the method

can be found in the code accompanying this paper.

C.3 Preprocessing details

Table C.1 contains details of how we preprocessed the environment for our experiments.

We followed the recommendations in Machado et al. (2018) in using sticky actions

in order to make the environments non-deterministic so that memorization of action

sequences is not possible. In Table C.2 we show additional preprocessing details for the

policy and value networks. In Table C.3 we show additional preprocessing details for

the predictor and target networks.

87

https://github.com/openai/random-network-distillation

88 Appendix C. Exploration by Random Distillation

Algorithm 6 RND pseudo-code
N← number of rollouts

Nopt← number of optimization steps

K← length of rollout

M← number of initial steps for initializing observation normalization

t = 0

Sample state s0 ∼ p0(s0)

for m = 1 to M do
sample at ∼ Uniform(at)

sample st+1 ∼ p(st+1|st ,at)

Update observation normalization parameters using st+1

t += 1

end for
for i = 1 to N do

for j = 1 to K do
sample at ∼ π(at |st)

sample st+1,et ∼ p(st+1,et |st ,at)

calculate intrinsic reward it = ‖ f̂ (st+1)− f (st+1)‖2

add st ,st+1,at ,et , it to optimization batch Bi

Update reward normalization parameters using it
t += 1

end for
Normalize the intrinsic rewards contained in Bi

Calculate returns RI,i and advantages AI,i for intrinsic reward

Calculate returns RE,i and advantages AE,i for extrinsic reward

Calculate combined advantages Ai = AI,i +AE,i

Update observation normalization parameters using Bi

for j = 1 to Nopt do
optimize θπ wrt PPO loss on batch Bi,Ri,Ai using Adam

optimize θ f̂ wrt distillation loss on Bi using Adam

end for
end for

C.4. PPO and RND hyperparameters 89

Hyperparameter Value

Grey-scaling True

Observation downsampling (84,84)

Extrinsic reward clipping [−1,1]

Intrinsic reward clipping False

Max frames per episode 18K

Terminal on loss of life False

Max and skip frames 4

Random starts False

Sticky action probability 0.25

Table C.1: Preprocessing details for the environments for all experiments.

Hyperparameter Value

Frames stacked 4

Observation x 7→ x/255

normalization

Table C.2: Preprocessing details for policy

and value network for all experiments.

Hyperparameter Value

Frames stacked 1

Observation x 7→ CLIP((x−µ)/σ, [−5,5])

normalization

Table C.3: Preprocessing details for target

and predictor networks for all experiments.

C.4 PPO and RND hyperparameters

In Table C.4 the hyperparameters for the PPO RL algorithm along with any additional

hyperparameters used for RND are shown. Complete details for how these hyperparam-

eters are used can be found in the code accompanying this paper.

Initial preliminary experiments with RND were run with only 32 parallel environ-

ments. We expected that increasing the number of parallel environments would improve

performance by allowing the policy to adapt more quickly to transient intrinsic rewards.

This effect could have been mitigated however if the predictor network also learned

more quickly. To avoid this situation when scaling up from 32 to 128 environments we

kept the effective batch size for the predictor network the same by randomly dropping

out elements of the batch with keep probability 0.25. Similarly in our experiments with

256 and 1,024 environments we dropped experience for the predictor with respective

probabilities 0.125 and 0.03125.

https://github.com/openai/random-network-distillation

90 Appendix C. Exploration by Random Distillation

Hyperparameter Value

Rollout length 128

Total number of rollouts per environment 30K

Number of minibatches 4

Number of optimization epochs 4

Coefficient of extrinsic reward 2

Coefficient of intrinsic reward 1

Number of parallel environments 128

Learning rate 0.0001

Optimization algorithm Adam (Kingma and Ba (2015))

λ 0.95

Entropy coefficient 0.001

Proportion of experience used for training predictor 0.25

γE 0.999

γI 0.99

Clip range [0.9,1.1]

Policy architecture CNN

Table C.4: Default hyperparameters for PPO and RND algorithms for experiments where

applicable. Any differences to these defaults are detailed in the main text.

C.5 Architectures

In this paper we use two policy architectures: an RNN and a CNN. Both contain

convolutional encoders identical of those in the standard architecture from (Mnih et al.,

2015b). The RNN architecture additionally contains GRU (Cho et al., 2014) cells to

capture longer contexts. The layer sizes of the policies were chosen so that the number

of parameters matches closely. The architectures of the target and predictor networks

also have convolutional encoders identical to the ones in (Mnih et al., 2015b) followed

by dense layers. Exact details are given in the code accompanying this paper.

C.6 Additional experimental results

Figure C.1 compares the performance of RND with an identical algorithm, but with

the exploration bonus defined as the reconstruction error of an autoencoder. The

https://github.com/openai/random-network-distillation

C.7. Additional Experimental Details 91

Figure C.1: Comparison of RND with a CNN policy with γI = 0.99 and γE = 0.999

with an exploration defined by the reconstruction error of an autoencoder, holding all

other choices constant (e.g. using dual value, treating intrinsic return as non-episodic

etc). The performance of the autoencoder-based agent is worse than that of RND, but

exceeds that of baseline PPO.

autoencoding task is similar in nature to the random network distillation, as it also

obviates the second (though not necessarily the third) sources of prediction error

from section 5.2.2.1. The experiment shows that the autoencoding task can also be

successfully used for exploration.

Figure C.2 compares the performance of RND to PPO and dynamics prediction-

based baselines for CNN policies.

C.7 Additional Experimental Details

In Table C.5 we show the number of seeds used for each experiment, indexed by figure.

92 Appendix C. Exploration by Random Distillation

Figure C.2: Mean episodic return of CNN-based policies: RND, dynamics-based explo-

ration method, and PPO with extrinsic reward only on 6 hard exploration Atari games.

RND significantly outperforms PPO on Montezuma’s Revenge, Private Eye, and Venture.

Figure number Number of seeds

1 NA

2 10

3 5

4 5

5 10

6 5

7 3

8 5

9 5

Table C.5: The numbers of seeds run for each experiment is shown in the table. The

results of each seed are then averaged to provide a mean curve in each figure, and the

standard error is used make the shaded region surrounding each curve.

Bibliography

(2021). http://commoncrawl.org/. 7

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., and et al, Z. C. (2015). TensorFlow:

Large-scale machine learning on heterogeneous systems. Software available from

tensorflow.org. 22

Achiam, J., Edwards, H., Amodei, D., and Abbeel, P. (2018). Variational option

discovery algorithms. arXiv preprint arXiv:1807.10299. 67

Achiam, J. and Sastry, S. (2017). Surprise-based intrinsic motivation for deep reinforce-

ment learning. arXiv:1703.01732. 34, 45, 56, 58, 66, 67

Andrychowicz, O. M., Baker, B., Chociej, M., Józefowicz, R., McGrew, B., Pachocki,

J., Petron, A., Plappert, M., Powell, G., Ray, A., et al. (2020). Learning dexterous

in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20.

53

Aytar, Y., Pfaff, T., Budden, D., Paine, T., Wang, Z., and de Freitas, N. (2018). Playing

hard exploration games by watching YouTube. Advances in Neural Information

Processing Systems, 31. 55, 68

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, Z. D.,

and Blundell, C. (2020). Agent57: Outperforming the Atari human benchmark. In

International Conference on Machine Learning, pages 507–517. PMLR. 69

Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot, B., Kapturowski, S.,

Tieleman, O., Arjovsky, M., Pritzel, A., Bolt, A., et al. (2019). Never give up:

Learning directed exploration strategies. In International Conference on Learning

Representations. 69, 70

93

http://commoncrawl.org/

94 Bibliography

Baumli, K., Warde-Farley, D., Hansen, S., and Mnih, V. (2021). Relative variational

intrinsic control. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 35, pages 6732–6740. 51

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R.

(2016). Unifying count-based exploration and intrinsic motivation. Advances in

neural information processing systems, 29:1471–1479. 31, 45, 46, 55, 56, 67, 68

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on

reinforcement learning. In International Conference on Machine Learning, pages

449–458. PMLR. 68

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learn-

ing environment: An evaluation platform for general agents. Journal of Artificial

Intelligence Research, 47:253–279. 33

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan,

A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,

Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen,

M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,

S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models are few-

shot learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin,

H., editors, Advances in Neural Information Processing Systems, volume 33, pages

1877–1901. Curran Associates, Inc. 8

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., and Efros, A. A. (2018a).

Large-scale study of curiosity-driven learning. In International Conference on

Learning Representations. 2

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., and Efros, A. A. (2018b).

Large-scale study of curiosity-driven learning. In International Conference on

Learning Representations. 56, 59, 66, 67, 68

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2018c). Exploration by random

network distillation. In International Conference on Learning Representations. 2, 73

Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., and Sutskever, I. (2020).

Generative pretraining from pixels. In International Conference on Machine Learning,

pages 1691–1703. PMLR. 8

Bibliography 95

Chen, R. Y., Schulman, J., Abbeel, P., and Sidor, S. (2017). UCB and infogain

exploration via q-ensembles. arXiv:1706.01502. 46, 67

Cheplygina, V., Tax, D. M., and Loog, M. (2015). On classification with bags, groups

and sets. Pattern Recognition Letters, 59:11 – 17. 21

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,

and Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder

for statistical machine translation. arXiv preprint arXiv:1406.1078. 90

Choi, S. and Chung, S.-Y. (2019). Novelty detection via blurring. In International

Conference on Learning Representations. 70

Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric discrim-

inatively, with application to face verification. In Computer Vision and Pattern

Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, pages 539–

546 Vol. 1. 21

Christiano, P., Leike, J., Brown, T. B., Martic, M., Legg, S., and Amodei, D.

(2017). Deep reinforcement learning from human preferences. arXiv preprint

arXiv:1706.03741. 74

Ciosek, K., Fortuin, V., Tomioka, R., Hofmann, K., and Turner, R. (2019). Conservative

uncertainty estimation by fitting prior networks. In International Conference on

Learning Representations. 70

Costikyan, G. (2013). Uncertainty in games. MIT Press. 40, 47

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee. 6

Denil, M., Agrawal, P., Kulkarni, T. D., Erez, T., Battaglia, P., and de Freitas, N. (2016).

Learning to perform physics experiments via deep reinforcement learning. arXiv

preprint arXiv:1611.01843. 56

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep

bidirectional transformers for language understanding. In NAACL-HLT (1). 9

96 Bibliography

Dieleman, S., Schlüter, J., Raffel, C., Olson, E., Sønderby, S., Nouri, D., Maturana, D.,

Thoma, M., Battenberg, E., Kelly, J., et al. (2015). Lasagne: First release. Zenodo:

Geneva, Switzerland. 22

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel, P. (2016).

RlΘ2: Fast reinforcement learning via slow reinforcement learning. arXiv preprint

arXiv:1611.02779. 8

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2021). First return,

then explore. Nature, 590(7847):580–586. 70

Edwards, H. and Storkey, A. (2016). Towards a neural statistician. International

Conference on Learning Representations. 1

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu,

V., Harley, T., Dunning, I., et al. (2018). Impala: Scalable distributed deep-rl with

importance weighted actor-learner architectures. In International Conference on

Machine Learning, pages 1407–1416. PMLR. 53, 68

Evgeniou, T. and Pontil, M. (2004). Regularized multi–task learning. In Proceedings of

the tenth ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 109–117. ACM. 20

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. (2018). Diversity is all you need:

Learning skills without a reward function. In International Conference on Learning

Representations. 46, 51, 67

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast

adaptation of deep networks. In International Conference on Machine Learning,

pages 1126–1135. PMLR. 8

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M., Osband, I., Graves, A.,

Mnih, V., Munos, R., Hassabis, D., et al. (2018). Noisy networks for exploration. In

International Conference on Learning Representations. 46, 67

Fowl, L., Goldblum, M., Gupta, A., Sharaf, A., and Goldstein, T. (2020). Random

network distillation as a diversity metric for both image and text generation. arXiv

preprint arXiv:2010.06715. 70

Bibliography 97

Fox, L., Choshen, L., and Loewenstein, Y. (2018). Dora the explorer: Directed out-

reaching reinforcement action-selection. International Conference on Learning

Representations. 56, 67

Fu, J., Co-Reyes, J. D., and Levine, S. (2017). EX2: Exploration with exemplar models

for deep reinforcement learning. NIPS. 46, 67

Fukumizu, K., Song, L., and Gretton, A. (2013). Kernel Bayes’ rule: Bayesian inference

with positive definite kernels. The Journal of Machine Learning Research, 14(1):3753–

3783. 22

Garmulewicz, M., Michalewski, H., and Miłoś, P. (2018). Expert-augmented actor-critic

for ViZDoom and Montezuma’s Revenge. arXiv preprint arXiv:1809.03447. 55, 63,

68

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T., Saxton, D., Shanahan, M.,

Teh, Y. W., Rezende, D., and Eslami, S. A. (2018a). Conditional neural processes. In

International Conference on Machine Learning, pages 1704–1713. PMLR. 30

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D. J., Eslami, S., and

Teh, Y. W. (2018b). Neural processes. arXiv preprint arXiv:1807.01622. 30

Gartner, T., Flach, P. A., Kowalczyk, A., and Smola, A. J. (2002). Multi-instance

kernels. In In Proc. 19th International Conf. on Machine Learning, pages 179–186.

Morgan Kaufmann. 21

Germain, M., Gregor, K., Murray, I., and Larochelle, H. (2015). Made: Masked

autoencoder for distribution estimation. In International Conference on Machine

Learning, pages 881–889. PMLR. 8

Gregor, K., Rezende, D. J., and Wierstra, D. (2017). Variational intrinsic control. ICLR

Workshop. 46, 51, 67

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch,

C., Pires, B., Guo, Z., Azar, M., et al. (2020). Bootstrap your own latent: A new

approach to self-supervised learning. In Neural Information Processing Systems. 9

Guo, Z. D., Azar, M. G., Saade, A., Thakoor, S., Piot, B., Pires, B. A., Valko, M.,

Mesnard, T., Lattimore, T., and Munos, R. (2021). Geometric entropic exploration.

arXiv preprint arXiv:2101.02055. 69

98 Bibliography

Haber, N., Mrowca, D., Wang, S., Fei-Fei, L., and Yamins, D. L. (2018). Learning

to play with intrinsically-motivated, self-aware agents. In Proceedings of the 32nd

International Conference on Neural Information Processing Systems, pages 8398–

8409. 56

Hansen, S., Dabney, W., Barreto, A., Warde-Farley, D., Van de Wiele, T., and Mnih,

V. (2019). Fast task inference with variational intrinsic successor features. In

International Conference on Learning Representations. 51

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast

for unsupervised visual representation learning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 9729–9738. 9

Hernandez, D., Kaplan, J., Henighan, T., and McCandlish, S. (2021). Scaling laws for

transfer. arXiv preprint arXiv:2102.01293. 73

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,

D., Piot, B., Azar, M., and Silver, D. (2018). Rainbow: Combining improvements

in deep reinforcement learning. In Thirty-second AAAI conference on artificial

intelligence. 68

Hewitt, L. B., Nye, M. I., Gane, A., Jaakkola, T., and Tenenbaum, J. B. (2018). The

variational homoencoder: Learning to learn high capacity generative models from

few examples. arXiv preprint arXiv:1807.08919. 29

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., van Hasselt, H.,

and Silver, D. (2018). Distributed prioritized experience replay. In International

Conference on Learning Representations. 53, 67, 68

Hospedales, T. M., Antoniou, A., Micaelli, P., and Storkey, A. J. (2021). Meta-learning

in neural networks: A survey. 8

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel, P. (2016).

Vime: Variational information maximizing exploration. In NIPS. 31, 45, 67

Hunicke, R., LeBlanc, M., and Zubek, R. (2004). Mda: A formal approach to game

design and game research. In AAAI Workshop on Challenges in Game AI. 40, 47

Ioffe, S. and Szegedy, C. (2015a). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In Proceedings of The 32nd International

Conference on Machine Learning, pages 448–456. 22

Bibliography 99

Ioffe, S. and Szegedy, C. (2015b). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. 37

Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al. (2009). What is the best multi-stage ar-

chitecture for object recognition? In Computer Vision, 2009 IEEE 12th International

Conference on, pages 2146–2153. IEEE. 47, 68

Jiang, B., Wu, T.-y., Zheng, C., and Wong, W. H. (2017). Learning summary statistic

for approximate bayesian computation via deep neural network. Statistica Sinica,

pages 1595–1618. 22

Johnson, M. J., Duvenaud, D., Wiltschko, A. B., Datta, S. R., and Adams, R. P.

(2016). Structured vaes: Composing probabilistic graphical models and variational

autoencoders. arXiv preprint arXiv:1603.06277. 20

Juliani, A., Berges, V.-P., Vckay, E., Gao, Y., Henry, H., Mattar, M., and Lange, D.

(2018). Unity: A general platform for intelligent agents. arXiv:1809.02627. 33

Kaae Sønderby, C., Raiko, T., Maaløe, L., Kaae Sønderby, S., and Winther, O. (2016).

How to train deep variational autoencoders and probabilistic ladder networks. arXiv

preprint arXiv:1602.02282. 19

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals, O.,

and Teh, Y. W. (2018). Attentive neural processes. In International Conference on

Learning Representations. 30

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980. 22

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. ICLR. 90

Kingma, D. P., Mohamed, S., Jimenez Rezende, D., and Welling, M. (2014). Semi-

supervised learning with deep generative models. Advances in neural information

processing systems, 27. 1

Kingma, D. P. and Welling, M. (2013a). Auto-encoding variational Bayes. In Pro-

ceedings of the 2nd International Conference on Learning Representations (ICLR),

number 2014. 1, 9, 16, 17

Kingma, D. P. and Welling, M. (2013b). Auto-encoding variational Bayes. arXiv

preprint arXiv:1312.6114. 33, 35

100 Bibliography

Koch, G. (2015). Siamese neural networks for one-shot image recognition. Doctoral

dissertation, University of Toronto. 21, 26, 27

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J. (2016). Hierarchical

deep reinforcement learning: Integrating temporal abstraction and intrinsic moti-

vation. In Advances in neural information processing systems, pages 3675–3683.

68

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept

learning through probabilistic program induction. Science, 350(6266):1332–1338.

21, 25

Lamb, A., Dumoulin, V., and Courville, A. (2016). Discriminative regularization for

generative models. arXiv preprint arXiv:1602.03220. 26

Larsson, G., Maire, M., and Shakhnarovich, G. (2016). Learning representations for

automatic colorization. In European conference on computer vision, pages 577–593.

Springer. 9

Lawrence, N. D. and Platt, J. C. (2004). Learning to learn with the informative vector

machine. In Proceedings of the twenty-first international conference on Machine

learning, page 65. ACM. 20

Lazzaro, N. (2004). Why we play games: Four keys to more emotion in player

experiences. In Proceedings of GDC. 40, 47

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. 24

Lehman, J. and Stanley, K. O. (2008). Exploiting open-endedness to solve problems

through the search for novelty. In ALIFE. 46

Lehman, J. and Stanley, K. O. (2011). Abandoning objectives: Evolution through the

search for novelty alone. Evolutionary computation. 46

Lopes, M., Lang, T., Toussaint, M., and Oudeyer, P.-Y. (2012). Exploration in model-

based reinforcement learning by empirically estimating learning progress. In NIPS.

31, 45, 58, 67

Bibliography 101

Maaløe, L., Sønderby, C. K., Sønderby, S. K., and Winther, O. (2016). Auxiliary

deep generative models. In International conference on machine learning, pages

1445–1453. PMLR. 19

Machado, M. C., Bellemare, M. G., and Bowling, M. (2020). Count-based exploration

with the successor representation. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 34, pages 5125–5133. 67, 68

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., and Bowl-

ing, M. (2018). Revisiting the arcade learning environment: Evaluation protocols

and open problems for general agents. Journal of Artificial Intelligence Research,

61:523–562. 68, 87

Mahajan, D. K., Girshick, R. B., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe,

A., and van der Maaten, L. (2018). Exploring the limits of weakly supervised

pretraining. In ECCV. 1

Miao, Y., Yu, L., and Blunsom, P. (2016). Neural variational inference for text pro-

cessing. In International conference on machine learning, pages 1727–1736. PMLR.

20

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781. 9

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and Khudanpur, S. (2010). Recur-

rent neural network based language model. In Eleventh annual conference of the

international speech communication association. 8

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and

Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning.

In ICML. 68

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and

Riedmiller, M. (2013). Playing Atari with deep reinforcement learning. arXiv

preprint arXiv:1312.5602. 55

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015a). Human-

level control through deep reinforcement learning. Nature. 31

102 Bibliography

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,

C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and

Hassabis, D. (2015b). Human-level control through deep reinforcement learning.

Nature, 518(7540):529–533. 67, 90

Mohamed, S. and Rezende, D. J. (2015). Variational information maximisation for

intrinsically motivated reinforcement learning. In NIPS. 31

Muandet, K., Fukumizu, K., Dinuzzo, F., and Schölkopf, B. (2012). Learning from

distributions via support measure machines. In Bartlett, P., Pereira, F., Burges, C.,

Bottou, L., and Weinberger, K., editors, Advances in Neural Information Processing

Systems 25, pages 10–18. 21

Noroozi, M. and Favaro, P. (2016). Unsupervised learning of visual representations by

solving jigsaw puzzles. In European conference on computer vision, pages 69–84.

Springer. 1, 9

Oh, J., Guo, Y., Singh, S., and Lee, H. (2018). Self-imitation learning. In International

Conference on Machine Learning, pages 3878–3887. PMLR. 68

Oord, A. v. d., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive

predictive coding. arXiv preprint arXiv:1807.03748. 9

OpenAI (2018). OpenAI Five. https://blog.openai.com/openai-five/. 53

Osband, I., Aslanides, J., and Cassirer, A. (2018). Randomized prior functions for deep

reinforcement learning. Advances in Neural Information Processing Systems, 31. 58,

67, 68, 70

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016). Deep exploration via

bootstrapped DQN. In NIPS. 46, 67

Ostrovski, G., Bellemare, M. G., Oord, A. v. d., and Munos, R. (2018a). Count-based

exploration with neural density models. International Conference for Machine

Learning. 31, 46, 67

Ostrovski, G., Bellemare, M. G., Oord, A. v. d., and Munos, R. (2018b). Count-based

exploration with neural density models. International Conference for Machine

Learning. 56, 68

https://blog.openai.com/openai-five/

Bibliography 103

Oudeyer, P.-Y. (2018). Computational theories of curiosity-driven learning. arXiv

preprint arXiv:1802.10546. 46

Oudeyer, P.-Y. and Kaplan, F. (2009). What is intrinsic motivation? A typology of

computational approaches. Frontiers in neurorobotics. 31, 46

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. (2007). Intrinsic motivation systems for

autonomous mental development. Evolutionary Computation. 58, 67

O’Donoghue, B., Osband, I., Munos, R., and Mnih, V. (2018). The uncertainty bellman

equation and exploration. In International Conference on Machine Learning, pages

3836–3845. 68

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. Knowledge and Data

Engineering, IEEE Transactions on, 22(10):1345–1359. 16, 20

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven explo-

ration by self-supervised prediction. In ICML. 31, 32, 33, 34, 36, 40, 45, 46, 52, 56,

66, 67

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros, A. A. (2016). Context

encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 2536–2544. 8

Pathak, D., Mahmoudieh, P., Luo, G., Agrawal, P., Chen, D., Shentu, Y., Shelhamer, E.,

Malik, J., Efros, A. A., and Darrell, T. (2018). Zero-shot visual imitation. In ICLR.

32

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T.,

Abbeel, P., and Andrychowicz, M. (2018). Parameter space noise for exploration. In

International Conference on Learning Representations. 46, 67

Póczos, B., Xiong, L., Sutherland, D. J., and Schneider, J. (2012). Support distribution

machines. Technical Report. 21

Pohlen, T., Piot, B., Hester, T., Azar, M. G., Horgan, D., Budden, D., Barth-Maron,

G., van Hasselt, H., Quan, J., Večerík, M., et al. (2018). Observe and look further:

Achieving consistent performance on Atari. arXiv preprint arXiv:1805.11593. 55,

63, 68

104 Bibliography

Pong, V., Gu, S., Dalal, M., and Levine, S. (2018). Temporal difference models:

Model-free deep rl for model-based control. In International Conference on Learning

Representations. 68

Poupart, P., Vlassis, N., Hoey, J., and Regan, K. (2006). An analytic solution to discrete

bayesian reinforcement learning. In ICML. 31

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving

language understanding by generative pre-training. 8

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019).

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9. 8

Rahimi, A. and Recht, B. (2008). Random features for large-scale kernel machines. In

Advances in neural information processing systems, pages 1177–1184. 68

Ranganath, R., Gerrish, S., and Blei, D. M. (2014). Black box variational inference. In

AISTATS, pages 814–822. 20

Rezende, D., Danihelka, I., Gregor, K., Wierstra, D., et al. (2016). One-shot generaliza-

tion in deep generative models. In International Conference on Machine Learning,

pages 1521–1529. PMLR. 21

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014a). Stochastic backpropagation and

approximate inference in deep generative models. arXiv preprint arXiv:1401.4082.

9, 35

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014b). Stochastic backpropagation

and approximate inference in deep generative models. In Proceedings of The 31st

International Conference on Machine Learning, pages 1278–1286. 17

Ryan, Richard; Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic defini-

tions and new directions. Contemporary Educational Psychology. 31

Salakhutdinov, R., Tenenbaum, J. B., and Torralba, A. (2012). One-shot learning with

a hierarchical nonparametric bayesian model. In ICML Unsupervised and Transfer

Learning, pages 195–206. 21

Salimans, T. and Chen, R. (2018). Learning Montezuma’s Revenge from a single

demonstration. https://blog.openai.com/learning-montezumas-revenge-from-a-single-

demonstration/. 55, 63, 68

Bibliography 105

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. (2016a). Meta-

learning with memory-augmented neural networks. In International conference on

machine learning, pages 1842–1850. PMLR. 8

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. (2016b).

One-shot learning with memory-augmented neural networks. arXiv preprint

arXiv:1605.06065. 21, 26, 27

Saul, L. K. and Jordan, M. I. (1996). Exploiting tractable substructures in intractable

networks. In Advances in Neural Processing Systems 8. 17

Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Pollefeys, M., Lillicrap, T.,

and Gelly, S. (2018). Episodic curiosity through reachability. arXiv preprint

arXiv:1810.02274. 70

Saxe, A. M., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., and Ng, A. Y. (2011). On

random weights and unsupervised feature learning. In ICML, pages 1089–1096. 47,

68

Schmidhuber, J. (1991a). Curious model-building control systems. In Neural Networks,

1991. 1991 IEEE International Joint Conference on, pages 1458–1463. IEEE. 45, 58,

67

Schmidhuber, J. (1991b). A possibility for implementing curiosity and boredom in

model-building neural controllers. In From animals to animats: Proceedings of the

first international conference on simulation of adaptive behavior. 31

Schmidhuber, J. (1991c). A possibility for implementing curiosity and boredom in

model-building neural controllers. 45, 56, 66, 67

Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic motivation

(1990–2010). IEEE Transactions on Autonomous Mental Development. 46

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal

policy optimization algorithms. arXiv preprint arXiv:1707.06347. 13, 33, 36, 55, 87

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,

Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the game of Go

with deep neural networks and tree search. Nature, 529(7587):484–489. 53

106 Bibliography

Singh, S. P., Barto, A. G., and Chentanez, N. (2005). Intrinsically motivated reinforce-

ment learning. In NIPS. 31

Smith, L. and Gasser, M. (2005). The development of embodied cognition: Six lessons

from babies. Artificial life. 31

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks for few-shot

learning. In Proceedings of the 31st International Conference on Neural Information

Processing Systems, pages 4080–4090. 8

Stadie, B. C., Levine, S., and Abbeel, P. (2015). Incentivizing exploration in reinforce-

ment learning with deep predictive models. NIPS Workshop. 33, 45, 46, 56, 66,

67

Stanley, K. O. and Lehman, J. (2015). Why greatness cannot be planned: The myth of

the objective. Springer. 46

Stanton, C. and Clune, J. (2018). Deep curiosity search: Intra-life exploration improves

performance on challenging deep reinforcement learning problems. arXiv preprint

arXiv:1806.00553. 55, 68

Still, S. and Precup, D. (2012). An information-theoretic approach to curiosity-driven

reinforcement learning. Theory in Biosciences. 45, 67

Strehl, A. L. and Littman, M. L. (2008). An analysis of model-based interval esti-

mation for markov decision processes. Journal of Computer and System Sciences,

74(8):1309–1331. 67

Sukhbaatar, S., Kostrikov, I., Szlam, A., and Fergus, R. (2018). Intrinsic motivation and

automatic curricula via asymmetric self-play. In ICLR. 46, 67

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction. MIT

press Cambridge. 37

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, O. X., Duan, Y., Schulman,

J., DeTurck, F., and Abbeel, P. (2017a). # Exploration: A study of count-based

exploration for deep reinforcement learning. In NIPS. 55, 67, 68

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman, J.,

De Turck, F., and Abbeel, P. (2017b). #Exploration: A study of count-based explo-

Bibliography 107

ration for deep reinforcement learning. Advances in Neural Information Processing

Systems. 46

Theano Development Team (2016). Theano: A Python framework for fast computation

of mathematical expressions. arXiv e-prints, abs/1605.02688. 22

Theis, L., van den Oord, A., and Bethge, M. (2016). A note on the evaluation of

generative models. In International Conference on Learning Representations (ICLR).

24

Uria, B., Côté, M.-A., Gregor, K., Murray, I., and Larochelle, H. (2016). Neural

autoregressive distribution estimation. The Journal of Machine Learning Research,

17(1):7184–7220. 8

Van Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recurrent neural

networks. In International Conference on Machine Learning, pages 1747–1756.

PMLR. 8

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

Ł., and Polosukhin, I. (2017). Attention is all you need. In Advances in neural

information processing systems, pages 5998–6008. 8

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and

composing robust features with denoising autoencoders. In Proceedings of the 25th

international conference on Machine learning, pages 1096–1103. 8

Vinyals, O., Bengio, S., and Kudlur, M. (2016a). Order matters: sequence to sequence

for sets. In International Conference on Learning Representations (ICLR). 21

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. (2016b). Matching networks

for one shot learning. Advances in neural information processing systems, 29:3630–

3638. 8, 21, 26, 27

Wolf, L., Hassner, T., and Maoz, I. (2011). Face recognition in unconstrained videos

with matched background similarity. In Computer Vision and Pattern Recognition

(CVPR), 2011 IEEE Conference on, pages 529–534. IEEE. 26

Wouters, P., Van Oostendorp, H., Boonekamp, R., and Van der Spek, E. (2011). The role

of game discourse analysis and curiosity in creating engaging and effective serious

games by implementing a back story and foreshadowing. Interacting with Computers.

40, 47

108 Bibliography

Yang, Z., Moczulski, M., Denil, M., de Freitas, N., Smola, A., Song, L., and Wang, Z.

(2015). Deep fried convnets. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1476–1483. 47, 68

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. (2021). Scaling vision transformers.

arXiv preprint arXiv:2106.04560. 6

Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learning.

arXiv preprint arXiv:1611.01578. 53

