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detection in low-resource languages like Hindi. Furthermore, as context incongruity is imperative to detect sarcasm, various linguistic, 
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on a Hindi tweets dataset, Sarc-H, manually annotated with sarcastic and non-sarcastic labels. The preliminary results clearly depict the 
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1 INTRODUCTION 

With the copiousness of social media platforms such as Facebook, Instagram and Twitter, an unprecedented amount of 

content available for analysis. Sentiment analysis as one of the most prevalent social media mining task that aims to find 

the polarity of the online post to categorize it as positive, negative or neutral [1-3]. However, human sentiments are not 

just limited to such discrete classes but also consist of more complex emotions and communicative expressions which are 

harder to categorize within these defined categories. The expression on social media is informal and has created a pseudo-

language with cyberslangs, emojis, neologism, morphological shortenings and metaphorical constructs such as sarcasm, 

irony and humour. Moreover, the culturally diverse, country-specific trending topics and hashtags and accessibility of 

aboriginal language keyboards add to the variety of content in numerous languages and dialects on social media platforms 

[4]. Emotion recognition [5, 6] and sarcasm detection [7-9] in real-time user-generated text are certainly two distinguished 

NLP tasks imperative for accurate analysis of sentiments.  

Automated detection of sarcasm has enticed mounting importance over the past decade as it benefits upright 

analytics in social media posts [4, 7]. As a rhetorical literary device, sarcasm is highly subjective and contextual. It is vital 

to comprehend supplementary cues from users’ linguistic input that are aware of ‘context’ to aid right interpretation [10]. 

So a sentence like “I love working on weekends” seems to have a positive connotation at first as someone is simply 

expressing his love towards a certain activity. However, we know, for a fact, that generally, people do not really like going 

to work on weekends as weekends serve as off-days from work when one prefers to relax and spend more time with their 

family and friends. Therefore, it could be quite inaccurate to classify such a sentence as positive owing to the lack of any 

additional evidence about the actual sentiment that the author intends to convey. Thus, one needs more than just words to 

assist in deciding the true nature of the sentence. There is a certain level of intangible acquaintance that one needs to have 

in order to assess the true sentiment behind a sentence. At the same time, tonal variations, body language and other aural-

visual cues play an important role in determining the presence of sarcasm in spoken text. Face-to-face communications are 

multimodal, that is, the meaning is conveyed not just with words but with gestures like a fake laugh or rolling one’s eyes 

and other facial expressions. Even acoustic markers such as the tone of the speaker, voice pitch, frequency, empathetic 

stress and pauses hint towards the sarcastic intentions. Such bodily cues can prove to be an effective indicator of the true 

sentiment the speaker wishes to manifest. However, detecting sarcasm on a textual level that is in written text is 

comparatively more demanding due to absence of such patent aural-visual cues, making it prone to misinterpretations. As 

a result, more attention needs to be paid to the semantic relationships between the words in the sentence which could 

elucidate the presence of certain incongruence and serve as potential indicators of sarcasm [4, 10]. So reconsidering our 

example, “relax” and “weekend” are more likely a pair that will be used together with a positive verb like “love” or “like” 

than the pair of “work” and “weekend”. The comprehensive analysis of such word associations can help to comprehend 

the context and eventually detect sarcasm.  

On social media, people often use hashtags and emojis or emoticons to add extra layers of meaning to their posts. 

A hashtag can help pull social media posts into topic-specific feeds, convey irony or sarcasm, suggest emotion or mood, 

pose an answer to an implied or rhetorical question, or even directly contradict the actual tweet. In case of sarcasm, a lot 

of such posts are affixed with hashtags like ‘#not’, ‘#sarcasm’ or ‘#sarcastic’ which allows readers to correctly interpret 

an otherwise flat text. Concurrently, emojis or emoticons are also fast replacing the textual forms of internet slang. These 
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iconographic set of features convey tone in text conversations similar to those that are observed in face-to-face 

communication [11]. For example, “I love working on weekends      ” is a more lucid representation of how disappointed 

the author truly feels about working on weekends thus making it less vulnerable to incorrect interpretations. So, along with 

the semantic relationships present at textual level, these emojis serve as the visual cues which aid in a more accurate 

sentiment analysis. 

A lot of research has been done on detecting sarcasm in textual data using a myriad of features [12-14]. Many 

datasets1  have been made open source to facilitate research enthusiasts. However, most of the work done is only on English 

language. Many social networking platforms, like Twitter, now provide the users with an option of expressing in a wide 

range of languages. But as far as other languages are concerned, the exploration and experimentation has been rather 

limited owing to the inadequate amount of resources that could precisely encapsulate the subtle characteristics of the 

respective language. One such language is Hindi. Hindi is numerically and proportionally the largest indigenous language 

community in the Indian sub-continent. It is the official language of India and a sizeable population speaks/ writes Hindi 

while the rest are comfortable in their regional language. The availability of keyboards with ‘Devanagari’ scripts on mobile 

phones has made it a popular language choice [15]. But like other Indian languages, Hindi is also a low-resource language 

[16]. The lack of annotated dataset, various analysis tools like POS tagger and sentiment scores have restricted the scope 

of research in sentiment analysis and subsequent sarcasm detection in Hindi. Also, like most of the Indian languages, Hindi 

too has free-word order. For example, लेख अचे्छ हैं इस किताब िे, इस किताब िे लेख अचे्छ हैं, अचे्छ लेख हैं इस किताब िे, all 

three statements convey the same meaning with different word order. In light of such limitations, only few research efforts 

are available publicly for sarcasm detection in Hindi [17, 18, 51, 52, 53]. Most of the previous work on sarcasm detection 

in Hindi rely on manual feature extraction methods. Such methods are not only time-consuming and cumbersome, but 

often fail to correctly interpret the context of each word with respect to its neighbours or the entire sentence [19, 20]. Few 

lexicon-based methods using lists of words such as list of positive-negative words or word-antonym pairs have also been 

used. Though these methods aim at bringing out the discordant nature of the words used together based on the a binary 

representation of the sentiment they express, but are quite limited in scope and are less incorporative of the language used 

by the wider populace. Moreover, none of the studies on Hindi sarcasm detection have used the allied emojis as contextual 

cues. Interpretation of emojis is important to truly understand and feel any communication. These add a touch of emotion 

to emphasize the communication analogous to physical cues such as body language and facial expressions in face-to-face 

communication. 

Thus, motivated by the need to develop more efficient and repeatable predictive models for sarcasm detection in 

a resource-poor indigenous language, Hindi, this research demonstrates the use of a hybrid deep learning model which 

automatically learns features with the help of word-emoji embedding. Deep learning models rely on the machine or the 

model itself to run and identify patterns and high-level features which are crucial for the given task [2, 21]. This obviates 

the need of a domain-expert and solely depends on the data that is fed into the model. Essentially, word embeddings are 

vector representations of words such that contextually similar words occupy close spatial positions [22]. These embeddings 

are indicative of the relationships that a given word holds with all the other words to express similarities or disparities 

among them on a syntactic as well as semantic level and are thus competent to capture the context of a word with respect 

to a sentence or even a document. This semantic and syntactic knowledge allows us to identify incongruence within a 

 
1 https://paperswithcode.com/task/sarcasm-detection 
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sentence thus making the presence of sarcasm more apparent. The pre-trained fastText2  Hindi word embeddings are 

utilized in this research. Additionally, in order to achieve added confidence in the intended sentiment of any sentence, 

information imparted by emojis is also considered. Just like word embeddings, emoji embeddings allow us to represent 

emojis in an n-dimensional vector space. Such representations when combined with word embeddings and given as input 

to the learning models allow capturing valuable relationships between the input texts and the accompanying emojis, 

eventually assisting sarcasm detection. The pre-trained emoji2vec [23] emoji embeddings are used in this research. The 

embeddings are concatenated to form an integer-encoded word-emoji embedding vector. This input vector is then used to 

train a hybrid of convolutional neural network (CNN) [24] and long short-term memory (LSTM) [25]. The architecture 

basically has two sub-models: the CNN model for feature extraction and the LSTM model for interpreting the features 

across time steps. 

A dataset, referred to as Sarc-H where ‘Sarc’ refers to sarcasm and ‘H’ signifies Hindi language, is built by scrapping 

Hindi language tweets and manually annotating based on the hashtags used by the tweeters as follows: 

• hashtags ‘#िटाक्ष ’ (pronounced as kataaksh, which means sarcasm in Hindi) and hashtag ‘#वं्यग्य’ (pronounced 

as vyangya,  another word for sarcasm in Hindi) for extracting sarcastic tweets  

• the non-sarcastic tweets are extracted tweets from prominent Hindi news channels (Aajtak, NDTV India etc.) 

official handles. The tweets on these channels generally aim at providing fellow subscribers with true and 

unambiguous news and hence are free from such nuanced emotion representations keeping them simple and 

straight-forward.  

The classification performance of baselines and the hybrid model is evaluated using accuracy, F1 Score, precision 

and recall as metrics and clearly establish the importance of automatically extracting useful and meaningful features that 

help to achieve added confidence in the intended sentiment of any sentence, including sarcasm. The rest of the paper is 

organized as follows: Section 2 surveys the related work done in this domain; Section 3 discusses the hybrid deep model 

for Hindi sarcasm detection. Section 4 focuses on the experimental settings and the results obtained. The paper culminates 

with concluding remarks and a short discussion about the intended future work in Section 6. 

2 RELATED WORK  

An early work done in the field of sarcasm detection explored the tone of voice used for the expression “yeah right” to 

establish certain spectral, contextual, and prosodic features of speech which were then used to determine if a spoken 

sentence was sarcastic or not [26]. Kreuz and Caucci [27] explored lexical features i.e., presence of certain adjectives and 

adverbs, punctuation and interjections for detection of sarcasm in excerpts from long narratives. Davidov et al. [14] 

demonstrated sarcasm detection using a semi-supervised classification algorithm on two datasets: a total of 66000 Amazon 

product reviews and 5.9 million tweets from Twitter from which syntactic and pattern-based features. González-Ibáñez et 

al. [28] also worked on twitter dataset and used hashtag-based supervision for tweets. They also used unigrams, dictionary-

based lexical and pragmatic factors and the frequency of the same with Support Vector Machine (SVM) for the purpose of 

classification. Riloff et al. [29] employed juxta-positioning of positive sentiment word and a negative situation or state as 

a deciding factor for presence of sarcasm in tweets. Liebrecht et al. [30] used a balanced winnow algorithm on their dataset 

of Dutch tweets (which were annotated on the basis of the hashtags used) for classification. They used hyperbole, 

intensifiers, and exclamation as features. 

 
2 https://fasttext.cc/ 
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In 2015, Joshi et al. [31] proposed a sarcasm detection system which incorporated explicit and implicit 

incongruity features that achieved superlative results. In another work, Joshi et al. [32] presented a hypothesis of viewing 

sarcasm detection in dialogue as a sequence modelling model (SVM-HMM and SEARN) rather than a classification task. 

They supported the hypothesis by showing an improvement in performance for dataset derived features. Kumar and Garg 

[33] in 2019 reported a comparative empirical study on various supervised ML techniques for sarcasm detection on Twitter 

and Reddit datasets. With the rise in multimodal content being shared on social media, wherein the online post is a 

combination of text and audiovisual content, the task of multimodal sarcasm detection is also being explored extensively 

[34-36]. 

Recently, deep learning approaches have obtained very high performance across many different NLP tasks 

including sarcasm detection. Joshi et al. [37] showcased the use of word embedding features as an indicator of contextual 

incongruity for enhancing performance on sarcasm detection. Ghosh and Veale [38] used a combination of CNN, LSTM 

followed by an ANN. They applied the model on publicly available datasets and showed superior results. A secondary 

study on the past work done on sarcasm detection was given by Joshi et al.  [39] in 2016. Context has been used as an 

essential parameter in sentiment analysis tasks, especially in the case of complex sentiments such as irony or sarcasm 

where the meaning of any word is not solely based on its literal meaning but also on its frame of reference. A study on 

context in sarcasm using manual feature extraction and automated feature learning was given by Kumar and Garg [13] in 

2020. Attention layer is another mechanism which has proven to be very helpful in capturing contextual knowledge by 

being considerate of the fact that different words contribute differently to overall intended sentiment of the sentence. Kumar 

et al. [40] reported a hybrid deep neural model with softmax attention for sarcasm detection. 

Literature survey of pertinent studies reveal most of the work on sarcasm detection has been done on English 

language. Few studies have been reported on Arabic, Dutch and Chinese languages. In 2018, Alayba et al. [41] used a 

hybrid of CNN and LSTM for sarcasm detection in Arabic posts. Ptáček et al. [42] used machine learning for sarcasm 

detection in Dutch tweets. Liu et al. [43] proposed a multi-strategy ensemble learning approach (MSELA) for handling 

imbalanced datasets in Chinese and introduced a set of features specifically for detecting sarcasm in social media. Similar 

research has been carried out languages like Spanish [44] and Indonesian [45]. As far as the low-resource Hindi language 

is concerned, research on code-mix social media text which is a linguistic anglicization of Hindi (transliteration based on 

pronunciation, not meaning) has been notably done [4, 46]. The research works on Hindi only text are very limited. One 

of the pioneer works was reported by Desai and Dave [18] where the authors built a dataset of sarcastic sentences in Hindi 

and used various lexical features like emoticons, punctuation marks polarity lists to train an SVM classifier which 

categorized the sentences into 5 classes based on the varying nature of sarcasm. Bharti et al. [17] used a context-based 

approach by using input tweet and its related news to count the number of positive and negative keywords in both news 

and tweet using a predefined list of Hindi words with polarity value to determine if the given tweet is sarcastic or not. In 

2018, Bharti et al. [51] presented a pattern-based framework wherein the contradiction between the temporal fact and the 

corresponding tweet is used to predict sarcasm in Hindi tweets. Katyayan et al. [53]  also goes on to explore sarcasm 

detection in Hindi using 1000 sentences, extracted from social media platforms such as Facebook, Instagram and Twitter. 

The work utilises POS tagger and bag-of-words technique for feature extraction and, explores a neural network (without 

any specification of the involved hyper parameters or parameters) and 3 basic machine learning techniques, namely Naive 

Bayes, SVM and decision tree for classification. None of the previous studies report the use of automated feature learning 

using embeddings. This research is the primary effort in the same direction where the strength of embeddings is harnessed 

to better comprehend the sentiments being manifested by the text.   
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3 HYBRID DEEP LEARNING FOR SARCASM DETECTION IN HINDI TWEETS 

As the generalization and automated feature learning capabilities of deep learning models exhibit high performance across 

many different NLP tasks, the research undertaken in the paper demonstrates the same for a convoluted form of expression 

in written text called sarcasm. The architectural flow of the hybrid CNN-LSTM model for sarcasm detection in Hindi 

tweets using word-emoji embeddings is shown in Figure 1. 

 

 
Figure 1: Architectural flow of the hybrid model 

The following sub-sections explain the model in detail. 
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3.1 Dataset Creation and Pre-processing 

Global social media statistics reveal that Twitter is one of the most popular social media platforms with 353 million monthly 

active users worldwide as of Q3 of 2020. Statistics3 also reveal that as of January 2021, India ranked third based on number 

of Twitter users with a total of 17.5 million users. Moreover in 2019, Twitter localised the web UI experience in seven 

Indian regional languages including Hindi, Gujarati, Marathi, Urdu, Tamil, Bengali and Kannada to boost its usage in 

India.  Twitter definitely serves as a suitable source of Hindi data for various text analytics tasks. Further advantages of 

using Twitter for building datasets for NLP tasks like sarcasm detection, are as follows: 

• Twitter sets a limit to the length of any tweet to a maximum of 280 characters which means all the information 

required to uncover polarity incongruence, in most cases, will be contained within the tweet itself. 

• Twitter gives us the choice of narrowing down the search field by specifying definitive keywords with the help 

of hashtags, Twitter handler’s name, timestamp etc. 

• The availability of numerous APIs for efficient tweet scraping. 

The Sarc-H dataset is created by extracting Hindi language tweets using explicit sarcasm hashtags (‘#िटाक्ष’ and ‘#वं्यग्य’) 

for the sarcastic category whereas the negative category includes tweets from popular Hindi news channels. The class 

annotations are added as labels in the dataset. 

Given the informal style of writing style that users prefer, a lot of noise is added to the tweet in terms of URL 

references, mentions of users with @, and use of English words in Hindi sentences. Thus, the fetched tweets are cleaned 

and pre-processed by performing the following tasks: 

• Removal of strings beginning starting with @ to refer to a user 

• Removal of URLs 

• Removal of the hashtag ‘#’ 

• Removal of the string following the hashtag in case of trailing hashtags only. This prevents the employed 

classification model from predicting every sentence every tweet with ‘#िटाक्ष’ or ‘#वं्यग्य’ as sarcastic and 

thus focus on extracting actual semantic or syntactic features for distinguishing between sarcastic and non-

sarcastic tweets. 

 
3 https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/ 
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 Figure 2: Pre-processing flow for two sample tweets 

3.2 Embeddings 

In general, an embedding is a low-dimensional, learned continuous vector representation of discrete variables into which 

we can translate high-dimensional vectors. In this research we use two such embeddings, namely word embedding and 

emoji embedding. 

3.2.1 Word Embeddings 

Word embeddings give us vector representations of a word in a vector space where words sharing certain semantic or 

syntactic relationships exist in close vicinity of each other. Such knowledge allows us to do away with manual feature 

engineering required to gain semantic and local contextual insight. This vector representation of words, learned using 

neural network models, was originally proposed by Mikolov et al. [47] but was solely for English language. We use a pre-

trained word embedding for Hindi language provided by fastText (AN NLP library by Facebook). This model was trained 

using CBOW with position-weights, in dimension 300, with character n-grams of length 5, a window of size 5 and 10 

negatives. 

Similarity score is an implementation provided by gensim library which essentially helps us determine how 

similar two words are to each other. Since these scores are a measure of cosine similarity between the word vectors, a 

larger value depicts a closer relationship. As an example, we consider three words, namely पुरुष (man), गधा (donkey) and 

मकहला (woman) and calculate the similarity scores of various word pairs using the fastText Hindi word embeddings as 

shown in table 1. 

 

Table 1: Similarity scores using FastText Hindi word embeddings 

Word pair Similarity Score 

(पुरुष, मकहला) 0.621 

(पुरुष, गधा) 0.187 

(खाना, पीना) 0.557 

(गाना, नाचना) 0.505 

(खाना, नाचना) 0.306 
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 Now comparing the similarity scores between the pairs (पुरुष, मकहला) and (पुरुष, गधा) as given in table 1, we 

observe that पुरुष is more related to मकहला than it is to गधा. Such semantic relationships can also be observed in case of 

verbs. It stands to reason that eating (खाना) and drinking (पीना) and more closely related actions than eating (खाना) and 

dancing (नाचना). Similarly, dancing (नाचना) and singing (गाना) are more probable to be used together than eating (खाना) 

and dancing (नाचना). The above two examples showcase the semantic dissension in the usage of words like पुरुष and गधा 

together or खाना and नाचना which further points to context incongruity [30]. Such discordance tends to occur quite 

frequently in sarcastic sentences and thus could prove to be helpful in detection. 

3.2.2 Emoji Embeddings 

Emojis are defined as pictograms or icons which are mainly used in digital messages to express an idea or emotion. These 

originated on Japanese mobile phones in 1997 and became increasingly popular worldwide in 2010s after being added to 

the mobile operating system. Apart from their visual appeal, there are two more reasons for their growing popularity. 

Firstly, any messaging application generally has an upper limit on the number of characters that one can use. In light of 

this constraint, emojis were of great help, as a lot of them could represent and thus replace words, phrases and even entire 

sentences. Since their introduction to the digital world, the number of emojis have only increased from a few hundreds 

during later 1990s to a staggering 3521 emojis4 as of October 2020. A simple example is the use of ‘❤’ , which can be 

used as an representative the phrase “I love you” or “I love this” where ‘this’ could refer to anything depending on the 

context of the conversation thus reducing the number of characters by at least 6 characters (i.e ‘I love’). Secondly, emojis 

help users to better express the emotion of an otherwise toneless sentence. The intended sentiment or tone is often lost in 

plain textual messages and thus the addition of an emoji can help the recipient of the message to correctly interpret the 

polarity of the message. This benefit becomes more pronounced when it comes to expressing more complex and subtle 

sentiments like sarcasm as it is not understood solely by the words themselves but by the tone in which they are spoken. 

For example, in a statement, “गललफ्रें ड बनाने िे बाद पता चला िी 100 रुपये िी चॉिलेट आती है” (which means “When I had a 

girlfriend, I got to know that a chocolate with a price of Rs. 100 is available”) seems to be neutral statement. However, the 

author could have his/her own reasons to despise or make fun of such expenses and in such a case, the intended tone would 

be sarcastic which is not apparent from the sentence. The incorporation of an emoji could help clear this ambiguity. So, 

had the author intended to simply express his apprised knowledge and comfort with the expense, he/she could have written 

“गललफ्रें ड बनाने िे बाद पता चला िी 100 रुपये िी चॉिलेट आती है |     ”. On the other hand, if the author meant the same in a sarcastic 

way, “गललफ्रें ड बनाने िे बाद पता चला िी 100 रुपये िी चॉिलेट आती है |       ” more clearly conveys the banter. 

Thus, considering emojis can greatly boost the performance of the learning models. However, there is a need to 

represent the emojis in an appropriate numeric manner which can be given as input to train the models. Emoji2vec [23] 

allows us to do this by representing emojis as vectors in a 300-dimensional vector space. It is a pre-trained model that has 

been trained on the description of all the emojis in the Unicode emoji standard (Figure 2). The embedding is the sum of 

word embeddings of words in description 

 

 
4 https://emojipedia.org/stats/ 
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Figure 3: Snapshot of emoji2vec emoji embedding  

Just like the word embeddings, emoji embeddings are essentially points in the vector space such that similar emojis exist 

close to each other while dissimilar ones are relatively more distant. As an example, table 2 showcases the cosine similarity 

between the selected pair of emojis to depict how similar (higher score) and disparate (lower score) emojis fare with respect 

to emoji2vec.  

Table 2: Similarity score of various emoji pairs according to emoji2vec embeddings 

Emoji Pairs Similarity Score 

(        ,        ) 0.6827 

(     ,      ) 0.5617 

(      ,      ) 0.3619 

 

Both, ‘face with tears of joy’,          and ‘grinning squinting face’,        are jovial expressions and therefore closely related as 

depicted by the high value of the similarity score. Similarly, ‘pensive face’,       and ‘slightly frowning face’,      are 

representative of an unhappy or gloomy emotion and therefore are in close vicinity of each other in the vector space as 

depicted by the high similarity score. However,        and      manifest contrasting emotions and thus have a lower similarity 

score. 

Not all extracted tweets contained emojis. But as the language of visual symbols effectually substitute body 

language and tone of voice in text-based communication, their use as contextual cues to detect sarcasm is obligatory. 

Motivated by the merits of inclusion of emojis along with the availability of the requisite tools to incorporate them into our 

task, we use DeepMoji [48] for generating emojis relevant to the respective tweet. However, DeepMoji does not support 

Hindi language and therefore we used the Google Translation API for translating the extracted Hindi tweets to English. 

However, not all translations were precise enough in terms of the intended meaning and therefore, we refined the 

translations to better convey the meaning of the given tweet. Following the translation, the entire list of tweets which only 

comprised the text exclusive of the hashtags and user annotations was fed into the DeepMoji code to generate emojis. 

While reasonably appropriate emojis were obtained in the case of non-sarcastic tweets, the ones generated for sarcastic 

tweets represented a wide variety of emotions for the majority of the tweets. Such a behavior was plausible as DeepMoji 

was not aware of the appended hashtags of ‘#sarcasm’. Thus to include this information in the generation of emojis, we 

appended each sarcastic tweet with the word ‘sarcasm’ to obtain relevant emojis. DeepMoji generated 5 emojis to the given 

input which it deemed most pertinent being mindful of the possible sentiments the author might be intending to manifest. 

As a result, some of the emojis obtained were indeed irrelevant and hence discarded. 

Next to utilize both of aforementioned embeddings for our task, we implemented a concatenation procedure as 

follows: A word-emoji embedding vector Ef is constructed which has a size equal to the sum of the embedding vector size 

of word embeddings, Ew, and emoji embeddings, Ee and is initialized with 0s. We have used the upper half to represent 
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the word embeddings and the lower half to represent the emoji embeddings. For any given word, only the top half of the 

vector is assigned to the respective value of the word embedding while the lower half is untouched. Similarly in case of 

emojis, only the lower half of the final embedding is assigned to the respective emoji embedding value while the upper 

half remains set to 0. 

 

3.3 Hybrid CNN-LSTM Model  

Convolutional neural networks (CNNs) are good at extracting local and deep features from a given text while LSTMs are 

able to learn the long-term dependencies in sequential data (as are words in a sentence). On the flip side, CNN is incapable 

to analyze differing and long length dependencies, and RNN, specifically LSTM, can step in to tackle this shortcoming 

owing to the presence of memory units. Thus using these together can actually complement each other having a synergic 

effect thus resulting in an overall improvement in the performance. So, we primarily use CNN for high-level feature 

extraction and these local feature sequences are then fed into LSTM, which now has finer and better features to work with 

rather than raw and flat textual sentences. The architecture of hybrid CNN-LSTM model is shown in Figure 4.  

 

 

Figure 4: The hybrid CNN-LSTM model    

3.3.1 CNN 

Convolutional neural network (ConvNet or CNN) is a class of deep neural networks which has achieved laudable 

accomplishments in object detection and recognition tasks. Motivated by its immense success in the computer vision field, 

NLP researchers soon started to draw analogies between images and texts by acknowledging the fact that texts too are 

nothing but sequences of words or sentences as is an image a sequence of pixels. Once the texts have been converted to 

their vector representations, the operations being performed on images could similarly be performed on text sequences. 

The only difference would be that these text sequences would only by represented as 1-dimensional arrays and thus all the 

operations would need to be performed along just this one dimension. This idea of using CNN for text classification was 
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first proposed by Kim in 2018 [28]. CNN typically performs two operations convolution and pooling, which are primarily 

feature extraction methods: 

• Convolution: For NLP tasks we use a 1-D CNN since any text is essentially a one-dimensional input i.e., a 

sequence of words. Let there be a sequence of words w1:n=w1, w2, … , wn where each word wi has a word 

embedding of dimension d, xi ϵRd, associated with it. Let the entire sentence be represented as x ϵRLxd, where 

L is the length of the sentence. A convolutional filter of size k is applied to each window in the sequence, i.e. dot 

product of embedding vectors in that window and filter u, followed by an activation function. Concatenation of 

the word embeddings of the ith window (xi) is as given in (1) 

𝑥𝑖 = [𝑤𝑖 + 𝑤𝑖+1 + . . . + 𝑤𝑖+𝑘] ∈ 𝑅𝑘𝑥𝑑  (1) 

where the + sign represents row vector concatenation.  

The dot product of this 𝑥𝑖 with filter 𝑢 and application of an activation function, 𝑔, results in a feature map 𝑟 ∈

𝑅𝐿−𝑘+1, where each element 𝑟𝑖 is generated as shown in (2), 

𝑟𝑖 = g(𝑥𝑖 . u) ∈ 𝑅    (2) 

where ‘.’ represents element-wise multiplication.  

Usually multiple filters 𝑢1, 𝑢2, . . . , 𝑢𝑙 are applied and are represented as matrix 𝑈 as given in (3) 

𝑟𝑖 = g(𝑥𝑖 . U + b) ∈ 𝑅   (3) 

where 𝑏 is the bias. 

• Pooling: For the purpose of combination of the vectors resulting from different convolution windows into a 

single one-dimensional vector, pooling operation is used. This tries to reduce the size of each feature map and 

provide the most relevant features of the sentence/document. This is done by either taking the max or the average 

value observed in the resulting vector from the convolutions. We have incorporated max-pool in our 

experimentation. 

 

CNN essentially provides an architecture for high level feature-extraction captured using consecutive fixed-sized windows. 

It is these fixed-size filters that prevent CNN to learn long-term dependencies and thus limiting its capabilities to extraction 

of local features and correlations only. 

 

3.3.2 LSTM 

Recurrent neural network or RNN is a class of artificial neural networks where connections between nodes form a directed 

graph along a sequence. It essentially forms a sequence of neural network blocks that are linked to each other like a chain. 

This architecture allows RNN to exhibit temporal behaviour and capture sequential data taking the previous output of 

hidden state, ℎ𝑡 − 1 along with the current input 𝑥𝑡. However, during the training of an RNN, where gradients are being 

propagated back in time all the way to the initial layer, the gradients coming from the deeper layers have to go through 

continuous matrix multiplication. As they approach the earlier layers, in case of small values (<1), they shrink exponentially 

until they vanish and make it impossible for the model to learn. This problem is referred to as the vanishing gradient 

problem. On the other hand, for large values (>1) gradients get larger and eventually blow up and crash the model leading 

to an exploding gradient problem. This makes it hard for RNN to capture long-term dependencies in the sequential data. 
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Long Short-term memory or LSTM [25], a variant of RNN, helps solve the problems of vanishing and exploding gradients 

thus allowing it to plot long-term dependencies by defining each memory cell with a set of gates 𝑅𝑑, where d is the memory 

dimension of hidden state of LSTM. LSTM consists of three gates, which are functions of 𝑥𝑡, input at the current time step 

and ℎ𝑡 − 1, the hidden state: input gate it, which decides by how much each memory cell has to be updated, forget gate 𝑓𝑡, 

which decides whether or not to discard the memory cell state information that came from ℎ𝑡 − 1 and output gate 𝑜𝑡, which 

takes the decision of passing the memory state to the rest of the network. The gates jointly decide on the memory update 

mechanism. The LSTM transition functions are as shown in (4) to (9): 

𝑖𝑡 = σ(𝑊𝑖[ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑖)   (4) 

𝑓𝑡 = σ(𝑊𝑓[ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑓)   (5) 

𝑞𝑡 = tanh(𝑊𝑞[ℎ𝑡 − 1, 𝑥𝑡] +  𝑏𝑞)  (6) 

𝑜𝑡 = σ(𝑊𝑜[ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑜)   (7) 

𝑐𝑡 = 𝑓𝑡 . 𝑐𝑡 − 1 +  𝑖𝑡  ⊙ 𝑞𝑡   (8) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝑐𝑡     (9) 

where σ denotes the logistic sigmoid function that provides an output in [0,1], tanh denotes the hyperbolic 

tangent function with the output in the range [-1,1], and ⊙ denotes element wise multiplication.  

Figure 5 shows the structure of the LSTM neural network. 

 

Figure 5. The structure of the LSTM neural network.  

Since LSTM is designed for learning long term dependencies, it is only imperative to choose it upon the 

convolution layer to learn such dependencies in the obtained sequence of higher-level features. 

4 RESULTS AND DISCUSSION 

TweetScraper5 was used for extracting tweets and Sarc-H dataset with a total of 1004 tweets was built with 414 tweets 

labelled as sarcastic and 590 labelled as non-sarcastic. The dataset, once processed suitably, was split into 70:30 training 

and testing datasets. Though the dataset was small but deep learning allows to easily incorporate problem-specific 

 
5 https://pypi.org/project/tweetscraper/1.2.0/  
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constraints directly into the model to reduce variance and neural nets have a large library of techniques to combat 

overfitting.  These techniques help mitigate the variance issue, while still benefitting from the flexibility and can be used 

to train models even if we have less samples.  

A simplistic artificial neural network (ANN), CNN and LSTM were applied discretely to define the baselines 

for the study. Hyperparameter setting plays a significant role in the overall performance of any neural model and therefore 

an extensive experimentation with the same was done following data preparation. For the purpose of hyperparameter 

tuning, we make use of automated hyperparameter optimization that is provided by a python library, Hyperopt [49]. This 

obviated the need of manual tweaking of the values thus eliminating the requirement of rigorous and recurrent 

experimentation with each possible combination of the involved hyperparameters. Since four different models were 

experimented with, the tuning of each model’s respective hyperparameters was performed. Table 3 shows the investigated 

hyperparameters values. 

Table 3: Investigated hyperparameter values 

Hyperparameters Investigated values 

Number of nodes in each layer (ANN, CNN and LSTM) 16, 32, 64, 128 

Optimizer (ANN, CNN, LSTM) rmsprop, adam, sgd 

Batch size (ANN, CNN and LSTM) 32, 64 

Filter size (for CNN) 2,3,4,10 

Max pooling size (for CNN) 2,3,4 

Dropout (only after both layers of CNN) (0,1) 

Activation function Rectified Linear Function 

 

Following hyperparameter setting, the models were evaluated using four performance metrics: accuracy, 

precision, recall and F-score.  Table 3, 4, 5 and 6 depicts the confusion matrix for ANN, CNN, LSTM and hybrid 

CNN+LSTM respectively. As a primary research objective was to probe the significance of emojis in textual conversations 

for sarcasm detection, the results were evaluated with and without emojis. The tables include the matrices for both the 

cases. 

Table 4: Confusion matrix for ANN 

Without Emoji 

 Non-Sarcastic Sarcastic 

Non-Sarcastic 153 10 

Sarcastic 22 117 

With Emoji 

 Non-Sarcastic Sarcastic 

Non-Sarcastic 153 10 

Sarcastic 12 127 

Table 5: Confusion matrix for CNN 

Without Emoji 

 Non-Sarcastic Sarcastic 

Non-Sarcastic 152 11 

Sarcastic 15 124 

With Emoji 



 
15 

Without Emoji 

 Non-Sarcastic Sarcastic 

 Non-Sarcastic Sarcastic 

Non-Sarcastic 159 4 

Sarcastic 7 132 

Table 6: Confusion matrix for LSTM 

Without Emoji 

 Non-Sarcastic Sarcastic 

Non-Sarcastic 150 13 

Sarcastic 18 121 

With Emoji 

 Non-Sarcastic Sarcastic 

Non-Sarcastic 155 8 

Sarcastic 4 135 

Table 7: Confusion matrix for CNN-LSTM 

Without Emoji 

 Non-Sarcastic Sarcastic 

Non-Sarcastic 154 9 

Sarcastic 16 123 

With Emoji 

 Non-Sarcastic Sarcastic 

Non-Sarcastic 161 2 

Sarcastic 6 133 

 

Table 8 presents the performance comparison of all the models using the evaluation metrics with and without 

emojis. The hybrid model outperforms all the models, achieving an accuracy of 91.72% and F-score of 0.9077 in absence 

of emojis and 97.35% accuracy and 0.9708 F-score with emojis. ANN, on the other hand, falls on the lower end of the 

spectrum, achieving the lowest, though an appreciable accuracy of 89.40% and F-score of 0.8797.  

Table 8: Performance comparison of all models 

Model Without Emojis With Emojis 

Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy 

ANN 0.9212 0.8417 0.8797 0.8940 0.9270 0.9137 0.9203 0.9272 

LSTM 0.9030 0.8705 0.8864 0.8974 0.9440 0.9712 0.9574 0.9603 

CNN 0.9185 0.8921 0.9051 0.9139 0.9706 0.9496 0.9600 0.9636 

CNN-LSTM 0.9318 0.8849 0.9077 0.9172 0.9852 0.9568 0.9708 0.9735 

 

In terms of model training time, it was noted that, on an average ANN took the least amount of time, followed 

by CNN and the hybrid model whereas LSTM took the maximum time. The ROC curves for the hybrid model with emojis 

and without emojis is shown in fig.6 and fig.7 respectively. 
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Figure 6. ROC curve of CNN-LSTM without emojis                               Figure 7. ROC curve of CNN-LSTM with emojis 

Table 9 depicts the values of hyperparameters for optimal performance chosen by Hyperopt. 

Table 9: Model-wise Optimal hyperparameter values 

Model Hyper-parameter Without Emojis With Emojis 

ANN Number of layers 1 1 

Number of nodes in a layer  16 32 

Batch size  64 32 

Optimizer  adam adam 

CNN Number of layers 2 2 

Number of nodes in layer1, layer2  128,128 32, 16 

Filter size for layer1, layer2 10,10 4,4 

Max pooling for layer1, layer2 4,4 4,4 

Batch size 32 32 

Optimizer rmsprop adam 

Dropout value 0.221 0.308 

LSTM 

 

 

 

Number of layers 1 2 

Number of nodes in a layer 32 32,32 

Batch size 128 32 

Optimizer adam adam 

CNN-LSTM Number of layers of CNN and 

LSTM 

1,1 2,1 

Number of nodes (CNN) 64 64,128 

Filter size for CNN layer 10 10,10 

Max pooling for CNN layer 4 4,2 

Dropout value 0.022 0.439 

Number of nodes in a layer LSTM) 64 64 

Number of nodes in a layer (FC) 16 128 

Batch size 32 32 

Optimizer adam rmsprop 

 

As far as the dimensions of the utilized emojis embedding is concerned we used the default value which was 

300. As for both word as well as emoji embeddings the dimensions were set to 300 each, on concatenation it resulted in 
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600-dimensional representations. Additional experimentation was performed to analyze the change in performance when 

embeddings of lower dimensions were utilized. For the purpose we implemented the embedding dimensionality 

reduction algorithm provided by Raunak et al. [50] and obtained embeddings of dimensions 50, 100 and 200 for both 

Hindi words and emojis. The hybrid model was tested once again with the embeddings of reduced dimensionality. Table 

10 presents the results and it is observed that the best performance was achieved by opting a 300-dimensional 

representation of each of the embedding type. 

 

Table 10: Variation in performance of hybrid model with embedding matrix of varying dimensionality 

Dimension of embedding matrix (word embedding 

dimension + emoji embedding dimension) 

Precision Recall F-Score Accuracy 

100 (50+50) 0.9845 0.9137 0.9478 0.9536 

200 (100+100) 0.9565 0.9496 0.9531 0.9570 

400 (200+200) 0.9706 0.9496 0.9600 0.9636 

600 (300+300) 0.9852 0.9568 0.9708 0.9735 

 

The results were also compared with the existing work done on the basis of performance metrics.  Table 11 

presents the comparison along with the details of dataset, features and techniques utilized in each study. 

Table 11: Comparison of proposed CNN-LSTM hybrid model with existing state-of-the-art 

Study Dataset Features Technique Performance Metrics 

Precision Recall F-Score Accuracy 

Bharti et al., 

2015, [51] 

2000 one liner 

Hindi news 
obtained from 

online sources with 

5000 related Hindi 
tweets 

1.Count of positive 

and negative keywords  
2.Polarity score in case 

of clash, using 

HindiSentiWordNet 

Keyword matching 

in an online news-
based context aware 

framework 

0.736 0.717 0.726 0.794 

Desai & Dave,  

2016, [18] 

Self-generated 

1410 Hindi 
sentences 

1.TF- IDF 

2.Positive and negative 
scoring of words using 

HindiSentiWordNet 

3.Boolean feature
 to denote 

presence of 

#Kataksh 
4.Intensity of 

emoticons, if present 

Machine Learning 

model- 
LibSVM 

- - - 0.837 

Bharti et al., 
2017 [52] 

1000 Hindi tweets Not Publically 
Available 

Context-based in 
terms of 

contradiction 

between tweet and its 
related news in the 

same timestamp 

0.848 0.836 0.842 0.87 

Bharti et al.,  

2018, [17] 

500 Hindi news 

from online sources 

along with 2500 
tweets with same 

timestamp 

1.Triplet extraction of 

<subject, verb, object> 

using 
Rusu_Triplets 

extraction algorithm by 

Comparison of 

tweets and its 

temporal facts using 
generated key-value 

pairs 

0.834 0.831 0.832 0.824 
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Study Dataset Features Technique Performance Metrics 

Precision Recall F-Score Accuracy 

taking news as 

temporal facts 

2.Generation
 of key-

value pairs from the 

triplets 
Katyayan et al. 

, 2021 [53] 

1000 sentences 

from social media 

like Facebook, 
Instagram, and 

Twitter 

1. POS tagging 

2. bag-of-words 

Four separate 

machine learning 

techniques: 
Naive Bayes 

SVM 

Decision tree 
Neural Network 

0.72 ( 

highest 

among 
all, 

achieved 

by 
decision 

tree) 

0.45 

(highest 

among 
all, 

achieved 

by neural 
network) 

0.54 

(highest 

among 
all for 

both 

decision 
tree and 

neural 

network 

- 

Proposed 

CNN-LSTM 

model 

1004 tweets 

extracted using 

hashtags and handle 
names 

1.Hindi embedding for 

words  

2.Emoji embedding for 
emojis 

ANN, CNN, LSTM, 

CNN-LSTM (Best 

performance CNN- 
LSTM) 

0.985 0.957 0.971 0.973 

 

As evident, the previous studies were heavily reliant on manual feature extraction. However, the use of 

embeddings obviates the need for such feature engineering techniques as embeddings are highly competent in 

understanding the semantic and syntactic information present in any given sentence. Furthermore, not enough importance 

has been given to emojis in the previous works and, as explained in earlier sections, they can prove to be quite pivotal in 

the determination of the true sentiment of any tweet. Our work makes use of this important attribute, once again in the 

form of embeddings. Additionally, utilizing deep learning models further trivializes the need of explicit feature 

extraction techniques as these models are highly skillful and fast in retrieval of essential features and patterns by 

themselves. Thus, the utilization of embeddings along with these efficient deep learning models has given our proposed 

approach an edge over the previously proffered methodologies. 

5 CONCLUSION AND FUTURE WORK 

With the accelerated use of social listening tools for market intelligence, research on sentiment analysis technologies has 

gained momentum. Sarcasm is a pivotal natural language challenge to analyze sentiments accurately as most text-based 

conversation are flat-toned. The exact emotion or intention is difficult to comprehend and this task becomes even more 

strenuous for indigenous languages like Hindi which are complex in morphology and lack sufficient resources to facilitate 

analytics. As context incongruity signaled by words and emojis can be used to detect sarcasm in online data streams, we 

used a combination of fastText and emoji2vec embeddings to generate an integer-encoded word-emoji vector that trained 

a CNN-LSTM model to detect sarcasm. The model was validated on a Sarc-H dataset created for the purpose for detecting 

sarcasm detection in Hindi. The hybrid CNN-LSTM performed superiorly with 97.35% accuracy, 0.9852 F-score, 0.9708 

precision and 0.9508 recall. On comparison with the existing works too, the CNN-LSTM hybrid demonstrated superlative 

results. The experiments clearly indicate that emojis add clarity to the written content and their use improve the sarcasm 

classifier performance. Also, the use of embeddings address problems like word semantics, context and data sparsity for 

sarcasm detection in a low-resource language like Hindi. 
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The current work has been done on a small dataset which certainly is a limitation. However, we intend to increase 

our dataset in the future and employ models that generalize better and learn more high-level features with the help of 

contextualized word embeddings. Further, as the use of sarcasm in dialogues and conversational threads have further added 

to the challenges making it vital to capture the knowledge of the domain of discourse, context propagation during the 

course of dialogue as well as situational context and tone of the speaker, we intend to build models that predict sarcasm in 

Hindi conversational data using its chronological nature. 
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