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Abstract

Marco ANCONA

A multi–scale study of chromatin organisation and function:
DNA topology, epigenetics and chromatin compaction

Understanding chromatin organisation at different length scales is still one of
the most puzzling challenges in biophysics. Nowadays, it is clear that DNA
or chromatin conformational changes can profoundly affect gene expression.
Yet, the mechanisms underlying such conformational changes remain elusive.
Several factors can intervene in gene regulation: supercoiling (SC), the extent
of over– or under– twist of DNA double helix, can compact DNA in both
bacteria and eukaryotes, yielding transcriptional over–expression or repression.
Post-translational modifications of histone tails demarcate the “epigenetic”
domains, which are therefore vital to establish the correct chromatin envi-
ronment. Chromatin–binding proteins can form biological “condensates” via
phase separation mechanisms. Recently, liquid–liquid phase separation (LLPS)
has much been touted to motivate the formation of protein clusters in vivo,
often referred to as ‘nuclear bodies’. In addition, the so-called bridging-induced
phase separation (BIPS), explains how protein aggregation can be mediated by
chromatin only, even in the absence of protein-protein interaction. By using a
multi-technique approach, in this thesis’ work I investigate the structural and
dynamical properties of DNA and chromatin at different length scales. Monte
Carlo algorithms were implemented to simulate SC dynamics in a stochastic
model for bacterial transcription. Similar techniques were used to show that
an infection–like model can entail epigenetic bistability. Molecular dynamics
simulations were employed to study the static and dynamical properties of
model protein aggregates; the interplay between LLPS and BIPS was explored,
showing properties which go far beyond the liquid state. Depending on the
parameters, solid–like, glassy and fractal protein condensates can co–localise
with chromatin.
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Lay summary

Since its discovery in 1953, DNA organisation in cells has been studied in much
detail. Different levels of DNA compaction are required in order to fit a 2 metre
fibre into a nucleus of 2µm in size; moreover, a dense melt of DNA and proteins,
the so–called chromatin, has to precisely fulfill all its ‘duties’ – first of all the
production of vital proteins, a intricate multi–step machinery known as gene
expression. To complicate the picture even more, nucleoplasm is very crowded:
proteins and chromatin–associated complexes can diffuse, self–assemble and
interact with DNA and chromatin, shaping nuclear organelles and chromatin
domains. How different functional degrees of order and compaction can
be reached in such a crowded environment? To answer this question, here
I will dissect different aspects of DNA and chromatin organisation, and I
will propose different physical models which inspect the relation between
conformation changes of DNA and its functions. I investigate transcription
regulation, epigenetics and static and dynamical properties of heterochromatin
globules, by means of 1D stochastic models, Monte Carlo algorithms and 3D
simulations in LAMMPS. My work reveals some interesting scenarios that
might have vital implications for real cells.





ix

Contents

Declaration of Authorship iii

Abstract v

Lay summary vii

List of Figures xiii

List of Tables xvii

List of Symbols xviii

Preface xxvi

1 DNA and topology: supercoiling as regulating factor 1
1.1 DNA structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 DNA topology: a link with function . . . . . . . . . . . . . . . . 4

1.2.1 DNA supercoiling . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Supercoiling and transcription: an inextricable relation . . . . . 7

1.3.1 The transcriptional process . . . . . . . . . . . . . . . . . 8
1.3.2 Topoisomerases can relax supercoiling generated by tran-

scription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Transcription as a ‘bursty’ process . . . . . . . . . . . . . 12
1.3.4 The sequence-size function and burst parameters . . . . 13
1.3.5 From the specific linking difference to the local supercoiling 15

1.4 A stochastic model of supercoiling–dependent transcription . . 16
1.4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Mean field theory . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Conclusions and future perspectives . . . . . . . . . . . . . . . . 32

2 Epigenetics: a route to overwrite cell fate 35
2.1 Higher levels of DNA organization: the bead–on–a–string struc-

ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Post–translation modifications and epigenetics . . . . . . . . . . 40



x

2.2.1 The reader–writer–eraser machinery . . . . . . . . . . . . 41
2.3 Evidence for epigenetic bistability . . . . . . . . . . . . . . . . . 43

2.3.1 Epe1 can limit methylation spreading in Yeast . . . . . . 45
2.4 Zero–dimensional models: a framework for epigenetic bistability 45

2.4.1 Two–state model . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.2 Three–state models . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Epigenetic competition is predicted by 3D models of “colored”
chromatin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 An infection–like 1D model predicts epigenetic bistability . . . . 50
2.6.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.2 Connection with percolation models . . . . . . . . . . . . 54
2.6.3 Phase diagram of the system and connection with epige-

netics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.6.4 Effective potentials and zero–dimensional equation . . . 62

2.7 Conclusion and future perspective . . . . . . . . . . . . . . . . . 65

3 Solid and glassy behaviour of chromatin–binding proteins 69
3.1 Chromatin organization: the conundrum of the 30–nm fibre . . 71
3.2 Chromatin compaction and nuclear bodies: LLPS or something

else? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.1 LLPS, chromatin compaction and connection with cohesin 74

3.3 BIPS: a physical mechanism for chromatin–mediated phase sep-
aration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.1 Nuclear organelles dynamics: liquid or immobile? . . . . 78
3.3.2 BIPS might be in action during cohesin clustering . . . . 78

3.4 Dynamical heterogeneity is associated with solid–like and glassy
structures in BIPS clusters . . . . . . . . . . . . . . . . . . . . . . 80
3.4.1 Simulation scheme . . . . . . . . . . . . . . . . . . . . . . 80
3.4.2 Measured quantities . . . . . . . . . . . . . . . . . . . . . 83
3.4.3 Mean field theory for BIPS . . . . . . . . . . . . . . . . . . 88
3.4.4 Linear stability analysis . . . . . . . . . . . . . . . . . . . 90
3.4.5 Non–specific interactions lead to liquid–to–solid–like

phase transition . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.6 Specific binding sites lead to glassy dynamics . . . . . . 101

3.5 Conclusions and future perspectives . . . . . . . . . . . . . . . . 105

4 The chromatin mediated phase separation of proteins with multiple
domains 107
4.1 HP1 structure and functions . . . . . . . . . . . . . . . . . . . . . 108

4.1.1 HP1 is a multivalent protein that contains IDRs . . . . . 110
4.2 HP1 undergo phase separation and can drive DNA compaction 111



xi

4.2.1 HP1: self–assembly and phase separation . . . . . . . . . 111
4.2.2 HP1: chromatin binding and compaction . . . . . . . . . 113

4.3 ‘Patchy’ molecular bridges: gelation and chromatin coating . . . 114
4.3.1 Equilibrium gels of patchy particles . . . . . . . . . . . . 115
4.3.2 BIA in protein–inspired patchy particles . . . . . . . . . . 117

4.4 BIPS and LLPS interplay of HP1–inspired model proteins . . . . 118
4.4.1 Simulation scheme . . . . . . . . . . . . . . . . . . . . . . 119
4.4.2 Model 1: Multivalent protein-protein interactions . . . . 122
4.4.3 Varying protein density . . . . . . . . . . . . . . . . . . . 130
4.4.4 Model 2: Limited valence protein-protein interactions . . 133
4.4.5 Discussion and future perspectives . . . . . . . . . . . . . 137

Overall conclusions 140





xiii

List of Figures

1.1 DNA structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Positive and negative writhe. . . . . . . . . . . . . . . . . . . . . 5
1.3 Twist–to–writhe conversion. . . . . . . . . . . . . . . . . . . . . . 6
1.4 Transcriptional process. . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Twin supercoiled domain model: single polymerase. . . . . . . . 10
1.6 Supercoiling domains between a pair of transcribed genes. . . . 11
1.7 Bursty and wavy regimes for an array of 10 tandem genes. . . . 14
1.8 Supercoiling profiles. . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.9 Transcriptional bursts and the sequence-size function. . . . . . . 25
1.10 Burstiness for a single gene. . . . . . . . . . . . . . . . . . . . . . 26
1.11 Burstiness for a single gene. . . . . . . . . . . . . . . . . . . . . . 27
1.12 Bursty and wavy regimes for an array of 10 tandem genes. . . . 29
1.13 Wave velocity and transcription probabilities. . . . . . . . . . . . 30
1.14 Burstiness for a multiple genes arrays. . . . . . . . . . . . . . . . 30
1.15 Bursty and wavy regimes for an array of 10 tandem genes. . . . 31

2.1 Waddington landscape. . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Schematics of the bead–on–a–string structure. . . . . . . . . . . 39
2.3 Schematics of writer–reader action. . . . . . . . . . . . . . . . . . 42
2.4 FLC vernalization and epigenetic state of chromatin. . . . . . . . 44
2.5 Models and phase diagram. . . . . . . . . . . . . . . . . . . . . . 47
2.6 Competing epigenetic marks lead to estabilishment of an epige-

netic territory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.7 Microscopic rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8 Kymographs and survival probability for LRDP. . . . . . . . . . 56
2.9 Kymographs at the transition point. . . . . . . . . . . . . . . . . 58
2.10 Survival probability and transition point. . . . . . . . . . . . . . 59
2.11 Phase diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.12 Methylation effective potentials. . . . . . . . . . . . . . . . . . . 63
2.13 The bistable-unimodal transition, or the coherence transition line. 66

3.1 Classical models of ordered 30–nm chromatin fibre. . . . . . . . 72
3.2 In vitro conformations of the chromatin fibre. . . . . . . . . . . . 72



xiv

3.3 Membraneless organelles. . . . . . . . . . . . . . . . . . . . . . . 74
3.4 The bridging–induced attraction (micro)phase separation. . . . 77
3.5 DNA compaction mediated by cohesin complex. . . . . . . . . . 79
3.6 Direct Voronoi tessellation. . . . . . . . . . . . . . . . . . . . . . . 84
3.7 Orientation of bond vectors connecting Voronoi neighbours. . . 87
3.8 Chromatin model and domain growth law. . . . . . . . . . . . . 91
3.9 Mean square displacements and effective diffusion. . . . . . . . 92
3.10 Radial MSD and alternative effective diffusivity for non–specific

interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.11 FRAP mixing parameter. . . . . . . . . . . . . . . . . . . . . . . . 96
3.12 Log–log plot of mixing parameter and relaxation times for non–

specific interactions. . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.13 Dynamical heterogeneity and bond–ordering parameter. . . . . 99
3.14 radial MSD (specific). . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.15 Radial MSD and alternative effective diffusivity in the presence

of strong binding sites. . . . . . . . . . . . . . . . . . . . . . . . . 102
3.16 Log–log plot of mixing parameter and relaxation times in the

presence of strong specific binding sites. . . . . . . . . . . . . . . 103
3.17 Dynamical heterogeneity and structural disorder entail glassy

dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1 HP1 domains and dimer structure. . . . . . . . . . . . . . . . . . 109
4.2 Phase separation of Drosophila HP1a. . . . . . . . . . . . . . . . . 112
4.3 Patchy particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4 Phase diagram and gelation. . . . . . . . . . . . . . . . . . . . . . 115
4.5 Schematics of ‘patchy’ proteins. . . . . . . . . . . . . . . . . . . . 116
4.6 The BIA for model proteins with different valence. . . . . . . . . 117
4.7 BIA for valence–2 model proteins with different shape. . . . . . 118
4.8 A simple coarse-grained protein model inspired by HP1. . . . . 120
4.9 Protein-chromatin and multivalent protein-protein interactions

lead to phase separation. . . . . . . . . . . . . . . . . . . . . . . . 123
4.10 Phase diagrams and separation depth. . . . . . . . . . . . . . . . 124
4.11 Protein-chromatin binding modes. . . . . . . . . . . . . . . . . . 126
4.12 HP1-chromatin interactions, chromatin compaction, and droplet

dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.13 Hysteresis loops. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.14 Varying the number of proteins for parameters where a droplet

would also form without chromatin. . . . . . . . . . . . . . . . . 130
4.15 Varying the number of proteins for parameters where a droplet

do not form without chromatin. . . . . . . . . . . . . . . . . . . . 131
4.16 The limited valence HP1 displays similar behaviour regimes. . . 134



xv

4.17 Alternative quench schemes lead to different long-lived metastable
configurations for limited valence model proteins. . . . . . . . . 135

4.18 Fractal dimension of HP1 sub–clusters. . . . . . . . . . . . . . . 137





xvii

List of Tables

3.1 Details of non–specific polymer simulations. . . . . . . . . . . . 83
3.2 Details specific binding sites simulations. . . . . . . . . . . . . . 83
3.3 Details monospecies LJ particles simulations. . . . . . . . . . . . 83





xix

List of Symbols

Chapter 1

bp base pairs dimensionless
NDNA DNA molecule length (in bp) dimensionless
h0 Relaxed DNA pitch dimensionless
h DNA pitch dimensionless
Tw Twist dimensionless
Wr Writhe dimensionless
Lk Linking number dimensionless
σLk Specific linking number dimensionless
Lkm Specific linking number of closed DNA rings dimensionless
F Supercoiling free energy J
K Elastic constant supercoiling free energy J
kON,OFF ON ↔ OFF rates telegraph process s−1

ki transcription rate during ON state s−1

f (t) pdf waiting times s−1

Φ(t) Sequence size function (ss f ) dimensionless
τ1,2 Inflection points of ss f s−1

τx Burst duration s−1

β Burst size dimensionless
ξ Burstiness parameter dimensionless
σ Local supercoiling density dimensionless
F Supercoiling free energy density J m−1

L Lattice length m
∆x Lattice spacing m
D Supercoiling diffusivity m2 s−1

Jtr Supercoiling flux density m s−1

ktopo Topoisomerases relaxation rate s−1

n Number of genes dimensionless
N Number of RNAP dimensionless
λ Gene length m
yj Promoter of the jth gene m
Ji Supercoiling flux generated by the ith RNAP m2 s−1



xx

ti Time after initiation of the ith RNAP s−1

ηi RNAP state (active or inactive) dimensionless
J0 Supercoiling flux generated at time t = 0 m2 s−1

v RNAP velocity m s−1

kin,j Initiation rate of the jth gene s−1

α Coupling parameter dimensionless
k0 Initiation parameter s−1

σp,j Supercoiling at promoter of the jth gene dimensionless
σp Supercoiling at promoter dimensionless
J̄ Supercoiling average flux parameter m2 s−1

ntopo Experimental number of topoisomerases per
gene

dimensionless

σbaseline Experimental baseline supercoiling in bacteria dimensionless
σ̄p Average negative supercoiling at promoter dimensionless
σ0 Supercoiling at time t = 0 dimensionless
σ̄(x) Time-averaged local supercoiling dimensionless
¯kin Time-averaged initiation rate dimensionless

J̄tr(x, t) Time-averaged supercoiling flux density m s−1

M Rescaled flux dimensionless
ω inverse length scale of supercoiling screening m−1

h(x) Auxiliary function dimensionless
x̄ Distance between (static) RNAP and promoter m
X Stochastic variable [X]

µX Expectation value of X [X]

Var(X) Variance of X [X]2

Skew Skewness dimensionless
Kurt Kurtosis dimensionless

Chapter 2

N Number of nucleosomes dimensionless
si State of ith nucleosome dimensionless
ns Number of states for each nucleosome dimensionless
nj Number of nucleosomes in the state j dimensionless
nM Number of modified nucleosomes dimensionless
nU Number of unmodified nucleosomes dimensionless
R± U ↔ M conversion rates (2-state) s−1

α Rate of spontaneous conversion (2-state) s−1

ηM Noise for modified nucleosomes s−1



xxi

F recruitment-to-noise ratio dimensionless
m(t) Global methylated nucleosomes density dimensionless
a(t) Global acetylated nucleosomes density dimensionless
u(t) Global unmodified nucleosomes density dimensionless
RX→Y Conversion rates X, Y in U, M, A (3-state) s−1

αM,A Methylation/acetylation rate by recruitment
(3-state)

s−1

βM,A Demethylation/deacetylation rate by recruit-
ment (3-state)

s−1

χM,A Spontaneous methylation/acetylation ss f s−1

γM,A Spontaneous demethylation/deacetylation s−1

as,u Saddle/unstable acetylation fixed point dimensionless
ms,u Saddle/unstable methylation fixed point dimensionless
a∗ Acetylation stable fixed point dimensionless
m∗ Methylation stable fixed point dimensionless
l Distance m
σ Contact exponent in Lévy distribution dimensionless
mi State (0 or 1) of the ith site/nucleosome on

lattice
dimensionless

qλ,µ Spontaneous methylation/demethylation rate s−1

λ Methylation parameter by recruitment dimensionless
µ Demethylation parameter by recruitment dimensionless
H(σ + 1) Normalisation factor dimensionless
q0↔1 Methylation/demethylation rate s−1

z Random number drawn by power law distri-
bution

dimensionless

m(x, t) Methylation field dimensionless
d(x, t) Demethylation field dimensionless
DA Anomalous diffusivity mσs−1

η(x, t) Noise field s−1

Γ
′ ,′′ Noise amplitudes m s−1

r± Conversion rates s−1

q
′
0,1 Auxiliary rates s−1

σ̄p Average negative supercoiling at promoter dimensionless
κ Effective methylation rate s−1

λ̄ Rescaled methylation rate s−1

µ̄ Rescaled demethylation rate s−1

m̄ Average methylation dimensionless
d Physical dimension of the system dimensionless
α Critical exponent associated with density de-

cay
dimensionless



xxii

S(t) Survival probability s−1

δ Critical exponent associated with survival
probability

dimensionless

Γ Noise amplitude in the effective Langevin
equation

m s−1

ζ Noise field in the effective Langevin equation s−1

f (σ) Monotonic auxiliary function s−1

V(m) Effective mean methylation potential dimensionless
A Normalisation constant dimensionless
Q Noise amplitude in the mean field equation s−1

J(m) Methylation flux in the equivalent Fokker–
Planck (FP) equation

s−2

K(m) Auxiliary function in the mean field FP equa-
tion

s2

κ̃ Rescaled effective methylation growth dimensionless
mmin Optimal methylation value in the monostable

phase
dimensionless

Chapter 3

φA,B Fluid concentrations of type A and B dimensionless
εAA,BB,AB Interaction strengths J
L(t) Length scale of fluctuations in LLPS m
Rg Radius of gyration j m
L Chromatin length m
ν Scaling exponent of Rg(L) dimensionless
σ Diameter chromatin bead m
UFENE FENE potential J
UWCA Weeks–Chandler–Andersen potential J
R0 Maximum extention FENE potential m
kB Boltzmann constant J K−1

T Temperature K
dij Mean diameter between the ith and the jth

beads
m

UBEND Kratky-Porod potential J
KBEND Bending energy J
θi Angle of the ith polyemer bead triplet rad
lp Persistence length m
ULJ Truncated Lennard–Jones (LJ) potential J



xxiii

ε Energy strength of attractive LJ J
εsp Energy strength of attractive LJ for specific

binding sites
J

mi Mass of ith bead kg
ξi Friction ith bead kg s−1

ηi Vector noise in Langevin equation s0.5

τLJ Simulation time unit s
Nε

eq Number of equilibrated runs dimensionless
Teq Length equilibration run s
τr First relaxation time scale s
T Length of simulations (not Temperature, ex-

trapolate from context)
s

t∗ Time at which a particle has committed to an-
other position

s

δr(t)2 Radial mean square displacement for single
particle

m2

Σi Neighbourhood of particle i dimensionless
N∗ Number of particles in cluster dimensionless
qlm(i) Steinhardt bond order parameter dimensionless
n(Σi) Number of particles in the neighbourhood of i dimensionless
Ym

l (θ, φ) Complex Laplace’s spherical harmonics dimensionless
Pm

l (θ) Legendre polynomial dimensionless
q̄l(i) Bond orientational order parameter associated

with the 2nd coordination shell of i
dimensionless

ψl(i) Bond orientational order parameter associated
with i

dimensionless

ρi Local density of the cell i m−3

Vi Volume of the cell i m3

ρ(x, t) Chromatin density field m3

φ(x, t) Protein density field m3

f Landau free energy density Jm−3

D1,2 ‘Elastic’ constants in the Landau free energy Jm3

χ Coupling constant in the Landau free energy Jm3

κ Surface tension parameter in the Landau free
energy

J m

g Accumulation penalty parameter Jm6

ρ0 Overall chromatin density m3

φ0 Overall protein density m3

Mρ,φ Chromatin and protein mobility in Model B
equation

J2 s2 m kg−1

F Landau free energy J



xxiv

tu Time unit s
xu Space unit m
t′ Rescaled time dimensionless
x′ Rescaled time dimensionless
Φ Rescaled protein field m−3

D0 Rescaled diffusivity dimensionless
G Rescaled accumulation penalty parameter dimensionless
� Rescaled coupling parameter dimensionless
ρ′ Perturbed chromatin density field in the linear

stability analyisis
m−3

Φ′ Perturbed protein density field in the linear
stability analyisis

m−3

� Rescaled coupling parameter dimensionless
D Rescaled diffusivity and accumulation penalty dimensionless
g̃ Fourier transform of function g [ f ]m3

λ+,−(Q) Roots of characteristic polynomial
∆ Lag time s
Deff Effective anomalous diffusivity m2 s
α Dynamical exponent MSD dimensionless
µt Mixing parameter dimensionless
ni,neigh Number of proteins in the Voronoi neighbour-

hood
dimensionless

g̃ Fourier transform of function g [ f ]m3

λ+,−(Q) Roots of characteristic polynomial
∆ Lag time s
Deff Effective anomalous diffusivity m2 s
α Dynamical exponent MSD dimensionless
β Stretched exponential exponent MSD dimensionless
τinf Second relaxation time scale MSD s
δrcm Distance from the center of mass m

Chapter 4

Nmax Maximum number of neighbours dimensionless
Mp Number pf patches dimensionless
εP Interaction energy for patchy model J
UCD−C HP1–chromatin attractive Morse potential J
εHC HP1–chromatin interaction energy J
α Shape parameter Morse potential m−1



xxv

rHC Cut–off distance HP1–chromatin potential m−1

Uh−NTE HP1–HP1 attractive Morse potential J
εHH HP1–HP1 interaction energy J
εP Interaction energy for patchy model J
rHH Cut–off distance HP1–HP1 potential m−1

lx Box size m
ρ Overall HP1 density m−3

Nsb Number of sub–boxes dimensionless
Vsb Volume of sub–boxes m3

Ni Number of HP1s in the ithe sub–box m3

ρi Proteins density in the ith sub–boxes m−3

φsep Separation depth dimensionless
ρ∗ Reference density for separation depth m−3

ρ+ High–density reference value for separation
depth

m−3

ρ− Low–density reference value for separation
depth

m−3

ftot Fraction of HP1 bound to chromatin dimensionless
fc Fraction of chromatin beads bound by HP1 dimensionless
τ Simulation unit time s
dr Width of spherical shell for density calculation J
ρshell Shell density m−3

Nshell(r) Number of HP1s in the shell at distance r from
the ceneter of the droplet

dimensionless

Rd Droplet radius m
ε Energy strength of attractive LJ J
εsp Energy strength of attractive LJ for specific

binding sites
J

D f Fractal dimension dimensionless
M Number of HP1 in sub–clusters for fractal di-

mension calculation
dimensionless
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Preface

In 1953 J. D. Watson and F. H. C. Crick set a milestone in modern history by
proposing an elegant explanation for the storage of genetic information, the
double–helix model for DNA. The model was supported by fiber diffraction
studies by M. H. F Wilkins, A. R. Stokes, and H. R Wilson, and R. Franklin
and R. G. Gosling. This discovery marked a new era in biology, giving rise to
modern molecular biology. Since then, numerous scientific techniques have
been produced, such as rapid gene sequencing and monoclonal antibodies;
also genetic fingerprinting and modern forensics, have been inspired from this
first work.

Recent advances in technologies and computational power have allowed
us to tackle several practical problems in biophysics, which would have been
simply unfeasible back in the days. Optical spectroscopy and microscopy, EM
(Electron Microscopy), X–ray and neutron diffraction methods, NMR (Nuclear
Magnetic Resonance), ChIP (Chromatin Immunoprecipitation), chromosome
conformation capture techniques using 3C, 4C–seq (Circularized Chromo-
some Conformation Capture), 5C (Chromosome Conformation Capture Carbon
Copy) and Hi–C technologies, and other genome–wide methods of analysis,
such as ChIA-PET (a combination of Hi–C with ChIP–seq) are the basis of
modern structural molecular biology. In modern days, FISH (fluorescence
in situ hybridization) imaging allows us to reveal chromosome structure and
organization in living cells, at a large length scale. Single–particle tracking is
used to track protein and DNA motion. Optical tweezers are an optimal tool to
study mechanical properties of chromatin.

However, all existing experimental methods in molecular biology are sub-
stantially incomplete. Nowadays, each experimental procedure alone, or even
a combination of them, can only define a provisional knowledge of living
systems, depending on the particular focus of the experimental protocol. That
is, an ideal molecular biophysical experiment would be capable to observe
not only the positions of atoms or molecules in vivo, but also their related
conformational changes in time and their role in vital biochemical reactions,
which, in turn, are related to their function. It is quite easy to understand that
this is simply unfeasible. Although we have reached unbelievable resolutions
and computational power to process data, the amount of information we can
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extract is still limited, and a full interpretation of phenomena is often out of
our reach. The prescripted direction of this field is to lean towards a complete
understanding of all biochemical processes that involve DNA, chromatin and
associated factors; in a sense, this is the ultimate goal. It is under this precept
that physics came upon to try to complement biological research. A multi–
disciplinary effort might be needed to untangle this puzzling scenario. We got
to get in to get out (cit.).

The interplay between molecular biology and physics methods can look
quite strange at first glance; the different ‘angles’ of the two studying ap-
proaches seem to be poles apart. On average, biologists tend to investigate
with ‘microscopes’, trying to characterising the object of study in all its de-
tails, whilst physicists use ‘telescopes’, trying to infer the general picture or
an (ideally) universal explanation of phenomena, irrespectively of the details.
Although the latter slant looks more satisfying from a scientific standpoint,
one could argue that living cells are really much more complicated than other
physical systems. Since life has started on this Earth, in fact, evolution has
struggled for billions of years to finely “optimise” the parameters and to build
this complicated living machinery. A living cell is definitely not a magnet.

However, this (apparently odd) partnership has produced remarkable im-
provements in the field. Insights from polymer physics suggest abandoning
the existing paradigm of regularly looped models of chromatin, and give space
to a view where higher–order chromatin organization is considered. RW (Ran-
dom walks), SAW (self–avoiding walks) and equilibrium globules represent
the foundation for conceiving a good DNA or chromatin model. More de-
tailed polymer structures try to hoist the prediction ability, attempting to map
the high complexity of living systems into manageable models. Data–based
modelling was a powerful tool to understand experiments, as is evident from
the exponential increase of papers which present simulations as experiments
validation. Different methods can be used refine the ‘blurred’ outcomes of
experiments: from long–standing Monte Carlo methods and MD (Molecular
Dynamics) simulations, to the modern inference analysis, such ML (Machine
Learning) algorithms and deep neural networks; thus, physicist have been
equipped of powerful tools that can be employed to link experimental data to
models with a high degree of accuracy.

Within this vast framework, my PhD thesis represents an attempt to con-
tribute to the general biophysical knowledge. In this thesis’ work, I go through
four problems that I have faced during my four–year PhD. Rather than a mere
report, this thesis can be considered as a memorandum of the relevant back-
ground needed to grasp the main ideas behind the works described here. I
tried to select and collect the most relevant features of the biological systems
under study, which are useful to model DNA and chromatin effectively. Then, I
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also report the main results, which are based on those background details. The
overall purpose of this thesis is to show that different physical approaches and
techniques can serve to understand or predict the behaviour of living system;
DNA supercoiling, epigenetics, and chromatin–protein melts are studied by
using typical statistical physics tools and models.

Each chapter is organised such that the literature review sections always
precede the description of the models and the results. All chapters are endowed
with an introduction and a final section of conclusions; often, old breakthrough
papers have been discussed in the introduction, leaving the examination of
more recent developments in the following sections. Although chapters are
self–consistent, a common plot links all them; the main aim of this thesis is
to show the ubiquitous connection between DNA (or chromatin) structural
organization and dynamics with function, at a multi–scale level. That is, by
using different methods, I show that a study of genomics can be performed at
different length scales: from 10 (DNA) to 104 (chromatin) base pairs. This kind
of bottom–up approach helps to build a step–by–step protocol through which
chromatin can be modelled using different levels of coarse–graining.

This main topics of my research are organised in chapters, as it follows:

• In chapter 1, I explore the interplay between topology and transcription.
In our 1D stochastic model, transcription and local supercoiling are cou-
pled, generating a positive feedback loop that gives rise to a non–trivial
statistics of transcriptional events. In particular, we focus on the char-
acterisation of the emergent “bursty” dynamics, and we obtain a phase
diagram that links the occurrence of intermittent transcription to the
relevant parameters of the model.

• In chapter 2, I tackle the problem of how certain epigenetic marks are
distributed along genomes as their patterns are important for ultimately
determining cell fate. In our 1D stochastic model there is a competition
between marked and unmarked states and where the kinetics is mediated
by implicit enzymes that “write” and “erase” a gene-silencing epigenetic
mark. The interplay of long-range infection/marking and local recov-
ery/erasure processes can determine epigenetic bistability, under certain
conditions.

• In chapter 3, I study the properties of protein clusters which form due
to bridging–induced attraction (protein–chromatin interaction only). We
consider two models for the chromatin fibre: an homopolymer and a
polymer with strong binding sites. The two cases lead to different phases
when the relevant interaction energies are relatively large. A detailed
study of the single–particle dynamics and local ordering has been per-
formed in both cases.
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• In chapter 4, I describe two versions of a simple model protein inspired
by heterochromatin protein 1 (HP1) and reminiscent of the well-studied
“patchy particle” models. In our simulation both protein–protein and
proteins–chromatin interactions are switched on. We map out the phase
diagram of the system in terms of these two attractions, identifying
different regimes with behaviour strikingly different from a standard
phase-separating system.
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Chapter 1

DNA and topology:
supercoiling as regulating
factor

The genetic information of all living organisms is encoded in double–stranded
DNA; unfortunately, knowing the whole genetic sequence of a living specie is
not sufficient to deduct the morphologic and functional characteristics of an
organism – i.e. the phenotype. The word “phenotype” does not only refer to
some “exterior” features of humans or mammals – blue eyes, ginger hair and
the color of a dog’s fur are typical phenotipical characters – but it has also a
meaning for prokaryotes. Indeed, also isogenic (genetically identical) bacteria
can differ for the abundance of mRNA and proteins produced by a single or
multiple genes. In this way, identical bacteria can differentiate in multiple
“molecular” phenotypes. Interestingly, such diversity can arise even in the
same environment; the classic work by Novick e Weiner (1957) showed that
a population of E. Coli can show cell–to–cell variability [1], as, under certain
conditions, they can split into two sub–population, one rich and one poor in
β–galactosidase.

This all–or–none behaviour suggests that gene expression entails a series
of stochastic process. In the 1976, Spudich e Koshland [2] envisioned that
Poissonian fluctuations in the “small” number of RNA messangers produced
could cause such non–genetic variability. From that point on, several other
experimental and numerical works [3–5] revealed several other sources of
stochasticity (mainly due to stochastic nature of the biochemical reactions
involved), all pointing to the fact that each cell shows a particular individual
behaviour.

Transcription, the first step in the expression process, is thought likely to
have a role in the expression variability and phenotypical diversity. This asser-
tion is backed by experimental evidence: transcriptional burts, time intervals
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of high transcriptional activity separated by longer dormant periods, were
initially observed in eukaryotes, and more recently also in bacteria [6, 7].

What is, then, the biophysical mechanism underlying such “bursty” be-
haviour? Various attempts to model the ON↔ OFF switching of genes have
been made, by means of two–state models [8, 9] and multi–state models [10, 11].
Nonetheless, only recently more sofisticated models were employed, in particu-
lar those that couple the transcriptional process with supercoling dynamics [12–
16]. Weil and Vinograd (1963) pioneering work on Polyomavirus [17] showed
the emergence of supercoils of the double helix. Afterwards, several other
papers highlighted the importance of supercoiling in the transcriptional pro-
cess; in particular, in the 1984, Liu et al. speculated that the RNA polymerase,
the enzyme responsible of gene transcription, generates positive (negative)
supercoiling ahead (behind) the transcribed gene. Such simple, qualitative
picture was named twin supercoiling domain model [18], and currently represent
the most accredited mechanism which links transcription and supercoiling
generation.

The model in [12, 13] offers a natural framework to investigate whether a
bursty dynamics can emerge and under which conditions. As we will see in
section 1.4, this model consider a coupling between transcription initiation – the
initial step of transcription, that begins at the promoter, a sequence upstream of
the gene – and supercoiling diffusion. Transcription initiation is supercoiling–
dependent, that is the larger negative supercoiling at the promoter, the higher
the transcriptional rate; supercoiling dynamics is diffusive. The model includes
also the action of topoisomerases, which are topological enzymes which can
relax positive and negative supercoiling. Previously, this model was used to
highlight the emergence of two regimes – a relaxed regime in which the tran-
scriptional process is almost Poissonian and the supercoiling–regulated regime,
where transcription is tightly regulated by supercoiling. Here, we mostly fo-
cus on the transcriptional time series, studying the statistical properties of
transcriptional events and lag times between them. We show that, depending
on the strength of topoisomerases and the flux of supercoiling injected by
polymerases during transcription, the model allows us to distinguish a regime
of bursty dynamics, and a regime in which a supercoiling wave propagates
through the DNA ring. Quantitatively, the bursts parameters are consistent
with experimental values [6, 7, 14].

In section 1.1 I describe the DNA structure. Then, in section 1.2, the basics of
DNA topology are linked with DNA functions; I define linking nnumber, twist,
writhe and supercoiling density, and I briefly discuss the action of the enzymes
responsible for supercoiling relaxation, the topoisomerases. In section 1.3, I
will focus on the transcriptional process; after speaking of the role of RNA
polymerase, which is capable of producing RNA transcript by ‘copying’ the
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genetic information stored in genes, I show some experimental evidence of
bursty transcription in vitro and in vivo; in the same section the methods used
in the project are described: therein, the sequence–size function and the notion
of local supercoiling are defined. The aforementioned sections are part of the
literature background. In section 1.4, I present my work, describing our one–
dimensional stochastic model for supercoiling–regulated transcription. In this
work, the mean field model in [12] has been extended to the case of periodic
boundary condition and in the presence of topoisomerases. The key quantities
and the parameter values used are discussed on the basis of experimental
evidence. An extensive analysis of the parameter space produces a phase
diagram in which the bursty and non–bursty phases are clearly distinguished.
It is worth to mention that some preliminary results were also studied during
my master thesis, but the major contribution occurred during the PhD.

1.1 DNA structure

DNA (Deoxiribonucleic acid) is a double-stranded biopolymer that holds all the
genetic information of a living organism. Nucleotides are the building blocks
of a single DNA strand: a sugar ring made of five carbons (numbered from 1′ to
5′), the deoxyribose, bind to a single phosphate group and a nitrogen base. Four
nitrogen bases constitutes the genomic ‘alphabet’: Adenosine (A), Guanine
(G), Cytosine (C) and Thymine (T). Nucleotides are linked via phosphodiester
bonds, such that the 5′ carbon atom of a unit is linked to the 3′ carbon atom
of the consecutive unit through the phosphate group, as to confer the 5′ → 3′

directionality to the DNA filament, see Fig. 1.1(a). A complementary DNA
strand (3′ → 5′) is coupled to the first one via hydrogen bonds between
the bases, always pairing A and G (purines) with T and C (pyramidines)
respectively. Complementarity of bases is crucial for the assembly of new RNA
(ribonucleic acid) molecules during transcription, or repairing processes [19].
Units of coupled monomers are known as base pairs (bp).

In physiological conditions of pH, salt concentration and temperature (pH7,
0.2M NaCl, 37o C), linear DNA in its most common form, B-DNA, appears as a
double–helix molecule, with a right–handed chirality. The double helix has a
diameter of 20 Å, the pitch is 34 Å. Bases are 3.4 Å thick (rise), and stacked as to
form a ‘spiral staircase’. Base–stacking is responsible for the thermal stability of
the double helix [20]. The relative twist between consecutive base pairs is about
36o in the azimuthal direction, oriented perpendicularly to the helix axis. In
B-DNA, the relative orientation of the backbone–base bonds are responsible for
the alternate motif of major and minor grooves along the DNA double helix [21,
22], see Fig. 1.1(b). The major groove is 12 Å wide and 8.5 Å deep, whereas
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(a) (b)

Figure 1.1. DNA structure. (a) Schematics of the primary structure of DNA. A
and T are linked through two hydrogen bonds, whereas G and C through three
hydrogen bonds. The two strands are antiparallel. (b) Secondary structure of DNA.
Figures taken from [28].

the minor groove is narrower (6Å) and shallower (7 Å). The interplay between
DNA groove structure and the specificity of the base sequences in the grooves
is essential to create recognition patterns for certain DNA-binding protein, such
as the TATA binding protein (TBP) and other transcription factors [23, 24]. A
full helical turn consists of about 10.4–10.5 bp. Different DNA structures, A-,
C-, D-, T- and Z-DNA amongst them, can arise in different solution conditions,
or under mechanical stress, and can be either vital or detrimental for the cell
sustainance. Z-DNA is arguably one of the most interesting: this left–handed
double helix [25, 26] is often found in transcriptionally active DNA regions,
at very high concentration of NaCl. Moreover, several chemicals can induce
conversion of B-DNA to Z-DNA. Excess or loss of Z-DNA has also severe
implications in disease. [27].

1.2 DNA topology: a link with function

Rather than a rigid, uniform structure, DNA exhibits great structural variability.
Not only specific sequences can induce small intrinsic curvature to the helix
axis, as ascertained by electrophoretic studies [29, 30], but DNA also manifests
bending and torsional flexibility. The conformational variations associated with
several DNA–binding proteins and complexes assess the strict relation between
DNA structure (topology) and DNA function (genic expression). Thus, it is of
enormous importance to study how DNA topology affects DNA regulation of
genic expression.
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Wr = +1 Wr = −1

(a) (b)

Figure 1.2. Positive and negative writhe. Diagram of (a) positive and (b) negative
writhe. Figure taken from [31].

To this extent, DNA can be treated as a two-strands braid; let us consider
the case where the two terminal ends are joined to form a closed ring. This
simple system is instructive for two reasons: it allows us to define topological
quantities which are properties of any pair of closed curves, and has a direct
biological counterpart in bacterial chromosomes and plasmids, which are
commonly closed–circular DNA molecules.

1.2.1 DNA supercoiling

As detailed above, DNA is a right–handed double–helix, in which the two
filaments are wound around each other every 10.5 bp/turn. This number repre-
sents the pitch of the helix, h0, under standard enviromental conditions. For a
closed planar DNA molecule of length NDNA, the ratio NDNA/h represents the
number of turns, being h the pitch of the relaxed DNA ring. In general h 6= h0,
as it depends on the external conditions; note that, even in standard conditions,
h 6= h0, since a residual torsion is needed to join the 3′ and 5′ terminal ends of
each strand to close the ring. The standard linking number Lk is then defined as
the nearest integer to the aforementioned fraction.

This number is a fundamental property of closed DNA molecules, as it
is a topological invariant: both thermally– and mechanically–induced defor-
mations of the helix cannot change this number. The number of turns can
be modified by cutting either one (nicked DNA) or both (open DNA) DNA
strands: several enzymes, such as topoisomerase and gyrases, can introduce
or remove links by opening and swivelling the double helix, see section 1.3.2.
However, deformation of a planar DNA ring can convert the extent of coiling
around the helix axis, or twist (Tw), into bending excess of the axis in space,
or writhe (Wr) (and vice versa), which eventually can generate extended in-
tertwined DNA structures called plectonemes. In a plectoneme, DNA wraps
multiple times around itself to form a braid. Twist and writhe are geometrical
properties of closed DNA, and are related to the linking number Lk by the
Cǎlugǎreanu-White-Fuller formula [32–34]:

Lk = Tw + Wr. (1.1)



6 Chapter 1. DNA and topology: supercoiling as regulating factor

Lk = 7
Tw = 7
Wr = 7

Lk = 7
Tw = 7.7
Wr = −0.7

(a) (b)

Figure 1.3. Twist–to–writhe conversion. (a) Circular DNA in its planar form. The
linking number equals the twist. Lk can be calculated as half of the total number
of intersection (to which +1 is assigned) between the two strands [35]. (b) Lk
remains constant, while an excess of twist (Tw = 7.7) is balanced by negative
writhe (Wr = −0.7). Figures adapted from [36].

Eq. (1.1) links a topological invariant of closed DNA to its geometrical
properties. Note that, althogh Lk is an integer number, Tw and Wr can be
rational and negative, see Fig. 1.3(a,b). A representative examples of twist–to–
writhe conversion is shown in Fig. 1.3(c,d)

An excess/defect of linking number with respect to the reference linking
number Lk0 (Lk0 = N/h0) quantifies the level of over/under–twist and the
presence of positive/negative writhe. DNA molecules of the same length but
with different Lk are referred to as topoisomers. The extent of torsional stress
introduced can be measured as specific linking difference, also called supercoiling
density (which we will refer to as supercoiling, for brevity):

σLk =
Lk− Lk0

Lk0
=

∆Tw + ∆Wr
Lk0

. (1.2)

The specific linking difference σLk is a global feature of the DNA molecule.
Furthermore, it is independent of the length of the molecule, as it is normalized
by Lk0, thus it is useful to compare the level of supercoiling density between
different topoisomers. Bacterial plasmids or the E. Coli chromosome have a
baseline specific linking difference of −0.06 [35, 37].

Experiments with different relaxed topoisomers on agarose gels have re-
vealed that the concentration P(Lkx) ≡ [Lkx] of DNA rings having linking
number Lkxis Gaussian [35]. Gel electrophoresis is commonly used to separate
DNA molecules (often bacterial plasmids) on the basis of size and compactness;
the DNA molecules can move inside the matrix gel under the innfluesnce of an
electric field. Negatively supercoiled plasmids can migrate faster, due to their
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writhed structure, whereas relaxed molecules, which are less compact have
low mobility. Since [Lkx] is Gaussian, we have:

1
∆Lk

ln
[Lkx]

[Lkm]
∝ −∆Lk, (1.3)

where ∆Lk = Lkx − Lkm, being Lkm the linking number of relaxed closed
topoisomers. Therefore, the associated free energy F [σLk] s reads:

F [σLk] =
K

Lkm
2 ln

[Lkx]

[Lkm]
= K

(
∆Lk
Lkm

)2
' Kσ2

Lk. (1.4)

Note that the addition of the constant term ln([Lkm]) does not change the free
energy, which has been also scaled by K/Lkm

2. The last approximation is
valid for long DNA molecules, when Lkm ' Lk0. Eq. (1.4) confirms that the
supercoiling of DNA is an elastic process of ‘elastic’ constant 2K, at least for
small ∆Lk (since σLk is dimensionless, K has the dimension of an energy).

Although Lk is conserved in a closed DNA molecule, some topological
enzymes, or topoisomerases, are responsible of introducing or removing super-
coiling in vivo. The topoisomerases of type I remove supercoiling by nicking
DNA (i.e. cutting one strand), while , topoisomerases of type II cut both DNA
strands. An entire family of topoisomerases of type I and II are present in both
eukaryotes and prokaryotes; a list of topoisomerases is given in [35], while a
more detailed review on their structure and function can be found in [38]. In
bacteria, topoisomerase I removes negative supercoiling, as it can bind neg-
atively supercoiled DNA regions, with a variation of the linking number of
∆Lk = +1. DNA gyrase, a particular topoisomerase of type II, introduces
negative supercoiling, producing a linking difference of ∆Lk = −2. Both these
topoisomerases do not require ATP.

1.3 Supercoiling and transcription: an inextricable

relation

.
Several lines of evidence show that there is an intimate connection between

supercoiling and transcription regulation. Transcription is the process through
which DNA is read by the RNA polymerase (RNAP) to produce an RNA
molecule, a single filament of linked nucleotides, which differs from single-
stranded DNA by the presence of uracil (U) and ribose, instead of thymine
and deoxyribose respectively. Messanger RNA (mRNA) is one of the most
important functional transcripts, as it carries the instructions needed to pro-
tein synthesis. Here, I mainly focus on the properties of the transcriptional
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process in bacteria, where there is only one type of RNAP which catalyse the
production of mRNA. In most the prokaryotes about 40% is unconstrained
plectonemic supercoiling [35], which is free to relax through the double helix
and influence DNA structure. Differently, in eukaryotes both transcription
and supercoiling are associated with several structural and functional proteins
(such as transcription factors, promoter enhancers etc.); moreover, DNA is chro-
matinised (a more compact complex of DNA and proteins, such as histones):
at this stage, chromatin supercoiling is not well understood.

1.3.1 The transcriptional process

Specific sequences along DNA, called genes, encode the genetic information to
synthesize proteins. Genes represent the fundamental units of the inheritance
process, as they are chiefly used as template to the assembly of RNA molecules.
Bacterial genes are preceeded by the promoter, two upstream sequences located
at −35 bp and −10 bp from the starting site of the gene (conventionally at the
position +1). Promoters are directly recognized by bacterial RNAP.

The protein complex responsible for copying and catalysing transcripts
is the RNAP; in bacteria, this enzyme has a core made of 4 subunits types:
two α polypeptides serve to assemble the RNAP, the β and β′ dimers function
as binding loci for the promoter, and ω, which might act as to preserve the
structural integrity of the complex [40]. The RNAP complex is completed by the
sigma factor, that is able to recognise and bind specifically to the promoter [35].

The transcriptional process is schematised in Fig. 1.4. During the first
stage of transcription, the initiation, RNAP proteins perform multiple attempts
to bind the promoter; when the RNAP recognise and strongly binds to the
promoter, the so–called closed DNA–RNAP complex forms. At this stage DNA
is not denatured yet, rather DNA wraps around the polymerase by about
300o [41], forming a left–handed superhelix. A negative writhe corresponding
to a linking difference of ∆Lk = −1.25 is associated with such conformation of
DNA. Once the RNAP escapes the promoter (it requires < 10s [42]) the sigma
factor is released, and a bubble of denatured DNA appears at the start of the
gene: the open DNA-RNAP complex forms; a linking difference of ∆Lk = −1.7
is associated with the formation of the open complex.

The second stage of transcription is elongation. The RNAP proceeds along
the gene in the direction 5′ → 3′, separating the double helix and assembling
the new transcript; the translocation along the gene occurs an average speed
of about 100 bp/s [19]. During elongation, RNAP rotation is hindered due
to its large size and the drag generated by the crowded intracellular environ-
ment. Rather, DNA swivels when passing through the RNAP complex, being
locally denatured. For every 10 bp which are transcribed, the linking number
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Figure 1.4. Transcriptional process. Schematics of the different stages of transcrip-
tion. The promoter is engaged by the RNAP complex. The synthesis initiates
by splitting the double helix: the nascent RNA molecule duplicate the 3′ → 5′

template strand. The elongation starts when the sigma factor is released. During
elongation, the RNAP moves along the gene, denaturing DNA at its passage (or-
ange loop), allowing the RNA formation (blue stripe). The transcription ends when
the RNAP encounters the termination sequence, and the RNA molecule dissociates
from the polymerase. The rho factor (colored green) mediates the dissociation of
the completed RNA. Figures taken from [39].
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Figure 1.5. Twin supercoiled domain model: single polymerase. The DNA seg-
ment is tethered at both terminus, such that the molecule cannot rotate about its
axis. Due to the moving polymerase, positive supercoiling accumulates ahead
the polymerase, while negative supercoiling accumulates behind it. The arrow
indicates the polymerase velocity. Figures taken from [35].

changes by ∆Lk ≈ +1 ahead of the polymerase and ∆Lk ≈ −1 behind it. This
observations lead to the twin supercoiled domain model [18], which states the fol-
lowing: when an anchored DNA segment (the two terminal ends cannot rotate)
is transcribed by a single polymerase, two supercoiling domains form ahead
and behind the polymerase, as the RNAP act as a topological barrier (positive
and negative supercoiling cannot recombine through the RNAP complex). If a
single RNAP moves from left to right, the right domain is overwound, or posi-
tively supercoiled, the left domain is underwound, or negatively supercoiled,
as shown in Fig. 1.5; conversely, in a circular DNA molecule, such as a plasmid,
positive and negative supercoiling can annihilate. In the presence of multi-
ple RNAP, several domains can form during simultaneous transcription; in
particular, negative supercoiling accumulates in between two divergent genes
(gene orientations points outwards), whereas positive supercoiling builds up
in between two convergent genes (gene directions points inwards). For genes
oriented in the same direction, or tandem genes, the extent of supercoiling
generated in the region within the two moving polymerases vanishes, see
Fig. 1.6.

The termination of transcription occurs when the RNAP encounters the
terminator, which is a sequence formed by several consecutive A–T base pairs
preceeded by two symmetrical sequences, which determine the formation of a
stem loop in the nascent RNA chain. The dissociation of RNA from the DNA-
RNAP complex is aided by the rho factor, which destabilises the RNA–DNA
duplex [43].

It is important to note that the formation of the DNA-RNAP closed complex,
as well as its conversion in the open complex and the following denaturation of
the double helix, does not need ATP. Thus, although the negatively supercoiled
state of a sole DNA molecule (or segment) does not correspond to lowest
energy conformation (see also section 1.2.1), it represents the best condition
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(a)

(b)

(c)

Figure 1.6. Supercoiling domains between a pair of transcribed genes. (a) Tan-
dem genes. Positive supercoiling generated ahead of the left gene counterbal-
ance the negative supercoiling generated behind the right gene. (b) Convergent
genes. Positive supercoiling accumulates in between the two genes. (c) Divergent
genes. Negative supercoiling accumulates in between the two genes. Figures taken
from [35].

for an efficient transcriptional process. Indeed, bacterial chromosomes and
plasmids are constantly held at a negative level of supercoiling. In Ref. [37],
Brahms et al. show that by increasing the level of negative supercoiling in
pBR22 plasmids (E. Coli) the transcriptional rate is augmented, reaching its
peak at σLk ' −0.06. Nonetheless, higher levels of negative supercoiling are
detrimental, favouring the formation of segment of Z-DNA with dramatic
effects on the transcription. On the other hand, a supercoiling level equals to
+0.03, inhibits transcription completely.

1.3.2 Topoisomerases can relax supercoiling generated by tran-
scription

In living bacteria, the optimal level of supercoiling is maintained by topoi-
somerases. Although the precise microscopic nature of the relaxation of the
built–up supercoiling due to topological enzymes is not clear at this time, the
link between topoisomerases and transcription is certainly very strict. In bacte-
ria, it is well known that negative supercoils generated behind the transcribing
RNAP can be almost immediately removed by topoisomerases I, which binds
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the polymerases through its zinc domains [44], to prevent the formation of
detrimental Z-DNA segments that would hinder transcription. Indeed, each
topoisomerases I can relax 1-–10 supercoils per second on average [45], faster
than gyrase, which relaxes at most 0.5–1 supercoils per second [46]. A bacterial
RNAP, which transcribes at a velocity of about 50–100bp/s, creates about 5–10
supercoils per second ahead and behind of it. Thus, in principal, a single
topoisomerases I may be capable of removing all negative supercoils generated
behind the RNAP, whereas gyrases might not be sufficiently fast to eliminate
positive supercoils during transcription. However, recall that positive and
negative supercoils generated in–between transcribed tandem genes tend to
naturally annihilate, as stated by the twin supercoiled domain model. On the
other hand, a rough estimation counts only ∼ 0.02 active topoisomerases I per
gene [14] (see also section 1.4.1). The distribution of topoisomerases along chro-
mosomes is not well known, but it is reasonable to assume that topoismerases
I act preferably in gene–rich regions of the DNA, as they relax negative super-
coiles. Conversely, gyrases are more likely to bind in–between genes, since
they can indirectly remove positive writhe (by introducing negative linking
difference), which has been shown to form independently of genes [16, 47].

1.3.3 Transcription as a ‘bursty’ process

In E. Coli, there are 0.2–2 RNAP per gene [48]. The low number of polymerases
can be a source of large fluctuations in the single–gene abundance of tran-
scripts [49]; indeed, in the absence of external regulatory factors which induce
gene activity or repression, the transcription activity is subject to the availability
of free RNAPs. Moreover, the RNAP loading at a promoter is itself a stochastic
process: the mechanism through which RNAPs find their specific binding sites
(a combination of three–dimensional diffusion through the nucleoplasm or
cytoplasm and one–dimensional diffusion along the genome [50, 51]) leads to
a broad distribution of search times. After the RNAP engages the promoter,
the actual initiation of transcription occurs when the σ factor is releases; the
retention of the σ factor determines the so–called abortive initiation, that delays
the transcription of a gene. Additionally, associated cofactors can catalyse
or reprime gene transcription [52]. The random nature of these biochemical
reaction contributes to the inherent stochasticity of the transcription initia-
tion, which can take several hours in mammals [53] and tens of minutes in
bacteria [6].

Intriguingly, transcription has been proved to be often ‘bursty’, that is, clus-
ters of closely spaced transcriptional events are separated by longer dormant
periods. Long–standing observations have assessed the intermittent nature of
transcription in eukaryotes; cycles of high and low transcription activity may
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be due to chromatin remodelling [54] and cis–regulatory DNA factors [55]. In
both cases, refractory periods during which genes are silent last for hours. On
the other hand, more recent experiments show that bacterial refractory times
are significantly shorter (tens of minutes) and the distributions of inter–events
lag–times are more compatible with a random ON ↔ OFF dynamics of the
promoter, also known as telegraph process [56]. In particular, Ref. [6] show
striking evidence of transcriptional bursts in a low–transcribed bacterial gene.
In this experiment, both the duration of bursts and silent periods are exponen-
tially distributed, with mean values of about 6 min and 37 min, respectively.
The measured average burst size (number of transcription in a single burst)
was approximately of 2.2.

What is the mechanism that underpins such intermittent switchings be-
tween active and repressed state of genes in bacteria? Can supercoiling play
an acting role in producing bursts of transcription? Golding et al. suggest
multiple causes, but only Chong et al. [7] identify the interplay of supercoiling
dynamics and topoisomerases activity as one of the most relevant causes for
bursty transcription in bacteria. Specifically, the introduction of topoisomerases
I in vitro reduces the transcriptional efficiency of 80%, while, after the induction
of gyrases, the transcription rate is slowly restored to its baseline value. They
argued that the different rates of supercoil relaxation by topoisomerase I and
gyrase yield the intermittent behaviour of gene transcription in vivo.

1.3.4 The sequence-size function and burst parameters

A classic model to describe transcriptional bursting is the interrupted Poisson
process (IPP) [57], which describes transitions between an active (ON) and an in-
active (OFF) state with Poissonian rates kON and kOFF, as in a random telegraph
process [56], together with transcription at a constant rate ki whilst the system is
in the ON state. The process can be characterised by the probability distribution
function (pdf ) f (t) of waiting times – the time intervals between two consecu-
tive transcriptional events – which is given by a double-exponential [57], where
the two characteristic times are related to the interval between transcriptions
in a single burst, and the interval between two consecutive bursts.

To determine whether a system is bursty, we need a tool that is capable
to distinguish the dynamics regulated by two timescales, as in the telegraph
process, from those regulated by a single timescale, as in a pure Poissonian
process. Such tool is represented by the so-called sequence-size function (ssf ) [57,
58], which is defined in terms of the distribution of waiting times f (t):

Φ(τ) =
1

1−
∫ τ

0 f (t)dt
. (1.5)
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Figure 1.7. Schematics of the sequence-size function In the upper panel, we
show a time series of events. Horizontal bars indicate the time interval larger
than the thresholds, which are denoted by θi, with i = A, b, B, C, D. In the lower
panel, we show the ssf in the presence of two timescales. The value of the ssf is
evaluated as the total number of waiting times, divided by the number of those
larger than the chosen threshold. The two timecales are τ1 = θB and τ2 = θC,
and corresponds with the two inflection points of the ssf. Therefore τx ≡ θb =
τ1/2 + τ2/2. Correspondingly, β = Φ(τx). Figure taken from [57].

This is the inverse of the probability of observing a waiting time larger than τ,
or, equivalently, the average number of transcriptional events that are grouped
into sequences interrupted by intervals longer than τ. If the dynamics is bursty,
we expect two well-separated timescales for the decay of f (t); correspondingly
Φ will display a plateau and two inflection points. These points, τ1 and τ2 > τ1,
can be found as the zeros in the second derivative of Φ; these values also
approximate the two timescales for f (t) (this is not a strict equality, but rather
an order-of-magnitude estimate). The value of Φ that equals the average
number of transcriptions in a single burst is located between the two timescales,
reasonably in the middle point τx ≡ (τ1 + τ2)/2. Therefore, the burst size

β ≡ Φ(τx), (1.6)

yields the average number of transcriptional events in a burst [57]. If the
dynamics is not bursty, Φ will have no more than one inflection point. A
schematics of ssf is presented in Fig. 1.7.

To quantify the “burstiness” of a transcriptional time series, we define the
following parameter,

ξ =
Φ′(τ1)−Φ′(τ2)

Φ′(τ1)
, (1.7)
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which measures the area under Φ′′(τ) between the two inflection points (when
they exist), normalised by Φ′(τ1) so that the result remains between 0 and 1
(prime and double prime denote first and second derivatives respectively).
ξ is zero when the dynamics are not bursty, and increases as the separation
between the two characteristic timescales τ1 and τ2 becomes clearer: we refer
to this parameter as the burst significance.

1.3.5 From the specific linking difference to the local super-
coiling

As specified in section 1.2.1, the specific linking difference, or supercoling den-
sity, is a global property of a DNA molecule. However, the level of torsional
stress as well as the conformational changes of the double helix can change
along the DNA molecule. Key processes are the local denaturation of DNA
in the proximity of the RNAP during transcription, and the nucleation and
hopping of plectonemes [59, 60]. These phenomena can be triggered locally
by biochemical reactions or mechanical stresses, and propagate dynamically
through the whole DNA chain. In order to describe the supercoiling dynamics
due to local modification of the double helix state, the notion of local super-
coiling σ(x, t) needs to be defined. To this end, a coarse-grained description
is required: a ‘block’ of consecutive base pairs are clustered and labeled by x,
which is a continuous positional variable along the DNA chain. At each time t
of the dynamical evolution, the local twist and writhe difference (∆Tw(x, t) and
∆Wr(x, t) [61] respectively) are summed up and normalised by the reference
linking number Lk0 of the coarse-grained block. A local version of Eq. (1.2)
readly follows:

σ(x, t) =
∆Tw(x, t) + ∆Wr(x, t)

Lk0
. (1.8)

Now, the conservation law in a topologically constrained DNA molecule reads:

σLk(t) =
1
L

∫
L

σ(x, t) dx ≡ σ0, (1.9)

where σ0 ≡ σLk(0) is the level of global supercoiling at which the DNA
molecule of length L is prepered at the initial time t0. Analogously, a local
version of Eq. (1.4) can be associated with local supercoiling, where the free
energy density is given by F (σ(x, t)) = Kσ(x, t)2 and

F [σ(x, t)] =
∫
F (σ(x, t)) dx. (1.10)

The notions of local supercoiling, twist and writhe allow us to conceive
models that shed light on the physical principles which link local topology
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to global DNA conformational states, and highlights how it can affect DNA
biological function [12–16, 47, 62]. In Ref. [16], a mechanistical description
of transcriptional elongation leads to bursting due to polymerase pausing
along genes, and correlations between highly transcribed genes. In Ref. [63]
an interesting stochastic field theory explains the twist–to–writhe conversion
and plectoneme coarsening and hopping [60]. In Ref. [47], a detailed 3D
coarse-grained model of circular DNA which embeds a physical transcribing
polymerase predicts the local twist and writhe diffusion. In light of this, we
will refer to local supercoiling as simply supercoiling throughout.

In the following, I will focus on a model, first introduced in Ref. [12],
which is based on the interplay between stochastic transcriptional initiation
and supercoiling diffusion. Such model provides a framework within we
can understand upregulation of genes, bursty dynamics and supercoiling
waves [14].

1.4 A stochastic model of supercoiling–dependent

transcription

This model was first described in Ref. [12]. In that work, it was found a
crossover from a relaxed regime where transcription is virtually Poissonian, to
a supercoiling–regulated regime where transcription of neighbouring genes
is highly correlated. In the present work we instead ask whether, and under
what conditions, the coupling between supercoiling and transcription can lead
to bursty dynamics.

1.4.1 The model

In this work, a circular DNA is modeled as a one-dimensional lattice of length
L = 15 kbp with spacing ∆x = 15 bp (which is approximately the footprint
size of an RNAP). The one–dimensional scalar field σ(x, t) denotes the local
supercoiling density at a point x on DNA. Supercoiling dynamics are then
described in continuous space by

∂σ(x, t)
∂t

=
∂

∂x

[
D

∂

∂x
σ(x, t)− Jtr(x, t)

]
− ktopoσ(x, t), (1.11)

where the three terms on the right-hand side represent diffusion of supercoiling,
supercoiling flux generated by transcription, and supercoiling dissipation due
to topological enzymes, respectively. The boundary conditions are specified by

σ(0, t) = σ(L, t), Jtr(0, t) = Jtr(L, t), (1.12)
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at any time t. The first term in Eq. (1.12) arises from the global conservation of
supercoiling; indeed, in a closed DNA loop and in the absence of topological
enzymes, the total level of supercoiling σ0 is conserved, as it is a topological
invariant of the system. By imposing the continuity condition over the whole
DNA molecule, supercoiling obeys “model B” (conserved) dynamics [64]. Fur-
ther, as the free energy density of supercoiling F [σ] is quadratic (as explained
in section 1.2.1), the chemical potential (∂F/∂σ) is linear in σ. Assuming
constant mobility, this leads to the diffusion term in Eq. (1.11) [65].

The second term in Eq. (1.11) models the total flux of supercoiling intro-
duced by the transcribing RNAPs. N polymerases can bind at the promoters
of n genes – typically we consider a length of λ = 66∆x ∼ 1000bp, which is
a relevant size for bacterial genes. located at lattice positions yj, j = 1, . . . , n.
Transcription initiates stochastically when an inactive RNAP binds at gene j
with rate kin,j. The RNAP then elongates with velocity v (positive or negative
depending on the direction of transcription) such that at time ti after initiating
it is located at position xi(ti) = yj + vti (where the index i labels the RNAP,
thus ti represents the time interval from initiation of the ith polymerase). As
soon as the transcribing RNAP leaves the promoter, another free RNAP can
bind at it and start a new transciption. Transcription terminates once the RNAP
reaches the end of a gene. The total flux is then given by

Jtr(x, t) =
N

∑
i=1

Ji(ti)δ(x− xi(ti))ηi(t), (1.13)

where the sum is over all RNAPs, Ji(ti) is the flux generated by the ith RNAP,
and the stochastic process ηi(t) represents its state, taking a value of 0 if it is
unbound, and 1 if it is actively transcribing. The flux of the ith RNAP is racked
up in front of the travelling polymerase:

Ji(ti) = J0

(
1 +
|v|ti
∆x

)
. (1.14)

The sign of J0 depends on the direction of gene transcription. Note that the
integration of ∂Jtr/∂x over the lattice vanishes, due to the periodic boundary
conditions, as required by the twin supercoiled domain model (positive super-
coiling generated ahead of the RNAP equals negative supercoiling behind). I
will explain the choice of Eq. 1.14 to model the supercoiling flux below.

The initiation rate is a function of the supercoiling at the promoter σyj(t),
where yj is the starting site of the jth gene.

kin,j(t) = k0max
{

1− ασyj(t), 0
}

, (1.15)
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where α is a coupling parameter (it represents the sensitivity of RNAP–DNA
binding to the level of supercoiling). Thus, the supercoiling dynamics are
coupled to the stochastic transcriptional kinetics in Eq. (1.11) through J0 in
Eq. (1.13), while the transcription kinetics are coupled back to supercoiling
through the sensitivity α in Eq. (1.15). In the following, we will use the notation
σp,j ≡ σyj(t) to indicate the local supercoiling at the promoter of the jth gene,
or σp when we refer to the case of a single gene.

The third term on the right of Eq. (1.11) represents the loss of supercoiling
due to the action of topoisomerases (such as, e.g., topoisomerase I and II,
gyrase). This is introduced in the model in a minimal way, as a first–order
reaction where both positive and negative supercoiling relax at the same rate
ktopo, and with no spatial dependence. In general, this term does not conserve
the total supercoiling.

Key model quantities and paramater values

An useful quantity is J̄ = J0 [1 + λ/(2∆x)], which represents the average value
of the supercoiling flux generated during a transcription event. Then, the
adimensional key quantities that control the model behaviour can be defined:
J̄/D and ktopo/k0. Lateron, we will explore the ability of the model to exhibit
bursty behaviour at different points in the ( J̄/D,ktopo/k0) parameter space, for
different gene arrangement cases.

The diffusion constant value has been chosen following Refs. [59, 60], which
indicates a value of at most ∼ 0.1 kbp2/s for plectoneme diffusivity, when a
DNA molecule is subjected to tensions of less than 1–2 pN. However, macro-
molecular crowding in vivo is likely to further slow down writhe/supercoiling
diffusion – so for our simulations we consider values for D which are between
∼ 4 and ∼ 40 times smaller than the value quoted above. The smaller value
was used for more systematic analyses as it enables more efficient simulations –
in such way it is possible to use a larger value for the time step. Changing the
diffusivity does not change the qualitative behaviour of the system, as long as
J̄ is changed accordingly.

The typical RNAP velocity in bacteria is ∼ 100 bp/s [19], so that the time
taken to transcribe a λ = 1 kbp gene is τ ∼ λ/v ∼ 10 s. Then, through
dimensional analysis, we expect an order–of–magnitude estimate for the J̄ to
be ∼ λ2/τ or vλ ∼ 0.1 kbp2/s – notably, this is the same order of magnitude
as D. Thus, in our simulations we explore a range of values for J̄/D which is
typically between 0.34 and 3.4.

Turning now to the dynamics of transcription initiation, measured RNAP
initiation rate can vary widely, and typical values are in the range 1 s−1 to
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1 hr−1 are observed (see [12, 66–68]). In E. coli there are an estimated 1000–
10000 RNAP per cell [48], and about 5000 genes. To reflect this ratio, we take
one RNAP per gene in our simulations, unless otherwise stated. The rate of
topoisomerase action in vivo is equally difficult to estimate. However, we make
a rough calculation to choose a reasonable range of value for ktopo. Ref. [69]
counts ∼ 500 topoisomerase I per cell in E. coli. Assuming that about half of
these enzymes are bound, and that there are two genomes per cell on average,
we arrive at ∼ 100 topoisomerase proteins being bound per genome, that
is ntopo ∼ 0.02 topoisomerases per gene. Assuming additionally that each
enzyme can on average relax 1–10 supercoil per second, and that the baseline
bacterial supercoiling is such that σbaseline ∼ −0.05, we get

ktopo ≈
ntopo

σbaselineλ

∆Lk
∆t

, (1.16)

that gives ktopo ∼ 0.005–0.05 s−1, which is close to the physiological value of
the baseline transcriptional rate of bacterial genes [6]. Due to this, and since
the values of ktopo and k0 are not known accurately, in our simulations we have
systematically varied their ratio ktopo/k0, between 0 and 1.4 (specifically we
set k0 = 0.001 s−1, and varied ktopo).

To determine whether supercoiling can affect RNAP initiation at a promoter,
we need to consider the time it takes for supercoiling generated by a previous
transcription event to diffuse away, and the typical initiation rate (kin,j in our
model). The mean field model described below in section 1.4.2 was used to
estimate the extent of residual supercoiling at the promoter. For ktopo ' 0:

|σp| '
J̄

2D
k0τ. (1.17)

If this quantity is larger than α−1 (see Eq. (1.29), setting ω ' 0), then supercoil-
ing can indeed increase the rate at which RNAP binds the promoter, leading to
a positive feedback. Experiments in bacterial genes suggest that a supercoiling
density of σp ≤ −0.01 is sufficient to enhance RNAP binding, and so does
the transcriptional process (see [12, 70]); thus, in our simulations we have
set α = 100. In our simulations, we start with a uniform initial condition
σ(x, t = 0) ≡ σ0, where σ0 = 0. As detailed above in section, the supercoiling
of bacterial chromosomes is often set at ∼ −0.05; it is reasonable to assume
that topo I and gyrases play an important role in maintaining such baseline
negative supercoiling. On the contrary, by setting σ0 = 0 in our model, the
sole action of topoisomerases cannot shift the overall supercoiling density to
negative values, as it relaxes positive and negative supercoiling in the same
fashion. Therefore, the value of σ0 should be seen as the baseline supercoiling
∼ 0.05 in bacteria. Note also that the promoter position coincides with the
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starting of gene yi (a promoter at position−2∆x with respect to the gene would
be more realistic; however the results obtained for a moving polymerase are
qualitatively the same).

Validation of the model

In order to understand the results in the next sections, a discussion on the
assumptions of this model is in order.

First of all, observe that the model embeds a single diffusivity D of su-
percoiling, even if, in principal, one would expect different values of twist
and writhe diffusivity; Arguably, twist diffuses very quickly [15], whereas
writhe diffusion is expected to be much slower, as it involves more global
DNA rearrangements. In ref. [47] simulations on supercoiled DNA rings show
different order of magnitudes for twist and writhe diffusivity (DTw ≈ 500DWr).
Moreover, twist diffusion is commonly much faster than the typical time scale
of RNAP translocation along the gene (∼ 10 s), thus is safe to assume that
any twist generated by transcription can spread over the whole DNA domain
istantaneously [15]. In a circular DNA, when only one RNAP is transcribing,
positive and negative twist recombines, and therefore the net amount of twist
vanishes. Moreover, it has been shown that DNA is unable to support much
deviation of twist from its relaxed state: the theory in [59] indicates that DNA
starts to writhe if the supercoiling density exceeds 0.01, which also corresponds
to the supercoiling value that enhances transcription, as mentioned in the
paragraph above. This suggests that the slower diffusion of writhe will domi-
nate the supercoiling dynamics, thus, the underlying assumption here is that
D ≈ DWr.

Another aspect is that some of the mechanical effects of torsion of the dou-
ble helix is neglected. In particular, it is well known that in some conditions
the build up of net supercoiling can cause a drop in RNAP velocity along the
gene and, eventually, its stalling [15, 71]. This has been shown in simulations
where the DNA domain is bound by the transcribing RNAP and an anchoring
barrier; in the absence of topoisomerases, twist spreads over the whole domain
and exerts an effective drag on the moving RNAP. Importantly, significant
deviations from the initial speed are expected for genes of length ∼ 3000 bp
and larger [15] and highly transcribed (no supercoiling relaxation between
transcriptional events). However, in this model, genes are 1000 bp long, no
fixed barriers are present, and, more importantly, there is only 1 active RNAP
per gene (on average); therefore, supercoiling can relax between transcription
events, which is, as explained later, the condition needed to have transcrip-
tional bursts á la Golding [6]. Therefore, to render the model manageable, the
transcription velocity v has been kept constant.
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A final complication is represented by the diffusion of supercoiling through
the polymerase, which is present in our model. In real cells, such diffusion
would require the unlikely rotation of the RNAP complex, as RNAP motion
can be hindered due to the drag generated by the interaction with other factors
which are present in the crowded surrounding [72]. Instead of introducing
no–flux moving boundary conditions at the points xi(ti), Eq. (1.14) resolves the
issue, since it models the ramp–up of the flux as transcription progresses. Even
if the diffusion process still competes with the accumulation of supercoiling,
the residual diffusive leak can reasonably be taken into account, as to model the
possible ‘relaxation’ of three–dimensional writhes in the proximity of the active
polymerases. Additionally, since the dynamics is governed by writhe (twist is
promptly converted into writhe), we assume that the amount of supercoiling
injected ahead of and behind the polymerase at each time, J0, is constant, as it
is chiefly related to the undertwisting (denaturation) of ∼ 10 bp of the double
helix.

1.4.2 Mean field theory

The general properties of this model can be extracted by developing a mean
field theory. In particular we solve an ordinary differential equation (ODE)
with periodic boundary conditions and in the presence of topoisomerases. As
said before, the following calculations generalise the mean field presented in
Ref. [12].

The mean field approximation relies on the substitution σ(x, t) → σ(x),
where ·̄ indicates the time–average. We assume that a static polymerase (v = 0)
inject supercoiling flux in x = 0, for simplicity [we recall that in our simulation
we use a dynamical polymerase, travelling along the gene at constant velocity,
see Fig. 1.8(a)]. In steady state, for the case N = n = 1, Eq. (1.11) reads:

∂2σ(x)
∂x2 − J̄

D
kinτ

kinτ + 1
∂δ(x)

∂x
− ktopo

D
σ(x) = 0 , (1.18)

where we have made the mean field approximation

Jtr(x, t)
D

→ J̄
D

kinτ

kinτ + 1
δ(x) ≡ Mδ(x) , (1.19)

with kinτ/(kinτ + 1) the fraction of time that the system spends in the trascrib-
ing state, being kin the mean transcriptional rate. Effectively, Eq. (1.18) describes
the supercoiling profile generated by a static RNAP that produces continuously
the riscaled flux in Eq. (1.19).

As the flux term acts only at x = 0, solving the model in the mean field
approximation is equivalent to solving the following ODE with the boundary
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conditions listed in Eq. (1.12),:

∂2σ(x)
∂x2 − ktopo

D
σ(x) = 0

∂σ(x)
∂x

∣∣∣∣
x=0

= Mδ(x) Boundary condition

σ (L/2) = σ (−L/2) Boundary condition.

(1.20)

Note that both σ(x) and σ(−x) are solution of the ODE in Eq. (1.20). Therefore,
the unique solution that satisfies Eq. (1.20) must be antisymmetric to fulfill the
periodic boundary conditions, and should be continuous at any x 6= 0; then
σ(L/2) = σ(−L/2) = 0.

The solution of Eq. (1.20) with the appropriate parity and boundary condi-
tions is given by:

σ(x) =
M
2

sinh

[√
ktopo

D

(
L
2
− |x|

)]

sinh

[√
ktopo

D
L
2

] sgn(x), (1.21)

where sgn(x) is the sign function. From Eq. 1.22 it can be easily shown that in
the limit ktopo → 0 we obtain:

σ(x) =
M
2

(
1− 2|x|

L

)
sgn(x). (1.22)

The term proprtional to 1/L is the correction due to the periodic boundary
conditions, that disappears for L→ ∞, recovering the solution in Ref. [12]. In
the limit L→ ∞, with finite ktopo, we have

σ(x) =
M
2

exp (−ω|x|) sgn(x). (1.23)

In Eq. (1.23), the quantity ω =

√
D

ktopo
represents the inverse length scale over

which supercoiling-mediated regulatory interactions are screened.
The validity of this mean field theory can be determined by comparing

it to the time–average supercoiling profile in our single gene simulations. In
Fig. 1.8(b), we show the average supercoiling profile at different J̄/D values,
for ktopo/k0 = 0.2.

We also aim to locate the crossover point between two different regimes of
transcriptional activity. To this purpose, we find a self-consistent equation for



1.4. A stochastic model of supercoiling–dependent transcription 23

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5

σ

x (kbp)

-0.05

0

0.05

-7.5 -5 -2.5 0 2.5 5 7.5

σ

x (kbp)

J̄/D = 1.02

J̄/D = 1.70

J̄/D = 2.38

(a) (b)

Figure 1.8. Supercoiling profiles. (a) Schematic of the supercoiling density gen-
erated by the progression of a transcribing RNAP along a gene, at different time
intervals from initiation (ti = 3, 6, 9, 12, 15, 18 s). The RNA polymerase creates
positive supercoiling ahead of the gene, while it generates negative supercoiling
behind. The supercoiling profile is obtained by solving Eq. (1.11) with J̄/D = 1.02,
ktopo/k0 = 0 and other parameters as listed in section 1.4.1. The horizontal black
segment indicates the location of the transcribed gene. (b) Supercoiling profiles
at different J̄/D, for ktopo/k0 = 0.2, averaged over 251 frames every 1000 s. Black
solid line represents the supercoiling profile predicted by the mean field in Eq. (1.21)
for M = 0.1, with the substitution |x| → |x− 2λ/3|.

the transcriptional rate kin, by inserting Eq. (1.21) calculated at the promoter yi

in Eq. (1.15). Using the same procedure shown in [12, 13] we find:

kin =
h(x) +

√
h2(x) + 4k0τ

2τ
, (1.24)

where

h(x) = k0τ

(
1 +

α J̄
2D

sinh [ω(L/2− |x|)]
sinh [ωL/2]

)
− 1. (1.25)

The crossover can be found by imposing h(x) ∼ 0, for which kin starts to be
significantly affected by the supercoiling (in particular, for h > 0, kin increases
much faster with JD). Thus, if x̄ is the distance of the static polymerase from
the promoter, it follows:

sinh [ωL/2]
sinh [ω(L/2− x̄)]

=
J̄

2D
αk0τ. (1.26)

Posing A ≡ L/2, B ≡ A + |x|, if ωA < ωB � 1 (small screening length), we
can expand (1.26), and, under the condition k0τ � 1, we obtain

J̄
D

αk0τ = 2 · A + A3ω + o(ω2)

B + B3ω + o(ω2)
' 2(

1 +
2x̄
L

) +
Lx̄
2

ω. (1.27)
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If L→ ∞, we should rewrite h(x) using (1.23). We find

h(x) = k0τ

[
1 +

α J̄
2D

exp(ωx̄)
]
− 1. (1.28)

In the limit ω � 1, we have

J̄
D

αk0τ ' 2 + 2ωx̄ . (1.29)

Interestingly, simulations show that the point along the gene at which the time-
averaged supercoiling profile crosses zero is ∼ 2λ/3, independently of the
parameters used (see Fig. 1.8(b)). The correct mean field profile of supercoiling
for a moving polymerase is then computed by substituting |x| → |x− 2λ/3|.

1.4.3 Numerical results

Simulations of the model described in Section 1.4.1 have revealed a key role
of supercoiling in regulating gene expression. In Ref. [12], the level of tran-
scription was monitored at different values of the relevant parameters, J̄/D
and ktopo. In terms of the overall transcriptional rate, the model entails a
crossover between two distinct regimes, as predicted by the mean field. For
any kind of gene geometry (single gene, tandem genes, divergent/convergent
genes), when the supercoiling flux created as a polymerase transcribes a gene
is small ( J̄αk0τ/D . 2), transcription is poorly correlated. When this flux is
large ( J̄αk0τ/D & 2), the dynamics become highly correlated. For tandem
genes, supercoiling drives transcriptional waves and regulates gene expres-
sion, promoting the transcription of genes which have a larger separation from
their upstream neighbors. When considering genes with random orientations,
transcription localizes at divergent gene pairs, which are highly upregulated.
As expected, the action of topoisomerases, which locally relax supercoiling,
downregulates transcription.

Another intriguing property of this model has been recently studied in
Ref. [13]. In particular, if the baseline supercoiling is equal or larger than σc =

1/α, the system undergoes a phase transition between an active transcribed
phase and an absorbing phase where genes are “switched off” due to the
background positive supercoiling.

In the following, I extend the analysis to focus on the stochastic nature
of supercoiling dynamics, which in turn can display a ‘bursty’ behaviour,
as shown in Fig. 1.9(a). We consider two different situations: (i) a single
gene which can be transcribed by a single polymerase, in the presence of
toposimerases, and (ii) 10 genes can be transcribed by 10 polymerases, with no
topoisomerases.
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Figure 1.9. Transcriptional bursts and the sequence-size function. (a) Time se-
ries for a simulation with J̄/D = 1.7, ktopo/k0 = 1.4. Transcription events (top)
are often grouped in bursts. Transcription initiation depends on the level of super-
coiling at the gene promoter (middle). The state of the system (bottom) is defined
as OFF if σp ≥ (1− (k0τ2)

−1)/α, and ON otherwise. (b) Negative logarithm of
the pdf of waiting times. The existence of two linear regions characterises the
dynamics as bursty. (c) Second derivative of the ssf : the existence of roots at τ1 and
τ2 demonstrates the presence of two timescales. Inset: zoom of the intersection of
this second derivative with the x-axis close to τ2, which is the intersection point.
Red vertical dashed lines locate the position of τ1 and τ2.

We performed 4 · 103 indipendent simulations to sample the stationary
distribution of waiting times, for each value of J̄/D. Each simulation was
equilibrated for 2 · 106 timesteps (dt = 0.01s), and run for another 2 · 107

timesteps to collect the data. For the case with 10 genes, the placement of gene
along the lattice was chosen at random before running each q1 simulations.

A single gene

A clear signature of bursty behaviour can be found in the time series of su-
percoiling at the promoter, in a certain range of the relevant parameters. For
instance, for J̄/D = 1.7 and ktopo = 1.4, transcription events are grouped in
bursts, and, correspondingly, the supercoiling at the promoter follows approxi-
mately a two–state dynamics, or telegraph process (bottom panel in Fig. 1.9(a)).
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Figure 1.10. Burstiness for a single gene (a) Phase diagram showing burst signifi-
cance as a function of model parameters. The burst significance ξ defined in (1.7)
is plotted as a function of J̄/D and ktopo/k0. A non-bursty regime is indicated by
ξ ∼ 0 (black) while ξ > 0 indicates a bursty regime (yellow-red). The dashed
green line is the boundary predicted via mean field (see section 1.4.2). Note that
for J̄/D = 0, the dynamics is clearly non-bursty, as in the absence of supercoiling
flux we have σ = 0 everywhere, and thus the transcriptional process is a Poisson
process of rate k0. As J̄/D increases, the dynamics become more bursty, with a
maximum value at intermediate J̄/D. For large values of J̄/D the dynamics is non-
bursty again. (b) Non-Gaussian parameters of the distribution of the supercoiling
at the promoter σp as a function of ξ, for different values of J̄/D and ktopo/k0. The
kurtosis (skewness) is correlated (anticorrelated) with ξ.

An analysis of f (t) and Φ(t) shows that, for sufficiently large values of ktopo,
f (t) has two characteristic timescales (Fig. 1.9(b)), and Φ(τ) has two well
defined inflection points (Fig. 1.9(c)). Correspondingly, the distribution of
supercoiling at promoter σp is bimodal [14]. For small ktopo and high values
of the flux, there are no well defined timescales in f (t) or inflection points in
Φ(τ); the distribution of supercoiling at promoter σp is unimodal and a direct
inspection of the transcriptional dynamics show this is not bursty [14].

By computing ξ from simulations with different values of J̄/D and ktopo/k0

we find two distinct regimes (Fig. 1.10(a)): the non-bursty regime, identified
by ξ = 0, and the bursty regime, for ξ > 0 (a mean field theory gives a good
prediction of the boundary between the two). In the region where the burst
significance has the largest value (ktopo/k0 ∼ 1.4, J̄/D ∼ 1.5) the burst size
is between 2 and 3, close to that measured in E. coli in vivo. Estimates of
the other bursts parameters – burst duration and OFF–state duration – are
in good agreement with experimental results [14]. We note though that the
burst size depends on the model parameters: the system can produce bursts of
significantly more than 2–3 events (at most∼ 10 on average in our simulations).
However, this only occurs in the transition region between the non–bursty
and bursty regimes (not shown). In the transition region, burst significance is
smaller, which means that the separation between timescales is less marked.
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Figure 1.11. Probability distribution for supercoiling at promoter. (a) In the
bursty phase, supercoiling at promoter is strongly peaked at σp ∼ 0. Another clear
peak appears for more negative value of supercoiling, due to occupation of the
ON state. Inset: log-linear plot of the pdf in the main panel. (b) In the non-bursty
phase the distribution is unimodal, with one Gaussian tail. The gene tends to more
often be in a state with less negative supercoiling for longer time; this results in a
non-Gaussian positive tail, with a nonzero kurtosis.

The results in Figure 1.10(a) also show that when the positive feedback
between supercoil generation and transcription initiation is strong (for large
J̄/D and ktopo = 0, identified as the supercoiling-regulated regime of Ref. [12]),
the dynamics are never bursty; bursts are most significant when this feedback
is much weaker (but non-zero). The reason for this seemingly surprising result
is that if supercoiling upregulates transcription too much, the gene is essentially
always on and the transcriptionally silent state is absent.

Our results show that topoisomerases action favours burstiness. In other
words, although the dynamics can be bursty for ktopo = 0, burst significance is
larger when ktopo 6= 0.

As bursting is generally due to switching back and forth between two
transiently stable states, it is natural to ask whether there are any signatures
of bistability in the stochastic transcriptional process we simulate. One such
signature can be obtained from moments of the distribution of supercoiling
at the promoter σp. For non-bursty behaviour, σp exhibits close–to–Gaussian
fluctuations about an average value, whereas, for bursty transcription, this
distribution is more markedly non-Gaussian and bistable (not shown). Quanti-
tatively, burst significance correlates with the magnitude of non–Gaussianity
parameters such as kurtosis and skewness (Fig. 1.10). Skewness and kurtosis
are defined by means of the third and the fourth moments of a given distribu-
tion. With X a stochastic variable and µX and Var(X) its mean and variance,
skewness and kurtosis are defined as follows:

Skew(X) = E

( X− µX√
(Var(X))

)3
 , (1.30)
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Kurt(X) = E

( X− µX√
(Var(X))

)4
− 3. (1.31)

A Gaussian distribution has Skew(X) = Kurt(X) = 0. For completeness, In
Fig. 1.10(a,b) we present the typical probability distribution of supercoiling
at the promoter, respectively in the bursty and non-bursty phases. Within
our stochastic model, the supercoiling at promoter is directly linked to the
probability of initiation, and therefore its distribution encodes all of the in-
formation about the process. As expected, for bursty dynamics we observe a
bimodal distribution of σp, while for non-bursty dynamics we have a unimodal
distribution, with fluctuations approximately Gaussian.

Multiple genes

We now switch to the study of arrays of 10 genes (10 polymerases). We consider
only the case without topoisomerases (i.e. ktopo = 0).

In Figure 1.12 we consider the supercoiling–coupled transcriptional dynam-
ics within an array of tandem – same direction of transcription – genes. We
find that bursts are typically more significant than in the single gene case. For
instance, for J̄/D = 1 and ktopo = 0, the single gene case was only weakly
bursty, whereas for an array of 10 tandem genes the same parameters give
rise to bursting which is around twice as significant. In the former case, in-
deed, we find ξ ∼ 0.23, a mean burst size of ∼ 1.53 and duration of bursts of
∼ 1.5 min, whereas in the latter case ξ ∼ 0.4–0.5 for the most bursty genes,
burst size is ∼ 2 and duration is ∼ 3–4 min [14]. This is because transcription
generates positive supercoils ahead of a gene, which act to down–regulate its
downstream (right) neighbour [whilst upregulating the upstream (left) neigh-
bour]. As a result, some genes may be transiently “switched off” – this can
be appreciated, for instance, by inspecting the time series of supercoiling at
the promoter, which at times can take sufficiently positive values such that
kin(t) = 0. Just as in the case of a single gene with ktopo 6= 0, the activity of
each gene is effectively described by a two–state dynamics (ON↔OFF), and
bursts can occur (Fig. 1.12(a)). As expected, the pdf of waiting times is well
described by a double–exponential (see Fig. 1.12(b)), and Φ′′(τ) displays two
zeros (see Inset Fig. 1.12(b)).

As for the single gene case, in the multi-gene system bursting does not
occur for large values of J̄/D. In this regime, the supercoiling-mediated inter-
genic interactions instead give rise to transcription waves which travel in the
opposite direction to transcription (Fig. 1.12(c,d)). Transcription waves arise
because transcription of a gene upregulates its upstream (left) neighbour: as
a consequence, transcription of gene i is followed by that of gene i− 1, then
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Figure 1.12. Bursty and wavy regimes for an array of 10 tandem genes. (a) Ky-
mograph in the bursty regime ( J̄/D = 0.68). For clarity, we only show the negative
supercoiling range. There are correlations between neighbouring genes, but no
clear periodic pattern. Note that genes 1 and 10 turn red more often [compare to
genomic map in Fig. 1.14(a)], since they are slightly upregulated. (b) Plot of the pdf
of waiting times in the bursty regime, showing the emergence of two timescales.
Inset: second derivative of the ssf, which displays two zeroes. (c) Kymograph in
the supercoiling-regulated regime ( J̄/D = 2.38). For high values of the flux, the
bursty dynamics are replaced by transcription waves. (d) Pdf of waiting times in
the supercoiling-regulated regime. The new timescale associated with the wave
modifies the shape of the distribution, giving rise to a “bump” at ∼ 4×103 s (local
minimum in -log plot). Inset: second derivative of ssf. In the physically relevant
range of waiting times (τ . 103 s) the function asymptomatically approaches 0
without crossing the axis (τ2 → +∞).

i− 2 and so on. We find that the wave velocity is v ∼ D/l, independent of k0

(Fig. 1.13(a), inset; l = 100∆x is the mean separation between promoters in our
simulations). Given our parameter choice, the wave speed is between 0.5–3.0
bp/s, and the time needed to trigger activity of the neighbouring upstream
gene is between 6–12 minutes. The scaling of v can be understood by assuming
that supercoiling propagates diffusively over the distance l between a gene
and its upstream neighbour – simulations show that the prefactor in this rela-
tionship is slightly larger than 1. When in the “wavy” regime, the system can
no longer be mapped onto a telegraph–like process, and bursts are no longer
observed (accordingly ξ = 0, as Φ(t) does not have two inflection points, see
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Figure 1.13. Wave velocity and transcription probabilities. (a) Wave velocity for
different values of D ( J̄ = 25.5) and k0, so that we span a large range of J̄/D
values, between 1.7–12.7. Values of D are given in simulation units (i.e., in units
of ∆x2/∆t). Simulation data are well fitted by a straight line (orange), whereas
the simple scaling theory discussed in the text underestimates the data slightly
(dashed black line). (b) Tandem genes: histograms showing gene transcription
probabilities in the bursty regime ( J̄/D < 2 (average over 10 runs). For sufficiently
large values of J̄/D, genes 1,6 and 10 are slightly upregulated. (c) Divergent genes:
in the bursty regime the divergent pair of genes (5 and 6) are upregulated.
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Figure 1.14. Burstiness for a multiple genes arrays. (a) Map of gene positions
for tandem (top) and divergent geometry (bottom). (b,c) Plot of ξ for tandem
geometry (b) and divergent geometry (c) [geometries used are in (a)]. The range of
J̄/D (0.06–1.02) is chosen so that the system is in the bursty regime.

Fig. 1.12(d)).
Transcription waves only arise for arrays of tandem genes, and do not

occur (or do so only transiently) for genes of differing orientation. In that case
transcription-generated supercoiling upregulates pairs of divergent genes at
the expense of other (convergent or tandem) genes which are down-regulated;
in Fig. 1.13 we also show the transcription probability of genes for tandem
genes (panel (b)) and in the presence of a pair of divergent genes (panel (c)). The
transcription probability starts to differ as soon as the value of the flux is large
enough to give rise to supercoiling mediated interaction (positive feedback
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Figure 1.15. Bursty and wavy regimes for an array of 10 tandem genes. (a) The
burstiness, ξ, is plotted for different value of the overall time-averaged transcription
rate ktr for tandem (red squares) and bidirectional (blue circles) genes (each point
represents a gene; points are shown for different values of J̄/D between 0.06–1.02).
Inset: for a given value of J̄/D, ξ depends linearly on ktr (each point represents a
gene). (b) Log-linear plot of the distribution of σp. For bursty genes (gene 9, which
is not part of the divergent pair) this distribution shows a singularity or bump.
Such a singularity does not appear for highly transcribed genes (gene 6, in the
divergent pair). (c) For a given gene (gene 4, tandem geometry) the slope of the
negative tail of the distribution depends on J̄/D. For small ξ (small J̄/D) the bump
disappears.

loop) between the two divergent genes.
In Fig. 1.14(a) we show the maps of gene positions for tandem array and

in the presence of a divergent pair. In the former case, genes 1, 6 and 10 are
upregulated by supercoiling as they have a larger space upstream of them, so
are less affected by the repressive action of positive supercoils generated at
their upstream neighbour. This occurs, albeit to a much lesser extent, even
in the relaxed regime. As we will see, this relatively small upregulation is
sufficient to yield a sizeable change in the burst significance. Since for relatively
high value of the flux ( J̄/D ∼ 1) the transcription across all genes is almost
totally dominated by the pair of divergent genes, we find that the latter behave
like a single upregulated gene. In terms of burstiness, this can render the
situation qualitatively closer to that of a single gene. For either kind of gene
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orientation, burstiness is gene–dependent, and the values of ξ for different
genes are substantially different from each other (Fig. 1.14). We find that ξ

is anticorrelated with the overall transcription rate, so that the genes which
are expressed more (e.g. genes 1, 6 and 10 in the tandem setup or genes
5 and 6 in the divergent setup, compare with Fig. 1.13(b,c)) are less bursty
(Fig. 1.15(a)). Burst size is also different in the tandem and bidirectional setups,
being substantially smaller in the latter case (β . 2, not shown). Burst sizes
measured experimentally in E. Coli [6] are closer to the value for single or
tandem genes (β ' 2.2) – this is reasonable, as they refer to the transcription
of operons which are normally made up from tandem genes controlled by a
single promoter.

An analysis of the distribution of supercoiling values at the promoter shows
that these differ qualitatively for the cases of multiple genes and a single
gene. Unlike in the single gene case, the non–Gaussian parameters for the
distribution of supercoiling at the promoter now only weakly correlate with the
burst significance [14]. This is because the supercoiling-mediated interaction
between genes give rise to non-Gaussian fluctuations even for non-bursty
genes. Nevertheless, for both the tandem and divergent gene cases, bursting
leaves a detectable signature in the tails of the distribution.

For the bursty transcription case, there is a singularity or a bump, while for
non-bursty transcription the curve is smooth, as shown in Figure 1.15(b) for
a divergent geometry and in Figure 1.15(c) for a tandem array. The singular
point is located at σp ≈ (1− (k0τx)−1)/α, where τx = (τ1 + τ2)/2.

1.5 Conclusions and future perspectives

In summary, we have studied the occurrence of transcriptional bursts in a
nonequilibrium model for supercoiling–regulated transcription, first intro-
duced in [12]. For an isolated gene, we found that significant bursting occurs
primarily in the presence of topological enzymes. This scenario is an impor-
tant starting point for our model, as it can be relevant to the experimental
investigation in Ref. [6] where the transcription of a gene on a bacterial plas-
mid was monitored. Indeed, we note that in the region of parameter space
where bursts are most significant, the properties of the bursts generated in
the model (size, duration, and interburst time) match with those found ex-
perimentally. However, it is also of interest to consider the case of multiple
genes. This is because gene density is variable both across organisms and
within genomes: for instance, in both yeast and bacteria gene density is high so
that transcription is likely to affect neighbouring genes. This is also relevant for
understanding synthetic DNA constructs containing multiple genes, which can
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be used in biotechnology applications [73, 74]. Notably, topoisomerase action
is not required for highly significant bursting in gene clusters because there,
supercoiling can mediate transient inhibition of the neighbors of highly active
genes. We considered both tandem and bidirectional gene geometries, and
we found that the existence of bursting is intimately related to non–Gaussian
fluctuations of the distributions of supercoiling at promoter. In conclusion, our
model suggests that supercoiling can be a relevant factor that drives bursty
transcription for non–highly transcribed genes, which could be crucial for
explaining phenotypic diversity, especially in bacteria.

The model can be further improved by adding some important ingredients.
In highly transcribed genes, the mechanical effects due to double helix torsion
could be relevant, as highlighted in the theoretical works in [15, 16]. Therefore,
in order to use this model for highly transcribed genes, operons and in the
presence of topological barriers which prevent twist relaxation, a separate
treatment of twist and writhe could be needed. In this respects the model
described in [63] might represent a good starting point. A more complicated
scenario can arise by modelling local action for topoisomerase I and gyrase,
and different relaxation rates.
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Chapter 2

Epigenetics: a route to
overwrite cell fate

The word epigenetics refers to all those mechanisms which stands in between
of genotype and phenotype [75]. In multicellular organisms, identical cells –
which possess the same genome – can specialise [19, 76]; recently, it has been
found that epigenetics plays a vital role in transitions between from unicellular
to multicellular states of Amoeba [77]. The primary concept is always the
same: cellular evolution, differentiation and specialisation are determined by
‘enviromental‘ factors, which are non–genetic. In the early 40s, Waddington
wrote in his famous paper: ‘it is possible that an adaptive response can be
fixed without waiting for the occurrence of a mutation’ [76], which basically
states the possibility that an interaction of the type individual–environment
can develop diverse phenotypes without an actual modification of the genome.
This is much in line with current knowledge: in modern terms, the epigenome
represent “the biological interface between individual and environment”; in
this respect, the epigenetic mechanisms can provide a key interpretation of
phenotypical variability.

The contemporary view of epigenetics is often paired up with two concepts:
“heritability” and “bistability” [78]. The key idea is that every cell should
encompass mechanisms to guarantee the maintainance of some constitutive
epigenetic traits, but also the ability of “adapting” to external stimuli through
time. In the past, much effort has been spent to identify the factors that con-
tribute to inheritance and phenotypical diversity. Four epigenetic mechanisms
have been recoginsed [79]:

1. DNA methylation: the modification of dinucleotides CG ‘islands’ (regions
where cytosine nucleotide is followed by a guanine along the same strand)
which converts cytosine in 5–methilcytosine. After replication, the DNA
methyltransferase recovers the methylation ‘marks’ in the duplicate, guar-
anteeing the inheritance in daughter cells. While widely present in plants
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and mammals, such epigenetic modification is absent in yeast.

2. Histone modifications and chromatin remodelling: Different level of chro-
matin compaction and several chemical modifications of the histone tails
contribute to a delicate equilibrium between enzymes. Indirectly, this
epigenetic mechanism is responsible for regulating compactness of chro-
matin, which is closely related to chromatin function, since it determines
the accessibility of transcriptional factors and RNAP. This plays a vital
role in terms of chromatin functions: in fact, domains of compact chro-
matin are often transcriptionally silenced. Histone modification is the
main object of study of this chapter.

3. DNA–binding proteins: function as transcriptional factors and modulate
the gene expression.

4. Non–coding RNA: small RNA molecules, the so–called small interfering
RNA (siRNA), or microRNA. Once produced, they can recruit the DNA-
methyltransferase in the proximity of the gene, which catalyses methyla-
tion.

How do these mechanisms influence the phenotype? What is the underlying
physics? Perhaps, the most suggestive interpretation (not definition) was given
by the same Waddington in the 1957 [80]. In Fig. 2.1, the small marble represents
an organism’s phenotype, that, at the beginning, is in a pre–determined ‘valley’,
that depicts the only available biophysical state (as it is the case of stem cells);
then, it faces a series of viable developmental options, or epigenetic states,
represented by multiple valleys. Although quite old, this picture is appealing
to a physicist’s eye. It mimics quite remarkably the omnipresent free energy
landascape which leads to the mechanism of spontaneous symmetry breaking
(SSB), through which several physical system can choose their fate between
“equivalent” equilibrium states in their first steps of evolution [81]. From a
physical standpoint, a system described by a Hamiltonian which is invariant (or
symmetric) with respect a certain trasformation group, has multiple coexisting
phase. SSB occurs when somehow the system is forced to select one, performing
an “asymmetrical” choice. Such “symmetry breaking” can be induced by the
initial condition, an external drive or a spontaneous fluctuation. Similarly
to what happens in a ferromagnet, which can be described by Ising, or Potts
models, a population of identical cells can exhibit different characters, as each
cell can “adapt” to one of the multiple stable states [82]. In general, the most
interesting aspect is to investigate how an epigenetic domain can form, spread,
and stabilise, or under which conditions a chromatin segment can switch
between different ‘epigenetic’ states. This leads to the study of laws that rule
the spreading of histone modifications, or more generally epigenetic marks.
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Figure 2.1. Waddington landscape. This scheme represents the so–called chreodes,
that are the biological paths (or trajectories) of development. This landscape is
reminescent of a time-dependent energy landscape, with the z axis the level of
some kind of ’energy’, the y axis time, and the x axis some representative variable
(or variables) that describe the state of the system. At each ’developmental’ time
(starting from the position of the bead), the bead can choose its path, which is likely
to pass through the ’energy’ minima on the landscape. Figure taken from [83].
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Several models have been conceived in the last decade, all trying to better
understand the basis of epigenetic memory and bistability [82, 84–91]. These
previous works have typically considered the interplay between two compet-
ing marks, that give rise to a competition which may in turn yield bistability
between a globally active and inactive state [84, 91] via SSB. Such systems can
then retain memory of their (active or inactive) state even in the presence of
an external perturbation – such as the loss of half of the marks during DNA
replication [82]. We highlight, though, that one-dimensional models exhibiting
bistability in this way typically require the addition of one or more intermedi-
ate states [84, 86]. In this framework, our work tries to propose a reasonable
mechanism for the estabilishment, spreading and switching of epigenetic pat-
terns. Here, the novel elements are represented by: (i) the parametrisation of
the extent of long–range contacts of the chromatin fiber, through the contact
exponent; (ii) the definition of a specific mechanism for the erasure of a single
histone modification.

This chapter is organised as follows. In section 2.1 I describe the bead–
on–a–string structure of chromatin; in section 2.2, an overview of different
post–translational histone modifications, describing how they can be deposited
on the histone tails and removed. Then, I will focus on the role of epigenetic
bistability and we describe the role of Epe1 in yeast chromosomes, that lacks
DNA methylation and often are marked by single epigenetic marks (section 2.3).
In section 2.4 we briefly described the most relevant zero–dimensional models
of epigenetics, which chiefly rely on the competition between two antagonist
marks and on the role of cooperativity to explain bistability. In section 2.5 I
remark the importance of three–dimensional models to describe the competi-
tion between marks, when coupled to polymer dynamics. So far, it is all part
of the literature background. Finally, in section 2.6, I describe my work. In
our infection–like, one–dimensional model, the cooperativity of methylation
is introduced explicitely by modeling long–range contacts with Lévy distribu-
tions. Together with the ‘erasing’ mechanism which provides for the removal
of epigenetic marks, long–range contacts can entail bistability in a large region
of the parameter space.

2.1 Higher levels of DNA organization: the bead–

on–a–string structure

In eukaryotes, DNA is enclosed in a small volume, the cell nucleus (5–8µm
in diameter). Given the high stiffness of this long polymer (in humans, DNA
is about 2 meters long), genomes would occupy a much larger volume than
the nucleus in their random coil conformation; instead, DNA is organized into
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multiple levels of “ordered packaging”, which have to be retrieved for physio-
logical purposes when required. To this aim, several architectural proteins can
induce bending and looping of the double helix. In eukaryotes, about 75% of
DNA is associated with histone proteins [92], to form the so–called chromatin.
Five different classes of histones are ubiquitous in different species and cell
types: histone 1 (H1), histone 2A (H2A), histone 2B (H2B), histone 3 (H3), and
histone 4 (H4). More specifically, 8 subunits of four types of histones proteins,
H2A, H2B H3, and H4 can interact with each others to form the heterodymers
H2A–H2B and H3–H4 [93]. Two H3–H4 dymers, and H2A–H2B respectively,
interact through a 4–helix bundle to create two tetramer, which in turn bind to
form the histone octamer. The histone octamer is stabilized by the attractive
interactions with the DNA molecule. The classical histone–DNA assembly
consists of 1.7 left-handed turns of DNA wrapped around the octamer, to form
the nucleosome core particle (NCP); In most species the NCP may also integrate
one linker histone H1 at the DNA entry–exit site [85].

Figure 2.2. Schematics of the bead–on–a–string structure Depiction of the struc-
ture of linked nucleosomes.

Consecutive NCPs are connected by linker DNA, a portion of free DNA
20–60 bp long. Chromatin primary structure is thus constituted by a repeated
sequence of one NCP and DNA linker (∼ 200 bp), which forms the beads–on–a–
string structure of eukaryotic chromatin, see schematics in Fig. 2.2. Importantly,
NCPs are not electrically neutral, as histones carry a charge of +144e, while
DNA contributes with −294e. Moreover, charge distribution is not spatially
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uniform, as shown in Fig. 2.2. Electrical charges at the surface of DNA and
histones are essential to provide higher level of chromatin compaction: the
formation of nucleosomal arrays can be stabilized by electrostatic interaction
between histones tails, which are the N–terminal sequences of H2A, H2B, H3,
H4, which extend out of the globular histone core, see Fig. 2.2. In particular,
the H3 and H4 tails, which are made of 35 and 20 residues respectively, are in-
trinsically disordered protein domains [85, 93], responsible of intranucleosome
stability [94] and nucleosome stacking through internucleosomes tethering [95].
On the other hand, the H2A and H2B tails are required for proper nucleosom
core reconstitution [96]. Although numerous works suggest the existence of
different arrangements of nucleosomes in the 10–nm and 30–nm fibers [97, 98],
the actual existence of an ordered organization of chromatin in vivo at these
length scales is still a highly debated topic [92, 99]. An interesting physical per-
spective on the mesoscopic order of nucleosomes is offered by the theorethical
framework in Ref. [100].

2.2 Post–translation modifications and epigenetics

Not only do histone tails play a role in structuring chromatin, they also serve as
substrate of the post-translational modifications (PTMs). In particular, charged
segments of the histone tails, the lysines K and arginines R, are the most
targeted templates of such chemical modifications. The histone–tail PTMs,
together with other DNA modifications, constitute a vast family of ‘epigenetic
marks’. A comprehensive list of the histone modifications and their functions
is detailed in Ref. [101]. Grossly speaking, epigenetic marks can indirectly
modulate gene expression through chromatin structural rearrangements. In
fact, the most relevant function of histone modifications is the recruitment on
non–histone proteins, which can (i) disrupt inter–nucleosomes contacts, hinder-
ing the formation of the 30–nm fiber, (ii) promote chromatin compaction, (iii)
bind to gene promoters, activating a regulatory cascade of other modification
events, which orchestrate several DNA–based processes (transcription, DNA
repair, DNA replication, chromosome condensation).

The demarcation of epigenetic domains is therefore vital to estabilish the
correct chromatin environment [101]. Mainly, there are two types of chromatin
environments: heterochromatin, which is commonly compact and transcrip-
tionally silent, and euchromatin, more swallen and transcritpionally active.
Accordingly, PTMs distinct into those that correlates with heterochromatin
formation and gene repression, and those which promote euchromatin for-
mation and transcription. Acetylation (K–ac), methylation (K–me and R–me),
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phosphorylation (S–ph and T–ph), and ubiquitination (K–ub) have been im-
plicated in activation, while sumoylation (K–su), deimination, and proline
isomerization have been implicated in repression [101]. However, it seems that
the same modification can have both positive and negative effects on different
DNA–related processes, depending on the particular context; for instance, the
presence of different adjacent modifications or the binding of proteins can
antagonise or promote the main role of a some modifications [102].

2.2.1 The reader–writer–eraser machinery

Thus, we face a complex scenario of several different modifications, possibly
correlated, whose action can strongly be affected by the neighbouring modifica-
tions and enzymes. To simplify the general picture, we chiefly focus on general
features of PTMs which are the most characterized to date [85]: (i) the trimethy-
lation of the lysin 9 and 27 of the histone H3, called H3K9me3 and H3K27me3
(ii) lysin acetylation, as the H3K27ac mark. The former PTMs are associated
with a set of ‘writer’ enzymes, such as lysine methyltransferases (KMTs) and
‘eraser’ proteins such as histone (lysine) deacetylases (HDACs or KDACs) or
lysine demethylases (KDMs) [103]. Instead, writers devoted to acetylation are
histone acetyltransferases (HAT) and lysine acetyltransferases (KAT) [85]. Most
often, the writing ‘skill’ of a certain enzyme is accompanied by its ‘reading’
ability. A reader–writer complex is an enzyme that is accessorised of one or
more reader domains, capable of recognizing PTMs, and a writer domain,
which can install new PTMs. The regulation of the spreading of a modifica-
tion across nucleosomes is primarly influenced by pre–existing PTMs, which
function as substrate for readers; thus, the complex can activate the writer
domains which can mark elsewhere along the chromatin chain, promoting the
spreading of the epigenetic mark, possibly in a cooperative way. In Fig. 2.3 we
present a schematic depiction on how PTMs can modulate the reader–writer
activity [104]: (i) PTMs can result in an altered binding affinity of a writer or
eraser: for instance, once a reader binds a pre–existing PTM, it favours (or
disfavours) the installation of a new PTM in its proximity; (ii) PTMs can modify
the structure of the nucleosome or the chromatin conformation, making the
reader–writer more (or less) capable to epigenetically modify that particular
nucleosome, or those in the vicinity; (iii) PTMs can elicit allosteric change in
the enzyme, that is, they can directly modify the structure of the reader–writer
complex, facilitating or hindering the installation of a new epigenetic mark on
that nucleosome, or on the neighbour nucleosomes. All these mechanisms are
non–exclusive. However, they contribute to build up an epigenetically stable
environment, which serve, for instance, to the formation of the constitutive,
or pericentric, heterochromatin, which has been found to be rich in mono–,
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di–, and three–methylation, mostly on lysine and argynine residues of histone
tails [105].

Figure 2.3. Schematics of writer–reader action. Left: reader can bind a pre–
existing PMT, catalysing the installation of a new PTM. Center: pre–existing PTMs
can trigger chromatin remodelling, by altering the structure of the histone. Right:
pre–existing PTMs favour allosteric change in the writer–reader enzyme, which
modifies the enzymatic activities. Figures taken from [104].

How does the estabilishment of epigenetic domains occur? In summary, the
estabilishment de novo of an epigenetic domains starts with nucleation. This hap-
pens at specific chromatin sites, where specific enzymes favour the recruitment
of reader–writer enzymes, which can start the subsequent spreading of the
epigenetic mark. An instance is the Clr3 complex in fission yeast, which targets
specifically a sequence close to the mat3 locus. Nucleation sites can be associ-
ated to certain molecular ‘bookmarks’ (such as the TFIID, a transcription factor
which interacts with specific sequences called TATA box) [106]. Bookmarking
is necessary to re–estabilish the epigenetic environment after the disruption
caused by replication and cell mitosis [82]. The second step is represented by
the spreading: the recruitment of writers along the chromatin chain is enhanced
by the presence (or the absence) of pre–existing epigenetic mark, and possibly
by the folding ability of chromatin. The ‘nucleation and looping’ mechanism
assumed in Ref. [107] contemplates the propagation of the H3K9me3 mark via
chromatin loops.

The epigenetic spreading cannot prolong indefinitely, otherwise a single
epigenetic state could prevail over the whole genome, with deadly effects on
the living organism. Hence, mechanisms that prevents the over–extension of
epigenetic domains are required. Confinement of epigenetic domains can be
estabilished through physical boundaries, or equilibrium between competing
marks or enzymes. Such mechanisms of control are required for the entire
cell life, or even multiple generations. Indeed, experiments suggests that,
in yeast, the estabilishment of an epigenetic state can take generations [108],
whereas in mice the spreading of heterochromatin occurs at a rate of ∼ 100
nucleosomes/day [109].
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2.3 Evidence for epigenetic bistability

The maintainance of epigenetic domains, as for constitutive heterochromatin,
is crucial, especially through several generations. For instance, a skin cell needs
to retain the epigenetic memory of its state after division. Nevertheless, the
dynamical character of PTMs, which can be deposited and removed by writers
and erasers, also entails ‘epigenetic multistability’: a prototypical example is
represented by the vernalization of Arabidopsis [110]. As shown in Fig. 2.4,
the level of expression of the flowering locus C (FLC) during warm periods can
change depending on the duration of the cold periods. Prolonged cold causes
more repression of the FLC, which in turn promote flowering. During cold
exposure, the H3K27me3 marks are deposited by the Polycomb repressive
complex 2 (PRC2) at the nucleation region, aided by the PHD proteins. PHD
protein can bind PRC2 and, during the warm period, activate the spreading
of the mark over the neighbour regions, stabilising the FLC repression (see
Fig. 2.4). The epigenetic character of this under–regulation is represented by
the stability of the level of repression, which depends on the period of cold
exposure. In such sense, this system is epigenetically multistable.

Other experiments on human and mice cells show that some domains pos-
sess both activating and repressive modifications [111]. The coexistence of
different epigenetic mark leads to a differentiation in daughter cells. In other
words, daughter cells might preserve one single modification type instead of
both. This ‘choice’ can profoundly influence the fate of offspring cell at a func-
tional level: for instance, H3K27me and H3K4me antagonise in mouse stem
cells [112, 113] as they are implicated in silent chromatin and active chromatin,
respectively. The enrichment of these opposing modifications within epige-
netic bivalent domains correlated with low–level expression of developmental
transcription factors [112].

In a recent work, K. Sneppen and L. Ringrose suggest that poised chro-
matin in Polycomb is bistable and not bivalent, that is, there is no coexistence
between competing marks, rather domains switches between active and silent
states [114]. The existence of bistable epigenetic domains is quite ubiquitous,
not only in stem cells, but also in yeast: single–cell experiments suggest that
stochastic transitions between two epigenetic states can occur either over the
cell lifetime, or over a few generations [108, 115]. This is especially the case
in “weakened” region of the genome, where, for instance, nucleation sites are
missing or defected [116]. In section 2.6, I focus on the results of a simple
one–dimensional model, which models the dynamics of epigenetic marks, es-
pecially in yeast, where a single PTM is expected to spread until reaching some
boundaries, which can be physical proteins, such as CTCF, highly transcribed
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Figure 2.4. FLC vernalization and epigenetic state of chromatin. (a) After 1–2
weeks of cold, the level of FLC expression is diminished. During vernalization
periods (3–4 weeks) FLC is repressed more, allowing the correct post–winter flow-
ering. (b) Schematics of chromatin region before cold. Chromatin modifications
are absent (c) During the cold period, PHDs binds the PRC2 proteins, starting
the nucleation at the target site (the transcription start site of FLC). (d) At warm
temperatures, the H3K27me3 and PHD-PRC2 complex spread all over the FLC
gene body. Figures adapted from [110].
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regions (euchromatin), or other complexes [117, 118]. In the next section, I ex-
plicitely discuss the Epe1, a particular domain of the JmjC protein which limits
the spreading of heterochromatin by performing demethylase activity [119].

2.3.1 Epe1 can limit methylation spreading in Yeast

Differently from complex living organism, fission yeast lacks DNA methylation
(not histone methylation, which is present), and a single type of methyltrans-
ferase is responsible for the self–propagation and maintainance of heterochro-
matic domains [119, 120]. In particular, Clr4 proteins can bind the H3K9me2/3
mark that they generate, through Swi6 protein which favour the recruitment
of Clr4 and, thus, the spreading of PTMs [120]. Clr4 then act as ‘writers’ and
‘readers’ of this methylation mark.

Importantly, spreading of heterochromatin can be hindered by the Epe1
domain of the JmjC protein, which function as an ‘eraser’ of the methylation
mark, in Schizosaccharomyces pombe [121]. Epe1 catalyses the histone demethy-
lation reaction, even though more recent works point to the fact that it does
not intervene directly with demethylase activity [122]. Rather, it colocalises
with Swi6 moderating the repressive effect of silencing proteins, especially
during the acetylation stage [122]. However, the real role of Epe1 is still
uncertain, and a complete picture of the Epe1 significance in counteracting
methylation spreading is still unknown. Nevertheless, it is commonly thought
that Epe1–dependent removal of H3K9me ensures regulation and persistence
of centromeric heterochromatin [119]. In yeast, competition between H3K9
methyltransferase and demethylase activities can be finely tuned to safely pro-
tect gene–rich regions from the propagating heterochromatic boundaries. In
our model (section 2.6.1) we speculate that local demethylation can counteract
the spreading of a single epigenetic mark, producing, in some cases, epigenetic
bistability.

2.4 Zero–dimensional models: a framework for epi-

genetic bistability

Zero–dimensional models are characterized by the absence of any spatial
information; in this models, the time evolution of the (global) epigenetic state
of a chromatin domain is governed by rate–based equations. Commonly, the
system consists of N nucleosomes that can be in ns states, labeled by the
variables {s1, s2, . . . , sN}, where si is the state of the ith nucleosome. In most
models, the assumption is that the nucleosome state is specified by a single
epigenetic mark on the histone tails, or multiple epigenetic marks contribute to
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a single ‘functional’ state of the nucleosome, such as ‘silent’ or ‘active’. In the
simplest case ns = 2. We define nj as the number of nucleosomes in the state j,
hence, it follows:

ns

∑
j=1

nj = N . (2.1)

2.4.1 Two–state model

In Ref. [91] a sort of mean–field equation has been proposed to explain epi-
genetic bistability. The simplest case ns = 2 was considered, so that Eq. (2.1)
becomes nM + nU = N, where M and U indicate the modified and the unmodified
states respectively. The evolutionary equation is given by:

dnM
dt

= R+ [nM] (1− nM)− R− [nM] nM + ηM. (2.2)

where ηM is a noise term which models the stochasticity of the reactions, and
commonly depends on the domain size (∼ N−1/2). The rates are given by:

R+ [nM] = αn2
M + (1− α),

R− [nM] = α(1− nM)2 + (1− α).
(2.3)

In this model, the first rate models the U → M conversion: the first term
represents the recruitment, which occurs with probability α when two M sites
‘infect’ an U site, whereas the second term models the spontaneous conversion.
The second rate represent the symmetric M→ U conversion: it can be obtained
from nM → 1− nM. The schematics of this model is depicted in Fig. 2.5(a).
After some calculations, the Langevin equation becomes:

dnM
dt

= α(2nM − 1) [nM(1− nM)− 1/F] + ηM. (2.4)

where F = α/(1− α) is the recruitment–to–noise ratio. In the absence of the
noise ηM, one can show that Eq. (2.4) entails bistability when F > 4 Ref. [91].
Calculations follow the same guidelines in section 2.6.4. Here, dynamical
bistability is based on the assumption that a a cooperative mechanism for
recruitment takes place, requiring two M (U respectively) sites to perform
the conversion of a single U (M respectively). This assumption mimics the
cooperativity of Sir complexes in spreading an epigenetic mark, as it occurs in
budding yeast. Moreover, it is assumed that the writing and erasing mechanism
(or, more generally, conversion to the U state) follow the same kinetic rules,
see Eq. (2.3). It is worth to mention that a similar model has been studied
in [116], where different sources of cooperativity were explored to support the
emergence of epigenetic bistability.
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Another important contribution towards the understanding of two–state
epigenetic systems, such as in S. Cerevisiae, is represented by Ref. [123]. In
this work, several different scenario were considered, from cooperativity to
long–range reading/writing (which they refer to as local–local, global–local
and global–global recruitment). It was shown that both elements can enhance
epigenetic bistability.

a

m(a)

(b) (c)

Figure 2.5. Models and phase diagram. (a) Schematics of the two–state model
in [91]. The horizontal black arrows indicate the spontaneous interconversion,
whereas the blue and red arrows represent the conversion by recruitment. Two
M (U respectively) sites are required to mark (unmark respectively) a U site (M
respectively). (b) Schematics of the three–state model in [84]. Here, interconversion
between A and M sites are possible in a two–step process (via U). In its original
version, no cooperativity is required for bistability. (c) Phase diagram of the three–
state model in [124], as a function of m and a. Parameters used are: αA = αM = 5;
βA = βM = 3; γA = γM = 0.1; χA = χM = 0.01. Figure taken from [124].

2.4.2 Three–state models

A prototypical three–state epigenetic model was proposed by Dodd et al. [84].
In this work, local and long–range symmetric conversions were considered,
with the addition of a ‘neutral’ intermediate state. In particular, they consider
a lattice of N nucleosomes, whose state is labelled by nj, with j = 1, ·, N; each
nucleosome can be in an ‘antimodified’ state (A), a ‘modified’ state (M) or an
‘unmodified’ state (U); broadly speaking, A and M are competing modifications
(usually acetylation and methylation), whose functions can be chromatin acti-
vation and silencing, while U is an intermediate non–marked state. The model
was conceived such that, in its non–cooperative version, the interconversion
A←→ M is forbidden. The process of attempted conversions is obtained by
iterating the following steps:
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(i) A random nucleosome, say the i–th, is selected for conversion. A re-
cruited conversion is attempted with probability α (step (iia)); conversely,
a spontaneous conversion is attempted with probability 1− α (step (iib)).

(iia) Recruited conversion: A second random nucleosome, say the j–th, is
selected (with uniform probability within the lattice); if nj is either in the
M or the A state, ni is changed one step forward the state of nj.

(iib) Noisy conversion: Nucleosome ni is changed one step toward either of
the other types with a probability of 1/3.

The stochastic model is one–dimensional, however the correspondent zero–
dimensional model was studied in Ref. [124]. The two relevant equations
for the global methylation, unmarked and acetylation density, m ≡ nM/N,
u ≡ nU/N and a ≡ nA/N respectively, read:

dm(t)
dt

= RU→Mu(t)− RM→Um(t),

da(t)
dt

= RU→Au(t)− RA→Ua(t),
(2.5)

where the rates are

RU→M = αMm(t) + χM,

RM→U = βMa(t) + γM,

RU→A = αAa(t) + χA,

RA→U = βAm(t) + γA,

(2.6)

The main result is that the interposition of an intermediate state between the A
and the U state, provides bistability, even without cooperativity. An example
of the flow lines in the (a, m) phase diagram when high A and M states are
stable is shown in Fig. 2.5. If χM = χA = γM = γA = 0, two fixed points
of the dynamical system are located at (m∗, a∗) = (0, 1) and (m∗, a∗) = (1, 0),
whereas (as, ms) = 0, 0 is an unstable fixed point, and the saddle point is
located at

au =
αMβA

αAβM + (αM + βM)βA

mu =
αAβM

αAβM + (αM + βM)βA

(2.7)

They also verified that long–range spreading of the epigenetic mark en-
hances bistability [84].
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2.5 Epigenetic competition is predicted by 3D mod-

els of “colored” chromatin

Figure 2.6. Competing epigenetic marks lead to estabilishment of an epigenetic
territory. Snapshots taken at different timesteps from a random distribution of
epigenetic marks. Epigenetic domains (blue or red) start to form, while the inert
state (grey) tend to disappear; chromatin is more compact in the correspondence of
marked region. Ultimately, one mark prevails, and the whole chromatin chain is
collapsed. Figure adapted from [87].

Most recently, the three–dimensional dynamic organization of chromatin
during epigenetic spreading and estabilishment has been explored by means of
coarse-grained models [82, 87, 125]. Such models have the undeniable advan-
tage of modelling the physical contacts between distant regions of chromatin,
due to chromatin looping.

In these models, chromatin is modelled as a polymer, which can fold in
the 3D space. As mentioned before, the long–range contacts can mediate the
epigenetic spreading. Indeed, a Potts–like interaction was assumed between
monomers ‘in contact’. Similar to the model described in section 2.4.2, each
monomer can be either in one of two competing epigenetic state (the authors
identify the H3K9me3 and H3K27ac as competing marks), or in an inert, ‘un-
marked’ state. In the presence of two competing symmetric epigenetic mark,
the system undergoes a first–order–like transition between a coherent (either
acetylated or methylated) compact phase and a disordered, more swallen
state [87]. The selection of the dominating epigenetic mark occurs via breaking
of the Z2 symmetry, similarly to what happens in the Ising model. The latter
model offer a simple, possible explaination of the estabilishment of constitu-
tive epigenetic domains. Nonetheless, both regions are equally compacted.
It remains less understood which may be the actual mechanism that yields
the difference between the more swollen chromatin, and the more crumpled
heterochromatin, depending on the underlying epigenetic landscape.

To conclude this section, I should remark that all models described in
sections 2.4 and 2.5 are based on the competition of two antagonistic marks,
such as methylation annd acethylation, which are subjected to the same kinetic
rules, which determine spreading or erasure of marks. The novelty in the
model described below is that we consider the competition between a single
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epigenetic mark and ann inert state. Rather, the estabilishment of bistability is
demanded to the competition between the (long–range) writing and the (local)
erasing mechanisms.

2.6 An infection–like 1D model predicts epigenetic

bistability

Inspired by experimental evidence in yeast, we develop a one–dimensional
model that can explain epigenetic bistability in short stretches of chromatin.
In the two–state models in section 2.4.1 cooperative recruitment is required
for bistability; instead, in the three–state models described in section 2.4.2, a
robust bistability is obtained by means of an intermediate inert state between
the two competing state (i.e. modified and antimodified), via spontaneous
symmetry breaking. Here, instead, we consider a single biochemical mark
and no cooperativity. Unlike previous models, the writing and the erasing
mechanisms are different. In particular, we assume that the spreading of a
mark occurs through long–range contacts mediated by the chromatin fibre. As
detailed above, the long–range spreading of epigenetic marks can be essential
for epigenetic inheritance and bistability; experiments have also shown that its
contact probability is a power-law distribution [126, 127]:

P(l) ∝ l−(σ+1), l → +∞, (2.8)

where l is the distance along the chromatin fiber and σ > 0 is the contact
exponent. Therefore, the writing probability can be described in terms of
a Lévy distribution [84]. The Lévy distribution describes the so–called Lévy
motions, or flights, defined by 0 < σ < 2. Lévy flights are stochastic processes
characterised by the occurence of long jumps, as the variance is divergent
for σ < 2. In addition, for σ ≤ 1 both the variance and the expectation
value do not exist. Other details on the Lévy distributions are in Ref. [128].
Interestingly, the contact exponent defining this distribution can depend on cell
type, stage of the cell cycle [129] and chromosome considered [130]. Moreover,
by using the contact probability in Eq. (2.8), we are assuming that the timescale
associated with chromatin relaxation is smaller than, or comparable to, the
one related to the spreading of marks, as suggested in section 2.2.1. This is
verified for small domains of about a hundred nucleosomes, if we compare
the rate of heterochromatin spreading of about 100 nucleosome/day with the
coherent motion of chromatin, which can be of about 10µm/day [131] (which
is approximately the size of a nucleus). This means that, in some cases, it is
realistic to consider the contact probability in Eq. (2.8) for random contacts of
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Figure 2.7. Microscopic rules. Representation of the transition rules for methy-
lated/infected (or marked) sites (blue circles) and demethylated/recovered (or
unnmarked) ones (white circles). (a) Site i, which is unmarked in this case, is
in long–range contact with site j (here, j = i − 5). If j is marked, i can become
methylated through a long–range “infection” at a rate qλ(1 + λ). (b) If j (here,
j = i + 5) is unmarked, i can still become infected spontaneously, at rate qλ. (c) To
simulate the erasing process, a marked site i can be changed to the unmarked state
at rate qµ(1 + µ) when at least one of the two neighbouring sites is unmarked. (d)
A marked site i that is flanked by marked sites can spontaneously lose the mark at
rate qµ.

chromatin regions, rather than a contact map that mimics a fixed network of
nucleosomes.

The erasure of methylation marks is modeled such that it is more likely
to happen at the boundary of a methylated domain rather than in the bulk.
Several scenarios can justify this assumption: (i) diffusion of the enzyme
responsible for removing the epigenetic mark is hindered by the strongly
crumpled conformation assumed by regions enriched in such mark [82]; (ii) the
eraser enzyme possesses binding sites for both methylated and demethylated
histones; (iii) erasing activity is more efficient at the boundary of methylated
domains, where the concentration of mono– or di–methylated nucleosomes is
higher (full methylation usually implicates three methylation marks deposited
on the histone tail). Therefore, we describe mark erasure as a “local” process
and we assume it is more probable in the presence of gradients in the density
of methylation marks.

Due to the competition between writing and erasing mechanism, we find
that a first–order–like transition separates a ‘methylated’ phase from a ‘demethy-
lated’ one. The transition takes place due to the competition between long–
range spreading and local erasing: for small systems, a wide region of the
parameter space entails bistability, which is stronger in the proximity of the
transition. This work shares some features with system in epidemics and in
percolation–like models. In these contexts, there is often a competition between
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‘infection’ and ‘recovery’ mechanisms; here, recovery is a jargon that refers
to the transition to the ‘native’ unmarked state, as often used for two–state
models [132]. For the sake of generality, we will also refer to the methylated
and unmethylated states as infected and recovered states, respectively.

2.6.1 The model

The model is defined on a lattice of N sites, which can be either in the demethy-
lated/recovered state or the methylated/infected state. Each site is associated
with a dichotomous variable mi, which can be respectively either 0 or 1. The
transition rules are specified in the following way (see Fig. 2.7):

0i1j
qλ(1+λ)−−−−→ 1i1j

0i0j
qλ−→ 1i0j

(2.9)

1i0i±1
qµ(1+µ)−−−−→ 0i0i±1

1i−11i1i+1
qµ−→ 1i−10i1i+1,

(2.10)

In words, if a site i is unmarked (mi = 0), it can become marked at rate qλ(1+λ)

when it enters in contact with a methylated site j (mj = 1). Otherwise, if mj = 0,
it can convert spontaneously with rate qλ. The site j is selected by drawing the
distance |i− j| from a normalized power–law distribution:

P(|i− j|) = ζ(σ + 1)|i− j|−(σ+1) i 6= j. (2.11)

where H(α) = (∑∞
n=1 n−α)−1. Once the site j is selected, the conversion rate

can therefore be written as

q0→1 = qλ(1 + λmj). (2.12)

Conversely, if site i is marked (mi = 1), it can become unmarked at rate
qµ(1 + µ) if it is at a domain boundary, that is if mi−1mi+1 = 0. Otherwise,
if mi−1mi+1 = 1 – i.e., if the site is flanked by two marked sites – it can be
demethylated with a basal rate qµ. In other words the sites in the domains bulk
are more protected from erasure. The recovery rate can thus be written as

q1→0 = qµ [1 + µ(1−mi−1mi+1)] . (2.13)

The Monte Carlo algorithm proceeds with random sequential updates, and
each timestep (Monte Carlo sweep) consists of N conversion trials:

1) Extract a random integer number between 1 and N, which selects the i-th
site. If mi = 1, jump directly to step 4;
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2) if mi = 0, choose with probability 1/2 one of the two directions to attempt
a long–range infection event;

3) draw a random number z from a uniform distribution between 0 and 1,
then consider the real number r = z−1/σ, round it to the smaller positive
integer dre so that j = mod{i± dre, N}+ θ(−i∓ dre)N, which is needed
to take into account the periodic boundary conditions; mod{·, ·} indicates
the modulo operation between two integers, θ is the Heaviside function,
and the ± depends on the direction choosen in step 2;

4) perform a conversion with rate (1−mi)q0→1 + miq1→0.

Note that the values of λ and µ are bound by the values q−1
λ,µ− 1, where qλ,µ ≤ 1.

To compare time in simulation units to physical time, one may calculate and
compare any of the dimensionless quantities obtained by multiplying time
with one of the rates. This means that a time step in our simulation equals the
inverse long–range methylation rate (or the inverse demethylation rates at a
domain boundary).

Phenomenological Langevin equation

From Eqs. (2.12) and (2.13) is it possible to write down a Langevin equation
that qualitatively describes the dynamics of the methylation and demethylation
fields, m(x, t) and d(x, t). The condition

1
N

[∫
m(x, t) dx +

∫
d(x, t) dx

]
= 1 (2.14)

is always satisfied. Given the time increment dt, that corresponds to a Monte
Carlo sweep (N attempted moves), the generic Langevin equation reads:

dm(x, t) = (DA∇σm + r+[m](1−m(x, t))− r−[m]m(x, t)) dt + η(x, t)dt ,
(2.15)

where DA is the coefficient of anomalous diffusion, ∇σ denotes a fractional
derivative and the type of noise is not specified, as it depends on the structure
of absorbing states. The generic structure of the noise term in a similar reaction–
diffusion system is determined by its expectation value and correlation [133]:

〈η(x, t)〉 = 0

〈η(x, t)η(x′, t′)〉 =
[
Γ′m(x, t) + Γ′′m(x, t)2

]
δ(x− x′)δ(t− t′),

(2.16)
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being Γ′,Γ′′ > 0. A simple fractional derivative integral representation is given
in [132], where the Lévy distribution is the kernel of the following integral:

∇σm(x, t) ≡
∫

P(|x− x′|)m(x′, t) dx′. (2.17)

The production and annihilation rates (in the first–order approximation) are:

r+[m(x, t)] ' q0 + q1m(x, t)

r−[m(x, t)] ' q′0 + q′1m(x, t) .
(2.18)

The term proportional to m(x, t) in r+[m] can be understood as the short–range
contribution of the Lévy distribution to the infection/methylation process (the
long–range infection is taken into account by the fractional diffusion term in
Eq. (2.17). Instead, as the erasure is more effective in regions with boundaries,
in a coarse–grained approach the fraction of boundary sites is almost equal
to the fraction of demethylated sites; hence the local erasure at the boudary is
proportional to 1−m(x, t), hence linear in m(x, t). Combining Eq. (2.18) and
Eq. (2.15) we obtain

dm(x, t)
∂t

= DA∇σm + q0 + κm− gm2 + η. (2.19)

In general, this equation holds for low level of methylation (m ∼ 0).
The first terms in Eqs. (2.12) and (2.13), qλ and qµ, are two basal rates which

represent respectively spontaneous acquisition and deletion of methylation
marks. Within the problem of understanding how epigenetic marks spread, it is
natural to set these rates to non-zero values to account for biological noise and
imperfect writing and erasure by the respective enzymes. Yet, it is instructive
to consider first the situation in which either one or both the basal rates are
zero: these cases lead to interesting physics, and help to better understand the
behaviour of the general system. We should remark that none of the Langevin
equations in this chapter has been solved numerically. However, they serve as
a useful and simple tool to understand the physics of this model.

We shall remark that we will mainly consider the rescaled rates qλλ = λ̄

and qµµ = µ̄ throughout the chapter. To describe the global methylation/
infection state, we use the order parameter m̄ ≡ 〈m〉 = 1/N ∑N

i=1 mi, which is
the fraction of infected sites in the lattice.

2.6.2 Connection with percolation models

Different number of absorbing states can emerge if any of the basal rates is
zero. If qλ → 0, there is one absorbing state (m̄ = 0); if qλ, qµ → 0, the
absorbing states are two (either m̄ = 0, or m̄ = 1). As the absorbing states
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are configurations from which it is not possible to escape, detailed balance is
violated and the resulting system is out–of–equilibrium.

As we shall show, our model displays non-equilibrium phase transitions of
different types, depending on the number of the absorbing states (either one
or two), which reflects the symmetries involved in the corresponding effective
action [134]. This model is respectively either in the Long–Range Directed
Percolation (LRDP) non-universality class – and characterised by a second-order
phase transition with a σ-dependent (non-universal) exponent – or, alternatively,
can be mapped onto the Long–Range Compact Directed Percolation (LRCDP),
– characterised by a first-order phase transition with a discontinuity in the
average infected/methylated fraction of sites m̄. It is well known that the
standard Compact Directed Percolation (CDP) – i.e., the case with short-range
interactions – falls in the same universality class of the Standard Voter Model
(SVM) in d = 1. Moreover, critical exponents can be exactly computed, since
the dynamics can be seen as an annihilation problem between two random
walkers [135].

There are also studies of the annihilation of Lévy flights [136, 137] and of the
Voter Model with long-range interactions/infection [138]: in these works, this
model was investigated through the computation of the dynamical exponent
α which characterise the decay of the density of infected sites, ρ, with time,
i.e., ρ ∼ t−α. This requires simulations which start with uniform density
or fully disordered configurations. Here, instead, we focus on the survival
probability exponent δ(σ) in simulations where the initial configuration has
a single infected/methylated site (single seed simulations). Such condition
is typically used to compute the dynamical exponent δ, since one expects a
power law dependence of the survival probability with time – i.e., S(t) ∼ t−δ –
for t � 1. Our aims are to: (i) check that in the limit of qλ → 0 (qµ finite) the
contact process belongs to the LRDP non-universality class; (ii) show that in
the limit qλ, qµ → 0 our model falls in a different non–universality class, which
is the LRCDP one; to this end we calculate the critical exponent δ.

Limit qλ → 0

In the limit where qλ → 0 and λ→ +∞, such that the product qλλ ≡ λ̄ is finite
and qµ > 0, the system cannot recover from the totally demethylated state.
The sole absorbing state is defined by m̄ = 0. The system can thus be recast
as an infection model with long-range infection and a single absorbing state.
The prototypical model for diffusive–reaction system with a single absorbing
state and long–range infection is LRDP. This leads to q0 = 0, and η ≡ √Γmζ,
where ζ is a typical uncorrelated white noise. The “square–root” multiplicative
noise is justified by the Reggeon effective field theory in [134]. In particular,
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Figure 2.8. Kymographs and survival probability for LRDP. In the first two pan-
els we show two typical kymographs at the transition point, and with µ̄ = 0.2,
for respectively (a) σ = 1.0 and (b) σ = 2.0. Note that there are no very compact
domains. (c) Power-law trends of S(t) for two values of the contact exponent
(σ = 1.0, blue lines, and σ = 2.0, green lines), with µ̄ = 0, and the corresponding
value of the critical exponent δ (respectively dashed and solid black lines). For
clarity, we also show the survival probability just above and below the transition,
which display the typical decay and saturation. (d) By varying the value of µ̄ the
survival probability does not change. The critical properties of the system, then,
do not depend on the local erasing, but only on the global erasure rate.
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the quadratic term in Eq. (2.16) would correspond to a quartic term in the
effective action, ∝ m̂2m. Such term is irrelevant in the perturbation expansion,
see Ref. [133]. Hence, in this limit Eq. (2.19) reads:

∂tm = κm− gm2 + DA∇σm +
√

Γmζ , (2.20)

where, in general, κ = κ(λ̄, µ̄, qµ, σ) and Γ is the strength of the noise ζ. This
equation predicts two different stable states in the mean field treatment: for
κ < 0 the stable state is the absorbing one, defined by m̄ = 0, whereas for κ > 0,
the stable state is m̄ = κ/g. Clearly the system is critical at κ = 0.

We simulate our system on a N = 104 lattice for 103 Monte Carlo sweeps,
and we search for the critical point, i.e. we calculate the survival probability
S(t) which we expect to decay as t−δ at some value of (qµ, µ̄, λ̄). Below the
transition, the system evolves toward the absorbing state, and S(t) exhibits
an exponential decay in the long–time limit. Vice versa, above the transition,
the stable state is represented by a non–null mean methylation; even if some
trajectory can suddenly fall into the absorbing state (as only a single seed is
infected at the start), a finite fraction of replicas will steadely mantain the
infection. Correspondingly, the survival probability will display a plateau
at long times. Our results are in accordance with those found for LRDP in
Ref. [132]. Two representative kymographs are shown in Fig. 2.8, for σ = 1.0, 2.0
at the critical point. Note that, when the infection process is long–range,
multiple infected nuclei can be generated very far away from the original seed
(see Fig. 2.8a). Conversely, when it is short–range, the infected domains are
more gathered around the original seed position (see Fig. 2.8b). In any case,
domains are not compact – i.e. there are holes within every single domain.

In Fig. 2.8c the power law behaviour of S(t) at criticality is shown, and we
find δ(σ = 1.0) ' 0.501 and δ(σ = 2.0) ' 0.256, which are compatible with the
exponents found in [132]. (No survival probability for σ ≤ 0.5 is shown, due to
important finite-size effects). Finally, we show that the exponent is independent
of the value of µ̄ (see Fig. 2.8d), which just modifies the value of qµ at which
the system is critical. In other words, models with only gradient-dependent
(or “local”) recovery are in the same universality class as models with global
recovery terms at a fixed σ. This is consistent with the relevant terms in the
Reggeon effective field theory [134] which are the same for every value of µ̄.

Limit qλ, qµ → 0

In the limit in which qλ, qµ → 0, and λ, µ → +∞, in such a way that the
quantities qλλ, qµµ remain finite, the second reactions in Eqs. (2.9) and (2.10)
are both suppressed, and the methylation/demethylation dynamics takes place
only if the system is not fully demethylated/methylated. Indeed, in this case
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Figure 2.9. Kymographs at the transition point. Representative kymograph of
the infection/methylation profile, when the system is at the critical point (κ = 0
in Eq. (2.21), S(t) is a power-law). (a) For σ = 0.4 no compact domains can live
for long times, and the systems falls into the absorbing states after few hundreds
timesteps. (b) For σ = 1.5 the main domain remains compact and lives for the
entire duration of the simulation. Other domains can be created and erased. (c) For
σ = 4.0 the only active compact domain is generated by one infected seed. it can
live for a virtually infinite time.

there are two absorbing states defined by m̄ = 0, 1. The presence of two rather
than one absorbing states modifies the universality class, so that the system
is no longer equivalent to LRDP. In this case, the prototypical model is the
LRCDP. In standard (short–range) compact directed percolation a particle–hole
symmetry arises: m→ 1−m. Such symmetry is retained also in the long–range
version of the model. This symmetry is reflected in the noise term, that now
is obtained by imposing Γ′ = Γ′′ ≡ Γ; therefore we have η ≡

√
Γm(1−m)ζ.

Again, if we define qλλ = λ̄ and qµµ = µ̄, Eq. (2.19) becomes:

∂tm = κm(1−m) + DA∇σm +
√

Γm(1−m)ζ , (2.21)

where κ is a generic function of the microscopical rates λ̄ and µ̄. Unlike
Eq. (2.20), the effective action built from Eq. (2.21) has another symmetry under
the transformations m → 1− m and m̂ → −m̂ at κ = 0, which is the reason
why this variant of the model behaves differently from LRDP. Additionally,
the dynamical equation in Eq. (2.21) is well defined for all m in [0, 1]. Eq. (2.21)
predicts that for κ < 0 the completely demethylated state m̄ = 0 is stable,
whereas for κ > 0 the stable state is m̄ = 1. At κ = 0 the system undergoes a
discontinuous transition for every value of σ.

In Fig. 2.9 are shown three representative kymographs of the infection
dynamics at the transition, for different values of the contact exponent σ.
These kymographs are obtained by evolving our microscopic models, detailed
in section 2.6.1, on a lattice of length N = 104, choosing µ̄/λ̄ so that the
system is at the transition between fully marked and unmarked phases. As
already mentioned, the initial condition is a single infected seed located at
x = 5 · 103. For σ = 0.4 we see that no compact domains can form; instead, the
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Figure 2.10. Survival probability and transition point. (a) In this panel we show
the survival probability in a log–log plot, varying σ in the range [0.6, 4.0]. For
σ > 2 the exponent tends to the value predicted by the CDP model (δ = 0.5). As
σ decreases the exponent δ increases, and the transient is longer. (b) For σ < 0.6
no power laws are observed. Instead, the decay is exponential (here we plot the
survival probability in a log–linear scale). For σ & 0.6 the exponential decay
disappears, instead a power law behaviour takes place. (c) The location of the
transition point increases as σ decreases. For σ > 2 (short–range regime, SR) the
value of (µ̄/λ̄)c decays slowly to 0.5. For 1 < σ < 2 (long–range regime, LR)
(µ̄/λ̄)c the transition point scales linearly with the contact exponent. For σ < 1
(mean–field regime, MF) the location of the transition point is still compatible with
the linear scaling, but cannot be computed for σ < 0.6. In the inset we show the
divergence of the survival exponent δ as a function of σ.

infected/methylated domains are full of holes due to the long-range infection
process, and at late times the system falls into the absorbing state m̄ = 0
(Fig. 2.9a). For σ = 1.5 a compact domains opens in the middle of the lattice:
this can also create additional domains by infecting regions of the lattice far
away from it, since the interactions are still long–range (see Fig. 2.9b). For
σ = 4.0 the infection profile looks very similar to a typical CDP kymograph,
with a single fluctuating compact domain which can virtually persist forever
(Fig. 2.9c).

In Fig. 2.10a we show the survival probability as a function of time, for
different values of σ ≥ 0.6. For σ > 2 the slope approaches the value predicted
for the SVM (δ = 0.5). Indeed, one would expect that for σ ≥ 2 the substitution
∇σ → ∇2 holds and Eq. (2.21) becomes the well-known equation of CDP. This
is, however, not the case: the system displays a smooth crossover between the
long range and the short range behaviour, with the latter being re–established
only at σ & 4.0, as shown in Fig. 2.10c and its inset. A similar crossover has
been found in other models with Lévy flights, such as the LRDP [132] and the
LRVM [136]. Interestingly, we note that approximately the same value for the
crossover which we obtain was found in Ref. [136] for the LRVM. Moreover, it
is known that the SVM and CDP belong to the same universality class in d = 1,
but not in other physical dimensions.

For smaller values of the contact exponent than those considered in Fig. 2.10a
(i.e., for σ < 0.6) no power law can be detected in our simulations, see Fig. 2.10b.
This fact may be due to finite-size effects, which can be strong for such long
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interactions. Nevertheless, we observe that, after a very small transient, the
survival probability decays exponentially, S(t) ∼ exp(−k(σ)t). This exponen-
tial decay is absent for σ greater than 0.6− 0.7. Such crossover is highlighted
in Fig. 2.10b, where we replot the survival probabilities for σ = 0.7, 0.8 in
log-linear scale, which do not present any exponential decay. This change in
behaviour is compatible with an analysis of the Reggeon field theory [134],
which predicts a mean-field behaviour for σ < 1, as the real dimension d is
above the upper critical dimension dc = σ.

We close this section by discussing how we can map the microscopic rates
λ̄ and µ̄ to the effective parameter κ entering the phenomenological theory in
Eq. (2.21). To do so, we note that, in the limit σ→ +∞, the state of a lattice site,
say the i-th, can only change according to its two neighbours; a single infection
event occurs if a (recovered) boundary site is in contact with the methylated
neighbour (probability 1/2), otherwise it remains unmethylated (probability
1/2). Conversely, an erasure event occurs at the methylated boundary site with
probability 1. Hence, κ = 0 only if µ̄ = λ̄/2, and we conjecture the following
form for κ(σ):

κ(σ) =

(
1− µ̄

λ̄
f (σ)

)
, (2.22)

where f (σ) is a monotonic function which satisfies f (+∞) = 1/2. Such be-
havior is validated by simulations: in Fig. 2.10c we show the location of the
transition point as a function of σ. For σ < 2 the transition point scales linearly
with the contact exponent, whilst for σ > 2 it decays slowly towards µ̄/λ̄ = 0.5.
This indicates that σ ' 2 is the crossing point between the short–range regime
and the long–range behaviour. Interestingly, the value of δ seems to diverge
for smaller and smaller values of σ (see inset in Fig. 2.10c); such divergence
signals the crossover to the exponential decay regime shown in Fig. 2.10b.

2.6.3 Phase diagram of the system and connection with epige-
netics

We now consider a more general case where all parameters are non-zero, so
that there are no absorbing states in the system (qµ, qλ 6= 0). This is likely to
be more realistic as it includes the case where there is some generic biological
noise. In line with previous models for bistability in epigenetic patterns [84,
91], we consider a small chromatin region, with N = 100 beads/nucleosomes.
This is a realistic size to study, for instance, stochasticity in epigenetic domains
in yeast [84, 139], or a single small chromatin domain of about 20 kbp in larger
genomes (as in mammals).

To render the exploration of parameter space feasible, we set qµ = qλ = q0,
and λ̄ = µ̄ = 1− q0, and we study the behaviour of the model by varying the
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Figure 2.11. Phase diagram. (a) Phase diagram as a function of q0 and σ for a
system with N = 100. A transition between a marked and an unmarked regime
can be seen; the black line correspond to systems where m̄ = 0.5. The green line
instead separates a coherently unmarked regime from the disordered, or mixed,
regime. (b) Variance of the fraction of marked sites in the system, 〈(∆m)2〉. This
quantity peaks close to the transition between the marked and unmarked regimes
highlighting a region of enhanced bistability.

parameters q0 and σ. Such assumption implicates that the baseline rate due to
spontaneous conversions in real cell, as well as the writing and erasure rate
due to recruitment, are symmetric. The symmetry of the competing epigenetic
mechanism has been often considered in previous model, such as the ones
described in section 2.4. Physically, q0 can be viewed as a temperature-like
parameter that regulates the baseline marking/unmarking rates, and therefore,
the ratio noise–to–recruitment is q0/(1− q0). Additionally, the biologically
relevant values of σ are between 0 and 1 [140]. As this exponent should be
associated with the looping probability of a polymer representing the chromatin
fibre [141], the value of σ = 0.5 corresponds to looping of a random walk, σ ' 1
corresponds to looping of a self-avoiding walk [141], whereas σ ' 0 describes
the decay of contact probability with genomic distance in a crumpled (or fractal)
globule [142, 143].

In Fig. 2.11a we present the phase diagram obtained for different values
of q0 and for σ between 0.1 and 0.7. To find this phase diagram, we used a
truncated Lévy distribution to simulate long-range infection – i.e. P(|i− j|) =
A|i− j|−(σ+1), where A = σ/(1− (N/2)−σ). This procedure was employed
in order to limit boundary effects.

The phase diagram in Fig. 2.11a shows three distinct phases. First, for
small value of q0, although no real absorbing state is present, the system still
tends to reach a typical state with large m̄ (methylated regime), or with small
m̄ (demethylated regime). For sufficiently small values of σ, or equivalently
sufficiently long interaction range, long–range methylation dominates over
demethylation (bottom left region in the phase diagram). For larger σ, the fact
that the erasure is more likely at domain boundaries tilts the balance in favour
of demethylation, and m̄ ' 0 (top left region in the phase diagram). Finally, at
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sufficiently large values of q0, mean field theory applies. The latter predicts
that methylation and demethylation should balance giving m̄ = 1/2 in steady
state (as we consider λ̄ = µ̄). This is the mixed regime, where methylated
and demethylated sites coexist in a disordered system, and it is found to the
right of the green line in Fig. 2.11a. Note that, by using a truncated Lévy
distribution, one can also extend the phase diagram in Fig. 2.11 to negative
value of σ. Negative values of the contact exponent of finite domains of
chromatin are often found in microscopy experiments and Hi-C data [144].
However, for N = 100, we do not expect any different qualitative behaviour
from the diagram line σ = 0.1, since we are in the mean-field limit for which
all the sites connect with each other. Moreover, such values for σ would be
forbidden in the limit N → ∞, since Eq. (2.8) would not be integrable. At
larger N we expect a shift towards larger σ and q0 the transition line between
coherent and mixed regime. However, further analysis would be in order to
infer the behaviour for N → ∞.

2.6.4 Effective potentials and zero–dimensional equation

The line separating the coherent – either marked or unmarked – regime from
the mixed one (which we call the coherence transition line) can be mapped
out by analysing the probability distributions of m̄ in steady state, for different
parameter values, as shown in Fig. 2.12. From here on, we will use m ≡ m̄,
since we will always discuss the mean field without ambiguity.

In Fig. 2.12 we show the effective potentials V ∝ −log(P(m))– where P(m)

is the probability distribution function for m in steady state – in the different
regions, for the representative values of σ = 0.2 and 0.6. In the methylated
phase/regime (for σ = 0.2, m ∼ 1) the global minimum is located at m = 1
(see Fig. 2.12a). For σ = 0.6, we are in the demethylated phase, and the global
minimum is now located at m = 0. Increasing q0 at small σ, the system first
becomes demethylated (Fig. 2.12c, 〈m〉 ∼ 0.3), while for sufficiently large
values of q0 the effective potential has a global minimum for 0 < m < 1
(Fig. 2.12d), and the system is in the mixed phase. The green line in Fig. 2.11a
provides the boundary between the coherent regime (minimum at either m = 0
or m = 1) and this mixed phase/regime. It should be noted that, outside the
mixed regime, we always find two local minima at m = 0 and m = 1, so that
both these two states are always at least metastable in the coherent regime.
Besides this widespread bimodality, there is a robust bistability region close
to the transition between the methylated and the demethylated regime: this is
apparent from Fig. 2.11b, which shows the variance 〈(∆m)2〉 as a function of q0

and σ. Bistability arises due to the proximity to the methylated–demethylated
transition. Because the P(m) distributions are always bimodal, the transition
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Figure 2.12. Methylation effective potentials. In this figure we show some rep-
resentative plots of the effective potential V(m), for σ = 0.2 (red solid line) and
σ = 0.6 (green dashed line). For σ = 0.2, the increasing values of q0 we consider
cross both the marked/unmarked transition line and the coherence transition line.
For σ = 0.6, the values of q0 we consider cross only the coherence transition line.
(a) For small q0 the distribution is bistable, with the global minimum located at
m = 1 and m = 0, respectively for σ = 0.2 and σ = 0.6. (b) The increase of q0
produces a change in the weights associated with the two minima. (c) After the
transition point the global minimum becomes m = 0 in both the cases even if for
σ = 0.6 we are already beyond the coherence transition line. (d) For q0 = 0.04 the
system is in the mixed phase and the resulting unimodal distributions depend only
very weakly on σ, since (2.8) would not be normalized.
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is sharp and first-order like, hence coexistence (and bistability) naturally arise
near the critical line. In the bistable region, therefore, our model predicts that
epigenetic domains should be highly stochastic and may switch over time.

To better understand our simulation results, we now discuss a simple
analytically tractable approximation, in line with the zero–dimensional model
in section 2.4.1. Neglecting the spatial dependency of the order parameter
(gradient term) in Eq. (2.21), we can write down a dynamical equation for the
global methylation in our model, m, as follows,

∂tm = q0(1− 2m) + κm(1−m) +
√

Qm(1−m)ζ. (2.23)

The first term in Eq. (2.23) allows recovery from the m = 0 and m = 1 states,
which are then no longer absorbing state. Additionally, Q is the strength of the
multiplicative noise, and ζ is a Gaussian random variable, with 〈ζ(t)〉 = 0 and
〈ζ(t)ζ(t′)〉 = δ(t− t′). Note that we have neglected also the basal (additive)
noise. Such additive noise would arise if one cosiders the finite number of
writer–eraser complex, which renders the recovery from the m = 0 and m = 1
states stochastic. We want to solve the Fokker–Planck equation associated with
Eq. (2.23), for the probability P(m, t) that the system has a global methylation
m at time t. This equation reads as follows

∂tP(m, t) = ∂2
m

[
Qm(1−m)

2
P(m, t)

]
− ∂m [(q0(1− 2m)P(m, t)]

− ∂m [κm(1−m))P(m, t)]

≡ −∂m J(m).

(2.24)

By imposing no-flux boundary condition, J(m) = 0, we obtain the following
equation for the steady state distribution P(m):

∂mK(m) =
2 [q0(1− 2m) + κm(1−m)]

Q [m(1−m)]
K(m) , (2.25)

where we set P(m) ≡ (Q/2)m(1−m)K(m). Then, the stationary probability
distribution reads:

P(m) ∼ 1
m(1−m)

×

exp
(

2
∫ m q0(1− 2m′) + κm′(1−m′)

Qm′(1−m′)
dm′

)
.

(2.26)
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After some algebra, we find that the system is therefore described by the
following effective potential V(m):

V(m) ∝ (1− q0)κ̃m− (q0 −Q)log [m(1−m)] . (2.27)

Since λ̄ = µ̄ = 1 − q0 in our microscopic model, we have assumed κ =

(1− q0)κ̃. Therefore, there are three parameters, which are fundamental in
the mean-field treatment, namely q0, κ and Q. For q0 < Q, P(m) is bimodal,
since V(m) is minimised for m = 0, 1 – where V(m) diverges. Conversely, for
q0 > Q, V(m) becomes unimodal and it is minimised for

mmin =
1
2
− x

κ̃
+
|κ̃|
κ̃

√
1
4
−
( x

κ̃

)2
, (2.28)

where x ≡ (q0−Q)/(1− q0). Thus, the line q0 = Q determines a transition
line separating the region where the probability is bimodal, and the system
is coherent, from the unimodal region where there is a single stable state.
Note that κ̃ determines the methylation level in the latter case: if κ̃ > 0 then
mmin > 1/2, otherwise mmin < 1/2. In all cases, mmin approaches 1/2 as q0

tends to 1. In Fig. 2.13 we present a sketch of the line separating the bimodal
(epigenetically coherent) from the unimodal/mixed regime according to the
analytical theory in Eq. (2.23). Note that such boundary is independent of
the value of κ̃. Additionally, if we postulate that the sign of the linear term in
Eq. (2.28) changes, for instance with σ, λ̄, and µ̄, we can describe cases where
the coherent regime may correspond to either a methylated or demethylated
phase (top-left inset in Fig. 2.13).

2.7 Conclusion and future perspective

In summary, we have proposed here a simple one-dimensional stochastic model
for the dynamics of mark spreading and erasure inspired by the problem of how
the epigenetic marks spread along the genome. This is distinct from previous
models (some of which we have reviewed in section 2.4.1), that typically
consider the case where two or more different marks compete within the same
region. Within our model, methylation is viewed as a long–range “infection”
process mediated by the looping of the chromatin substrate. Importantly, while
infection is long range, we assume that the erasure/recovery occurs locally and
is enhanced at domain boundaries. In our microscopic model, we varied the
exponent σ, regulating the global folding of the chromatin polymer (and hence
the range of the infection process), as well as the baseline rate of spontaneous
methylation/demethylation, q0, which we have taken to be equal. The phase
diagram in the (q0, σ) plane shows two distinct transition line. First, there is a
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Figure 2.13. The bistable-unimodal transition, or the coherence transition line.
This phase diagram displays the transition between a bistable (BS), or coherent,
phase and a monostable (MS), or mixed phase, as they are predicted by the mean-
field theory. In the first phase (white) the two minima of the effective potential
V(m) are m = 0, 1. In inset we show a typical bistable potential, for q0 = 0.001,
Q = 0.01, in both the cases κ̃ > 0, green line, and κ̃ < 0, purple line (|κ̃| = 0.1). In
the latter phase only one minimum is present, and its location mmin varies from 0
close to the transition to 0.5, for q0 = 0 (if κ̃ is negative). In inset we show a typical
unimodal potential, for q0 = 0.1, Q = 0.01 and κ̃ = −0.1. Colors in the unimodal
(mixed) regime are related to the value of mmin for a fixed value of κ̃ = −0.1.

transition between a coherent regime (either methylated or demethylated), and
a disordered, or mixed, regime (where marked and unmarked nucleosomes
coexist with no domain formation). Second, in the coherent regime there is a
transition between a methylated phase, when long–range infection is efficient
(small σ), and a demethylated phase when infection is shorter–range (large
σ). Increasing q0 favours the demethylated phase in our parameter range: we
interpret this as due to the boundary erasure term which tips the balance in the
favour of demethylation, when σ is sufficiently large, and for realistic system
size, say, of a hundred units/histones.

We have shown that the transition between coherent and mixed regimes can
be understood on the basis of a simple stochastic differential equation which is
analytically tractable, and which predicts there is a qualitative change in the
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nature of the effective potential governing the steady state behaviour of the sys-
tem. At low q0, the potential has two local minima (m = 0, fully demethylated,
or m = 1, fully methylated, whereas at larger q0 noise dominates and there is a
single minimum at intermediate m. The transition between methylated and
demethylated phase, on the other hand, can be understood qualitatively as a
transition between absorbing states in the limit where q0 → 0. In this limit, we
have shown that the model is mappable onto a special case of the contact pro-
cess, known as long–range compact directed percolation, which encompasses
the voter model with a long–range interaction. If we modify rates such that
only one absorbing states remain, the universality class changes and becomes,
as expected, that of “standard” (i.e., non-compact) long–range directed per-
colation. We should remark that the mapping between this system and other
paradigmatic models such as ‘voter model’, LRDP and LRCDP can inform
on the fundamental nature of the epigenetic process: indeed, two mapped
different process share the same scaling laws at criticality, irrespectively of the
details of both systems.

The first-order nature of the transition (in the q0 → 0 limit) endows the
system with bistability and hysteresis close to the critical line. This provides
a pathway to the establishment of epigenetic memory — the phenomenon
through which a chromatin region “remembers” its state even following a
relatively strong perturbation. Interestingly, and in stark contrast with other
models, bistability does not arise due to SSB and, in the unstable regime, also
the unmarked phase can retain memory of its state.

It is thus tempting to speculate that cells may tune the σ and q0 parameters,
which are associated with the conformational changes of chromatin and the
bare affinity of the writing/erasing enzymes, so as to control the variability
in the epigenetic patterns and thus, in turn, the variability in gene expression
within the same population. Recent experiments in yeast support the idea
that this may be a biological bet-hedging strategy for survival against random
attacks [145].

This model is a good starting point for more sophisticated models. Anal-
ogously to [82, 87], one could try to model this infection–like process onto a
polymer in a three–dimensional setup. Here, the advantage would be to have
long–range contacts directly into the model, without explicitly modeling the
Lévy distribution as in the one–dimensional version.
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Chapter 3

Solid and glassy behaviour of
chromatin–binding proteins

We now take a step further into the study of the physics of genome. In eukary-
otes, the chromatin fibre must be highly folded in order to fit inside the nucleus
(10µm of diameter). However different levels of compaction and order can
serve different purposes: as already mentioned in the previous chapter, tightly
packaged chromatin regions are often transcriptionally repressed, whereas
more swollen regions are usually transcriptionally active. Additionally, the
presence of some “regularity” in the nucleosome organisation can have a crucial
implications for epigenetic territories estabilishment and chromatin functions
[146, 147]. In light of this, it is important to understand more about the level of
chromatin compaction and the underlying biophysical mechanisms.

Whether regular chromatin structures can emerge in vivo at the 30–nm
length scale was one major question which arised in the early 80, since J.
T. Finch and A. Klug speculated that the vast majority of genome can be
composed of 30–nm fibers, which is formed by coiling the 10–nm fibre into
rather compacted ordered structures [148]. Later, Several works tried to solve
this puzzle [146, 149–151], but modern experiments seem to exclude that an
ordered compacted fibre can form in vivo. Nowadays, The common view has
veered towards a different understanding of chromatin organization: rather
than due to nucleosome stacking and intra–fibre contacts, ‘heterochromatic’
chromatin fibre can form and stabilise due to associated proteins, such as
cohesin, heterochromatin protein 1, etc. which bind to chromatin and can
determine its transcriptional state. Accordingly, focus has shifted towards the
understanding of the features of chromatin–protein aggregates.

In the late 80s the idea of a “liquid–like” aggregation of the 10–nm fibre
were already taking place [152]. More recent papers seems to support the
formation of liquid chromatin drops [153–156], mainly highlighting that nu-
cleosome are irregularly assembled at the 30–nm length scale. Concomitantly,
a vast literature point to the fact that interacting chromatin–binding proteins
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facilitate chromatin compaction via liquid–liquid phase separation. This latter has
become the most touted argument to explain heterochromatin formation and
co–localisation of chromatin and associated factors. However, relatively little
is known about chromatin dynamical behaviour. From a physical standpoint,
chromatin dynamics must be largely different from that of simple diffusing
particles in liquid droplets: as a consequence of its polymeric nature, it should
be always sub–diffusive. In principal, also chromatin–binding protein droplets
could exhibit behaviours that are not strictly liquid, depending on their self–
interacton or chromatin affinity [157].

Indeed, several cases of maturation of “liquid” protein droplets toward
gel or solid state has also been recently reported [158, 159]. Amyloid–like
fibers, and other proteins containing low complexity domains, can form gels,
which are non-dynamic and rather stable [160]. Yeast protein Pab1 forms
glassy droplets that play an adaptative role, promoting cell survival upon heat
shock [161].

Similarly, one could ask if the same applies for chromatin–binding aggre-
gates: are those clusters liquid or not? Is there a coexistence of a mobile and
an immobile population, and if so, what determines such an internal distinc-
tion? How does this affect chromatin dynamics and structure? In this chapter
(and lateron in chapter 4) we propose a simple mechanism that entails di-
verse dynamical regimes for chromatin–binding proteins and chromatin itself.
The model is based on a physical phase separation induced by “molecular
bridges”, which are multivalent proteins capable of joining distal regions of
the chromatin fibre. This “universal” mechanism can explain how chromatin
compact together with some chromatin–associated proteins, which do not
self–interact [162–164]. A similar phase separation was previously investigated
by experimental models with gold nanoparticles that interact with double–
stranded DNA [165, 166]. In this project, we extensively explore the internal
dynamical properties of such proteins clusters, characterising proteins mobility
and local ordering.

The chapter is organised as follows: first, in section 3.1, I will describe
the “conandrum” of the 30–nm fibre; this section serves to show the modern
view of chromatin organisazion: chromatin fibre is more likely to be in an
“interdigidated state” than folding into regular structures. In section 3.2, I
review the main aspects of liquid–liquid phase separation, starting from the
classical problem of binary mixtures; then, I briefly list all living organelles
which are thought to undergo LLPS, and, in particular, we briefly discuss on
the role of cohesin, which can cluster without self–interacting. The aggregation
of cohesin in vitro can be explained by another type of phase separation, which I
will refer to as bridging–induced phase separation (BIPS): this will be the focus
of section 3.3. First, we review this simple mechanism, which leads to several
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phenomenological behaviours; then, we show that several states of matter can
be associated with the structural and dynamical properties of living aggregates;
finally, we show a piece of evidence related to BIPS of cohesin, in vitro. All the
aforementioned sections are part of the literature background. In section 3.4.1,
I describe the main feature of my work. A large section has been dedicated
to methods and a mean field theory, which will serve to clarify the following
sections; then, I report the main results obtained by simulating the dynamics
of proteins (modelled as spheres) interacting with a chromatin fibre (modelled
as a bead polymer) and undergo bridging–induced phase separation.

3.1 Chromatin organization: the conundrum of the

30–nm fibre

In section 2.1, I have described the bead–on–a–string model for chromatin,
whose primary structure consists of a nucleosome and linker DNA, which
repeats to form the extended 10–nm chromatin fibre. However, in mam-
malian cells, the 10–nm chromatin fibre is more likely to be compact, as sev-
eral structural associated proteins favour looping, inter– and intra–fibre bind-
ing [154, 167]: linker histone [168], transcription factors, RNA polymerase II,
CCCTC–binding factor (CTCF) [169], cohesin [170] and heterochromatin protein
1 (HP1) [171] are known to co–localise with chromatin. During interphase (the
phase between one mitotic phase and the next), chromatin assembles and orga-
nizes into chromosomes; different degrees of compaction are needed to either
favour accessibility of some chromatin region (euchromatin) or compartimen-
talise silenced chromatin stretches into compact domains (heterochromatin).
Thus, the following question arises: can the 10–nm fibre adopt an ordered
secondary structure? At first glance, some ordering of the 10–nm fibre seems to
be required in order to achieve chromatin organization [148]. Many structures
were speculated, from the ‘one–start’ helix to the more complicated ‘radial loop’
structure, as shown in Fig. 3.1.

Nonetheless, the definitive conformation of chromatin at the 30–nm level
remains elusive. First of all, the particular structure adopted is too sensitive
to the length of the linker DNA [150, 173] and on the presence of the linker
histone H1 [174]; in vitro experiment show that different salt concentrations
produce different chromatin conformation [172] (see also Fig. 3.2). Simulations
on model 10–nm fibre predict all possible regular structures, but only at null
temperature [100]. More importantly, cryo–electron microscopy (cryo-EM),
small–angle X–ray scattering (SAXS) and super–resolution microscopy seem
to exclude the existence of regular, hierarchical structures of the 30-nm fiber,
at physiological condition [172]. A combined–technique work by Nishino et
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Figure 3.1. Classical models of ordered 30–nm chromatin fibre (a) One–start he-
lix (solenoid) and (b) two–start helix (zig–zag) [atoms view (top) and cartoon
(bottom)]. (c) Two classical higher order chromatin structure models: the hierar-
chical helical folding model (left) and the radial loop model (right). In the radial
loop model, many loop structures of the 30-nm fiber (red) wrap around the scaf-
fold structure (gray), which consists of condensin and topoisomerase IIα. Figures
adapted from [154]

Figure 3.2. In vitro conformations of the chromatin fibre. 10–nm fibre [extended
on top] can fold differently, depending on the salt concentration (Mg2+). At low
salt concentrations, chromatin folds into a 30–nm solenoid (bottom–left schematics).
For higher salt concentration, a globular polymer melt structure forms (bottom–
right schematics). Figure taken from [172].
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al. [175] predicts controversial reults: they concluded that mitotic chromosomes
are more likely to be arranged in a disordered, fractal way, even if the same
work present evidence of prominent peaks at ∼ 11 and ∼ 6 nm in SAXS
analysis for erythrocyte nuclei, as expected for a 30–mm two–start helix.

In summary, the absence of experimental findings of the 30–nm structural
hierarchy led the common view to ‘migrate’ towards the idea that a disordered,
interdigited ‘polymer melt’ characterise the nature of interphase and mitotic
chromosomes in vivo, [schematics in Fig. 3.2]. In light of this, several biological
papers suggest that chromatin, and the associated binding factors and proteins,
can compartmentalise due to a liquid–liquid phase separation (LLPS). This
latter concept is the object of the next Section.

3.2 Chromatin compaction and nuclear bodies: LLPS

or something else?

Liquid–liquid phase separation (LLPS) is the physical mechanism that causes
the demixing of coexisting miscible components. That is, in spite of the entropic
loss entailed by the formation of two or more distinct phases, the energetic
gain of phase separation is much more advantageous, in some region of the pa-
rameter space (component concentration, temperaure, pressure, pH, crowding
agents, etc). Several biological and physical papers point to the fact the LLPS
is responsible of the aggregation of proteins, and, possibly, to the compaction
of region of chromatin. Clearly, such a mechanism would provide an general,
biochemically independent explaination of how chromatin conformation and
chromatin function. Here we present a simple case of LLPS, based on the most
general theories of binary fluids and first–order phase transition [176, 177].

In a binary fluid, two fluids of type A and B, of concentrations φA and φB,
with attractive self–interaction of strength εAA and εBB respectively, and an
interaction between different species, of strength εAB. Thus, these interactions
would separate the system into A–rich and B–rich regions, dependently on
the temperature T. The critical temperature is a function of the microscopic
interaction strength and concentrations. In general, at large temperatures the
mixing entropy overcomes the tendency to separate, and the equilibrium phase
is uniform and mixed. At lower T, demixing occurs.

In this latter scenario, when φA � φB – which is always the case when
considering a single macromolecular species (species A) in water (species B) –
LLPS can occur through two mechanisms, depending on the initial conditions
and on the quenching procedure. At intermediate temperatures, i.e. in the
coexistence region, the two distinct phases estabilish via nucleation and growth
of the species A, i.e. a random, thermal–driven fluctuation of the density of
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component A in space leads to the formation of a droplet, or nuclei, through a
condensation mechanism. If the droplet is large enough, the system escapes
the metastable uniform phase, and the a A–rich domain grows. In a three–
dimensional isotropic system, spherical domains are preferred, as to minimize
the interfaces between the two phases.

At lower temperatures, in the region subtended to the spinodal curve, a fast
phase separation occurs via the spinodal decomposition: even a small perturbation
at very large frequencies, or small length scales, propagates through the system,
creating several nuclei which grow into larger droplets. No nucleation barrier
needs to be overcome in the phase transformation, since the uniform phase
is unstable. When large droplets estabilish via spinodal decomposition, then
a full phase separation can be reached due to coalescence of clusters. Another
route to full phase separation is the so–called Ostwald ripening, where material
is transported from small to large clusters, due to chemical potential gradients
which estabilish between small and large droplets. As shown for instance in
Ref. [176], all these mechanisms, during all stages, predict a scaling law of
L(t) ∼ t1/3 for conserved order parameters (Model B), with L the length scale
of fluctuations (the radius of the forming droplet).

An old–fashioned (but very interesting and detailed) review on the LLPS
and, more in general, on the physics of phase transitions is in Ref. [177].

3.2.1 LLPS, chromatin compaction and connection with cohesin

Along these lines, different studies have now proposed that
phase separation might, at least in part, control transcription
[8–10] and, as a result, genome architecture and accessibility
[11,12] via the formation of a large variety of membraneless
nuclear bodies (figure 1a). Two conceptually different mechan-
isms have been proposed to explain how this might be
achieved. On one hand, ‘polymer–polymer phase separation’
(PPPS) can promote the assembly of chromatin globules in
the nucleus via proteins which interlink its different segments;
on the other, ‘liquid–liquid phase separation’ (LLPS) can lead
to droplet formation in the cytoplasm and nucleoplasm,
stabilized by multivalent interactions among the participat-
ing components [13]. In other words, in the case of PPPS,
molecules need not actively bind to one another but are depen-
dent on the availability of chromatin (and most probably
of other contributing factors), while in LLPS, bridging inter-
actions with nucleic acids are not a prerequisite for droplet
formation compared to the interactions between disordered
domains of the contributing proteins (for a comparison of the
two, see table 1).

1.1. PPPS in chromatin organization
Chromatin in cell nuclei is by and large flexible and accessible,
due to the ability of nucleosomes to locally fluctuate [35,36],
hence the 10 nm chromatin fibre [37] acquires a more ‘liquid-
like’ (rather than static) behaviour [38]. In this ‘liquid-like’
state, nucleosomes found in close proximity can induce PPPS
with the contributionof certainbridging interactions. Such inter-
actionsmay, for example, occur among histone tails (and bound
factors thereon). In a decreasing order ofmagnitude, histoneH4
tails seem to participate in interchromosomal interactions,

accompanied by H3 and H2A/B tails, although the latter seem
to mainly help maintain fibre-to-fibre interactions [14]. Cohesin
and condensinhave also been identified asmajor components in
diverse processes of genome folding [39,40]. The cohesin com-
plex (SMC1A, WAPL and NIPBL) binds to chromatin and
mediates its compactionand loopingpresumablyby ‘loopextru-
sion’ [15,41,42]. The CCCTC-binding factor (CTCF) also
critically participates in this process, as it almost invariably co-
localizes with cohesin at TAD boundaries as well as at the
CTCF loop anchors [7,15,16]. Interestingly enough, there exist
strong indications that CTCFs phase separate upon entry of
human primary cells into senescence, a state of irreversible cell
cycle arrest. It appears that these ‘senescence-induced CTCF
clusters’ (SICCs; figure 1a,b) constitute an intermediate between
PPPS and LLPS, as they remain bound to chromatinwhile large
multimeric SICCs are created on top [18]. In support of this
potentialCTCFmodeof clustering, comedataofRNA-mediated
CTCF interactions that also affect the spatial organization of
chromatin in mouse ES cells at the sub-Mbp level [17]. Of
course, many other proteins carrying DNA-binding motifs
alongside disordered domains exist in mammalian cells and
could in theory bridge chromatin and drive PPPS [43], thus
affecting the spatial organization of different genomic compart-
ments. Recent studies [19,20] describe such a role for HP1α,
which marks heterochromatic regions throughout the genome
and, through association with the histone methyltransferase
SUV39H1, can spread along the DNA fibre. HP1α uses its
N-terminal chromodomain to interact with H3K9-methylated
nucleosomes, while self-interacting to other HP1α molecules
via its C-terminal ‘chromo-shadow’ domain [30]. Their cluster-
ing, on the basis of the PPPS model, does not primarily rely
on direct interactions between the participating bridging
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Figure 1. Phase separation in the cell nucleus. (a) Cartoon depicting different kinds of membraneless entities in mammalian cell nuclei, ranging from the large
nucleolus (blue; 0.2–3.5 µm) to transcription factories (red/pink, including histone locus bodies, ‘HLB’, orange; approx. 0.1 µm), Cajal (green; 0.3–1.0 µm) and
Polycomb bodies (black; 0.2–1.5 µm) or splicing speckles ( yellow; 20–50 nm) and paraspeckles (brown; 0.2–1.0 µm). (b) Nuclear phase-separated entities
such as SICCs or SAHFs, forming on the basis of HP1α (purple in (a); less than 0.5 µm) or CTCF (light purple in (a); 0.5–1.5 µm), become most evident
under conditions of cellular ageing. At the same time, the nucleolus changes in shape and dispersion in chronologically aged or longevity-related conditions.
(c) Persistence of elevated nuclear ATP levels, in conjunction with chromatin/protein modifications and high local RNA titres, aid in the maintenance of supramo-
lecular condensates (factories) by TFs and the general transcription machinery, while low ATP levels, Mg++ cations and additional insofar unknown factors will deter
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Figure 3.3. Membraneless organelles. Figure taken from [176].
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LLPS has recently much been touted to explain the aggregation of cellular
molecules into membraneless organelles [178–180]. In the nucleus, segregation
of chromatin–related proteins and chromatin compaction are often tightly
related. The development of modern techniques like genome–wide chromatin
organization analysis (Hi-C) has improved our understanding of chromatin
organization; chromosomes are generally divided into alternating Mbs–long
compartments [126, 181], or ‘territories’ [182]: A–/B–compartments (active and
repreessed chromatin regions, respectively) and TADs (topological associated
domains). The former have been found to be quite dynamic, as, in mammals,
36% of the genomes changes compartment during development [182]. In
Ref. [183], correlations between methylation patterns and A–/B–compartments
have been revealed, suggesting that chromatin territories are not static.

However, LLPS does not require any interaction between DNA or chro-
matin, and chromatin–binding factors. Indeed, some of the molecules repre-
sented in Fig. 3.3 are thought to assembly without interacting with chromatin.
The nucleolus is the paradigmatic example: an aggregate of several proteins
and RNA molecules which is involved in the production of ribosomal units,
which display a rapid recovery after fotobleaching, exchange of molecules with
the environment and coalescence of smaller droplets into a larger one. Also
paraspeckles and Cajal bodies can cluster without chromatin [184].

Although LLPS represent the prime candidate mechanism which explaines
macromolecular crowding and assembly, it cannot be the relevant for agglom-
eration of non–interacting proteins. In this respect, cohesin is a vivid example.
Cohesin has been implicated in a wide range of functions, such as pairing
of homologous chromosomes during meiosis, formation and repair of DNA
breaks and transcriptional control [185]. In particular, cohesin guarantees
chromatin compaction due to loop extrusion [186]

Self–interaction of cohesins dimers have not been detected in yeast (ex-
cept for Ref. [187], where the authors claim that in budding yeasts cohesin
can oligomerize both on and off chromatin), and in human cells is not well
known [188]. In spite of this, there is evidence that cohesin phase separate in
vitro, or at least it co–localise with clustering proteins, such as transcription
factors [189]. Since cohesin clustering function as support for the estabilshment
of droplets of other proteins, another mechanism, different from LLPS, that
explains the aggregation of such macromolecules in the proximity of DNA is
in order. The bridging–induced phase separation (BIPS) seems to fill this gap: a
new type of phase separation, which can entail the formation of spherical–like
droplets without self–interaction among single constituents.
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3.3 BIPS: a physical mechanism for chromatin–mediated

phase separation

BIPS is a physical mechanism which leads to phase separation of multivalent
chromatin–binding proteins or complexes that can only interact with chromatin.
When binding to chromatin, proteins can bridge between different chromatin
regions, as the chromatin fibre is capable of folding in the three–dimensional
space. Thus, the local density of chromatin increases at the binding sites, creat-
ing attractive basins for other proteins which leads to further protein binding
in those regions. Without any mechanism that hinder this positive feedback
loop, the protein foci grow, and eventually coarsen until a single protein–rich
droplet remains. Such a mechanism, often called polymer–polymer phase
separation (PPPS), was firstly introduced in [130, 190, 191], then therotically
studied in [162].

For non–specific binding, which means that proteins can bind everywhere
along the fibre with the same affinity, a macrophase separation occurs; namely,
independently of the number of proteins, different nuclei will grow and, even-
tually, coalesce into a single droplet. Further studies on the properties of BIPS
have revealed that two different competing mechanisms can lead to microphase
separation, namely the arrest of the droplet coalescence:

1. at equilibrium, the insertion of specific, equispaced, strong binding sites
for proteins, joined by larger stretches, say of lenght l, of weakly binding
chromatin. Proteins will accumulate close to the specific sites, promoting
bridging between them, and the formation of loops of length ≈ l. How-
ever, if the number of proteins is sufficiently small, clusters only grow
up to a self–limiting size. This is due to the ‘entropic’ repulsion among
loops, which prevent different clusters from coalescing [164, 192]. The
entropic cost of forming a ‘rosette’ of n loops (which is superlinear in n)
counteract the attraction term, which would cluster all specific binding
sites [192] (through bridging).

2. proteins can switch between an active state and an inert state. Biochemical
reactions can modify DNA-binding protein, affecting protein affinity for
chromatin. Therefore, by modelling protein switching with rate α, we
have effectively only a fraction of proteins bound to chromatin. Also, this
mechanism competes with the growth and merging of different droplets,
leading to microphase separation [163].

Both mechanisms provide simple explainations of some realistic phenomenolo-
gies seen in vivo; in fact, nuclear bodies only grow up to a finite size. Many
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(e) (f)

Figure 3.4. The bridging–induced attraction (micro)phase separation (a) A chro-
matin fibre is modelled as a bead–and–spring polymer, with spherical monomers
(blue beads). Proteins (modelled as red spheres) bind to the chromatin fibre non–
specifically. As proteins are multivalent, upon binding they create bridges which
increase local chromatin density. Due to the density increase, more proteins can
bind (right image). This effect has been called the “bridging-induced attraction”.
(b) As a result of the attraction, proteins undergo full phase separation. Left panel:
at early times, large droplets form along chromatin and grow. Right panel: at
equilibrium, all droplets merge into a single cluster. (c) Here, proteins interact
both non–specifically (with low affinity to blue dots) and specifically (with strong
affinity to either pink or light green). Red and dark green beads model two dif-
ferent transcription factors, which bind to pink and light green chromatin beads,
respectively. (d) Now, bridging–induced attraction produces microphase separa-
tion, since steric interaction between different loops prevent coalescence of clusters.
Right image shows only green and red clusters. (e) Proteins switch between active
(red beads) and inactive (grey) states, with rate α (panel (i)). Red proteins inter-
act with chromatin with some affinity, while grey proteins interact only sterically
(panel (ii)). In this model, protein can also switch between active and inert states
while bound. (f) Snapshot for N = 4000 switchable proteins, with switching rate
3 · 10−4 inverse brownian times. Figures adapted from [163, 164]
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transcription factors interact non–specifically, but weakly, with DNA and chro-
matin via electrostatic interactions, except for some specific DNA or chromatin
sites. Those sites, which model specific cognate DNA sequences, mimic, for
instance, the different regiones of the genome interested by specialised fac-
tories of RNA polII and PolIII [193, 194]. Additionally, several factors and
proteins are subject the posttranslational modifications (e.g. through phospho-
rylation) which modify their conformation and disabling their ability to bind
chromatin [195].

3.3.1 Nuclear organelles dynamics: liquid or immobile?

BIPS has been often associated to LLPS in terms of the liquid character of the
chromatin–protein globules. The majority of FRAP experiments (fluorescence
recovery after photobleaching) show that nuclear bodies are very dynamic. In
FRAP experiments both internal mixing and the exchange of material with the
soluble pool are observed, which measure how dynamic are proteins inside
clusters [196]. Usually, one half of the droplet (or an internal spot) is photo-
bleached, and then, the real–time mixing between the two halves is followed,
by tracking the normalised intensity of the outcoming fluorescence.

Several lines of evidence seemed to suggest that many proteins rapidly
and continuously enter and exit nuclear organelles: highly mobile, diffusive
mechanism of movements were recognized in nuclear compartments [197,
198]. On the contrary, in Ref. [196] several relaxation timescales were identified
for two internal components of Cajal bodies, being the longest timescale of
∼ 33min [199]. In HP1 droplets, a coexistence between mobile and immobile
populations have been detected [200] and gel formation at long times [201]. In
bacteria, H–NS are organised in ordered array [202], which suggest a solid–like
structure of the H–NS clusters.

In general, contradictory results have been shown and different viewpoints
proposed. Yet, whether such proteins are really liquid or not when bridging
distant region of chromatin is still unknown. In the following paragraph,
I present the striking experimental findings which relate cohesin droplets
formation to the bridging–induced attraction. There, a liquid–like behaviour
of cohesins, when they undergo full BIPS, has been shown through FRAP
experiments.

3.3.2 BIPS might be in action during cohesin clustering

It is worth to mention that, only recently, the first experimental evidence of a
possible BIPS has been shown in [203]. There, the authors show that cohesin
clustering is ATP independent, involves many complexes (∼ 720) and requires
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DNA to form, as shown in Fig. 3.5). In vitro, the liquid behaviour of cohesin is
supported by the following piecies of evidence:

• the shape of the droplet appear spherical–like;

• neighbouring clusters merge over time;

• after merging, clusters become spherical again.

• full and rapid recovery after FRAP, which demonstrate that the droplet
can exchange cohesins with the environment.

Ryu et al., Sci. Adv. 2021; 7 : eabe5905     10 February 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 10

20

40

60

80

D
N

A 
co

m
pa

ct
io

n 
tim

e 
(s

)

A B

D

2 µm

SYTOX Orange–labeled DNA Compacted DNA

C

Cohesin
complex

E F

Labeled
cohesin complex

SxO DNA: 561 nm
Alexa-cohesin: 647 nm

SxO DNA
(561 nm)

Alexa647-cohesin
(647 nm)

G

H ICohesin bleaching step size Cohesin cluster intensity (a.u.)

20 25 30
0

10

20

Co
he

sin
 in

te
ns

ity
 (a

.u
.)

Time (s)

 

 

0 5 10
0

5

10

15

C
ou

nt

Cohesin intensity (a.u.)

 

 

Cohesin
complex

DNA

Cohesin
complex

Cohesin
tetramer

M

100

200

2 µm

 

0 10 20 30 40 50
0

10

20

30

40

D
N

A 
cl

us
te

r s
iz

e 
(k

bp
)

Time (s)

 

 

J K

L

Cohesin-complex and DNA

DNA only

Cohesin-complex

200 nm

400 nm400 nm 0

50

100

150

 

 

C
lu

st
er

 v
ol

um
e 

(1
0³

 n
m

³) N
um

ber of cohesin

200 nm

Cohesin
complex

2 µm

0 50 100 150

0

5

10

15

C
om

pa
ct

io
n 

si
ze

 (k
pb

)

Time (s)

 

 

0 50 100 150
0

200

400

600

C
oh

es
in

 in
te

ns
ity

 (a
.u

.)

Time (s)

 

 

Flow

0 1000 2000 3000
0

10

20

30

C
ou

nt

Number of cohesins/cluster

 

3000 6000 90000

P > 0.05 
P > 0.05 

P = 0.0021 

+
+

+

+

+ + + +

+ + + + +
+ + + +

+
+

+

P > 0.05 

Cohesin tetramer
Cohesin loader

Scc2C
ATP

Temperature Room temperature 32°C

P < 0.001 P < 0.001
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Figure 3.5. DNA compaction mediated by cohesin complex. Atomic force mi-
croscopy images of (J) DNA–cohesin agglomerate (K) cohesin complexes only and
(L) DNA only. Note that DNA is required to have a single chromatin–cohesin
cluster, compare with panel K. Figure taken from [203].

Furthermore, they draw a phase diagram of cluster formation at various salt
condition and coehesin concentrations. They find that 3–kbp is the critical DNA
length to trigger the phase separation, beyond which the radius of gyration
of scales as Rg ∼ Lν, being ν ≈ 0.45. Simulation show that such exponent is
compatible with proteins with effective valence close to 2–3, while multivalent
proteins would give ν ≈ 0.33, as predicted by the Flory theory for collapsed
globules.

Similarly, several other proteins could virtually behave as cohesin, espe-
cially in vivo. In Ref. [204] three other prototypical chromatin compartments
(the nucleolus, clusters of active RNA polymerase II and pericentric heterochro-
matin domains) have been discussed, in relation to the enrichment of proteins
and RNA in those regions, which can mediate chromatin compaction. It is
therefore speculated that BIPS can occur in all these cases, assuming the role
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of universal physical paradigma for phase separation of chromatin–binding
factors in vivo.

In the next section, I will show that equilibrium BIPS entails multiple
different dynamical regimes, for non–specific chromatin and in the presence of
strong binding sites. The results of this work can thus help us to decipher this
puzzling scenario.

3.4 Dynamical heterogeneity is associated with solid–

like and glassy structures in BIPS clusters

In this chapter, we will study the internal dynamics of quasi–spherical droplets,
which form due to the bridging–induced attraction (BIA) between multivalent
proteins and chromatin, in the absence of chromatin–chromatin or protein-
protein attractive interactions. We consider two different scenarios: in the first
case, proteins interact non–specifically with all chromatin beads, mimicking
the behaviour of proteins which bind to some heterochromatic regions of the
genome; in the second case, a chromatin bead with a high affinity is placed
every 30kbp along the chromatin chain, modelling the specific binding sites for
transcription factors and cohesin loading.

3.4.1 Simulation scheme

In our coarse-grained approach, we model the chromatin fibre as bead-and-
spring polymer, which consists of L consecutive spherical beads of diameter
σ = 30nm, held together via finitely extensible non-linear elastic (FENE) bonds.
The FENE potential associated to two adjacent polymer beads located at the
position ri and ri+1 reads:

UFENE(ri,i+1) =UWCA(ri,i+1) +

− KFENER2
0

2
log

[
1−

(
ri,i+1

R0

)2
]

.
(3.1)

where ri,i+1 ≡ |ri − ri+1|, kB is the Boltzmann constant and T the temperature.
We set the FENE bond energy KFENE = 30kBT/σ2, and the maximum extension
R0 = 1.6σ; Hereon, we use energy units of kBT throughout. The first term
in (3.1) produces a pure repulsive force which prevents beads from overlapping.
This is provided by the Weeks-Chandler-Andersen (WCA) potential:

UWCA(rij)

kBT
=

 4
[( dij

rij

)12
−
( dij

rij

)6
]
+ 1

rij
dij

< 21/6,

0 otherwise,
(3.2)
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where dij = σ is the mean of the diameters of the beads i and j (here beads are
all of the same size σ). Non-adjacent beads also interact via the WCA.

The bending rigidity of chromatin is modelled via the Kratky–Porod poten-
tial:

UBEND(θi) = KBEND [1− cos(θi)] , (3.3)

where θi is the angle formed between any triplet of beads i − 1, i and i + 1,
i = 1 . . . L, and KBEND is the bending energy. In vitro experiments show that
the 30–nm chromatin fibre has a persistence length of between 40–200nm [205].
A reasonable estimation for our model is thus lp ' 120nm. In light of this, we
choose lp = 4σ, from which KBEND = lpkBT/σ follows.

In our system, N active proteins can bind the chromatin fibre. Proteins are
modelled as spherical beads of diameter σ. For simplicity, we assume that the
proteins are the same size as the chromatin beads (a realistic assumption, as
each is likely to be a protein complex, as is the case for human cohesin [206]).
Each protein can interact with a chromatin bead via a truncated Lennard-Jones
potential

ULJ(rij) = 4ε

( σ

rij

)12

−
(

σ

rij

)6

−
(

σ

rc

)12
+

(
σ

rc

)6
 , (3.4)

where ε is the interaction strength, rij is the distance between the i-th protein
and the j-th polymer bead, while rc is a cutoff distance which set the interaction
range. In our simulations we set rc = 1.9σ, while we study our system at
different ε. Observe that, when rc = 21/6σ we obtain the WCA potential,
which corresponds to Eq. (3.2) for ε = 1kBT. In the specific case we always
set ε = 3kBT (before the transition point in the non–specific case), while the
specific sites interact with proteins with a larger energy εsp > ε.

Langevin dynamics

We use the LAMMPS software [207] to perform Langevin dynamics. The
dynamics of each polymer and protein beads of mass mi (i = 1 . . . N + L) at
position ri is determined by the equation

mi
d2ri
dt2 = −∇ri Ui − ξi

dri
dt

+
√

2kBTξiηi(t), (3.5)

where Ui is the sum of all the potentials at the position ri. The friction ξi sets
the diffusion constant Di = kBT/ξi for each bead; we set mi = 1 and ξi = 1.
The vector ηi is represents white noise with components which satisfy

〈ηiα(t)〉 = 0 and 〈ηiα(t)ηjβ(t′)〉 = δijδαβδ(t− t′). (3.6)
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where ηiα is component α of the noise vector and δij and δ(t) are the Kronecker
and Dirac delta functions respectively. (3.5) is solved using a velocity-Verlet
algorithm with timestep 0.01τLJ, where τLJ is the simulation time unit defined
by τLJ =

√
mσ2/kBT. As we set kBT = 1, we have τLJ = 1.

Since most of our dynamical measurements should be calculated in station-
ary state, we run preliminary simulations to ensure that our system reached
equilibrium.

For each replica, the initial conditions were generated as follows: the
polymer chain is built as a 3–dimensional random walk in a cubic box of
120σ× 120σ× 120σ; then, a long simulation was run to ascertain that the poly-
mer was optimally swollen in dilute conditions; to check that the polymer is in
an equilibrium configuration before switching on the interaction with proteins,
we check that the polymer radius of gyration Rg is constant over time, on
average. Thus, proteins were randomly positioned inside the simulation box,
and a short run with a ‘soft’ repulsive potential between proteins and polymer
beads was run to remove unphysical overlaps, followed by another short run
where polymer beads and proteins interact via the potential in (3.4) with ε = 0
(no attraction).

Simulation procedure and parameters

Starting from these initial conditions, a first quench to ε = 3kBT was performed,
and the simulations were run for 105τLJ . In such a way, we prevent the for-
mation of non–spherical clusters in the non–specific case and other structures,
such as regularly structured platelets in the presence of specific binding sites.
This may be stable or long–lived metastable states which we do not take un-
der consideration in our study. Then, we quenched the system to ε > 3kBT,
and a long equilibration run is performed for Teq. With such a scheme Nε

eq

independent initial conditions for the real simulations were produced, and
Nε

eq simulations were run. Measurements were taken during the latter, which
were run for at least ∼ 8τr, where τr is the relaxation timescale shown below
[section 3.4.5, Fig. 3.12]; details on the equilibration runs and real simualtions
are in Tables 3.1 and 3.2.

In simulations without polymer (see below), we confine particles in a cubic
box of 50σ × 50σ × 50σ; then, two consecutive short runs with a soft repul-
sive potential and with the interaction in (3.4) between particles with ε = 0
were performed. Then, those simulations were carried on to be equilibrated
for Teq, already quenched at the selected interaction energy value; this is be-
cause no other structures but the liquid and solid, spherical–like droplet have
been detected. A final equilibrated run was performed for at least T ∼ 5.5τr,
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Table 3.1. Details of non–specific polymer simulations.

ε Teq T T Nε
eq

(kBT) (τLJ) (τLJ) (τr)
3.5 2.1 · 106 1.01 · 105 81.0 50
3.6 2.1 · 106 1.01 · 105 65.6 50
3.7 2.1 · 106 1.01 · 105 53.4 50
3.8 4.1 · 106 1.001 · 106 133.7 6
4.0 2.1 · 106 1.001 · 106 61.8 36
4.5 2.1 · 106 1.001 · 106 7.9 50

Table 3.2. Details specific binding sites simulations.

ε Teq T T Nε
eq

(KBT) (τLJ) (τLJ) (τr)
6 3 · 105 1.01 · 105 257.2 49
8 3 · 105 1.01 · 105 111.0 49
9 3 · 105 1.01 · 105 52.9 49

9.5 3 · 105 1.01 · 106 36.1 49
10 3 · 105 1.001 · 106 27.4 49
11 3 · 105 1.001 · 106 15.4 49
12 3 · 105 1.001 · 106 8.7 50

Table 3.3. Details monospecies LJ particles simulations.

ε Teq T T Nε
eq

(KBT) (τLJ) (τLJ) (τr)
2.8 5 · 104 1.1 · 104 622.4 50
2.9 5 · 104 1.1 · 104 452.5 50
3.0 5 · 104 1.1 · 104 57.7 50
3.2 5 · 104 1.001 · 106 16.8 37
3.4 5 · 104 1.001 · 106 5.6 50

from which some quantities were calculated. Details on the parameters of
simulations are in Tables 3.3.

Starting from the same initial conditions, another set of independent sim-
ulations was run to build the distributions shown in Figs. 3.13(c) and 3.17(b).
For each value of the interaction strength ε, Nε

eq simulations were run for
T = 1000t∗, where t∗ was chosen such as the average mean–square displace-
ment δr(t∗)2 ' 0.2.

3.4.2 Measured quantities

Before going to the results, let us describe the methods used to analyse the
equilibrum configurations obtained by our simulations. In the following we
will show that the internal dynamics of proteins is correlated to some static
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local properties of clusters. In particular, we will probe the local bond ordering,
by means of the parameter ψ6, which is a rotational invariant quantity, previ-
ously used in similar context [208]. To define this parameter, the direct voronoi
tesselletion has been employed, a procedure to identify the nearest neighbours
in the first coordination shell.

Direct Voronoi tessellation

To quantify the local bond ordering we perform the direct Voronoi tessellation
of the 3D space. The direct Voronoi tessellation is needed to identify only those
particle which constitute the first coordination shell of a given particle within the
cluster, or Voronoi neighbors, which is, in turn, needed to calculate the degree of
local ordering or detect local structures [209, 210].

Technically, the Voronoi tessellation is a partition of Rd, where d is the
spacial dimension, into regions of non–intersecting domains with distinct
boundaries, as shown in Fig. 3.6, relative to a determined prescribed metric,
or distance. If d = 3, such regions are the Voronoi polyhedra. Each particle is
therefore a Voronoi generator. These methods have been widely applied, and
consequentley refined, in different contexts. More details on the Voronoi tessel-
lation are in [211, 212]. Herein, we briefly summarise the nearest neighbours
search algorithm via direct Voronoi tessellation, following [210].234506-4 Malins et al. J. Chem. Phys. 139, 234506 (2013)

FIG. 1. (a) The lines that connect particle centres must also intersect the face that is shared between the two Voronoi cells for the particles to be bonded.
Particles i and k are not bonded therefore, as highlighted by the red line connecting their positions. Conversely all other particles are considered neighbors of
particle i (blue lines - direct Voronoi neighbors). Particle j is closer to i than k, and the volume of its Voronoi cell is shielding particle k from particle i. (b) and
(c) Identification of direct Voronoi neighbors. Particle k is further from i than j in both cases. In (b) particle k is not bonded to i as there exists j that is closer to i
and the angle subtended by vectors rij and rkj is greater than π /2 radians. Conversely k is bonded to i in (c) as the bond there is no shielding by j.

Consider particles placed at the vertices of a rhombus, as in
Fig. 2(a). If the rhombus were a perfect square there would be
a total of four bonds detected by the standard Voronoi method,
each running along the edges of the square. If the square is
distorted by any small amount to form a rhombus, a bond
forms between two particles on opposite vertices thus creat-
ing two three-membered rings of particles. This bond breaks
the detection of any cluster based on the integrity of a four-
membered ring, e.g., the octahedral cluster shown in Fig. 2(b),
when any small fluctuation of the particle positions causes a
distortion to the ring.

A dimensionless parameter fc, known as the four-
membered ring parameter,60 is introduced that determines the
maximum amount of asymmetry that a four-membered ring
of particles can display before it is identified as two three-
membered rings. Bonds between particles i and k [Fig. 2(a)]
will be removed if there exists a particle j that is both bonded

FIG. 2. Detection of four-membered rings of particles. (a) Particles are posi-
tioned at the vertices of a rhombus. In the case that h = w, i.e., a square, there
is no bond between particles i and k. If h < w then a bond forms between i
and k across the rhombus if using the standard Voronoi method. For a given
rhombus defined by h/w or θ , the existence of the bond between i and k in
the modified Voronoi method depends on the value of fc. (b) The detection of
an octahedral cluster with the CNA and TCC methods relies in the integrity
of its four-membered rings, e.g., the ring highlighted in red. Thermal fluctua-
tions may cause this structure to be detected incorrectly if using the standard
Voronoi algorithm to determine the neighbors of each particle.

to i and closer to i than k is, and that shields k from i. We
consider the plane perpendicular to rij that contains a point
rp = ri + fc(rj − ri). If fc < 1 this corresponds to moving
the plane perpendicular to rij and containing rj towards ri

[Fig. 3(a)]. Adapting Eq. (1), the condition for k to be bonded
to i is if ∀j where |rij | < |rik|:

rip · rkp > 0. (2)

Re-expressing the inequality in terms of the position of parti-
cle j gives (fc ̸= 0),

fc(ri · ri + rj · rj − 2ri · rj )

> ri · ri + rj · rk − ri · rj − ri · rk. (3)

Equation (3) is not invariant to swapping indices i and k. The
consequence of this is that i may be bonded to k but not vice
versa. It is therefore necessary to consider bonding from the
point of view of particle k. The plane perpendicular to rkj con-
taining rj is moved towards k such that it contains the point
rq = rk + fc(rj − rk). From the viewpoint of particle k, par-
ticles i and k are neighbors if ∀j where |rkj | < |rik|:

rkq · riq > 0. (4)

The inequalities in Eqs. (2) and (4) are depicted geomet-
rically in Figs. 3(a) and 3(b). Both inequalities are not sat-
isfied as the angles θ are obtuse. Adding together Eqs. (2)
and (4) yields a single, symmetric, criterion for i and k to be
bonded. If ∀j with |rij | < |rik|,

rip · rkp + rkq · riq > 0, (5)

i and k are said to be neighbors in the modified Voronoi
method.

Equation (5) is invariant to inversion of the indices i and
k, therefore the resulting modified Voronoi method neighbor
network is necessarily symmetric. A symmetric bond network
is a required in order to use either the CNA or TCC algo-
rithms to identify structure. Expanding Eq. (5) in j and set-
ting fc = 1 recovers the definition of all the direct Voronoi

Figure 3.6. Direct Voronoi tessellation. (a) Example of the Voronoi partition of the
two–dimensional space. Blue segments represent the minimum Euclidean distance
between i and the direct Voronoi neighbours; conversely, k is not a neighbour, as
the minimum Euclidean distance that links the i–th and the k–th Voronoi cells
crosses also the j–th Voronoi region. (b) Proteins i and k are not neighbours, since
θ > 90o. (c) In this scenario, Proteins i and k are neighbours, as θ < 90o. Figure
taken from [210].

Suppose that protein i, which is located at position ri, is inside the cluster.
First, we select all proteins which belong to the the neighborhood Σi of the ith
protein. A protein i′ belongs to Σi if rii′ < rthre (rthre = 2.5σ). This first selection
is needed to reduce the computational cost of the search. A protein k is a
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Voronoi neighbour of i if and only if for all proteins j closer to i than k, the angle
subtended by the vectors rij and rkj is less than π/2 radians. Equivalentely,
invoking the law of cosines

r2
ik = r2

ij + r2
jk − 2rijrjkcos(θ) , (3.7)

the condition for k to be a Voronoi neighbour of i reads:

r2
ik < r2

ij + r2
jk. (3.8)

Thus, the algorithm proceed as follows:

1. loop over the N∗ protein (in our simulation N∗ ≤ N is the total nnumber
of proteins inside the cluster, by selecting the i–th protein (or Voronoi
generator);

2. find all proteins within a sphere of radius rthre centered on ri. Those
proteins belong to Σi;

3. sort Σi in terms of the distance from i, starting from the closest;

4. loop over all proteins j in Σi;

5. loop over all proteins k > j, and check the condition 3.8. Eliminate k from
Σi if Eq. (3.8) is not satisfied.

As shown in Fig. 3.6(a), this search algorithm rejects also those Voronoi genera-
tors whose corresponding Voronoi cell is in contact with the ith Voronoi cell,
but the minimum distance segment between i and k crosses another voronoi
cells. In Fig. 3.6(b–c) we show a schematics of the two cases, namely where
Eq. (3.8) is not and is satisfied, respectively.

Local orientation order parameter

Once we have recognised the subsets of neighbours for each particle i, namely
Σi, we can calculate the local bond–ordering parameter. Several bond–ordering
parameters have been proposed [213] and widely used to detect local ordered
structures in liquids [208, 214], glass–formers [209, 215] and crystals [214–217],
all based on the following superposition of spherical harmonics originally
introduced by Steinhardt et al. [208]:

qlm(i) =
1

n(Σi)
∑

j∈Σi

Ym
l (θij, φij) , (3.9)

where θij and φij are the azimuthal and polar angles, which determine the
orientation of the ij vector (bond) with respect to a reference frame cenetered in
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the ith protein; Ym
l are the (complex) Laplace’s spherical harmonics of degree l

and order m, which are defined as follows:

Ym
l (θij, φij) =

√
(2l + 1)

4π

(l −m)!
(l + m)!

Pm
l (cos(θij))e

imφij . (3.10)

n(Σi) is the number of direct Voronoi neighbours of protein i and Pm
l the Leg-

endre polynomials. Observe that θij and φij depend on the arbitrarly chosen
orientation of the reference frame. Therefore, in order to have an order parame-
ter indepedent of the alignment of the system, we need to build a rotational
invariant quantity, starting from qlm.

To effectively discriminate different local crystal structures from the local
order which can appear in liquid–like domains we should somehow consider
not only the first coordination shell (nearest neighbours), but also the second
coordination shell. More specifically, one would measure the ‘correlation’ of
the local order in the first and the second coordination cells. In light of this,
we consider the scalar product ql(i) · ql(j), where ql ≡ qlm, and j is a nearest
neighbour of i. The aforementioned scalar product is specified as follows:

ql(i) · ql(j) =
l

∑
m=−l

qlm(i) q∗lm(j) . (3.11)

where q∗lm(j) indicates the complex conjugate of qlm(j). Using the addition rule
of spherical harmonics, and substituting Eq. (3.9) in Eq. (3.11), one obtains:

ql(i) · ql(j) =
1

n(Σi)

1
n(Σj)

l

∑
m=−l

∑
j′∈Σi
k∈Σj

Ym
l (θij′ , φij′)Ym ∗

l (θjk, φjk)

=
2l + 1

4π ∑
j′∈Σi

∑
k∈Σj

Y0
l (δij′k) .

(3.12)

Here, j and j′ are neighbours of i, whereas k is neighbour of j (k can also be
equal to i); δij′k is the angle between rij′ and rjk, as shown in Fig. 3.7 (δijk in the
figure), such that

cos(δij′k′) = cos(θij′)cos(θjk′) + sin(θij′)sin(θjk′)cos(φij − φjk′) . (3.13)

Then, we normalise qlm of spherical harmonics [the normalisation renders
the measure independent of the particular definition of Ym

l (θ, φ)]:

q̂lm(i) =
qlm(i)

ql(i) · ql(i)
. (3.14)
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domains, do not identify different crystalline structures. Very
recently, we have employed q6(i)&q6( j) for driving metadynamics
simulations from liquid to solid and vice versa.14,19 It is worth
mentioning that in such order-parameter-based advanced sam-
pling schemes, one needs an order parameter discriminating
between liquid and solid phases, but not between different solid
phases. Normally, in advanced sampling studies of nucleation, one
pushes the simulation from the liquid toward a solid phase and is
interested to know the structures of the initially formed nuclei. In
other words, one is not interested in forcing the simulation toward
the formation of a pre-determined solid structure, ruled by the
order parameters. Here, we mainly focus on the development of
order parameters for identifying the local structure. For this
purpose, we propose order parameters based on the orientational
correlations of neighboring particles in two and three dimensions
to improve the accuracy of crystal structure determination. By
averaging the dot products of ql vectors, here, we propose the
following local order parameters:

~ql ið Þ ¼ ql ið Þ:ql jð Þ ¼ 1

Nb ið Þ
X

j2Nb ið Þ

Xl

m¼%l
q̂lm ið Þq̂lm' jð Þ (7)

where

q̂lm ið Þ ¼ qlm ið Þ
Pl

m¼%l
qlmj ið Þj2

# $1=2
(8)

The order parameters q̃l(i) are averaged over the first coordination
shell neighbours of particle i as:

!~ql ið Þ ¼
1

1þNb ið Þ
~ql ið Þ þ

X

j2Nb ið Þ
~ql jð Þ

2

4

3

5 (9)

According to the addition theorem of spherical harmonics,28

the terms
Pl

m¼%l
qlm ið Þqlm' jð Þ in eqn (7) can be expressed as:

Xl

m¼%l

X

j2Nb ið Þ
Ym

l yij ;jij

! " X

k2Nb jð Þ
Y%ml yjk;jjk

! "

¼ 2l þ 1

4p

# $1=2 X

j2Nb ið Þ

X

k2Nb jð Þ
Y0

l dijk
% &

(10)

where j is a neighbor of i, k is a neighbor of j (including i), yij

and jij specify the orientation of vector rij in the xyz reference
frame, and dijk is the angle between vectors rij and rjk (see Fig. 1). By
inserting eqn (10) into eqn (7), the order parameters q̃l(i) can be
expressed in terms of Y0

l (d), i.e.,

Xl

m¼%l
q̂lm ið Þq̂lm' jð Þ ¼

P
j2Nb ið Þ

P
k2Nb jð Þ

Y0
l dijk
% &

P
j;j02Nb ið Þ

Y0
l djij0
% &

" #1=2
P

k;k02Nb jð Þ
Y0

l dkjk0
% &

" #1=2

(11)

Here, j and j0 are neighbors of a central particle i ( j and j0 can also
be the same). Similarly, k and k0 are neighbors of j (k and k0 can be
the same and can be equal to i). Both the numerator and

denominator of eqn (11) depend on Y0
l , which, in turn, for even l

values, depends on the squared cosine of the angle between the
vectors connecting the neighbouring particles. This means that the
order parameters q̃l(i) do not depend on the choice of the
coordinates, and hence, they are rotationally invariant. In fact,
these order parameters examine the ratio of the orientational
orders of the second-shell to the first-shell neighbours of a central
particle i. Therefore, for all crystalline structures, q̃l(i) are large,
E1. For a disordered phase, on the other hand, the order in the
second shell of a particle correlates less with that in the first shell
(q̃l(i) E 0). Although, q̃l(i) E 1 for crystalline structures, disloca-
tions due to thermalization of a crystal structure substantially
reduce the order. The effect is more pronounced for open (bcc)
structures, where particles have more space to vibrate, than denser
(fcc and bcc) lattices.

For two-dimensional systems, we recently proposed two
order parameters for distinguishing the Kagome, hexagonal,
and liquid phases.29 Here, two new order parameters are
proposed to encompass additional phases, including the hon-
eycomb and square phases. We combined the even qlm(i) and
q̂lm(i) terms to propose the following two orientational order
parameters for discrimination of liquid and different two-
dimensional crystalline (hexagonal, honeycomb, square, and
the Kagome) structures:

!l1 ið Þ ¼ 4p
13

X

m¼( 6

!!q6m ið Þjj 2

 !1=2

þ5
4

4p
9

X

m¼( 4

!!q4m ið Þjj 2

 !1=2

(12)

where

!!qlm ið Þ

¼ 1

1þNb ið Þ 1þNb jð Þð Þ
qlm ið Þ þ

X

j2Nb ið Þ
qlm jð Þ þ

X

k2Nb jð Þ
qlm kð Þ

0

@

1

A

2

4

3

5

(13)

Fig. 1 Representation of orientation of bond vectors connecting the
neighbouring particles in the xyz Cartesian coordinates. While the orienta-
tions of bond vectors, shown as y and j, depend on the coordinate
system, their relative orientations, shown as d, do not. Here, j and j0 are
the neighbours of a central particle i ( j0 can be the same as j) and k is a
neighbor of j (k can be the same as i or a shared neighbour of i and j).
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Figure 3.7. Orientation of bond vectors connecting Voronoi neighbours Figure
taken from [213].

The dot product between the normalised vectors reads:

q̂l(i) · q̂l(j) =
ql(i) · ql(j)

[ql(i) · ql(i)] [ql(j) · ql(j)]

=
∑j′∈Σi ∑k∈Σj

Y0
l (δij′k)[

∑j,j′∈Σi
Y0

l (δijj′)
] [

∑k,k′∈Σj
Y0

l (δkjk′)
] ,

(3.15)

where, j and j′ are neighbours of i, k and k′ are neighbours of j (included i).
Note that Y0

l (ω) ∝ Pl(cos2(ω)), where Pl is a Legendre polynomial, which only
depends on the squared cosine of the angle ω. Therefore, the scalar product in
Eq. (3.15) is rotationally invariant. Eq. (3.15) describes the correlations between
the degree of orientational orders of the bonds which link proteins i and j
to their neighbours, being j a direct neighbours of i. To define a quantity
associated with protein i only, we average Eq. (3.15) over j ∈ Σi:

ql(i) =
1

n(Σi)
∑

j∈Σi

q̂l(i) · q̂l(j) . (3.16)

Now, this parameter quantifies correlations between bond–ordering of the first
and second coordination shell, both centered in i. A more precise parameter
which describes the local degree of orientational order around the i-th protein
is:

ψl(i) =
1

n(Σi) + 1

[
ql(i) + ∑

j∈Σi

ql(j)

]
, (3.17)
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which is obtained by averaging again on all proteins of the first coordination
shell of i, including protein i.

Different choice of l can be made. In Ref. [213] the probability distributions
of ψ4, ψ6 and ψ8 are plotted for LJ liquid, BCC, FCC and HCP. The authors noted
that ψ6 can better discriminate disordered from ordered phase. In disordered
phases, the distribution of ψ6 is peaked at about 0.2, whereas larger values of
ψ6, commonly larger that 0.5 are associated with local order. In light of this, we
will hereon use ψ6 to quantify the extent of local order inside the droplet.

3.4.3 Mean field theory for BIPS

In Ref. [163] a mean field theory for BIPS with switching proteins has been
developed. A simple limit of that theory is when all particle are active, that is
the equilibrium case. Here we review a simple calculation, that, in the spirit of
the Model B field theory [176], predicts the macrophase separation of active
chromatin bridges.

These mean field theories always rely on the coarse–grained approximation,
by which a discrete set of degrees of freedom (particles) can be described by a
local field. In terms of the local density:

ρi =
1
Vi

N

∑
p=1
p∈Vi

δ(x− xp)→ ρ(x) , (3.18)

where Vi is the ith sub–volume in a suitable partition of the three–dimensional
volume V, ρi is the associated density and δ(x) is the Dirac delta. If the volume
V and the number of constituents, N and L, are sufficiently large (virtually
infinite, with finite overall densities N/V and L/V), the coarse–grained ap-
proximation leads to a correct description of the macroscopic properties of the
system.

In light of this, we describe the distribution of chromatin via the probability
density field ρ(x, t) and the density of proteins by φ(x, t). The Landau free
energy F is specified by a suitable free energy density f :

f =
D1

2
ρ2 +

D2

2
φ2 − χρφ +

κ

2
∇ρ · ∇ρ +

g
4

ρ4 . (3.19)

The first two terms describe an ‘elastic’ energy of chromatin and proteins re-
spectively, the third term represent the (negative) energy gain due to chromatin–
protein interaction, the fourth term is the surface tension and the last term
penalizes strong accumulation of chromatin (i.e. self–repulsion due to short–
range steric interaction). Note that the last two terms also provide surface
tension and prevent unphysical strong accumulation of proteins, as the two
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fields are coupled; thus, terms proportional to (∇φ)2 and φ4 are not required
in the Landau expansion of the free energy density; indeed, note that the choice
of imposing surface tension and accumulation avoidance for the protein field
would lead to the same free energy after exchanging the two fields, ρ↔ φ. As
neither the chromatin nor protein overall density can change (ρ0 = L/V and
φ0 = N/V are constant), the following constraint must hold:∫

V
(ρ(x, t)− ρ0)dV =

∫
V
(φ(x, t)− φ0)dV = 0 , (3.20)

being ρ0 and φ0 the value of the chromatin and protein overall density respec-
tively. Then, the Cahn–Hillard equation (Model B) applies:

∂ρ

∂t
= Mρ∇2 δF

δρ

∂φ

∂t
= Mφ∇2 δF

δφ
,

(3.21)

where δ/δρ and δ/δφ denotes the functional derivatives with respect to ρ(x, t)
and φ(x, t) respectively, and Mρ and Mφ are the mobility coefficients. Inserting
Eq. (3.19) into Eq. (3.21), we obtain:

∂ρ

∂t
= Mρ∇2

[
D1ρ− κ∇2ρ− χφ + gρ3

]
∂φ

∂t
= Mφ∇2 [D2φ− χρ]

(3.22)

To simplify the equation, we search for suitable combinations of the coefficients
to rescale time and space. That is, we define the following time and space units:

tu =
κ

MφD1D2
xu =

√
κ

D1
. (3.23)

By defining t′ = t/tu and x′ = x/xu, rescaling the field φ such that Φ =

Mρχφ/MφD2 and omitting primes, one obtains:

∂ρ

∂t
= D0

(
∇2ρ−∇4ρ

)
−∇2Φ + G∇2ρ3

∂Φ
∂t

= ∇2Φ−X∇2ρ ,
(3.24)

where D0 ≡ MρD1/MφD2, G ≡ Mρg/MφD2 and X ≡ Mρχ2/MφD2
2 are

dimensionless quantities. Note that the effective diffusivity D0 controls both
diffusion and surface tension, different from the case studied in Ref. [163],
where protein switching disfavours sharp interfaces.
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3.4.4 Linear stability analysis

To study the system at the onset of instability, we linearise Eq. (3.24) by using
ρ′ = ρ − ρ0 and Φ′ = Φ − Φ0, where ρ′ and Φ′ are the deviation from the
uniform solutions ρ0 and Φ0. This analysis allows us to study the response
of the uniform phase to small perturbation in the density fields (ρ, Φ). After
linearisation

∂ρ′

∂t
= D

(
∇2ρ′ −∇4ρ′

)
−∇2Φ′

∂Φ′

∂t
= ∇2Φ′ −X∇2ρ′ ,

(3.25)

where D ≡ D0 + 3Gρ0. Introducing the Fourier transform:

g̃(q) =
∫

e−iq·xg(x)d3x . (3.26)

Eqs. (3.25) become:

∂ρ̃′

∂t
= −D

(
Q + Q2

)
ρ̃′ + QΦ̃′

∂Φ̃′

∂t
= XQρ̃′ −QΦ̃′ ,

(3.27)

with Q ≡ |q|2. The general solution of Eqs. (3.27) (which is in the form
Ẋ = AX) is a combination of two exponentials whose frequency is given
by the eigenvalues of the matrix A. In turn, the solution of Eqs. (3.25) is a
superposition of several modes of different frequencies Q. Therefore, we search
for the roots of the characteristic polynomial det(A − λI). The dispersion
relation reads:

λ±(Q) = −Q
2

[
D +DQ + 1±

√
(D +DQ + 1)2 − 4(D +DQ−X )

]
.

(3.28)
Note that λ±(0) = 0, λ±(−∞) → −∞ and λ+ < 0 for every Q. The instable
solution exists if and only if λ−(Q) > 0 for some Q values (as the perturba-
tion grows as eλ(q)t at those frequencies). Thus, positive frequencies exist if

X > D. In physical quantities χ >
√

D1D2 − 3D2gρ2
0. Observe that the same

qualitative result would apply if the chromatin–protein interaction term in
Eq. (3.19) were replaced by a self–interaction term of the type −χ′ρ2 (effec-
tively, a ‘negative’ elastic contribution to the free energy), which leads to the
standard equation of Model B phase separation for binary fluids [176]. There-
fore Eqs. 3.22 and 3.27 describe, for a suitable set of parameters, a macrophase
separation similar to what occurs in a LLPS. Below, we see that the growth law
of clusters is compatible with the exponent of Model B (L ∼ t1/3).
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Figure 3.8. Chromatin model and domain growth law. Schematics of the two
chromatin models. (a) Chromatin can interact non–specifically with proteins
(b) Specific binding sites (cyan) are regularly interposed between stretches of
10 chromatin beads (red). Proteins interact strongly with those (εsp ≥ 6kBT),
weakly with the rest ε = 3kBT. In both models protein unbinding is due to thermal
fluctuations. (c) Number of particles in the largest cluster, Ncl, is plot as a function
of simulation time t, for ε = 3.5 (liquid regime) and ε = 3.5 (solid–like regime).
After an initial transient, the cluster growth law is linear in time (Ncl ∼ t), as
expected for an Ostwald ripening process. Inset: the same behavior appears for
specific binding sites, for both small and large specific interaction energies.

3.4.5 Non–specific interactions lead to liquid–to–solid–like phase
transition

In Fig. 3.8(a–b) we show a schematics of the two chromatin models. In the first
model [panel (a)], chromatin is modelled as a homopolymer and proteins can
interact with chromatin with an affinity of ε. In the second model [panel (b)],
strong binding sites are located every 30 kbp; proteins interact with those sites
with a larger affinity εsp, whereas the interaction stregth with the remaining
chromatin is set to ε = 3kBT. In Fig. 3.8(c) we show the number of proteins
which belong to the largest cluster, as a function of time, for both models, in a
system with N = 400 (proteins) and L = 1000 chromatin beads. Clusters begin
to form due to spinodal decomposition (at sufficiently large energies), and,
later on, they merge. in this phase, the number of protein in clusters Nb grows
as L3 ∼ t1, which gives the same exponent expected for Model B, L ∼ t1/3.
In the final stage, one single droplet form, containing the whole compacted
chromatin fibre and a large fraction of proteins.
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Figure 3.9. Mean square displacements and effective diffusion. (a) The total
pMSD for proteins is plotted as a function of the lag time ∆. Four behaviors can
be observed: (i) at small times, proteins can diffuse within the cages; (ii) then an
inflection point (or plateau at large energies) indicates that proteins are constrained
in their cages; (iii) at intermediate times, proteins escape their caged and sub–
diffuse within the droplet; (iv) curves saturates as cluster proteins remains bound
to chromatin. Snapshots show two equilibrium configurations extracted from
simulations at ε = 3.5kBT and ε = 4kBT. (b) The total pMSD for chromatin beads
is plotted as a function of ∆. The same regimes as in panel (a) are displayed. At
large energy values, our simulations are too short to evidence the saturation of
chromatin pMSD, as its dynamics are far slower than protein ones. (c) Effective
diffusivity is extracted by the fitting line shown in panel (a–b) (dashed lines). The
jump of Deff at ε = 3.8 signals a liquid–to–solid transition. Accordingly, the value
of the α ' 0.52 exponent for chromatin change from to smaller values; conversely,
for proteins α ≈ 0.7.

Although the qualitative behavior of BIPS is alike in both cases, both the
internal local structures and dynamics differ in the two scenario at equilibrium,
as we will show in the following sections.

Non–specific interactions lead to liquid–to–solid–like phase transition

We first study a system of proteins which interact non–specifically with a
modelled chromatin fiber. In steady state, a single high–density spherical–like
droplet appears, which can exchange proteins with the low–density phase. To
probe the internal dynamics of proteins in the high–density phase, we consider
the total pairwise mean square displacement (pMSD)

〈 [δd(∆)]2 〉 = 1
T − ∆ ∑

i<j

∫ T−∆

0

[
dij(t + ∆)− dij(t)

]2 dt (3.29)

where dij(t) indicates the distance between the ith and jth proteins which belong
to the cluster at time t, the bar ·̄ indicates a time average over the simulation
time T, while 〈·〉 represents the average over all the N∗t ≤ N proteins within
the cluster at time t. We should here remark that in order to identify the
proteins which belong to clusters, we employed the DBSCAN algorithm [218].
DBSCAN is an unsupervised density-based clustering algorithm which allows
identification different clusters under the assumption that all clusters are of
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equal density. The algorithm needs two parameters: a threshold distance which
defines the neighborhood of a protein, l, and the minimum number of points
which form a cluster, minPTS. Three categories of points are defined: the core
points, which are points which have at least minPTS neighbours, meaning they
are within a distance l; the reachable points, which are within distance l from
a core point; the noise points which are not reachable from any other point.
Starting from a core point p, all points that are reachable from p form a cluster.
In this work we specified l = 2.5σ and minPTS = 4. Our results are chiefly
independent on the particular choice of the DBSCAN parameters, as we have
only one cluster in all simulations.

In Fig. 3.9(a) we show the pMSD in (3.29) as a function of the lag time ∆ for
different values of the interaction strength ε, averaged over Nε

eq independent
replicas (Nε

eq is the number of equilibrated runs, see section 3.4.1). After an
initial diffusive regime for very short times (∆ . 10−1τLJ), a plateau appears
at intermediate times; the appearance of a plateau is related to the presence
of effective “cages”, which transiently constrain the motion of proteins, that
effectively result less mobile. Caging is typical in systems at high density
which behave as viscous liquids or glasses [219–221]. In our model, the plateau
is particularly marked for ε ≥ 3.8, when the droplet rearranges in partially
ordered structures, as shown in the snapshot in Fig. 3.9(a). At larger times, a
‘mobile’ regime is restored. The pMSD curves saturate when all proteins have
moved of a distance of the radius of the droplet on average.

The abrupt deviation of the pMSD curves at ε = 3.8 is an hallmark of
a liquid–to–solid transition. The same qualitative behaviour emerges from
chromatin dynamics. In Fig. 3.9(b) we show the pMSD calculated as in (3.29)
for chromatin beads, as a function of ∆, with N∗t = L, for any t. For ε < 3.8
we find δr2 ∼ ∆α, with α ' 0.52, which is compatible with the exponent
predicted from the Rouse model for ideal chains α = 0.5, and not distant from
the exponent predicted for a self–avoiding walk (SAW, α = 0.54). Notably, for
ε ≥ 3.8 also the chromatin dynamics varies with the interaction strength, with
the extracted exponents significantly smaller than 0.5, see inset in fig. 3.9(c). It
is worth to mention that the exponent extracted (at least for ε ≤ 4) are chiefly
comparable with some recent experimental and numerical results [222, 223].

To visualize the abrupt nature of the crossover, we evaluate an effective
diffusivity, which is defined as

Deff = lim
∆→∞

〈δd(∆)2〉
∆α

. (3.30)

In practice, we fit the numerical curves with the function Deff∆α in the region
immediately before the saturation, as indicated in Figs. 3.9(a–b), assuming
that this exponent reflects the trend of the pMSD in an infinitely large droplet
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Figure 3.10. Radial MSD and alternative effective diffusivity for non–specific
interactions. (a) The radial mean–square displacement curves for proteins is
similar to those in Fig. 3.9. An inflection point at intermediate ∆ (especially for
large energies) indicates a regime in which proteins are ‘caged’. These curves are
well separated at ε = 3.8; in the inset, we show the measure of diffusivity in (3.31),
that is discontinuous at ε ' 3.8KBT. (b) The radial MSD curves for polymer beads
behaves qualitatively as those obtained for proteins. Polymer dynamics is slower,
as predicted by D′eff, which is about one order of magnitude smaller. (c) Here we
show the exponent α obtained by the linear fits in Fig. 3.10(a–b) (solid lines). Note
that the slopes of rMSD curves for protein depends on the interaction energy in
the solid phase (i.e. ε ≥ 3.8). Instead, the exponent extracted for chromatin rMSD
is slightly below with respect to the α obtained by fitting pMSD curves [compare
with dashed curves, which reproduce the plots in Fig. 3.9].

(no saturation occurring). We also remark that the exponent is approximately
constant for all values of interaction strengths, which ensures that Deff is
correctly defined for every ε. In Fig. 3.9(c) we show the effective diffusion
Deff as a function of the interaction energy ε. Both curves display a sharp
crossover at ε = 3.8, which suggest that our system undergoes a discontinuous
liquid–to–solid–like transition in the thermodynamic limit (N, L→ ∞). In the
inset in Fig. 3.9(c), the dynamical exponent obtained by a linear fit of the pMSD
curves in Fig. 3.9(a) are plotted as a function of ε. Protein dynamics are always
sub–diffusive, with α ' 0.75 for any ε.

Another measure of the internal droplet dynamics is the radial mean square
displacement (rMSD), which measures the mean squared displacement 〈δr2

i 〉,
where ri is the distance from the center of mass of the droplet:

〈 [δr(∆)]2 〉 = 1
T − ∆

N∗t
∑
i=1

∫ T−∆

0
[ri(t + ∆)− ri(t)]

2 dt , (3.31)

the rMSD are shown in Fig. 3.10(a–b), for both proteins and chromatin. Note
that the discontinuous nature of the transition is retained, as the curves are
largely separated at ε = 3.8. On the other hand, the value of the exponent
α slightly differs from the ones found though the pMSD, see Fig. 3.10(c). In
particular, for proteins α varies with energy for proteins. This can be explained
by the following argument: in the solid phase, two protein subpopulation can
coexist (as we will see much in detail lateron), thus n proteins will belong to the
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slow component, N− n to the fast ones. Therefore, about n2/2 pairs contribute
poorly to the total pMSD, while about N2/2− Nn/2 pairs move as ‘freely’ as
in the liquid phase. If n is relatively small (as it is the case for ε ≤ 4.5, see
Fig. 3.13 below), then the contribution of the n2/2 immobile pairs is negligible,
at least in our range of parameters. Observe that we have not computed the
standard mean square displacement (MSD) of proteins: despite it is simple to
subtract the MSD of the center of mass, it is much more complicated to rule out
the effect of the droplet rotation. Nonetheless, an inspection of the standard
MSD shows a discontinuous transition at ε ' 3.8.

An estimation of the effective diffusivity from the radial displacement can-
not be extracted, as the dimension of this quantity changes with the exponent α

(as it does with ε). Naively, one can define an effective diffusion D′eff by consid-
ering the largest ∆∗ available from the curves, and defining D′eff ≡ 〈δr(∆∗)〉/∆∗.
This measure gives results which are compatible with those in Fig. 3.9, e.g. it
retains the discontinuity at ε = 3.8. We should also remark that, although the
pMSD is more effective than rMSD in extracting the effective diffusivity, in the
following we will also use the rMSD as a dynamical property associated to
each single protein.

Simulated FRAP

In order to characterize the dynamical properties of the two phases, we sim-
ulate a FRAP (fluorescence recovery after photobleaching) experiment, by
‘staining’ all proteins within one half of the droplet at time t = 0 and observing
the internal mixing. From movies, we observe that the internal mixing progres-
sively slows down as the energy increases. To describe more quantitatively the
internal recovery, we calculate the following ‘mixing’ parameter

µt = 1− 2
N ∑

i
∑
j 6=i

(1− δxi ,xj)Θ(d− dij(t))
ni,neigh(t)

, (3.32)

where xi is 1 if the protein is stained, 0 otherwise, δxi ,xj is the Kronecker delta,
and ni,neigh(t) = ∑j Θ(d− dij(t)) is the number of proteins within a distance
d from the ith protein, at time t; Θ(x) is 1 if x > 0, 0 otherwise. Ideally, this
parameter ranges from 1 (totally demixed) to 0 (totally mixed) in an infinitely
large binary mixture. The finiteness of the system and the presence of a small
fraction of particles which can be exchanged between the droplet and the low–
density phase can slightly modify this range. However, as we will see below, is
it still possible to extract at least one relaxation timescale.

If the internal mixing occurs due to standard diffusion through the interface
which divides the two halves, the recovery is expected to be exponential,
i.e µt ∼ exp(−t/τr), where τr is the relaxation timescale: such a behaviour
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Figure 3.11. FRAP mixing parameter. Here, we show the behaviour of µt as a
function of time, rescaled by τr. The value of τr is obtained with the procedure
described in For ε < 3.8 (liquid dynamics), the recovery occurs in a diffusive
fashion, and the relaxation curve decays exponentially (dashed line) and sit on top
of each other. Correspondingly, we show two representative snapshots of the FRAP
experiment in silico, at t = 0 and t = 5 · 105τLJ. Note that two halves recombine,
resulting in a well mixed droplet. For ε ≥ 3.8 (solid dynamics), relaxation curves
do not overlap, and decay slower than an exponential. Similar snapshots show
a partial recombination of the two halves, even if local ordered structures are
preserved.

is expected for liquid dynamics. To the contrary, if the dynamics are sub–
diffusive, the relaxation might not be exponential in time; this is the case in
glassy and dynamically heterogeneous systems, where the structural relaxation
is known to follow a stretched exponential law, namely f (t) ∼ exp

[
−(t/τr)β

]
,

with β < 1. For ε < 3.8 the parameter µt decays exponentially, for a few
relaxation times (τr). Then, the mixing parameter can become larger than 0,
due to spurious effects introduced by protein exchange with the soluble pool;
in the log–linear plot this cause a drop of the curves for large times (t � τr).
Note that all curves collapse after rescaling time. Conversely, for ε ≥ 3.8 the
decay is clearly non–exponential, see Fig. 3.11.
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Figure 3.12. Log–log plot of mixing parameter and relaxation times for non–
specific interactions. (a) Here, we present the mixing parameter vs. time, in a
double logarithmic scale. We note that, for ε > 3.8, a heavy tail appears, showing
that a long–time relaxation occurs. (b–c) The exponent β and relaxation timescales
as a function of energy. Note that the liquid–to–solid transition reflects into the
discontinuities of βr, βinf, τr and τinf.

We fit all curves with either a single (B = 0) or a double stretched exponen-
tial (excluding the drop at large times) by using the fitting expression:

f (t) = Ae−(
t

τr )
β

r + Be−
(

t
τinf

)βinf

(3.33)

In Fig. 3.12(a) we show the curves in Fig. 3.11 on a log–log plot, with the
error bars calculated as standard error of the mean value. For ε < 3.8, the
fit with a single stretched exponential [Eq. (3.33) with B = 0] gives a value
of β close to 1 (as reported in Fig. 3.12(b)), as expected for an exponential
decay. For ε = 3.8, the mixing parameter is well fitted by a single stretched
exponential with β < 1, whereas for ε > 3.8, a second stretched exponential is
required to fit the curves at large times. Therefore, for t� τr a larger relaxation
timescale, τinf is detected; the first relaxation timescale is likely to be related
to the partial recombination due to the presence of liquid/disordered regions;
in fact, although regular structures appear in large regions of clusters when
in the solid–like phase, a partial recombination still occurs, as demonstrated
by the snapshots in Fig. 3.11. Instead, the second larger relaxation timescale
could be associated with the disruption of the solid structure. Note also that
this typical time is equal or larger than the simulation time, see Fig. 3.12(c),
and that the associated curves in Fig. 3.33(a) do not decay to zero. Thus, the
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extracted values of βinf and τinf are not reliable; nonetheless, the discontinuous
character of the transition is ascertained by βr and τr.

In Fig. 3.12(b–c) we show the fitted values of βr and βinf, τr and τinf, re-
spectively. Observe that the discontinuous nature of the liquid–to–solid–like
transition is retained by β and the relaxation times of clusters. All these quanti-
ties display a jump at ε = 3.8.

Dynamical heterogeneity and bond–ordering parameter

To further investigate the single–protein dynamics, we consider some dynami-
cal quantities associated with each protein (or chromatin) bead, and their statis-
tics. First, we consider δrt(t∗)2, where t∗ is fixed and defined as the lag time at
which proteins commit to a new position, such that δr2 ≡ 〈δri(t− t∗)〉 ' 0.2 on
average, for every i (lateron, we will use δr2 and 〈δri(t− t∗)〉 interchangeably,
for the sake of simplicity). In Fig. 3.13(a) we show two trajectories of single pro-
teins. The two trajectories are representative of two distinct sub–populations:
the first trajectory (blue) is always close to δr2 ' 0, and it is referred to a
slow protein, whereas the other one (red) presents large fluctuations, and it is
representative of the fast sub–population. Note that the rMSD at fixed lag times
is able to distinguish between the two populations, while the standard MSD
would not, as it probes droplet translation and rotation, that ‘hides’ the inter-
nal protein motion [see three–dimensional trajectories showed in Fig. 3.13(a)].
The separation between the two sub–populations emerges if we consider the
following time–averaged quantity, for each particle (we drop the index i for
simplicity):

δrt(t∗)2 =
1

t− t∗

∫ t−t∗

0

[
r(t′ + t∗)− r(t′)

]2 dt′ (3.34)

This quantity allows us to track the time–averaged mobility of single proteins as
time t increases. In Fig. 3.13(b) we show the behavior of δrt(t∗)2 for a sample
of proteins which remain inside the droplet for the whole duration of a single
simulation run (T = 1000t∗), for two values of the interaction energy, ε = 3.5,4.
At time t = t∗, the distribution of the squared displacements δr2 (δd2) are
strongly non–Gaussian for any value of ε, as proteins are confined inside the
cluster (not shown). Conversely, the time–averaged rMSD trajectories differs
for the two cases: in the liquid phase (ε = 3.5) all trajectories tend to the mean
value δr2 ' 0.2σ, whereas in the solid phase (ε = 4) the trajectories can be
separated into ‘mobile’ and ‘immobile’; the proteins that belongs to the first
fraction are more than 10 times faster than the those which are immobile (or
slow). The threshold rMSD is δrt(t∗)2 = 0.05σ, since this correspond to a local
minimum in the associated bistable distributions, as described below.
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Figure 3.13. Dynamical heterogeneity and bond–ordering parameter. (a) Two
δrt(t∗)2 time series are shown for two different proteins inside a cluster for a
simulation at ε = 4. The blue trajectory is representative of the slow population,
being always very close to δr2 = 0. On the contrary, the red trajectory show wild
fluctuations which signify that the fast protein easily escape cages and ‘travels’
within the droplet. The two snapshots represents the actual trajectories of the
two proteins in 3D. Colors signal the relative radial displacement at each time
increment. Although one (left snapshot) is much more mobile than the other (right
snapshots), the two proteins cover approximately the same volume space, due
to droplet translation and rotation. (b) Time–averaged rMSD is probed for 94
proteins within a droplet, which forms in two different simulations at ε = 3.5,4.
While in the liquid phase all trajectories converge to the expected values δr2 '
0.2, in the solid phase, proteins display dynamical heterogeneity. (c) Probability
distribution of δrT(t∗)2, obtained averaging over particles and Nε

eq replica. For ε <
3.8 distributions are unimodal, whereas for ε ≥ 3.8 they are long–tailed or bimodal.
The fraction of slow proteins is represented by the blue portion of the distribution;
the vertical dashed line at δr2 indicates the minimum of the distribution at ε = 4.
The snapshots depicts the average mobility of proteins, as colors represent the
value of δrT(t∗)2. (d) Probability distribution of ψ6 correspondent to those in panel
(c). Here, distributions show structural heterogeneity in the solid–like phase. The
snapshot displays that more structured portion of the droplet have a larger ψ6
(blue) than less ordered ones (red). (e) Order parameter for local ordering 〈ψ6〉.
The plot shows a small jump in the value of the order parameter (∼ 0.25) at the
transition, and a smooth increase as the energy goes up, signalling a weak first–
order transition. (f) Joint probability distribution P(δrcm, δrT(t∗)2). In the liquid
phase, the distribution is unimodal. When in the solid phase, the distribution is
bimodal, and peaked at low values of mobility and distances from the center of
mass of the droplet (δrcm ∼ 2σ).

Dynamical heterogeneity is particular of this system, since there is a co-
existence of regions well structured in hexagonal–like arrays [resembling the
hexagonal order in standard mono–species Lenard-Jones colloids] and de-
fective disordered regions. This partial ordering is maintained by the chro-
matin fiber, which locally organizes itself into ordered arrays [see snapshots in
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Fig. 3.9(a)]. Differently from a single–constituent liquid just beyond the freez-
ing point, in which ‘cages’ continuously form and break, here transient cages
are conserved for much longer, as chromatin motion is slower than protein
rearrangements; nevertheless, proteins can slowly be exchanged between the
two sub–population, as shown in Fig. 3.13(b). This behaviour explains the
partial recombination which occurs at relatively high interaction energy.

This picture is also supported by the probability distributions of the time–
averaged rMSD in Eq. (3.34), calculated at t = T. The distribution δrt(∆)2,
should be Gaussian if ∆ � τr � t and the dynamics are homogeneous. In
Fig. 3.13(c) we show the distribution P[δrT(t∗)2] for proteins squared displace-
ments. Distributions are clearly Gaussian in the liquid phase, while a largely
non–Gaussian tail (ε = 3.8) or a second peak (ε = 4) appear at small values
of the squared displacement. Conversely, the distribution of displacements of
chromatin beads calculated at t∗ are always unimodal (not shown). Moreover,
for ε = 3.8, 4, distributions are peaked at δrT(t∗)2 ∼ 0, suggesting that the
structured chromatin regions remain immobile for the whole simulation time T,
which is the same timescale at which proteins exhibit heterogeneous dynamics.
Observe that the bistable distributions in Fig. 3.13 display a local minimum at
∼ 0.05σ, which is the separation between the slow and the fast populations.

In this system, heterogeneous dynamics is related to the appearance of
ordered regions in the droplet. To quantify the level of ordering, we compute
the local bond–ordering parameter, ψ6 [see section 3.17]. In Fig. 3.13(d) we show
the distribution of ψ6, for different values of the interaction energy. We note
that in the liquid phase (ε < 3.8) the distribution are unimodal, and centered
at ψ6 ∼ 0.12, as expected for a liquid (or a disordered system); moreover,
distributions for different ε perfectly overlap. Beyond the transition point a
long tail (ε = 3.8) or a second peak at ψ6 ∼ 0.9 (ε > 3.8) appears. Therefore,
dynamical heterogeneity correlates with structural heterogeneity. The local
bond–ordering parameter can also inform on the nature of the transition: 〈ψ6〉
is constant for ε < 3.8, then jumps to larger values at the transition, as shown
in Fig. 3.13(e). Differently from mono–species LJ particles, where distribution
in the solid phase are unimodal and the transition is sharper (not shown), here
〈ψ6〉 increases smoothly with energy in the solid phase, which is compatible
with a weak first–order phase transition.

The position of the ‘immobile’ fraction inside the droplet differs slightly
from the population of ordered proteins. As shown in the snapshots in
Figs. 3.13(c-d), slow proteins are confined in the bulk of the cluster, while
the more ordered proteins are located on the surface. This is because the pro-
teins on the surface can be only partially caged, and they can move more freely
along the radial direction. We consider the probability associated with the
time–averaged rMSD and the distance from the center of mass δrcm, comparing
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Figure 3.14. radial MSD (specific). Here, we show The total pMSD for proteins
as a function of the ∆. Similarly to Fig. 3.9 curves display an inflection point or
a plateau at the timescale of caging. Then, a sub–diffusion regime leads to the
saturation of the curv, due to the effective confinement of particles in clusters. The
snapshot show a typical equilibrium configuration at ε = 11kBT. In the inset, the
effective diffusivity Deff is plotted as a function of εsp. No jump is detected, rather
it smoothly decreases to smaller values as the energy increases.

the multivariate distributions in the liquid and solid phases in Fig. 3.13(f).
As expected, in the solid, phase the slow proteins (P[δrT(t∗)2] ∼ 0) are (on
average) in the bulk (σ < δrcm < 4σ), while more mobile proteins are closer to
the surface (δrcm > 4σ).

3.4.6 Specific binding sites lead to glassy dynamics

Now, we switch to the second chromatin model. We study the dynamics of
proteins when interacting to a polymer with strong binding sites with affinity
εsp ≥ 6kBT. The remaining chromatin is only weakly ‘sticky’ (ε = 3kBT). For a
smaller number of proteins and longer weakly–interacting polymer stretches,
a microphase separation can occur, due to the entropic repulsion among loops.

Here, we still consider N = 400 and L = 1000, and the weakly–interacting
chromatin stretches are about 30 kbp long, namely 10 beads in our coarse–
grained model. Also in this case the system undergoes a full phase separation,
at every interaction value; to avoid the formation of non–spherical structures
at high energies, we perform an initial simulation run at εsp = ε = 3kBT,
then we quench the system at larger εsp. As a consequence, a spherical–like
droplet forms, being all the specific binding sites ‘absorbed’ in the bulk of the
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Figure 3.15. Radial MSD and alternative effective diffusivity in the presence
of strong binding sites. (a) The rMSD curves resemble those in 3.14 in the main
text. Protein caging becomes more relevant at large energy values; although the
dynamics is slower as ε increases, there is no jump in the effective diffusivity D′eff.
(b) Here we show the rMSD curves for polymer beads. The effective diffusivity
of chromatin beads is continuous as in 3.14 (c) Differently from the non–specific
case, the linear fits of rMSD curves in 3.14 give a value of α which is approximately
constant for any energy value (α ∼ 0.62, solid curve), but it is underestimated
compared with those obtained by fitting the pMSD plots (dashed curves).

protein droplet, while several weakly–binding chromatin loops extend out of
the cluster, as shown in the snapshot in Fig. 3.14.

We calculate the pMSD for different values of the specific interaction energy,
as displayed in Fig. 3.14. Similarly to the non–specific case, after a pseudo–
diffusive regime, a plateau can appear (especially at large energy), which is
compatible with a caging dynamics, then the curve grows as proteins ‘break’
the cages, until it saturates, since we limit the pMSD to those proteins which
remain inside the droplet during the whole simulation run. Interestingly, in
this case there is no clear separation between the curves, as supported by
the effective diffusivity, which continuously decreases with the interaction
energy. Thus, there is no signal of a discontinuous transition. Accordingly, also
the other measure of diffusivity vary continuously with energy. in Fig. 3.15,
we present the plots of rMSD for both proteins and polymer (pMSD curves
are not shown for polymer, as it behaves exactly like rMSD). Notably, both
protein pMSD and the rMSD curves give a sub–diffusion exponent which is
approximately constant with εsp (α = 0.7 and α = 0.62, respectively), see
Fig. 3.15(c).

Mixing parameter and simulated FRAP

In Fig. 3.16 we show the behaviour of the mixing parameter µt as a function
of time, in a log–log scale. Similar to the non–specific case, the presence of a
majority of ‘weak’ binding sites (ε = 3KBT) makes the surface of the droplet
more liquid,causing a faster drop in the liquid regime. In the glassy regime, τr

grows linearly without discontinuity. The relaxation curves for εsp = 11kBT
and εsp = 12kBT can be fitted with a double stretched exponential: in this case
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Figure 3.16. Log–log plot of mixing parameter and relaxation times in the pres-
ence of strong specific binding sites. (a) The mixing parameter presents a single
realxation timescale up to εsp > 9; for larger specific energies, a second relaxation
timescale can be extracted. (b–c) The exponent β and relaxation timescales as a func-
tion of energy. Differently from Fig. 3.12, both βr and βinf change value smoothly,
from β ∼ 1 to β ∼ 0.7. Accordingly, τr does not display any discontinuity, whereas
τinf shows a jump at εsp = 10.

βr ' βinf, and τinf > τr, but less than one order of magnitude larger. This
behaviour might be caused by some residual local ordered structures which
can persiste for the whole simulation time, as shown below in Fig. 3.17.

Dynamical heterogeneity and glassy structure

To further investigate the protein dynamics, we monitor the time–averaged
rMSD trajectories during rescaled time, see Eq. (3.34); again, t∗ is the time at
which proteins have committed to a new position such as δr2 ' 0.2 on average.
In Fig. 3.17(a) we show several trajectories for single simulations performed at
εsp = 6kBT and εsp = 11kBT. For εsp = 6kBT, a single population of proteins
is detected, with average mobility close to the expected average value of 0.2,
at large t/t∗. At εsp = 11kBT, the system displays dynamical heterogeneity:
a separation between fast and slow proteins can be identified, even though
more particles can be exchanged between the two sub–populations then in the
non–specific case, due to the ability of particles to escape more easily from the
cages, since the majority of chromatin beads interact only weakly with proteins.

Strikingly, even though no sharp transition is predicted by the effective
diffusivity measurements, there is a crossover between a homogeneous and a
heterogeneous dynamical phases. This result is supported by the distributions
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Figure 3.17. Dynamical heterogeneity and structural disorder entail glassy dy-
namics. (a) Alike Fig. 3.9(a) two time–averaged rMSD trajectories are shown for
a sample of 94 proteins within the same droplet, for simulations at εsp = 6kBT
and εsp = 12kBT. In the liquid phase all trajectories converge to the expected
values δr2 ' 0.2, whereas in the glassy phase, proteins separates into a fast (orange
trajectories) and slow (blue trajectories) fractions. Again, the separating threshold
is set to 0.05σ2. (b) Probability distribution of δrT(t∗)2. For ε < 9kBT distributions
are unimodal, and no particles fall into the slow sub–population. For ε ≥ 9kBT the
region [0, 0.05σ2] starts to be populated, until a high peak arises at about 0.02σ2

at large specific energies. In the snapshot, we can see a typical equilibrium con-
figuration (polymer is not shown), where red proteins are the more dynamical,
whereas blue proteins are ‘immobile’. We pinpoint the position of some sparse
immobile proteins with black circles, while the green circle locates a locally ordered
hexagonal–like sub–cluster of slow particles.

of δrT(t∗)2 in Fig. 3.17(c). For εsp = 6kBT and εsp = 8kBT distributions are
unimodal, with a non–zero probability only in the region δrT(t∗)2 > 0.05σ2.
Conversely, at ε ≥ 9kBT, the region δrT(t∗)2 > 0.05 associated with ‘immobile’
proteins becomes progressively to be populated, and at ∼ 0.02σ2 peak arises
for εsp ≥ 10kBT. We note in the snapshots in Fig. 3.17(c) that only few of the
proteins which belongs to the slow fraction are associated with a partial local
ordering (observe the green circle, that highlights a two–layer hexagonal–like
cell of slow particles), and the whole cluster appears globally disordered.

To quantify the level of local ordering, we calculate the distributions of
ψ6, that we show in Fig. 3.17(c). We find that the probability distributions
are always unimodal and peaked at ψ6 ∼ 0.2, as usually found in disordered
structures in other contexts, and differently from the non–specific case, where
there is a coexistence between large disordered and ordered regions. The lack
of local ordering is typical of glasses, which can display an heterogeneous
dynamics with no nucleation of solid–like regions. This is supported by the
nucleation plots (not shown): for the liquid–to–solid transition, we observe
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the nucleation of a solid by monitoring the timeseries of the energy, during
equilibration (note that this occurs more frequently at larger energies); in the
specific case, no nucleation have been observed for any value of the specific
interaction energy, rather the energy of the systems fluctuate about a constant
value through time. However, most of the time, regions of local ordering
transiently form and disrupt, while only sporadically they last for the whole
simulation. By comparing the distribution of ψ6 observed in the non–specific
case in the liquid phase and those in Fig. 3.17, we note that the system crosses
over between two regimes [see the inset of Fig. 3.17(c)]: the distributions
obtained for εsp = 6kBT and εsp = 8kBT overlap with the distribution at
ε = 3.5 (liquid phase). Conversely, for εsp > 9 the long tail is much more
populated, and the crossover is located at approximately εsp = 9, as vividly
shown in the inset of Fig. 3.17(c). Also, the order parameter 〈ψ6〉 increases
smoothly as εsp increases, see Fig. 3.17(d). Dynamical heterogeneity with a
low degree of orientational order is often related to a glassy dynamics. Indeed,
there is no clear formation of a long–range order in clusters at large specific
interaction energies, and a faster exchange between the two dynamical sub-
populations occurs. The liquid–to–glass transition of clusters is accompanied by
a particular distribution of proteins and specific binding sites inside the droplet:
the joint probability P[δrT(t∗)2, δrcm] displays a slightly different distributions
of slow and fast proteins compared to those in Fig. 3.13(f). In fact, in the glassy
phase both fast and slow proteins prefer to stay in an intermediate shell located
between 4σ and 6σ, as shown in Fig. 3.17(e).

3.5 Conclusions and future perspectives

In summary, we have studied the dynamical and structural properties of clus-
ters which form due to bridging–induced attraction, first introduced in [162].
In our simulation, the equilibrium configuration is always represented by a
single, large droplet made of proteins and chromatin.

For a chromatin modelled as an homopolymer, we find a weak first–order
transition between a liquid and a solid–like phases. The effective diffusivity
obtained from mean–square displacement measures display a jump at the
transition point, as well as other relevant quantities the relaxation timescale as-
sociated with internal recombination and the order parameter 〈ψ6〉, associated
with the extent of local ordering of the droplet. The distributions of the time–
averaged mobility defined in Eq. (3.34) show that there is coexistence between
a fast and a slow fraction of proteins in the solid–like phase. Additionally, the
dynamical heterogeneity is accompanied by structural heterogeneity; the latter
can be explained by recognising that the solid structure is held together by the
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chromatin fiber, and the protein caging is provided by the ordered structure of
chromatin. Therefore, an ordered chromatin region corresponds to an ordered
structure of protein in clusters, and vice versa.

Interestingly, in the presence of strong binding sites, we find a different
dynamical phase when the interaction strength between proteins and specific
sites becomes large. Unlike the non–specific case, the effective diffusion and the
relaxation timescale related to internal mixing vary in a continuous fashion as
the specific interaction energy increases. Dynamics are still heterogeneous, but
this is not associated with structural heterogeneous local order. This is typical
of glasses, where dynamics are heterogeneous but structures are inherently
disordered. A comparison between joined distributions for the non–specific
and the specific interaction cases, show that in the former case, the slow fraction
prefers to locate in the bulk of the droplet, being separated from the remaining
proteins; in the latter both slow and fast populations are both positioned in an
intermediate shell inside the droplet.

We should also remark that a first investigation of this system does not
show any aging effect in both models, which is a typical feature of glasses.
Though, further efforts in this direction are in order to definitely exclude such
effects in droplets of phase separating proteins.

This project highlights the possible emergence of states of matter differ-
ent from the liquid one, which has been widely assumed for aggregated of
chromatin–binding factors. This might have crucial implications for protein
function, for instance a slower dynamics could hinder further recruitment of
other chromatin factors. Different lines of research can depart from this work.
A simple investigation of the dynamics in the presence of different types of
chromatin–binding proteins would be interesting; Another line can be a study
of the dynamics in a non–equilibrium scenario where proteins can switch be-
tween an active and an inert state, mimicking some PTM and phosphorilation
of certain protein domains. From a physical perspective, one could try to vary
the fraction of specific sites – e.g. starting from an homopolymer to a polymer
with 1/10 ratio of ‘strong’ versus ‘weak’ binding sites, going through a block
copolymer: in such way, a full phase diagram which would depend on the
energy of specific sites and the strong vs. weak sites ratio could be drawn,
revealing interesting crossover between different phases.
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Chapter 4

The chromatin mediated
phase separation of proteins
with multiple domains

Bridging–induced phase separation (BIPS) has been recently recognised in
living cells by experiments on cohesin [203]. However, liquid–liquid phase
separation (LLPS) is another mechanism that certainly can play a role in protein
aggregation. A common notion is that flexible, low complexity and intrinsically
disordered protein (IDP) [or proteins with intrinsically disordered regions (IDRS)]
facilitate LLPS [224]. Many IDPs, and several proteins which possess IDRs,
have indeed been found to readily phase separate. One example is heterochro-
matin protein I HP1, a heterochromatin–associated protein highly conserved in
eukaryotes, constituted by two globular and three IDRs, which is known to
dimerise and co–localise with heterochromatin foci [171].

The HP1 was originally identified in Drosophila melanogaster embryo nu-
clei [225]. Several past works have studied the heterochromatic distribution of
this protein, showing that Drosophila HP1 is rich at the cetromeres and telomers
of unfixed mitotic chromosomes [226]. More recent papers have reported that
some HP1 paralogs can undergo phase separation in vitro [200, 227], and forms
liquid droplets upon H3K9me3 binding [200, 228, 229]. Despite this, the exact
function of HP1 in heterochromatin formation and gene silencing remains
elusive; in light of the experimental evidence, possibilities are that it directly
drives chromatin compaction, that it sterically occludes binding of activating
proteins, or that it recruits further gene silencing machinery.

The idea behind this work is to study the interplay between LLPS and
BIPS, considering how they could drive protein–chromatin foci localisation
and compaction in vivo. In our simulations, we modeled HP1 dimers as a three-
dimensional rigid body made of multiple beads, each representing a different
HP1 (dimer) domain. Such an approach has been inspired by works on patchy
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particles [230–234]. Patchy particles consist of hard cores accessorised with a
discrete number of attractive sites, or patches, on their surfaces. Comparing
our simulations with typical results obtained from systems of patchy colloids
is useful to understand the equilibrium (or quasi–equilibrium) properties and
the dynamics of our model HP1s, when interacting with chromatin and other
HP1s. Our primary aim was to investigate the possible behaviour of HP1, or
general multivalent proteins, and the biological implications of its interaction
with chromatin. Nonetheless, the study revealed also interesting results from
a strict physical perspective. In standard LLPS, a growth law between the
typical length scale associated with the instability (namely, the droplet radius)
and the number of proteins is R ∼ N1/3, being N the number of constituent
composing the high–density phase. Unexpectedly, in a particular region of the
parameter space of our system, we find that R3 grows sub–linearly with N, and
the density of the droplet slightly grows as N increases. Such a result poses
new interest into the physical properties of those systems which undergo BIPS.

This chapter is organised as follows. In section 4.1 I briefly review the HP1
structure and its main functions. In section 4.2, I link HP1 structure to its ability
to undergo phase separation; therein, I remark that the specific interactions of
HP1 domains with chromatin and other HP1 domains, can give rise to different
binding ‘modes’ and chromatin compaction. In section 4.3 I describe some
relevant properties of patchy particles and gelation, which are linked to a recent
work which studies phase separating patchy particles via BIPS [235]. This is all
part of the literature background. In section 4.4 I report methods and results
obtained by simulating (via LAMMPS software) our self–interacting model
HP1s when interacting with chromatin, which is the essential part of my work.

4.1 HP1 structure and functions

HP1 is ubiquitous and highly conserved in different organisms, ranging from
S. pombe (Swi6) to mammals [171], in which three paralogs are present: HP1α,
HP1β and HP1γ. In general, the HP1 complex consists of two globular, ordered
domains, the chromoshadow domain (CSD) and the chromodomain (CD), and three
flexible IDRs, the hinge region (HR), the N–terminal extension (NTE) and the
C–terminal extension (CTE). The three paralogs are highly homologous (for
instance the CD and CSD of HP1α and HP1γ show 71% and 87% sequence
identity, respectively [236]), but can perform different functions. A schematics
of HP1 in its linear and three–dimesional structure is shown in Fig. 4.1.

The CSD is responsible of homodimersation of HP1 proteins. In fact, HP1
are often found as dimers in vivo [236, 237], through CSD–CSD cross–binding
(as shown in Fig. 4.1(b), right panel). The CSD also functions as a hub for
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binding different ligands which are, in turn, involved in the transcriptional
process. The CTE plays a role in determining the affinity of the dimeric inter-
action CSD–CSD, as well as the binding strength with some ligands. A more
detailed discussion on the role of CSD and its ligands is in [236].

Phosphorylated NTE 
interacts with HR of HP1.

CD interacts with H3K9me2/3 
marks on nucleosomes talis. Its 
affinity is enhanced by NTE 
phosphorilation.

Disordered domain, involved in 
phase separation of some HP1 
paralogs. HR Interact with 
phosphorilated NTE.

Form homodimers through 
CSD-CSD interaction. 
Involved in bindings with 
different ligands.

Modulate the CSD-CSD 
interactions.

(a)

(b)

Figure 4.1. HP1 domains and dimer structure. (a) Schematics and details of
HP1 domains. (b) Left: three–dimensional structure in cartoon view of a single
HP1. Right: the two CSD are bound to form the dimer; here we show the three–
dimensional structure in cartoon view of a HP1α dimer. Figure adapted from [238].

The CD contains a hydrophobic cage which recognises and binds methy-
lated histone proteins with high specificity but low affinity. In particular,
many HP1 proteins have been found to bind H3K9me2/3, but with different
strength [239–241]. The CD affinity can also be enhanced by some chemical
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modification of other HP1 domains, as it is the case of mouse HP1α: there, phos-
phorilation of serine residues in the NTE increases the CD affinity to H3K9me3
by 5–fold. This suggest that the presence of negative charge in the NTE de-
termines the level of affinity for methylated chromatin: the more negatively
charged the NTE, the stronger HP1α binds to methylated domains, which have
been found in rich proportion in heterochromatic regions. Therefore, it may
be speculated that tuning the CD interaction strength with chromatin could
have large effects in heterochromatin constitution and spreading [236]. In vivo
studies in Drosophila point to this direction [242, 243]. On the other hand, CD
mutations seems to abolish the activity of HP1 [171].

The hinge is disordered and less conserved among HP1 proteins. Its vari-
ability in length and peptide sequence renders its role not well understood
yet [236]. Its most relevant role seems to be the ability of some paralogs to phase
separate, in the presence of some chemical modifications (phosphorilation) of
the NTE, which allow NTE–hinge interactions [227]. In fig. 4.1(a) the role of
each HP1 domain is summarised.

From our point of view, the two relevant features are HP1’s ability to
innteract with chromatin, and to oligomerise and, possibly, create droplet.
Thus, it seems that LLPS and BIPS can both be relevant in this case.

4.1.1 HP1 is a multivalent protein that contains IDRs

Intra–cellular phase separation is often driven by intrinsically disordered pro-
teins/regions (IDPs/IDRs) [224]. Classically, folded proteins are defined by
the presence of a native state, which is the preferred low–energy state of a
protein, which guarantees the proper functions of the protein itself. Conversely,
IDPs/IDRs lack such native structures, appearing more mobile and assuming
a large amplitude of conformational fluctuations [244]. At one hand, IDRs pre-
vent proteins from folding into a compact tertiary native structure [245]; on the
other hand, sequences of IDPs and IDRs are enriched in exposed charges that
can promote weak interactions with other substrates, such as homologous pro-
teins (homotypic interactions) or different proteins or complexes (heterotypic
interactions).

Together with disorder, which favour the non–specific, collective aggrega-
tion of IDPs, also multivalency play an important role in triggering LLPS. Three
specific elements are essential in order to determine phase separation: (i) the
number of sites or motifs that mediate attractive interactions, (ii) the strength
of each individual binding site, and (iii) the relative positions of those sites.
When multiple weakly interacting sites are located on a disordered, flexible
protein domain, coacervation (separation of a solution into two liquid phases)
and LLPS can occur.
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HP1 contains three IDR, the hinge, the NTE and the CTE. In particular,
the hinge and the phosphorilated NTE are responsible of oligomerisation in
vitro [227, 246]. In Ref. [246] the authors present experimental evidence that
disordered HP1 domains are essential for HP1–DNA phase separation. How-
ever, not much is known of the nature of the hinge–NTE interaction. Different
types of interaction can lead to different types of macroscopic behaviour: a
weak, longer range interaction, for instance, might be associated with a liquid
behaviour of HP1 droplet. This is compatible with the presence of multiple
weak binding spots on the disordered domain [246]. On the contrary, stronger,
short range interactions can arrest the phase separation dynamics, leading to
gel–like structures. This could represent the case when a flexible domain un-
dergoes “folding–upon–binding”, or simply whenever there are very specific
short range interacting sites in the flexible region [247].

4.2 HP1 undergo phase separation and can drive

DNA compaction

Experimental lines of evidence suggests diverse roles for HP1. Traditionally,
HP1 was identified as the central component of heterochromatin, which can
bind the methylation mark on histone H3 lysine 9. Therefore, HP1 is mainly
related to gene repression (as heterochromatin, either constitutive or faculta-
tive, is commonly associated with transcriptional silencing). However, HP1
plays other roles in addition to gene repression: it promotes chromosome seg-
regation [248], regulates H3 deposition and cohesin action [249] and provides
mechanical stability during interphase [250]. However, a deeper understanding
of HP1 functions in vivo requires a profound knowledge of the mechanisms
which promote its aggregation and of the dynamical properties.

4.2.1 HP1: self–assembly and phase separation

Recently, HP1 has shown to self–assemble in different living species. Studies on
protein Swi6 in S. Pombe (the yeast homologue of HP1) have shown oligomers
of these proteins beyond dimers [251]. In human cells, HP1α phase separation
is mainly caused by the phosphorilation of NTE [227], as phosphorilation
allows NTE–hinge interactions: such modification is essential to switch the
auto–inhibited (closed) form to the active (open) state of HP1α, which, in turn,
promotes self–interaction at a higher level through NTE–hinge binding.

Differently from cohesin (see section 3.5), this HP1 paralog has been found
to clusterise in vitro. In Fig. 4.2 we report the experimental evidence of phase
separation of HP1a in Drosophila, as shown in [200]. In Fig. 4.2(a) the purified
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Phase separation drives heterochromatin domain 
formation
Amy R. Strom1,2, Alexander V. Emelyanov3, Mustafa Mir2, Dmitry V. Fyodorov3, Xavier Darzacq2 & Gary H. Karpen1,2

Constitutive heterochromatin is an important component of 
eukaryotic genomes that has essential roles in nuclear architecture, 
DNA repair and genome stability1, and silencing of transposon and 
gene expression2. Heterochromatin is highly enriched for repetitive 
sequences, and is defined epigenetically by methylation of histone H3 
at lysine 9 and recruitment of its binding partner heterochromatin 
protein 1 (HP1). A prevalent view of heterochromatic silencing is 
that these and associated factors lead to chromatin compaction, 
resulting in steric exclusion of regulatory proteins such as RNA 
polymerase from the underlying DNA3. However, compaction alone 
does not account for the formation of distinct, multi-chromosomal, 
membrane-less heterochromatin domains within the nucleus, 
fast diffusion of proteins inside the domain, and other dynamic 
features of heterochromatin. Here we present data that support 
an alternative hypothesis: that the formation of heterochromatin 
domains is mediated by phase separation, a phenomenon that 
gives rise to diverse non-membrane-bound nuclear, cytoplasmic 
and extracellular compartments4. We show that Drosophila 
HP1a protein undergoes liquid–liquid demixing in vitro, and 
nucleates into foci that display liquid properties during the first 
stages of heterochromatin domain formation in early Drosophila 
embryos. Furthermore, in both Drosophila and mammalian cells, 
heterochromatin domains exhibit dynamics that are characteristic 
of liquid phase-separation, including sensitivity to the disruption 
of weak hydrophobic interactions, and reduced diffusion, increased 
coordinated movement and inert probe exclusion at the domain 
boundary. We conclude that heterochromatic domains form via 
phase separation, and mature into a structure that includes liquid 
and stable compartments. We propose that emergent biophysical 
properties associated with phase-separated systems are critical to 
understanding the unusual behaviours of heterochromatin, and how 
chromatin domains in general regulate essential nuclear functions.

Proteins that undergo liquid–liquid demixing in vitro and in vivo 
often contain intrinsically disordered regions (IDRs) and/or low- 
complexity sequences5, which are present in the N-terminal tail and 
hinge domains of Drosophila HP1a (Extended Data Fig. 1a). We therefore  
expressed and purified Drosophila HP1a protein from Escherichia coli 
to determine whether it undergoes phase separation in vitro. At 22 °C, 
high protein concentrations and low levels of salt, aqueous solutions of 
HP1a spontaneously demixed to form droplets (Fig. 1a, b) that revers-
ibly dissolved at 37 °C (Extended Data Fig. 1b), as observed for other 
phase-separating proteins6–8. These droplets are highly spherical and 
their area distribution fits a power law with exponent −1.5, suggest-
ing that they are liquid-like and undergo coarsening9 (Extended Data 
Fig. 1c, d). Large oligomeric complexes of purified HP1a also formed 
in glycerol gradients in low but not high salt conditions (Extended 
Data Fig. 1e, f). Independently, Larson et al.10 report that human 
HP1α protein (also known as CBX5) also displays liquid demixing  
in vitro, demonstrating a conserved property of diverged HP1 proteins. 
In contrast to our observations with Drosophila HP1a, human HP1α 

demixing requires N-terminal phosphorylation or DNA binding, which 
could be a result of differences in species-specific amino acid sequences 
or in vitro conditions.

To determine the in vivo relevance of HP1a demixing, we analysed 
the first stages of heterochromatin formation in early Drosophila 

1Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA. 2Department of Molecular and Cell Biology, University of California, Berkeley, 
California, USA. 3Albert Einstein College of Medicine, Department of Cell Biology, New York, New York, USA.
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Figure 1 | HP1a exhibits liquid demixing in vitro and in vivo. a, Purified 
Drosophila HP1a forms liquid phase droplets in vitro that undergo fusion. 
b, Phase diagram of HP1a droplet formation at indicated salt and protein 
concentrations. c, In nuclei of Drosophila embryos, GFP–HP1a forms 
liquid droplets that fuse and round up. d, HP1a droplets form in every 
interphase after nuclear cycle 11. e, Quantification of average per cent of 
nuclei with HP1a foci in cycles 10–14. f, Quantification of average number 
of HP1a foci per nucleus in cycles 10–14. Error bars in e and f are s.d. 
n = 12 embryos of >75 nuclei each.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Figure 4.2. Phase separation of Drosophila HP1a. (a) Purified Drosophila HP1a
forms liquid phase droplets in vitro that undergo fusion. (b) Phase diagram of
HP1a droplet formation. At low level of salt, or large concentration of HP1a,
droplets can form (yellow rhombuses). At high level of salt, or small concentration
of HP1a no droplets are detected (blue circles). (c) Different planar views of
drosophila embryos nuclei, where the HP1a are stained by the green fluorescent
protein (GFP). GFP-–HP1a forms liquid droplets that fuse and round up. Figure
adapted from [200].

HP1a from Drosophila is shown to phase separate in vitro, generating highly
spherical droplets which merge over time; the LLPS of HP1a occurs at suf-
ficiently high concentration of HP1 and low level of salt [see Fig. 4.2(b)]. In
vivo, similar fluorescent spots reveal the coexistence of several HP1a droplets,
which can merge over time [Fig. 4.2(c)]. As detailed in Chapter 3, these features
are typical of LLPS, which would mean that some of the HP1 functions are
prominently related to its ‘liquid’ behaviour once it phase separates.

Although LLPS is considered the main mechanisms for protein aggregation,
it does not signify that protein clusters remain in a liquid state for ever. Indeed,
immobile condensates or cluster regions have been identified under physiolog-
ical conditions in nucleoli, stress granules and also heterochromatin (as also
reviewed in Chapter 3, see section 3.2). In Ref. [252] the authors demonstrate
that liquid droplets of FUS protein, a prion–like protein containing IDRs (asso-
ciated with the neurodegenerative disease ALS) convert with time from a liquid
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to an aggregated, solid state; purified nuclear proteins can phase separate into
immiscible droplets, that contain non–coalescing phases which are remarkably
similar to nucleoli in vivo [253]; pab1 in yeast, a marker of stress granules,
phase separates and forms hydrogels in vitro upon exposure to physiological
stress conditions [254]; droplets of pub1 in budding yeast, which condensate
via LLPS, can convert into gel–like structures under pH changes, and solids
upon temperature changes [255].

Similarly, the formation of aggregates different from liquids involves also
HP1. HP1α, that forms droplet via LLPS, can age and form gels in vitro, possibly
due to regions with varying mobilities within HP1α molecules. In Ref. [157],
specific serine residues of HP1α have been recognised to contribute to gelation:
FRAP experiments detect a progressive slowing down of the mixing dynamics,
much in line with the results in chapter 3 and in Ref. [256]. Interestingly, the
same paper shows that the addition of chromatin (an array containing 12 nucle-
osomes with a lysine methylation) significantly slows down the rigidification
process as evidenced by the retention of mobility in FRAP experiments.

4.2.2 HP1: chromatin binding and compaction

Since the CD can specifically bind H3K9me3 (for both mammalian HP1 and
yeast Swi6), it is speculated that HP1 can compact heterochromatin. Not only
can the CD bind methylated nucleosomes, but also CSD–CSD dimerisation
can stabilise the affinity to chromatin, binding the H3 histone [257]. Although
the cooperation of different domains is likely to enhance HP1–chromatin bind-
ing, the interaction between CD and methylation marks is thought to be the
prime factor that yields the formation of the HP1–chromatin complex [258].
Such speculation is validated by Hiragami–Hamada et al., which found that
phosphorylation dissociated HP1α from the nucleosome core, leaving only
the CD–H3 interaction as the only relevant interaction [241] for heterochro-
matin compaction and maintainance [259]. Cryo-electron microscopy [258] and
detailed molecular simulations [260] have indicated that HP1 can readily sit
between adjacent nucleosomes; this binding mode suggests that (at least under
dilute conditions) BIPS can be hindered, as HP1 might ‘coat’ chromatin, rather
than bridging distant nucleosomes and favour chromatin looping, as discussed
below. However, the ability of real HP1 dimers to form bridges between distant
chromatin regions remains unclear. In the next sections we will describe the
macroscopic behaviour of droplets of model proteins, which depends on their
bridging ability.

Experiments have thus assessed a relation between HP1 phase separation
and chromatin compaction, with a variety of dynamical behaviour, including
dynamical heterogeneity, i.e coexistence of a mobile and an immobile fraction
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of HP1 in the vicinity of heterchromatin [200]. These findings, along with
the results in chapter 3, inspired our work, which tries to answer to some
unexplored questions, by examining the interplay between LLPS and BIPS for
composite protein geometries. In particular, what are the structural character-
istic of phase–separated aggregates when both LLPS and BIPS are in effect?
Can different population of HP1 be distinguished depending on their inter-
action with chromatin? And which kind of dynamics emerges by changing
the relevant interactions (HP1–HP1 and HP1–chromatin binding)? In the next
section, I will briefly review some interesting properties of ‘patchy’ particles,
which have been much exploited to reveal diverse states of matter and form
of aggregation that also differs from standard liquids or crystals (i.e gels or
glasses). In Section 4.4, I will report the main result of this project.

P. Teixeira, J. Tavares / Current Opinion in Colloid & Interface Science 30 (2017) 16–24 17

written in terms of the densities of bonded and unbonded sites. In
the simplest applications – which will be the only ones covered in
this review – the hard cores are just hard spheres (HSs) of diameter
s , and the pair potential between particles i and j, each decorated
with M patches of m different types, (see Fig. 1a) is then

0
(
rij, r̂ai, r̂bj

)
= 0hs

(
rij

)
+

∑

a,b

0ij,a b
(
rij, r̂ai, r̂bj

)
(1)

where rij is the vector of length rij connecting the centre of particle
i to the centre of particle j, r̂ia is the unit vector pointing from the
centre of particle i to the centre of patch a on its surface, 0hs is the
HS potential, and 0ij,ab is the interaction between patch a on particle
i and patch b on particle j. The latter is usually taken to be a square
well (SW); this is often assumed to be spherical and centred on the
HS surface [7••,8], or, alternatively, the part of a cone with its apex
at the HS centre that protrudes from the HS surface (Kern-Frenkel
potential, KF) [31•]. A patchy particle model was also developed as a
generalised lattice gas [32]: here, each particle may occupy only one
lattice site, and patches are defined along the directions connecting it
to its nearest neighbours. Each particle may thus have between one
and z patches (where z is the lattice coordination number), which
may be of different types. All these variants (lattice as well as off-
lattice) yield qualitatively the same phase diagrams and structural
properties. Two particles are said to be bonded by a bond of type ab
if their interaction energy is 4ab; in the lattice version this happens
when two nearest-neighbour particles point to each other through
patches a and b.

The model is thus specified by two sets of parameters: energetic
and geometrical.The former are the interaction strengths between
patches, 4ab; the latter are the interpatch interaction ranges dab
and, in the case of the KF potential, the patch opening angles hmax

ab .
Together the geometrical parameters set the volume vab

b available to
each type of bond; for the spherical SW model this is [33]

vab
b =

pd4
ab

30s2 (15s + 4dab) , (2)

and for the KF potential [34],

vab
b =

p
3

[
(s + dab)

3 − s3
] (

1 − cos hmax
ab

)2
. (3)

In patchy lattice models, vab
b is simply the volume of the unit cell

divided by the coordination number [35].

There is therefore considerable freedom in defining the interpar-
ticle interaction. The multiple energy scales allow one to tune the
temperatures at which any phase transitions occur, the densities of
which can in turn be adjusted by appropriate choices of the bond vol-
umes. Varying both energetic and geometrical parameters in concert
enables the model builder to favour certain types of interpatch bonds
over others, and thereby determine the topology of phase diagrams
and the location of percolation lines, as we shall see in the following
sections.

In the simplest version of Wertheim’s theory, known as TPT1,
each patch is assumed to participate in no more than one bond,
and each pair of particles can only be connected by at most one
bond. This single-bonding constraint has been relaxed in more recent
work [36–41,42•]; we shall not address it here. One further limita-
tion of TPT1 is that it disregards loops in the aggregates formed, a
point to which we shall come back below.

For a general model of N particles each decorated with a total of
M patches (i.e., of valence M) of m different types, Wertheim’s TPT1
provides a general expression for the contribution of bonds to the
free energy, Fb:

b fb ≡ bFb

N
=

m∑

k=1

(
Mk ln Xk − MkXk

2

)
+

M
2

, (4)

where Mk is the number of patches of type k (
∑m

k=1 Mk = M),
b = 1/(kBT), T is the temperature, kB is the Boltzmann constant, and
Xk is the probability that a patch of type k is not bonded. 1 − Xk is
thus the fraction of patches of type k that are bonded. The variables
Xk are related to the (number) density q = N/V (with V the system’s
volume) and temperature through the laws of mass action that are
obtained by treating bond formation as a chemical reaction. We
recall that this is equivalent to preserving only pair correlations [43]:
aggregates, or clusters, consist of uncorrelated bonds; longer-range
correlations, including intracluster self-avoidance, are neglected. The
inter-cluster excluded volume is taken into account through the ref-
erence fluid (in this case HS) entropic term, so the total free energy
per particle is

b f = b fHS + b fb. (5)

Furthermore, note that, although the patches confer orientation to
the particles, Eq. (4) does not account for the loss of rotational
entropy, but only for the loss of translational entropy [44] due to
bonding. This is a consequence of the fact that one essentially aver-
ages over orientations in Eq. (7) below, see Ref. [7••] for a discussion.
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Fig. 1. (a) Sketch of a patchy particle with three patches, labelled A, B and C, which may have different attraction ranges and strengths (M = m = 3). (b) X-junction: a bond
connecting two inner particles of two linear chains. (c) Y-junction: a bond between an end particle of one linear chain and an inner particle of another linear chain.
Source: Reprinted figure with permission from Ref. [30] Copyright 2017 by the American Physical Society.

Figure 4.3. Patchy particles. (a) Sketch of a patchy particle with three patches,
which may have different attraction ranges and strengths (M = 3). (b) X–junction:
a bond connects two particles of two linear chains, as to form an X–shaped structure.
(c) Y–junction: an end particle of one linear chain is bound to an inner particle of
another linear chain to form an Y–shaped structure. Figure taken from [261].

4.3 ‘Patchy’ molecular bridges: gelation and chro-

matin coating

In the past, patchy particles have much been studied as the simplest example of
consituents which do not necessarly nucleate a denser phase; they consists of a
simple colloid, decorated by a small number of identical ‘sticky’ spots, as shown
in Fig. 4.3, in fact, after quencing (a sudden change in the external controllable
parameters, i.e. temperature, pressure etc.), various mixtures of self–assembled
clusters can arise, from chains to rings, or closed loops, and branched clusters.
Therefore, patchy particles represent the prototypical examples of aggregates
that differs from those typical of vapour–liquid condensation or LLPS as a
consequence of directional interactions. We remark that there are other routes
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to gelation for simple colloids: non–equilibrium arrested phase separation and
equilibrium gels of colloids resulting from competition between short–range
attraction and long–range repulsion are vivid examples [232].

4.3.1 Equilibrium gels of patchy particles

Aggregates of patchy particles can produce equilibrium gels. A real gel is charac-
terised by an inherent disorder, similar to those found in liquids, but displays
a large typical length scale signal which reflects the fractal properties of the
structure; this means that in a wide regime of lengths, a fractal dimension
can be extracted by measuring some structural quantities, such as the radius
of gyration as a function of the cluster size, or the pairwise correlation g(r).
Gels can be more elastic (as gelatin) or more rigid (as silica gels). Additionally,
patchy particles gels can form at very small volume fractions.

(a) (b)

Figure 4.4. Phase diagram and gelation. (a) At T = 0, an ideal equilibrium gel
phase emerges, and crosses over the glass phase. At low temperature (or high
interaction energy) the dynamics is arrested, therefore quasi–ideal gels cann form,
with large relaxation times. The question mark refers to the unknown details
of the crossover from gel–to–glass dynamics. (b) A snapshot from simulations
of a gel made of a mixture of two– and three–coordinated particles (M = 2.025,
φ = 0.033, being φ the volume fraction) at very low temperature. Red particles
(three neighbours) give rigidity to the gel, while blue particles (two neighbours)
provide persistence to the length of network chains. Figure adapted from [232].

Theoretically, an ideal equlibrium gel can only obtained at T = 0, as the
bond lifetime is infinity. Practically, by limiting the number of neighbours per
particle and by including directional interactions between colloids, one can
produce a quasi–ideal gel, e.g. a saturated network structure which is char-
acterised by relatively low packing fractions (empty spaces, no bulk liquid),
and very long lifetimes. The works in Refs. [262–264] (which have been re-
viewed in [232]) study the behaviour of colloids interacting with a pre–defined
maximum number Nmax of neighbours. In such a system, the smaller the coor-
dination number Nmax, the smaller the volume fraction at which the system
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gels, as shown in the schematics in Fig. 4.4(a). Note that the actual nature
of the transition/crossover between gels and attractive glasses is not known
yet. An ideal gel clearly differs from a glass far from the transition point (or
crossover). First, the low coordination number prevents cages from forming
at low T. Second, gels have a very large structural length scale, much larger
than that typical of glasses. Moreover, non–ergodicity properties depends on
the length–scale of observation; indeed, in gels, the dynamics at small length
scales appears ergodic, in contrast to what is found in glasses, where all length
scales are non–ergodic.

(a)

(b) (c)

Figure 4.5. Schematics of ‘patchy’ proteins. (a) Schematics of model protein. Top
row: XP indicates the patchy protein consisting of X patchies linked to a core
colloid. Bottom row: different angles between the two patches of a 2P protein. (b)
Schematic showing how patches (red) interact with polymer beads via a purely
attractive interaction. The central core (blue) interacts repulsively with proteins. (c)
Interacting potentials of patch (red curve), core particle (blue curve) and colloid
with isotropic attractive interaction. Figure adapted from [235].

The Nmax model can be refined by introducing explicit, geometrically or-
ganised patches, which can interact via a short–range potential (usually a
square–well). For patchy particles, the key parameter is the number of patches
Mp. Upon decreasing Mp, the phase separation occurs at very low densities,
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and ceases to exist if Mp ≤ 2 [261]. Binary mixtures of patchy particles are
useful to study the phase behaviour of systems with and effective fractional
Mp. The appearance of the so–called empty liquids is also interesting, namely
states with an arbitrarily small occupied volume at temperatures below the
liquid–gas critical temperature [231]. A typical gel structure which percolates
the whole system is represented in Fig 4.4(b).

In real cells, proteins can behave as patchy particles to many extents [235,
265]: HP1 domains, for instance, can interact with nucleosomes through the
CD, while hinges bind the NTE of other HP1. Therefore, in terms of HP1–HP1
interactions, this protein can behave as a patchy particle with Mp = 4, provided
a strong short–range interaction that prevents multiple NTE for interacting
with a single hinge (and vice versa). A very useful collection of the methods
and simulations on patchy particles is given in [266].

4.3.2 BIA in protein–inspired patchy particles
J. Phys.: Condens. Matter 32 (2020) 314002 C A Brackley

Figure 2. The BIA for model proteins with different valence. Results from simulations of N = 100 proteins interacting with an L = 2000
bead polymer were performed in a square box of size lx = 90σ. (a) Snapshots of typical configurations with different valence proteins for
ϵP = 5.92kBT. For clarity, only the proteins bound to the polymer are shown (a protein is defined as bound if the separation between the
protein central core and a polymer bead is less than 1.7σ). Insets show the same configuration, but to give a visual impression of the degree
clustering only the central cores of each protein are shown (with a larger diameter of 3.5σ). (b) The mean fraction of proteins bound to the
polymer is plotted as a function of interaction energy. Points show data from simulations with the indicated protein model, and are an
average over the last 105τ of 5 independent simulation runs, with connecting lines as a guide for the eye. The dashed line shows a fit to the
1P data of the function given in equation (4) (fit constant A = 173.5). (c) Ratio of the number of proteins in clusters and the number of
proteins which are bound to the polymer as a function of the cluster threshold φ. The dashed line shows the level of clustering expected
simply due to proteins binding randomly (non-cooperatively) to a polymer coil (see text and appendix C). (d) Fraction of proteins which
belong to clusters as a function of interaction energy (a protein belongs to a cluster if the centre of its central core is within φ = 3.5σ of that
of another protein). The dashed line again shows the expected clustering simply due to random binding (see text and
appendix C).

in clusters, Ncl, as a function of φ for a high value of ϵP. Since
the different valence proteins bind the polymer to a different
extent, in figure 2(c) we plot Ncl scaled by the mean number
of bound proteins Nb. The multivalent proteins (models 2Pa,
3P, and 4P) show an initially steep increase with φ, but this
begins to plateau, suggesting clustering, as expected due to the
BIA. The 1P proteins show a strikingly different behaviour:
after an initial slow increase in Ncl with ϵP the dependence
becomes linear. We expect that this clustering is simply due to
proteins binding randomly along the polymer coil—this can
be confirmed using polymer configurations from a simulation
without proteins, and choosing M polymer beads at random
to attach proteins to, before performing the same clustering
analysis (dashed black line in figure 2(c); M is the number of
proteins bound in the 1P simulation). See appendix C for fur-
ther details. Based on figure 2(c) we suggest that φ = 3.5σ
is a reasonable threshold to determine clustering. Figure 2(d)
then shows the fraction of proteins involved in clusters fcl as
a function of ϵP for each protein model. Consistent with the
above discussion, the 1P proteins show a weak increase with
ϵP, while the other protein models show a steep increase and
plateau. The curves become steeper (with clustering observed
at lower energy) as the number of patches increases, indi-
cating that the BIA effect becomes stronger with increasing
valence.

3.2. Effect of shape on the BIA for valence-2 patchy bridges

Above we considered model proteins where the patches were
placed equidistantly around the central core. Of course, in

real proteins such an arrangement of DNA binding domains
may not be the case. To systematically study the effect of

different protein shapes, in this section we consider valence-
2 proteins and vary the angle between the patches. Specif-
ically, we consider the five model proteins as shown in the

bottom row of figure 1(b). Real examples of proteins which
might have a similar arrangement of binding domains include
the eukaryotic protein HP1 (which is thought to form dimers

either in an elongated or a folded state, depending on post-
translational biochemical modifications [25]), and the bacte-

rial protein H-NS (which is thought to adopt elongated or
folded shapes depending on salt concentration or the pres-
ence of other ligands). Both of these examples could therefore,

under different conditions, be similar to either the 2Pa or 2Pe
models.

To study the formation of clusters via the BIA, we again
consider a system with an L = 2000 bead polymer and N

= 100 proteins with lx = 90σ; simulation snapshots are shown

in figure 3(a). In figure 3(b) we plot the fraction of proteins
found in clusters for each of the different models (using a
threshold separation φ = 3.5σ, as before). The 2Pb protein

5

Figure 4.6. The BIA for model proteins with different valence. Results from
simulations of N = 100 proteins interacting with an L = 2000 bead polymer were
performed in a square box of size 90σ. Figure adapted from [235].

In Ref. [235] a study of chromatin–binding ‘patchy’ protein phase separation
is presented; this work focuses on the multivalence protein ability of bridging
distal regions of chromatin. In particular, diverse minimal geometries have
been considered, as shown in Fig. 4.5(a), obtained by changing the number of
binding sites (e.g. red beads) and the angle between them.

Thus, the phase behaviour of such patchy proteins was investigated in
the absence of protein self–interaction, in order to probe the bridging ability
of these model proteins. First, the author explored the ability to cluster and
compact the polymer by varying the number of (equidistantly spaced) patches,
i.e 1P, 2Pa, 3P, 4P. The snapshots in Fig. 4.6 show qualitatively the conformation
of a 2000–bead long polymer which interacts with 100 proteins of different type.
Note that for the case of 1P proteins, no clusters are detected, and the polymer
remains swallen. In the other cases, proteins organise in clusters, which tend to
grow faster as the interaction energy increases. Namely, the cooperative effect
of BIA is stronger if the interaction energy and the valence are large.
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Figure 5. Polymer compaction by valence-2 model proteins
(N = 500 proteins interacting with an L = 1000 bead polymer in a
cube of size lx = 70σ). (a) Snapshots showing typical equilibrium
configurations in simulations where ϵP = 5.92kBT. As before, only
proteins which are bound to the polymer are shown. (b) The radius
of gyration is plotted as a function of ϵP for each model protein.
Points show an average over the last 105τ of 5 independent
simulations, with connecting lines as a guide to the eye. (c) Similar
plot showing the fraction of proteins bound on average. (d) The
radius of gyration is plotted as a function of the mean number of
proteins bound in the ‘bridging’ mode. (e) A plot for each protein
model shows the fraction of the N = 500 proteins which bind in
each of the bridging, dangling or coating modes (see figure 3(e)) as
a function of ϵP.

same ϵP (a cluster of two 2Pa proteins looks much like a single
4P protein, etc).

3.4. Effect of shape on polymer compaction for valence-2
patchy bridges

Finally, in figure 5 we present results from simulations with
N = 500 valence-2 proteins interactingwith an L = 1000 bead
polymer (lx = 70σ), and again examine the ability of the pro-
teins to compact the polymer. The radius of gyration decreases
with ϵP only for the 2Pa–c protein models. The 2Pa and 2Pb
curves overlap, indicating that these proteins can compact the
polymer to a similar extent (Rg tends to be slightly higher
for 2Pc). The fraction of proteins bound as a function of ϵP
(figure 5(c)) shows similar trends as the case with fewer pro-
teins—the 2Pe proteins bind more readily. Figure 5(e) shows

the proportion of proteins which are binding in each mode as
a function of ϵP; again the behaviour is very similar to the case
with fewer proteins, with the proteinsmore likely to coat rather
than bridge as the angle between patches decreases. The pro-
portion which bind in the ‘dangling’ mode is slightly larger
at higher ϵP values than in the case with fewer proteins (this
is likely due to ‘binding sites’ on the polymer becoming satu-
rated). Figure 5(d) again shows Rg, but this time as a function
of the fraction of proteins bound in the bridging mode: there
is a rough collapse of the curves for the different proteins.
Together these results suggest that again, the effect of protein
shape mainly comes down to the ability of each model to form
bridges.

4. Discussion and conclusions

In this work we have further investigated the bridging-induced
attraction (BIA), amechanismwhichwas uncovered in simula-
tions of sphere–polymer mixtures [4]. Previously, we showed
that sphereswith an isotropic attractive interactionwith a poly-
mer tend to spontaneously form clusters, even in the absence of
attractive sphere–sphere interactions. These clusters grow and
coarsen until there is a single large cluster [9]. In this way the
BIA leads to a bridging-induced phase separation. Spheres are
the simplest model for DNA or chromatin binding proteins (or
protein complexes) which can bind in multiple places simulta-
neously in order to formmolecular bridges. In the presentwork
we study in more detail the effect of protein valence on the
BIA by using simple ‘patchy particles’ to model multivalent
proteins.

We found that all model proteins with valence ! 2 form
clusters, but that the effect is stronger for higher valence. The
fraction of proteins involved in (! 2 protein) clusters, fcl shows
an ‘S-shaped’ dependence on the protein–polymer interaction
energy.The fraction of proteins bound on average fb also shows
an S-shaped curve, as expected. In comparison to valence-
1 proteins (or a simple kinetic binding model), the fb curves
for multivalent proteins are steeper, becoming more so as the
valence increases. The functional form predicted by a model
assuming non-cooperativebinding does not fit the data, and the
increase in fb is not what would be expected if adding addi-
tional patches were simply to increase the effective binding
energy additively. This is consistent with the action of the BIA,
where after an initial bridge forms subsequent bridges forming
in the same place act to stabilise the first.

For the case of valence-2 proteins we found that the BIA
also depends on the protein shape. Specifically, for our sim-
ple patchy proteins we varied the position of the two patches;
starting from amodel where they were on opposite sides of the
protein central core (model 2Pa) we progressively reduced the
angle between the patches across five models, with the final
model having two adjacent patches on one side of the cen-
tral core (model 2Pe). The level of clustering was higher for
a larger angle between the patches. This effect can be traced
back to the ability of the proteins to form bridges. For example,
the 2Pe model proteins much more readily bind the polymer
in a ‘coating’ arrangement—if no bridge is formed, the BIA
will not be in effect. This is confirmed by a plot of the fraction

8

Figure 4.7. BIA for valence–2 model proteins with different shape. Polymer
compaction by valence-2 model proteins (N = 500 proteins interacting with an
L = 1000 bead polymer in a cube of size 70σ). (a) Snapshots showing typical
equilibrium configurations in simulations (only proteins which are bound to the
polymer are shown). (b) The radius of gyration is plotted as a function of the
interaction energy for each model protein. Figure adapted from [235].

Second, the author compared the different phase behaviour of 2P proteins,
by varying the angle between the two patches. Mainly, based on the particular
model used, the cooperativity of BIA depends on their ability to bridge distant
regions of chromatin. Reasonably, proteins with two patches on opposite sides
(2Pa) display the larger tendency to cluster, while proteins with two very close
patches (2Pe) tend to ‘coat’ the polymer: the BIA is not in effect. The author
identifies three different binding modes for valence–2 proteins: the ‘dangling’,
‘coating’ and ‘bridging’ modes. A dangling protein is bound to polymer via a
single patch, a coating protein is bound with both patches to adjacent polymer
beads, a bridging protein is bound with both patches to distal polymer beads,
favouring plymer compaction, as displayed in Fig. 4.7(a). Conversely, for 2Pd
and 2Pe proteins the polymer never compacts, see Fig. 4.7(b).

The work in Ref. [235] is quite instructive to understand the structural
properties of aggregates of real proteins, depending on the valence and the
internal protein geometry.

4.4 BIPS and LLPS interplay of HP1–inspired model

proteins

Here, we consider simple coarse-grained model proteins which resemble HP1
in solution with a model chromatin fibre. Our aim is to explore the parameter
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space of the model, to understand under what conditions aggregates contain-
ing both proteins and chromatin form, and to measure their structural and
dynamical properties. Importantly, our model is simple enough to allow simu-
lations of large systems at many different points in the parameter space, but
retain details of the domain structure of the protein (explicitly incorporating
protein-protein and protein-DNA interaction domains). Specifically, we con-
sider two separate models which are related to two microscopic possibilities:
(i) the low-complexity domains give rise to weak and effectively longer ranged
multivalent protein-protein attractions; (ii) the interactions between flexible
domains are short ranged and have a limited valence such that exactly two
domains can interact at a time. The former could mimic, for example, a scenario
where these flexible domains adopt an extended coil configuration, meaning
multiple coils can overlap with multiple weakly interacting contact points; we
model such “multivalent” interactions using a longer range interaction poten-
tial between the spheres representing the hinge and NTE, such that several
NTEs can simultaneously interact with a hinge and vice versa (determined by
the geometry and steric hindrance). The latter case may arise, instead, when a
disordered protein domain forms a globular secondary structure when inter-
acting with the correct binding partner [267]. In this case, we consider limited
valence interactions, using a shorter ranged potential such that at most one
hinge and one NTE can interact at a time. Since an HP1 dimer has two hinges
and two NTEs, in the “limited valence” model, a given dimer can bind to at
most four others at once. We should note that, though our model is inspired by
HP1, due to its simplicity, we expect our results to be applicable more widely.

4.4.1 Simulation scheme

Each HP1 dimer is represented by a rigid body consisting of seven spheres
arranged as shown in Fig. 4.8: the blue sphere represents the CSD from each
HP1 making up the dimer (i.e., two CSDs), then the black, green and orange
spheres represent the hinge, CD and NTE domains respectively, two of each per
dimer. Our coarse–grained approach does not attempt to model the full details
and exact dimensions of the dimer; nevertheless, we aim to capture the main
features of the physics at the mesoscale. For simplicity, all HP1 component
spheres have a diameter 0.5σ, which gives a rough size of 1− 1.5σ ≈ 10− 15nm
for a dimer (compared with 13− 22 nm for a real HP1 dimer, depending on
post-translational modifications [227]). The CSD and CD, which are globular
domains, are estimated to have a diameter of about 3 nm in reality [268]; the
sizes of the flexible hinge and NTE domains are more difficult to estimate,
but one might expect them to be larger than the folded domains. Choosing to
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Figure 4.8. A simple coarse-grained protein model inspired by HP1. (a) Left:
schematic showing the domain structure of the HP1 protein as detailed in the
text. Right: schematic representation of the model HP1 dimer. (b) and (c) Two
alternative models for interactions between HP1 dimers.

represent the domains as spheres of the same size is therefore an approximation,
but we do not expect this will qualitatively change the observed behaviour.

Interactions between HP1 component beads and chromatin beads are mod-
elled as follows. CDs interact attractively with chromatin beads through the
potential

UCD−C(r) =


εHC

[
(e−2αr − 2e−αr)

−(e−2αrHC − 2e−αrHC)
]

r ≤ rHC,
0 otherwise,

(4.1)

where r is the separation between the centers of the CD and the chromatin
bead, εHC is the energy which determines the strength of the interaction, α

is a “shape” parameter, and rHC is the cutoff distance which sets the range
of the interaction. We set α = 5 and rHC = 0.9σ. The CSD, hinge, and NTE
interact sterically with the chromatin beads, through the WCA potential given
in Eq. (3.2); we set dij = 0.75 for the CSD, and dij = 0.5 for the hinge and NTE.
Firstly, as our model CSD effectively represent two dimerized CSD, therefore
it is reasonable to model a larger steric CSD-chromatin interaction; secondly,
as the hinge and the NTE are flexible/disordered, they can easily adapt their
shape to allow CD and chromatin to interact, which results in an effective
smaller radius of our modelled beads. In practice, this allows partial overlap
of these beads with the chromatin beads, which is essential to permit the CD
and chromatin beads to interact.
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Interactions between HP1s are modelled similarly. The hinge and NTE
domains in different HP1 dimers interact via the potential

Uh−NTE(r) =


εHH

[
(e−2αr − 2e−αr)

−(e−2αrHH − 2e−αrHH)
]

r ≤ rHH

0 otherwise.

(4.2)

The two different models of the HP1–HP1 interaction are specified by different
sets of parameters: for the multivalent model we set α = 0.5 and rHH = 1.3; for
the limited valence model we set α = 5 and rHH = 0.6. All other HP1 component
beads interact sterically via the WCA, except for the CSD and the NTE which
can overlap (there is no interaction) in order to permit the correct binding of
NTE domains with hinges. The functional forms of UCD−C(r) and Uh−NTE(r)
are the same as the commonly used Morse potential.

We note that the minima of the functions UCD−C and Uh−NTE is at r = 0,
i.e., the beads can overlap. In practice, it is not always possible to achieve the
separation r = 0 due to steric interactions between the other component beads.
For the HP1-chromatin interaction, allowing the CD and chromatin beads to
overlap, along with the short range of the interaction, ensures that a given CD
can interact with at most one chromatin bead at a time (e.g., a single CD cannot
form a bridge between two chromatin beads). Since the CD spheres are smaller
than the polymer beads, it is possible for more than one CD to interact with
a given polymer bead at the same time. These are reasonable choices, since
a chromatin bead represents several nucleosomes, and the CD is thought to
interact with nucleosome surface charges. We also note that the functional
forms of UCD−C(r) and Uh−NTE(r) are the same as the commonly used Morse
potential. In the limited valence case, the short range of Uh−NTE(r) with no
repulsive core means that one NTE can interact with exactly one CSE at a time
and vice versa. For the multivalent case the longer range and small value of α

(which leads to a broader shape) is such that multiple NTEs can simultaneously
interact with one CSE and vice versa.

The values of α have been chosen arbitrarly to model differently the two
HP1 models, as they cannot be extracted from experimental evidence. The
parameter α effectively models the steepness (i.e. the strength of the attraction
forces) of the attractive basin in the potential in (4.2); The larger α, the stronger
are the attractive forces, producing a more ‘selective’ binding. Similarly, we
choose the values of rHH and rHC.

The dynamics of the polymer beads and HP1s (rigid body translation and
rotation) are governed by Langevin dynamics in Eq. (3.5); we perform extensive
simulations using the LAMMPS molecular dynamics software [207].

Below we present simulations of a system containing N=1000 model HP1s
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and an L = 1000 bead polymer. For simplicity, we consider a homogeneous
polymer where all beads can bind HP1 (i.e., it represents a section of H3K9me3
modified chromatin). For the multivalent HP1 model we ran long simulations
to obtain equilibrium configurations. For the limited valence HP1s the system
displayed long-lived non-equilibrium metastable (gel–like) states. We confine
all components of the system in a cubic box of size lx = 35σ (approximately
equal to the radius of gyration of the polymer as predicted by the worm-
like chain model). While the confinement reduces the entropy of the system
by forbidding some extended polymer configurations, it also prevents the
polymer from interacting with its periodicity including a “wall potential”,
i.e. an effective repulsive interaction located at x, y, z = ±17.5σ (with our
simulation box centered on (x, y, z) = (0, 0, 0)). These parameters represent
a dilute regime. While the confinement reduces the entropy of the system by
forbidding some extended polymer configurations, it also prevents the polymer
from interacting with its periodic image (test simulations showed that, in the
presence of periodic boundaries, HP1 could bridge distant chromatin regions
across the boundaries, and the polymer could become trapped in extended
unphysical configurations).

To map the density in our simulation with real densities, we suggest a pos-
sible mapping of the polymer beads to 1kbp of chromatin with bead diameter
10− 20nm. This leads to a HP1 concentration of ∼ 4− 39mMolar. We would
point out, however, that within most of the regimes studied, the behaviour is
independent of density. Although this density is larger than typical densities
measured in cells, here it is the ratio of the number of proteins to the length
of polymer (or number of available binding sites on the polymer) which is
important, whilst our results are chiefly independent of the density chosen.

4.4.2 Model 1: Multivalent protein-protein interactions

With this version of the model, the proteins behave like a standard phase
separating system [64, 176], at least when the HP1-chromatin interaction energy
εHC is small. When εHC is larger there is more interesting behaviour. We
summarise the emerging regimes in the simulation snapshots in Fig. 4.9 and in
the phase diagrams in Fig. 4.10.

When εHC < 12kBT, a phase transition between a uniform mixed phase
and a separated phase takes place as εHH increases. Above a critical value
a roughly spherical cluster, or “droplet”, of HP1 forms. Dynamically, after
quenching from a small to large value of εHH, many clusters form and these
grow/coalesce until a single droplet remains at equilibrium. We call this the
dense droplet regime. By measuring the density ρ of HP1s inside and outside of
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(a) Model 1: mulitvalent interactions.
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Figure 4.9. Protein-chromatin and multivalent protein-protein interactions lead
to phase separation. Snapshots of equilibrium configurations for N=1000 multi-
valent HP1 dimers interacting with an L=1000 bead polymer representing a 1 Mbp
chromosome fragment for different values of the HP1–HP1 and HP1–chromatin
interaction energy.

the droplet (the procedure explained below in section 4.4.3), we can also map
out a sketched phase diagram on the ρ–εHH plane [Fig. 4.10(b) top].

For small HP1-HP1 interaction energies, εHH < 5kBT, there is no droplet.
The HP1-chromatin attraction leads to HP1s becoming bound to the polymer,
and there is a smooth increase of the fraction bound as εHC increases. For
large εHC there are sufficient HP1s bound such that the region occupied by the
chromatin has a higher than average protein density, while the surroundings
have a lower than average protein density [green region in Figs. 4.10(a)]. In this
sense there is a phase separation, however this regime is profoundly different
from the dense droplet phase. Here, a significant fraction of the proteins remain
unbound, while the remaining HP1s tend to “coat” the polymer. Hence, we
refer to it as the coating regime.

When both εHH and εHC are large [blue region in Figs. 4.10(a)] a protein
droplet forms, but now the polymer is also absorbed into it. Or in other words,
the droplet compacts the polymer. We call this the absorbing droplet regime.
Interestingly, the polymer is absorbed to a different degree depending on the
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Figure 4.10. Phase diagrams and separation depth. (a) Phase diagram showing
the different behaviours of the multivalent HP1s with different parameter values.
Border colours in Fig. 4.9 indicate the relevant region in (a). (b) Phase diagram
on the ρ-εHH plane for small εHC (top) and large εHC (bottom). ρ is the overall
number density of HP1s. In the bottom plot the shaded bar covers a region where
there is a chromatin associated droplet, but the protein density inside and outside
the droplet depends on the overall protein density (see text). These are sketch
plots based on measurements of the HP1 density inside and outside of droplet. (c)
Phase separation depth φsep is plotted as a function of εHH for different values of
εHC as indicated (units are kBT). Each point is obtained from an average over 4
simulations of duration 5×103τ (τ is the simulation time unit). Error bars show
standard error in the mean; lines are a guide to the eye. The inset shows a similar
plot for εHC =2,6,10 and 12kBT where points overlap. (d) φsep is plotted as a
function of εHC for different values of εHH between 0 and 10kBT (darker colours
for larger values, as indicated by the arrow and increasing in steps of 2kBT).

precise values of the interaction energies [compare snapshots at εHC = 20kBT
and different εHH in Fig. 4.9, where different amounts of chromatin extend out
from the droplet]. As before, measurements of HP1 density inside and outside
of the droplet allow the construction of the ρ–εHH phase diagram for large
εHC, on which we can also identify the coating regime [Fig. 4.10(b) bottom].
Briefly, at large HP1 concentration and small εHH, the non-bound HP1 density
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reaches the same value of the bound HP1 density, thus the system is in a mixed
phase; when HP1 concentration decreases, HP1s prefer to co-localise with
chromatin, giving rise to a region with larger density along chromatin: this
is the coating regime; increasing εHH, HP1 can phase separate on their own,
forming a protein-chromatin droplet. Moreover, there is a further new region
on this phase diagram (the shaded stripe) where a droplet forms only due to
HP1–chromatin interactions (i.e., εHH is not large enough for a protein droplet
to form on its own). We discuss this in more detail below.

Separation depth

To characterise these regimes more quantitatively [and to determine the posi-
tions of the lines in Fig. 4.9], we measure the local protein density by splitting
the simulation box into Nsb sub–boxes of volume Vsb. If there are Ni HP1s in
the ith sub–box, the local density is ρi = Ni/Vsb. To quantify the level of phase
separation we then consider a ‘separation depth’ parameter [269] defined as

φsep =
1

Nsb

Nsb

∑
i=1

ρi − ρ

ρ∗ − ρ
, (4.3)

where ρ = N/l3
x is the overall number density of HP1s, and ρ∗ is a reference

density which takes the value ρ+ when ρi > ρ+/2 and ρ− = 0 otherwise. This
measures the mean local deviation from the uniform overall number density ρ,
normalized by the expected deviation for a strongly phase separated system.
We use ρ+ = 0.5 and Nsb = 125, chosen so as to be optimal for distinguishing
the different regimes, and leading to φsep → 1 on droplet formation. Fig-
ure 4.10(c) shows how φsep varies with εHH, for different values of εHC. For
εHC ≤ 12kBT the points sit on top of each other [Fig. 4.10(c) inset], and we
observe a sharp crossover (at εHH ≈ 4.5kBT) from φsep ∼ 0.15 in the mixed
phase to φsep ∼ 1 in the dense droplet phase. As noted above, for these values
of the energy the model behaves qualitatively the same as, e.g., interacting
Brownian colloids [232], and we expect a first-order phase transition in the
thermodynamic limit (Model B). We use a value of φsep = 0.5 to set the position
of the orange line in Fig. 4.10(a). As εHC increases, this line shifts to the left—we
discuss this interesting regime further below. Figure 4.10(d) shows that for
small εHH the separation depth is independent of εHC throughout the uniform
phase (φsep ∼ 0.15), before increasing at larger εHC in the coating or absorbing
droplet regimes. We identify the value of εHC at which φsep starts to increase
(φsep & 0.15) to draw the green dashed line. For εHH > 6kBT the separation
depth φsep ∼ 1, independently of εHC; i.e., this parameter cannot differentiate
between droplets and absorbing droplets.
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Figure 4.11. Protein-chromatin binding modes. (a) Simulation snapshots of a
single model HP1 and a short section of chromatin. The three different binding
modes are depicted. (b) Plots showing the fraction of the N=1000 proteins bound
to the chromatin in each mode for different interaction energies. The height of each
coloured region indicates the proportion of proteins, with the regions stacked on
top of each other. In this way the height of the total coloured region indicates the
fraction of proteins bound in any mode ftot. Values are obtained from averaging
over 4 simulations of duration 5×103τ, and error bars show the standard error
in the mean. Black circles around points indicate where bridging is the dominant
binding mode (more than half of the bound proteins).

Binding modes

We now consider the nature of the interactions between the HP1 dimers and
the chromatin. Similarly to ‘patchy’ model proteins in section 4.3.2, each
model HP1 can bind the polymer in three different modes [Fig. 4.11(a)]. In
the “dangling” mode, HP1s bind to chromatin through one CD; when both
CDs bind to chromatin at adjacent |i− j| < 2 polymer beads, the HP1 binds
in the “coating” mode; f inally, if the CDs interact with polymer beads which
are separated along the chain (|i− j| ≥ 2), then the protein is “bridging”. As
detailed in section 4.3.2, the shape of the protein determines its likelihood
to bind in each mode: bridging incurs an entropic penalty (due to polymer
looping), so unless the shape of the protein specifically disfavours coating, the
coating mode is favourable. This is the case here: in the absence of protein–
protein interactions we mainly observe coating.

In Fig. 4.11(b) we plot the fraction of bridging, coating and dangling proteins
as a function of εHC. If we consider the total fraction of proteins bound to the
polymer ftot, at εHH = 2kBT, ftot increases smoothly with εHC. Coating and
dangling are the dominant binding modes; the BIA is therefore not in effect, and
we do not observe BIPS or chromatin compaction. At large εHH, where there
is a droplet, ftot increases very sharply as εHC is increased and the polymer
becomes absorbed into the droplet [the curve becomes steeper from left to right
in the panels of Fig. 4.11(b)]. This could indicate the presence of a first–order
phase transition in the thermodynamic limit. Within the absorbing droplet
regime we also observe that the fraction of bridging proteins increases with
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Figure 4.12. HP1-chromatin interactions, chromatin compaction, and droplet
dynamics. (a-b) Plots showing how the radius of gyration of the polymer repre-
senting the chromatin segment depends on the interaction energies. In (a) from
top to bottom curves are for εHC values between 10 and 20kBT increasing in steps
of 2kBT. Points are obtained from an average of 4 independent simulations; error
bars show the standard error in the mean, and connecting lines are a guide to the
eye. (c-d) Plots showing how the fraction of chromatin beads which are bound by
proteins fc, depends on the interaction energies. In (c) from bottom to top curves
are for εHC values between 8 and 20kBT, increasing in steps of 2kBT.

εHC, and it becomes the dominant mode of binding when both interactions are
strong. The main driver of this is that as εHC increases, more of the polymer
becomes absorbed inside the droplet, and so the likelihood of two distant
regions being close enough together for bridges to form increases.

Radius of gyration and number of chromatin beads interacting with HP1

One proposed function of HP1 in vivo is to compact heterochromatin. The
ability of our model proteins to compact chromatin can be probed by measuring
its radius of gyration, defined as

R2
g =

1
L

L

∑
i=1

(ri − r̄)2, (4.4)

where ri is the position of the ith chromatin bead, and r̄ = (1/L)∑i ri.
Figs. 4.12(a–b) show how Rg depends on the interaction energies. Interestingly,
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Figure 4.13. Hysteresis loops. (a) Snapshots from simulations with εHH = 4kBT
and εHC = 20kBT but with different numbers of proteins N as indicated. (b) Plot
showing how the protein densities within the high and low density phases (inside
and outside the droplet) vary with the number of proteins. (c) Plot showing how
the radius of gyration of the polymer Rg and radius of the droplet Rd vary with N,
shown in log-log scale. The black line has a slope 1/3, which is how the droplet
radius would scale in a standard phase separating system.

Rg can vary non–monotonically as εHH increases; similar behaviour is observed
in the fraction of polymer beads bound by proteins, fc [Fig. 4.12(c,d)]. The
reason for this non–monotonicity is strikingly apparent in the top row of
snapshots in Fig. 4.9: in the leftmost snapshot the polymer is swollen, in the
second from the left it is fully absorbed into a protein droplet (small Rg and
large fc), but in the two right–hand snapshots the polymer is only partially
absorbed into the droplet (Rg increases again, while fc decreases). That the
amount of absorbed polymer varies so widely within the absorbing droplet
regime is likely due to competition between different contributions to the free
energy. While HP1–chromatin binding represents a reduction in free energy,
this is offset by the reduction in entropy due to the compaction/confinement
of the polymer within the droplet. Increasing εHC increases the amount of
chromatin absorbed as the entropic loss is overcome. On the other hand, the
presence of the polymer within a droplet will reduce the number of HP1–HP1
interactions due to steric effects; so increasing εHH decreases the amount of
chromatin absorbed (effectively the polymer is ‘squeezed out’ of the droplet).

Finally in this section, we consider intermediate values of the HP1–HP1
interaction strength, εHH ≈ 4kBT, where we observe the most interesting
behaviour. Here, in the absence of chromatin interactions there is no droplet
formation and φsep is small. However, we note that as εHC increases, the orange
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line in Fig. 4.10(a) moves to the left, so droplets can form at εHH ≈ 4kBT if the
protein-chromatin interaction energy is large enough. In other words, HP1-
chromatin attraction promotes protein aggregation. This can be understood
as follows: when εHC is large enough, a significant number of HP1s become
localised to the polymer and these tend to bind in the coating mode. Then,
intermediate HP1–HP1 interactions are sufficient to allow extended chromatin–
HP1–HP1–chromatin bridges to form. The BIA is therefore in effect, leading
to chromatin compaction and protein clustering; we note that this is the only
region of the phase diagram where the BIA is in effect and a true BIPS is
observed. When both εHH and εHC have intermediate values we observe an
absorbing (BIPS) protein droplet and coating of the chromatin which emerges
from the droplet [cross–hatch shaded region in Fig. 4.10(a)].

Hysteresis loops

In Fig. 4.11(b), we showed that there is an abrupt change in quantities such
as the total fraction of proteins bound to the polymer ftot, the fraction of
polymer beads bound by proteins fc, and the polymer radius of gyration Rg,
as εHC is increased and the system moves from the droplet to the absorbing
droplet regime. This hints that there may be a first order phase transition in
the thermodynamic limit. To elucidate this further, we performed simulations
where we slowly vary the parameter values in time and looked for evidence of
hysteresis.

In Fig. 4.13, we show a hysteresis loop for the fraction of proteins bound
to the polymer (in total and in different modes) as εHC is slowly increased
from 8kBT to 14kBT before being decreased again. we ran 12 independent
repeat simulations for 4×104τ, each starting from a different equilibrium con-
figuration for εHH = 6kBT and εHC = 8kBT (droplet regime). For the first
2× 104τ of each simulation εHC is increased by an increment of 3×10−2kBT
every 102τ, until it reaches εHC = 14kBT (the absorbing droplet regime). Then,
over the second 2×104τ of the simulation εHC is reduced in the same fashion
(until εHC = 8kBT). We keep the protein–protein interaction energy constant
throughout at εHH = 6kBT. the system displayed hysteresis as the polymer
became absorbed and then re–emerged from the droplet. For this intermediate
value the droplet is highly dynamic; one would expect a slower response for
larger εHH. Similar results holds for Rg and the fraction of dangling proteins
(not shown). Therefore, there is also hysteresis in terms of the polymer configu-
ration, as it retains memory of its previous state for a significantly long time
after the system crosses the transition.

These observations suggest that in the limit of a large droplet the system
would show a first–order transition as εHC increases, to a phase where the
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Figure 4.14. Varying the number of proteins for parameters where a droplet
would also form without chromatin. Plots showing the effect of varying the
number of proteins for parameter values εHH = 6kBT, εHC = 14kBT within the
absorbing droplet phase. (a) Snapshots from simulations with N = 1000, 3000 and
6000 proteins. (b) Density of proteins within a probing sphere of radius r centred
on the the centre of mass of the droplet. (c) Bar plot showing the radius of the
protein droplet in simulations with different values of N. (d) Bar plot showing the
radius of gyration of the polymer. (e) Plot showing how the ratio Rg/Rd varies
with N. (f) Bar plot showing the fraction of polymer beads bound by proteins. (g)
Stacked bar plot showing the fraction of the total number of proteins which are
bound to the polymer in each of the three modes. Bars are stacked on top of each
other so, for example, the distance between the bottom and top of the green region
gives the fraction of proteins bound in the coating mode. The total height shows
the total fraction of proteins bound to the polymer. (h) Stacked bar plot showing
the fraction of the total number of proteins which are in the droplet but not binding
to chromatin beads (red) and in the droplet and binding to chromatin beads (blue).

polymer is fully absorbed; in our small system we instead observe an extended
co–existence regime where the polymer is only partially absorbed (see also
below).

4.4.3 Varying protein density

We now consider the effect of the overall protein density for the multivalent
HP1s. As expected, for large εHH, we observed the same behaviour as a
standard (Model–B) phase separation. Fig. 4.14 shows results for the case where
εHH = 6kBT and εHC = 14kBT; for these parameters the protein droplet would
form even in the absence of chromatin. As can be observed from the snapshots
in Fig. 4.14(a), increasing the number of proteins leads to a larger droplet which
absorbs a larger fraction of the polymer. We confirm quantitatively that the
density of HP1s within the droplet is independent of the total number of HP1s
(i.e. the overall density). The procedure to calculate the density in Fig. 4.14(a)
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Figure 4.15. Varying the number of proteins for parameters where a droplet do
not form without chromatin. (a) Snapshots from simulations with εHH = 4kBT
and εHC = 20kBT but with different numbers of proteins N as indicated. (b) Plot
showing how the protein densities within the high and low density phases (inside
and outside the droplet) vary with the number of proteins. (c) Plot showing how
the radius of gyration of the polymer Rg and radius of the droplet Rd vary with N,
shown in log-log scale. The black line has a slope 1/3, which is how the droplet
radius would scale in a standard phase separating system.

has been also used to produce the plots of separation depths in Fig. 4.10(a), and
it reads as follows.

In order to calculate the protein densities, e.g., within or outside of a protein
droplet, we consider a ‘probe sphere’ of radius r centred on the centre of mass
of the largest droplet (protein cluster). We then progressively increase r, and
calculate the density of proteins within the probe sphere, and within a spherical
shell of width dr. We then average over time and repeat simulations (finding a
new droplet centre of mass each time). The local protein density, is calculated
as

ρshell(r) =
Nshell(r)
4πr2dr

, (4.5)

where Nshell(r) is the number of proteins within the spherical shell of width
dr = 0.3σ and radius r.

We plot the density within the probe sphere ρps as a function of its radius
r in Fig. 4.14(b), while the droplet radius for the three different values of N
is shown in Fig. 4.14(c) [taken to be the position of the half maximum point
in the ρps(r) curve]. From this, we see that when HP1–HP1 attractions drives
droplet formation the behaviour is consistent with standard (Model–B) phase
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separation (ρHD is independent of N and droplet radius Rd increases as N1/3).
Fig. 4.14(d–h) reveal a complicated relationship between the droplet size

and chromatin absorption/compaction. This stems from the balance between
the energetic gain which arises from HP1s binding chromatin, the entropic
loss due to HP1 bound chromatin being confined to the volume of the droplet,
and any energetic loss due to HP1–HP1 bonds being broken to accommodate
HP1–chromatin ‘bonds’. For the N = 6000 case, the polymer is completely
absorbed within the droplet, and we note that the volume which the polymer
coil occupies is significantly smaller than the volume of the droplet. That is to
say, the polymer is compacted to a greater extent that it would be due to simply
being confined within the droplet. This is clear if one considers the ratio Rg/Rd,
which steadily decreases with N [Fig. 4.14(e)]. To understand this, we varied
the interaction strengths εHH and εHC by a small amount (such that we stay in
the same regime) and observed the effect on the polymer radius of gyration
(data not shown). We found that increasing εHH led to greater compaction of
the polymer. This is consistent with expectations if we consider the protein
droplet to be an effective solvent within which the polymer is dissolved (e.g.,
as considered in Flory–Huggins theory). On the other hand, increasing εHC

also led to greater compaction of the polymer; in the Flory-Huggins theory,
increasing polymer-solvent attraction leads to swelling of a polymer. Clearly
the ability of our model HP1s to form bridges means that treating the droplet
as a solvent gives an incomplete picture.

A strikingly different behaviour is observed for intermediate εHH (the
region where the BIA is in effect, i.e, where a droplet only forms due to the
presence of the polymer). Figure 4.12(e) shows snapshots for εHH = 4kBT
and εHC = 20kBT with different numbers of proteins. It is immediately clear
that the density of proteins within the two phases varies with N [see also
Fig. 4.15(b)]. This can be rationalised as follows. For small N a protein droplet
forms on the polymer via the BIA. This droplet is rather ‘loose’, and as N
increases, more space within the droplet becomes filled with proteins and the
density (ρHD) increases. At the same time more polymer becomes absorbed
and the droplet grows [Rg decreases, and the droplet diameter Rd increases,
Fig. 4.15(c)]. When N ≈ 1000 all of the polymer is absorbed, and Rg reaches a
minimum; as N and Rd increase further the polymer can swell slightly. At some
point the droplet density reaches a maximum, and adding further proteins
instead leads to an increase in the density of proteins outside the droplet. The
droplet still grows with N, but more slowly than in a standard phase separation
(where R ∼ N1/3).

In summary, for the narrow range of parameters where phase separation
only occurs in the presence of the polymer, we find the surprising result that
the density of the phases (ρHD and ρLD) depends on the overall protein density
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[shaded band in Fig. 4.10(c)]. This has important implications for protein-
chromatin interaction in vivo: for instance, this numeric results are in line with
recent experimental evidence in mice, where HP1 foci density increases as
more HP1 are expressed, rather than their size [270].

4.4.4 Model 2: Limited valence protein-protein interactions

In this model the HP1 dimer–dimer interactions have a limited valence, i.e.,
exactly one hinge domain can interact with exactly one NTE domain at a time,
similarly to what happens with classic patchy particles. While in the previous
section we specifically considered equilibrium configuration, here we study the
metastable states obtained when the system is quenched by instantaneously
switching on both protein–protein and protein–chromatin interactions. Specif-
ically, we start from an equilibrium configuration for εHH, εHC = 0, switch
on interactions and run for 104τ (where τ is the simulation time unit); after
this time the measured quantities ( fc, φsep, etc.) have stopped systematically
varying. Steady state values of these quantities are then obtained by averaging
over a further 104τ simulation.

Typical snapshots are shown in Fig. 4.16(a). Similar behaviour is observed
as for the multivalent interaction model. At low εHH we have the same mixed
and coating regimes. For low εHC, as εHH increases, we go from the mixed
phase to an aggregate phase. Unlike the multivalent model, here the aggregates
are not spherical; instead multiple irregularly shaped clusters form. We also
see small closed clusters of HP1s where all (or most) hinge and NTE domains
are bonded When both εHC and εHH are large, many of the aggregates become
associated with the polymer, which becomes compacted. Some smaller clusters
remain detached from the polymer.

As before, we measure the separation depth φsep as a function of the two
interaction energies. Figure 4.16(b) shows that the behaviour is again similar
to the multivalent model in that φsep increases with εHH. However, the largest
φsep values are smaller than in the multivalent case, consistent with several
protein aggregates of different size forming, rather than a single phase sepa-
rated droplet. There is also a regime where proteins aggregate only when the
interaction with the chromatin is strong enough, though it is less clear than
for the multivalent model. Specifically, for εHH = 8kBT there is a cluster only
when εHC is large, but φsep only reaches intermediate values [Figs. 4.16(a) and
(c)]. For εHH = 12kBT, φsep has an intermediate value just less than 0.6 for a
broad range of εHC values [Figs. 4.16(c)], behaviour which is not observed in
the multivalent model. This arises because while clusters do form, there are
many of them; they are also highly dynamic, continually forming, dissolving,
merging and breaking apart [232].
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Figure 4.16. The limited valence HP1 displays similar behaviour regimes. (a)
Snapshots are shown for simulations of the the limited valence HP1 model with dif-
ferent HP1-HP1 and HP1-chromatin interaction energies. Border colours indicate
similarity to the different regimes observed for the multivalent model in Fig. 4.9.
(b) Plot showing how the separation depth parameter varies with εHH for different
values of εHC for the limited valence model. Data for εHC between 10 and 20kBT
increasing in steps of 2kBT are shown in the main plot. The inset shows that points
for εHC = 6, 8, and 10kBT sit on top of each other. (c) Similar plot showing φsep
as a function of εHC. Curves are for different values of εHH between 0 and 20kBT
increasing from bottom to top in steps of 4kBT.
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Figure 4.17. Alternative quench schemes lead to different long-lived metastable
configurations for limited valence model proteins. Snapshots are shown from
simulations of the limited valence model using parameters εHH = 16kBT and HC =
16kBT. (a) Configuration obtained from the end of a 2 · 104τLJ long simulation where
for the first 104τLJ the HP1-HP1 attraction was switched off; the HP1-chromatin
attraction was kept switched on for the full duration. (b) Configuration obtained
from the end of a 2 · 104τLJ simulation where for the first 104τLJ the HP1-chromatin
attraction was switched off and instead the HP1-HP1 attraction was on for the full
duration. (c) Configuration from a simulation of duration 4 · 103τLJ with a higher
density of HP1s in the absence of polymer (N = 1000 proteins in a smaller system
of side lx = 21) using periodic boundary conditions (instead of ‘walls’ as in all
other simulations).

Clusters have fractal dimension

Measurements of clusters and sub–clusters show that these have a fractal
dimension less than 3, as would be expected in a gel. In the snapshots of the
limited valance model shown in Fig. 4.18 we observe irregularly shaped protein
clusters with a structure strikingly different to the spherical droplets formed
by the multivalent model. To quantify this difference, here we estimate the
fractal dimension D f of the clusters. In simulations, the fractal dimension of
cluster, e.g. from a diffusion limited cluster aggregation (DLCA) process [271],
is typically obtained from a scatter plot of the cluster mass (or number or
particles) versus radius. For spherical clusters one would expect a scaling
R ∼ N1/3, while fractal clusters give R ∼ N1/D f where D f < 3 for a 3D
system.

In our simulations, we typically observe a single or small number of clus-
ters, meaning it is difficult to obtain enough measurements to determine D f .
Another common method is to extract the fractal dimension from the structure
factor S(q) [272], but this is again difficult to obtain from our simulations of a
small number of clusters in a confined geometry. To estimate D f , we instead
consider sub–clusters, measuring their mass and radius of gyration. We use
the following scheme: we consider the ith HP1 together with all of its bound
neighbours (defined as any HP1 whose centre of mass is within 1.1σ of HP1
i; different threshold values do not significantly alter the result). We denote
this set of proteins a level 1 sub–cluster, and record the number of proteins M
and radius of gyration Rg associated with this set. This is repeated for all HP1s
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in the system. We then consider level 2 sub–clusters, consisting of HP1 i, its
bound neighbours, and all of the bound neighbours of neighbours; again, we
record M and Rg for i = 1 . . . N. Level 3 sub–clusters include neighbours of
neighbours of neighbours, etc. We continue increasing the level until there are
no further unique sub-clusters, taking care not to double count. Fig. 4.18 shows
plots of Rg against M for all possible sub–clusters; each point represents the
mean Rg of all sub-clusters (of any level) with a given number of HP1s.

For the multivalent model, for all parameters where there are protein
droplets, the sub–cluster plots are roughly linear on a log-log scale, and have
similar slope. A linear fit to a function Rg = aM1/D f gives D f ≈ 3.2, close to
the expected D f = 3 for spherical droplets.

For the limited valence model, we find that sub–cluster plots are not always
linear over the whole curve, and the exponent depends on the parameters. For
large εHH = 20kBT the plots are roughly linear with fractal dimension D f ≈ 2.5,
which is insensitive to the value of εHC. This is close to the value D f = 2
observed in simulations of patchy particles [273]. For smaller εHH = 12kBT
there is not a single power law relationship between Rg and M, but for large
clusters D f ≈ 3. The reason for this difference is likely due to the difference in
the protein dynamics. For εHH = 12kBT, protein in clusters can dynamically
rearrange to satisfy the maximum number of bonds, tending to adopt more
space–filling shapes; at larger εHH, HP1–HP1 bonds persist for long times,
leading to dynamically arrested fractal clusters.

Alternative quenches: closed loops and percolating gels

As noted above, the limited valence model behaves similarly to patchy parti-
cles in that the system can adopt long–lived metastable states with multiple
fractal clusters (including “closed loops” where all bonds are satisfied). The
observed structures therefore depend on the initial condition or the quenching
procedure used. To highlight this, in Fig. 4.18(a–b) we show configurations
obtained with two different quenches. In Fig. 4.18(a), after starting from an
equilibrium configuration for εHH, εHC = 0, first the HP1–chromatin attraction
was switched on, then later the HP1–HP1 attraction was switched on. This
generated structures where most of the proteins were associated with the poly-
mer, and were spread roughly uniformly along it; a few small (closed loop)
clusters were not associated with the polymer. In Fig. 4.18(b), first the HP1–HP1
attraction was switched on, and then later HP1–chromatin attractions were
switched on. In this case the proteins tend to sit in larger clumps associates
with smaller sections of the polymer; there were much larger polymer regions
without proteins bound. This latter morphology arises because the large HP1
clusters form first, only later becoming associated with the polymer. In all other
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Figure 4.18. Fractal dimension of HP1 sub–clusters. Logarithmic scale plots
showing radius of gyration Rg vs. the number of proteins M in sub–clusters for
multivalent and limited valence simulations in droplet/cluster regimes. Each point
shows the mean Rg of all unique sub–clusters with a given M; averages are also
over time for a single simulation. Error bars show the standard error in the mean.
We expect a power-law relationship with Rg ∼ M1/D f , where D f is the fractal
dimension. (a) Points show data obtained from simulations of the multivalent
model in the droplet or absorbing droplet regimes, with εHH and εHC as indicated
(units are kBT). Lines show the slope for the indicated values of D f (b) Points
show data obtained from simulations of the limited valence model with large
εHH = 20kBT and εHC as indicated (clustering regimes). (c) Points show data from
simulations of the limited valence model with smaller εHH = 12kBT.

limited valence simulations in this work we switched on both interactions at
the same time. To demonstrate that the limited valence HP1 can form a gel, we
also performed a simulation with periodic boundaries and a smaller box size
(higher HP1 density); a snapshot is shown in Fig. 4.18(c).

4.4.5 Discussion and future perspectives

In this chapter we have studied the behaviour of simple model proteins in-
teracting with a bead–and–spring polymer model for chromatin. Differently
from the setup in chapter 3, we consider a more complicated system, where
rigid bodies composed of spheres represent different protein domains which
interact attractively with each other or with chromatin. The domain structure
was based on that of HP1, but our goal was to obtain insight on the interplay
between LLPS and BIPS in general.

In this model we were capable of drawing a phase diagram, by varying
protein–protein and protein–chromatin interactions; two different type of HP1–
HP1 interaction were investigated: a ‘multivalent’ interaction (multiple HP1
can bind together) and a ‘limited valence’ interaction (only one HP1 domain
can stick to another).

In the multivalent model different regimes were identified: we found that in
the absence of protein–chromatin interactions, increasing the protein–protein
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interaction strength εHH led to liquid droplet formation (Model B). Increasing
protein-chromatin attractive interactions lead to a sharp crossover to a regime
where the chromatin is absorbed into the droplet (with indications that there
is a first–order phase transition in the thermodynamic limit). Importantly, the
level of chromatin absorption depended on both interaction energies, and the
number of proteins/size of the droplet. For most of the parameters studied, a
significant fraction of the chromatin “looped out” from the droplet [the looping
statistics of a similar situation have been studied in Ref. [274]]. This suggests
that precise parameter tuning would be required for protein–protein attraction
(LLPS) alone to mediate chromatin associated protein droplet formation and
chromatin compaction/isolation in vivo.

An interesting regime in our multivalent protein simulations is for inter-
mediate values of εHH, where a droplet only forms if εHC is large enough. In
other words, phase separation is promoted by interaction with chromatin; this
can be viewed as chromatin–HP1–HP1–chromatin bridges enabling the BIA
to drive protein clustering. In this regime we also see a dependence on the
overall protein density ρ which is fundamentally different to standard LLPS.
The density of proteins within and outside the droplet depends on ρ, and the
droplet volume grows sub–linearly as ρ increases. This behaviour originates
from the formation of a “loose” protein cluster on the chromatin for small ρ,
which can “fill up” as proteins are added to the system; at larger ρ, sites on
the chromatin become saturated, so as more proteins are added these instead
remain unbound (increasing the density in the protein poor region). This is
reminiscent of recent work showing that varying the overall concentration
of the nucleophosmin protein (a key component of nucleoli, which form via
LLPS) leads to variation in its density both inside and outside the nucleolus;
in that system there are multiple phase-separating components which leads
to a complicated high–dimensional phase diagram [275]. This result is also
compatible with a recent study, that showed that over–expression of HP1 in
mouse does not lead to an increase in the size of foci, but instead the protein
density within the foci increases [270].

The limited valence model showed similar regimes to the multivalent case,
but instead of a spherical droplet the proteins formed fractal clusters [similar
to the structures formed by patchy particles [230, 231]]. The limited valence
HP1s could also form a gel in simulations with a higher density and periodic
boundaries, as shown in experiments [157].

To summarise, in this chapter I present some useful result on the equilibrium
properties of self–interacting HP1 which can bind chromatin; in particular we
found that (i) the effective valence of these proteins and (ii) and the nature
of their interactions are essential to promote the emergence of different high–
density phases, also very different from the standard liquid droplet.
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Future works might be directed to the study of “good” bridgers (e.g. simple
spheres). A phase diagram of BIPS in the presence of simple spheres interact-
ing with chromatin has not been presented yet. In recent works, it has also
been shown that cluster formation via the BIA can be dramatically altered
by non–equilibrium chemical reactions which stochastically switch the pro-
teins back and forward between a binding and non–binding state [modelling
post–translational modifications [141]]. It would be interesting to study the
equilibrium properties of clusters in such contexts, using the same approach
presented here (i.e. by adding also an attractive interaction between switching
proteins). It could be relevant to study the case where multiple strong bind-
ing sites, which are spatially separated, or dynamical (mimicking the histone
modifications changes as genes are activated), act as nucleation points for
chromatin–binding proteins.
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Overall conclusions

One of the main goal of molecular biology is to explain the complex rela-
tionship between chromatin structure and function. Many techniques can
be employed to reveal chromatin organisation at large scales, while specific
mechanochemical experiments can reveal DNA structure at a small length
scale; other methods can be used to track transcription patterns. Experiments
and numerics suggest that complex networks of transcription units and genes
may be highly sensible to small changes in local regions [276, 277] in some
conditions. The complexity of regulatory networks is still under debate, and
many questions on the interplay between DNA and chromatin conformation
and gene expression are still left unanswered.

In this thesis’ work, I show some examples on how physical modelling can
help to unveil possible connections between DNA and chromatin conforma-
tion and functioning. Not only the thesis follows a “bottom–up” approach, as
chapters are sorted by increasing length scales of interest, but also two are the
main methods of investigation exploited here: in the first two chapters, simple
one–dimensional models of DNA and chromatin fibre have been proposed,
and Monte Carlo algorithms have been employed to replicate the stochasticity
of real biochemical reactions; in the other chapters, extensive MD simulations
were used to simulate brownian dynamics of chromatin fibre and associated
proteins, and a realistic 3D view of protein aggregates and chromatin confor-
mation has been shown.

In general, we observe that positive feedback loops can facilitate the emer-
gence of non–trivial macroscopic behaviours. In chapter 1, I show that the
coupling between supercoiling dynamics with transcription initiation intro-
duces non–linearity in a simple model of bacterial gene arrays. This results
in the emergence of a bursty regime: when the coupling is relatively weak,
transcription is highly intermittent and distributions of supercoiling at pro-
moter are strongly non–gaussian; on the contrary, a collective supercoiling
dynamics are at play when polymerases strongly affect the supercoiling at gene
promoters: supercoiling waves arise for single gene and tandem geometry,
whereas in the presence of a pair of divergent genes, the transcription across all
genes is almost totally dominated by them. In chapter 2, I show that long–range
contacts can favour the estabilishment and maintainance of epigenetic domains.
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Chapter 4. The chromatin mediated phase separation of proteins with

multiple domains

After nucleation, methylation marks can spread across a genome region when
chromatin is crumpled, whilst for more swollen chromatin fibre, short–range
contacts dominates and local erasure prevails, leaving the chromatin domain
either in a non–methylated or a mixed epigenetic state.

In chapter 3 we investigate in detail the dynamics of proteins which undergo
BIPS. Bridging–induced attraction provides a simple mechanism to explain
the growth of protein clusters and heterochromatin compaction; I show the
emergence of solid–like and glassy behaviours, for a uniformly interacting
chromatin fibre and in the presence of strong binding sites interposed between
weakly–interacting stretches of chromatin, respectively. In chapter4 4, I revise
the biochemistry of the HP1, an ubiquitous heterochromatin-associated factor,
and I study the interplay between LLPS and BIPS of these proteins. Different
macroscopic behaviours have been obtained by changing the relevant energies
at play: coating, dense and absorbing droplet phases enrich the already copious
behaviour of bridging–induced phase separating systems; remerkably, a regime
where the systems behaves different from simple LLPS arises: the density of
droplet increases as the volume fraction becomes larger. Gel–like structure can
form due to the limited valence of model HP1s.

I would like to ackowledge my supervisors, Davide and Chris, for helping
me to write this thesis and their contribution as co–authors of my works; all
other co–authors of my publications, Beppe G., Alessandro P., Davide M.,
Alessandro B., Michele C.; also, I would like to thank all my friends and my
family.
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