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A B S T R A C T

PCPP is an application developed in MATLAB, for the detection of abnormal infant movements associated
with cerebral palsy. This system uses 2D skeletal data extracted from videos, and consists of a full pipeline
providing data pre-processing, data normalization, feature extraction and classification. Evaluation metrics,
such as accuracy, sensitivity, specificity, F1 score and Matthews Correlation Coefficient (MCC), are computed
to facilitate full assessment of performance and allow for comparison with other methods from the literature.
These evaluations are conducted on the MINI-RGBD and RVI-38 datasets using the code and data provided.

Code metadata

Current code version v1.0.0
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2022-116
Permanent link to Reproducible Capsule https://codeocean.com/capsule/1912426/tree/v1
Legal Code License MIT License
Code versioning system used git
Software code languages, tools, and services used MATLAB
Compilation requirements, operating environments & dependencies Windows, MATLAB R2021b
If available Link to developer documentation/manual https://codeocean.com/capsule/1912426/tree/v1
Support email for questions edmond@edho.net

1. Introduction

Cerebral Palsy (CP) is one of the most common motor and move-
ment disabilities in childhood, and has a lifetime impact on people
with the condition. To identify infants who are at risk of CP, diagnostic
tools such as the General Movements Assessment (GMA) [1] can be
used at an early stage in development prior to further assessment
(eg Magnetic Resonance Imaging (MRI)) [2]. Currently, the GMA is
carried out manually by highly qualified assessors, requiring extensive
experience to identify atypical infant movement patterns. However, this
manual assessment can be sensitive to observer fatigue, as well as the
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subjectivity of the assessor. Additionally, significant investment in both
time and money are required for assessors to reach a suitable level of
diagnostic accuracy. As a result, researchers in this field have been
actively conducting interdisciplinary work which combines clinical
knowledge, computer vision and artificial intelligence.

Early work in this area [3,4] typically focuses on extracting image
features, such as optical flow, from videos of an infant’s spontaneous
movements. However, the low-level features extracted from image ap-
pearance using these methods are highly sensitive to variations caused
by body size, clothing, camera movement, and external anomalies in
shot. To address these issues, the use of pose estimation algorithms,
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Fig. 1. An example of a 2D skeletal pose with 25 keypoints estimated using
OpenPose [5].

such as OpenPose [5], have provided encouraging results using skeletal
data for abnormal movement detection, as reported in several recent
works [6–11]. The software provided here, namely Pose-based Cerebral
Palsy Prediction (PCPP), is developed as part of the abnormal infant
movements detection pipeline recently proposed in [6,11].

The effectiveness of detecting abnormal infant movements using
this software has been rigorously evaluated using a real-world dataset
gathered in a clinical setting [11]. By making this software available to
the public, along with the full implementation details provided in this
article, we aim to further stimulate scientific research and industrial
development in this area.

2. Description of PCPP

2.1. System overview

In this system, the input file format is JSON (JavaScript Object
Notation), since OpenPose [5] uses JSON as the default output format
for 2D pose estimation on each frame of a video. OpenPose [5] supports
3 different pose estimation versions, predicting the locations of either
15, 18 or 25 keypoints on the body. We selected the 25 keypoint version
(Fig. 1) since this contains the most information and is suggested as
being the most accurate variant in the literature. However, our system
only uses the pose and motion features from 15 of the extracted key-
points, as in [11], as less relevant keypoints (such as facial landmarks
and feet) are excluded from the GMA. In the following subsection, the
details of each module in our system will be discussed.

2.2. Data preprocessing

As discussed, the pose is estimated using real-world videos recorded
during routine clinical care. However, the raw pose data (i.e. 2D
joint locations) generated using OpenPose [5] can be noisy due to the
uncontrolled lighting conditions and the self-occlusion of body parts
of the infants. Furthermore, OpenPose [5] extract poses on a frame-
based manner. As a result, it is possible to have a discontinuity in the
estimated poses in consecutive frames.

To alleviate this problem, we replace the estimated poses with a low
confidence score by 1-D data interpolation as illustrated in Algorithm 1.
Specifically, we calculate the average confidence score for each joint
from all frames in the video. Next, the estimated joint locations which
have a confidence score lower than the 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 − 0.07
will be discarded and replaced with the results of interpolation. Here,
the 1-D data interpolation function interp1 in MATLAB is used with the

Fig. 2. An example of a noisy pose corrected using our proposed data preprocessing.

Modified Akima cubic Hermite interpolation (i.e. ‘makima’ in MATLAB)
selected as the interpolation function:

𝑑𝑖 =
𝑤1

𝑤1 +𝑤2
𝛿𝑖−1 +

𝑤2
𝑤1 +𝑤2

𝛿𝑖 (1)

where the slope 𝛿𝑖 on interval between 𝑥𝑖 and 𝑥𝑖+1 can be determined
from a set of control points 𝑋 = [𝑥0, 𝑥1,… , 𝑥𝑛] where 𝑛 is the number
of points, 𝑑𝑖 is the derivative at the sample point 𝑥𝑖, and the weights
𝑤1 and 𝑤2 are determined by:

𝑤1 = |𝛿𝑖+1 − 𝛿𝑖| +
|𝛿𝑖+1 + 𝛿𝑖|

2
(2)

𝑤2 = |𝛿𝑖−1 − 𝛿𝑖−2| +
|𝛿𝑖−1 + 𝛿𝑖−2|

2
(3)

Finally, the motion is further smoothed by applying the moving mean
function movemean in MATLAB with a 5-frame sliding window to
ensure the continuity of the joint trajectories. An example of a noisy
pose, corrected using our proposed data pre-processing, is illustrated
in Fig. 2.

Algorithm 1 Data Pre-processing
1: procedure Data Pre-processing
2: for each joint do
3: Calculate average confidence score from all frames
4: for each frame do
5: if confidence score of current frame < aver-

age confidence score - 0.07 then
6: Replace the estimated joint location by the result of

interpolation
7: end if
8: end for
9: for each frame do

10: Smoothening the motion using moving mean with a
5-frame sliding window

11: end for
12: end for
13: end procedure

2.3. Pose normalization

After data pre-processing, the holistic translation of each pose is
corrected by subtracting the 2D location of the root joint from all body
joints. In doing so, the 2D coordinates of the root joint are always at
the origin (i.e. (0, 0)) to facilitate comparison of poses between different
frames and sequences.

We further normalize the data by aligning the spinal column (i.e. the
central line between joints 2 (sternum) and 9 (root)) with the vertical
axis of the coordinate system. Specifically, we calculate the rotation
𝜃𝑓𝑎𝑙𝑖𝑔𝑛 required at frame 𝑓 to align the spinal column with the 𝑦𝑎𝑥𝑖𝑠 =
(0, 1) by

𝜃𝑓𝑎𝑙𝑖𝑔𝑛 = 𝑑𝑖𝑟 × arccos
(𝑓𝑝𝑓2 − 𝑓𝑝𝑓9 ) ⋅ 𝑦𝑎𝑥𝑖𝑠

‖(𝑓𝑝𝑓2 − 𝑓𝑝𝑓9 )‖‖𝑦𝑎𝑥𝑖𝑠‖
(4)

2
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where 𝑓𝑝𝑓2 and 𝑓𝑝𝑓9 are the filtered 2D coordinates of joint 2 and 9,
respectively, and 𝑑𝑖𝑟 = 𝑠𝑖𝑔𝑛((𝑓𝑝𝑓2 −𝑓𝑝𝑓9 )×𝑦𝑎𝑥𝑖𝑠) is used to determine the
direction of the rotation (i.e. clockwise or counter-clockwise). Finally,
the normalized position 𝑝 of each joint can be computed by

𝑝𝑓𝑖 =

[

𝑐𝑜𝑠(𝜃𝑓𝑎𝑙𝑖𝑔𝑛) −𝑠𝑖𝑛(𝜃𝑓𝑎𝑙𝑖𝑔𝑛)
𝑠𝑖𝑛(𝜃𝑓𝑎𝑙𝑖𝑔𝑛) 𝑐𝑜𝑠(𝜃𝑓𝑎𝑙𝑖𝑔𝑛)

]

(𝑓𝑝𝑓𝑖 − 𝑓𝑝𝑓9 )
𝑇 (5)

where 𝑖 ∈ [1, 15].

2.4. Feature extraction

Using the normalized pose data, a wide range of histogram-based
feature descriptors can be extracted by our system. The features include
Joint Orientation (HOJO2D), Joint Displacement (HOJD2D), Angular Dis-
placement (HOAD2D), Relative Joint Orientation (HORJO2D), Relative
Joint Angular Displacement (HORJAD2D), Fast Fourier Transform of Joint
Displacement (FFT-JD), and Fast Fourier Transform of Joint Orientation
(FFT-JO). Readers are referred to [6,11] for the design and details
of each feature descriptor. For the implementation provided in this
software system, both the 8-bin and 16-bin versions will be extracted
for each type of feature descriptor.

2.5. Classification

Finally, the detection of abnormal infant movement is formulated
as a binary classification of the extracted feature descriptor. MAT-
LAB built-in classifiers were used, including Support Vector Machines
(SVMs), Decision Trees, Nearest Neighbour (1-NN and 3-NN), Linear
Discriminant Analysis (LDA), Ensemble, and Logistic Regression. In the
implementation, we follow the experimental settings to have a leave-
one-subject-out cross-validation as in [6,11]. Based on the classification
results, our system outputs a wide range of evaluation metrics, includ-
ing classification Accuracy, Sensitivity, Specificity, Precision, Recall, F1
Score, and Matthews Correlation Coefficient (MCC).

3. Software impact

As mentioned in Section 1, GMA is currently carried out by ex-
perienced assessors. Automating the GMA using computer vision and
machine learning techniques can greatly reduce the resources required
from health organizations and such resources can be re-distributed
to further benefit patients. In addition to automating the GMA, the
implementation of the GMA-inspired pose and motion features can
potentially be used to visualize the abnormal movement patterns of
infants, as demonstrated in [8,9]. This further opens the door to im-
proving the interpretability of the prediction results obtained from
the machine learning based algorithms. By moving towards explain-
able AI, additional feedback can be provided to clinical experts and
AI researchers to improve AI-based healthcare applications, further
enhancing their robustness and reliability.

Furthermore, the algorithms proposed in the literature in this area
are typically not available to the public. As a result, it becomes dif-
ficult for researchers to compare the performance of newly proposed
methods with the existing work, and extra effort is subsequently re-
quired to re-implement the algorithms as we have done in our recent
work [11]. Additionally, the availability of data is another significant
challenge in this area. This makes evaluating the effectiveness of each
proposed system, due to the lack of benchmark or publicly available
datasets, difficult. In this system, we share both the code along with the
anonymized skeletal data, which enables the evaluation of our method
on the MINI-GRBD [12] and RVI-38 [11] datasets. We strongly believe
making our code and data available to the public will have a positive
impact on future research in related areas.

In future versions, we would like to provide a Python version of the
system to allow further comparisons, as well as integration with other
deep learning based approaches such as [7,8,10]. We will also explore
the feasibility of integrating visualization features, such as those pro-
posed in [8–10], to enhance the interpretability of the abnormal infant
movement detection system.
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