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Mining for cosmological information:

Simulation-based methods for Redshift Space

Distortions and Galaxy Clustering

Carolina Cuesta-Lazaro

Abstract: The standard model of cosmology describes the complex large scale structure of

the Universe through less than 10 free parameters. However, concordance with observations

requires that about 95% of the energy content of the universe is invisible to us. Most of this

energy is postulated to be in the form of a cosmological constant, Λ, which drives the observed

accelerated expansion of the Universe. Its nature is, however, unknown. This mystery forces

cosmologists to look for inconsistencies between theory and data, searching for clues. But

finding statistically significant contradictions requires extremely accurate measurements of

the composition of the Universe, which are at present limited by our inability to extract

all the information contained in the data, rather than being limited by the data itself. In

this Thesis, we study how we can overcome these limitations by i) modelling how galaxies

cluster on small scales with simulation-based methods, where perturbation theory fails to

provide accurate predictions, and ii) developing summary statistics of the density field that

are capable of extracting more information than the commonly used two-point functions. In

the first half, we show how the real to redshift space mapping can be modelled accurately

by going beyond the Gaussian approximation for the pairwise velocity distribution. We then

show that simulation-based models can accurately predict the full shape of galaxy clustering

in real space, increasing the constraining power on some of the cosmological parameters by

a factor of 2 compared to perturbation theory methods. In the second half, we measure

the information content of density dependent clustering. We show that it can improve the

constraints on all cosmological parameters by factors between 3 and 8 over the two-point

function. In particular, exploiting the environment dependence can constrain the mass of

neutrinos by a factor of 8 better than the two-point correlation function alone. We hope

that the techniques described in this thesis will contribute to extracting all the cosmological

information contained in ongoing and upcoming galaxy surveys, and provide insight into the

nature of the accelerated expansion of the universe.
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Chapter 1

The Times They Are A-Changin’:

An Introduction to Cosmology and

its Conundrums

The standard model of cosmology is in trouble, and this is good news for science. The stan-

dard model ΛCDM (Lambda Cold Dark Matter) describes the evolution of cosmic structures

through no more than ten free parameters. These parameters determine i) the statistical

properties of the early universe, and ii) the universe’s energy content, which shapes how mat-

ter clusters to form the structures that we observe today. With all its simplifying assumptions,

ΛCDM provides a remarkably accurate description of a wide range of cosmological and as-

trophysical datasets, from the early Universe of small density perturbations to the highly

structure cosmic web that we observe today. Figure 1.1 shows two example datasets from

epochs of the Universe separated by almost 13 billion years, demonstrating the remarkable

success of ΛCDM in describing both early and late observations.

But while it can reproduce observations, ΛCDM fails to provide an explanation for cos-

mology’s most pressing questions, namely:

• What is driving the accelerated expansion of the Universe? By combining different ex-

periments, such as supernova standard candles (Perlmutter et al., 1997; Riess et al.,

1998), and cosmic microwave background (CMB) temperature anisotropies (Planck Col-

laboration et al., 2020a), astronomers have inferred that the expansion of the universe

is accelerating. In the standard model of cosmology, the acceleration is driven by a

cosmological constant, Λ, whose nature is not explained theoretically.

1
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(a) Early Universe: The power spectrum of the
cosmic microwave background radiation temperature
anisotropy in terms of the angular scale (Commons,
2022). It measures the amplitude of fluctuations in
temperature of the oldest electromagnetic radiation in
the universe (see Section 1.1.1).

(b) Late Universe: The power spectrum of
galaxies at z = 0.43 (Gil-Marín et al., 2016). The
Monopole quantifies how clustered galaxies ap-
pear, whereas the Quadrupole measures the de-
gree of anisotropy in the line-of-sight direction
caused by peculiar motions (see Section 1.2.1).

Figure 1.1: Comparison of data (dots) and best-fit ΛCDM predictions (lines) for observations
spanning almost 13 billion years in the evolution of the universe. It can be seen how ΛCDM can
describe very accurately both early and late time observations.

• What is dark matter made of? Approximately 85% of the matter content of the universe

is thought to not interact with electromagnetic radiation. The presence of dark matter

has been inferred through its gravitational effects (Zwicky, 1933; Forman et al., 1979),

but its nature also remains a mystery.

• Did the Universe go through an inflationary period? The leading paradigm to explain

the origin of inhomogeneities in the early universe assumes that the universe underwent

a phase of exponential expansion known as cosmic inflation (Guth, 1981). The detailed

physical mechanism responsible for inflation is unknown.

These open questions push cosmologists to look for observations that are inconsistent

with ΛCDM. In fact, there are now increasing statistically significant inconsistencies, also

called tensions, between different datasets. By comparing observations of the early and late

time universes, we can estimate the degree to which these observations are consistent with

the expected evolution of a ΛCDM universe.

One of the most significant tensions is found in the inferred values of the expansion rate of

the Universe, H0. We can take the best-fitting model to the early Universe, and extrapolate

the value of this parameter to the present time (Planck Collaboration et al., 2020a) assuming

that ΛCDM is correct. If the model and the observations were fully consistent, this estimate
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would agree with that obtained from late-time observations, such as the Cepheid-Supernova

distance ladder (Reid et al., 2019). However, Hubble parameter values that are more than

4σ away from one another are found by different combinations of early-late time probes (Di

Valentino et al., 2021).

In addition, there are also tensions in the recovered values for the parameter that describes

the strength with which matter is clustered in the Universe, σ8. In particular, σ8 is defined

as the present day mass dispersion on a scale of 8 h−1Mpc. Inconsistencies of more than

2 − 3σ have been found when comparing the matter clustering strength inferred from the

early universe (through the cosmic microwave background) and the late universe (through

weak gravitational lensing and galaxy clustering (Joudaki et al., 2016; Abbott et al., 2022;

Philcox & Ivanov, 2022)). The latter prefer a lower degree of structure formation than those

expected from CMB observations.

But are these tensions the result of systematic errors in the measurements, have we been

statistically unlucky, or will they lead to the discovery of new physics? If the latter were true,

the inconsistencies may give us clues as to how alternatives to ΛCDM should look, and these

alternatives could, in turn, answer the biggest open questions that ΛCDM fails to explain.

Therefore, it is critical to constrain the standard model as precisely as possible. Our ability

to do so is now more than ever limited by our theoretical and statistical techniques, rather

than by the precision of the observations themselves. The research presented in this Thesis

contributes to ongoing efforts to develop a theoretical framework that describes the large-

scale structure of the Universe to the level of precision required to match that of ongoing and

future galaxy surveys. We will show how a combination of N-body simulations and machine

learning methods produces accurate theoretical models that can extract the cosmological

information contained in the non-linear regime of structure formation, which, in the future,

may help settle the debate around cosmological tensions and their origin.

1.1 ΛCDM: The Standard Model of Cosmology

Einstein, motivated by the equivalence principle, stated that gravity is a metric theory. Space-

time is a four-dimensional manifold equipped with a metric gµν . This metric is a dynamical

field coupled to the matter and energy content of the Universe through the field equation

Gµν = 8πGTµν , (1.1.1)
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which relates a measure of the curvature of spacetime, the Einstein tensor Gµν , to a measure

of the energy content of the universe, the stress energy tensor Tµν . The definitions of these

tensors can be found in Carroll (2019).

Interestingly, Einstein’s equations are a unique description of gravity under certain as-

sumptions, as shown in (Lovelock, 1969): The only second-order, local gravitational field

equations derivable from an action containing solely the 4D metric tensor (plus related ten-

sors) are the Einstein field equations with a cosmological constant.

Given the complexity of Eq. (1.1.1), analytical solutions can only be found in systems

with high degrees of symmetry. It turns out that the universe on large scales is one such

system. When averaged on large scales, the complex cosmic web of galaxies and voids becomes

isotropic. It is also statistically isotropic to any observer, regardless of where they are placed

within the universe. This implies that the universe is statistically homogeneous as well. That

is, although the distribution of matter is not homogeneous, it is when averaged over different

realisations of the density field.

When combined with the laws of General Relativity (GR), the symmetries mentioned

above single out a particular space-time geometry: that of an FLRW cosmology defined by

the metric

ds2 = dt2 − a(t)2
(

dr2

1 − kr2 + r2dΩ2
)
, (1.1.2)

where a(t) is the scale factor of the universe, which is determined by the matter energy

content through the Einstein equations Eq. (1.1.1), k is a constant representing the curvature

of space, and dΩ2 = dθ2 + sin θ2dϕ2. Note that throughout this section we are using natural

units, in which c = 1. The metric completely specifies the left-hand side of Eq. (1.1.1).

The right-hand side is determined by the density and flux of energy and momentum, Tµν .

Given a statistically homogeneous and isotropic universe, the energy-momentum tensor of a

perfect fluid as seen by a comoving observer is described by

Tµ
ν = gµλTλν =



ρ 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P


(1.1.3)

where ρ is the energy density and P is the pressure of the fluid. Manipulating the combination

of Eq. (1.1.2) and Eq. (1.1.1) we find the so-called Friedmann equations(
ȧ

a

)2
= 8πG

3 ρ− k

a2 , (1.1.4)
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Parameter Best fit value Uncertainty
Ωbh

2 0.02242 0.00014
Ωch

2 0.11933 0.00091
H0 67.66 0.42
ΩΛ 0.6889 0.0056

Table 1.1: Cosmological parameters and their uncertainties estimated from the final full-mission
Planck measurements of the CMB anisotropies (Planck Collaboration et al., 2020a).

ä

a
= −4πG

3 (ρ+ 3P ). (1.1.5)

To simplify Eq. (1.1.4), we define the Hubble parameter as H(a) = ȧ/a and H0 as the current

value of the Hubble parameter.

The first Friedmann equation Eq. (1.1.4) relates the Hubble parameter to the total energy

density in the universe at a given time. Energy densities are usually expressed as ratios to the

critical density, ρc, the total density of a spatially flat universe, as Ω = ρ/ρc, where ρc = 3H2

8πG .

The universe is filled with different forms of matter. On the one hand, dark matter

and baryons (ordinary matter) behave like nonrelativistic particles for which the pressure

is much smaller than the energy density. Their energy density is parameterised in terms of

Ωc and Ωb, respectively. On the other hand, photons and neutrinos behave like relativistic

particles for which pressure is non-negligible. In the case of neutrinos, due to their small

but non-negligible masses, they make the transition from a relativistic to a non-relativistic

behaviour in the recent history of the universe. In both cases, their energy densities are

negligible today compared to those of nonrelativistic particles. The element that dominates

the energy content of the universe today is dark energy, which behaves like a negative pressure

component P = −ρ. The dark energy density is parameterised as ΩΛ and is introduced to

drive the accelerated expansion of the universe within the ΛCDM model. In Table 1.1 we

show our current best estimates of these parameters, as found in (Planck Collaboration et al.,

2020a).

1.1.1 The early Universe

Although the universe is homogeneous and isotropic when averaged over large scales, the

formation of structure, including the galaxy in which we live, implies that this is no longer the

case on smaller scales. The current cosmological paradigm assumes that primordial density

perturbations are the result of inflation (Guth, 1981; Linde, 1982; Linde & Mezhlumian,

1995), a period of rapid expansion that is thought to take place in the very early universe.
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Microscopic quantum fluctuations that existed prior to inflation are believed to have been

stretched during the period of inflationary expansion to serve as seeds for the structure that

we observe today.

In fact, we can study the properties of these initial seeds in the cosmic microwave back-

ground radiation. The hot and dense early universe produced frequent particle interactions

that would form a plasma. The photons were trapped inside this plasma by interactions with

free electrons. But the expansion of the universe made it cool down to a temperature at

which the first stable atoms could form, lowering the rate of scattering between photons and

electrons. It is then that photons began to propagate freely through the Universe. Photons

freed at the so-called time of recombination reach us today in the form of microwave radiation

at a temperature of about 2.7 K.

By mapping the temperature of photons coming from different directions, we can study

the homogeneity and isotropy of the early universe. We find small variations in temperature

at the level of 1 in 100, 000. This means that we observe photons coming from different

directions at slightly different temperatures. The ones that are slightly hotter were produced

at denser regions than those that are slightly colder, and these denser regions would later on

collapse to form the structure of galaxies and voids that we observe today.

Gaussian Random Fields

Another prediction of inflation is that initial density perturbations result from many inde-

pendent quantum fluctuations. This implies that they are very nearly Gaussian distributed.

The degree of deviation from Gaussianity is strongly constrained by observations of the CMB

(Planck Collaboration et al., 2020b). In this section, we review the theory describing Gaussian

random fields and the implications for cosmology.

Starting from the value of the matter density, ρ(x), at a point in space, x, we define the

density contrast, also known as overdensity, δ, as

δ(x) = ρ(x) − ρ̄

ρ̄
, (1.1.6)

where ρ̄ is the average density field ρ taken over space. With this definition, the mean of the

overdensity field vanishes. The probability density function of the overdensity for a Gaussian

random field (GRF) is a multivariate Gaussian

P (δ1, ...δd)dδ1...dδd = 1√
(2π)n det C

exp
{[

−1
2δ

TC−1δ

]}
, (1.1.7)
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where δd is the value of the overdensity at the point xd. See (Wandelt, 2012; Leclercq et al.,

2014) for a review of Gaussian random fields.

For a GRF, cumulants of higher than second order vanish. Therefore, the pdf of δ is fully

characterised by its covariance, C = ⟨δδT ⟩. Here the ⟨⟩ symbols denote the ensemble average,

taken by drawing many realisations from the distribution

⟨X⟩ =
∫
X(δ1, δ2, ..., δn)P (δ1, δ2, ..., δn)dδ1dδ2...dδn. (1.1.8)

Given that we can access only one realisation of the universe through observations, we cannot

measure ensemble averages. Instead, we can average over many distinct regions of space. This

is defined as the volume average of one realisation of the distribution

X̄ = 1
V

∫
v
X(x)d3x, (1.1.9)

where V is some volume in the Universe. If the ensemble average coincides with the sample

average, the system is said to be ergodic. In general, the validity of the ergodic hypothesis in

cosmology depends on the ratio between the length scale over which we perform the spatial

averaging and the scale at which spatial correlations become negligibly small. The assumption

of ergodicity allows us to compute ensemble averages of fields in cosmology (Adler, 1981).

The covariance matrix, C, describes the correlation between the amplitude of δ at two

positions x1 and x2, and is also known as the correlation function, ξ. We can simplify the

description of the correlation function by imposing homogeneity and isotropy as follows

⟨δ(x1)δ(x2)⟩ = ξ(x1,x2)homogeneity= ξ(r) isotropy= ξ(r), (1.1.10)

where r = x2 − x1. One can think of the correlation function as a compressed summary

of the field. The information contained in the three-dimensional field δ(x) can be optimally

summarised in its two-point correlation function. This compression step can reduce the

dimensionality of the problem from about O(109) dimensions, if the overdensity is computed

on a grid with 1024 cells, to only O(100) dimensions, the pair separation bins used to estimate

the two-point correlation function.

The two-point correlation function can also be interpreted as the excess probability over

random that two particles in volume elements dV1 and dV2 are separated by a distance r. If

the particle number densities at two locations x1 and x2 separated by a distance r are n1 and

n2, and given that the density contrast within an infinitesimal volume is δ(xi) = ni/(ndVi)−1,

where n̄ = N/V is the average number density, then the two-point correlation function can
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be written as

ξ(r) = ⟨δ(x1)δ(x2)⟩ = ⟨n1n2⟩
n̄2dV1dV2

− 1, (1.1.11)

where ⟨n1n2⟩ measures the average number of pairs within the volume elements dV1 and

dV2. Therefore,

⟨n1n2⟩ = n̄2(1 + ξ(r))dV1dV2. (1.1.12)

If a distribution of particles is random, the average number of pairs is given by the product

of the average number of particles in each volume, ⟨n1n2⟩ = ⟨n1⟩⟨n2⟩ = n̄2dV1dV2, which

corresponds to a vanishing correlation function.

It is useful to express δ as an integral of Fourier modes

δ(x) =
∫ d3k

(2π)3/2 δ(k)eikx, (1.1.13)

and, equivalently,

δ(k) =
∫ d3x

(2π)3/2 δ̂(x)e−ikx. (1.1.14)

Note that δ(k) is a complex random variable, but since δ(x) is real, the Fourier field must

satisfy δ(−k) = δ∗(k).

The variance in Fourier space is denoted as the power spectrum, P (k), and is defined as

< δ(k1)δ∗(k2) >= 1
(2π)3/2

1
(2π)3/2

∫
d3x1

∫
d3r < δ(x1)δ(x1 + r) > ei(k1−k2)x1−ik2r

homogeneity= 1
(2π)3 δD(k1 − k2)

∫
d3rξ(r)eik1r isotropy= 1

(2π)3/2 δD(k1 − k2)P(k), (1.1.15)

where k = |k1 − k2|.

1.1.2 Structure growth in a ΛCDM Universe

Gravity drives the overdensities and underdensities observed in the cosmic microwave back-

ground to collapse, forming the seeds for the galaxies, voids and clusters of galaxies that we

observe today. Although it is possible to perform a fully relativistic treatment of how gravity

results in structure formation (Bardeen, 1980; Mukhanov et al., 1992; Peebles, 1980a), here

we will simplify the analysis by approximating dark-matter particles as a nonrelativistic fluid

and ignoring general relativistic effects (i.e. working in the Newtonian limit in an expanding

background).

Given that we focus on the behaviour of gravity on scales smaller than the Hubble radius,

general relativistic effects such as curvature can be safely ignored. Moreover, although the
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nature of dark matter is still an open question in cosmology, its properties are strongly

constrained by observations. In particular, in the standard model of cosmology dark matter

is thought to be “cold”, i.e. non-relativistic, since otherwise the seeds for the observed small-

scale structure could not have formed in the early universe. Furthermore, we can ignore the

discrete nature of the dark matter particles and treat dark matter as a collision-less fluid.

Under these approximations, we can derive the following equations from mass and mo-

mentum conservation
∂

∂t
ρ+ ∇(ρv) = 0, (1.1.16)

∂

∂t
v + v · ∇v = −∇ϕ. (1.1.17)

Eq. (1.1.16) relates the evolution of the density field to velocity fluxes, ∇v, while Eq. (1.1.17)

shows that the velocity field evolves due to spatial variations in the gravitational potential,

ϕ. These are known as the continuity and Euler equations, respectively. They both contain

non-linear terms, which have been highlighted in purple. The non-linear terms limit our

ability to describe growth of structure using analytical methods.

These two equations contain three unknowns ρ, v, and ϕ. To solve for these quantities, we

also need the Poisson equation to relate the gravitational potential to its source, the density

field

∇2ϕ = 4πGρ̄δ. (1.1.18)

Due to non-linearities in the coupled system of equations defined by Eqs. (1.1.16), Eq. (1.1.17),

and Eq. (1.1.18), we can only find analytical solutions for the evolution of the three fields in

the restricted case of small density perturbations, δ ≪ 1, or in special cases, like spherical

symmetry. Approximations to the exact solution can also be found when δ ≈ 1 using pertur-

bation theory (Bernardeau et al., 2002). But to find solutions in the non-linear regime, where

δ > 1, we need to resort to N-body simulations, which will be introduced in the next section.

Before that, we shall study the properties of linearised equations and their evolution, which

are used to describe gravitational growth at early times.

Replacing ρ by the density contrast δ, working in comoving coordinates and linearising

the equations, we find
∂

∂t
δ + ∇u = 0, (1.1.19)

∂

∂t
u + 2H(a)u = −∇ϕ

a2 , (1.1.20)

∇2ϕ = 4πGρ̄a2δ (1.1.21)
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where u = v/a is the comoving velocity.

Taking the time derivative of Eq. (1.1.19), and combining it with the spatial derivative of

Eq. (1.1.20) and Eq. (1.1.21) we find

∂2δ

∂a2 + 1
a

(
3 + d ln H(a)

d ln a

)
∂δ

∂a
= 3Ωm(a)

2a2 δ. (1.1.22)

This equation describes the temporal evolution of the density contrast. The right-hand

side can be thought of as a source term. Increasing Ωm increases matter clustering, and

therefore δ, whereas the second term of the left-hand side is a drag term; the faster the

background universe expands, the harder it is to cluster, and the slower δ will grow. For

structures to grow, they must collapse on a dynamical time scale smaller than 1/H(a). In

simple terms, the growth of structure is the result of a competition between gravity, trying

to push matter together, and the expanding background, trying to pull it apart.

An important consequence of Eq. (1.1.22) is that growth of structure is scale-independent

in the linear regime, and we can separate the position and time dependence by writing

δ(a, t) = δ(x, ti) D+(t)
D+(ti) , where D+(t) is known as the linear growth factor, where ti is some

reference time.

From the linearised continuity equation (1.1.19) we find

u = −aδdD+
dt

1
D+

= −aδHf, (1.1.23)

where f = d ln D+
d ln a , known as the linear growth rate.

While measurements of H(z) test the global evolution of the universe and its energy

density content at the background level, estimates of f(z) allow us to test the evolution of

inhomogeneities. It is particularly relevant to estimate f(z) to test viable gravity theories

other than general relativity. If these theories modify the Einstein-Hilbert action, they might

introduce additional degrees of freedom that mediate an additional gravitational force, also

known as the fifth force. Modified gravity theories might produce an expansion history

very similar to that of general relativity, but a fifth force would affect the rate at which

structures grow (Linder, 2005), and therefore precise measurements of f(z) could rule out

these alternative models.
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1.1.3 The late Universe

So far we have described the density field as being Gaussian distributed, and we have shown

how, at early times, its evolution can be described by linearising the continuity and Euler

equations, resulting in a scale-independent perturbation growth. However, the growth of

structure results in the distribution of δ becoming non-Gaussian, its evolution non-linear,

and its growth inhomogeneous.

Given that δ is bounded by −1, since a region of the universe cannot have negative density,

the distribution of δ values must develop skewness as the underdense and overdense regions

grow. This also implies that growth must be position dependent. Moreover, solutions to the

linearised equations cease to give accurate approximate solutions to the growth of structure

when δ is not much smaller than one. Corrections can be included by writing a perturbative

series as a function of the initial density field, but their accuracy is limited on small scales.

See (Bernardeau et al., 2002) for a review of perturbation theory and (Carlson et al., 2009)

for comparisons of the predictions of perturbation theory with N-body simulations.

An important consequence of the non-Gaussianity of the density field is that the two-

point correlation function is no longer an optimal summary of the information contained in

the three-dimensional field. There is now an active topic of research in cosmology dedicated to

finding more informative, or complementary, summary statistics that improve our constraints

on the cosmological parameters. Examples of these are the bispectrum (Sefusatti et al., 2006;

Yankelevich & Porciani, 2019), the marked correlation function (Beisbart & Kerscher, 2000;

White, 2016), and the void-galaxy cross-correlation (Nadathur et al., 2019). Alternatively,

there have been substantial developments in the area of field-level inference (Leclercq &

Heavens, 2021; Villaescusa-Navarro et al., 2021; Dai & Seljak, 2022), which leads to inference

of the values of the cosmological parameters from the full density field rather than using a

summary statistic.

N-body simulations and their evolving role in cosmology

To obtain fully non-linear predictions for the properties of the large scale structure we must

resort to N-body simulations. These calculations simulate the gravitational evolution of a

discrete set of particles that approximate the motion of a fluid in an expanding background,

producing simulated universes that cover representative patches of the Universe such as those

observed through galaxy surveys (of the order of up to a few h−1Gpc per side). Given that
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Figure 1.2: Number of particles used in cosmological N-body simulations and different algorithms.
It can be seen that improvements with time are the result of both more efficient algorithms and
more powerful computers. This image has been taken from http://florent-leclercq.eu/
blog.php?page=2, see references therein for more information about the N-body codes

the size of these patches is still well below the horizon scale, relativistic effects can be safely

ignored, and only Newtonian equations of motion need to be solved. However, there are codes

capable of simulating the fully relativistic process of structure formation (Adamek et al., 2016;

Barrera-Hinojosa & Li, 2020).

The computational cost of running an N-body simulation is largely determined by the

number of particles used. In Figure 1.2, we show the historical evolution of the number of

particles used to run the largest N-body simulation in a given year. The observed increase

in number of particles is enabled by a combination of more powerful computers (as indicated

by Moore’s law) and more efficient algorithms, as can be seen from the points deviating from

Moore’s law. The particle mass is determined by the mean density of the universe in a given

cosmological model. Therefore, for a fixed number of particles, there is a compromise between

the volume of the box and the smallest mass object that can be resolved.

To run an N-body simulation, we need to determine a set of initial conditions describing

the initial positions, velocities, and masses of the particles. If we run the simulations from a

sufficiently high redshift, the density field can be approximated by a Gaussian Random Field.

Therefore, the particle positions can be found by generating a GRF defined by the matter

power spectrum at the desired redshift. The phases of the field are randomly generated, thus

producing different realisations of the same random field. Running N-body simulations with

different phases allows us to compute ensemble averages and reduce the noise introduced by

cosmic variance. Moreover, at high redshift δ ≪ 1, which allows us to use the linearised

http://florent-leclercq.eu/blog.php?page=2
http://florent-leclercq.eu/blog.php?page=2
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Euler equation Eq. (1.1.20) to convert overdensities into particle velocities. Current Initial

Condition generation codes (Garrison et al., 2016; Jenkins, 2010) make use of either the

Zel-dovich approximation (Zel’dovich, 1970) or second-order Lagrangian perturbation theory

(Crocce et al., 2006) to obtain accurate initial conditions.

From the initial conditions, different algorithms and approximations are used to compute

the gravitational forces on the particles. See (Kuhlen et al., 2012; Vogelsberger et al., 2020)

for reviews on the topic, including hydrodynamic simulations. Apart from the phase-space

dark matter particle distributions, an important output of N-body simulations are the so-

called dark matter halos. These are groups of gravitationally bound particles that will be

hosts of the galaxies that we observe in galaxy surveys. However, defining these objects is

tricky, and different definitions of halo finders are still being used (Behroozi et al., 2015).

N-body simulations have been widely used as cosmic laboratories to test the precision

and robustness of analytical methods for the large-scale structure, together with the effects

of systematic errors in our measurements. However, over the past decade, computational

advances have allowed us to run a large enough number of N-body simulations covering a

significant fraction of the cosmological parameter space, which allows us to use the simulations

themselves as predictive models that directly constrain the cosmological parameters. These

are called simulation-based methods. Some examples of large suites of N-body simulations

with different parameters have been presented in (Nishimichi et al., 2019a; DeRose et al.,

2019a; Maksimova et al., 2021a). We will show such an application of simulation-based

methods in Chapter 4.

Of particular relevance to simulation-based methods is the accuracy of the N-body codes

themselves. To run simulations with a large number of particles, different assumptions and

approximations are made to make the problem computationally tractable. A recent code

comparison (Grove et al., 2021) showed how clustering predictions for dark matter halos

obtained with three different N-body codes (ABACUS (Garrison et al., 2021), GADGET

(Springel, 2005a) and SWIFT (Schaller et al., 2016)) are only within the statistical errors

of future surveys like the Dark energy Spectroscopic Survey (DESI) for scales larger than

20h−1Mpc. Understanding these differences will be relevant for simulation-based inference.

1.2 The Universe as we see it

We can divide cosmological observables into those that test the background expansion history,

H(a), and those that aim to measure the growth rate of the Large Scale Structure (LSS) as
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a function of cosmic time, f(a). It is important to measure the temporal evolution of these

two functions to constrain the dynamics of the dark energy equation of state.

Probes that test the background expansion history and the growth rate of structure are

complementary, and crucial in distinguishing between alternatives to ΛCDM models (Linder,

2005). Some viable modified gravity theories can be tuned to reproduce the observed evolution

of the scale factor with time and therefore are indistinguishable on the background level from

general relativity. However, by including information on the rate at which cosmic structures

grow, we can detect modifications to gravity. The growth of cosmic structure is the outcome

of a competition between the expansion of the Universe and the gravitational pull, generated

by inhomogeneities. If there is an additional fifth force, but the expansion is compatible with

that observed, the rate at which structures in the Universe grow will be modified.

In this Thesis, we focus on probes of the growth of structure. We refer the reader to

(Freedman, 2021; Di Valentino et al., 2021), for reviews on tests of the background expansion

history and their relevance in assessing the statistical significance of the H0 tension.

1.2.1 Probing the growth of structure

To measure the large-scale growth of structure in the Universe, we look at the statistics of

3-D galaxy maps made using spectroscopic surveys. These maps contain the angular position

of galaxies in the sky, together with their redshifts. The angular coordinates and redshift can

be converted into comoving distances through the angular diameter distance.

Assuming that galaxies are at rest, as the photons they emit travel towards us through

an expanding Universe, their wavelengths stretch accordingly. Therefore, we observe the

redshifted light of distant galaxies. We can translate this redshift into a comoving distance

by introducing the Hubble factor, H(z),

r(z) =
∫ z

0

dz′

H(z′) , (1.2.1)

where r(z) is the comoving distance to the galaxy, and we have used the natural unit where

the speed of light c = 1.

Nevertheless, there are several effects related to the distorted way in which we observe the

universe that complicate this simple picture. In fact, much of the information that we obtain

from 3-D galaxy maps about the laws of gravity does not come directly from the comoving

map of galaxy positions, but from distortion effects that alter this map. It is often not
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possible to isolate the contribution of the different effects, and we must model them jointly.

In this section, we review the main effects that will play an important role in this Thesis.

Geometrical distortions: Alcock-Pacynski

Converting angular coordinates and redshifts into comoving coordinates requires a fiducial

cosmological model. If this fiducial model is different from the true one, an isotropic distribu-

tion of galaxies would be distorted to become anisotropic because of the different conversion

of angular coordinates and redshift into comoving coordinates. This is known as the Alcock-

Paczynski (AP) effect (Alcock & Paczynski, 1979).

The distortions can be parametrised (Ballinger et al., 1996) by scaling the transverse and

line-of-sight separation vectors

s⊥ = q⊥s
fiducial
⊥ (1.2.2)

s∥ = q∥s
fiducial
∥ . (1.2.3)

The q-scaling factors are related to the cosmological parameters through the comoving angular

diameter distance, D, and the Hubble parameter, H(a), by

q⊥ = D

Dfiducial (1.2.4)

q∥ = Hfiducial

H
. (1.2.5)

Redshift Space Distortions

In Eq. (1.2.1), we assumed that the galaxies are at rest. However, galaxies also move because

of the gravitational pull generated by the inhomogeneous distribution of matter around them.

If a source that emits light moves, the wavelength of the emitted light becomes further shifted

because of the Doppler effect. If we ignored this effect, then we would infer the wrong distance,

s, given by

s = r + v(r).ẑ
H

ẑ, (1.2.6)

instead of the real position of the galaxy, r, where v(r) is the peculiar velocity of the galaxy,

H = aH(a) is the comoving Hubble factor, and the inferred distance, s, is called the redshift

space distance. We have assumed that the observer is far away from the sources and therefore

the line-of-sight direction can be fixed to a particular direction, which we, without loss of

generality, set as the ẑ axis. This approximation, known as the plane-parallel or distant
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observer approximation, has so far given results that lie within the statistical error bars of

current surveys (Samushia et al., 2012).

The translation between redshift and distance is, in reality, more complex than that in

Eq. (1.2.1), since we need to disentangle the combination of the position of the galaxy and its

peculiar velocity along the line of sight. However, this complication turns out to be beneficial,

since peculiar velocities are sourced by the gravitational pull of the inhomogeneous matter

distribution. Peculiar velocities therefore allow us to detect the existence or constrain the

strength of fifth forces by studying the growth of structure inferred from the statistics of the

peculiar velocity field; see, e.g. (Gorski, 1988; Bose & Koyama, 2017).

To extract the growth rate, we measure the effect of peculiar velocities on the clustering

properties of galaxies, known as redshift space distortions (RSD). Due to the peculiar motions

of galaxies, we observe redshift space positions, s, instead of the real space positions, r, and

thus we can only measure the redshift space two-point correlation function

ξS(s⊥, s∥) = ⟨δ(x)δ(x + s)⟩, (1.2.7)

which depends both on the modulus of the pair separation vector, s, and on its inclination with

respect to the line-of-sight direction. Throughout, we denote the separations perpendicular

and parallel to the line of sight by s⊥ and s∥, respectively.

The redshift space correlation function is a combination of both real space clustering,

ξR(r), and the probability of finding a pair of galaxies with a given relative velocity along the

line of sight, also denoted as the pairwise velocity distribution, as we will show in Chapter 3

using the Streaming Model of RSD, see e.g. (Fisher, 1995a; Scoccimarro, 2004). Since

clustering in redshift space is affected by relative peculiar motions, it contains information

about the growth of structure.

Biased tracers

In redshift surveys, we obtain 3-D maps of galaxies instead of the underlying dark matter

field that we can describe theoretically. Modelling the mapping between dark matter and

galaxies is challenging, since we lack a complete understanding of how galaxies form, how gas

cools to form stars and galaxies, and what the dominant feedback processes are from baryons

that alter the distribution of dark matter.

We can build physical models of galaxy formation by solving the equations of gravity and

hydrodynamics simultaneously. This involves simulating gas cooling, feedback from Active
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Galactic Nuclei (AGNs) and supernovae, and stellar driven winds by tracing the evolution

of dark matter, gas, and star particles over time. However, we cannot simulate the full

range of scales that one would need to resolve the relevant processes of galaxy formation in a

cosmological context, nor do we have a full description of the different physical processes that

affect the full range of scales. Hydrodynamical simulations resort to parameterisation of the

relevant physics below a resolution scale that is tuned to match a wide set of observations.

This is known as subgrid physics, and there is still uncertainty in the detailed implementations

and tuning of subgrid models. See (Somerville & Davé, 2015) for a review of this topic.

It has been known for a long time that galaxies do not randomly sample the matter

field, but form inside bound structures known as dark matter halos and are therefore biased

tracers of the density field (e.g. White & Rees, 1978). See (Desjacques et al., 2018a) for a

comprehensive review of galaxy bias.

Generally, galaxy bias can be expressed as a combination of halo bias, which describes the

relation between the distribution of halos and that of dark matter, and the physics of galaxy

formation, which is still poorly understood. Therefore, the relation between the galaxy field

and the underlying matter field depends on all the variables relevant to galaxy formation.

This relation can be complex (Sheth & Tormen, 1999; Tinker et al., 2010), and depends on

the redshift and scale.

The Halo-Galaxy connection

We can bridge the gap between the observed galaxy distribution in galaxy surveys and the

halos formed in dark matter only simulations through a statistical description of how galaxies

populate dark matter halos. Such statistical modelling approaches are, by definition, empir-

ical in the sense that we use data to constrain them. This means that they have limited

predictive capabilities but are at the same time flexible enough to account for uncertainties

in our theoretical descriptions of galaxy formation physics. We can therefore use them to

obtain robust cosmological constraints, after marginalising over their free parameters.

In this Thesis, we focus on the halo occupation distribution (HOD) models. These mod-

els assume a functional form for the mapping of dark matter halo properties into galaxy

occupation numbers. In particular, HOD models assume that the galaxy population can be

split into central galaxies, living at the potential centre of the dark matter halo, and satellite

galaxies, representing gravitationally bound structures orbiting within the dark matter halo.
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The occupation of central galaxies is parameterized as a Bernoulli distribution, while that of

satellites is Poisson distributed (Benson et al., 2000; Zheng et al., 2005).

Both distributions are described by their mean parameters. In the simplest HOD models,

the mean number of galaxies is described as a function of dark matter halo mass only. Some

commonly used parameterizations can be found here (Zheng et al., 2005; Reddick et al.,

2013).

Predictions of galaxy clustering can be obtained through HOD models either by using the

HOD to sample “galaxies” from dark matter halos in an N-body simulation, or by combining

analytical models of dark matter halo abundance and clustering with HOD models to make

predictions for summary statistics such as two-point clustering functions (van den Bosch

et al., 2013; Tinker et al., 2005).

Although dark matter halo mass has a strong influence on galaxy clustering, we know

that dark matter halos experience different assembly histories even at fixed halo mass. These

different assembly histories influence the secondary properties of halos, and this might, in

turn, affect the formation of galaxies. These effects are known as halo and galaxy assembly

bias (Gao & White, 2007a; Croton et al., 2007). Although these two effects share the words

assembly bias, they refer to different issues,

• Halo assembly bias refers to differences in the clustering of dark matter halos at a fixed

halo mass. These differences depend on the secondary halo properties, which normally

correlate with the formation history of the halo, albeit with some scatter.

• Galaxy assembly bias refers to differences in the number of galaxies within dark matter

halos at a fixed halo mass, which in turn may depend on secondary halo properties.

The effect of halo assembly bias has been observed in simulations (Gao et al., 2005a;

Gao & White, 2007a; Paranjape et al., 2018), and significant evidence has also recently been

found through observations (Miyatake et al., 2016). Regarding galaxy assembly bias, studies

of both semi-analytical models of galaxy formation and full hydrodynamical simulations have

found evidence that the mean number of galaxies depends on secondary halo properties other

than mass (Zhu et al., 2006; Zehavi et al., 2019; Yuan et al., 2022b).

In Figure 1.3, we show a comprehensive summary of the modelling techniques used to

describe the halo-galaxy connection. In this section, we have only discussed the two ends

of the spectrum of physical and empirical models, but a complete review can be found in

(Wechsler & Tinker, 2018).
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Figure 1.3: This figure, taken from (Wechsler & Tinker, 2018), shows different approaches to
modelling the galaxy-halo connection ranging from physical models based on hydrodynamical
simulations to empirical models such as Halo Occupation.

Summing up, we do not have access to the comoving three-dimensional map of the dark

matter field density but instead to the angular positions of biased tracers obtained through

a particular cosmological model, and their redshift space line of sight distance to us. These

distortions actually increase the information content of 3-D galaxy maps by also introducing

information about the velocity field. The challenge is to model all of these accurately to

obtain precise and unbiased constraints on the cosmological model.

1.3 Cosmological tensions: state-of-the-art constraints

We say that the parameters inferred from observations are in tension with each other if we

find discrepant results even when accounting for the uncertainties of the measurement. The

question that these discrepancies currently pose is: are tensions a result of systematic errors in

the measurements, did we get statistically unlucky, or are they going to lead to the discovery

of new physics?

Most often, the quoted σ deviations used to determine the significance of the tension mea-

sure the difference between the maximum marginalised posterior values of the cosmological

parameters in units of the uncertainty, which is usually defined as the posterior errors of the
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experiments added in quadrature. This definition allows us to attach a probability estimate

to the tension. Assuming a Gaussian distribution, a 2σ tension would translate into a 4.6%

probability of exceeding the observed shift.

The two parameters responsible for most of the inconsistencies are H0 and σ8, when

comparing their inferred values from observations of the early- and late-time universe. The

σ8 tension is often quoted in terms of the parameter S8 since the two are related by S8 =

σ8
√

Ωm/0.3, and S8 determines the amplitude of the weak lensing signal. It is also commonly

referred to as the fσ8 tension, as it is the combination of f and σ8 that determines the

amplitude of redshift space distortion measurements. Parameters f and S8 are also closely

related, due to the relationship between the growth rate and the density of matter, f ≈

[Ωm(z)]0.55, in General Relativity.

On the one hand, we find a 5σ discrepancy between the early-time CMB measurements

led by the Planck Collaboration (Planck Collaboration et al., 2020a) (extrapolated to the

present by assuming a ΛCDM model), and the larger late-time value of H0 found by the

SH0ES Collaboration (Riess et al., 2021). See Shah et al. (2021) for a review of the so-called

H0 tension.

On the other hand, measurements on the clustering of matter find discrepant values at

a level of about 3σ for the parameters fσ8 − S8, where late-time Universe measurements,

through weak gravitational lensing and galaxy clustering (e.g. Joudaki et al. (2017); Abbott

et al. (2022); Philcox & Ivanov (2022); Heymans et al. (2021)), find that the strength of

matter clustering is lower compared to the values inferred from the CMB.

In Figure 1.4 we show different measurements of the combination of parameters fσ8 as

a function of the redshift. The purple line shows the result of extrapolating Planck inferred

values to later times by assuming that ΛCDM is correct. The time evolution of fσ8(z) is

rather featureless, which means that its value is close to a constant over recent cosmic history,

when we can get precise estimates from the data.

Figure 1.4 shows how several values inferred by clustering at late times are in 2 − 3σ

tension with Planck. We have highlighted in broader lines the methods that make use of

small-scale clustering (s < 30 h−1Mpc) to extract their constraints. These achieve the most

stringent constraints on fσ8, compared to analyses restricted to large-scale clustering.

To determine whether the observed tensions are statistically significant, it is crucial to

reduce the estimated posterior errors in the late-time Universe measurements. This could

be done through increasing the statistical power of the experiments themselves, upgrading
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Figure 1.4: Marginalised constraints of the growth rate fσ8(z) obtained from the clustering of
the Large Scale Structure, compared to those inferred by Planck. We have highlighted analyses
that utilise small scale information with wider lines. This figure has been adapted from (Yuan
et al., 2022a).

the instruments, and surveying larger patches of the sky, through the cross-correlations of

different probes, or through the opening of new windows such as gravitational waves (Palmese

et al., 2019) or the 21 cm line (Pritchard & Loeb, 2012). Given that future surveys will sample

significant proportions of the observable universe, the limit on how much we can learn from

observations is now mostly determined by our statistical methods and our inability to extract

all the information contained in the data, rather than being limited by the data itself.

In this Thesis, we focus on investigating ways in which we can increase our precision in

estimating the growth rate of structure by looking into: extracting cosmological informa-

tion from the nonlinear regime inaccessible to perturbation theory techniques and studying

alternative summary statistics to the two-point correlation function that aim at extracting

information from the non-Gaussianity of the density field.

But before we present our results, we will introduce the basic concepts of Bayesian in-

ference and machine learning in Chapter 2. In Chapters 3 and 4, we will show how we can

use N-body simulations to model the effects that non-linear gravitational evolution have on

the two-point correlation function and the inferred values of the cosmological parameters. In

Chapter 5, we will determine the information content of environment dependent clustering

and show how it could be used to constrain the standard model of cosmology. In Chap-

ter 6, we will show the application of the same computational techniques used throughout

the Thesis to other scientific domains, namely, medical imaging and epidemiology. Finally,

in Chapter 7, we summarise the results of this Thesis and discuss future research avenues.



Chapter 2

Contrasting data with theory:

statistics and Machine Learning

If you need statistics, you did the wrong

experiment

Attributed to Ernest Rutherford

Ernest Rutherford lived between 1871 and 1937. At that time, the scientific method

began with a research question, triggered by an observation that could not be explained in

the prevailing scientific paradigm, and the formulation of a hypothesis that might be able

to explain it. The scientist would then work on devising a controlled experiment that could

falsify or confirm the hypothesis. Controlling the experiment meant being able to vary the

theory’s input variable X, and observing the theory’s output variable, Y , with the lowest

error possible.

Currently, we have access to vast amounts of data, which most of the time we cannot

control. Although this is true in many areas of science, this issue is, in fact, at the very

core of observational cosmology. We, as observers, are confined to a passive role, since it is

impossible for us to modify the dynamics of the Universe in which we live. We can only test

a hypothesis that can be falsified with experiments that effectively have already been carried

out by the one Universe that we have at our disposal.

Uncontrolled experiments carry uncertainty not only from the instruments used to per-

form measurements, that introduces noise or unknown selection effects, but also from the

inherent stochastic nature of the data generation process. The concept of uncertainty also

22
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expresses our capability to determine a given parameter from an observation, limited by the

information about that parameter that the observable contains, or its uncertain relation to

other parameters that are used to describe the data. In these cases, Bayesian statistics is

used as a tool to confront theories with data in the presence of uncertainty, and to distinguish

robust discoveries from statistical flukes.

Furthermore, in all areas of science, we have seen how the scientific method has changed

from being purely driven by hypothesis to becoming increasingly driven by data (Hey et al.,

2009; Succi & Coveney, 2019). This change has been triggered not only by the collection of

huge amounts of data, but also by our ability to model complex systems through computa-

tional simulations and by advances in machine learning that allow us to efficiently extract

patterns and insights from the data (Voit, 2019; Kitano, 2021; Lavin et al., 2021).

While the advent of the data-driven scientific method has generated controversy in various

areas of science, cosmology can be argued to be data-driven since the beginning. Dark matter

and the cosmological constant are phenomenological components of the overall model that

lack an underpinning theory that explains them, and have only been introduced to explain

observed datasets. This has been complemented by testing different hypotheses about their

nature. It is this back and forth of theory and data that pushes cosmology to its most

fascinating discoveries.

In this chapter, we will introduce the basic notions of Bayesian inference and machine

learning that will be applied later in this Thesis to problems in cosmology (see Chapters 4

and 5). In the first section, we will introduce the basics of cosmological data analysis through

Bayesian inference, whereas in the second part of this chapter we present an introduction to

machine learning that will be used throughout this Thesis to accelerate Bayesian inference.

2.1 Solving inverse problems: Bayesian parameter inference

Probability, in a Bayesian context, describes a state of knowledge. It expresses a degree of

belief in a proposition based on the available knowledge. In this section, we will show how

we can infer the parameters of a given theory and their uncertainties from observed data.

An elementary rule of Bayesian probability defines the basis of parameter inference. The

joint probability that two events A and B take place, P (A,B), can be expressed as

P (A,B) = P (A|B)P (B), (2.1.1)



2.1. Solving inverse problems: Bayesian parameter inference 24

where P (A|B) is the conditional probability that the event A will take place given that B

has taken place. Given that P (B,A) = P (A,B), we can write

P (A|B) = P (B|A)P (A)
P (B) , (2.1.2)

which is known as Bayes’ theorem. This seemingly elementary result actually allows us to

go from theoretical forward models A(B) of a given observable, A, to inference of the theory

parameters, B. This can be seen once we replace the event A by the parameters of a theory,

θθθ, and the event B by the observed data, ddd,

P (θθθ|ddd) = P (ddd|θθθ)P (θθθ)
P (ddd) . (2.1.3)

The different components of this equation are known as the

• Posterior probability, P (θθθ|ddd), that describes the degree of belief in the value θθθ after

seeing the data ddd. It represents the inferred value of θθθ and its estimated uncertainty.

• Likelihood function, P (ddd|θθθ), which determines the probability of the observed data

given a model M and its parameters θθθ. Note that it is called a function and not a

probability, since it is normalised only on the data and not on the parameters.

• Prior probability, P (θθθ), defining the degree of belief in the value of θθθ before seeing

the data ddd. It expresses our uncertainty in θθθ prior to the analysis.

• Evidence, P (ddd), the normalisation constant that ensures that the posterior is normal-

ized to unity. It can be thought of as the probability of the data given a model M,

integrated over all possible values of the model parameters θθθ.

The outcome of Bayesian inference is a full probability distribution over the parameters

of the theory, the posterior, as opposed to a point estimate such as the value of θθθ that

maximises the likelihood. Since the number of parameters, θθθ, may be very large, representing

the complete distribution is not always easy. Summaries of the posterior density (such as the

mean or standard deviation) for each of the parameters after marginalising over all others

are normally used to represent the constraints on the parameters.

Another useful summary is that of two-dimensional subsets of parameter combinations. In

cosmology, untangling different effects can be very difficult, and degeneracies among different

parameters are very common. For example, clustering of a universe with a high growth rate of

structure, f , and a low amplitude of perturbations, σ8, can resemble clustering of a different
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universe in which σ8 is high, but the growth of structure is low. Untangling the growth

rate of structure over time from the amplitude of perturbations is therefore very difficult

from clustering measurements alone. The two-dimensional representation of the posterior

distribution allows us to study such degeneracies between parameters.

2.1.1 Fisher Information

Alternatively, instead of estimating the full posterior distribution of the parameters given

the data, we are also interested in estimating the amount of information a sample of the

observable carries about the set of unknown parameters. In cosmology, we are often interested

in estimating this information from a set of N-body simulations, to quantify the contribution

of non-linear scales (Villaescusa-Navarro et al., 2020).

This has become especially relevant for comparing the information content of summary

statistics beyond two-point correlation functions. Another use case is that of forecasts. Before

the data has been collected, we are often interested in forecasting the constraints that a survey

will achieve given its specifications. For both applications, cosmologists have used the Fisher

matrix formalism (Fisher, 1935) extensively.

The Fisher information is defined as

Fij(θ) =
〈(

∂

∂θi
log L(s|θ)

)(
∂

∂θj
log L(s|θ)

)〉
s

, (2.1.4)

where L(s|θ) is the likelihood of the data vector given the parameters θθθ. The expectation is

taken over the data, as it is itself a random variable. The derivative of the likelihood with

respect to the parameters is also known as the score function s(θ) = ∂
∂θ log L(d|θ), which is

zero at the maximum likelihood point. Eq. (2.1.4) can be interpreted as the variance of the

score function, since the expected value of the score function is zero. A random variable that

contains high Fisher information implies that the absolute value of the score is often high.

The Fisher information is used to quantify the effect that small changes in θ have on the

likelihood. If small changes in θ result in substantial variations in the likelihood, then we will

be able to set tight constraints on the parameters and we say that the information content

of d in θ is large.

When the likelihood can be differentiated twice, it can be shown (Lehmann & Casella,

1998) that the variance of the score is also related to the second derivative, and therefore to
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the curvature, of the likelihood function

Fij(θ) = −
〈

∂2

∂θi∂θj
log L(s|θ)

〉
, (2.1.5)

implying that a more peaked likelihood contains more information on the parameters than a

flatter one.

The Cramér–Rao (Cramér, 1946; Rao, 1945) bound states that the diagonal elements of

the inverse of the Fisher matrix are a lower bound on the variance of any unbiased estimator

of θθθ

σθi
≥
√

(F−1)i,i . (2.1.6)

Therefore, we can use the Fisher matrix to estimate the expected error on the cosmological

parameters, given the likelihood of the data. In Chapter 5, we will show an application of the

Fisher formalism to estimate the information content of environment dependent clustering.

Although a Fisher analysis can be very useful in estimating the information content of

different summary statistics, most of the time we are interested in the full posterior distribu-

tion over the parameters that allows us to obtain a precise estimate of the uncertainties on

the parameters. In the following section, we will present the challenges one faces when trying

to estimate posterior densities and explain how these can be overcome to perform parameter

inference through Markov Chain Monte Carlo (MCMC) algorithms.

2.1.2 Estimating the posterior: The curse of dimensionality

Calculating the posterior through (2.1.3) is in practice intractable, since it involves a high-

dimensional integral (with the dimension given by the parameter space) in the evidence

P (ddd) =
∫
P (ddd|θθθ)P (θθθ)dθθθ. (2.1.7)

When closed-form expressions for the evidence are lacking, we need to resort to numerical

integration. However, in high dimensions, the number of grid points used to calculate the

integral grows exponentially with the number of variables. This is known as the curse of

dimensionality.

Even if P (ddd) is known, turning it into something useful still requires computations in a

high-dimensional space. For example, finding the expected values for θθθ or their uncertainties

would involve a numerical estimation of high-dimensional integrals.
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The most common approach to avoid the curse of dimensionality consists of sampling the

posterior directly, instead of computing the probability density function (PDF). An addi-

tional consequence of the curse of dimensionality is that most of the posterior mass becomes

concentrated on a small proportion of the space in high dimensions. Therefore, we need

methods that can exploit the structure of the posterior so that they focus on sampling the

small proportion of the parameter space that has a significant posterior mass.

Here, we will present the most commonly used method used to sample the posterior

distributions: Monte Carlo Markov Chain.

MCMC: Sampling the posterior

Markov chain Monte Carlo methods are a class of algorithms that are used to sample a prob-

ability distribution in a high-dimensional space. They allow us to characterise a distribution

through random sampling.

Monte Carlo methods are general techniques that use random sampling to estimate a

numerical result. In the context of Bayesian inference, we will use them to estimate a posterior

distribution from a collection of N independent and identically distributed samples of the

posterior, θn,

p(θ|d) ≈ 1
N

N∑
n=1

δθn(θ), (2.1.8)

or estimate the expected value of a function of parameters, f(θ),

Ep(θ|d) [f(θ)] =
∫
f(θ)p(θ|d)dθ ≈ 1

N

N∑
n=1

f(θn). (2.1.9)

We will use Eq. (2.1.9) to compute summaries of the posterior, such as its mean or variance.

Therefore, we are only short of a way to obtain a set of independent samples from the posterior

distribution, now referred to as π(θ), through its unnormalised version πu(θ) = Zπ(θ), where

Z is the unknown normalisation constant in Eq. (2.1.7). In what follows, we explain how

Markov chains and the Metropolis-Hastings algorithm (Hastings, 1970) can be used to obtain

posterior samples, bypassing the need to estimate the evidence.

A Markov chain is defined as a chain of random samples "without memory", in which

the probability of drawing the next sample, θi+1, depends only on the value of the previous

sample, θi, and not on the chain of past samples. This is also known as the Markov property.

The Markov chain is then fully characterised by the probability of sampling its first

element, P (θ0), and the transition probability from one sample to another T (θi+1|θi). If
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we were to take samples that were widespread throughout the chain, we would get nearly

independent distributed samples. The goal of MCMC algorithms is to generate a Markov

chain that produces samples from the target distribution π(θ).

This is where the Metropolis-Hastings algorithm comes in. It is designed to ensure that

the samples of the Markov chain are drawn from the target distribution. It starts from a

random sample, θ0, and uses the so-called transition kernel or proposal distribution, Q(y|θi),

to draw a candidate sample from its previous one. This proposed sample y is accepted with

probability A(y|θi). If accepted, it enters the Markov chain θi+1 = y. If the sample is

rejected, then xi+1 = xi and the previous step is repeated. The transition probability that

characterises the Markov chain is given by T (θi+1|θi) = Q(θi+1|θi)A(θi+1|θi).

The acceptance probability is defined as

A(x|y) = min
(

1, π(y)Q(x|y)
π(x)Q(y|x)

)
. (2.1.10)

It is designed to ensure that given equal transition probabilities between two points in the

parameter space, x and y, the sample y would be accepted only if it moves to a higher

probability region where the ratio of π(y)/π(x) is greater than unity. On the other hand, if

the ratio π(x)/π(y) is close to unity, the chain will not move to y if it is difficult to go back

to x. In this way, we ensure that the chain will not move far away from high-probability

states. Moving locally around regions of high posterior density is indeed the key to avoiding

the curse of dimensionality.

Importantly, Eq. (2.1.10) can be evaluated through the unnormalised posterior density

πu, since π appears only as a ratio.

A Monte Carlo approach combined with the Metropolis-Hastings algorithm allows us

to estimate the posterior density if we can evaluate the numerator of Eq. (2.1.3). It uses

local movements around points of high posterior density to avoid the curse of dimensionality.

However, this same feature also means that it is very difficult to sample multi-modal posteriors

with Metropolis-Hastings. Moreover, the sequential nature of the algorithm implies that it is

difficult to parallelise. These two reasons motivated the development of alternative sampling

algorithms, such as nested sampling (Skilling, 2006).

However, regardless of the sampling algorithm, obtaining enough samples such that the

posterior estimate converges might require a prohibitively large number of samples. This

is especially true when the theoretical model needed to estimate the likelihood is slow to

evaluate. In cosmology, obtaining fully non-linear predictions requires the use of N-body
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simulations. However, these are too slow to allow Bayesian inference of the cosmological

parameters. For this reason, we need to develop faster surrogate models that allow us to

estimate the cosmological parameters and their uncertainty from galaxy surveys. In the next

section, we will introduce a set of machine learning algorithms that can be used to create the

surrogate model and hence accelerate Bayesian inference.

2.2 A crash course in machine learning for avid cosmologists

A learning algorithm is described as one that can learn from data, which means that it can

improve its performance on a given task through experience, which most of the time we equate

to providing the algorithm with data. We can turn a learning problem into an optimisation

one by defining a loss function that quantitatively estimates the algorithm’s performance at

solving the given task. In this context, learning is equivalent to minimising a loss function.

The challenge for machine learning algorithms is generalising to new data, i.e. performing

well on new inputs other than those it learnt from. When training the model, we optimise

the loss function in a training set. But our goal is to minimise the generalisation error (which

will be denoted as the test error from now on). For this purpose, a fraction of the dataset,

the test set, has to be left out of the optimisation process assuming that both the training

and the test set are independent of each other and that they are identically distributed.

Therefore, learning consists of making the training error small and reducing the difference

between the training error and the test error as much as possible. If we fail to lower the

training error, we say that the model is underfitted. However, if the difference in training

and test error is too large, the model is overfitting. Whereas the first issue can be overcome

by modifying the model so that it is more flexible and can fit a wider variety of functions,

this might also enable the model to memorise the training set and, therefore, increase the

test error.

In the following section, we will introduce the most basic neural network algorithm, mul-

tilayer perceptrons, which serve as a building block for more complex models.

2.2.1 Multilayer perceptrons

Multilayer perceptrons (MLPs) or feedforward neural networks, approximate a function f

such that

y = f(x|θ), (2.2.1)
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where x represents the dataset, y the desired outputs, and θ the free parameters of the

network, also known as trainable parameters. The optimization problem is solved by finding

the set of θ values that minimize the loss function.

Neural networks emerge when we chain several of these functions so that

y = f (n)(. . . (f (2)(f (1)(x|θ1)|θ2)|θn). (2.2.2)

Each level of the chain is called a layer in the neural network.

In the remainder of this section, we focus on i) How do we define the functions f (n) such

that they are flexible enough to reproduce the dependencies observed in our dataset? ii) How

do we find the set of optimal parameters θ given a function f and a performance measure?

The perceptron

Let us begin with the first question. The simplest unit of a neural network, known as the

perceptron, applies a non-linear function to a weighted combination of the inputs

yi = ϕ

∑
j

wjixj + bi

 , (2.2.3)

where ϕ is a non-linear function applied element-wise, wji forms the weight matrix of pa-

rameters that we want to optimize, and bi represents the bias terms which allow for shifts in

the input data and are also trainable. The non-linear function is also called the activation

and it is the element of the neural network that allows it to describe the non-linear relations

between inputs and outputs.

Among the most commonly used activation functions is the rectified linear unit (Agarap,

2018), also known as ReLU

f(x) = max(0, x), (2.2.4)

where x is the input to a layer in the neural network.

Sometimes, however, applying (2.2.3) recursively is not the best solution for a problem.

The only assumption we have made regarding the function’s behaviour is that it will return

a smooth interpolation over the inputs. In other cases, such as image data, we might also

want to impose constraints on the space of learnable functions. For instance, one might want

to learn a translation equivariant function for detecting an object in images such that if the

object moves throughout the image, the network produces the same output at a different
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Figure 2.1: Depiction of a perceptron, the basic unit of a neural network that takes a set of
inputs, x and maps them to a set of outputs y through a non-linear transformation shown in
Eq. (2.2.3). The free parameters of the perceptron that are fitted to the data are the weights wij

and the biases bi.

position. An example of an architecture that is equivariant to translation is a convolutional

neural network (LeCun et al., 2015). Recently, there have been efforts to design architectures

that are equivariant (or invariant) to any given group action. For a review of the topic, see

Bronstein et al. (2021). Given the importance of symmetries in physics, progress in this area

will be fundamental in the development of machine learning methods that are capable of

scientific discovery.

Learning as an optimisation problem

Finally, we focus on how to find the set of parameters, θ, that produce the best performance

for the task at hand, measured by a scalar loss function, L(x, y|θ). The nonlinearities in-

troduced in f make the loss function non-convex, meaning that it will have multiple local

minima as opposed to one local, and thus global, minimum. Non-convex optimization is still

an unsolved problem, and currently iterative methods only aim at driving the loss function

to a low value, rather than finding its global minimum.

Most iterative learning algorithms for non-convex loss functions are gradient based. Given

that the gradient of the loss function gives the direction in which the loss increases the

fastest, if the set of parameters θ is modified in the direction opposite to the gradients of the

loss function with respect to the parameters, it will lead to the largest decrease in the loss

function at that point in the parameter space. This algorithm is known as gradient descent

and proposes a new value of the neural network parameters

θ′ = θ − ϵ∇θL(x, y|θ), (2.2.5)
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where ϵ determines the step size and is known as the learning rate. Optimization algorithms

that only use the gradient are said to be of the first order.

2.2.2 Machine learning for cosmology

The era of big data in cosmology not only implies that we have to analyse an increasing

number of datasets, and possibly their cross-correlations, but also that we are dealing with

increasingly complex data that may require similarly complex theoretical methods to extract

the relevant information needed to constrain the underlying physical models. Cosmology is

now at a new phase in its development, where progress is not hindered by the size of available

datasets but instead by our inability to make the most of the data that we have with current

statistical techniques.

As stated in Section 1.2.1, N-body and hydrodynamical simulations will be necessary to

exhaust the information content of current and ongoing surveys, and how to leverage them

to learn about the composition of the universe is going to be an exciting area of development

over the next few years.

For these reasons, there has recently been an increase in machine learning (ML) applica-

tions in the area of cosmology. We can generally categorize these into three different groups,

based on their goals,

1. Optimise data acquisition and processing. These are ML models that either guide

resource allocation of instruments such as telescopes, or process the observed data to

improve its science return. See Cranmer et al. (2021) for an example of the first kind,

where the authors trained a model to select which galaxies should be observed in a

survey to optimise the constraints on cosmological parameters. Some examples of the

second case can be found in the area of gravitational lensing. For example, Jeffrey et al.

(2020) used ML to generate mass maps from weak lensing measurements, and Lin et al.

(2021) did so to accurately detect strong gravitational lenses in large datasets.

2. Accelerate predictions. Given that N-body simulations are computationally very ex-

pensive, these cannot be included in a fully Bayesian data analysis pipeline. For exam-

ple, constraining a 7 dimensional space of cosmology and galaxy occupation parameters

with the two-point correlation function already requires O(104) likelihood evaluations

at different input parameter values. Therefore, different techniques have been proposed
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for emulating the outputs of N-body simulations, which range from emulating the den-

sity field (Rodriguez et al., 2018; He et al., 2019) to its summary statistics (Heitmann

et al., 2013; Zhai et al., 2019a; Nishimichi et al., 2019a), or painting baryonic physics

onto dark matter only simulations (Agarwal et al., 2018; Tröster et al., 2019).

3. Maximise information gain. Although we cannot quantify how much information is

contained in a given observable (such as the set of tracer galaxy positions or weak lensing

maps), different summary statistics have been shown to constrain the cosmological

parameters to a better accuracy than two point functions. Recently, researchers have

used ML models to learn a summary statistic for a particular dataset (Charnock et al.,

2018; Fluri et al., 2021) that maximises its information content, or to directly constrain

the cosmological parameters at the field level with neural networks (e.g. Dai & Seljak,

2022; Villaescusa-Navarro et al., 2021). Most applications of the latter type have been

developed in the area of weak lensing (e.g. Gupta et al., 2018; Fluri et al., 2018), where

deep learning models have been used to analyse real data and produce constraints on

the cosmological parameters that improve those from the two-point function alone by

about 30% (Fluri et al., 2019).

Although ML applications continue to grow in cosmology and continue to show the po-

tential to revolutionise the field, only a handful of them have managed to transition from

proof-of-concept applications using N-body simulations to generating insights from observa-

tions. This leap is particularly hard due to our inability to produce complete data models.

For instance, in the area of galaxy clustering, we know that our knowledge of galaxy for-

mation is incomplete, but we do not know what the impact of model specification could be

when applying a model trained on a simulation to a real dataset. Developing robust models

capable of producing calibrated uncertainties will be the next challenge of ML for cosmology.

Moreover, although improving our precision in estimating cosmological parameters is

valuable to measure the consistency among different datasets and inform theoretical devel-

opments, we also want to understand how our models differ from the data. These differences

may come from approximations, missing observational effects in our simulations, or, more

interestingly, from unknown physics. So far, little work has been done in the direction of

comparing simulations and data through interpretable models that could assist in the discov-

ery of new physics in cosmology.

Note that interpretability is an ill-defined concept, and work will need to be done to

describe its meaning within cosmology. For example, past research on interpretability and
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cosmology (Ntampaka & Vikhlinin, 2022) has focused on interrogating deep learning models

to assess whether they would introduce biases when compared to data, and not so much

on drawing comparisons between data and simulations. This definition of interpretability

would, for instance, not enhance the model’s capabilities for scientific discovery. Another line

of research related to interpretability for the sciences is that of symbolic regression, developed

by Udrescu et al. (2020) and Cranmer et al. (2020), which has, for instance, been applied to

rediscover the analytical expression for Newton’s gravity by learning the dynamics of solar

system objects (Lemos et al., 2022).

In this Thesis, we will show an application of machine learning of the second kind listed

above (i.e. accelerating predictions). In Chapter 4, we will use neural networks to learn

the non-linear mapping between the cosmological parameters and summary statistics of dark

matter halo properties, to emulate the outputs of N-body simulations at a speed that allows

us to derive the posterior distributions of cosmological parameters with Bayesian inference.



Chapter 3

The real to redshift mapping on

small scales

In Section 1.2.1, we show that much of the information that we obtain from 3-D galaxy maps

comes from the distorted way in which we observe the universe. In this chapter, we will focus

on one of these distortion effects, redshift space distortions, and in particular, on modelling

the mapping from the real space two-point correlation function to its redshift space analogue.

The so-called redshift space correlation function, ξS(s⊥, s∥), is a combination of both

real space clustering, ξR(r), and the probability of finding a pair of galaxies with a given

relative velocity along the line of sight, also denoted as pairwise velocity distribution, as we

show in Section 3.1 using the Streaming Model of RSD, see e.g. (Fisher, 1995a; Scoccimarro,

2004). Since clustering in redshift space is affected by relative peculiar motions, it contains

information about the growth of structure.

State-of-the-art constraints on the growth factor are found measuring the two-point cor-

relation function in redshift space (e.g., Satpathy et al. 2017 for galaxies from BOSS, Zarrouk

et al. 2018 for eBOSS quasars), which have reported growth factors consistent with general

relativity. The authors in Satpathy et al. (2017), used measurements of the two-point cor-

relation function down to separations of 25h−1Mpc, beyond which theoretical predictions

introduce larger systematic errors than the statistical errors of the measurement itself, thus

biasing the estimate of the growth factor. For future surveys, the expected statistical errors

will be significantly smaller (e.g., Huterer et al. 2015), and so we will need more accurate

theoretical predictions down to small scales than those used in the analysis of current surveys,

to improve constraints on the growth rate, and to avoid catastrophic interpretation errors

(Jennings et al., 2011).

35
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As such, increasing the accuracy of redshift space correlation function models would

improve the accuracy of our growth rate estimates. The main hurdle that has to be overcome

is the non-linear evolution of the density and velocity fields produced by non-linearities in

the continuity and Euler equations that drive gravitational collapse. As we shall see, this is

particularly relevant for describing the mapping of pairs from real to redshift space, which is

necessary to model the two-point correlation function. The development of this mapping is

the focus here.

The goal of this study is threefold. Firstly, we introduce an extension to the simplest

Streaming Model, that assumes a Gaussian distribution of relative motions, that improves

the accuracy of theoretical predictions for the clustering multipoles. Secondly, we show a

comparison of state-of-the-art models for the streaming model ingredients with high resolution

N-body simulations. Finally, we analyse the effect of the different velocity moments on the

clustering multipoles and assess how accurate their theoretical predictions need to be for an

RSD model that is at least as accurate as the measurements from future surveys.

3.1 The streaming model of redshift space distortions

The streaming model describes the mapping from the real-space two-point correlation func-

tion to the observed anisotropic two-point correlation function in redshift space. Since objects

viewed in redshift space are the same as those in real space, but have been moved to different

positions, we can relate their density contrasts by imposing mass conservation

(
1 + δS(s)

)
d3s =

(
1 + δR(r)

)
d3r, (3.1.1)

where superscript S denotes redshift space and R real space. This expression can be fur-

ther manipulated (Scoccimarro, 2004) to obtain a relation between real and redshift space

clustering,

1 + ξS(s⊥, s∥) =
∫ ∞

−∞
dr∥

(
1 + ξR(r)

)
P(v∥ = s∥ − r∥|r), (3.1.2)

where r2 = r2
∥ +r2

⊥, s⊥ = r⊥, P(v∥|r) is the pairwise velocity distribution, and v∥ = v∥,1 −v∥,2,

is the line-of-sight relative velocity of the pair of tracers. In our convention, v∥ is defined

as negative (positive) if the pairs are approaching (receding from) each other. Eq. 3.1.2 is

known as the streaming model (Fisher, 1995a), which simply states that the probability of

finding a pair of objects at a distance s in redshift space is given by the sum over all possible

combinations of real space distances, r, and velocities, v, which would make us infer the



3.1. The streaming model of redshift space distortions 37

redshift space position, s. While the streaming model is one way to move forward, fully

Eulerian perturbation theory treatments based on the same expression can also accurately

describe redshift space clustering (Taruya et al., 2010) on linear or quasi-linear scales.

The plus one terms in Eq. (3.1.2) ensure that given a universe with randomly placed

galaxies, if the pairwise velocity distribution is dependent on the pair separation, then we

would still observe clustering in redshift space induced by the coherent velocity field. However,

if the pairwise velocity distribution does not depend on pair separation, the plus one terms

on both sides in Eq. (3.1.2) cancel out.

Note that Eq. (3.1.2) is exact, and the only approximation we have made so far is the

plane-parallel approximation to select a particular line of sight. Nonetheless, the apparent

simplicity of the streaming model may be deceptive, as the complexity of the gravitational

dynamics is hidden in the shape of P(v∥|r) and its dependence on pair separation. Broadly

speaking, on small scales within dark matter haloes, virial motions produce a large velocity

dispersion that reduces the amount of clustering along the line of sight; the size of this effect

increases with halo mass. On larger scales, galaxies in-falling into larger structures shift the

mean velocity to negative values, producing a change in the opposite sense to those on small

scales, which increases the inferred clustering along the line of sight (Kaiser, 1987).

It has been known for a long time (Scoccimarro, 2004) that this scenario is further com-

plicated by the non-Gaussian nature of the pairwise velocity distribution, which is evident

from its nonzero skewness and kurtosis. There is no Gaussian limit for pairwise velocities

on large scales, since velocity differences cancel out long-range contributions and leave only

the local, nonlinear component of the velocity at the two different locations. Here, we focus

on extending the streaming model to include these non-Gaussian features, as predicted by

N-body simulations.

Throughout, we will use the relation between the full three-dimensional pairwise velocity

and its line-of-sight projection. The line-of-sight pairwise velocity distribution can be ob-

tained by integrating the full distribution P(vr, vt|r), where the radial velocity, vr, and the

transverse velocity, vt, are defined as the velocity components parallel and transverse to the

pair separation vector, respectively. Due to statistical isotropy, we only need to select one

component of the two-dimensional transverse velocity. For ease of computation, we chose the

one that will contribute to the line-of-sight projection, i.e., the one in the plane spanned by

the galaxy pair and the observer; see Fig. 5.1. Thus,

v∥ = vr cos θ + vt sin θ, (3.1.3)
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Figure 3.1: Decomposition of the three dimensional distance vector into a radial component
along the pair distance, r̂, a normal component, n̂, which is perpendicular to both the line of
sight direction and the pair separation vector, and a transverse component, t̂, which completes
the basis formed by the radial and normal vectors. After projecting the distance vector onto the
line-of-sight, only the radial and transverse component will give a non-zero contribution.

where θ is the angle between the pair separation vector and the line of sight, θ = tan−1
(
r⊥/r∥

)
.

Therefore,

P(v∥|r⊥, r∥) =
∫ dvr

sin θ P
(
vr, vt =

v∥ − vr cos θ
sin θ

∣∣∣∣r) . (3.1.4)

The relations between the moments of the two distributions are given by

cn(r⊥, r∥) =
n∑

k=0

(
n

k

)
µk(1 − µ2)

n−k
2 ck,n−k(r), (3.1.5)

where cn denotes the n-th central moment of the line of sight projected distribution, P(v∥|r⊥, r∥),

and ck,n−k the k-th radial moment, (n−k)-th transverse moment of P(vr, vt|r), and µ = cos θ.

The n-th moment about the origin is denoted as mn.

3.1.1 The Gaussian Streaming Model

The commonly used model for the redshift space correlation function is known as the Gaussian

streaming model (GSM; Fisher, 1995a; Reid & White, 2011). The radial and transverse

components of the pairwise velocity are assumed to be independently Gaussian distributed.

Therefore, the line-of-sight projection can be written as

PG(v∥|r) = 1√
2πσ2

12(r)
exp

−

(
v∥ − v12(r)

)2

2σ2
12(r)

 , (3.1.6)

where v12(r), denoted as m1(r) in our notation, and σ12(r), equivalent to
√
c2(r), are projec-

tions of the radial and transverse moments onto the line of sight, and are both dependent on

the pair separation vector.

As explained in the previous section, a Gaussian distribution does not accurately describe

the pairwise velocity distribution for an evolved matter distribution, even for large pair sep-
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arations. However, this simplified assumption gives an accurate description of the clustering

of dark matter haloes on scales larger than 30h−1Mpc (Reid & White, 2011; Wang et al.,

2014). Later on, we shall illustrate how the accuracy of this model stems from the inte-

gral in Eq. 3.1.2 over the pairwise velocity distribution, which on large scales only receives

contributions from the lowest-order pairwise velocity moments.

Nevertheless, an accurate model on smaller scales requires non-vanishing higher-order

moments, mainly the skewness and kurtosis. Different approaches have been taken towards

such a model in the literature. On the one hand Uhlemann et al. (2015) performed an Edge-

worth expansion around a Gaussian distribution to add skewness and found improvements

with respect to the Gaussian streaming model on scales smaller than 30h−1Mpc. We provide

a more in-depth discussion of this model in the following section. On the other hand, a

number of authors (e.g., Sheth, 1996; Tinker, 2007; Bianchi et al., 2015, 2016; Kuruvilla &

Porciani, 2018) have all used mixtures of normal or quasi-normal distributions to model a

skewed and heavy-tailed distribution. The first approach by Sheth (1996) modelled the one

halo pairwise velocity distribution using a Maxwellian distribution that is then weighted by

the Press-Schechter mass function. Tinker (2007) developed a similar approach using the halo

model (Cooray & Sheth, 2002), but assuming that, at fixed environmental density around

the halo pair, the pairwise velocity distribution of halos is Gaussian. The skewness is then

developed by weighting these Gaussian distributions with the probability of finding a given

density. The parameters of the model are calibrated using N-body simulations.

Further developments were introduced by Bianchi et al. (2015), who replaced the mixing

distribution described above by another Gaussian, which assumes that the mean and standard

deviations of the "local" Gaussian distributions are themselves jointly distributed according to

a bivariate Gaussian. This model, however, cannot generate distributions that are sufficiently

skewed to explain the halo pairwise velocity distribution. This limitation was later overcome

by performing an Edgeworth expansion on the local distributions, which added skewness to

the Gaussian distribution (Bianchi et al., 2016).

A more recent study by Kuruvilla & Porciani (2018) used a generalised hyperbolic dis-

tribution (GHD) to model the pairwise velocity distribution of N-body simulations. In this

case the relation between the parameters of the distribution and velocity moments as a func-

tion of pair separation is not given, and the model requires five free parameters with a two

dimensional dependency on the pair separation vector.
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3.1.2 The Edgeworth Streaming Model

The Edgeworth Streaming Model introduced by Uhlemann et al. (2015), is one of the simplest

extensions to the Gaussian Streaming Model. The authors used an Edgeworth expansion of

the velocity PDF to extend the validity of the Gaussian Streaming Model towards smaller

scales. The Edgeworth expansion is an asymptotic series expansion of a probability density

function, which implies that there is no guarantee of convergence when more terms are added

to the expansion. See Sellentin et al. (2017) for an interesting discussion on the Edgeworth

expansion and its applications to cosmology.

Expanding the line of sight velocity PDF around a Gaussian distribution one obtains, to

first order,

PE(v∥|r) = 1√
2πσ2

12(r)
exp

−

(
v∥ − v12(r)

)2

2σ2
12(r)


×
(

1 + Λ12
6σ3

12
H3

(
v∥ − v12

σ12

))
,

(3.1.7)

where Λ12 is the third order cumulant of the velocity PDF projected onto the line of sight

direction, and H3 the third order probabilists’ Hermite polynomial, H3(x) = x3 − 3x.

In the next section, we present a flexible model that we believe is simpler than the ones

mentioned above and achieves similar or better levels of accuracy.

3.1.3 The Skewed Student-t (ST) Streaming Model

A study of the cluster-galaxy cross correlation by Zu & Weinberg (2013) found that the skewed

Student-t distribution (ST; Azzalini & Capitanio, 2009) gives an accurate description of the

cluster-galaxy pairwise velocity statistics predicted by simulations. The main advantage of

using this distribution to model RSD is that its parameters can be written as functions of

the four lowest-order moments. Here we use the ST distribution to model the redshift-space

clustering of galaxy or halo pairs on all scales.

In recent years, there has been increasing interest in such flexible probability density

functions that can accommodate different degrees of skewness and kurtosis. More specifically,

a successful approach proposed by Azzalini & Capitanio (2009), found that a skewed, multi-

variate, distribution can be generated by combining a symmetric density function with a
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cumulative distribution function as follows

f(x) = 2 f0(x)G (w(x)) , x ∈ Rd, (3.1.8)

where f0(x) is a symmetric PDF defined in Rd, G is a one-dimensional cumulative distribution

function, whose derivative satisfies G′(x) = G
′(−x), and w is a real-valued odd function in

R.

Since we are interested in a distribution that displays both skewness and extended tails,

the symmetric function f0 can be chosen to be a Student’s t-distribution, hereafter referred

to as the t-distribution, which in one dimension is given by

f0(x) = t1(x− xc|w, ν) :=
Γ
(

ν+1
2

)
√
νπwΓ(ν

2 )

(
1 + 1

ν

(
x− xc

w

)2
)− ν+1

2

. (3.1.9)

The t-distribution is characterised by three parameters: the location xc, the shape parameter,

w, and the number of degrees of freedom, ν. The latter controls the decay of probability in

the tails, and therefore allows us to describe distributions with varying degrees of kurtosis.

The skewed multi-variate distribution which originates from the t-distribution by using

Eq. 3.1.8 is known as the skew-t distribution, hereafter ST. Its density function for a one

dimensional random variable, x, is,

fST(x|xc, w, α, ν) :=

2
w
t1(x− xc|1, ν)T1

α(x− xc)
w

(
ν + 1

ν +
(x−xc

w

)2
)1/2

; ν + 1

 , (3.1.10)

where t1 is the one dimensional t-distribution defined by Eq. 3.1.9, and T1 is the one dimen-

sional cumulative t-distribution with ν + 1 degrees of freedom. The ST distribution has an

extra skewness parameter, α, compared to the t-distribution.

The dependence of the distribution parameters on the pair separation vector, r, has been

omitted for clarity. The relation between these parameters and the four lowest order moments

of the ST distribution can be found in Appendix A.1.

3.2 Comparison with N-body simulations

In this section, we assess the performance of the different RSD models by comparing them

to a set of dark matter only ΛCDM simulations.
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3.2.1 Simulations

We use the Dark Quest (Nishimichi et al., 2019b) set of simulations, which consists of fifteen

independent realisations of the density fluctuations in a cosmological volume, adopting the

best-fitting cosmological parameters given by the Planck CMB data (Planck Collaboration

et al., 2016a)

{ωb, ωc,ΩDE, ln
(
1010As

)
, ns, wDE} =

{0.02225, 0.1198, 0.6844, 3.094, 0.9645,−1},
(3.2.1)

where ωb ≡ Ωbh
2, and ωc ≡ Ωch

2 are the physical density parameters of baryons and cold

dark matter, respectively, ΩDE = 1 − (ωb +ωc +ων)/h2 is the dark energy density parameter

(assuming a flat Universe and the neutrino density parameter, ων corresponding to the total

mass of 0.06eV for the three neutrino species), As and ns are the amplitude and tilt of the

primordial curvature power spectrum normalised at 0.05 Mpc−1, and ωDE is the equation of

state parameter of dark the energy.

The simulations follow the evolution of 20483 particles in a comoving box of size L =

2h−1Gpc, which translates into a particle mass of mp = 8.158 × 1010h−1M⊙, using the Tree-

Particle Mesh code gadget2 (Springel, 2005b). Halo catalogues were constructed using

the publicly available rockstar halo finder (Behroozi et al., 2013a). Here, we focus on

accurate predictions for massive central halos, with masses above 1013h−1M⊙, and leave the

predictions for galaxies to future work. In all figures below, we show the mean simulation

measurements over the fifteen independent realisations of the cosmological volume, with

errorbars representing one standard deviation of the mean measurements. All results are

shown for the z = 0 snapshots.

3.2.2 The ingredients of the streaming model

The streaming model, Eq. 3.1.2, takes as input both the pairwise velocity distribution and the

real space two-point correlation function. In this subsection we will show the measurements

of both ingredients from the simulations, together with their theoretical predictions for the

given cosmological parameters.

Using the halo catalogues from the simulations, we measure the pairwise velocity distri-

bution in bins of 0.5h−1Mpc size (note that the velocities are rescaled by H so that they have

the unit of length). As mentioned above, in our convention the pairwise velocity is defined
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as negative (positive) when the members of the pair are approaching (receding from) each

other. We show the measured pairwise distribution from the simulations, for a few selected

cases of (r⊥, r∥), in Fig. 3.2. The figure shows increasing r∥ values from left to right, and

increasing r⊥ from top to bottom.

The black dots in Fig. 3.2 show the measured pairwise velocity of dark matter haloes,

while the lines give the ST (red) and Gaussian (blue) distributions obtained by applying two

different methods to find the best-fit parameters, which will be described in Section 3.2.3.

It is evident that in all cases the Gaussian distributions are a poorer fit to the simulation

measurements than the ST distributions. In particular, by comparing the symbols with

the blue curves, we note that for all pair separations there is a significant kurtosis in the

simulation data which a Gaussian distribution fails to capture.

In the cases of r∥ = 5.25h−1Mpc and r⊥ = 0.75 or 5.25h−1Mpc, the pairwise velocity

distributions are also very strongly skewed towards negative v∥, which is because such close

halo pairs are more likely to be found in high-density regions where haloes approach each

other (v∥ < 0), than in void regions where haloes tend to move apart (v∥ > 0) . The skewness,

however, decreases for much larger r⊥ (e.g. 49.75h−1Mpc, the bottom panel of the central

column of Fig. 3.2) or r∥ (the right column of Fig. 3.2), because the probabilities of infalling

and receding halo pairs tend to be even out for large separations. On the other hand, the

left column of Fig. 3.2 shows that for very small r∥ (e.g., 0.75h−1Mpc), the skewness is small

again, which is because in this case the pair separation vector is nearly perpendicular to the

line of sight, and v∥ ≈ vt, meaning that v∥ has equal probability to be in any direction within

the plane perpendicular to the pair separation vector due to statistical isotropy, that is, equal

probability of v∥ > 0 and v∥ < 0.

In Fig. 3.3, we show the radial and transverse pairwise velocity distribution for the halos

at different pair separations. The two components are not independent. This figure shows

the same physical picture as Fig. 3.2. At small pair separations, but larger than halo size,

the radial component has a non-zero (negative) mean, produced by tracers infalling towards

larger objects. Given that the infall velocity is different in different environments (Tinker,

2007) and more pairs are likely to be found in high-density environments where members

of a pair tend to approach each other, the radial distribution is skewed towards negative

values (Juszkiewicz et al., 1998). Note that this would not be true for virial motions in high

density regions around halos, but we only consider the motion of halo centres here. At larger

pair separations, the radial skewness becomes smaller, but it still has heavy tails. Due to
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Figure 3.2: The pairwise line of sight velocity distribution for massive dark matter halos in the
simulation at z = 0, evaluated at different pair-separations. Columns show increasing r∥ sepa-
ration, whilst rows show increasing r⊥. The black dots show the mean measurements from the
N-body simulation and their standard deviation, whilst the solid (dashed) curves show the differ-
ent models found using the method of moments (maximum likelihood) estimate. The Gaussian
model is shown in blue, the Edgeworth expansion model is shown in green, and the ST model,
that includes skewness and kurtosis, is shown in red.
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statistical isotropy, the transverse component is symmetric and has zero mean, although it

also shows broader tails than a Gaussian distribution.

The moments of the different distributions are shown in Fig. 3.4, where the definition

of the moments is mass-weighted, since the velocity field is only measured where there are

tracers, by the number density of tracers at a given separation r = |r| = |x2 − x1|,

mi j = ⟨(1 + δ(x1))(1 + δ(x2))vi
rv

j
t ⟩

⟨(1 + δ(x1))(1 + δ(x2))⟩ , (3.2.2)

where i and j denote the order of the moments in the radial and transverse components

respectively. For instance, the radial mean is denoted as m10, the second order transverse

moment as m02, and the third order cross-correlation between the radial and the squared of

the transverse component as m12. The central moments are analogously defined by

ci j = ⟨(1 + δ(x1))(1 + δ(x2))(vr −m10)i(vt −m01)j⟩
⟨(1 + δ(x1))(1 + δ(x2))⟩ . (3.2.3)

Statistical isotropy in the transverse plane implies that only moments with even powers of

the transverse component are non-zero. That is c12 for the third order moment, and c22 for

the fourth.

Although it is not the objective of this chapter to develop the relations between the

cosmological parameters and the ingredients of the streaming model (the real-space two-point

correlation and the pairwise velocity moments), for completeness we show the predictions

from different methods as a summary of the recent progresses in perturbation theory. This

exercise will show what stage we have reached in our efforts to predict these quantities and

what still needs to be done. So far, only predictions for the first two moments of the velocity

field have been successfully obtained from perturbation theory:

• Linear perturbation theory – Fisher (1995a) shows that the mean pairwise velocity

in linear theory is determined by the correlation between the density and velocity

fields, ⟨δv⟩, due to the mass-weighting factors in Eq. 3.2.2. The variance, however,

is determined by the velocity-velocity coupling (Gorski, 1988). In the simplest flavour

of Eulerian perturbation theory, there are two free parameters: the linear bias and the

growth factor. Higher order corrections to the mean and the variance were computed in

Reid & White (2011) by expanding the continuity and Euler equations in powers of the

linear density field up to fourth order. They also used a local Lagrangian prescription

for the bias (Matsubara, 2008), which turned out to be very important to reproduce

the real space correlation function, since a local bias in Lagrangian space introduces a
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Figure 3.3: The mean joint probability distribution of the radial and transverse pairwise velocities
of dark matter halos measured in N-body simulations. The marginal distributions are shown on
the sides. At small pair separations, infall towards larger structures produces a large skewness
in the radial component, and the mean turns more negative. At large pair separations, the
distributions of the two components are symmetric but still show heavy tails.
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non-local bias in Eulerian space (Baldauf et al., 2012; Chan et al., 2012).

• Convolutional Lagrangian perturbation theory (CLPT) – Wang et al. (2014) extended

the formalism of Carlson et al. (2013), to include predictions for the lowest-order pair-

wise velocity moments. The Lagrangian approach formulates the problem in terms of

initial positions and displacement field, where the latter fully specifies the motion of

the cosmological fluid. Instead of expanding the fluid equations in terms of the linear

density field, the expansion is performed on the displacement field that gives the map-

ping between initial Lagrangian positions and final Eulerian positions. To describe the

Lagrangian bias functional, δh = F [δ], the authors include three free parameters, b1, b2,

and bs, which we fit to the real-space two-point correlation function. The first two of

these bias parameters, b1 and b2, are the first and second derivatives of the Lagrangian

bias function with respect to a long-wavelength density contrast, δL, whereas bs encodes

the dependence of the bias on a long-wavelength tidal tensor. The variance of the pair-

wise velocities is, however, not accurately reproduced by CLPT: a constant shift needs

to be added to describe the variance on linear scales. Interestingly, this constant offset

is the same for both the radial and transverse components, as one would expect from

the effect of virial motions. Including the growth factor, CLPT requires five parameters

to describe clustering in redshift space.

• Convolutional Lagrangian effective field theory (CLEFT) – Carrasco et al. (2012) de-

veloped an analytical effective field theory to capture the effects of very small scales

on large-scale observables. Vlah et al. (2016) used this idea, together with CLPT, to

predict the lowest-order velocity moments that enter the Gaussian streaming model.

They found that predictions for the mean pairwise velocity were greatly improved com-

pared to CLPT, especially the derivative, which ultimately controls the accuracy of the

redshift space quadrupole. Moreover, it was shown that in the context of effective field

theory, the constant shift in Wang et al. (2014) was identified as one of the effective

parameters to describe the effect of small scales. Increased accuracy comes at the ex-

pense of requiring more free parameters, the effective field theory counter-terms. There

are two extra parameters, one for the real space correlation function and the other for

the mean pairwise velocity. Therefore, the simplest CLEFT has seven parameters.

The top two panels of Fig. 3.4 compare the predictions for the two lowest-order moments
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of the three different methods1. The symbols show measurements from simulations. In the

upper panel we show the mean of the radial pairwise velocity. The two extra EFT counter-

terms extend the agreement of CLPT with N-body simulations from scales of ∼ 60h−1Mpc

down to ∼ 20h−1Mpc. For the radial and transverse components of the variance, shown in the

second panel, the CLPT and CLEFT predictions are qualitatively similar. The reason for this

is that the EFT counter-term is very close to a constant shift in the variance, which is already

included in CLPT to match N-body simulation results. The moment predicted with the lowest

accuracy is the radial component of the variance, where per cent-level predictions are limited

to scales above 40h−1Mpc. The radial component of the variance, c20 = m20 − m2
10, has a

contribution from the mean pairwise velocity and will also be affected by errors in modelling

non-linear infall.

The bottom two panels of Fig. 3.4 show the simulation measurements of the third- and

fourth-order moments (symbols). Perturbation theory predictions for moments higher than

the second have only been obtained for the third order moment using CLPT in Uhlemann

et al. (2015). However, the authors found that it fails to capture the non-Gaussian effects

encoded in the skewness for scales below 100h−1Mpc. Since third and fourth order moments

only play a role on the accuracy of the redshift space correlation function on small scales, it is

extremely difficult to produce accurate enough predictions to unlock access to the cosmolog-

ical information contained on those scales. To improve these predictions, we plan to explore

both effective field theory extensions to CLPT, and the use of emulators for the moments on

small scales.

In Fig. 3.5, we also show simulation measurements (symbols) of the real-space two-point

correlation function of dark matter halos, together with the predictions using both CLPT

(dashed line) and CLEFT (dash-dotted line). The CLEFT prediction is accurate over a broad

range of scales – it gives per cent-accuracy results on scales between 15 and 70h−1Mpc –

at the expense of only one extra free parameter. For more details on the accuracy of the

different perturbation theory models, we refer the reader to Appendix A.3.

3.2.3 Fitting the pairwise velocity distribution

To infer the parameters of the Gaussian and ST distributions that best fit the simulation

measurements, we use two different methods,

1Perturbation theory predictions have been obtained using the publicly available code
github/CLEFT_GSM.

https://github.com/martinjameswhite/CLEFT_GSM
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Figure 3.4: The four lowest order moments of the radial and transverse pairwise velocity distribu-
tions of dark matter halos. In each panel we show the mean measurements from the simulations,
together with errorbars showing one standard deviation (note these are too small to be seen). We
also show the different perturbation theory predictions for the two lowest order moments. Linear
theory is shown in dotted-dashed-dashed lines, CLPT in dashed lines, and CLEFT in dashed
dotted lines. Finally, we show the best-fitting curves as dotted lines, which are used to show the
accuracy of the Taylor expansion in Section 3.3.2. Note the best-fitting curves have been fitted
to the moments on scales smaller than 60h−1Mpc.
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Figure 3.5: The real space correlation function measured from the simulations for dark matter
halos, compared with predictions from CLPT and CLEFT. Both these perturbation theory pre-
dictions use a Lagrangian prescription for the bias, and have been computed by simultaneously
fitting the correlation function and the two lowest order pairwise velocity moments. For more
details on the fitting see Appendix A.3.

• Maximum likelihood estimation, found by maximising the probability that the model

reproduces the simulation measurements. This is equivalent to a least-χ2 fit to the

simulation measurements using the given Gaussian or ST distribution function when

the errors are approximately Gaussian distributed. We refer to this method as ‘ML’

occasionally in this chapter. The χ2 we minimise is,

χ2(r) =
∑
v∥

(
Pmeasured(v∥|r) − Pmodel(v∥|r)

)2

Pmodel(v∥|r) , (3.2.4)

where Pmodel is either a Gaussian or an ST distribution.

• Method of moments, that uses the analytical relation between the parameters of the

distribution and its lowest-order moments to convert the moments estimated from the

simulation measurements into distribution parameters.

If the distribution measured from the simulation and the fitted distribution are the same,

both methods are equivalent. However, this is not the case when the fitted distribution is an

approximation to the simulation results or when noise is present.

In Fig. 3.2 we show the best-fitting distributions for both the Gaussian and the ST models

using these two approaches. For the Gaussian case the conversion between moments and

parameters is trivial, while for the ST model we have used the relations given in Appendix A.1

to obtain the model parameters given the four lowest-order moments. In this figure we can

see that even for large pair separations the Gaussian approximation is inaccurate, where the

method of moments and the maximum likelihood estimation produce slightly different results,

both being poor approximations.
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The ST model, however, is flexible enough to represent the varying degrees of skewness and

kurtosis over a broad range of pair separations when using the method of moments. At large

separations, the maximum likelihood estimate and the method of moments produce similar

distributions. Nonetheless, on small scales the tails of the distribution are mis-estimated by

the maximum likelihood method.

For a more detailed comparison of the different models around the peak of the distribution

see Fig. A.1.

3.2.4 The redshift space correlation function

In this subsection we use the Gaussian and ST models of the pairwise velocity distribution

with the streaming model (Eq. 3.1.2) to predict redshift space clustering. We will focus

on the mapping between real and redshift spaces, and show that using the more flexible

ST distribution for pairwise velocity leads to more accurate predictions of the higher order

redshift-space multipoles than are obtained with the simpler GSM model. For this reason,

we measure all the real-space quantities from the simulation, including the real-space halo

two-point correlation function and the pairwise velocity distribution moments, as inputs to

reproduce the redshift space clustering by using Eq. 3.1.2. The impact of the accuracy of

the modelling of the individual ingredients of the streaming model will be studied in a later

section.

The pairwise velocity distribution has been measured in the range 0 < r∥/[h−1Mpc] < 70

and 0 < r⊥/[h−1Mpc] < 50 in bins spaced by 0.5 h−1Mpc. To perform the streaming model

integration in Eq. 3.1.2 we have used the Simpsons rule, with a linear interpolation of the

real space correlation function and the pairwise velocity distribution.

Due to the difficulty of analysing two dimensional plots, together with the complex covari-

ance matrix between the different measurements for ξS(s⊥, s∥), it is common to decompose

the redshift space correlation function into multipole moments using its Legendre expansion

(Hamilton, 1998),

ξ(s, µ) =
∑

ℓ

ξℓ(µ)Lℓ(µ), (3.2.5)

where ℓ is the order of the multipole and Lℓ(µ) is the Legendre polynomial at the ℓ-th order,

which depends on the angular coordinate µ = cos θ. The redshift space correlation function

is symmetric in µ, so only even values of ℓ give a non-zero contribution. Inverting Eq. (3.2.5),
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we find that the multipole moments are given by

ξℓ(s) = 2ℓ+ 1
2

∫ 1

−1
ξ(s, µ)Lℓ(µ)dµ. (3.2.6)

The three lowest multipoles are denoted as monopole (ℓ = 0), quadrupole (ℓ = 2) and

hexadecapole (ℓ = 4). Recent cosmological analyses are based mainly on the monopole and

quadrupole moments, however the cosmological information carried by the hexadecapole has

also been shown to be important (Taruya et al., 2011).

We show these three multipole moments predicted by the different models, as well as the

measurements from the simulations, in Fig. 3.6. In the lower subpanels of each panel we show

the relative differences between the model predictions and the simulation results in units of

the standard deviation (σ) (middle subpanel) calculated using the 15 simulation realisations

each of which has a volume of 8 (h−1Gpc)3, and the relative percent error in the lowest

subpanel. The yellow horizontal shaded bands represent the ±1σ ranges on the multipoles.

Surprisingly, the two Gaussian distributions that we found by using the method of mo-

ments and the maximum likelihood estimate yield multipoles that can be more than five

standard deviations away from each other. Furthermore, the Gaussian distribution obtained

using the method of moments reproduces the three multipoles within one standard devia-

tion for scales larger than approximately 30h−1Mpc, although it gives a very poor fit to the

pairwise velocity distribution on these scales; cf. Fig. 3.2.

Regarding the ST model, although the maximum likelihood ST lies closer than the Gaus-

sian method of moments to the pairwise velocity measured in the simulation (see Fig. 3.2),

it gives a biased result for the multipoles. On the other hand, the ST model found by the

method of moments is able to reproduce the correct clustering down to scales of around

10h−1Mpc.

The Edgeworth model does improve the predictions of the multipoles compared to the

Gaussian Streaming Model, however to extend its validity to even smaller scales we need to

also add fourth order moments.

As a result of the large simulated volume, the error bars on the monopole and quadrupole

on scales below 20h−1Mpc are extremely small, meaning that the one sigma deviations for

the monopole and quadrupole (the yellow horizontal bands in the lower subpanels of Fig. 3.6)

are within one per cent of the mean measurement up to 20h−1Mpc.

Finally, although the measurement of the hexadecapole is itself very noisy, the ST model

is within one standard deviation for scales larger than around 10h−1Mpc, whilst the Gaussian
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Figure 3.6: Comparison of the accuracy of the different models for reproducing the multipoles of
the redshift space correlation function. In the upper sub-panels the multipole directly measured
from the simulation is shown together with the model predictions. In the lower sub-panels the
deviation between the model and the simulation in units of the variance calculated across the
different independent simulations are shown. The yellow bands show the 1σ deviation.
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model on those scales is already more than five sigma away from the measurement from the

simulations.

To sum up, we have found that the use of the method of moments is critical to accurately

reproduce the clustering on quasi-linear scales. The accuracy of the Gaussian streaming

model we obtain is consistent with previous findings (Reid & White, 2011; Wang et al., 2014;

Bianchi et al., 2016): the prediction is within the measurement errors from the simulations

for scales larger than 30h−1Mpc. However, the model prediction rapidly diverges from the

simulation results on smaller scales. On the contrary, the ST model is able to reproduce

the redshift space clustering very accurately on scales down to 10h−1Mpc, by introducing

a pairwise velocity distribution that incorporates the skewness and kurtosis of the pairwise

velocity PDF.

On the other hand, we need to understand why the Gaussian model reproduces the

clustering on scales above 30h−1Mpc more accurately than the ST distribution obtained

through the ML method, even though the latter is a better description of the pairwise velocity

distribution on those scales, as shown in Fig. 3.2. To this end, we will study the behaviour

of the integrand of Eq. 3.1.2 in more detail in the next section.

3.3 The importance of the moments for accurate clustering

predictions

In this section we show how the accuracy of the streaming model on quasi-linear scales is

directly related to the lowest order moments of the pairwise velocity distribution. We start

by studying how well the different models reproduce the streaming model integrand.

3.3.1 Lessons from the streaming model integrand

We show the integrand of Eq. 3.1.2, for a few pair separation vectors, in Fig. 3.7. In broad

terms the integrand is the outcome of a competition between the probability of finding a pair

of haloes at a given separation, i.e. the two-point correlation function, and the probability

that the pair has the necessary relative velocity to move from real space position r to redshift

space position s. Whilst the first quantity is evaluated as ξ
(√

s2
⊥ + r2

∥

)
for fixed s⊥, and

therefore peaks at r∥ ∼ 0, the latter is evaluated as P(v∥ = s∥ − r∥), and peaks around its

mean, close to v∥ ≈ 0 (r∥ ≈ s∥) for large pair separations.
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The effect of this competition can be seen in Fig. 3.7. For large pair separations, e.g.,

as shown by the middle and bottom panels, the real-space correlation function is small,

ξ
(√

s2
⊥ + r2

∥

)
≪ 1, so that the integrand is dominated by P(v∥ = s∥ − r∥) and has a peak

at r∥ ≈ s∥. On the other hand, for small pair separations (the top panel), ξ is no longer

negligible and the integrand acquires a second, albeit smaller peak around r∥ ≈ 0.

As for the different streaming models, the Gaussian one obtained through the method

of moments systematically shifts the main peak of the integrand from its true position,

and makes it wider. Although this seems to be a poorer estimate of the integrand than

the Gaussian model obtained through maximising the likelihood, which is consistent with

what Fig. 3.2 suggests, it predicts the clustering multipoles with a precision that is one

order of magnitude higher after integrating, as can be seen on the resulting redshift space

correlation function annotated on Fig. 3.7. This same effect is present on all scales larger

than s ≈ 30h−1Mpc.

More interestingly, both the ST moments and the ST ML methods give visually much

better predictions for the integrand than the Gaussian moments method, which is a con-

sequence of the pairwise velocity distribution being non-Gaussian for all pair separations.

However, as shown in the previous section, after integration we find that the Gaussian model

yields a comparable accuracy to the non-Gaussian ST model on scales larger than 30h−1Mpc

for the monopole and quadrupole. This coincidental behaviour has been noted previously by

Kuruvilla & Porciani (2018). Taking the middle panel of Fig. 3.7 as an example, the “er-

rors” of the integration in Eq. 3.1.2, ∆ξS , defined as the difference between the integration

of the model curve and the integration using the simulation results (black dots), for the four

streaming models considered here, are shown in the figure labels. We note that the Gaussian

moments method gives a slightly smaller error than the ST Moments at the particular pair

separation shown. As the former underestimates the integrand for 14 ≲ r∥/(h−1Mpc) ≲ 20

and r∥ ≳ 26 h−1Mpc, and overestimates it in other regimes, this seems to suggest that a

precise cancellation of the errors from different r∥ intervals takes place, which makes the final

integration result accurate. However, this cancellation of errors happens for all larger pair

separations s > 30 h−1Mpc. In the next subsection, we will show that this is a consequence

of the integration being sensitive only to the moments of the pairwise velocity distribution.

In particular, for large pair separations it is the two lowest-order moments which dominate

the outcome of the integral Eq. 3.1.2, while higher order moments only become important on

scales smaller than 30h−1Mpc (Fig. 3.6).
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Figure 3.7: Integrand of Eq. 3.1.2 shown for different redshift space pair separations. At small
pair separations and for small µ (top panel) we find two peaks situated at r∥ = 0 and r∥ = s∥,
marked by the grey vertical dashed lines. For larger µ (middle and bottom panels), the second
peak dominates since the correlation function decays rapidly at large separations. The result
of the integral for the different models minus the integral obtained using the pairwise velocity
distribution measured from the simulations, ∆ξ(s), is plotted with different models shown by the
different colours and line styles as shown by the legend in the top panel.
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Figure 3.8: The dependence of the pairwise velocity distribution on r∥, for fixed r⊥ =
25.25h−1Mpc and for three values of r∥ over a range of 15h−1Mpc (20.25, 25.25 and
35.25h−1Mpc). The distribution has only a weak dependence on r∥, which is why the Tay-
lor expansion described in the text works.

3.3.2 The importance of the moments on quasi-linear scales

The integration in the streaming model, Eq. 3.1.2, is different from taking the expectation

value of 1 + ξR(r) since the pairwise velocity distribution P(v∥|r) is different for different

r∥ values, rather than a fixed probability distribution function P(v∥). However, P(v∥|r) is a

slowly varying function of pair separation r∥, for r∥ ≳ 15h−1Mpc, as can be seen in Fig. 3.8.

The outcome of the streaming model integral for the values (s⊥ = r⊥ = 25.5, s∥ = 25.5),

shown in the bottom panel of Fig. 3.7, is dominated by contributions from the pairwise

velocity distribution in the range 20 h−1Mpc < r∥ < 35 h−1Mpc, which is the range of

values shown in Fig. 3.8. The same features is found at other separations larger than about

10 h−1Mpc.

Therefore, we can Taylor expand the integrand around its peak at r∥ = s∥ as follows,
(
1 + ξR(r)

)
P(v∥|r) ≈

(
1 + ξR(s)

)
P(v∥|s) +

+
∑

n

1
n! (r∥ − s∥)n d

n

dsn
∥

(
(1 + ξR(s))P(v∥|s)

)
.

(3.3.1)

This expansion was already used by Fisher (1995a), Scoccimarro (2004) and Bianchi et al.

(2015) to obtain the Kaiser limit of the streaming model. Here, we will show that this is still

accurate on quasi-linear scales.

Inserting Eq. 3.3.1 into Eq. 3.1.2, we find that the derivatives with respect to s∥ can be

taken out of the integral over r∥, together with the real space correlation function, and there-

fore after integration we are left with the derivatives of the moments through the dependency
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of v∥ on r∥. For the lowest order term on the right-hand side of Eq. 3.3.1, we find after a

change of variables v∥ = s∥ − r∥,∫ ∞

−∞
dv∥

(
1 + ξR(s)

)
P(v∥|s) =

(
1 + ξR(s)

)
, (3.3.2)

whilst for the higher order terms,∫ ∞

−∞
dv∥(−1)n

∑
n

1
n!v

n
∥
dn

dsn
∥

(
(1 + ξR(s))P(v∥|s)

)
=

∑
n

(−1)n

n!
dn

dsn
∥

(
(1 + ξR(s))

∫ ∞

−∞
dv∥v

n
∥ P(v∥|s)

)
=

∑
n

(−1)n

n!
dn

dsn
∥

(
(1 + ξR(s))mn(s)

)
,

(3.3.3)

where mn denotes the n-th order moment about the origin of the pairwise velocity distribu-

tion, which is related to the central moments through,

mn =
n∑

k=0

(
n

k

)
ckm

n−k
1 . (3.3.4)

As a result, an approximation to the streaming model is given by,

ξS(s⊥, s∥) ≈ ξR(s) +
∑

n

(−1)n

n!
dn

dsn
∥

(
(1 + ξR(s))mn(s)

)
, (3.3.5)

where the integral of Eq. 3.1.2 has now been replaced by derivatives of the pairwise velocity

moments evaluated at the redshift space position, s. Consequently, for large pair separations,

where the above approximation works well, the exact shape of the pairwise velocity distri-

bution does not affect the clustering, and it is only the moments of the distribution that

influence the redshift space correlation function. This explains why the Gaussian moments

model works so well in Fig. 3.6 while the Gaussian ML model, which describes the integrand

better, fails to reproduce the multipoles.

We can use Eq. 3.3.5 to obtain analytical predictions for the redshift space clustering

based on the moments. Up to first order terms the resulting expression is simply

ξ(1)(s, µ) ≈ ξR(s) − dξR(s)
ds

m10(s)µ2

−
(
1 + ξR(s)

)(m10(s)
s

(1 − µ2) + dm10(s)
ds

µ2
)
,

(3.3.6)

where m10 = m10(s), defined by Eq. 3.2.2, denotes the radial mean infall.

Interestingly, we can use Eq. 3.3.6 to derive the linear order two-point correlation func-

tion for any two tracers, including the void-matter cross-correlation. It has been argued in

Nadathur & Percival (2019) that it is not correct to use the standard streaming model result
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for the galaxy correlation in the void-galaxy case. However, regardless of how the void-matter

pairwise velocities are distributed, we can use the Taylor expansion in Eq. 3.3.6, together with

the linear theory prediction for the mean pairwise velocity, to derive the linear void-matter

two-point correlation function in Nadathur & Percival (2019).

The linear void-matter mean pairwise velocity (Peebles, 1980a; Sheth et al., 2001; Na-

dathur & Percival, 2019) is given by

vvm = −1
3f∆(r)r (3.3.7)

where ∆(r) is the average mass density contrast within radius r of the void centre,

∆r = 3
r2

∫ r

0
δ(y)y2dy. (3.3.8)

Substituting Eq. 3.3.7 into Eq. 3.3.6 we find

ξvm(s, µ) ≈ ξR
vm(s) + f

3 ∆(s)
(
1 + ξR

vm(s)
)

+ fµ2 [δ(s) − ∆(s)]
(
1 + ξR

vm(s)
)

+ fµ2

3 s
dξR

vm

ds
∆(s),

(3.3.9)

which is exactly equation (21) in Nadathur & Percival (2019). Therefore, the linear void-

matter cross-correlation can be derived from the streaming model.

Going back to Eq. 3.3.5, we compute the first order multipoles

ξ
(1)
0 (s) ≈ ξR − 1

3
dξR

ds
m10 − 1

3
(
1 + ξR

)(
2m10
s

+ dm10
ds

)
, (3.3.10)

ξ
(1)
2 (s) ≈ −2

3
dξR

ds
m10 + 2

3
(
1 + ξR

)(m10
s

− dm10
ds

)
, (3.3.11)

ξ
(1)
4 (s) ≈ 0. (3.3.12)

Adding second order terms, we find

ξ(2)(s, µ) ≈ 1
2

(
d2ξ(s)
ds2

∥
m2(s∥, s⊥) + (1 + ξ(s))

d2m2(s∥, s⊥)
ds2

∥

)

+ dξ(s)
ds∥

dm2(s∥, s⊥)
ds∥

.

(3.3.13)

The analytical result for the second-order multipoles includes many more terms than its

first-order equivalent. Therefore, instead of calculating the resulting multipoles analytically,

we take numerical derivatives of moments higher than one in the remainder of this work.

In what follows we address the question of how accurate the expansion Eq. 3.3.5 is on

small scales, and how the different moments affect the clustering multipoles. The expansion
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turns out to give accurate predictions for the multipoles even on scales of about 10 h−1Mpc,

with the advantage of replacing the integral in Eq. 3.1.2, which sums up the contributions of

the pairwise velocity distributions on different scales, with a derivative at the scale s under

consideration. Therefore, it converts the non-local relationships between the redshift and real

space correlation functions with the pairwise velocity PDF, into a local relation between the

redshift space correlation and the derivatives of the pairwise velocity moments and real space

correlation function.

In the next subsection, we will test the accuracy of the expansion by comparing it to a

full streaming model in which we assume the pairwise velocity distribution is either Gaussian

or ST.

3.3.3 The range of validity of the streaming model expansion

Assessing the exactitude of the Taylor expansion on different scales is not straightforward,

since including higher order terms involves higher order derivatives of the velocity moments

and the real space correlation function.

As one can see from Fig. 3.4, on small scales the velocity moments as functions of pair

separation measured from the simulation are not smooth and their high-order derivatives can

be noisy, which will affect the accuracy of the analytical predictions. Given that our main

objective in this subsection is to test the validity of the expansion method, to eliminate the

impact of such noise, we fit the ingredients of the Taylor expansion of the streaming model.

The fits to the moments are shown as dotted lines in Fig. 3.4. For the real space correlation

function, we fit with a simple power law. We then take the fitted curves as the “truth",

and compare the predictions of the Taylor expansion with two different streaming models in

which we can convert the fitted moments into pairwise velocity distributions. These include

a Gaussian streaming model, to demonstrate why the GSM gives accurate predictions on

quasi-linear scales where the pairwise velocity distribution is highly non-Gaussian, and an

ST model, to show the effect of skewness and kurtosis in improving the accuracy of the

expansion. The Gaussian distribution has the correct two lowest central moments, whilst the

ST matches the four lowest moments.

We shall not compare the expansion to the simulation measurements directly, since the

analytical fitting formulae to the measured moments already induce at least per cent-level

modifications to the multipoles on small scales. However, this exercise is realistic enough

(both the real space correlation function and the moments have been fitted to the N-body
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simulation results) to demonstrate up to which scale the Taylor expansion method can be

used.

Compared with the full streaming model, the Taylor expansion makes minimal assump-

tions regarding the pairwise velocity distribution, since it only uses the moments, and removes

the integration over all pair separations in Eq. 3.1.2. For the Gaussian case, the results of

expanding Eq. 3.3.5 up to n = 4 are shown as coloured lines in Fig. 3.9. Although for a

Gaussian distribution the odd central moments vanish, the odd moments about the origin

get contributions from lower order even central moments, as expressed in Eq. 3.3.4. There-

fore, even orders of the expansion do contribute. Similarly, while odd central moments higher

than the second order vanish for a Gaussian distribution, mn is nonzero for n > 2. The full

streaming model predictions using the integral in Eq. 3.1.2 and a Gaussian pairwise velocity

distribution are shown as black sold lines.

In Fig. 3.9 we see how including only terms up to n = 2 we can reproduce the monopole

to within 1% down to 10h−1Mpc. To achieve a comparable accuracy for the quadrupole,

however, we need to add higher order moments up to n = 4. For the hexadecapole, we expect

the Taylor expansion to be less accurate, because it is more strongly affected by the finger-

of-God effect, which originates from the very small and nonlinear scales on which the Taylor

expansion breaks down. This is confirmed by the fact that in the lower panel of Fig. 3.9 there

are larger differences between the coloured and black lines. Nevertheless, we find that for the

Gaussian model, the hexadecapole predicted by the expansion up to fourth order is accurate

to within 3% down to 15h−1Mpc.

Finally, since the ST distribution reproduces the measured line-of-sight velocity distri-

bution with a higher accuracy than a Gaussian distribution (Fig. 3.2), we also demonstrate

the effect of higher order moments on the Taylor expansion using an ST model for P. In

Fig. 3.10 we show both the third and fourth order moment expansion assuming a Gaussian

distribution, with zero skewness and fixed kurtosis shown as dashed-dotted lines, and the

fully non-Gaussian moments. Although for the monopole, non-Gaussianity does not play

an important role, adding the skewness extends the 1% agreement in the quadrupole from

scales of around 30h−1Mpc down to 20h−1Mpc. The effect of the fourth order moment,

kurtosis, is important to extend close agreement even further to about 10h−1Mpc. These

results are consistent with the findings in Fig. 3.6, where we find that the ST model improves

the agreement of the quadrupole in the range 10-30h−1Mpc.

Note that for the hexadecapole (shown in the bottom panel of Fig. 3.10) the Taylor
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Figure 3.9: Accuracy of the Taylor expansion up to 4-th order, assuming the pairwise velocity
distribution is Gaussian, compared to the full streaming model under the same assumptions. Note
all the real space ingredients to the streaming model, the real space correlation function and the
two lowest order pairwise velocity moments, are analytical functions fitted to the simulation
measurements. The yellow shaded region shows one per cent level agreement between the Taylor
expansion and the full Streaming Model. The monopole achieves an accuracy better than the
one per cent on scales above 10 h−1Mpc when the expansion is truncated at second order. For
the quadrupole to achieve a similar accuracy, we need to retain up to fourth order terms.
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Figure 3.10: Same as in Fig. 3.9, but assuming the pairwise velocity distribution follows a Skew-t
distribution. Compared with a Gaussian distribution, which has the correct first and second
order moments, the Skew-t also matches the skewness and kurtosis. For comparison, we show
the Taylor expansion found assuming the distribution is Gaussian and the fully non-Gaussian
result, in which we include skewness and kurtosis. The effect of the skewness can therefore be
seen as the difference between the orange dashed and orange solid lines, whilst the effect of the
kurtosis is given by the difference between the green dashed and green solid lines. We find that
the effects of the skewness and kurtosis are particularly important for the quadrupole on small
scales.
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expansion method introduces a substantial fractional error of > 5% on all scales, even if the

fourth-order corrections are included. This is not surprising because now the assumed true

model – in which the pairwise velocity satisfies an ST distribution – is more complicated,

and because the absolute value of the hexadecapole is much closer to zero which tends to

magnify the relative error. Nevertheless, we still observe that including higher-order terms

brings the expansion prediction closer to the correct answer. In Fig. 3.6, the multipoles have

been numerically calculated using the full Streaming model of Eq. (3.1.2), rather than the

Taylor expansion, under the assumption of the pairwise velocity PDF being either Gaussian

or ST.

3.4 Sensitivity to the real space streaming model ingredients

In this section, we study the effects of varying the various ingredients – the real space quanti-

ties – needed to predict the redshift space clustering through the ST streaming model. This

will indicate to us what precision is required for each ingredient in order to make the final

prediction of the multipoles accurate.

In Fig. 3.11, we show the effects on the multipoles of varying the real space correlation

function (the first row), the mean pairwise velocity (the second row) and its variance (both

in the radial and transverse components; the last two rows). We have studied the impact

of two types of variations: a constant change by ±5%, or a fractional change that increases

towards smaller pair distances as 1/r, to emulate the fact that perturbation theory predictions

worsen towards small scales. The latter gradual change is tuned to vary the given function

by ±5% on scales of 5h−1Mpc and by ±1% on the scale of 30h−1Mpc. In this way we can

compare the effect of a varying slope due to uncertainties in our predictions, which we know

is important since derivatives of the moments appear in the Taylor expansion Eq. 3.3.5. The

fractional changes to the predicted redshift-space monopole, quadrupole and hexadecapole

(from left to right) are respectively shown as orange and blue shaded regions for the constant

and scale-dependent changes.

Varying the real space correlation function by 5% produces approximately the same frac-

tional change in the monopole. Since the 0-th order contribution to the quadrupole and

hexadecapole is zero, both the constant and the scale-dependent variations in the real space

correlation function produce a sub-per cent effect on the quadrupole and hexadecapole on

scales larger than 20h−1Mpc.
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Figure 3.11: The fractional variation in the monopole, quadrupole and hexadecapole after mod-
ifying the real space ingredients of the streaming model. In each row we show the effect of
varying: the real space correlation function, the mean pairwise velocity, the radial variance of
the pairwise velocity and the transverse variance of the pairwise velocity. Orange contours show
the effect of varying each of these quantities by ±5%, while the blue contours vary them by a
percentage that depends on scale and increases with 1/r. On small scales, where perturbation
theory predictions degrade, we vary each of the ingredients by a larger percentage. The variation
is tuned to produce a 5% change on scales of 5h−1Mpc and a 1% one on scales of 30h−1Mpc.
Gray dashed lines determine 5 and 1 per cent deviations from the true model.



3.5. Conclusions and Discussion 66

The mean pairwise velocity has a stronger effect on both the quadrupole and hexadecapole.

The importance of getting the slope of the mean right, found in the Taylor expansion, can

also be seen in the blue contours. A change of 1% above 30h−1Mpc produces a slightly larger

effect on the quadrupole. The monopole, in contrast, is much less sensitive to variations of

the mean pairwise velocity, and the effect is at the sub per cent level at s ≳ 10h−1Mpc for

both variation scenarios.

On the other hand, the hexadecapole is most sensitive to the radial and transverse stan-

dard deviations. Changes of 5% can produce a change that is twice as large in the hexade-

capole.

Regarding the third-order moments, we found in the last section (Fig. 3.10) that the

skewness has at most a per cent-level effect on the monopole and quadrupole on scales below

30h−1Mpc. Since its effect is very small, we do not show the equivalent in Fig. 3.11. We find

that varying the third order radial and transverse moments by 50% introduces modifications

smaller than 5% on the quadrupole on small scales.

Finally, the effect of fourth order terms is important on scales below 20h−1Mpc. However,

we have already shown in the previous section that setting the fourth order moments to zero,

by assuming Gaussianity, also gives only a few percentage level corrections to the quadrupole

on small scales (see difference between orange dashed line and solid green line in Fig. 3.10).

Therefore, even on small scales, we need to predict most accurately the lower order mo-

ments: the mean and the standard deviation, particularly the latter, if we want to utilise

information contained in the hexadecapole. We can afford to have a larger margin of error

on the predictions of the higher order moments, and still extend the validity up to scales of

around 10h−1Mpc.

3.5 Conclusions and Discussion

The new generation of surveys (Amendola et al., 2013; Takada et al., 2014; Levi et al.,

2019; de Jong et al., 2018) is going to measure redshift space clustering of galaxies with

unprecedented precision. To translate the high accuracy of these measurements into tighter

constraints on the cosmological parameters or on possible deviations from general relativity,

we need to improve our theoretical models of redshift space distortions (RSD). Within the

streaming model of RSD, we need to: i) improve the mapping from real to redshift space, i.e.,

by developing the modelling of the pairwise velocity distribution including its higher order
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moments, ii) increase the accuracy of the predictions of the ingredients of the streaming

model – the real space correlation function and the pairwise velocity moments – for given

cosmological parameters. Here, we have focused on the first of these aspects, but we have

also briefly analysed the effects of the second.

In N-body simulations, where the fully non-linear evolution of collisionless particles is

solved, we observe that the distribution of the pairwise velocities of dark matter halos is

skewed towards negative velocities, and has broader tails than a Gaussian. Therefore, models

that use Gaussian distributions do not give an accurate description of the pairwise velocities.

We have introduced an extension to the Gaussian streaming model by using the Skew-T

probability distribution for the pairwise velocity. The parameters of this distribution can be

tuned to match the four lowest-order velocity moments measured from simulations. The ST

model describes the simulation measurement of the pairwise velocity distribution significantly

better than a simple Gaussian.

We compare two different methods to find the best-fitting parameters of the pairwise

velocity distribution: maximum likelihood estimation and the method of moments. Although

the results of both approaches seem to describe the measured velocity distribution equally

well on large scales, they give very different results for the redshift space clustering once

inserted into the streaming model. Using the method of moments is crucial for describing all

multipoles, including the small scales. Even though the Gaussian distribution gives a very

poor fit to the measured pairwise velocities distribution, it can reproduce the true multipoles

on quasi-linear scales within the small statistical errors of our simulations when we tune it to

have the two lowest-order moments extracted from the simulations. On the other hand, the

best-fit Gaussian found by maximising the likelihood gives results that are more than five

standard deviations away from the simulation measurement.

The ST model, also using the method of moments, gives predictions for the redshift space

multipoles (monopole, quadrupole and hexadecapole) that are within the small statistical

sampling variance errors (driven by the simulation volume) down to about 10h−1Mpc. On

such small scales, the Gaussian streaming model gives predictions that are more than five

standard deviations away from the mean measurement from simulations. Therefore, the ST

model extends the validity of the streaming model from 30h−1Mpc to 10h−1Mpc, and gives

a more accurate description of the hexadecapole, which has so far not been used in analyses

that rely on the Gaussian streaming model (e.g., Satpathy et al., 2017; Zarrouk et al., 2018),

due to its poor accuracy.
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We have used a Taylor expansion of the integrand to show why the Gaussian streaming

model can reproduce the clustering on quasi-linear scales within the error bars of the simu-

lation measurement, despite giving a poor description of the pairwise velocity distribution.

At s ≳ 30h−1Mpc, only the first and second order moments, the mean and the standard

deviation, of the pairwise velocity distribution, are crucial for determining the monopole and

quadrupole of the two-point correlation function in redshift space.

We have also shown that the Taylor expansion can describe the non-Gaussian ST stream-

ing model down to smaller scales, of about 10h−1Mpc, when expanded up to fourth order.

The main advantage of the Taylor expansion is that it replaces the integral of the pairwise

velocities over all scales by a derivative of the moments at the scale under consideration.

It therefore makes no assumptions about the details of the underlying velocity distribution,

and can give analytical predictions for the monopole and quadrupole. However, it cannot

reproduce the hexadecapole as accurately as the full ST streaming model integral, Eq. 3.1.2,

nor is it as accurate on smaller scales, s ≲ 15h−1Mpc.

The Taylor expansion could be particularly useful to measure the velocity moments from

the observed redshift space multipoles, as was already proposed by Bianchi et al. (2015), along

the line of previous measurements of the pairwise velocity dispersion (Li et al., 2006; Loveday

et al., 2018). The main difficulty to measure the pairwise distribution from observations lies in

the pair distance dependence of the moments, imprinted by gravity. We would need to develop

analytical formulae to summarise the pair distance dependence in a small set of parameters,

that are valid independently of the underlying model of gravity. These parameters could then

be inferred from observations of redshift space clustering, by running a Monte Carlo Markov

Chain. The direct measurement of the moments could be a complementary test of gravity to

the growth rate, and it would utilise more information of the full scale dependence of different

gravity models.

Finally, we qualitatively analysed the effects of inaccurate knowledge of the real space

correlation function or of the velocity moments on the predictions of the redshift multipoles.

As expected, the monopole is mainly determined by the real space correlation function. We

have shown that perturbation theory based CLEFT method (Vlah et al., 2016) produces per

cent-level-accuracy predictions of the real space correlation function. However, to obtain per

cent-level accurate predictions for both the monopole and quadrupole, we also need similar

accuracy for the mean pairwise velocity and its slope. Fitting the CLEFT predictions, with

five free parameters, we were only able to obtain predictions accurate at the per cent level
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for the mean on scales above 35h−1Mpc. On the other hand, the hexadecapole is very

sensitive to the variance of pairwise velocities, for which CLEFT is only accurate to one per

cent above scales of about 45h−1Mpc. Therefore, future efforts to utilise the information

content in the hexadecapole will have to obtain more accurate theoretical prescriptions for

the variance. Per cent level errors on the prediction of the variance become even larger errors

on the hexadecapole. On scales smaller than 30h−1Mpc, we also need predictions for the

skewness and kurtosis of pairwise velocities. However, these do not need to be as accurate:

per cent errors on the skewness and kurtosis have negligible impact on the multipoles.

To summarise, we have developed a streaming model based on the Skew-t distribution of

pairwise velocities, that accurately describes redshift space clustering on scales larger than

10h−1Mpc, given the first four moments of the pairwise velocity distribution are known.

In order to improve constraints on the growth rate by using the ST model, we need to

improve the theoretical predictions of the real space two-point correlation function and the

pairwise velocity moments dependency on the cosmological parameters. This will be the

focus of the next chapter. Moreover, we have here described the motions of halo centres.

However, to model the motions of galaxies we will need to include the so-called one halo

contribution representing the internal motion of galaxies inside their host halos. When the

internal motion of galaxies is virialized, the mean infall velocity is negligible compared with

the random motion and the internal velocity distribution is isotropic and close to Gaussian

distributed.



Chapter 4

Simulation-based models for real

space clustering

In the previous chapter, we showed how the mapping from real to redshift space could be

accurately modelled if the real space two-point correlation function and the four lowest order

moments of the pairwise velocity distribution were known. In this chapter we focus on

obtaining accurate predictions for the first item, the real space two-point correlation function,

whilst the pairwise velocity moments are the subject of ongoing work.

To obtain fully non-linear predictions for the properties of the large-scale structure and

recover all the cosmological information contained in the small-scale clustering, we must

resort to N-body simulations (Kuhlen et al., 2012). N-body simulations have been widely

used as cosmic laboratories to test the precision and robustness of analytical methods for the

large-scale structure (e.g., Carlson et al. 2009; Vlah et al. 2015; Cuesta-Lazaro et al. 2020),

together with the effects of systematic errors in our measurements. Over the past decade,

advances in computing have allowed us to produce a large enough number of dark matter only

N-body simulations covering a significant fraction of the cosmological parameter space, which

allows us to use the simulations themselves as predictive models that directly constrain the

cosmological parameters. The simulations must be large enough to reduce sample variance,

and have high enough resolution to resolve the tracers that will be surveyed.

Moreover, in order to compare the outcomes of dark matter only simulations to the

observed distribution of galaxies we have to model the connection between dark matter halos

and galaxies (see Section 1.2.1 for an introduction to the topic). Uncertainties in the galaxy-

halo connection can limit the amount of information that we can extract from small scale

70
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clustering. We would like to use flexible models that can reproduce clustering in different

scenarios of galaxy formation, whilst still being able to recover cosmological information after

marginalising over the free parameters of the galaxy-halo connection model. Here, we use the

empirical model of the halo occupation distribution (HOD) (Benson et al., 2000; Zheng et al.,

2005), based on estimating the probability that a given halo hosts a galaxy. See Section 1.2.1

for more details on different models of the galaxy-halo connection.

Over the past few years, several studies (Zhai et al., 2019b; Lange et al., 2019; Kobayashi

et al., 2020; Miyatake et al., 2021) have shown how N-body simulations can be leveraged to

extract small scale information. Solving the inverse problem, estimating the posterior over

the cosmological parameters given the observed clustering, would require the order of O(106)

N-body simulations to perform Bayesian inference with Markov Chain Monte Carlo. There-

fore, most studies rely on modelling the dependence of the two-point correlation function on

cosmology with surrogate models that are trained on a small set of O(100) N-body simula-

tions (Zhai et al., 2019b; Lange et al., 2019; Kobayashi et al., 2020). The surrogate models

are orders of magnitude faster than the original N-body simulations and can then be used to

sample the posterior of cosmological parameters.

For instance, Kobayashi et al. (2020) developed an N-body version of the halo model

for the galaxy power spectrum by training a neural network to reproduce the dark matter

halo clustering properties in Fourier space. Zhai et al. (2019b) and Yuan et al. (2022a)

followed a different route by emulating galaxy clustering as both a function of cosmology and

galaxy-halo connection parameters with Gaussian processes (Rasmussen & Williams, 2005).

Alternatively, Lange et al. (2019) developed the so-called cosmological evidence modelling

(CEM) method. Lange et al. (2019) used N-body simulations to compute the evidence of

the data as a function of cosmology after marginalising over the HOD parameters, which can

then be used to sample the posterior distribution of the cosmological parameters. In this

way, the authors do not have to account for the errors introduced by the surrogate model.

However, this approach does not yield joint constraints on the galaxy-halo connection and

cosmological parameters, since the HOD parameters are marginalised over.

Simulation-based methods currently produce the tightest constraints on the parameter

combination fσ8 (Lange et al., 2021; Kobayashi et al., 2022; Yuan et al., 2022a; Zhai et al.,

2022) when confronted with observations. Interestingly, all studies find values for fσ8 that

are lower than those obtained from the CMB. The current challenge for emulator-based

approaches is to both make sure that theoretical predictions are on a par with the statistical
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Simulation Suite Code Lbox [h−1Gpc] Npart Mpart Halo Finder Reference
DarkQuest HR GADGET2 1 20483 1.02 × 1010 Rockstar Nishimichi et al. (2019)
DarkQuest LR GADGET2 2 20483 8.158 × 1010 Rockstar Nishimichi et al. (2019)

AbacusSummit Base ABACUS 2 69123 2.1 × 109 CompaSO Maksimova et al. (2021b)
Aemulus GADGET2 1.05 14003 3.51 × 1010 Rockstar DeRose et al. (2019b)

Table 4.1: Comparison of the characteristics of the DarkQuest suite of simulations and those
others used to train clustering emulators in the literature. The mass of dark matter particles
Mpart has units of (Ωm/0.3)h−1M⊙

errors expected from future surveys, and that the modelling of how galaxies populate dark

matter halos does not introduce biases into the analysis from small-scale clustering.

In this chapter, we present a surrogate model for real space clustering that will be com-

bined with pairwise velocity moment emulators to predict redshift space clustering. We

will then be able to combine constraints from clustering measurements and estimates of pe-

culiar velocities, obtained through either the kinetic Sunyaev-Zeldovich effect (Sunyaev &

Zeldovich, 1980) (see Calafut et al. (2021) for a recent measurement) or through peculiar

velocity surveys (Dupuy et al., 2019), to obtain more precise constraints on the cosmological

parameters. Peculiar velocity surveys and redshift space distortions have been shown to be

specially complementary to test gravity theories (Kim & Linder, 2020).

In this chapter, we focus on modelling small-scale galaxy clustering in real space, improv-

ing the emulators presented in Nishimichi et al. (2019) in terms of both accuracy and speed.

We show how a combination of neural networks trained using the predictions of N-body sim-

ulations and the halo model can produce extremely accurate predictions for the clustering of

galaxies over a wide range of pair separations 0.01 < r < 150 h−1 Mpc, as opposed to the

range r < 30 h−1 Mpc, covered by previous emulators in configuration space (Zhai et al.,

2019b; Kobayashi et al., 2020). This allows us to compute the likelihood using the full shape

of the two-point correlation function, spanning the behaviour of the one- and two-halo terms.

Finally, we demonstrate the limitations of the current implementation of the halo model

to recover unbiased constraints when an assembly bias signal (Wechsler & Tinker, 2018) is

present in the data to be analysed.

4.1 The Dark Quest simulation suite

Here, we briefly describe Dark Quest, a suite of cosmological N-body simulations designed

to build emulators of sumary statistics. A detailed description can be found in Nishimichi

et al. (2019).



4.1. The Dark Quest simulation suite 73

4.1.1 N-body simulations

The Dark Quest simulations were performed with 20483 dark matter particles in 1h−1 Gpc

(hereafter high-resolution runs, denoted HR) or 2h−1 Gpc (low-resolution runs, labelled LR)

side-length boxes, using the Gadget2 N-body solver (Springel, 2005). The mass resolutions

of the HR and LR runs are 1.02 × 1010 and 8.16 × 1010(Ωm/0.3)h−1M⊙, respectively.

In Table 4.1, we show a comparison of the specifications of Dark Quest with those of

other simulation suites that have been used to train clustering emulators in the literature

(Zhai et al., 2019b; Lange et al., 2019; Kobayashi et al., 2020; Miyatake et al., 2021). Dark

Quest, used int his work, has a higher resolution and a larger box size than Aemulus, but

a lower resolution than AbacusSummit. In the future, it will be important to demonstrate

the impact of differences in N-body codes (e.g. Grove et al. 2022), halo finders (e.g. Gómez

et al. 2022), and resolution on the cosmological parameters inferred using simulation-based

methods.

The initial conditions were generated using second-order Lagrangian perturbation theory

(2LPT, Crocce et al. (2006)) and the redshift at which to generate the initial conditions was

chosen depending on the cosmology and resolution (Nishimichi et al., 2019), with zinit ≈ 59

and 29 adopted for the fiducial HR and LR simulations respectively. Each simulation used

different random number seeds to generate the initial conditions.

The cosmologies used in the simulations cover 101 flat geometry wCDM models, as shown

in Fig. 4.1. In wCDM, the equation of state (EoS) for dark energy is parameterised through

the value of w, also known as the EoS parameter of dark energy, pde = wρde, whose value is

w = −1 in ΛCDM. Here, w is assumed to be constant.

The set of cosmological parameters is defined using optimal maximin distance sliced Latin

hypercube designs (Ba et al., 2015), which enable efficient sampling from the six-dimensional

parameter space,

C =
{
ωb, ωc,Ωde, ln

(
1010As

)
, ns, w

}
, (4.1.1)

where ωb ≡ Ωbh
2 and ωc ≡ Ωch

2 are the physical density parameters of baryons and cold

dark matter, respectively. The total matter density is the sum of the contributions from

baryons, cold dark matter, and non-relativistic neutrinos:

Ωm = Ωb + Ωc + Ων , (4.1.2)

where the physical density of neutrinos is fixed in the Dark Quest simulations as ων ≡
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Ωνh
2 ≡ 0.00064, corresponding to 0.06 eV for the total mass of the three mass eigenstates.

For given values of ωb, ωc and the density parameter for dark energy Ωde, the Hubble constant

is derived from spatial flatness, that is,

Ωmh
2 = ωb + ωc + ων , (4.1.3)

Ωm + Ωde = 1. (4.1.4)

As and ns are the amplitude and slope of the primordial curvature power spectrum normalised

at 0.05 Mpc−1. The range of parameters explored is

0.0211375 < ωb < 0.0233625,

0.10782 < ωc < 0.13178,

0.54752 < Ωde < 0.82128,

2.4752 < ln
(
1010As

)
< 3.7128,

0.916275 < ns < 1.012725,

− 1.2 < w < −0.8, (4.1.5)

which is centred on the fiducial best fitting ΛCDM model to the Planck 2015 data alone

(Planck Collaboration et al., 2016b): ωb = 0.02225, ωc = 0.1198,Ωde = 0.6844, ln (1010As) =

3.094, ns = 0.9645 and w = −1. Fig. 4.1 shows a two-dimensional representation of the

parameter space.

These parameter ranges correspond to the ranges of (±5%,±10%,±20%,±20%,±5%) for

the parameters (ωb, ωc,Ωde, ln
(
1010As

)
, ns), respectively. These ranges were chosen to cover a

parameter space that extends well beyond the constraints from the 2015 Planck data for a flat-

ΛCDM model, for which the corresponding 68% intervals are (0.72%, 1.25%, 1.33%, 1.10%, 0.51%).

Therefore, the Dark Quest simulations cover roughly up to a ∼ 10σ range around the cen-

tral best-fitting model to the Planck 2015 data. However, for the dark energy EoS parameter,

w, a different approach was taken. Since Planck data alone cannot place a stringent con-

straint on w, and also, assuming that wCDM significantly loosens the constraints on the

other parameters, we chose a strategy that is not strictly consistent for the six parameters.

Instead, we tried to cover a much wider range for w (ie, w = −1.019+0.075
−0.08 at 95% CL).

The simulation outputs were stored at 21 redshifts: 1.48, 1.35, 1.23, 1.12, 1.02, 0.932,

0.846, 0.765, 0.689, 0.617, 0.549, 0.484, 0.422, 0.363, 0.306, 0.251, 0.198, 0.147, 0.0967, 0.0478,

and 0. These redshifts are evenly spaced in the linear growth factor for the fiducial Planck
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Figure 4.1: Corner plot representation of the 101 wCDM cosmologies covered by the Dark
Quest simulation suite. We show the cosmologies chosen as training, test and validation sets,
together with the best fitting fiducial cosmology to the 2015 Planck data, using different symbols,
as indicated by the key.
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cosmology.

4.1.2 Halo catalogues

The identification of halos is of crucial importance, since the central premise of our method

is to emulate dark matter halo properties, which can be robustly measured from N -body

simulations. Appendix E of the Dark Quest paper (Nishimichi et al., 2019) provides com-

prehensive convergence tests of halo properties such as halo mass, the halo mass functions,

and halo autocorrelation functions, with respect to the choice of halo finder, halo substructure

separation, central/satellite split criterion, etc. In this section, we briefly review the main

definitions that will be used throughout.

The halo catalogues used here were identified using Rockstar (Behroozi et al., 2013b),

a friends-of-friends (FOF) halo finder that operates in six-dimensional phase space. The halo

centre is defined as the centre of mass position of the “core particles”, a subset of member

particles in the inner part of the halo. M200m is adopted as the halo mass definition in Dark

Quest, which is the mass enclosed within R200m, the radius within which the average density

is 200 times the mean mass density ρ̄m0. This definition of halo mass includes all simulation

particles within a radius of R200m from the halo centre, including gravitationally unbound

ones. When the separation between the centres of different halos is within R200m of any other

halo, the most massive halo is marked as a central halo and the other halo(s) as a satellite

halo(s). Only central halos with mass M200m ≥ 1012 h−1M⊙ are used in our analysis.

4.2 From dark matter halos to galaxies

As in Nishimichi et al. (2019) and Kobayashi et al. (2020) we use the halo model to express the

galaxy two-point correlation function in terms of dark matter halo properties. This allows us

to make theoretical predictions for different galaxy samples, including cross-correlations of two

different tracers, such as the ones that would be used in a multitracer analysis (McDonald &

Seljak, 2009), or the cross-correlation between clusters and galaxies. Moreover, a halo model

implementation allows us to model the halo-galaxy connection analytically, which means that

the accuracy of the results will not be worsened by emulator inaccuracies. As a downside,

complex models of the halo-galaxy connection such as environment-based assembly bias may

be harder to implement.
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The halo model assumes that galaxies occupy dark matter halos, and therefore that the

two-point galaxy correlation function can be split into contributions from galaxy pairs that

inhabit the same dark matter halo, and pairs in which each member occupies a different dark

mater halo (these terms will be referred to as the one and two halo terms, respectively):

ξgg(r) = ξ1h
gg (r) + ξ2h

gg (r). (4.2.1)

The one and two halo terms can be further split into correlations between two types of

galaxies: centrals and satellites. Central galaxies are positioned at the minimum of the

potential well of the dark matter halo and move with the halo’s centre of mass velocity.

Satellite galaxies orbit within the dark matter halo with virialised velocities. We assume that

the distribution of satellite galaxies is given by an NFW profile, uNFW(r|c(M)) (Navarro et al.,

1997). This approximation has been tested against hydrodynamical simulations, finding it

valid for galaxies selected by number density (Bose et al., 2019). The NFW profile is defined

by one parameter: the concentration of the halo, c, which varies with halo mass, redshift,

and cosmological parameters (Ludlow et al., 2016; Diemer & Joyce, 2019). Here, we use the

median concentration-mass relation c(M) from Diemer & Joyce (2019).

Regarding the galaxy-halo connection, we use the halo occupation distribution (HOD)

(Zheng et al., 2005) to model the number of galaxies in a given halo as a function of halo

mass. The occupation of central galaxies is parameterized as a Bernoulli distribution, whereas

that of satellites is assumed to be Poisson distributed. Both distributions are described by

their mean parameters

⟨Ng⟩ (M) = ⟨Nc⟩ (M) + ⟨Ns⟩ (M). (4.2.2)

We parameterize the mean galaxy numbers as in Zheng et al. (2005) by introducing the

following HOD parameters

G = {Mmin, σlog M ,M1, κ, α}, (4.2.3)

where Mmin, σlog M , and M1, κ, α define the occupation of the centrals and satellites, respec-

tively.

We describe the mean number of central galaxies for a given halo as

⟨Nc⟩ (M |G) = 1
2

(
1 + erf

(
logM − logMmin

σlog M

))
, (4.2.4)

where erf(x) is the error function. The mean occupation number of satellite galaxies is defined
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as

⟨Ns⟩ (M |G) = ⟨Nc⟩ (M |G)λs(M |G)

= ⟨Nc⟩ (M)
(
M − κMmin

M1

)α

. (4.2.5)

The empirical HOD model that we use is extremely simple. One of the simplifying

assumptions is that galaxy occupation depends solely on the mass of the dark matter halo.

Although dark matter halo mass correlates strongly with clustering, we know that dark

matter halos experience different assembly histories even at a fixed halo mass, which can

affect their clustering (Gao et al., 2005b; Gao & White, 2007b). These different assembly

histories influence secondary properties of halos, and this might, in turn, affect the formation

of galaxies and hence the galactic content of halos of a given mass. These effects together – the

variations in halo clustering and galactic content with halo mass and a second halo property

– are known as galaxy assembly bias (see Wechsler & Tinker 2018 for a recent review on the

galaxy-halo connection and assembly bias). The question we will address in Section 4.4.3, is

whether the simplified version of the galaxy-halo connection used here is flexible enough to

recover unbiased constraints on the cosmological parameters.

Given these assumptions, we can express the two-point galaxy correlation function in

terms of dark matter halo properties. To simplify the calculations, we further split the one

and two halo terms into correlations of central and satellite galaxies

ξgg(r) = ξ1h
ss (r) + 2ξ1h

cs (r) + ξ2h
cc (r) + 2ξ2h

cs (r) + ξ2h
ss (r). (4.2.6)

In the equations below, we highlight the emulated quantities in blue, such as the halo mass

functions, dn/dM , and halo auto correlation functions, ξhh(r), following the convention used

in Miyatake et al. (2020). Terms involving both centrals and satellites lead to the convolution

of the halo profiles and the halo two-point correlation function. It is therefore simpler to

compute these terms in Fourier space, where convolutions in coordinate space become simple

products, and then apply an inverse Fourier transform to the result. Therefore, we compute

P 1h
ss (k) = 1

n̄2
g

∫
dM dn

dM (M) ⟨Nc⟩ (M)λ2
s (M)uNFW(k|M, c(M))2, (4.2.7)

where uNFW(k|M, c(M)) is the Fourier transform of the truncated NFW profile (see Eq. (81)

in Cooray & Sheth 2002).

The cross-correlation between centrals and satellites that occupy the same halo is given
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by

P 1h
cs (k) = 1

n̄2
g

∫
dM dn

dM (M) ⟨Nc⟩ (M)λs(M)uNFW(k|M, c(M)), (4.2.8)

where dn/dM(M) is the halo mass function defined as the comoving number density of halos

for a given halo mass, and n̄g is the galaxy number density that we obtain by integrating the

halo mass function weighted by the halo occupation

n̄g =
∫

dM dn
dM (⟨Nc⟩ (M) + ⟨Ns⟩ (M)) . (4.2.9)

Meanwhile, the different two-halo terms will result in weighted averages of the dark mat-

ter halo two point correlation function and convolutions with NFW profiles when satellite

correlators are involved

P 2h
cs (k) = 1

n̄2
g

∫
dM dn

dM (M) ⟨Nc⟩ (M)∫
dM ′ dn

dM (M ′) ⟨Nc⟩ (M ′)λs(M ′)

Phh(k|M,M ′)uNFW(k|c(M ′)),

(4.2.10)

P 2h
ss (k) = 1

n̄2
g

∫
dM dn

dM (M) ⟨Nc⟩ (M)λs(M)∫
dM ′ dn

dM (M ′) ⟨Nc⟩ (M ′)λs(M ′)

Phh(k|M,M ′)uNFW(k|c(M ′))uNFW(k|c(M)).

(4.2.11)

We avoid the Fourier transform when computing central-central terms

ξ2h
cc (r) = 1

n̄2
g

∫
dM dn

dM (M) ⟨Nc⟩ (M)∫
dM ′ dn

dM (M ′) ⟨Nc⟩ (M ′)ξhh(r|M,M ′).
(4.2.12)

In the next section, we show how we can use neural networks to emulate the two statistics

shown in blue that vary with cosmological parameters: dn/dM and ξhh.

4.2.1 The best of both universes: combining simulations of different reso-

lutions

Although the high-resolution (HR) simulations can resolve halos of lower masses than their

low-resolution (LR) counterparts, their smaller box size results in a larger sample-variance

noise than in the LR boxes.
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The halo model approach outlined above allows us to calibrate the halo autocorrelation

function using the LR simulations, to reduce sample variance when using measurements from

one realisation, while calibrating the halo mass function with the HR simulations to ensure an

accurate estimate of the halo mass function for low mass halos. In this section, we examine

the impact of combining the halo mass function of HR simulations with the halo correlation

function measured in LR simulations.1

In Fig. 4.2, we show a comparison of a mock LOWZ-like catalogue obtained from the 25

realisations of the fiducial cosmology for the HR simulations, to the result of Eq. 4.2.6 when i)

we combine the halo mass function from HR simulations, with the halo two-point correlation

function estimated from one of the HR boxes (solid blue line), ii) estimate both the halo

mass function and halo two-point correlation function from the LR simulations (dashed red),

and iii) measure the halo mass function in the HR simulation, and the halo auto-correlation

from the LR simulation. Fig. 4.2 shows that combining clustering measurements from low-

resolution simulations with a halo mass function measured in the HR simulation does not

introduce any biases and reduces the sample-variance noise.

4.3 Neural Network emulators for dark matter halo properties

Nishimichi et al. (2019) fitted both the halo mass function and the halo autocorrelation

function measured from the N-body simulations using a combination of principal component

analysis (PCA), to reduce the dimensionality of the data vector, and Gaussian processes

(GP), to fit the dependence of the principal component coefficients on cosmology. Here,

we show how dimensionality reduction can be avoided by using neural network emulators,

leading to increased accuracy in the prediction of halo properties.

Fully connected neural networks approximate a function f such that

y = f(x|θ), (4.3.1)

where x represents the features of the data set, y the desired outputs, and θ the network-free

parameters, also called trainable parameters. The optimal function f is defined by the set

of values θ that minimise the loss function (the form of which is discussed below). The loss

function provides a measure of the model’s performance when evaluated on the data set.

1Note we could also have extended the mass resolution of the LR halo catalogues, using a scheme like the
introduced by Ramakrishnan & Velmani (2021) or Armijo et al. (2022).
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Figure 4.2: We show ξR
gg obtained by populating the 25 realizations of the fiducial cosmology on

the HR simulations with mock LOWZ galaxies, compared to the result of Eq. 4.2.6 when either:
i) both dN/dMh and ξR

hh are measured on the HR simulations (in blue), ii) both dn/dMh and ξR
hh

are measured on the LR simulations (in red) and iii) dn/dMh is obtained from the HR simulations
and ξR

hh from the larger boxsize LR ones (in green). The fractional difference plot in the lower
panel shows that the sample variance in the blue line based on the correlation function measured
from one HR box is greatly reduced by replacing it with LR simulations without introducing
bias. Blue shaded denote the standard deviation of the 25 realizations of the HR simulations.
the gray shaded regions denotes 1% errors.
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ReLU (Rectified Linear Unit; Agarap 2018) is the most commonly used activation function

in current neural networks used to add non-linearities in the mapping between inputs and

outputs, and is defined as

ReLU(x) = max(0, x), (4.3.2)

where x is the output of the previous layer of the neural network. Note that ReLU activa-

tions are not differentiable at zero. Here, however, we are interested in functions that are

differentiable with respect to their inputs and, in particular, with respect to the cosmological

parameters (since these derivatives could be used to accelerate parameter inference through

Hamiltonian Monte Carlo techniques, e.g. Duane et al. 1987, or to accelerate Fisher fore-

casts). Therefore, throughout, we use Gaussian error linear units (GELUs) as activation

functions instead (Hendrycks & Gimpel, 2016):

GELU(x) = 0.5x
(

1 + erf
(
x√
2

))
. (4.3.3)

To find the optimal parameters, θ, which reproduce the statistics measured from the

N-body simulations, we minimise the L1 norm loss function

L = 1
N

N∑
i=0

|yi
true − yi

predicted|, (4.3.4)

using the Adam optimiser (Kingma & Ba, 2014). The L1 loss reduces the importance given

to outlier errors compared to the use of the mean squared error (also known as the L2 norm).

We will refer to the value of Eq. 4.3.4 evaluated in the training and validation dataset as

training and validation loss, respectively.

Moreover, we avoid fine-tuning the value of the learning rate by using a learning rate

scheduler that reduces the learning rate by a factor of 10 every time the validation loss does

not improve after 20 epochs. We also stop training the model when the validation loss does

not improve after 100 epochs. This iterative reduction of the learning rate allows the model

to quickly learn the broad characteristics of the data and then reduce the errors by adopting

a smaller learning rate. The initial learning rate is always set to 0.015.

In the following subsections, we demonstrate the precision of fully connected networks in

reproducing the real-space correlation function and the halo mass function obtained from the

dark quest simulations.
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4.3.1 Real space correlation function

Measurement

The details of the halo correlation function measurements are introduced in Nishimichi et al.

(2019). Here, we present only a summary of the most important aspects.

First, noisy measurements of ξ(r|M,M ′) are avoided by instead measuring ξ as a function

of halo number density, n, and switching from differential to cumulative mass limits. We

then use the halo mass function to translate predictions as a function of number density into

predictions as a function of differential mass through the relation

ξ(r|n(m), n(m′)) =
∫∞

m dM
∫∞

m′ dM ′ξ(r|M,M ′) dn
dM (M) dn

dM (M ′)∫∞
m dM

∫∞
m′ dM ′ dn

dM (M) dn
dM (M ′)

=
∫∞

m dM
∫∞

m′ dM ′ξ(r|M,M ′) dn
dM (M) dn

dM (M ′)
n(M)n(M ′) ,

(4.3.5)

which can be inverted to obtain

ξ(r|M,M ′) =
∂2

∂m∂m′ [n(m)n(m′)ξ(r|n(m), n(m′))]
dn
dM (M) dn

dM (M ′)

= ∂2

∂n∂n′
[
n(m)n(m′)ξ(r|n(m)n(m′))

]
.

(4.3.6)

Measurements are made in 8 logarithmically spaced bins in number density over the range

nh =
[
10−6, 10−2.5] (h−1Mpc

)−3. In total, there are 36 independent combinations for two halo

samples with different number densities. The pair separation r is split into 40 logarithmically

spaced bins from 0.01 to 5 h−1 Mpc and 75 linear bins from 5 to 150 h−1 Mpc, and over the

21 simulation snapshots spanning from z = 1.48 to z = 0.

In total, the data set is made up of 80 cosmologies in the training set, 10 in the validation

set and 10 in the test set, each with its corresponding 21 snapshots and 36 number density

bins.

On large scales, we can reduce cosmic variance by using the propagator-based prescription

of Crocce & Scoccimarro (2006). For Gaussian initial conditions, the propagator can be

expressed as the ratio of the cross-power spectrum between the density field at the initial

conditions and the nonlinear field at the redshift of interest, to the linear power spectrum.

This calculation was originally performed for the matter density, but can be extended to the

halo density field. The propagator quantifies how much of the memory of the initial conditions

is preserved in the final nonlinear density field. The propagator describes the smearing of BAO

feature due to large-scale random flow. One can straightforwardly generalize this approach
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to any tracer. This function also describes the linear bias factor in the large-scale limit.

The advantage of using the propagator is that a large fraction of sample-variance error is

cancelled when the ratio between the two spectra is taken. In addition, it is known that the k

dependence of the propagator is simple. A Gaussian-like parameterized function is sufficient

to model this accurately (see Nishimichi et al. 2019 for more details).

We have slightly updated the implementation of this idea here. In Nishimichi et al.

(2019), to evaluate the correlation function, both the directly emulated correlation function

(for small separations) and the propagator-based model (for large separations), in which the

propagator is also emulated, are computed and then stitched together to cover a wide range of

separations. This requires us to build two separate emulators and both of them must be used

when evaluating the correlation function. Here, instead, we now work at the data level: for

each simulation box, we construct a data vector that combines the two methods. We refined

the stitching scheme to yield a smoother transition between the two regimes (Nishimichi

et al. in prep.). Now, our neural-network emulator learns this new datavector, to which the

propagator trick has already been applied.

Emulation

We train a fully connected neural network, f , to perform the following mapping

log10

(
ξR

hh(r)
)

= f(C, log10(n1), log10(n2), z), (4.3.7)

where n1 and n2 denote the number densities of each halo sample, z is the redshift and C

represents the set of cosmological parameters in Eq. 4.1.1.

The input to the neural network has been standardised to facilitate training (such that

its mean is 0 and standard deviation is 1). The output of the neural network is the logarithm

of the correlation function log10(ξhh), which is also standardised by

log10

(
ξR

hh(r)
)

→
log10

(
ξR

hh(r)
)

−
〈
log10

(
ξR

hh(r)
)〉

√
Var

(
log10

(
ξR

hh(r)
)) , (4.3.8)

where
〈
log10

(
ξR

gg(r)
)〉

and Var
(
log10

(
ξR

gg(r)
))

are the mean and variance of all correlation

functions, estimated from the training set.

The output of the neural network is all the values of the correlation function evaluated for

the pair-separation vector, r. Interestingly, when fitting the neural network with r as input,

the model tends to overfit the data and converges to a less accurate overall model, while
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Statistic Batch size Activation Nhidden Resolution
ξhh 5000 GELU 1024, 512, 512 LR
dn
dM 5000 GELU 1024, 512, 512 HR

Table 4.2: Summary of the best performing set of hyperparameters for the neural network emu-
lators used to predict halo properties. The last column indicates the simulation resolution from
which the quantity listed in the first column is measured.
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Figure 4.3: Comparison of the absolute fractional errors of the neural network emulator for
the halo real space two point correlation function, with the Gaussian process + PCA approach
presented in Nishimichi et al. (2019). We only include test set data, but for all redshifts and halo
number densities. The grey shading shows the variance estimated from the simulations using the
15 realisations of the fiducial Planck cosmology, σξfiducial/ξfiducial.

combining all pair separations shares the weights of the neural network across the values of

r and reduces the level of overfitting.

We summarise the best-fitting hyperparameters of the neural network in Table 4.2.

In Fig. 4.3, we show the performance of the neural network as a function of pair separation

compared to that found in Nishimichi et al. (2019). Fig. 4.3 shows the absolute errors

estimated in the test set, as a function of pair separation r. Number densities and redshifts

have been averaged.

The median absolute errors are lower than 2% throughout the entire scale range, a factor

of 4 smaller than the upper limit of Nishimichi et al. (2019), while 68% had errors smaller

than 6%, which is a factor of 5 smaller. We further compare the variance of the emulator

errors (68th percentile fractional residuals) to the variance in the simulations themselves (grey

solid background). This comparison shows that the emulator is already performing at a level

similar to the variance in the simulations over the full-scale range. Note also that we cannot

accurately estimate the model accuracy below the level of sample variance in the simulations,

given that we only compare the accuracy of the model against one N-body realisation for

each cosmology in the test set.
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4.3.2 Halo mass function

Measurement

As explained earlier, we used the HR simulations to model the halo mass function. To do

this, we first create a histogram of the number of halos in 80 logarithmically spaced bins in

halo mass over the range of 1012 to 1016 h−1M⊙. Following Nishimichi et al. (2019), we apply

a correction to individual halo masses to account for systematics due to the finite number of

particles. The corrected mass is given by (e.g. Warren et al. 2006):

M̃ = (1 +N−0.55
p )M, (4.3.9)

where Np is the number of simulation particles contained in the halo. The raw histogram is

rather noisy, especially at the high-mass tail due to the small number of halos per bin. To

produce a smooth mass function, we fit the data points using the functional form employed

in Tinker et al. (2008). In doing so, we fix the parameter “b” in the formula, which controls

the low mass behaviour, to the original value in Tinker et al. (2008) and allow the other

three parameters to vary freely. We weight the bins according to the Poisson noise, which is

more important at high masses, and the mass-determination accuracy, which is sensitive to

the number of particles in the halo

∆Nh
Nh

= 1√
Nh

+ 1
Np

. (4.3.10)

The uncertanties in the fitted parameters are propagated to the smooth model prediction to

obtain the expectation value, as well as the uncertanties of the estimated halo number counts

in each mass bin.

Emulation

As in the case of the halo two-point correlation function, we train the model on the logarithm

of the halo mass function to reduce the dynamic range of the observable. In this case, the

mapping we obtain is

log10

( dn
dM

)
= f(C, z). (4.3.11)

As before, we standardise inputs and outputs before training the model.

In Fig. 4.4, we compare the N-body measurements from the 10 test cosmologies with the

emulator predictions at z = 0. The emulator achieves subpercent accuracy for halo masses

smaller than 1014 h−1M⊙, with the error increasing for larger halo masses. Estimating the
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Figure 4.4: N-body measurements (points) and emulator predictions (lines) for the halo mass
function at z = 0 in the 10 test set cosmologies. The lower panel shows the absolute fractional
errors as a function of halo mass. The fiducial Planck cosmology is shown in black.
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Figure 4.5: Absolute fractional errors on the halo mass function emulator predictions as a function
of halo mass. The left panel shows the result for each test set sample (the 10 set cosmologies
evaluated at the 21 different redshifts) as a gray line, along with the median (dark blue line) and
68th percentile range (light blue line) of the absolute fractional errors. The right panel shows the
median absolute error as a function of halo mass, with different lines showing different redshifts,
as indicated by the legend.

error is, however, challenging for halo masses larger than 1014 h−1M⊙ due to the large Poisson

noise that affects the measuremenents caused by the small number of cluster-size halos in the

simulations.

In Fig. 4.5, we evaluate the overall accuracy of the halo mass function emulator at all

redshifts (left panel) and as a function of the redshift (right panel). We find that the median

emulator error for all redshifts is below 1 per cent for halo masses smaller than 1013.5 h−1M⊙,

and increases rapidly to values larger than 10 per cent for the most massive halos (Mh > 1015

h−1M⊙). The right panel of Fig. 4.5 shows that the accuracy of the emulator degrades slightly

at the highest redshifts considered (z = 1.48).
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4.3.3 Galaxy clustering

We now assess the impact that inaccuracies in halo emulators have on galaxy clustering predic-

tions. To do so, we populate the 10 test and 10 validation LR simulations with mock galaxies.

We populate each cosmology at four different snapshots (z=0.1,0.25,0.5 and 0.75) and 5 differ-

ent galaxy number densities, logarithmically spaced between log
(
n̄gal/(h−1Mpc)−3) = −3.7

and log
(
n̄gal/(h−1Mpc)−3) = −4.3. Note that halo property emulators cannot estimate

galaxy clustering for arbitrary number densities, given that the lowest halo mass resolved by

the Dark Quest simulations is 1012 h−1M⊙.

For each combination of cosmology, redshift, and number density, we randomly sampled

the HOD parameters from the ranges

σlog M ∈ [0.1, 0.8]

αsat ∈ [0.5, 1.]

κ ∈ [0.1, 0.8]

logM1 ∈ [13.5, 14.5] .

The remaining HOD parameter, logMmin, is fixed by the given galaxy number density. In

total, we built a diverse sample of 400 HOD mocks with varying cosmology, HOD parameters,

and redshift, to test the performance of the emulator.

Fig. 4.6 shows the emulator predictions for 20 HOD mocks at fixed redshift (z = 0.25),

each of the curves is generated from a different set of cosmological parameters in the test and

validation sets. Comparing the mock HOD catalogues with the emulator predictions, we find

that the median error of the emulator is below 3 per cent on scales smaller than 50 h−1 Mpc,

as shown in Fig. 4.7. Furthermore, the 68th percentile interval of the error increases only by

1 per cent with respect to the median. There is a small increase (≈ 1 per cent) in the error

in the transition from one-to-two-halo term that occurs between 1 and 2h−1 Mpc. On large

scales, the variance of the measurements is large, making it difficult to accurately determine

the error of the emulator.

Fig. B.2 shows the performance of the emulator as a function of the galaxy number density

and redshift. In both cases, the emulator shows similar levels of performance and therefore

does not show any bias.
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Figure 4.6: Emulator predictions for a subset of the 400 HOD mocks generated to test the
accuracy of galaxy clustering. We show only those at z = 0.25. Planck cosmology is shown in
black. The top panel shows all measurements from the 20 HOD catalogues and the corresponding
emulator prediction. On the bottom pannel, we show the absolute error of the emulator as a
function of scale.

10−1 100 101

r [h−1 Mpc]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

∣ ∣ ∣ ∣ξ
p
r
e
d

g
g
−
ξ
N
−

b
o
d
y

g
g

ξ
N
−

b
o
d
y

g
g

∣ ∣ ∣ ∣

68th

Median

Figure 4.7: We show the absolute error of the emulator as a function of scale for each of the
400 HOD mocks generated to test the accuracy of galaxy clustering predictions for different
cosmologies, redshifts, and galaxy number densities. The light and dark blue lines show the 68th
credible interval and the median of the absolute errors.
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z̄ n̄g
[
(h−1Mpc)−3] logMmin [h−1M⊙] σlog M logM1 [h−1M⊙] κ αsat

Fiducial 0.251 2.174 × 10−4 13.62 0.6915 14.42 0.51 0.9168
Min prior - - 12 0.1 12 0.01 0.5
Max prior - - 14.5 1 16 3 3

Table 4.3: The fiducial values and priors of the parameters for mock galaxy surveys that resemble
the LOWZ galaxy sample.

4.4 The inverse problem: From correlations to cosmology

Here, we show how the galaxy two-point correlation function emulator is able to recover the

cosmological parameters from mock simulated galaxies, first using the same HOD prescription

as the one implemented in our theoretical model within the 68% credible interval for all

parameters.

It should be emphasised that we focus on the three-dimensional two-point correlation of

galaxies in real space, which is not directly observable in galaxy surveys. What we observe

is the redshift space two-point correlation function of galaxies, which will be the subject of

future work. However, it is important to show that the emulator is capable of recovering the

parameters of interest for a mock dataset and to study the potential biases that might arise

from adopting a too simplistic HOD model. We will also examine the scale dependence of

the cosmological information content, which will, in turn, be important in determining the

information content in redshift space.

We generated mock galaxy catalogues for LOWZ SDSS-like galaxies based on the fiducial

Planck cosmology of the Dark Quest HR simulations, following Kobayashi et al. (2020).

See Table 4.3 for the characterisation of the mock sample.

We use nested sampling, in particular the implementation of pymultinest (Buchner

et al., 2014), to obtain samples from the posterior distribution. The posterior is defined as

p(θ|D) ∝ L(D|θ)p(θ), (4.4.1)

where θ are the parameters to be estimated, p(θ|D) is the posterior distribution of the pa-

rameters given the data, L(D|θ) describes the likelihood of the data given the parameters,

and p(θ) is the prior distribution of the model parameters.

We used a combination of the real space two-point correlation function and galaxy number

density as our data vector and assumed that the likelihood follows a Gaussian distribution.
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Therefore, we compute the log-likelihood, ℓ(D|θ), (up to a normalisation factor) as follows

ℓ(D|θ) = −1
2
∑
ri,rj

[ξs(ri) − ξs(ri|θ)] × C−1(ξs(ri), ξs(rj))

× [ξs(rj) − ξs(rj |θ)] +
(ns

g − ns
g(θ))2

σ2
ng

,

(4.4.2)

where ξs(ri) denotes the two-point correlation function of the data for sample s, and ξs(ri|θ)

is the prediction of the theoretical model where θ denotes the model parameters, i.e. cosmo-

logical and HOD (C + G), C is the data covariance matrix, ns
g is the galaxy number density

estimated from the data, ns
g(θ) the theoretical prediction, and σng the estimated error of the

data that we fix to a nominal value of 5 per cent. The galaxy number density depends both

on the HOD parameters and on cosmology, as seen in Eq. (4.2.9). See Appendix B.2 for a

description of how the covariance matrix is estimated from N-body simulations.

Unless otherwise stated we will use the entire range of scales on which the emulator

was trained, 0.1h−1 Mpc ≤ r ≤ 150h−1 Mpc, to perform inference. Furthermore, although

we vary the cosmological parameters C = {ΩΛ, lnAs, ωc}, we show constraints on the derived

parameters most commonly used C = {Ωm, σ8, h}. The priors on the cosmological parameters

are chosen to be uniform within the range of the sampled latin hyper-cube (Eq. 4.1.5); the

priors on the HOD parameters are also chosen to be uniform with the ranges shown in

Table 4.3.

4.4.1 Fiducial constraints

Here, we show that the emulator is capable of recovering the fiducial parameters of the mock

catalogue within the 68% confidence interval for all parameters. The resulting 2-D posterior

distributions are shown in blue in Fig. 4.8.

In the same figure, we also show the resulting constraints when the HOD parameters are

fixed to their fiducial values (green) and the constraints on the HOD parameters when the

cosmological parameters are fixed to their fiducial values (red).

Although taking either of these two steps in a real analysis would underestimate the error

on the estimated parameter values, and most likely bias them, this is a useful exercise to

determine how much more one could learn by combining the two-point correlation function

with other statistics that can constrain the HOD parameters more accurately. For example,

Hahn & Villaescusa-Navarro (2021) demonstrated how using the bispectrum could help us to

improve constraints on both the cosmological and HOD parameters, by breaking degeneracies
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between them. Other probes, such as galaxy-galaxy weak lensing (More et al., 2015) can also

be used to infer the HOD parameters. Fig. 4.8 shows that the constraints on Ωm and σ8

could be significantly improved by breaking the degeneracies with the HOD parameters.

On the other hand, it is mostly the mass scales Mmin and M1 that are better constrained

by galaxy clustering when fixing the cosmological parameters. The remaining satellite pa-

rameters α and κ do not improve significantly by fixing cosmology. This is probably due to

the fact that LOWZ galaxies have a low fraction of satellites, compared with other galaxy

selections, and therefore their galaxy two-point correlation function is not very sensitive to

these two satellite occupation parameters.

Fig. B.3 shows the effect of removing the number density constraint from the likelihood.

As previously found in Miyatake et al. (2020), the constraints on cosmological parameters

are not strongly affected by the number density term. However, the HOD parameters are

sensitive to this change, with the parameters that influence the number of centrals becoming

much more poorly constrained when the number density is not used.

4.4.2 The complementary role of small scales

Here, we study how the constraints vary as a function of the minimum scale included in the

likelihood evaluation. This is a test of the performance of our model and its accuracy on

small scales, and serves to illustrate the usefulness of small scales in reducing the errors on

the recovered parameters. We show the results of this test in Fig. 4.9.

The small-scale information mainly constrains the fluctuation amplitude, σ8, as shown in

the upper panel of Fig. 4.9. From rmin = 1h−1 Mpc to rmin = 5h−1 Mpc, the errorbars on σ8

increase by a factor of 2.

In the same figure, we also show how the constraints on cosmological parameters would

change if we fixed the HOD parameters. Interestingly, the Ωm constraints would also be

improved by including small-scale information by about a factor of 2 if there were no degen-

eracies with the HOD parameters. The constraints on h are dominated by the BAO scale and

therefore do not change noticeably when smaller scales are included or the HOD parameters

are fixed.

In the bottom panel of Fig. 4.9, we show the opposite effect, that of excluding large-scale

information. The BAO scale has a very small effect on the recovered value of σ8, whereas

it dominates the constraints on the cosmological parameters Ωm and h, after marginalising
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Figure 4.8: This plot shows that the emulator can recover the true cosmological and HOD
parameters within the confidence intervals. We show the posteriors which result when varying
both cosmology and HOD parameters (C and G) (blue, labelled “C + G”) and the cosmological
constraints found when the HOD parameters (C) are set to their fiducial values (red, labelled
“C”). The constraints on the HOD parameters (G) obtained by fixing the cosmological parameters
to their fiducial values are shown in green (labelled “G”). The true values that generated the
simulated data are shown by the dotted gray lines.
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Figure 4.9: We show the estimated maximum likelihood parameters, together with their es-
timated uncertainties, for varying minimum and maximum pair separation scales used in the
analysis. In the top panel we show both the cosmological constraints obtained when marginal-
izing over the HOD parameters (circles) and when fixing the HOD parameters to their fiducial
values (triangles). This shows that the constraints on the cosmological parameters improve as
more non-linear scales are included for all parameters but h, whose constraints are dominated
by the BAO information.

over the HOD parameters. Most emulators (Zhai et al., 2019b; Yuan et al., 2022a) focus on

scales smaller than 30h−1 Mpc, and therefore lose constraining power on Ωm and h.

4.4.3 The consequences of ignoring assembly bias

We now test whether the halo-connection model used here is flexible enough to obtain un-

biased cosmological constraints when modelling the clustering of a sample known to contain

assembly bias. Although dark matter halo mass correlates strongly with galaxy clustering, we

know that dark matter halos experience different assembly histories even at fixed halo mass,

and can display different clustering. These different assembly histories influence secondary

properties of halos, and this, in turn, might also affect the formation of galaxies, and hence

result in different galactic contents for halos of the same mass.

These effects are known as halo and galaxy assembly bias. Although these two effects

share the words assembly bias, they refer to different effects

• Halo assembly bias refers to differences in the clustering of dark matter halos at a fixed

halo mass. These differences depend on the choice of secondary halo properties, which

usually correlate with the formation history of the halo, such as halo concentration or

substructure fraction.

• Galaxy assembly bias refers to differences in the number of galaxies within dark matter

halos at a fixed halo mass, which in turn may depend on secondary halo properties.
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Galaxy clustering is shaped by both of these effects. On one hand, halo assembly bias implies

that, at fixed halo mass, grouping dark matter halos by a secondary property results in a

different clustering signal. On the other hand, the way galaxies occupy dark matter halos

might depend on properties other than mass. The combination of both effects determines how

strongly galaxy clustering depends on secondary dark-matter halo properties, and therefore

how important it is to model this dependency in order to obtain unbiased cosmological

constraints.

Here, we want to test how assembly bias affects our constraints when we include effects

similar to those observed in hydrodynamical simulations (Hadzhiyska et al., 2021) and semi-

analytical models of galaxy formation (Zehavi et al., 2018; Xu et al., 2021; Jiménez et al.,

2021) in our mock galaxy catalogues. In this way, we can assess whether the halo model is

flexible enough to recover unbiased constraints from realistic galaxy mocks when including

small-scale information.

In particular, we implement the assembly bias model based on environment introduced

in Xu et al. (2021). The authors showed that the smoothed matter density can account for

most of the assembly bias signal observed in a semi-analytic galaxy formation model. This is

in agreement with other studies using hydrodynamical simulations (Hadzhiyska et al., 2021).

Note however that this environmental assembly bias effect has not been found in observational

data yet in SDSS-like survey volumes (Abbas & Sheth, 2007; Paranjape et al., 2018)

To create mock galaxy catalogues with an environment-based assembly bias signal, we

first determine the local density around each halo. We compute the dark matter density field

smoothed with a Gaussian filter over a scale of 2.5h−1Mpc, by first measuring the counts-

in-cells dark matter particle density on a 5123 grid and then multiplying with a Gaussian

kernel in Fourier space. The matter overdensity value at the position of each halo is found by

interpolating over the 3D grid. Finally, we rank the overdensity values of the halos at fixed

halo mass and normalise them to be between 0 and 1. We have computed the ranks inside 50

logarithmically spaced halo mass bins in the range 12 < log10
[
Mh/(h−1M⊙)

]
< 16. These

ranks, δrank
2.5 , are then normalised between 0 and 1 in each halo mass bin.

Once we have determined the ranked environment density around each halo, we assign

galaxies to dark matter halos through equations Eq. (4.2.4) and Eq. (4.2.5), modifying the

values of logMmin and logM1 with the rank of the halo’s overdensity value

log10Mmin(δrank
2.5 ) = log10M

0
min +Bcen ×

(
δrank

2.5 − 0.5
)
, (4.4.3)
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Figure 4.10: Constraints obtained when fitting mock catalogues that include the environment-
based assembly bias model presented in Xu et al. (2021) with our halo model emulator, which
ignores the effect of assembly bias. The cosmological parameters Ωm and h can still be recovered
within the estimated confidence intervals, since they are mainly constrained by the BAO peak,
whereas σ8 shows a small bias towards smaller values in both the weak and strong assembly bias
scenarios.

log10M1(δrank
2.5 ) = log10M

0
1 +Bsat ×

(
δrank

2.5 − 0.5
)
, (4.4.4)

where Bcen and Bsat are the central and satellite assembly bias parameters that control the

strength of the effect. Since more galaxies will form in overdense regions, the values of Bcen

and Bsat will be negative.

To explore the possible biases that ignoring assembly bias may introduce in the estimated

cosmological parameters, we study two scenarios: i) a weak assembly bias effect with values

Bcen = −0.1 and Bsat = −0.2, and ii) a strong one with values Bcen = −0.2 and Bsat = −0.4.

The weak assembly bias parameters have been chosen to mimic the level of assembly bias

signal found in Xu et al. (2021) for a sample with a galaxy number density of ngal = 0.01(
h−1Mpc

)−3. In Fig. B.4, we show that the weak scenario produces changes in the two-point

correlation function of up to 10 per cent compared with the case with no assmebly bias, while

the strong case increases the clustering by up to 20 per cent.

Fig. 4.10 shows the constraints obtained using our model (which ignores assembly bias)

to fit the clustering measured from the mock galaxy samples described above, with weak and

strong assembly bias. In both the weak and strong assembly bias scenarios, we can robustly
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recover the cosmological parameters Ωm and h since they are mostly determined by the BAO

scale. However, σ8 is biased towards smaller values in both scenarios. In the strong assembly

bias case, this shift is more than 1 − σ away from its true value. However, we note that the

strong assembly bias scenario is unrealistic for a LOWZ-like sample of galaxies (Yuan et al.,

2022a).

Fig. B.5 shows the full 2D posterior, including the HOD parameters that have shifted

in the expected direction. Intuitively, the environment assembly bias effect leads to more

galaxies forming in overdense regions (thus, the assembly bias parameters are negative). The

left hand side of Fig. B.4 shows that higher number densities in the assembly bias mocks

correspond to a higher mean number of galaxies, that could be effectively reproduced by

lowering Mmin.

Fig. 4.11 shows how the constraints on σ8 change as we vary the minimum scale included

in the determination of the likelihood. If we restrict the analysis to scales larger than 10

h−1 Mpc, the halo model recovers unbiased cosmological constraints by biasing the HOD

parameters. However, on scales smaller than 10 h−1 Mpc, when the constraining power on

σ8 doubles, lowering the mass of halos that host a central cannot mimic the effects shown in

Fig.B.4, and σ8 needs to be lowered to describe the changes around the one to two halo term

transition.

We can monitor the evidence of the model to detect whether the halo-galaxy connection

model has been mispecified. The evidence is defined as

P (D) =
∫

dθP(D|θ)P(θ), (4.4.5)

and can be interpreted as the likelihood of the data given the model. The values of the

evidence estimated by nested sampling are 20.87 for mocks without assembly bias, 18.34 for

those with a weak assembly bias signal, and 16.37 for those with a strong assembly bias effect.

Given the importance of unbiased constraints on σ8 to resolve the σ8 − S8 tension, we

will work on adding environment-based assembly bias to our emulator for its application to

DESI Y1 data.

4.4.4 Comparison with Lagrangian Perturbation Theory

In this section, we compare the emulator constraints with those obtained by 1-loop Lagrangian

perturbation theory (Chen et al., 2020, 2021) using the publicly available code velocilep-
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Figure 4.11: Inferred values of σ8 and their estimated uncertainties as a function of the minimum
scale, rmin, used in the likelihood analysis. This plot shows the systematic introduced by assembly
bias can only be removed by excluding the small scale information.

tors2. We fit the bias parameters b1, b2, and bs, together with the cosmological parameters.

Since we are only looking at the real space correlation function and not at velocity statistics,

we do not include the one-loop effective field theory counter-terms in the analysis.

In Fig. 4.12, we show how the emulator can obtain constraints similar to LPT when

analysed over the same scale range, even after marginalising the halo-galaxy connection

parameters, which are in total 6 free parameters (compared to only 3 for LPT). The LPT

predictions are slightly biased in σ8, this is due to the strong degeneracy between b1 and

σ8 that is accentuated in real space. In such a situation, the 1-D marginalized posterior

for σ8 can depend strongly on the prior or the parameterisation of the nuisance parameters,

potentially leading to a biased estimate (Sugiyama et al., 2020). The biased estimate of σ8

tends to be alleviated by including more information, e.g., redshift space distortions. As

shown in Fig. 4.12, including small scale information does allow the emulator to constrain

the parameters more accurately.

4.5 Discussion and Conclusion

We show that after marginalizing over uncertainties in the galaxy-halo connection parameters,

an emulator of the real space correlation function based on the halo model can obtain tighter

constraints on the cosmological parameters than Lagrangian Perturbation Theory (LPT)

given that the latter cannot extract the additional information contained in small scale galaxy

clustering.

The treatment of galaxy bias in both approaches is very different. On the one hand,

2https://github.com/sfschen/velocileptors

https://github.com/sfschen/velocileptors
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Figure 4.12: Comparison of the constraints obtained by the emulator based model, using the
whole range of scales or only quasi-linear scales, with the 1 loop Perturbation Theory model
presented in Chen et al. (2020, 2021) on quasi-linear scales.

the bias treatment of LPT is based on expanding the galaxy number density perturbation

δg(x), in terms of all local operators that are relevant at a given order in perturbation theory

(Desjacques et al., 2018b). The free coefficients that accompany each operator are called

bias parameters, and these are the ones that need to be fitted to the data. The flexibility

of this bias expansion to be able to reproduce the observed clustering in different galaxy-

halo connection models will be determined by the operators included and their degeneracies.

On the other hand, the HOD approach implemented in this chapter is restricted by the

assumption one makes about the halo properties that determine halo clustering and galaxy

occupations. More work is needed to determine the robustness of both approaches against

uncertainties in the model connecting halos to galaxies. In the future, we plan to compare the

constraints obtained with both models using large hydrodynamic simulations or semi-analytic

models of galaxy formation.

Regarding the emulation approach, we have combined an emulator trained in halo prop-

erties with an analytical prescription of how galaxies populate halos, as already done by

Nishimichi et al. (2019). Most other emulators, however, are trained on HOD catalogues

built on N-body simulations (Zhai et al., 2019b; Yuan et al., 2022a). Our approach has

advantages and disadvantages. In particular, the halo model allows us to reduce emulator
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errors through an analytical galaxy-halo connection, which also simplifies the task for the

emulator that only needs to learn the dependency of halo clustering on cosmological param-

eters. Moreover, the analytical model allows us to compute different observables, such as

the galaxy-cluster cross-correlation function or a multitracer two-point correlation function.

Obtaining cosmological information from small scales through these observables will be the

subject of future work. It also allows us to combine emulators trained on simulations with

different resolutions to reduce cosmic variance on large scales and perform an analysis using

the full-shape of the correlation function.

Regarding the disadvantages of our approach, extending the halo model approach to

arbitrary statistics could potentially be difficult. The emulation of statistics such as the

bispectrum, would be simplified if one were to follow the procedure outlined in Zhai et al.

(2019b) and Yuan et al. (2022a). Moreover, more work needs to be done in order to go beyond

the vanilla HOD model used in this work to introduce effects such as the environment-based

assembly bias shown in Section 4.4.3. In the future, we plan to introduce a correction based

on binning the halo two-point correlation function in terms of halo environment.

We have shown that including environment-based assembly bias in the model is impor-

tant to avoid biased constraints on σ8. This is especially relevant given the fσ8 tension.

Previously, Kobayashi et al. (2022) and Miyatake et al. (2020) had performed tests similar

to the one presented in Sec. 4.4.3 to emulators based also on the halo model. Kobayashi

et al. (2022) studied the effect that ignoring concentration-based assembly bias would have

on the cosmological parameters inferred when emulating the redshift space power spectrum

through the halo model. They found that although the mock galaxies show 10 − 20 per cent

higher amplitudes than the mocks without assembly bias, they can still recover unbiased

cosmological constraints through a change in the HOD parameters. In contrast, Miyatake

et al. (2020) found that the same effects of assembly bias would introduce biases in Ωm and

σ8 when the data vector is a combination of the projected two-point correlation function of

galaxies and galaxy-galaxy lensing. In this case, the fact that one can use galaxy-galaxy

lensing to accurately determine the scaling of halo bias with halo mass restricts the flexibility

of the HOD model, which is not able to adapt the parameters in such a way that unbiased

constraints can be recovered.

We have here explored an assembly bias model inspired by semi-analytic methods of galaxy

formation and hydrodynamical simulations. In fact, these studies find that the magnitude

of concentration-based assembly bias is small. Ignoring environment-based assembly bias
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in the theory model, we find that the halo model is not flexible enough to obtain unbiased

cosmological constraints already when the effect of assembly bias only impacts clustering

by about 10%. Moreover, we find that including the BAO scale allows us to obtain robust

constraints on Ωm.

To summarise, we have

• Presented a neural network which models the full-shape galaxy clustering in real space

based on the halo model, which is more accurate and faster than previously published

Gaussian process emulators Nishimichi et al. (2019), when trained on the same dataset.

The method presented here can produce a galaxy correlation function in less than 300

ms.

• Shown that small scale galaxy clustering (r < 5 h−1 Mpc) in real space improves the

constraints on σ8 by a factor of 2, whereas marginalising over the HOD parameters

erases the information contained on small scales for Ωm.

• Shown that a halo model that ignores effects of environment-based assembly bias sim-

ilar to those observed in hydrodynamic simulations and semianalytic models of galaxy

formation could introduce bias in the inferred σ8, while the BAO peak ensures that we

can recover Ωm and h robustly.

• Found that the above-mentioned bias in the value of inferred σ8 disappears when

analysing scales larger than 10 h−1 Mpc.

Currently, we are working on analogous neural network emulators of the pairwise velocity

moments that will be used to i) perform the real to redshift space mapping to predict the

cosmological dependence of redshift-space galaxy clustering, and ii) constrain observations of

the peculiar velocity field.

In the future, we also plan to use the neural network emulators on DESI Y1 data to con-

strain the cosmological parameters. This requires that the models be trained on simulations

with lower particle mass so that they can reach the high galaxy number densities that DESI

will measure. For this, a new simulation campaign, Dark Quest II., is currently ongoing to

cover a wider mass range (down to a few 1011 h−1M⊙) in an extended cosmological model

space including massive neutrinos, time-varying dark energy equation-of-state parameter and

spatial curvature using a newly developed fast N -body code (Nishimichi et al. in prep.).



Chapter 5

The information content of

environment dependent clustering

Extracting the relevant information from complex and high-dimensional datasets is challeng-

ing; one needs a mapping between a potentially noisy high-dimensional space, such as the

three-dimensional density field, to a reduced set of parameters that define a particular theory,

such as the cosmological parameters. We can devise different techniques by thinking about

the properties of the data, like its symmetries or signal-to-noise ratio. In Chapter 4, we

have shown how the correlation function can be used to constrain the cosmological parame-

ters from three dimensional galaxy maps. The two-point correlation function fully describes

a Gaussian random field statistically, and the symmetries of the density field allow us to

simplify its description as a function of scale only.

However, as discussed in Section 1.1.3, gravitational evolution introduces non-Gaussianities

in an initially Gaussian random field and therefore deems the two-point function sub-optimal

for the task of constraining cosmology. In this chapter, we will present a study of an alter-

native summary statistic: environment-dependent clustering (Abbas & Sheth, 2007; Tinker,

2007; Paillas et al., 2021; Bonnaire et al., 2022).

Splitting the galaxy field into different density bins naturally captures the non-Gaussian

nature of the PDF. In this work, we perform a Fisher analysis to quantify the precision with

which density-split (DS) clustering (Paillas et al., 2021) can constrain the value of cosmo-

logical parameters in a νΛCDM model. We study how different definitions of environmental

density can affect the constraints of DS and compare them with the results of the standard

two-point correlation function (2PCF). In particular, we compare the information content

102
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of DS when the environments are defined in either real or redshift space. Furthermore, in

previous studies (Paillas et al., 2021), several limiting assumptions had to be made to model

the clustering of DS analytically. To overcome this problem and estimate the full information

content of DS, we use the Quijote suite of N-body simulations (Villaescusa-Navarro et al.,

2020).

5.1 The Quijote Simulations

The Quijote project (Villaescusa-Navarro et al., 2020) is a suite of 44 100 full N-body sim-

ulations constructed to quantify the information content of cosmological observables. The

simulations span a wide range of values around the fiducial cosmology, which is set to a matter

density parameter of Ωm = 0.3175, a baryon density of Ωb = 0.049, a dimensionless Hubble

constant of h = 0.6711, a spectral index of ns = 0.9624, an amplitude of density fluctua-

tions of σ8 = 0.834, a neutrino mass of Mν = 0.0 eV, and a dark energy equation of state of

w = −1. The fiducial cosmological parameters are in good agreement with the latest Planck

constraints (Planck Collaboration et al., 2020a). There are 15 000 realisations of the fiducial

cosmology that can be used to calculate covariance matrices, as well as 500 realisations of

paired simulations where only one cosmological parameter is changed at a time, which can

be used to estimate derivatives numerically. The specifications of these simulations are listed

in Table 5.1.

The halo catalogues in each simulation are generated using a Friends of Friends algorithm

(Davis et al., 1985), with the linking length parameter set to b = 0.2. Throughout, we select

haloes at redshift z = 0.0 by imposing a minimum halo mass cut of Mmin = 3.2×1013 h−1M⊙.

Future surveys, such as DESI, will be able to sample galaxies living in haloes of much lower

masses. Therefore, the constraints shown in this chapter do not serve as a forecast for future

surveys but rather serve as a comparison between two-point statistics and DS.

Adopting a fixed mass cut can modify the bias of the halo samples with respect to the

underlying matter distribution, which in turn affects the measured clustering statistics. To

disentangle this effect from those coming from variations in cosmological parameters, we also

build halo catalogues where we impose mass cuts of 3.1 × 1013 h−1M⊙ and 3.3 × 1013 h−1M⊙,

so that we can compute derivatives of the data vectors with respect to this mass cut and

marginalise over this dependence.
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Name Ωm Ωb h ns σ8 Mν realizations
Fiducial 0.3175 0.049 0.6711 0.9624 0.834 0.0 15000
Fiducial (ZA) 0.3175 0.049 0.6711 0.9624 0.834 0.0 500
Ω+

m 0.3275 0.049 0.6711 0.9624 0.834 0.0 500
Ω−

m 0.3075 0.049 0.6711 0.9624 0.834 0.0 500
Ω+

b 0.3175 0.051 0.6711 0.9624 0.834 0.0 500
Ω−

b 0.3175 0.047 0.6711 0.9624 0.834 0.0 500
h+ 0.3175 0.049 0.6911 0.9624 0.834 0.0 500
h− 0.3175 0.049 0.6511 0.9624 0.834 0.0 500
n+

s 0.3175 0.049 0.6711 0.9824 0.834 0.0 500
n−

s 0.3175 0.049 0.6711 0.9424 0.834 0.0 500
σ+

8 0.3175 0.049 0.6711 0.9624 0.849 0.0 500
σ−

8 0.3175 0.049 0.6711 0.9624 0.819 0.0 500
Mν

+ 0.3175 0.049 0.6711 0.9624 0.834 0.1 500
Mν

++ 0.3175 0.049 0.6711 0.9624 0.834 0.2 500
Mν

+++ 0.3175 0.049 0.6711 0.9624 0.834 0.4 500

Table 5.1: Characteristics of the Quijote simulations suite that are used in this work. Each row
corresponds to a set of simulations with a varying cosmological parameter. The simulations are
set to span a grid of cosmologies ready for numerically estimating derivatives with respect to
cosmological parameters.

5.2 Density-split clustering

The DS clustering method (Paillas et al., 2021) consists of grouping a collection of random

points according to the local galaxy density around them and then extracting cosmological in-

formation from the clustering statistics that characterise each environment. This information

would be averaged out in the two-point correlation function.

We apply the DS algorithm to the halo catalogues of Quijote simulations using our publicly

available code1. In Fig. 5.1 we show a sketch of the density split pipeline, which can be

summarised as follows:

1. Generate a set of Nrandom random points that cover the sample volume and measure

the integrated halo number density contrast ∆(Rs) in spheres of radius Rs around each

random point.

2. Classify the random points into five density bins, or quintiles, based on the densities

measured from the previous step. By definition, each quantile will have the same num-

ber of points. We find that five quantiles are a good compromise between distinguishing

different environments and reducing the shot noise that a higher number of quantiles

would introduce. In Fig. 5.2 we show the random points that were classified as the least

1https://github.com/epaillas/density-split-rsd

https://github.com/epaillas/density-split-rsd
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Figure 5.1: Summary of the density split clustering pipeline. First, we sample random spheres
throughout the simulation box. Then we compute the environment density around each sphere
within a smoothing scale and group them into 5 quintiles. Using the grouped spheres, we compute
the cross-correlation between the random centres in each quintile and the all the redshift space
dark matter halos, and the auto-correlation of the random points in each quintile. Finally, we
estimate the constraints on the cosmological parameters through a Fisher analysis.

(DS1) and most dense (DS5) environments in a slice of the Quijote simulations. It can

be seen that the DS1 points correspond to regions that would normally be denoted as

voids, while the DS5 points correspond to nodes of the cosmic web.

3. Measure the multipole moments of the cross-correlation functions between the points in

each quantile and the redshift-space halo field, as well as the autocorrelation function

of the points in each quintile. The use of autocorrelations is an addition that was not

previously considered in Paillas et al. (2021). In what follows, we denote autocorrela-

tions of the i-th quintile as DSqq
i and cross-correlations between the i-th quintile and

the redshift-space halo field as DSqh
i .

4. Use changes in measured multipoles with cosmology to estimate constraints on the

parameters of the νΛCDM model through a Fisher analysis.

The multipole moments are defined as

ξℓ(s) = 2ℓ+ 1
2

∫ 1

−1
dµ ξ(s, µ)Pℓ(µ), (5.2.1)

where µ = cos θ, Pℓ(µ) is the Legendre Polynomial, ℓ = 0, 2 for monopole and quadrupole,

respectively, and ξ(s, µ) denotes either the cross-correlations between quintiles and the halo

field in redshift space, or autocorrelations of quintiles.

We have run tests with different choices of Nrandom, and have found that the clustering

measurements converge when this number is set to five times the number of haloes in each

simulation, when using five density bins. This guarantees that the number of centres in

each quintile is the same as the number of halos. Therefore, we set Nrandom = 5Nhaloes
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Figure 5.2: The positions of the DS1 and DS5 density-split quintiles (white circles) in a region
of 500 × 500 × 50 (h−1Mpc)3 from one of fiducial Quijote simulations at z = 0. The colourmap
shows the projected dark matter density within the same region. DS1 centres populate the
most underdense environments of the cosmic web, whereas DS5 centres cluster on high density
environments.

throughout the rest of this work. We set the default smoothing radius Rs to 20h−1Mpc,

which is well above the mean halo separation in the simulations but still sufficiently small to

capture non-Gaussianities in the density PDF.

Estimation of the halo density around random points in step (i) can be performed in real or

redshift space. Paillas et al. (2021) showed that, from a theoretical point of view, it is easier to

model the real to redshift space mapping when quintiles are defined in real space. However, in

observations, we only have direct access to the redshift-space galaxy field. A similar problem

is found in void-galaxy cross-correlation studies (Nadathur et al., 2019) where reconstruction

algorithms (Nadathur et al., 2018) are commonly used to detect voids in real space. However,

the reconstruction step also introduces additional complexity when estimating the likelihood

of the data given the cosmological parameters since the reconstructed data depend on some

of the parameters being fitted (such as the growth rate of structure, f , or the linear galaxy

bias). Moreover, reconstruction algorithms are not perfect and might introduce biases in the

estimates of real space quantities that would impact the inference on cosmological parameters.

This will be particularly relevant when including small scales in the analysis, where the signal-

1The projected dark matter density has been estimated using the DTFE public software (https://github.
com/MariusCautun/DTFE).

https://github.com/MariusCautun/DTFE
https://github.com/MariusCautun/DTFE
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to-noise ratio is largest. Here, we compare both the definitions of the density split and the

resulting constraints.

The autocorrelation and cross-correlation functions of each density environment are cal-

culated using pycorr2, which is a wrapper around CorrFunc (Sinha & Garrison, 2020). We

used 28 radial bins within 10 < s < 150h−1Mpc, and 240 µ bins from −1 to 1 for the

calculation of redshift-space multipoles. We restrict ourselves to using the monopole and

quadrupole moments of the correlation functions. In principle, valuable information could

also be contained in the hexadecapole, but its statistical uncertainty for the samples resolved

by the Quijote simulations is too large to be included in this analysis. We also measure the

multipoles from the halo 2PCF with the same binning scheme for comparison.

5.2.1 The impact of identifying density environments in real or redshift

space

For observational data, we can only access the redshift space positions of galaxies. However,

as in void-galaxy cross-correlation studies, their real space positions can be estimated using

reconstruction algorithms (Nadathur et al., 2018). In this section, we examine the key dif-

ferences between density splits identified in real (r-split), redshift (z-split), or reconstructed

space (recon-split), and we will later use the Fisher formalism to determine the impact that

split identification has on cosmological constraints.

First, we compare the real and redshift splits using the same set of random centres.

This allows us to make a one-to-one comparison of real and redshift space environments. In

Fig. 5.3, we show the joint distribution of overdensities estimated using either the real space

positions of the halos, ∆R, or the redshift space positions, ∆S. The contours are slightly

tilted; underdense (overdense) regions appear more underdense (overdense) in redshift space.

In underdense regions, outflows of matter will produce deeper density contrasts in redshift

space, whereas in overdense regions, coherent infall of matter will tend to produce denser

environment estimates.

On the right hand side of Fig. 5.3, we show the percentage of random points that belong

to a given quintile in real and redshift space. When the density split is performed in redshift

space, a substantial fraction of each quintile consists of misclassified points, which would have

been part of a different quintile based on their true (real-space) density. This misclassification

2https://github.com/cosmodesi/pycorr

https://github.com/cosmodesi/pycorr
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Figure 5.3: On the left, we show the joint distribution of overdensities, ∆, when identified either
in real space ∆R, or in redshift space, ∆S. In underdense regions, redshift space densities tend to
appear slightly more underdense whereas overdense regions also appear more overdense. On the
right hand side, we show the percent of centres in real space that have been identified as split i
but appear as split j in redshift space.

mostly shifts points from one quintile to its nearest neighbour(s), and larger shifts are rare.

We will now focus on the effect that this has on the multipoles of autocorrelations and

cross-correlations.

Fig. 5.4 shows the multipoles of DS cross-correlation (DSqh
i ) between points in a quintile

and the halos’ redshift space positions, and autocorrelation (DSqq
i ) functions of random points

within the same quintile, when the overdensities are estimated from the real-space positions

of halos (r-split) or from their redshift-space positions (z-split).

Quintile Autocorrelations

For the autocorrelations, shown on the right-hand side of Fig. 5.4, the monopole is very

similar in both the identified real-space and redshift-space splits. In both cases, the largest

signal is found for the overdense regions, DS5, closely followed by the underdense regions,

DS1. Although DS1, DS2 and DS3 are expected to have a negative tracer bias due to their

underdense nature, all monopoles are positive since the bias enters squared in the mapping

from matter to tracer autocorrelation functions, i.e. ξtracer = b2ξmatter. Both DS1 and

DS5 show a significant enhancement in clustering on a scale of approximately 100h−1Mpc

corresponding to the acoustic scale set by the Baryon Acoustic Oscillations (BAO).

The quadrupole, on the other hand, is completely different for the real and redshift space

identification scenarios. It is compatible with zero for splits identified in real space, whereas

it is always negative for splits done in estimated redshift-space densities. In the r-split
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Figure 5.4: Multipoles of the DS-halo cross-correlation functions (left panel) and DS autocorre-
lation functions (right panel). The subpanels compare the cases when the quintiles are defined in
redshift or real space (left and right sub-panels, respectively). Error bars represent the standard
deviation associated to a (1h−1Gpc)3 volume, estimated from multiple mock realizations of the
fiducial cosmology.
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Figure 5.5: Two-dimensional auto-correlation functions for the two extreme density splits DS1
(left) and DS5 (right), when identified in real (r-split) and redshift space (z-split). Overall, the
two point correlation functions appear squashed along the line of sight when the quintiles are
identified in redshift space.

https://github.com/epaillas/ds-fisher/blob/master/plot_multipoles.py
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scenario, where density splits are performed in real space, there is no preferred direction, and

so statistical isotropy dictates a quadrupole signal consistent with zero. When estimating

densities in redshift space, peculiar velocities along the line of sight introduce a direction-

dependent distortion to the estimated density field, which creates a redshift-space distortion

(RSD) anisotropy in the distribution of the DS centres themselves. Generally, a non-linear

transformation of a tracer density field performed in redshift space must have an additional

RSD-induced bias (Seljak, 2012; Chuang et al., 2017).

This negative quadrupole corresponds to a squashing of the two-point autocorrelation

functions along the line of sight, as can be seen in Fig. 5.5. The origin of this squashing

is related to the misidentification of the random centres shown in Fig. 5.3. Let us imagine

that we focus on a fixed position within the simulation. If the local density at this position

is high, random points around this region will be classified as DS5 in real space. In redshift

space, while it is likely that these points will also be classified as DS5, there is a chance that

the local density environment will look less dense than in real space which could cause this

point to fall within DS4 instead. This can be seen on the right-hand side of Fig. 5.3, where

approximately 11% of the points identified as DS5 in real space have been identified as DS4

in redshift space. This will most likely happen at the boundaries of the overdense regions

due to coherent infall motions. On the other hand, the same percentage of random centres

have been misidentified as DS5 while belonging to DS4 in real space. These are more likely to

be found within overdense regions. Both effects contribute to squashing the autocorrelation

function; in Appendix C.1, we explicitly show how these misidentifications contribute to

the quadrupole by decomposing it into the contributions from the correctly identified and

misidentified centres.

For the underdense regions, DS1, Fig. 5.5 shows the same squashing pattern as in the

overdense case. It might, however, seem counterintuitive if one thinks of the bulk motions

of the centres themselves. The bulk motions of DS1 centres can be characterised by their

pairwise velocity, which we can estimate through the pair conservation equation (Peebles,

1980a; Sheth et al., 2001)

v12(r) = −2
3
βaHrξ̄(r)
(1 + ξ(r)) (5.2.2)

where β = f
b and ξ̄(r) is the spherically averaged quintile autocorrelation. For a negatively

biased sample such as DS1, the pairwise velocity will be positive. Therefore, DS1 centres are,

on average, moving away from each other.

The centres are, however, not moving from real to redshift space. Instead of moving the



5.2. Density-split clustering 111

centres themselves, we sample a set of random points in either real and redshift space, and

then classify these. When sampling the DS1 centres, we still sample the inner regions of the

voids that would be moved outwards in the picture of moving centres.

Quintile crosscorrelations with dark matter haloes

On the left-hand side of Fig. 5.4, we show the multipoles resulting from cross-correlating the

random centres in each quantile with the halos’ redshift space positions. On the left column,

we show the cross-correlation with centres identified in redshift space, whilst on the right we

show the same cross-correlation when centres are identified in real space. In both cases, the

halo positions are in redshift space.

The monopole, which appears to be largely unaffected by the density split definition,

shows a wide range in amplitudes at small scales, going from the most underdense regions

in DS1, having density contrasts close to -1, to the overdense environments of DS5, which

correspond to cluster-like environments with density contrasts around 2. These amplitudes

also reflect the non-Gaussian nature of the density PDF: DS1 regions are always constrained

from below, as voids cannot be emptier than empty (δ = −1). However, the densities in

DS5 can go well beyond 1, breaking the symmetry of the distribution. At large scales,

the monopole moments slowly converge towards the mean density. In a Gaussian random

field, the splits would be perfectly symmetric (i.e. DSqh
i = DSqh

6−i); deviations from it are a

signature of non-Gaussianity in the density field, see Appendix C.3 for a comparison between

the Quijote simulations and Gaussian random fields.

On large scales, around 100h−1Mpc, we can distinguish the signal coming from baryon

acoustic oscillations for all density quintiles, both for the cross-correlation and autocorrelation

functions.

Regarding the quadrupole moment of the cross-correlations, they show features that can

be very different between the two identification scenarios. On large scales, where the two cases

behave qualitatively similarly, we see positive amplitudes in DS1, DS2 and DS3, while negative

amplitudes are observed in DS4 and DS5. According to our convention for the redshift-space

multipoles (Eq. 5.2.1), a negative (positive) quadrupole for overdensities (underdensities)

means that the distribution of haloes around these quantiles appears to be flattened along

the line of sight. We also observe that the amplitudes of the quadrupoles for DS1 and DS5 are

larger in z-split than in r-split. This is again a consequence of the misidentification of quintiles

and the additional anisotropy that the redshift-space definition of quintiles introduces.
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For the redshift-space identification scenario, the quadrupoles maintain their sign across

the whole scale range. However, for the real-space identification, we see an abrupt change

from positive to negative amplitudes for DS1. This transition, which translates to an apparent

elongation of the underdensities along the line of sight, has also been observed in the void-

galaxy cross-correlation function (Nadathur et al., 2020; Woodfinden et al., 2022), and can

be driven by the coherent outflow of galaxies from voids (see Cai et al., 2016; Nadathur

& Percival, 2019, for a more in-depth discussion about the physical interpretation of this

feature).

5.2.2 Reconstructing real-space positions

Nadathur et al. (2019) proposed to detect voids after reconstructing the approximate real-

space galaxy positions by removing the effects of large-scale velocity flows from the redshift-

space positions. The reconstruction algorithm is similar to that used in Baryon Acoustic

Oscillation (BAO) analyses (Padmanabhan et al., 2012; Bautista et al., 2018; Chen et al.,

2022), but is used only to remove the RSD. This is motivated by the theoretical challenges

that arise from modelling the clustering around cosmic voids when these are identified from

redshift-space galaxy catalogues. By using a density-field reconstruction algorithm, they were

able to move galaxies back to their approximate real-space positions, which can then be used

to identify voids. Here, we use the same method to remove RSD from the redshift-space

Quijote halo catalogues and then identify the DS quintiles in the reconstructed catalogues.

Let us place ourselves in a Lagrangian framework, in which the Eulerian position x⃗ at time

t can be described in terms of the initial Lagrangian position q⃗ and a non-linear displacement

field Ψ⃗(q⃗, t):

x⃗(q⃗, t) = q⃗ + Ψ⃗(q⃗, t) . (5.2.3)

The halo overdensity field δh(x⃗, t), can be related to the displacement field by (Nusser &

Davis, 1994)

∇ · Ψ⃗ + f

b
∇ · (Ψ⃗ · r̂)r̂ = −δh

b
, (5.2.4)

where b is the linear bias of the halo sample. The full solution to Eq. 5.2.4 includes contribu-

tions to the velocity flow coming from galaxy peculiar velocities at the corresponding redshift,

as well as additional non-linear evolution that can be traced back to earlier epochs. In BAO

analyses (e.g. Alam et al., 2017), in an attempt to undo all effects of non-linear clustering to

sharpen the BAO feature to the best extent possible, galaxy or halo positions are shifted by

−Ψ⃗ using the full displacement field. In our analysis, we are only concerned with removing



5.2. Density-split clustering 113

the RSD coming from halo peculiar velocities at a certain epoch, so the part of the solution

we are interested in is

Ψ⃗RSD = −f(Ψ⃗ · r̂)r̂ . (5.2.5)

Shifting the redshift-space halo positions by −Ψ⃗RSD, we obtain a pseudo real-space halo

catalogue that can be used to define the DS quintiles.

Several reconstruction implementations have been introduced in the literature. Here, we

use the Iterative FFT Particle Reconstruction code implemented in pyrecon3, which solves

Eq. 5.2.4 by using an iterative fast Fourier transform procedure (Burden et al., 2015). This is

the same algorithm that was applied to reconstruct the galaxy field in the eBOSS cosmological

analysis (Bautista et al., 2018). Eq. 5.2.4 shows that reconstruction is sensitive to the ratio

of the linear growth rate of structure f and the linear bias parameter b. We estimate the

value of f from the cosmology of the fiducial Quijote simulation as f = Ωm(z)0.55 = 0.532.

We estimate the linear halo bias taking the square root of the ratio between the halo and the

matter power spectrum, which yields a value of b = 1.7 on large scales. The FFT procedure

operates on the density field on a regular grid, which we set to have a size of 5123. The density

field δh is smoothed with a Gaussian kernel of width Rrecon
s to reduce the sensitivity to small-

scale density modes, for which Eq. 5.2.4 becomes inaccurate. We adopt Rrecon
s = 10h−1Mpc,

in line with Nadathur et al. (2020) for easier comparison.

We show the multipoles obtained when splitting the density field using the reconstructed

real-space positions of halos (recon-split) in Fig. 5.6, where we also compare against the real-

space identification scenario (r-split). Qualitatively, we find that the recon-split multipoles

closely follow the key features observed in the r-split multipoles: i) the quadrupole of the

autocorrelation functions being consistent with zero, ii) the smaller amplitudes of the cross-

correlation functions’ quadrupole with respect to the z-split case, and iii) the transition from

a positive to negative quadrupole for the DS1 cross-correlation function. Although the recon-

split monopole is always within 1-σ of the r-split monopole, both for auto and cross-correlation

functions, the recon-split quadrupole of the two most extreme quintiles ( DS1 and DS5) is

biased with respect to the real-space identification at scales below ∼ 30h−1Mpc, close to

the smoothing scale. In the next section, we show that this offset in the quadrupole signal

can potentially lead to biased constraints of the cosmological parameters if small scales are

included in the analysis.

3https://github.com/cosmodesi/pyrecon

https://github.com/cosmodesi/pyrecon
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Figure 5.6: Comparison of multipoles when the densities are identified in either real (dots) or
reconstructed halo positions (lines). Error bars represent the standard deviation associated to a
(1h−1Gpc)3 volume, estimated from multiple mock realizations of the fiducial cosmology.

5.3 Fisher formalism

We quantify the information content of the summary statistics using the Fisher formalism

(Fisher, 1935; Tegmark et al., 1997; Tegmark, 1997) described in Section 5.3.

In particular, if the likelihood follows a multivariate Gaussian distribution, we can com-

pute the expectation value in the calculation of the Fisher matrix (Eq. 5.3.2) analytically,

finding

Fij(θ) = 1
2Tr

[
C−1∂C

∂θi
C−1 ∂C

∂θj
+ C−1

(
∂s

∂θi

∂s

∂θj

⊤
+ ∂s

∂θi

⊤ ∂s

∂θj

)]
, (5.3.1)

where C is the covariance matrix associated with the data vector s. As shown in (Carron,

J., 2013), the first term in Eq. 5.3.1 artificially adds information that was already included

in the second term through the derivative of the mean vector. In what follows, we neglect

this term to rather produce a conservative estimate of the information content and compute

the Fisher matrix as

Fij(θ) = ∂s

∂θi
C−1 ∂s

∂θj

⊤
. (5.3.2)

In Appendix C.2, we show that the likelihood for DS statistics is indeed very close to

a multivariate Gaussian. Non-Gaussianities in the likelihood could lead to artificially tight

bounds on the cosmological parameters when using the Fisher matrix formalism described



5.3. Fisher formalism 115

by Eq. 5.3.2 (Park et al., 2022).

For most of the cosmological parameters, the derivatives can be numerically approximated

as
∂s

∂θ
≃ s(θ + dθ) − s(θ − dθ)

2dθ . (5.3.3)

Eq. 5.3.3 cannot be used to estimate derivatives with respect to Mν , as the neutrino mass

cannot be negative. In that case, we instead approximate it as follows:

∂s

∂Mν
≃ s(4dMν) − 12s(2dMν) + 32s(dMν) − 21s(Mν = 0)

12dMν
. (5.3.4)

While the initial conditions for most simulations in our sample were generated using 2LPT,

the simulations with non-zero neutrino mass were initialised using the Zeldovich approxima-

tion (ZA). For a consistent estimation of the derivatives, the Mν = 0 data vector in Eq. 5.3.4

is measured from simulations of the fiducial cosmology that were also run with ZA initial

conditions.

We calculate derivatives of the redshift-space 2PCF and DS multipoles on each of the 500

realisations of the paired simulations along three different lines of sight (taken to be the x, y

and z axes of the simulations), which effectively gives us 1500 realisations over which we take

the average (Smith et al., 2020). Fig. 5.7 shows an example of these derivatives for the matter

density parameter, Ωm. Each quintile shows a distinct sensitivity to Ωm as a function of scale.

The largest contribution comes from small scales, where we expect the density field to deviate

the most from a Gaussian distribution. The auto- and cross-correlation functions also show

different scale dependencies, which, as we will corroborate later, highlight the importance of

combining these two sets of statistics to maximise the cosmological constraining power.

We estimate the covariance matrix from the multiple realisations of the fiducial cosmology

as

C = 1
nmocks − 1

nmocks∑
k=1

(sk − s) (sk − s) , (5.3.5)

where nmocks = 7000 and s is the mean data vector averaged over all the realisations. In

Appendix C.4 we show that the inferred errors on the parameters converge when using these

numbers of realisations for the calculation of the derivatives and covariance.

To obtain the parameter constraints, two matrix inversions must be performed: the in-

version of the covariance matrix in Eq. 5.3.2, and that of the Fisher matrix in Eq. 2.1.6.

Although the estimator of the covariance matrix (Eq. 5.3.5) is unbiased, these two inversions
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Figure 5.7: (left) derivatives of the DS-halo cross-correlation multipoles with respect to Ωm,
expressed in units of the variance of the multipoles. The upper and lower rows in each panel
show derivatives of the monopole and quadrupole moments, respectively, while the left and right
columns compare results when the quintiles are defined in redshift or real space. (right) same as
the other panel, but showing the DS autocorrelation functions.

lead to biased constraints on the parameters. To account for this, we apply the Hartlap

(Hartlap et al., 2007) correction to the covariance matrix

Ĉ−1 = Nmocks −Nbins − 2
Nmocks − 1 C−1 (5.3.6)

where Nmocks is the number of mocks used to estimate the covariance and Nbins is the number

of bins of the data vector.

Fig. 5.8 shows the correlation matrix associated with this covariance for the DS and

2PCF data vectors. For DS, the covariance includes contributions from the monopole and

quadrupole moments of the auto and cross-correlation functions for each for the DS quintiles.

Since we use 30 radial bins in the range 10 < s < 150h−1Mpc, this results in a 600 × 600

matrix. For the 2PCF, we have a 60 × 60 matrix resulting from the contributions from the

monopole and quadrupole.

5.4 Information content of density-split clustering

5.4.1 Identifying environments

The first step of the DS algorithm described in Sect. 5.2 consists of estimating the halo density

in spheres of radius Rs centred around random points, which is then used to calculate the

density PDF and define the DS quantiles. The density PDF itself depends on cosmology,
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Figure 5.8: Correlation matrices of the DS and 2PCF data vectors, which include contributions
from the monopole and quadrupole moments of the redshift-space correlation functions.

which is the main source of information used in methods such as counts-in-cells statistics

(Uhlemann et al., 2020). We also expect DS to be sensitive to this information, as any changes

in the density PDF will translate into changes in the average density in each quintile, which

then propagates into changes in the observed multipoles.

Fig. 5.9 illustrates this by showing how the average density per quintile responds to

changes in the cosmological parameters. Increasing Ωm makes DS1, DS2, DS3, and DS4

denser, while the opposite occurs for DS5. On one hand, given that we have fixed the

minimum halo mass, increasing Ωm will increase the number of halos above this threshold.

For the densest quintile, DS5, the increased merger rate could reduce the number of halos

in a given sphere. On the other hand, when all other parameters are kept fixed, the effect

of raising Ωm is to reduce the amplitude of the galaxy or halo power spectrum (Kobayashi

et al., 2020) by reducing the halo bias with respect to the underlying matter distribution,

which brings the density of the quantiles slightly closer to the cosmic average. Changing σ8

produces a similar effect on the quintiles, which is again related to an increase in the number

of halos above the mass threshold and a reduced halo bias for larger σ8 values (see Fig. C.6

in the Appendix).

The effect of varying the neutrino mass goes in the opposite direction. Having a non-zero

neutrino mass lowers the density from DS1 to DS3 and boosts the density in DS5. This effect

is very similar to that of decreasing Ωm, since increasing the mass of neutrinos reduces the

amount of cold dark matter. This is consistent with the picture that neutrinos, which do not

cluster below their free-streaming scale, reduce the growth of cold dark matter perturbations.
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Although massive haloes can still form in the peaks of the density field and be resolved in

Quijote, haloes forming in shallower regions of the density field will not reach masses above

our selection threshold. The overall effect is an increased halo bias with respect to the

fiducial case with Mν = 0 (Kreisch et al., 2019), which in turn makes the voids emptier and

the clusters denser. This can be corroborated by looking at how the increase in neutrino

mass increases the amplitude of the halo-halo power spectrum in Fig. C.6.

5.4.2 Comparing the information content of density-split RSD to two point

statistics

In this section, we present the constraints obtained on the cosmological parameters through

Eq. 2.1.6 and Eq. 5.3.2. Unless stated otherwise, the DS constraints we show correspond to

the z-split scenario, i.e., when density quantiles are defined in terms of the redshift-space

overdensities.

Modelling either the real-space or redshift-space-identified quintiles analytically would be

challenging. In fact, previous studies (Paillas et al., 2021) have only modelled the real-to-

redshift mapping. However, the Fisher formalism allows us to estimate the entire information

content from direct measurements in N-body simulations.

In Fig. 5.10 we compare the constraints obtained by combining the DS auto and cross-

correlation functions of all quintiles, DSqq+qh
1+2+3+4+5, against the halo 2PCF, using multipoles
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within the scale range 10 < s < 150h−1Mpc. We limit the measurements to scales larger

than 10h−1Mpc since we are only analysing central halos, whose behaviour is very different

from that of galaxies on small scales, and because on these scales the effects of baryonic

physics would be negligible.

Fig. 5.10 shows how DS can break some key parameter degeneracies that result when

analysing two-point statistics, such as the one between Ωm and σ8, or that of ns and σ8.

In particular, when we combine the information from all quintiles, the degeneracy between

Mν and the other parameters is significantly reduced. The standard halo 2PCF suffers from

the well-known degeneracy found between σ8 and Mν , which limits its constraining power.

Although the individual quintiles DSqq+qh
1 and DSqq+qh

5 also exhibit this degeneracy to some

extent, the combined DS dataset is able to reduce it due to the different sensitivity of each

density environment to these parameters. Overall, DSqq+qh
1+2+3+4+5 increases the constraining

power with respect to the halo 2PCF by a factor of approximately ×5, ×8, ×3, ×4, ×6, and

×6 for Ωm, Mν , Ωb, h, ns, and σ8, respectively.

In Fig. 5.11 we show the individual contribution of each quintile to the parameter con-

straints. Interestingly, we find that DS1 produces the weakest constraints for the sum of

neturino masses after maginilizing over all other parameters. On the other hand, it produces

the tightest unmarginalized constraints. One expects underdense regions to be more senstive

to the properties of neutrinos, since their free streaming motions imply that the ratio of

neutrino density to that of dark matter is higher in void regions than in overdensities.

Moreover, most quintiles individually produce tighter constraints than the 2PCF, except

DS3 and Ωm. We show the equivalent of Fig. 5.11 for quintiles identified in real space in

Fig. C.7.

Fig. 5.12 compares the information content of density-split clustering when the overden-

sities are identified in redshift (z-split) or real space (r-split). The combined constraints on

the cosmological parameters are shown in Table 5.2. The real space identification of quintiles

consistently produces better parameter constraints, especially for the parameters Ωm and σ8.

When quintiles are identified in redshift space, some cosmological information is lost by the

blurring of the density-split quintiles.

However, additional information is obtained through autocorrelations when these are

identified in redshift space. This can be seen in Fig. 5.12; while the additional information

contained in the autocorrelations is small for the r-split scenario, it has a large impact in

improving the constraints for density split centres identified in redshift space. This additional
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https://github.com/epaillas/ds-fisher/blob/master/plot_likelihood_full.py
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function are shown by the grey, dashed contours for comparison.

information comes mainly from the quadrupole of quintile autocorrelations, given that the

monopole changes very little between r-split and z-split.

Finally, Fig. 5.13 shows the resulting constraints on each parameter as a function of the

minimum scale smin used in the analysis. It demonstrates how, even on large scales (i.e. BAO

peak), splitting the density field into different quantiles allows us to extract more information

on the cosmological parameters than the two-point correlation function. This would happen

even in the case of a Gaussian random field, if one compares the information content above a

minimum scale smin. In Appendix C.3, we show a qualitative explanation for the fact that the

additional information of denstiy split statistics comes from the environment definition, which

uses information from small scales that have been removed from the two-point correlation

function when comparing their information content.

5.4.3 Biases introduced by reconstruction errors

The goal of this section is to determine whether reconstruction algorithms introduce a bias

in the cosmological parameters estimated by density split measurements if we were to model

them assuming that the post-reconstruction results can recover the real-space data vectors

exactly. The reconstruction algorithm has been described in Sect. 5.2.2.

We estimate the bias in the inferred cosmological parameters introduced by an inaccurate

reconstruction algorithm using the Fisher matrix (Huterer & Takada, 2005)

https://github.com/epaillas/ds-fisher/blob/master/plot_likelihood_quintiles.py
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Figure 5.12: We compare the constraints obtained through cross-correlations of the density
split centres and the entire halo field, DSqh, to those obtained from the combination of cross-
correlations and auto-correlations of the density split centres, DSqq+qh. We show both results
for density split centres identified in real space (r-split), and density split centres identified in
redshift space (z-split). This figure demonstrates that quintile autocorrelations, DSqq, have a
bigger impact in redshift identified quintiles than they do in real identified ones.
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Figure 5.13: Constraints on the cosmological parameters from DS and the 2PCF, as a function of
the minimum scale used to calculate the Fisher matrix. We also include the individual constraints
obtained through the two extreme quintiles, DS1 and DS5.

https://github.com/epaillas/ds-fisher/blob/master/plot_likelihood_bridge_gap.py
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Figure 5.14: Bias in the cosmological parameters introduced by systematic errors caused by
reconstructing the halo’s real space positions, computed using Eq. 5.4.1. The true value of the
parameters is shown on a gray dashed line. We show the bias introduced by each of the statistics
used to infer the cosmological parameters: i) ξqq

0 , the monopole of the quintile autocorrelation,
ii) ξqh

0 , the monopole of the cross-correlations between quintiles and halos, and iii) ξqq
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2 ,

the combination of all the above with the quadrupole of the cross-correlations between quintiles
and halos.

δθα = ⟨θrecon⟩ − ⟨θr−split⟩

=
∑

β

F−1
αβ

∑
ij

[
srecon

i − sr−split
i

]
C−1

ij

∂sr−split
j

∂θβ
(5.4.1)

where srecon is the data vector obtained using the reconstructed halo positions and sr−split is

obtained through the true real space positions of the halos. We note that the bias we quantify

here is associated with the statistical errors of a (1h−1Gpc)3 volume.

In Fig. 5.14, we show the potential biases in the estimated cosmological parameters caused

by systematic errors in reconstructing the halo’s real space positions, as a function of the

minimum scale considered in the analysis. Mν , Ωm and σ8 are the parameters that are most

affected by errors in the reconstructed halo positions. In particular, biases are found when

including the monopole and quadrupole of cross-correlations between quintiles and the halo

field, ξdh
0,2 on scales smaller than the smoothing radius. In Fig. 5.6, we have shown that the

errors introduced by reconstruction mostly affect the quadrupole of cross-correlations. Using

only the monopole of quintile autocorrelations, ξdd
0 , one can obtain unbiased constraints on

the cosmological parameters using the full range of scales. However, the constraining power of
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Statistic Scales Redshifts Ωm Mν Ωb h ns σ8 Reference
DSqq+qh

1+2+3+4+5 (z-split) 10 < r < 150 z = 0 ±0.0087 ±0.0484 ±0.0060 ±0.0576 ±0.0389 ±0.0200 This work
DSqq+qh

1+2+3+4+5 (r-split) 10 < r < 150 z = 0 ±0.0033 ±0.0396 ±0.0054 ±0.0445 ±0.0280 ±0.0119 This work
Halo 2PCF 10 < r < 150 z = 0 ±0.0422 ±0.3907 ±0.0169 ±0.2099 ±0.2456 ±0.1175 This work
B0(k) k < 0.5 z = 0 ±0.011 ±0.054 ±0.004 ±0.039 ±0.034 ±0.014 Hahn et al. (2020a)
kNN 10 < r < 40 z = 0, 0.5 ±0.0111 ±0.0925 ±0.0029 ±0.0273 ±0.0206 ±0.0108 Banerjee & Abel (2021)
MST(d,l,b,s) k < 0.5 z = 0 ±0.036 ±0.23 ±0.0083 ±0.073 ±0.065 ±0.067 Naidoo et al. (2022)

Table 5.2: Comparison to Fisher forecasts for different summary statistics also based on the halo
field.

autocorrelations on small scales is smaller than that of cross-correlations with the halo field,

and therefore we would lose more information than if we were to estimate the overdensity

around random centres directly in redshift space.

We note that the results presented in this section apply to a particular choice of reconstruc-

tion algorithm, which has been described in Sect. 5.2.2. Other algorithms (e.g., White, 2015;

Wang et al., 2020) may lead to different constraints on the parameters, although a thorough

comparison of different reconstruction techniques is beyond the scope of this manuscript.

As described in Sect. 5.2.2, reconstruction also smooths the density field below a given

scale, which is a free parameter in the algorithm. In our analysis, this scale was set to

Rrecon
s = 10h−1Mpc. We do not expect reconstruction to work below Rrecon

s = 10h−1Mpc,

where the clustering information has been washed out, and consequently, the removal of RSD

may be inaccurate. Future surveys, such as DESI-BGS (Zarrouk et al., 2022), are expected

to reach much higher tracer number densities than those probed by Quijote, and the range of

scales at which reconstruction is reliable may differ. We plan to study this in further detail

in future work.

5.5 Discussion and conclusions

In this work, we have studied the cosmological information of density-split clustering (DS,

Paillas et al., 2021) in the context of the νΛCDM model. This method consists in charac-

terising the clustering of biased tracers as a function of environmental density, exploiting

the sensitivity of each environment (density quintiles) to the cosmological parameters. The

density field at small scales is highly non-Gaussian due to nonlinear gravitational evolution,

and therefore the power spectrum or the two-point correlation function (2PCF), which are

measures of the variance of the density field, become incomplete descriptions of the galaxy

distribution. DS is able to capture the missing information through a collection of correla-

tion functions that are conditioned on environmental density, which naturally captures the

non-Gaussian nature of the PDF.
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We quantify the information content of DS through the Fisher matrix, estimated numeri-

cally from the halo catalogues of the Quijote suite of simulations (Villaescusa-Navarro et al.,

2020). We have found that DS improves the constraints on each cosmological parameter by

factors between 3 and 8, when compared to the standard halo two-point correlation function.

In Paillas et al. (2021), it was already shown that the cross-correlations between galaxies

and DS quintiles could improve the constraints on the growth rate of structure by 30 per cent

over the 2PCF function analysis if the Gaussian streaming model (Peebles, 1980b; Fisher,

1995b) was used to model the real to redshift space mapping. However, the analytical model

presented in Paillas et al. (2021) relied on measurements of cross-correlation functions of real

space galaxy catalogues from ΛCDM simulations, and their cosmological dependence was

ignored in the analysis. This limits the amount of information that can be extracted to that

of the real-to-redshift-space mapping. Here, we have shown for the first time that if we can

model the full cosmological dependence of DS using N-body simulations, we can obtain much

tighter constraints.

Moreover, we have presented the autocorrelations of the DS quintiles for the first time

and have shown that they are also a valuable source of cosmological information, in addition

to the DS cross-correlation functions. In particular, the quintile autocorrelations can recover

some of the cosmological information that is lost when performing the density split in redshift

space. Introducing them in the likelihood analysis will therefore be useful to avoid the use of

reconstruction techniques and to analyse directly the redshift space identified multipoles.

The Quijote simulations have allowed us to explore the sensitivity of DS clustering to

different cosmological parameters, such as the sum of neutrino masses Mν . The combination

of all DS quintiles places a constraint of σMν = 0.0483 for a (1h−1Gpc)3 volume, assuming

that we can model the DS multipoles down to a scale of 10h−1Mpc, which results in a factor

of 8 improvement respect to the two-point correlation function constraints. DS also improves

constraints by factors of 5, 3, 4, 6, and 6 for Ωm, Ωb, h, ns, and σ8, respectively. Our

constraints are conservative, since the number density of resolved dark matter halos in the

Quijote simulations is much lower than that expected in future galaxy surveys.

Our results are in line with forecasts from other summary statistics that aim at extracting

non-Gaussian information from density fields. A natural approach is to include higher-order

correlation functions or polyspectra. Hahn et al. (2020a) found that the redshift-space halo

bispectrum provides tighter constraints on the cosmological parameters of νΛCDM, com-

pared to the halo power spectrum. In particular, the bispectrum is five times better at
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constraining the sum of neutrino masses Mν , assuming that the bispectrum can be modelled

up to kmax = 0.5h/Mpc. Including even higher-order correlations might tighten the cosmo-

logical constraints; however, even the full hierarchy of polyspectra may fail to contain all

statistical information; see Carron (2011) for an example using log-normal fields. Moreover,

the signal-to-noise ratio of higher-order moments decreases with the order of the correlators,

and the computational complexity of higher-order statistics increases with the order of func-

tion chosen. Therefore, it is important to develop alternative statistics to the hierarchy of

moments.

Most alternative summary statistics exploit the environmental dependence of clustering,

but differ on the particular definition of environment. Massara et al. (2022) showed that the

marked power spectrum of the galaxy field can improve the constraints over the standard

power spectrum by a factor of 3-6 for the νΛCDM parameters. In their method, galaxies are

weighted or “marked” with a function that depends on local density. Marks can be chosen so

that low-density regions are upweighted, which increases the sensitivity of the clustering to

certain regions of the parameter space. As opposed to density split, where random centres

are used to estimate environment densities, marked correlations use the positions of tracers

to determine environment densities, and therefore the tracer marked power spectra might

not have access to lowest density regions in the matter field.

Uhlemann et al. (2020) showed that the one-point probability distribution function of

counts-in-cells statistics provides particularly powerful constraints for Ωm, σ8 and Mν . They

highlight the importance of combining information from different redshift bins in order to

maximise information gain, which is something we have not explored in this work but could

potentially be promising for DS. Moreover, given the low number density of our halo cat-

alogues, we have not explored the additional information that the PDF might bring to DS

statistics. We plan to study how complementary these two statistics are in future work.

Banerjee & Abel (2021) used the k-nearest-neighbour (NN) distributions of haloes as

a way to constrain cosmology. Validating their method with the Quijote halo catalogues,

they found that the NN cumulative distribution functions improve the constraints on the

cosmological parameters by roughly a factor of 4, using the scale range 10 < s < 40h−1Mpc

and two redshift slices z = 0, 0.5.

Alternatively, one could also detect the positions in the cosmic web of tracers of different

environments and use their statistics to constrain cosmology. For example, Kreisch et al.

(2021) looked at the constraining power of cosmic void statistics, finding that the void size
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function, the void autocorrelation, and the void-halo cross-correlation functions provide tight

constraints on Mν on their own. Furthermore, Bonnaire et al. (2022) used the eigenvalues of

the tidal tensor to segment the cosmic web into nodes, filaments, walls, and voids, and used

them to compute their respective power spectra in real space. Here, we have shown that cross-

correlations between the halo field and the different environments add additional cosmological

information to that of the autocorrelations (see Fig. 5.12). Although the environment here is

defined differently from Bonnaire et al. (2022), we expect that similar gains could be achieved

through the introduction of cross-correlations using their environment definition. Moreover,

Bonnaire et al. (2022) assumed that the real space positions of tracers were known when

identifying environments, but did not analyse the impact that identifying environments in

redshift space could have on the resulting cosmological constraints.

Table 5.2 summarises the constraining power of different summary statistics found using

the dark matter halos of the Quijote suite of simulations. We do not include studies based

on the dark matter field, since a one-to-one comparison would not be possible. It shows

how DS can obtain state-of-the-art constraints on the cosmological parameters Ωm, Mν , and

ns while still obtaining competitive constraints on the remaining parameters. Rather than

advocating for a particular summary statistic, we highlight the possibility of complementing

these different probes, exploiting the degeneracy-breaking power that each of them has to

offer.

We have shown that the DS clustering statistics depend on whether the density envi-

ronments are defined in real or redshift space. Real-space identified quintiles yield better

constraints for all cosmological parameters, in particular Ωm and σ8, and indeed in Paillas

et al. (2021) it was shown that if one has access to the real-space galaxy positions to iden-

tify the quintiles in this way, it is possible to model the real to redshift space mapping of

the DS cross-correlation functions analytically using the Gaussian streaming model down to

∼15 h−1Mpc. However, galaxy catalogues in real space are not immediately available in ob-

servations, and one would have to rely on reconstruction algorithms to approximately remove

RSD from galaxies (Nadathur et al., 2019). But, as shown in Sec. 5.4.3, reconstruction algo-

rithms could potentially introduce systematic errors in the inferred cosmological parameters

when including small-scale information, which would then need to be added to the total error

budget.

When presenting the main cosmological constraints of our analysis, we have put aside the

complications related to the theoretical modelling and implicitly assumed that we have access
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to a model that can perfectly match the measurements down to 10h−1Mpc. An analytical

prediction of how the multipoles of DS statistics change with cosmology is a challenging task.

We plan to work on a simulation-based model to allow for a comparison between simulations

and data, which will be presented in future work. This framework could potentially allow

us to directly emulate the redshift-space DS multipoles, without the need for reconstruction.

Moreover, we have focused here on DS statistics for dark matter halos, but we will work

on simulation-based models for the DS statistics of galaxies. We expect DS to set tight

constraints on environment-based assembly bias (Xu et al., 2021).

We note that since the different samples obtained through DS are expected to share the

same sample variance, they can also use sample variance cancellation techniques such as

those proposed in McDonald & Seljak (2008) and Seljak (2008). In fact, part of the gain in

S/N we obtained over the standard 2PCF analysis might be related to this effect. However,

sample variance cancellation can only meaningfully contribute to the S/N if the shot noise

contribution is small, which is not the case for the Quijote simulations. Nevertheless, DS

might be a promising analysis technique to exploit sample variance cancellation in future

high density sample like DESI-BGS.

It has also been shown that zero-biased tracers might be a promising way to achieve op-

timal constraints on primordial non-Gaussianity (Castorina et al., 2018). Since it is basically

impossible to obtain zero biased tracers through colour or magnitude cuts, DS again might

provide a useful tool for such studies.

Relativistic effects can only be analyzed in the cross-correlation of differently biased trac-

ers with the signal itself being proportional to the difference in galaxy bias (Yoo, 2010; Bonvin

& Durrer, 2011; Challinor & Lewis, 2011). DS might prove useful for such studies, given the

large range in galaxy bias, accessible with this technique.

Ongoing and upcoming large-area surveys, such as DESI (DESI Collaboration et al.,

2016a), Euclid (Laureijs et al., 2011), and Roman Space Telescope (Green et al., 2012), will

offer unprecedented statistical precision for galaxy clustering. A vast amount of information

from these Stage-IV experiments will be available in the mildly nonlinear regime, where

the density field is non-Gaussian. Methods that can grant access to higher-order statistical

information beyond two-point statistics, such as DS, will thus play a key role in extracting

cosmological information that cannot be readily accessed with the power spectrum. This will

require percent-level precision from the modelling side, and ensuring that the models can

circumvent the observational systematic effects that will be inherent to these datasets.



Chapter 6

Computational methods across

disciplines

So far we have shown examples of how machine learning, Bayesian statistics, and high per-

formance computing can push the frontiers of what is known about the Universe and help us

detect signatures of new physics.

Although these techniques have been shown to have successful application in astrophysics,

they were not initially developed for this field. Warren S. McCulloch, a neuroscientist, and

Walter Pitts, a logician, first proposed the computational model for a neural network. In

McCulloch & Pitts (1943), the authors attempted to understand the functioning of the human

brain and its ability to produce complex patterns by connecting basic cell units. Monte

Carlo methods (Metropolis & Ulam, 1949), which make Bayesian inference for cosmology

computationally feasible, were invented by Stanislaw Ulam and John von Neumann and

developed in the area of nuclear physics.

Currently, the connection between different scientific fields is stronger than ever. On one

hand, the development of sophisticated simulations capable of replicating complex real-world

phenomena means that we need to develop tools to contrast simulations with data in an

interpretable manner. On the other hand, the collection of large datasets whose patterns

might contain the answers to the most pressing scientific questions calls for developments

at the intersection of high-performance computing and machine learning. Examples of how

such developments have led to exciting progress in science and engineering include predicting

the outcome of protein folding (Jumper et al., 2021) and learning to represent languages for

applications in natural language processing (Wolf et al., 2020). Past and future advances in

cosmology are and will be the result of a collective endeavour that spans across disciplines.
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During my Ph.D., I have had the opportunity to work on research in different areas of

science, ranging from medical imaging and epidemiology to natural language processing. In

this chapter, I will briefly describe the results in two of these areas: medical imaging and

epidemiology. In both cases, we used similar statistical and computational techniques to

those shown earlier in this Thesis.

6.1 XNet: A neural network for medical X-Ray imaging seg-

mentation

X-Ray image enhancement, along with many other medical image processing applications,

requires segmentation of images into bone, soft tissue, and open beam regions. In Fig. 6.1,

we show an example input/output pair for image segmentation. The input is the greyscale

X-Ray image of the body part, whilst the output is a segmented map in which each pixel is

classified as belonging to either bone, soft tissue, or open beam regions (i.e., nothing lies in

the path of the X-ray). The classic image processing methods (Pakin et al., 2003) developed

to solve this problem rely on a complex system of classical image processing techniques and

require tuning the hyperparameter of the models for each class of body parts.

In Bullock et al. (2019), we instead developed a machine learning approach that presents

an end-to-end solution resulting in robust and efficient inference. Since medical institutions

frequently do not have the resources to process and label the large number of X-ray images

usually needed for neural network training, we designed an end-to-end solution for small

datasets while achieving state-of-the-art results. Our dataset is composed of only 150 labelled

X-ray images, compromising 19 body parts in an imbalanced way. Given that the data set

size is small, we artificially augment the training images with the two-fold purpose of creating

a larger dataset to avoid overfitting, and balancing the different body part classes through

augmented oversampling.

We present a neural network architecture for X-ray image segmentation based on an

encoder-decoder style architecture commonly used in image segmentation (Badrinarayanan

et al., 2015). The different components of this are described below.

Encoder The encoder consists of a series of convolutional layers, for feature extraction,

and max pooling layers to downsample the input image. Max pooling is a pooling operation

that selects the maximum value in each patch of a feature map, keeping only the most salient

features. Breaking up the downsampling into multiple stages allows for varying levels of
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Figure 6.1: Visualisation of the XNet architecture including an example input image, left, and
output segmented mask, right. Feature concatenation of same dimension layers helps to avoid
losing fine-grained detail. Softmax activation function provides final pixel-wise classification.

feature extraction, with increasingly global features learnt through the convolutional layers

at each pooling stage.

Decoder After feature extraction, the decoder performs upsampling (a transposed con-

volution) of the image that has been passed through pooling to generate a segmented mask

of the same dimension as the input image. Similarly to the encoder, using a multistage up-

sampling process with convolutional layers in between allows for varying degrees of fine-grain

feature reconstruction during upsampling, thus producing dense feature maps.

Due to the small size of our images, we aim to avoid large serial downsampling of the in-

put image compared to many other networks, particularly those used in image classification.

We avoid this, since performing a greater number of downsamplings in series can be detri-

mental to accurate boundary-level detail, particularly around smaller structures. However,

downsampling allows us to learn features that are invariant to small distortions of the image,

such as shifts, and is therefore important to include in the network.

We present an architecture which incorporates a comparable, or greater, number of down-

sampling stages for feature extraction as other segmentation networks, whilst avoiding overly

reducing image resolution. This is achieved by using two encoder-decoder modules in succes-

sion, whilst storing encoder feature maps and using them during the creation of the dense

feature maps in the decoders (as can be seen in Fig. 6.1).

Our implementation produces an overall accuracy of 92%, averaged across all pixels.

The open beam region is both the most prevalent in the dataset and the easiest to classify.

Therefore, the accuracy in all classes is not necessarily the most effective metric to measure

the performance of the model. Alternatively, we use the F1 score (Taha & Hanbury, 2015)

which is the harmonic mean of precision and recall, and therefore it is a better metric to
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describe the performance of a model on an unbalanced dataset. We find an F1 score of 0.92.

These results surpass classical image processing techniques, such as clustering and entropy-

based methods, while improving the output of existing neural networks used for segmentation

in non-medical contexts.

6.2 Agent based simulations for epidemiology

The spread of SARS-CoV-2 in populations with little or no immunological resistance has

caused considerable disruption to health care systems and a large number of fatalities around

the globe since 2020. The evaluation of policies which aim to mitigate the impact of this and

other epidemics on the health of individuals relies on a detailed understanding of the spread

of the disease and requires both short term operational forecasts and longer term strategic

resource planning.

There are various modelling approaches that aim to provide insight into the spread of an

epidemic. They range from analytic models, formulated through differential equations, which

reduce numerous aspects of the society–virus–disease interaction to a small set of parameters,

to purely data-driven parameterisations which inherently rely on a probability density that

has been fitted to the current and past state of the system in an often untraceable way. As

a complement to analytic models, agent-based models (ABMs) (Bonabeau, 2002) focus on

the interactions of individuals and groups of individuals in complex social networks. They

are able to capture social mixing by modelling direct contacts between individuals belonging

to different sub-populations, as well as the geographic and demographic heterogeneity of the

populations.

In essence, ABMs can record transmission chains between individuals. Perhaps most

importantly, for an epidemic, ABMs are also able to capture individual behavioural adjust-

ments, which can change as agents interact with the larger complex system. Such models also

provide the flexibility to experiment with different policies and practises based on realistic

changes in the model structure, such as the inclusion of new treatments, changes in social

behaviour, and restrictions on movement.

However, capturing the behaviour of individuals, their activities, and social networks

requires much more detailed data inputs and greater computing power than analytical ap-

proaches. In addition, the complexity of ABMs, as well as the sometimes strong effects of

stochasticity, can make the process of fitting models to make predictions more challenging.
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We will show how a similar emulation process and Bayesian analysis developed for cosmol-

ogy can be used in the context of epidemiological simulations for parameter inference and

uncertainty quantification.

6.2.1 The JUNE model

We developed JUNE (Aylett-Bullock et al., 2021a), a generalisable modular framework to

simulate the spread of infectious diseases using fine-grained geographic and demographic in-

formation, and with a strong focus on detailed simulation of policy interventions. Individuals

in JUNE follow detailed spatio-temporal activity profiles that are informed by the available

data, including time surveys, geographic, and movement data. JUNE simulates, simultane-

ously, the full population of a country in its spatio-temporal setting, and how a disease

spreads through the population mediated by contacts between individuals. The main cost

for this level of detail in the model is increased computational load; in fact, models such as

JUNE would probably not have been possible prior to the 2010s, as they use what would have

been a prohibitive amount of computing power at the time.

The JUNE framework is built on four interconnected layers: population, interactions, dis-

ease and policy. The layers and their interfaces are illustrated in Fig. 6.2.

JUNE models the transmission of an infection from the infecting individual, i, to the

susceptible individual, s, in a probabilistic way. The probability of infection in a social

setting within a group of people g, in a location L, depends on several factors:

• the number, Ni, of infectious people i ∈ g present,

• the infectiousness of the infectors, i, at time t, Ii(t),

• the susceptibility, ψs, of the potential infectee, s,

• the exposure time interval, [t, t+∆t], during which the group, g, is at the same location,

• the number of possible contacts, χ(L)
si , and the proportion of physical contacts, ϕ(L)

si , at

location L,

• and the overall intensity, β(L,g), of group contacts at location L.

Most of these “ingredients” depend on the time, t, of contact. For example, the number of

contacts, χ(L)
si , and the proportion of physical contacts, ϕ(L)

si , and the overall contact intensity,
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Figure 6.2: Overview of the structure of JUNE. Fitted parameters are shown in bold.

β(L,g), will change with the implementation of social distancing policies. To simplify the

notation, we introduce a combined contact intensity for a group g with size Ng at location L,

β
(L,g)
si (t) = β(L,g) · χ

(L)
si (t)
Ng

{
1 + ϕ

(L)
si (t)

[
α(t) − 1

]}
, (6.2.1)

where the ratio χ/Ng provides a simple parameterisation of the probability that s is in contact

with another individual in the group and α(t) describes the relative impact of close physical

contacts. Both the factor α(t), which we assume to be the same for all locations, and the

location- and group-specific contact intensities, β(L,g), are taken from fits to the data that

will be explained in the following section.

In constructing an infection probability for a susceptible individual, s, we make several

assumptions. First, we model the probability of being infected as a Poisson process. In

keeping with the probabilistic process, the argument of the Poissonian is given by a sum over

individual pairs of infectious individuals with the susceptible person, implying a simple su-
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perposition of individual infectiousness. The underlying individual transmission probabilities

are written as the product of the susceptibility of the susceptible individual, the infectiousness

of the infected person, and the intensity of contact, all integrated over the time interval in

which the interaction occurs. Integration over time ensures that the transmission probability

increases with exposure time. Therefore, we arrive at the transmission probability, i.e. the

probability for s to be infected as:

P̄s(t, t+ ∆t) = 1 − exp

−ψs

∑
i∈g

t+∆t∫
t

β
(L,g)
si (t′)Ii(t′)dt′

 . (6.2.2)

In the actual implementation, we approximate the integral over time with a simple product

t+∆t∫
t

β
(L,g)
si (t′)Ii(t′)dt′ −→ β

(L,g)
si (t)Ii(t)∆t . (6.2.3)

6.2.2 Modelling the spread of Covid-19 in England

As a first application of JUNE, we modelled the spread of Covid-19 in England. In this context,

JUNE uses census, household composition, and workplace data to ensure that each of the 53

million people in England is assigned a specific and identifiable location at any time. Their

activities, health, age, and other demographic attributes are then modelled at a fine-grained

geographical level, which helps to ensure that the local heterogeneity in population and

movement characteristics is well recovered. A full description of the virtual twin of England

can be found in Aylett-Bullock et al. (2021a).

The challenge faced when developing a model like JUNE is to calibrate its large number of

free parameters (18 for the Covid-19 spread model in England) and the general uncertainty

of the analysis. Different regions of parameter space might be compatible with the noisy

aggregated datasets one is fitting, which implies that a point estimate of the parameters

might bias the model forecasts. A full exploration of the parameter space is necessary to

estimate the uncertainty of the model outputs.

In Vernon et al. (2022) we solve this problem with the introduction of a fast surrogate

model that emulates the number of hospital admissions and deaths in each region as a function

of the 18 free parameters of the model. This approach is extremely similar to the one

developed in Chapter 4. The fast surrogate model can then be used to obtain a set of input

parameters with a high likelihood when compared to the data. In Fig. 6.3, we show the

results for 14 of these high-likelihood parameter sets.
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Figure 6.3: Daily hospital deaths for each region in England, and for England overall, as labelled
in the title of each panel, for 14 realisations of JUNE. Data is shown in black, with 3 standard
deviation error bands.

The level of detail included in JUNE allows us to study how different subgroups of the

population were affected by the virus. Although everyone is, in principle, equally susceptible

to the virus, Covid-19 has hit harder those in less privileged socioeconomic groups. Since

JUNE can answer questions at any spatial level and for any demographic, we can compare

the prevalence of antibodies in the JUNE population with that found in the REACT2 study

during the first wave of England (Ward et al., 2020). In addition to regional differences,

Ward et al. (2020) found that the prevalence of Covid-19 is a function of age, ethnicity, the

deprivation quintile and the size of the household. Fig. 6.4 shows that JUNE reproduces these

trends, demonstrating that we can use JUNE to understand and assess the effect of different

policies to an unprecedented degree of precision.

Figure 6.4: Comparison of the predicted seroprevalence of JUNE after the first wave, with data
from Ward et al. (2020). Data are shown as grey errorbars, whereas simulation results are shown
as blue solid bars.
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6.2.3 Modelling the spread of Covid-19 in refugee settlements: Cox’s Bazar

The spread of infectious diseases such as Covid-19 presents many challenges to healthcare

systems and infrastructures around the world, exacerbating inequalities and leaving the most

vulnerable populations the most affected. Given their high population density and limited

available infrastructure, refugee and internally displaced person (IDP) settlements can be

particularly susceptible to spreading the disease. In Aylett-Bullock et al. (2021b), we have

adapted the JUNE framework described in the previous section to simulate the spread of dis-

ease in refugee and IDP settlements under various non-pharmaceutical intervention strategies.

The model is informed by data on geography, demographics, comorbidities, physical infras-

tructure, and other parameters obtained from real-world observations and previous literature.

The development and testing of this approach focus on the Cox’s Bazar refugee settlement

in Bangladesh, although our model is designed to be generalisable to other informal settings.

An important difference between the population of England and that of Cox’s Bazar is

the presence of comorbidities at younger ages. An individual’s response to Covid-19 and

other diseases can depend on the presence of diseases such as diabetes, heart conditions, and

conditions causing immune suppression. Specifically, we allow the probability of following

one of the disease trajectories to depend on the comorbidity status, together with age and

sex.

Furthermore, given the incompleteness of the testing and case reporting data in the Cox’s

Bazar settlement, we cannot use the data to inform us about the most plausible model

parameters and perform a complete uncertainty quantification analysis, as we did in the case

of England. Therefore, we focus primarily on analysing the efficacy of the intervention by

comparing the relative magnitudes of the infection curves between various implementation

conditions.

In particular, we use our model to assess interventions that were deemed the most im-

portant by public health officials operating in the settlement according to an assessment of

short- and medium-term needs, including feasibility and timeliness. All interventions were

compared with a baseline scenario which includes current policy decisions, such as closing

certain venues and changes in the probability with which people perform certain tasks.

We first examined the effectiveness of self-isolation. In many countries, those with symp-

toms that are not yet severe enough to require hospitalisation are encouraged to stay home

and self-quarantine. In the case of settlements such as Cox’s Bazar, the density and living

conditions of the residents mean that it is not possible to avoid contact with family in the
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home environment, and people often have to leave their shelter to use facilities such as hand

pumps and latrines. In an attempt to better allow the isolation of symptomatic individuals,

public health officials in the settlement established isolation and treatment facilities to house

those who tested positive for Covid-19 but did not require hospitalisation.

Our findings suggest that encouraging self-isolation at home of mild to severe symptomatic

patients, as opposed to the isolation of all positive cases in purpose-built isolation and treat-

ment centres, does not increase the risk of secondary infection, meaning that the centres can

be used to provide hospital support to the most intense cases of Covid-19.

Second, we studied the effectiveness of mask wearing, finding that mask wearing in all

communal indoor areas can be effective in dampening viral spread, even with low mask

efficacy and compliance rates.

Finally, we modelled the effects of re-opening learning centres in the settlement under

various mitigation strategies. For example, a combination of mask wearing in the classroom,

halving attendance regularity to allow physical distancing, and better ventilation can almost

completely mitigate the increased risk of infection that keeping the learning centres open may

cause.

These modelling efforts are being incorporated into decision-making processes to inform

future planning, and more exercises should be performed in similar geographies to help protect

those most vulnerable.



Chapter 7

Conclusions and Future Work

7.1 Summary

The large scale structure (LSS) of the Universe as traced by three-dimensional galaxy maps

carries a wealth of information, which can be used to constrain theories of gravity. In par-

ticular, we can use the clustering properties of the LSS to address some of the most pressing

questions opened up by the standard cosmological model, such as “What drives the acceler-

ated expansion of the universe?” and “What is the dark matter?”.

Ongoing and future surveys, such as the Dark Energy Spectroscopic Instrument (DESI)

(DESI Collaboration et al., 2016b), the Subaru Prime Focus Spectrograph (PFS) Takada

et al. (2014), and the space-based mission Euclid (Laureijs et al., 2011) will provide LSS

maps of unprecedented statistical precision. The challenge cosmologists face now is to de-

velop statistical methods that are i) accurate enough to match the precision of the data

and ii) optimal regarding the amount of information extracted, so that we can extract all of

the valuable information on gravity and cosmology contained in the LSS. Overcoming these

challenges would help us reduce the uncertainties on the estimated cosmological parameters,

which would in turn determine if the observed tensions among different values inferred for

the cosmological parameters (see Section 1) are the result of systematics, statistical bad luck,

or even the imprint of new physics that is yet to be discovered.

In this Thesis, we worked on these two challenges by: i) developing simulation-based

methods which yield predictions of summary statistics at percent-level accuracy over a wider

range of scales than previous work, and ii) showing how the constraints obtained from the

two-point functions could be enhanced through the dependence of galaxy clustering on envi-

ronment.

139
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7.1.1 The mapping between real and redshift space

Although the statistical precision of data on small scales is higher than that on large scales,

most studies that rely on perturbation theory (e.g. Chen et al., 2021) to model the dependence

of two-point functions on cosmology restrict their analysis to pair separations larger than ≈ 30

h−1Mpc. On smaller scales, perturbation theory models break down rapidly and their use

introduces biases into the inferred cosmological parameters.

To obtain fully non-linear predictions for the properties of the large-scale structure and

recover all of the cosmological information contained in the small-scale clustering, we must

resort to N-body simulations (Kuhlen et al., 2012). N-body simulations have been widely

used as cosmic laboratories to test the precision and robustness of analytical methods for

characterising the large-scale structure (e.g. Carlson et al. 2009), together with the effects of

systematic errors in our measurements.

In Chapter 3, we showed an application of N-body simulations in this spirit. Our contri-

butions were:

• We extended the Gaussian streaming model of redshift space distortions with an ana-

lytical description of the pairwise velocity distribution based on the four lowest-order

velocity moments of the PDF, the Skew-T distribution (ST). Our model describes the

pair separation dependence of the PDF significantly better than a simple Gaussian.

• Using the description of the pairwise velocity distribution to map pairs of galaxies from

real to redshift space, we find that the ST model can reproduce the multipoles of halo

autocorrelaitons to within 2% on scales larger than 1 h−1 Mpc for the monopole, 4%

for the quadrupole on scales larger than 5 h−1 Mpc, and 10% for the hexadecapole on

scales larger tan 8 h−1 Mpc. On scales smaller than around 5 h−1 Mpc, the contribution

of satellite galaxies would dominate the multipoles of the correlation function, whose

effects have been ignored in this work.

• We showed that a Taylor expansion of the streaming model can give an accurate de-

scription of the full non-Gaussian streaming model down to about 10 h−1 Mpc for the

monopole and quadrupole moments, when expanded up to the fourth order.

• We demonstrated the importance of modelling the mean pairwise velocity to better

than one per cent accuracy to obtain similar levels of precision for the monopole and

quadrupole moments. Fitting CLEFT perturbation theory estimates, with five free
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parameters, we could only obtain accurate predictions at the percent level on scales

greater than 35 h−1 Mpc. Therefore, more accurate models of the mean pairwise velocity

of dark matter halos are needed to achieve the targets of future surveys.

7.1.2 Emulating summary statistics measured from N-body simulations

Given that accurate predictions for the ingredients of the streaming model, the real space

two-point correlation function, and the lowest four-order velocity moments are needed to

accurately reproduce the real to redshift space mapping on small scales, we worked on de-

veloping simulation-based models of these summary statistics. In Chapter 4, we presented a

real space two-point correlation function emulator.

Over the past decade, advances in computing power and algorithms have allowed us to

produce a large enough number of dark matter only N-body simulations covering a significant

fraction of the cosmological parameter space. This allows us to use the simulations them-

selves as predictive models that directly constrain the cosmological parameters by leveraging

machine learning techniques. However, in order to compare the outcomes of dark matter

only simulations to the observed distribution of galaxies, we have to model the connection

between dark matter halos and galaxies (see Wechsler & Tinker 2018 for a review on this

topic).

Uncertainties in the galaxy-halo connection can limit the amount of information that

we can extract from small scale clustering. We would like to use flexible models that can

reproduce clustering in different scenarios of galaxy formation, whilst still being able to

recover cosmological information after marginalising over the free parameters of the galaxy-

halo connection model. In Chapter 4, we used the empirical model of the halo occupation

distribution (HOD) (Benson et al., 2000; Zheng et al., 2005), which describes the probability

that a given halo hosts a galaxy based on the mass of the halo.

In summary, in Chapter 4 we:

• Presented a neural network that models the full-shape galaxy clustering in real space

based on the halo model, which is more accurate and faster than previously published

Gaussian process emulators (Nishimichi et al., 2019), when trained on the same dataset.

• Showed that small scale galaxy clustering (r < 5 h−1 Mpc) in real space improves the

constraints on σ8 by a factor of 2, while marginalising over the HOD parameters erases

the information contained on small scales for Ωm.
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• Showed that a halo model that ignores effects of environment-based assembly bias

similar to those observed in hydrodynamic simulations and semi-analytical models of

galaxy formation could introduce bias into the inferred σ8, while the BAO peak ensures

that we can recover Ωm and h robustly.

• Found that the bias mentioned above in the value of the inferred σ8 disappears when

analysing scales larger than 10 h−1 Mpc.

7.1.3 Extracting more cosmological information: density-split clustering

If the galaxy field were a Gaussian random field, its two-point statistics (the power spectrum

or the two-point correlation function) would be complete summaries of the 3-D maps. But

while the density field at high redshift is indeed close to Gaussian over a wide range of

scales, nonlinear gravitational evolution produces non-Gaussianity, and limits the scales on

which the field is Gaussian to progressively larger scales at later times. Given that the mass

overdensity δ is bounded at low values by −1, since a region of the universe cannot have a

negative density, the distribution of δ values must develop skewness as the density contrast

grows. Finding alternative summary statistics to supplement the constraints obtained from

the two-point functions is currently an active area of research (see, for instance, studies on

the bispectrum Hahn et al. 2020b and the scattering transform Valogiannis & Dvorkin 2022).

In Chapter 5, we demonstrate how environment-dependent clustering can provide an effective

and interpretable method for extracting non-Gaussian information from galaxy surveys.

In particular, we show that:

• Splitting the dark matter density field into quintiles of varying local density can improve

constraints on the cosmological parameters of νΛCDM by factors between 3 and 8,

depending on the parameter. In particular, density split improves the constraints on

the sum of neutrino masses by a factor of 8×, and by factors of 5×, 3×, 4×, 6×, and

6× for Ωm, Ωb, h, ns, and σ8, respectively.

• Density split clustering statistics depend on whether the environment density is defined

in real or redshift space. Real-space identified quintiles yield better constraints for all

cosmological parameters, in particular Ωm and σ8.

• However, galaxy catalogues in real space are not immediately available in observations,

and one would have to rely on reconstruction algorithms to approximately remove RSD
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from galaxies (Nadathur et al., 2019). But, as shown in Sect. 5.4.3, reconstruction

algorithms could potentially introduce systematic errors in the inferred cosmological

parameters when including small-scale information, which would then need to be added

to the total error budget.

• Quintile autocorrelations can recover some of the cosmological information that is lost

when performing the density split in redshift space as opposed to real space. Intro-

ducing these into the likelihood analysis will therefore be useful to avoid the use of

reconstruction techniques and to analyse directly the redshift space-identified multi-

poles.

7.2 Future work

The next few years will be exciting times in cosmology. Not only will we have access to the

largest and most precise three-dimensional maps of the universe that will allow us to set very

stringent constraints on ΛCDM theories, but also new statistical methods will allow us to

unlock the potential to discover new physics.

In the following, we outline some interesting extensions to the work presented in this

thesis.

7.2.1 Simulation-based summary statistics with machine learning

Simulation-based models of summary statistics will complement the constraints obtained

using perturbation theory techniques by modelling the non-linearities present in small scale

clustering. The work presented here focused on modelling the real-space correlation function

of galaxies, but we are currently working on extending our approach to the real to redshift

space mapping through a similar simulation-based model of the pairwise velocity distribution.

Moreover, the Fisher analysis presented in Chapter 5 demonstrated the potential of envi-

ronment dependent clustering to constrain νΛCDM. To realise this constraining power with

DESI Y1 data, we will need to develop accurate simulation-based methods for density split

statistics. In particular, we would like to leverage the environment dependence to set strin-

gent constraints on assembly bias models. As shown in Chapter 5 , the surrogate model could

directly aim at reproducing redshift space identified splits, which will allow us to avoid the

introduction of reconstruction algorithms when analysing data from galaxy surveys.
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A common challenge that simulation-based models of summary statistics face is that of

attaining sub per cent level precision. A particular case is when modelling summary statistics

other than two-point correlations functions, since these might have a higher dimensionality

and more complex dependencies on the cosmological parameters. Modelling summary statis-

tics on non-linear scales based on a set of O(100) N-body simulations to the required accuracy

is a challenge for current emulation techniques.

In Lange et al. (2019), the authors showed that one could directly model the evidence for

a particular summary statistic, after marginalising the halo-galaxy connection in an exact

manner. In this way, they overcame the limitation of percent accurate predictions for the

summary statistic as a function of the halo-galaxy connection parameters. Moreover, by mod-

elling the evidence, a single number, instead of multi-dimensional observables, they showed

that they could use simple multi-dimensional Gaussian functions to model the dependency

of the evidence with cosmology.

However, since Lange et al. marginalised over the halo-galaxy connection, their approach

does not allow one to obtain constraints on galaxy formation physics. To overcome this

limitation, we would like to work on a method that emulates the likelihood function of

a given observable. This could either be done by evaluating an analytical likelihood over

a set of N-body simulations populated with mock galaxies, or by learning the likelihood

directly from N-body simulations through neural networks (Glöckler et al., 2022). While

the first option would be preferred for summary statistics such as the two-point correlation

function, where the Gaussian likelihood is a good approximation to the one measured in

N-body simulations, the second would be needed for alternative summary statistics whose

likelihood might significantly deviate from Gaussian.

In addition, we would like to combine the surrogate model for likelihood evaluation with

variational inference (VI) techniques (Blei et al., 2017; Glöckler et al., 2022) to estimate the

posterior of cosmological and galaxy-halo connection parameters without having to produce

costly MCMC samples. Variational inference is a family of machine learning techniques that

turns the classical inference problem into an optimisation one by defining a set of flexible

probability densities and then optimising a distance measure between the true posterior

and the set of flexible densities. Commonly used densities are mixture of Gaussians and

normalizing flows (Rezende & Mohamed, 2015).

Variational inference would allow for the introduction of complex relations in the con-

nection between halos and galaxies, which would otherwise introduce a prohibitively large



7.2. Future work 145

number of free parameters to be constrained through MCMC chains. Additionally, these

models can be trained sequentially to increase their accuracy while reducing the number of

simulations used.

Finally, yet importantly, we will have to make sure that halo-galaxy connection models

are on one hand flexible enough to encompass all plausible galaxy formation scenarios, whilst

allowing for precise estimates of the cosmological parameters. It will therefore be crucial to

test the robustness of simulation-based methods with large hydrodynamical simulations and

semi-analtyic models of galaxy formation.

7.2.2 Testing gravity with simulation-based methods

Although simulation-based methods increase our constraining power, they also reduce the

hypothesis space that we can test. This is especially relevant for cosmology, since N-body

simulations are extremely costly, particularly for testing gravity theories. The standard

cosmological model, ΛCDM, assumes that general relativity is the correct theory of gravity

on cosmological scales. However, despite the success of the theory, the true nature of dark

energy and dark matter remains unknown. Therefore, it is important to test well-motivated

alternative gravity theories, also referred to as modified gravity theories (Clifton et al., 2012;

Joyce et al., 2015).

Previous simulation-based models of the galaxy two-point correlation function have intro-

duced linear scaling parameters to account for departures from general relativity (e.g., Zhai

et al. (2022)). However, this assumption is extremely simplifying and might bias constraints

on deviations from GR. Therefore, it is important to develop simulation-based techniques for

alternative gravity models.

For this purpose, fast N-body codes (Ruan et al., 2022) are being developed for modified

gravity theories. These will then be able to produce large suites of N-body simulations (such

as Arnold et al. (2021)) that can be used to train emulators and constrain gravity with

unprecedented precision.

7.2.3 Machine learning the optimal summary of the Universe

By constructing accurate emulators for observables with complementary information content

to that of two-point functions, we can improve current constraints on cosmological parameters

and gravity. Nevertheless, there is no guarantee that all the summaries that we design
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Figure 7.1: Sketch of a deep learning model to turn priors on cosmological parameters into
posteriors given the data.

combined would exhaust the information content of 3-D galaxy maps. Instead, we could

harness machine learning techniques to design summary statistics that perform inference in

an optimal manner.

Although ML methods for cosmological parameter inference have been developed (e.g.

Ntampaka et al. (2020)), these have not yet revolutionised the way inference is done in cos-

mology, nor have they been applied to galaxy maps to produce estimates of the cosmological

parameters. We attribute this to:

• Lack of uncertainty estimates. Since deviations from CDM are likely to be small, a

cautious application of statistics is important to separate a true discovery from a spuri-

ous one. To date, a reliable estimate of the posterior over the cosmological parameters

inferred from 3-D galaxy maps has yet to be done.

• Lack of interpretability. Understanding where the theory fails to reproduce the data

is as important as knowing whether it does fail, in order to inform future modelling.

There are currently no general methods to untangle neural network output as a function

of interpretable quantities, such as separating contributions from different scales or

environmental densities.

• Lack of robustness. Training and testing our methods on numerical simulations may

lead us to overfit the simulations used for training. This would imply that either we

lose constraining power or, even worse, we might end up with overconfident predictions.

This is especially relevant when we account for the uncertainty introduced by our poor

understanding of baryonic effects.
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Overcoming these problems could unlock the potential to discover new physics with machine

learning, and working on the development of robust and interpretable summary statistics

would help us do so. In Fig. 7.1, we show a sketch of a deep learning model that constrains

cosmology through the learnt summary statistics.

It will also be important to account for inductive biases, assumptions inherent to a learning

algorithm that are independent of the data, to build an ML framework tailored to cosmology.

For instance, the Universe is spatially homogeneous and isotropic on the largest scales, and

these symmetries should be preserved in the summary statistics. Instead of relying on our

model to learn symmetries from data, we can construct rotational and translational invariant

architectures (Bronstein et al., 2021). Adapting neural network architectures to cosmological

datasets will not only make models learn more efficiently but also ease the interpretability of

their outcomes.

It is possible that deviations from ΛCDM already hide in current datasets, and we are

blinded by our lack of suitable inference techniques. In the coming years, machine learning

will allow us to extract and quantify the wealth of information contained across the entire

cosmic web.



Appendix A

Appendix: The real to redshift

mapping on small scales

A.1 Method of moments for the ST distribution

The four parameters of the ST distribution (vc, w, α, ν) are determined by the first four order

moments. To simplify the relation between moments and parameters, we introduce,
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The parameters α and ν are obtained from the last two equations that determine the skewness

and kurtosis of the distribution, these form a system of non-linearly coupled equations that

we solve numerically. The remaining two parameters, vc and w, can then directly be obtained

from the equation for the mean and the variance.
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Figure A.1: Linear scale representation of the pairwise velocity distribution to highlight the
behaviour of the PDF close to its peak. The models shown are the same one as in Fig. 3.2.
Note that the Edgeworth expansion predicts negative probabilities for certain pair separations
such as (r⊥ = 0.75, r∥ = 5.25)h−1Mpc and (r⊥ = 5.25, r∥ = 5.25)h−1Mpc, where the skewness
is more pronounced. Moreover, an Edgeworth expansion behaves very differently from a Taylor
expansion since it produces an asymptotic expansion, and therefore adding more terms does not
guarantee convergence. See Sellentin et al. (2017) for an interesting discussion on the Edgeworth
expansion and its applications to cosmology. In the application of the Edgeworth expansion to
the pairwise velocity distribution, we see that it does not reproduce the N-body measurements
as well as the ST distribution does with only one extra parameter.

A.2 Zoom in distributions

A.3 Perturbation Theory results in detail

In this Appendix, we show a detailed summary of the state-of-the-art CLPT and CLEFT

perturbation theory predictions for the Gaussian Streaming Model ingredients. Note that

we show the predictions for real space statistics, since we want to separately analyse the

accuracy of perturbation theory predicting the ingredients of the Streaming Model, and the

assumption of a Gaussian pairwise velocity distribution.

The free parameters are found by maximising the combined Gaussian likelihood that the
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b1 b2 bs αξ αv σFoG

CLPT 0.29 ± 0.01 −1.63 ± 0.31 1.80 ± 0.38 - - −17.35 ± 0.15
CLEFT 0.30 ± 0.02 −1.69 ± 0.26 2.16 ± 0.37 −39.58 ± 16.32 90.30 ± 73.68 −17.45 ± 0.28

Table A.1: Perturbation theory parameters for both CLEFT and CLPT. Note that b1, b2, and
bs are obtained by expanding the bias function in Lagrangian space. We show the maximum
likelihood estimate and errors representing 1-sigma deviations in the posterior distribution of the
given parameter.

simulation measurements are most probable under the given theory,

log(L) = log(Lξ) + log(Lm10) + log(Lc20) + log(Lc02), (A.3.1)

where the individual likelihoods are given by,

log(Ly) = −1
2
∑

i

(yi,measured − yi,model)2

σ2
i

. (A.3.2)

where y is the mean simulation measurement across the 15 independent simulations, and σ its

standard deviation. Note that the covariance matrix is assumed to be diagonal, which means

that the parameter uncertainties obtained from the fit will be underpredicted. While this

assumption will also affect the values of the best-fit parameters in detail, we do not expect

this to have a qualitative impact on the relative agreement between the model predictions

and data, which is our main objective here. We maximise the likelihood in the pair separation

range 15 h−1Mpc < r < 150h−1Mpc and the resulting mean parameter values are shown in

Table A.1. We find a value for the second order Lagrangian bias b2 that is in good agreement

with previous measurements (Lazeyras et al., 2016), whereas the tidal bias is rather different

from its local Lagrangian value (bs = 0), which is in contrast with other analyses in the

literature (Lazeyras & Schmidt, 2018; Abidi & Baldauf, 2018). We also note that the EFT

parameters are the least constrained by our measurements, which is to be expected as they

only have an impact on the small-scale regime.

In Fig A.2 we show a detailed comparison of the best-fit model predictions for the two

methods. The second counter-term introduced in CLEFT improves notably the prediction

for the mean pairwise velocities on scales between 20 h−1Mpc and 60 h−1Mpc. Regarding the

second order moments, the predictions for m20 are similar for CLPT and CLEFT, however,

since c20 = m20 −m2
10, the variance of the radial component is influenced by the predictions

of the mean. Conincidentally, the error made by CLPT in the mean improves the agreement

with the variance of the radial component (dotted blue line in the lowest panel).

Finally, we show the redshift space monopole and quadrupole in Fig. A.3, obtained by
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Figure A.2: Detailed comparison of the different predictions for the Gaussian Streaming Model
ingredients made by CLPT and CLEFT. The top panel shows the ratio of the predicted two-point
correlation function to the measurement in the simulation, for both CLPT (dotted) and CLEFT
(dotted-dashed line). The solid yellow bands marks the one per cent agreement. The middle
and bottom panels show the same comparison for the mean radial velocity, and the second order
radial and transverse moments.

combining these predictions with the Gaussian Streaming Model. The CLEFT predictions

of the monopole and quadrupole are more accurate than those from CLPT, mainly due to

the increased accuracy in estimating the mean pairwise velocity, which is consistent with our

findings in Sec. 3.4. As shown in Sec. 3.2.4, on scales smaller than 30h−1Mpc it is necessary

to include higher order moments to further improve the accuracy of the predictions. A more

detailed comparison of these different models applied to mock catalogues that mimic actual

data at different redshifts and different halo mass ranges will be the subject of future work.
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Figure A.3: Comparison of the Gaussian Streaming model predictions for the redshift space
monopole and quadrupole, using the real space ingredients predicted by CLPT and CLEFT.
The residuals are plotted as the difference between the model and the simulation in units of the
variance calculated across the different independent simulations. The yellow bands show the 1σ
deviation.



Appendix B

Appendix: Simulation-based

models for real space clustering

B.1 Evaluation of the emulators as a function of redshift and

number density

In this appendix we show detailled evaluations of the halo auto-correlation emulator (Fig. B.1)

and the galaxy auto-correlation emulator (Fig. B.2).

For halo auto-correlations, we find that the emulator accuracy decreases for lower number

densities, which are more affected by shot noise, whereas it decreases for high redshifts ( z =

1.5).

For galaxy auto-correlations we do not find any substantial biases for redshift and galaxy

number density.

B.2 Estimating the covariance matrix

In Section 4.4, we used an estimate of the covariance matrix to obtain the posterior of

cosmological parameters given a mock data vector. The covariance matrix was estimated

from a set of 1600 N-body simulations part of the AbacusSummit suite (Maksimova et al.,

2021b). These are high resolution small boxsize simulations (Lbox = 500 h−1 Mpc).

Given the small boxsize of the simulations, we re-scale the covariance by a factor of

0.53/0.67 to estimate the expected errors for a LOWZ-like sample, whose effective volume is
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Figure B.1: Median absolute errors of the halo two-point correlation function as a function
of number density (left), averaged over redshift and test set cosmologies, and as a function of
redshift (right), averaged over number density and test set cosmologies.
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In both cases the emulator accuracy does not show noticeable biases.
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0.67 (h−1 Gpc)3. We also correct the covariance estimated from the mocks with Eq. 56 in

Percival et al. (2021).

B.3 The effect of constraining galaxy number density in the

likelihood analysis

In this appendix, we show the effect of removing the galaxy number density term in Eq. 4.4.2.

Fig. B.3 shows that the number density constrain does not change the constraints on cos-

mological parameters noticeably, whereas it mainly improves those of the HOD parameters.

In particular, it breaks the degeneracy between the central occupation parameters, logMmin

and σlog M .

B.4 Assembly bias mocks details

Here, we describe here the occupation variations of the environment-based assembly bias

mocks used in Section 4.4.3.

Fig. B.4 shows how the mean number of centrals and satellites change as a function of

halo mass and halo environment for both the strong and weak assembly bias mocks. At fixed

halo mass, halos residing in denser environments will have a higher mean number of galaxies

(both centrals and satellites) than those occupying underdense regions.

On the right hand side of Fig. B.4 we also show the ratio of the galaxy two-point correlation

function with a strong and weak assembly bias signal to that of the no assembly bias case.

The deviations can be as large as 10% for the weak case, and 20% for the strong one.
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Figure B.3: Comparison of constraints on cosmological and HOD parameters when the galaxy
number density is included in the likelihood (Constrained n̄g) and when it isn’t (Unconstrained
n̄g. Including number density constraints only helps determine the HOD parameters with a
higher accuracy.
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Appendix C

Appendix: The information content

of environment dependent

clustering

C.1 The impact of mixing quintiles when estimating overden-

sities in redshift space

In this appendix, we examine the contribution to the quadrupole of quintile autocorrelations

into the signal coming from random centres that have been correctly identified in redshift

space, and those that have been misidentified.

Let us begin by defining the set of correctly identified random points for DSi as

S ∩ R =
{

x ∈
(
DSS

i ∩ DSR
i

)}
, (C.1.1)

where subscript S and R, denote redshift and real space identification respectively. We denot

those incorrectly identified as

S /∈ R =
{

x ∈
(
DSS

i ∩ DSR
i

)}
. (C.1.2)

For a given density split, DSi, we separate the contribution to the quadrupole from the

two sets as

ξqq
2 =

( |S ∩ R|
Nrandom

)2
ξS∩R

2 +
( |S /∈ R|
Nrandom

)2
ξS/∈R

2

+ 2 |S ∩ R||S /∈ R|
N2

random
ξS∩R,S/∈R

2 (C.1.3)
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Figure C.1: The contribution from correctly (S ∩ R) and incorrectly classified (S /∈ R) random
points to the quadrupole of autocorrelations. We show both the effect for DS1 (left) and DS5
(right), estimated for only one realization of the fiducial Quijote simulations.

where |S ∩ R| and |S /∈ R| are the number of points correctly and incorrectly identified,

respectively. The first term in Eq. C.1.3 quantifies the anisotropy resulting from missing

random centres that have not been correctly identified, the second term represents the con-

tribution of anisotropies present in the random centres that have been incorrectly added,

whereas the last term quantifies the cross-correlation between those centres that have been

correctly identified and those that have been added.

Fig. C.1 shows the contribution of each term in Eq. C.1.3. For both DS1 and DS5, all

terms contribute to the overall squashing of the autocorrelation. For DS1, points that tend to

be correctly classified in redshift space are those inside the void region, whereas those that are

missed tend to be at the void boundary. The correctly classified centres, S ∩ R, are therefore

more clustered along the line of sight. Moreover, DS2 points in real space classified as DS1 in

redshift space tend to also be located around void boundaries. Therefore, cross-correlation

of these points with the correctly classified ones (S ∩ R, S /∈ R) contributes to the enhanced

clustering along the line of sight.

C.2 Assessing the Gaussianity of the density split likelihood

In this section, we check that the likelihood of density split statistics is indeed distributed as

multivariate Gaussian following the analysis in Friedrich et al. (2021). We first compute the

χ2 value of the summary statistic measured in each of the fiducial simulations

χ2
i =

(
di(s) − d̄(s)

)T
C−1

(
di(s) − d̄(s)

)
, (C.2.1)
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Figure C.2: Gaussianity tests. Left 2PCF, Right DS.

where di represents the value of the summary statistic for the i-th fiducial simulation evaluated

at the pair separation vector s, d̄(s) is the average of the summary statistic over all fiducial

simulations at the pair separation vector s, and C is the covariance matrix estimated from

all the fiducial simulations.

If the likelihood of the summary statistic is Gaussian distributed, the χ2
i values should also

follow a χ2 distribution with degrees of freedom determined by the number of pair-separation

bins.

Furthermore, if the likelihood is Gaussian, the distribution of χ2
i should also be very close

to that of sampling from a multivariate Gaussian with a mean given by d̄ and the covariance

measured from the simulations.

In Figure C.2, we show how both the two-point correlation function and DS statistics χ2
i

computed from the data follow a very similar χ2 distribution as that of the random samples

generated from a multivariate Gaussian.

C.3 Density-split clustering in Gaussian random fields

In Sect. 5.4.2, we showed that density-split clustering leads to improved cosmological con-

straints when compared against the halo 2PCF. The small-scale halo density field at z = 0.0

in Quijote is highly non-Gaussian, and DS, which relies on measurements of correlation func-

tions conditioned by density, is able to extract more information than the standard 2PCF.

Here we compare the constraining power of DS and the 2PCF in a Gaussian random field,

where the 2PCF, which is a measure of the variance of the field as a function of scale, fully

describes its statistical properties. The purpose is to use the Gaussian mocks to develop an

intuition for where the constraining power comes from in the case of DS clustering when

analysing only large scales.

Starting from primordial power spectra with the same parameters as those described
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in Table. 5.1, we use mock factory1 to linearly evolve the density field to z = 0.0, and

then sample a Gaussian random field of particles with a similar tracer bias as the Quijote

haloes. We compute the 2PCF and DS correlation functions and estimate the Fisher matrix

numerically as described in Sect. 5.3. For simplicity, all measurements are performed in

real space, so that all information is contained in the monopole moment of the correlation

functions.

Fig. C.3 shows the monopoles of the DS cross-correlation and autocorrelation functions,

as computed from the Gaussian mocks. It can be seen that, under this setup, the collection

of cross-correlation functions is symmetric around zero, reflecting the Gaussian nature of the

density PDF. For the autocorrelation functions, the quintiles with negative bias (DS1 & DS2)

exactly match those with positive bias (DS4 & DS5). In other words, the information from

DS1 & DS2 is completely degenerate with that of DS4 & DS5, while DS3 does not contribute

with any significant information due to its zero mean. In order to avoid including duplicate

information in the Fisher matrix, we estimate the DS Fisher matrix using only DS1 & DS2.

We have verified that we get the same results if we choose to work with DS4 & DS5 instead.

Fig. C.4 compares the constraints on Ωm, σ8 and h from DS and the 2PCF, using a

minimum scale of smin = 10h−1Mpc. It can be seen that DS leads to significantly improved

constraints over the 2PCF. This may go against the intuition that DS should not be able to

outperform the 2PCF in the Gaussian scenario. However, we need to keep in mind that the

DS quintiles are defined in terms of the halo densities in spheres of radius Rs = 20h−1Mpc.

This makes the DS quintiles sensitive to the smoothed density contrast within Rs, even if the

multipoles are truncated at smin = 10h−1Mpc. To account for this, we measure the average

density contrast in each DS quintile, ∆(Rs), and add this information to the 2PCF. It can be

seen that the resulting constraints from this combination match much better the constraints

from DS.

C.4 Convergence of Fisher forecasts

In Fig. C.5, we demonstrate that the constraints we obtain have converged when we vary

the number of simulations used in the analysis to: i) estimate the derivatives respect to the

cosmological parameters (left hand panel), and ii) estimate the covariance matrix (right hand

panel).

1https://github.com/cosmodesi/mockfactory

https://github.com/cosmodesi/mockfactory
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Figure C.3: A comparison of density split clustering measurements in the Quijote simulations
(solid lines) and the Gaussian mocks (dotted lines). Note that in the Gaussian mocks, the density
splits are symmetric.
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C.5 Impact of cosmology on the halo power spectrum

In Fig C.6 we show the impact of varying the cosmological parameters in the halo power

spectrum measured from the Quijote simulations.

C.6 Density split constraints in r-split

In Fig. C.7, we show the contribution of each density split quintile to constrain the cosmo-

logical parameters, when DS quintiles are identified in real space.
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Figure C.6: The impact of changes in cosmological parameters on the halo power spectrum, as
measured from the Quijote simulations. Each panel shows the ratio between the power spectrum
in each cosmology and the fiducial one.
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