IoTs Public Key Infrastructure using Reconfigurable Hardware Root of Trust

Sunday Ekpo, Liangxiu Han, Muazzam Zafar, Sunday Enahoro, MfonObong Uko and Andy Gibson

Dr Sunday Cookey Ekpo, PhD, CEng, SFHEA

Communication and Space Systems Engineering Research Team, Smart Infrastructure and Industry Research Centre, Manchester Metropolitan University, UK E: S.Ekpo@mmu.ac.uk; Twitter: scookey

^{03/06/2022} Chist-era SPIDDS | CHIST-ERA 2022- 24.05.2022 |

- Background;
- Internet of Things (IoTs) Sensors Connectivity;
- IoTs Public Key Infrastructure;

• Reconfigurable Hardware Root of Trust Concept; and

• Conclusion and Collaboration Opportunities.

Chist-era SPIDDS | CHIST-ERA 2022-24.05.2022 |

Background & Current Industry-linked R&D

- RF, Microwave and Millimetre-wave Devices:
 - GaAs pHEMT Low-Noise Amplifiers;
 - GaN/SiC HEMT Power Amplifiers;
 - Reconfigurable/Tunable Switches;
 - Hybrid Power Dividers and Combiners;
 - Reconfigurable Power Dividers.

Wireline & Wireless Comms;

Water Resources:

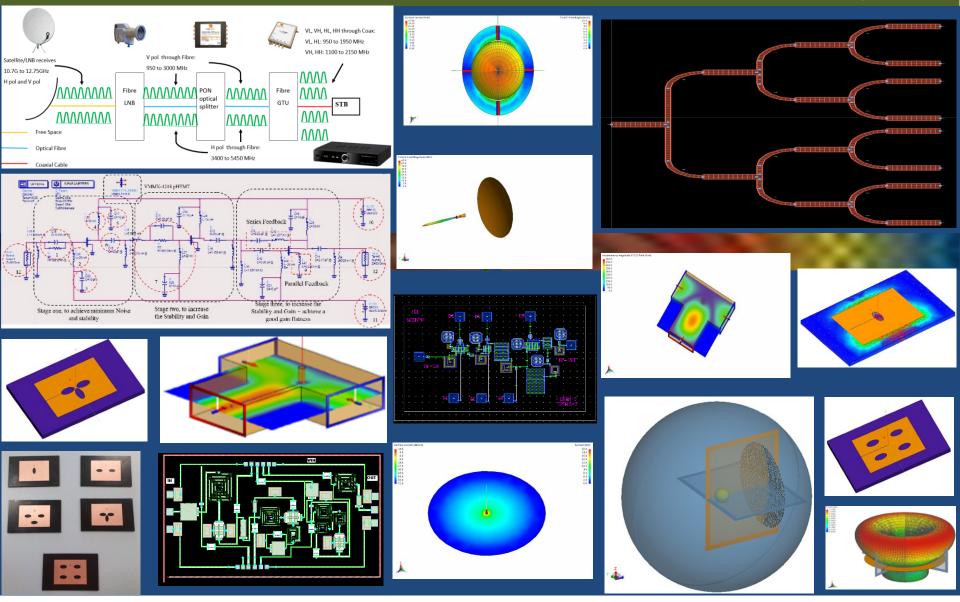
Energy.

Industry 4.0 & Smart Manufacturing;

- MIMO, SISO, MISO & SIMO Antennas for 5G;
- Satellite Broadcast Solutions Manufacturing;
- RF Antenna Biosensors Development;
- Industrial IoTs Sensors Characterisation;
- Fibre-Integrated Reception System;
- Circuit-emulating Embedded Systems Design.

Healthcare; Transportation; Sustainable Infrastructure; Environmental Monitoring.

> New Research


Interests

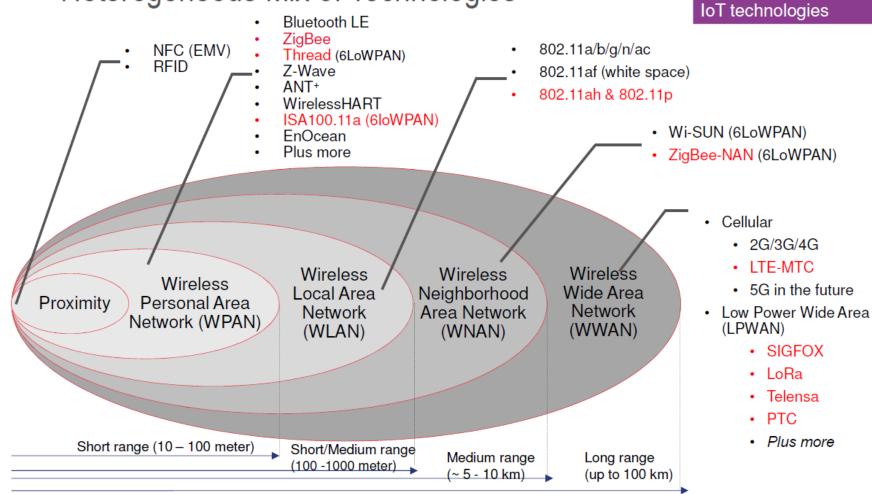
- RF/Microwave Biosensor Development for Point-of-Care Diagnosis;
- Artificial Intelligence Applications in Radio Communication Systems & Industry 4.0;
- Reconfigurable RF Antenna, Isolators, Circulators and Switches;
- AI-enabled Smart RF Exposure Measurements and Calibration;
- Smart Satellite-Cellular Internet of Things Convergence Connectivity Ecosystem.

Manchester Met is a world-leading University for future-generation adaptive high frequency components and space systems engineering design, modelling, simulation and development.

RF, Microwave & Millimetre-wave R&D Projects

C chist-era SPIDDS | CHIST-ERA 2022-24.05.2022 |

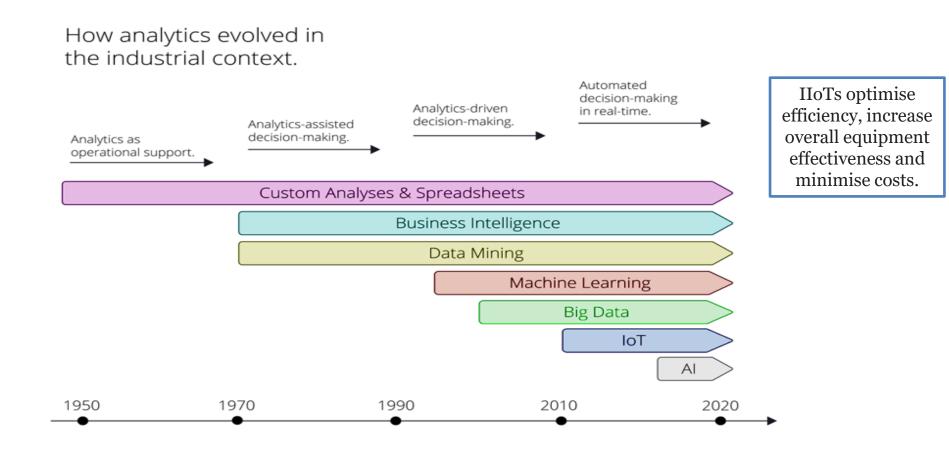
Communication & Space Systems Engineering Team


C chist-era SPIDDS I CHIST-ERA 2022-24.05.2022

Internet of Things Sensors Connectivity

Enabling Wireless Technologies for IoTs: 5G WWAN

Heterogeneous Mix of Technologies


Source: Keysight Technologies UK Ltd, Keysight Solutions for IoTs and M2M, 2015.

SPIDDS | CHIST-ERA 2022-24.05.2022 | C chist-era

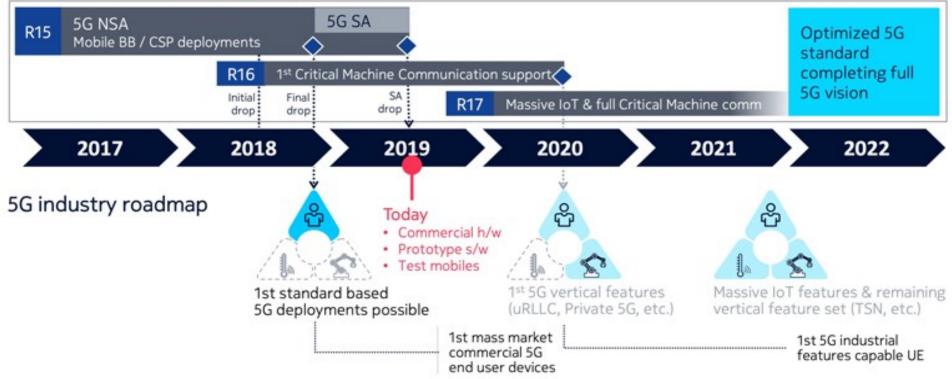
text – emerging

Industrial Analytics Evolution

IIoTs Evolution – enables transition from data-assisted decision-making to automated decision-making in real-time.

Source: WIN Semiconductors Corporation (2016).

chist-era SPIDDS | CHIST-ERA 2022-24.05.2022 |



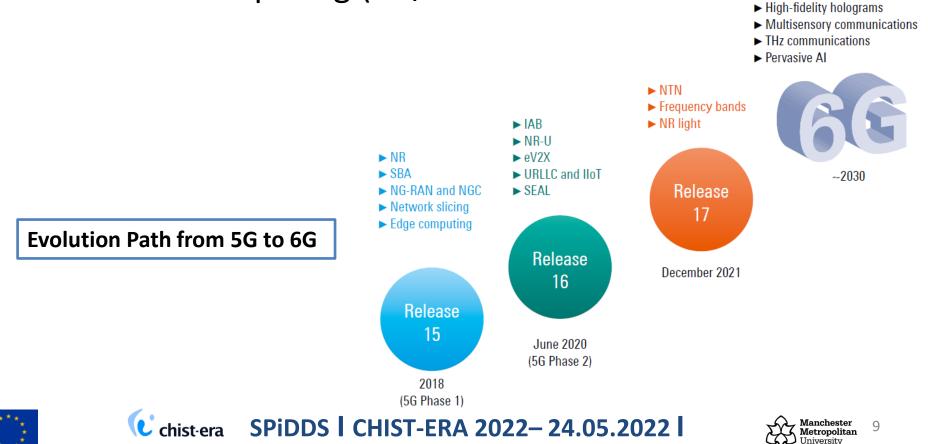
5G-enabled IoTs & Open RAN Ecosystem

Industrial Internet of Things:

• Third Phase of the Internet versus Fourth Industrial Revolutions

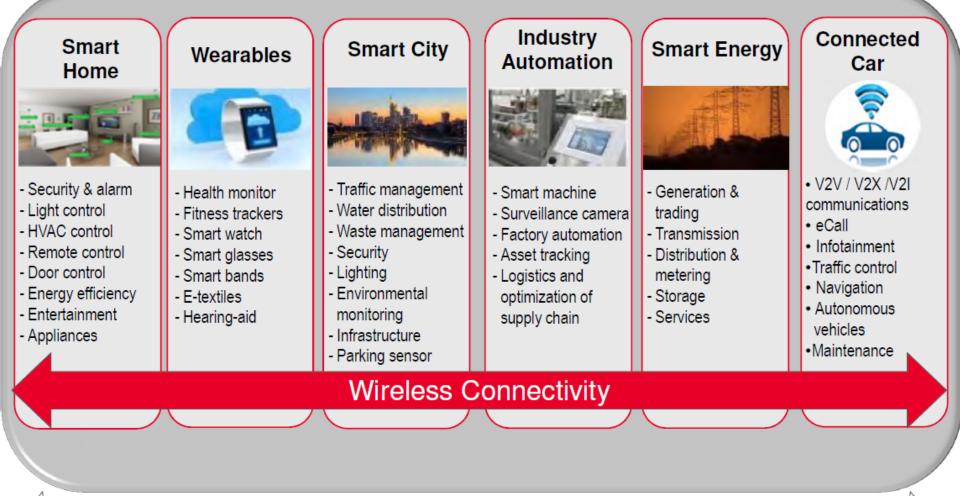
5G standard releases roadmap

Source: WIN Semiconductors Corporation (2016).



chist-era SPIDDS | CHIST-ERA 2022-24.05.2022 |

Auxiliary Computing Technologies for 5G/5G+ IoTs


- Auxiliary Computing Technologies for 5G/5G+ IoTs:
 - Distributed Computing (DC);
 - Edge Computing (EC);
 - Parallel Computing (PC).

IoTs Use Cases and Applications

Internet of Things: Third Phase of the Internet Revolution

• No single wireless technology can provide the connectivity for all IoTs use cases.

Source: Keysight Technologies UK Ltd, Keysight Solutions for IoTs and M2M, 2015.

chist-era SPIDDS | CHIST-ERA 2022-24.05.2022 |

IoTs Public Key Infrastructure

- The public key infrastructure (PKI) is currently the industry's holy grail for building secure IoTs devices.
- The current PKI design solutions lack:
 (i) post-manufacturing multi-radio dynamic key reconfiguration;
 (ii) integrated reconfigurable hardware solutions.
- PKI must be embedded into the hardware design and simplified for third-party developers and manufacturers to implement and deploy.

IoTs PKI Use Cases

- Real-time Non-Terrestrial-Terrestrial Connectivity;
- Trusted Identity and Provisioning;
- On-Device Key Generation;
- Offline / Limited Connectivity;
- Secure Boot and Code Signing;
- Mutual Authentication;
- Certificate Lifecycle Automation.

Source: Keyfactor (2022)

3/06/2022

Key Considerations for IoTs PKI

- Determine where the root of trust (RoT) is hosted (internal PKI, public Certification Authority (CA) or managed PKI);
- Decide private key storage location onboard the device;
- Provisioning and commissioning process where certificates are securely signed;
- Third-party industry requirements for an entity's certificate validity, key size, algorithm and identity.

Source: Keyfactor (2022)

IoTs Public Key Infrastructure Cryptosystem

IoTs PKI: A Two-Key Asymmetric Cryptosystem; PKI enables different information technology nodes to have:

High-level Information Confidentiality	Strong Data E	ncryption	High-level Confidence					
IoTs PKI Nodes								
Edge	Gateway		Enterprise					
Authentication Layer (Certification Authority (CA): Private or Public)								
Digital Signatures (DS)		Digital Certificates (DC)						
Keys								
Public		Private						

PKI Components: People, Hardware, Software, Policies and Procedures.

<u>PKI Purpose</u>: To create, store, distribute, manage and revoke digital certificates based on a twoway asymmetric cryptography.

^{03/06/2022} Chist-era SPIDDS CHIST-ERA 2022-24.05.2022

Reconfigurable Hardware Root of Trust Concept

Satellite-Cellular IoTs PKI							
Supports 5G/5G+	Radio	Supplements the		Complements 5G/5G+			
Access Technolo	gies	5G/5G+ Cellular Radio		Cellular Services			
		Access Network					
IoTs PKI Nodes							
Edge		Gateway		Enterprise			
Authentication Layer [CA: Private, Public or Peer (3Ps)]							
Dynamic Key Configuration Protocol			Reconfigurable Hardware Root of				
(DKCP) [DS]		Trust (RHRoT) [DC]					
Authentication Layer Tiers							
DKCP [Strong]	RHR	oT [Stronger	DKCP & RHRoT [Strongest]				
Keys							
Public		Private					

Conclusion: Sat-Cell IoTs PKI Security Metrics

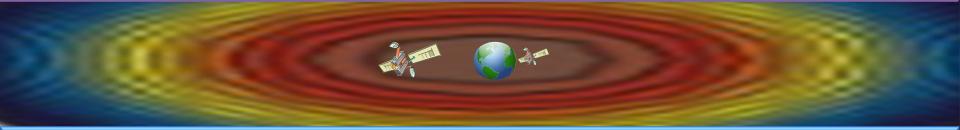
- The strength of an encryption is proportional to the cryptographic keys and algorithms that support it.
- Table 1 shows the smart satellite-cellular IoTs PKI security logic metrics.

Table 1. Smart IoTs PKI Security Logic Metrics						
IoTs PKI	IoTs PKI	Security Logic Metric				
RHRoT	DKCP	Output	Level			
0	0	0	Weak [OR / AND]			
0	1	1	Strong [OR]			
1	0	1	Stronger [OR]			
1	1	1	Strongest [AND]			

Conclusion: Key Message

- The proposed hybrid hardware-application protocol security solution provides a three-tier authentication that can be optionally implemented depending on the threat level within the IoTs device environment.
- This solution can be implemented to achieve IoTs PKIbased authentication, encryption and integrity for devices at scale by device manufacturers with little or no cryptography knowledge.
- The proposed adaptive IoTs PKI model promises scalable ubiquitous, seamless, cost-effective, secure, simple and security solution to stay ahead of existing and emerging threats and regulations.

Potential Collaboration Areas


- Reconfigurable Smart IoTs Public Key Infrastructure, Security and Cryptographic Algorithms;
- Artificial intelligence applications in Satellite-Cellular IoTs;
- 5G/6G physical layer radio communication components development;
- Smart Factory RF Exposure Measurement and Calibration for factory entities and smart manufacturing services.

"Manchester Met is a world leader in futuregeneration adaptive high frequency components and space systems engineering design, modelling, simulation, characterisation and development."

Any Questions Please?

E: S.Ekpo@mmu.ac.uk; Twitter: scookey

