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ABSTRACT

In this work we analyse the utilisation of electric vehicle (EV) public charging stations in the
Netherlands to understand and describe their usage as a function of surrounding premises
(such as hospitals, casinos and schools, among others) and population. Also, we analyse the

charging performance of such charging stations taking into account temporal values and charging
measures taken from transactions registered within the years 2012 and 2016. In order to identify
the (potentially) explanatory variables that are meaningful, we will use a False Discovery Rate
(FDR) control approach known as Knockoffs filter. The results reveal that charging stations
located close to Kindergartens, Fuel stations and Car sharing points are more likely to be used
more frequently and for the longest time; whereas those users who charge their vehicles either
on a weekend or in July between 12 AM and 6 AM are expected to charge their vehicles faster
than in other configurations.
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1
INTRODUCTION

In the last years, private and governmental institutions have invested in promoting Electric

Vehicles (EVs) as an environment-friendly and energy efficient alternative [1, 2], resulting

in numerous studies about EVs to explore strategies of implementation and thus reduce

the environmental impact caused by transportation in metropolitan areas.

In this work we will make an effort to contribute with some formal analysis on the charging

stations network in the Netherlands, one of the countries with the highest rates of EV usage [3],

their geographical distribution and performance variation. This in hopes that we can develop

further analysis techniques for this type of settings.

1.1 Literature review

Research on Electric Vehicles is broad, focusing in a variety of aspects; for instance, on the study

of performance of EV energy consumption rates [4], and even on the economic profiles of society

for switching into EV usage rather than conventional transport [5].

A study conducted by Helmus et al. [6] analyses two roll-out strategies for the placement

of charging stations in the Netherlands: a demand-driven placement (i.e., the charging station

is requested by EV drivers, generally near to home) and a strategic placement (the charging

stations are placed by decision of the Government near to public facilities such as hospitals and

schools). This study concluded that the effectiveness of these strategies depend on the market of

EVs: in an immature market, demand-driven placement of charging stations is more effective as

there is a better performance on energy transfer per charging point, whereas in a mature market,

1



CHAPTER 1. INTRODUCTION

a strategic placement of charging stations is more beneficial.

On the other hand, another study that deals with the strategic location of public EV charging

stations was published by Xi, Sioshansi and Marano [7]. In their investigation they determine

the most viable charging technology to find an optimal distribution of locations for such charging

points. In their model, they used the same approach as Curtin et al. [8], considering a linear model

to examine EV adoption probabilities (i.e., the likelihood of drivers to move from conventional

transportation to EV), with clusters of demographic variables (such as income, age, number of

vehicles owned, average monthly gasoline used, among others) and macroeconomic variables

(such as gasoline and electricity prices and the price premium of acquiring a conventional EV).

Their approach comprises a simulation-optimisation model (linear integer programming) to

determine the optimal location of charging stations based on previous simulations they made.

Researchers have also analysed EV charging demand as an important factor to a successful

implementation of EV policies. Robinson et al. [9] explored the behaviour of EV drivers in the

north-east of England. They suggest strategies such as a pay-as-you-go recharging to be imple-

mented at all public charging points as well as smart meters in order to reduce peak demand on

local power grids and also reduce the carbon emissions associated with EV charging. Moreover,

Sadeghianpourhamami et al. [10] conducted a quantitative analysis on the EV flexibility (i.e.,

the extent to which the charging load can be controlled) to characterise the peak demand on a

network of charging stations in the Netherlands and thus help to develop strategies to stimulate

more flexibility.

Further details on the theoretical background and major literature available on each topic

and technique implemented on this study will be described throughout each one of the Chapters

2, 3 and 4.

1.2 Objective and Motivation

This project aims to provide a different perspective on the study of an EV charging network,

identifying the main factors (temporal and in relation to surrounding premises) that affect the

charging rates (performance) of charge points; all through a combination and comparison of

variable selection methods (described in Chapter 3) and the implementation of a fairly novel

False Discovery Rate (FDR) control method: the Knockoffs filter [11].

Previous research have implemented data-driven techniques to describe the demand of EV

and energy consumption (for instance, [12] and [13]); however, their statistical modelling method-

ology do not perform variable selection or account for Type I errors (i.e. false positives) when it

2



1.2. OBJECTIVE AND MOTIVATION

comes to decide what features truly affect the behaviour of their data.

To the best of our knowledge, no FDR control technique has been applied to an EV setting

before, so we pretend in this work to explore the analysis of this type of data sets, adjusting the

available parameters of each method, to be able to draw valid and meaningful conclusions on the

explanatory variables affecting the dynamics of an EV network. This work also aims to contribute

with geographical approaches that ease the study of proximity and for a better understanding of

the data set we were provided with (Chapter 5).

1.2.1 Delimitation

Up until 2016, the Netherlands registered a total of 26,088 public and semi-public charging

stations around the country, with 115,223 electric vehicles (EVs) including plug-in hybrid electric

vehicles and full electric vehicles [3]. In 2018, the Netherlands was the second country with the

largest number of EV users in Europe [3] with 36,049 public charging points and 128,612 electric

cars [14], which indicates a notorious growth on the purchase and usage of such type of vehicles.

The ElaadNL is a leading organisation that manages technology for EV in the Netherlands

[15]. They provided records from 1,060,763 transactions over 1,747 charging stations (distributed

in 1,725 different geographical points around the country) with attributes such as Start Time,

Stop Time, Connected Time, Idle Time, Latitude, Longitude, Total Energy, among others

(17 attributes in total), dating from the 1st of January, 2012 and until the 30th of March, 2016

(see Section 5.1 for more details). This work will be centred on the study of these records.

1.2.2 Research questions

We expect to be able to couple hypothesis testing with fitting; more precisely, we aim to answer

the following research questions:

• Spatial and temporal behaviour of users: Are there any spatial and temporal patterns

in how users utilise the network of charging stations? We will address this question by

performing a geographical analysis on the location of charging stations (performing linear

regression methods), varying temporal features and taking into account nearby amenities

and proximity between charging points.

• Performance of charging stations: What are the factors influencing the performance of

charging stations? To answer this question, we will use variable selection techniques such

3



CHAPTER 1. INTRODUCTION

as the Least Absolute Shrinkage and Selection Operator (LASSO) [16] and the knockoffs

filter, so that we can characterise and identify the temporal parameters that have a direct

influence on the energy supply.
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2
LINEAR REGRESSION

One of the most helpful and interpretative tools one can use to make predictions from a

specific collection of points (representing data) is Linear Regression. Nowadays, linear

regression stands as one of the most employed techniques among scientific researchers

given its simplicity, interpretation and its versatility as it has been used to achieve newer ap-

proaches.

In this chapter we will explore some fundamentals of linear regression and will describe how

it works for a better comprehension of this method.

2.1 Ordinary Least Squares Regression

Suppose we require to obtain a quantitative response vector Y from a vector X consisting

of predictors (we call X to be a predictor variable or the input vector). The linear regression

method assumes that there exists a linear relationship between such variables. We express such

relationship as

Y =β0 +β1X +ε, (2.1)

where β0 is the intercept, β1 is the slope and ε is the expected error, which is assumed to be inde-

pendent of X , with E(ε)= 0; this means that either Y is an affine function, or it is a reasonable

approximation to the actual phenomenon given the input vector X . Both, β0 and β1, receive the

5



CHAPTER 2. LINEAR REGRESSION

name of parameters or coefficients of the model. We will now discuss how these parameters are

estimated.

2.1.1 Estimating the Parameters

In order to make predictions from (2.1), we require to estimate first β0 and β1. Let

(x1, y1), . . . , (xn, yn)

be n observations of the experiment. Our aim is, therefore, to find estimates β̂0 and β̂1 such that

yi ≈ β̂0 + β̂1xi for i = 1, . . . ,n. For that, we will use the Ordinary Least Squares (OLS) approach,

which measures the average lack of fit.

Let ŷi = β̂0+ β̂1xi be the prediction for Y at the ith component of X . Let e i = yi − ŷi be defined

as the ith-residual (the difference between the actual response value and the prediction based on

our linear model). We define the Residual Sum of Squares (RSS) as

RSS(β̂0, β̂1)= e2
1 + e2

2 +·· ·+ e2
i

that is

RSS(β̂0, β̂1)=
n∑

i=1
(yi − β̂0 − β̂1xi)2. (2.2)

OLS aims to find β̂0 and β̂1 such that RSS(β̂0, β̂1) is minimised.

Differentiating with respect to β̂0 we obtain:

∂RSS(β̂0, β̂1)
∂β̂0

= 2nβ̂0 −2
n∑

i=1
(yi − β̂1xi)

We set this derivative to zero to obtain

β̂0 =

n∑
i=1

yi − β̂1
n∑

i=1
xi

n
= ȳ− β̂1 x̄. (2.3)

where x̄ =
n∑

i=1
xi

n , ȳ=
n∑

i=1
yi

n are the arithmetic means.

Now let us differentiate (2.2) with respect to β̂1:

∂RSS(β̂0, β̂1)
∂β̂1

= 2
n∑

i=1
(β̂1xi − xi yi + β̂0xi) (2.4)

6



2.1. ORDINARY LEAST SQUARES REGRESSION

We once more set this derivative to zero, distribute the terms, and substitute β̂0 in (2.4) by β̂0

obtained from (2.3) to get

0= β̂1

n∑
i=1

x2
i −

n∑
i=1

xi yi +
n∑

i=1

(
ȳ− β̂1 x̄

)
(x̄)

Thus,
n∑

i=1
xi yi = ȳ

n∑
i=1

xi − β̂1 x̄
n∑

i=1
xi + β̂1

n∑
i=1

x2
i . (2.5)

Before continuing, it is convenient to note that the following identities hold true (recall that
n∑

i=1
xi = nx̄ and that

n∑
i=1

a = na for all a not indexed):

n∑
i=1

(xi − x̄)(yi − ȳ) =
n∑

i=1
(xi yi − xi ȳ− x̄yi + x̄ ȳ)

=
n∑

i=1
xi yi − ȳ

n∑
i=1

xi − x̄
n∑

i=1
yi +

n∑
i=1

x̄ ȳ

=
n∑

i=1
xi yi − ȳ

n∑
i=1

xi − x̄
n∑

i=1
yi +nx̄ ȳ

=
n∑

i=1
xi yi − ȳ

n∑
i=1

xi − x̄n ȳ+nx̄ ȳ

=
n∑

i=1
xi yi − ȳ

n∑
i=1

xi (2.6)

n∑
i=1

(xi − x̄)2 =
n∑

i=1

(
x2

i −2xi x̄+ x̄2)
=

n∑
i=1

x2
i −2x̄

n∑
i=1

xi +nx̄2

=
n∑

i=1
x2

i −2x̄nx̄+nx̄2

=
n∑

i=1
x2

i −2nx̄2 +nx̄2

=
n∑

i=1
x2

i −nx̄2

=
n∑

i=1
x2

i − x̄
n∑

i=1
xi (2.7)

7



CHAPTER 2. LINEAR REGRESSION

Now, from (2.5) we have

β̂1 =

n∑
i=1

xi yi − ȳ
n∑

i=1
xi

n∑
i=1

x2
i − x̄

n∑
i=1

xi

.

Substituting with the identities obtained in (2.6) and in (2.7) we obtain:

β̂1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
(2.8)

2.1.2 Assessing the Accuracy of the Parameters

Now that we have an estimation of the parameters for our model given the n first observations, we

require to know how accurate these coefficients are with respect to the actual model Y ≈β0+β1X .

To answer that question we require to compute the standard error of ŷ, written as SE( ŷ):

SE ( ŷ)2 = σ2

n
(2.9)

where σ is the standard deviation of each observation yi (assuming that the n observations are

uncorrelated).

The identity (2.9) indicates that the standard error of ŷ decreases as n increases, i.e. the

greater amount of observations (n) we have, the more accurate our estimation is.

Furthermore, we can also estimate how close the parameters β̂0 and β̂1 are from β0 and β1

by computing their respective standard errors:

SE
(
β̂0

)2 =σ2

 1
n
+ x̄2

n∑
i=1

(xi − x̄)2

 , (2.10)

SE
(
β̂1

)2 = σ2

n∑
i=1

(xi − x̄)2
(2.11)

where σ2 =Var(ε). From equation (2.10) we note that SE
(
β̂0

)= SE ( ŷ) when x̄ = 0 and then β̂0 = ŷ.

The estimate of σ is called the Residual Standard Error (RSE) and we can compute it from

data as indicated:

8
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RSE =
√

RSS
n−2

(2.12)

We will use the standard errors to run hypothesis tests on the coefficients, taking the null

hypothesis:

H0 : X and Y are not related.

versus the alternative hypothesis:

Ha : X and Y are related.

Taking into consideration that if β1 = 0, then (2.1) gets reduced to Y =β0+ε and X and Y are

not related; therefore, we aim to test

H0 :β1 = 0 versus Ha :β1 6= 0,

In order to test the null hypothesis, we proceed to estimate how far from zero is our estimate

β̂1 so that we can infer that β1 is non-zero. This distance depends on the accuracy of β̂1, i.e., we

must compute (2.11); if this value is small, then we can deduce that our estimate is considerably

accurate. The smaller it is, the more accurate is our estimate. If SE
(
β̂1

)
is small, then even for

small values of our estimate β̂1 we may show that β1 6= 0 in which case the alternative hypothesis

Ha holds. However, if SE
(
β̂1

)
is large, then |β̂1| must be large as well in order for us to reject the

null hypothesis.

Typically, we calculate a t-statistic, given by

t = β̂1 −0
SE

(
β̂1

) , (2.13)

which measures the number of standard deviations that β̂1 is away from zero; so, if H0 happens

to be true, then we expect that (2.13) will have a t-distribution with n−2 degrees of freedom.

2.1.3 Assessing the Accuracy of the Model

Once we have assessed the accuracy of our coefficients, we now require to know to what extent

our model actually does fit the data. We will proceed taking into account two quantities that are

about to be detailed: the Residual Standard Error (RSE) and the R2 statistic.

9



CHAPTER 2. LINEAR REGRESSION

2.1.3.1 Residual Standard Error RSE

As stated before, RSE is an estimate of the standard deviation of ε. In general terms, it is the

average amount that the prediction is deviated from the actual regression line (recall from (2.1)

that, due to the presence of ε, which does not depend on X , we will not be able to perfectly predict

Y from X under a linear approach). We compute the RSE using

RSE =
√

1
n−2

RSS =
√

1
n−2

n∑
i=1

(yi − ŷi)2 (2.14)

We must consider RSE as a measure of lack of fit of our predictive model to the data. A quite

large RSE indicates a greater lack of fit, which means that our model does not predict the data

very well. On the other hand, if RSE is considerably small, then we may expect our model to be a

good predictor for the true output data of the phenomenon.

2.1.3.2 R2 Statistic

We will consider the R2 statistic as an alternative measure of fit, apart from RSE, which indicates

an estimation of the accuracy of the model from the units of Y . The R2 statistic, unlike the RSE,

expresses this accuracy in terms of a proportion which takes on values from 0 to 1 in R. We will

use the following formula to calculate R2:

R2 = TSS−RSS
TSS

= 1− RSS
TSS

(2.15)

where TSS =
n∑

i=1
(yi − ȳ)2 is the Total Sum of Squares and can be interpreted as the amount of

variability in the response before the regression is executed while RSS measures the amount of

variability left after the regression is carried out.

According to [17], an R2 statistic closer to 1 indicates that a large proportion of the variability

in the response is explained by the regression meanwhile as R2 approaches 0 means that the

regression did not explain much of the variability in the response. This can be due to either a

wrong linear model or σ2 is considerably high (or both).

So far, we may notice that using the R2 statistic approach represents an advantage over RSE

in terms of interpretation, since it takes on values only within the interval [0,1] ∈R.
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2.2 Multiple Linear Regression

So far we have learnt how to perform a linear regression for a response vector using a single

predictor. In practice, it turns out that we usually have more than one predictor that might affect

the response vector.

In order for us to obtain a model considering those predictors, we might perform the simple

linear regression method separately for each one of the predictors and then proceed to analyse

each result trying to compare them between each other. However, this approach might result

insufficient since every model is not taking into account the participation of the other predictors

over the response.

Instead of performing numerous simple linear regressions for the predictors, we can extend

the known method so that it takes into account multiple predictors (as many as required). We

express the multiple linear regression model as follows, assigning an independent slope coefficient

to each predictor in the same model:

Y =β0 +β1X1 +β2X2 +·· ·+βp X p +ε, (2.16)

where βi is the slope coefficient corresponding to the predictor X i, being p the total amount of

predictors considered in the model.

2.2.1 Multiple Linear Regression Coefficients

Just like it occurred in Simple Linear Regression, the coefficients βi are unknown and must be

computed. Using our data set, consisting of a finite number n of observations, we can once more

obtain predictions for such identities of the coefficients using the formula

ŷ= β̂0 + β̂1x1 + β̂2x2 +·· ·+ β̂pxp, (2.17)

and as in Simple Linear Regression (where ŷ = ( ŷ1, ŷ2, . . . , ŷn)> and xi = (xi1, xi2, . . . , xin)>, with

i = 1, . . . , p), we make use of the RSS defined in this case as

RSS =
n∑

i=1
(yi − ŷi)2 =

n∑
i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2 −·· ·− β̂pxip

)2 . (2.18)

Thus, the values β̂0, β̂1, . . . , β̂p that minimise (2.18) are obtained by applying the least squares

method. In this case, it is particularly convenient to express such identities using matrix algebra

[18].

11
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Let ŷ=Xβ̂ be the matrix representation of (2.17), where β̂= (β̂0, β̂1, . . . , β̂p)> and X is the data

matrix which columns are x0, x1, . . . , xp, where x0 is the vector of n ones.

In other words, we can express (2.17) as

ŷ=


ŷ1

ŷ2
...

ŷn

=


β̂0 + β̂1x11 + β̂2x21 +·· ·+ β̂pxp1

β̂0 + β̂1x12 + β̂2x22 +·· ·+ β̂pxp2
...

β̂0 + β̂1x1n + β̂2x2n +·· ·+ β̂pxpn

=


1 x11 x21 . . . xp1

1 x12 x22 . . . xp2
...

...
...

. . .
...

1 x1n x2n . . . xpn




β̂0

β̂1
...

β̂p

=Xβ̂ (2.19)

This representation allows us to obtain the next known result [18]:

β̂= (
X>X

)−1
X> ŷ (2.20)

2.2.2 Assessing the accuracy of the model

We can assess how accurate our Multiple Linear Regression model is by proceeding similarly as

in OLS, where we only required to verify whether β1 = 0 so that we can accept or refuse the null

hypothesis. In Multiple Linear Regression (MLR), we require to determine whether βi = 0, with

i = 1, . . . , p. We then test the null hypothesis:

H0 :β1 =β2 = ·· · =βp = 0

versus the alternative hypothesis:

Ha : at least one β j is non-zero

We perform this hypothesis test by using the F-Statistic:

F = (TSS−RSS)/p
RSS/(n− p−1)

, (2.21)

where TSS is defined as in OLS. Therefore, when the F-statistic is expected to take a value close

to 1, we accept the null hypothesis. Otherwise, if Ha is true, then we expect F to be greater than

1.
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2.3 The Bias-Variance Trade-off

In practice, we usually experience issues in our models regarding to their complexity and their

accuracy for real-world predictions. For example, we can obtain complex models trained by a spe-

cific set of observations, which might be quite sensitive to changes in the training set, preventing

us from getting good predictions of real phenomena with future input data. On the other hand,

with simpler models, we might have results far from reality. We will now introduce two concepts

that will help to adjust our models to a more convenient fit.

We call variance to the fluctuations caused as we change the training data set. Ideally, the

estimated coefficients should approximately be the same regardless of the training data set (given

that the model is describing a real-world phenomenon). We say that a model has high variance

(or that it is overfitted) if it is too sensitive to such changes in the training set, yielding to models

with some behaviour that occur only in some particular circumstances, rather than in general

scenarios.

Additionally, we call bias to the error caused by assumptions that are different from what

happens in reality. For example, linear regression assumes that there exists a linear relationship

between Y and X , however, real life events are very unlikely to follow a linear behaviour, meaning

that our linear approach might not be explaining very well our case of study (an underfitted

model).

In general terms, a simple fit is most likely to have high bias, whilst a complex model would

have high variance. Our goal, then, is to achieve an estimation low in both, bias and variance, so

that it is a not-so-complex model (understandable and computationally economic) that is also a

true-explanatory model (describes real behaviour without overfitting). To meet these objectives,

we can measure and balance the model through the expected value of its respective RSS, which

can be decomposed in terms of variance and bias of the model itself.

Let f be a function describing the phenomenon y, so that y = f + ε, with ε being the error

term, which is assumed to be irreducible. Also, let f̂ and E
[
(y− f̂ )2]

be an estimated fit for f and

the expected value of the RSS of f̂ , respectively. Then,

E
[
(y− f̂ )2] = E

[
y2 + f̂ 2 −2y f̂

]
= E

[
y2]+E[

f̂ 2]−2E
[
y f̂

]
= V ar(y)+E [y]2 +V ar( f̂ )+E[

f̂
]2 −2E

[
y f̂

]
= V ar(y)+E [y]2 +V ar( f̂ )+E[

f̂
]2 −2E [y]E

[
f̂
]
.

13
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Now, recall that E [y] = E [ f +ε] = E [ f ]+ E [ε], and given that ε is the error term, which is

irreducible, its expected value is 0. Therefore, E [y]= E [ f ]= f . Hence,

E
[
(y− f̂ )2] = V ar(y)+ f 2 +V ar( f̂ )+E[

f̂
]2 −2 f E

[
f̂
]

= V ar(y)+V ar( f̂ )+
(
f 2 −2 f E

[
f̂
]+E[

f̂
]2

)
= V ar(y)+V ar( f̂ )+ (

f −E[
f̂
])2

= V ar(y)+V ar( f̂ )+Bias( f̂ )2.
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2.4 Summary of chapter

We will now highlight some remarkable results from this chapter:

• Least Squares approaches aim to model a certain phenomenon Y from observations

X , by finding coefficients β ∈ RN such that the model Y = βX + ε is the best lin-

ear approximation to Y (assuming that Y follows a linear behaviour depending on X ).

• We call variance to the fluctuations caused as the training data set varies. A model

with a high variance is said to be overfitted.

• We call bias to the error caused by assumptions that are different from what

happens in real life. A model with a high bias is said to be underfitted.

• Typically, a simple model tends to have high bias and low variance, whilst a complex

model has lower bias but high variance.
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3
VARIABLE SELECTION

Initially, when researchers intended to describe a specific phenomenon through a fitting

model given a data set, techniques such as ordinary least squares (OLS) and logistic re-

gression models (LRM) gained popularity among the scientific community due to their

interpretability and simple implementation. However, this task has become a challenge over the

last five decades [19], since investigators have been facing data settings describing even more

complex phenomena with an increasing amount of explanatory variables (over millions of factors)

where least squares and logistic regression fail to provide an accurate, unique solution (when

features outnumber observations), not to mention their high variance, which increases with the

number of variables.

Along with the development of data analysis through computer-based algorithms, the ability

of scientists to obtain larger data sets also increased. In many instances, it turns out that it is

even more likely to identify more features p than observations N, that is, p >> N. For example,

Sesia, Sabatti and Candès [20] investigated genome-wide association studies (GWAS) in Crohn’s

disease, described by Ogura et al. [21] as “a chronic inflammatory disorder of the gastrointestinal

tract, which is thought to result from the effect of environmental factors in a genetically pre-

disposed host", working with a data set consisting of 4,913 binary-type samples with 377,749

single-nucleotide polymorphisms (SNPs) as variables. The researchers aimed to identify the SNPs

that are related to Crohn’s disease (in such large settings, it is often of enormous importance to

identify those variables that are true signals, i.e., those features that have an actual effect over

the response).
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3.1 Variable selection methods

Variable selection methods are techniques designed to discard the variables that do not influence

the response vector. Many reasons support the necessity of performing variable selection when

we want to model a high-dimensional phenomenon; for instance:

• We can improve the prediction accuracy of our model considerably. Least squares

and logistic regression frequently have low bias but high levels of variance. We can sacrifice

some bias to reduce variance by shrinking variables or set them to zero (promoting a sparse

setting) and by doing so, improving the accuracy of our model [18].

• A better interpretation of the data. Having knowledge of those relevant variables

allow us to have a better understanding of the nature of the prediction problem we are

working on [22]. We are interested in defining the most influential variables that affect the

response; therefore, we can dismiss some features that have little influence on the model.

As Friedman, Hastie and Tibshirani declare [18]: “In order to get the “big picture," we are

willing to sacrifice some of the small details".

Nowadays, researchers use many well-developed variable selection methods in their in-

vestigations. We will now briefly introduce some of these techniques: Best-subset selection,

backwards-stepwise regression and forward-stepwise regression.

3.1.1 Best-subset Selection

Best-subset selection consists of selecting the best subset of size k ∈ {1, . . . , p} of variables, where

p is the number of available variables. In other words, this method finds, for each k, the subset

of k variables with the smallest mean squared error [18]. It is essential to keep in mind that, if

j ∈ {1, . . . , p} (with p ≤ k), the best j−sized subset is not necessarily contained in the best k−sized

subset. Unsurprisingly, an exhaustive evaluation of all the possible subsets is computationally

demanding since it is a combinatorial problem. For a set of p variables, the amount of possible

k−sized subsets is (
p
k

)
= p!

k!(p−k)!
, (3.1)

whereas the total amount of all the possible combinations for all the possible values of k is

p∑
i=1

(
p
i

)
= 2p. (3.2)

As a consequence of the costs of time and resources required to invest in a best-subset selec-

tion approach, researchers developed various techniques to make the process computationally

more affordable. The studies published by Narendra and Fukunaga [23] and Furnival and Wilson
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[24] propose branch and bound algorithms that perform this task efficiently for data sets from

24 to 35 variables by pivoting variables and establishing an enumeration system over the features.

Selecting the appropriate k, however, is again a matter of balance between bias and variance

in the model. Later in this chapter, we will provide more details on resampling methods, which

are techniques designed to rearrange the samples so that it is more feasible to find an optimal

parameter for variable selection.

3.1.2 Forward- and Backward-stepwise Regression

Forward-stepwise Regression (FSR) is a method that works gradually, step by step, over the

predictors. Considered a “simple modification of best subset" [25], FSR, in the first step, takes the

intercept (first predictor) and estimates the best candidate to be added to the active set (i.e., the

set of selected variables) which will be the variable that minimises the residual sum of squares at

stage k (RSSk). The process is an iteration of the same principle, adding to the active set those

variables that decrease the most the respective RSSk, so that the test statistic

Rk =
1
σ2 (RSSk−1 −RSSk) (3.3)

(where σ2 is assumed to be known) is compared to a χ2
1 distribution [26].

Hastie, Tibshirani and Friedman [18] suggest two main advantages as reasons why FSR

could be preferred over best-subset selection:

• Computational. In contrast with best-subset selection, FSR can perform variable selection

for large values of p (even if p >> N, being N the number of observations), providing a

nested series of models (given that the sequence of models updates at every step of the

procedure; however this is a direct consequence of the linear design as well as of squared

error loss [25]).

• Statistical. Unlike best-subset selection, FSR is a more constrained method that reduces

the variance of our model. However, it might also mean that we have more bias.

Backwards-stepwise regression (BSR), on the other hand, does the same procedure as FSR

but it starts with the full set of predictors, and in each step, BSR discards that variable that has

the least impact on the response. Nevertheless, BSR can only be performed when N > p, whereas

FSR can be used always, independently of the relation between p and N [18].

One of the variable selection methods we will use in this project is the Least Absolute Shrink-

age Selection Operator (LASSO) which, apart from providing a reliable fit to the data, also
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promotes a sparse active set. More details on the LASSO appear in this chapter.

3.2 Regularisation

Regularisation is a common way to control error in a flexible manner. Sometimes we may have

multiple curves fitting the data in space, but then we need to know which one we must choose,

depending on the parameter values of β.

The main idea behind regularisation lies in the bias-variance trade-off by adding a penalty

term to the classic MLR optimisation problem, encouraging a selecting measure among all

possible solutions:

min ‖y− Xβ‖+λ f (β) (3.4)

By doing so, we now balance one term (the data reconstruction error) with another term (the

regularisation penalty, λ f (β), for some function f ).

3.2.1 Resampling Methods

Before continuing directly with the description of the regularised methods, we will introduce the

concept and usefulness of resampling methods. In practice, whenever we build a model to describe

a certain phenomenon, we need to assess how well our model describes response points from the

actual experiment. Usually, we will not have new data available to compare and determine if the

model is actually working properly. Therefore, we can only use part of the same data we were

given to assess and even improve our approach.

Resampling methods are a nowadays, a useful tool in statistics [17], moreover, these methods

have come to be one of the basis for new Machine Learning techniques. Resampling our data,

means that we are selecting a subset of the population of our original sample to train our model.

In this work we will perform the k-fold cross-validation, which is described in the following

subsection, although there are other techniques used by researchers such as the Jackknife [25]

and the Bootstrap [18, 25] (methods that assess the accuracy of the model).

3.2.1.1 k-Fold Cross-validation

In general, cross-validation (CV) is a simple, intuitive method that allows us to assess how

accurately our model predicts the behaviour in practice, estimating prediction errors as well.
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Experiment 1

Experiment 2

...
. . .

Experiment k−1

Experiment k

N observations divided into k subsets

Figure 3.1: k-fold Cross-Validation. A resampling method that runs a model over k−1 training
sets to finally test it over the remaining subset (coloured cells).

This method splits the n samples or observations into k different subsets of roughly equal

size. The elements of each subset must be selected randomly. Then we ’take apart’ the first subset

and perform the corresponding fitting technique over the k−1 remaining subsets (called the

training set) with a range of different values for λ (tuning parameter of fitting technique). Finally,

we record the squared error of these applications of the fitting technique for each value of λ, by

testing the results over the subset that was taken apart at the beginning (known as testing set).

This process is repeated k times so that each subset is taken as the testing set, by performing the

fitting technique with different values for λ over the remaining k−1 subsets (Figure 3.1).

As a consequence, we have a total of k different squared errors for each value of λ, which are

averaged for each λ in order to create a CV error curve, CV (λ). We will select the value of λ for

which CV (λ) reaches its minimum as the tuning parameter that optimises the fit. In practice, we

use 5 and 10 as typical values for k [17].

3.2.2 Ridge Regression

In 1970, Hoerl and Kennard [27] proposed a regularised method: Ridge regression, which takes

into consideration a shrinkage effect as the penalty term. Such penalty resulted in a model with

less variability than the usual best-subset selection approach.

Ridge regression minimises the residual sum of squares penalising with an `2 norm the vector

of coefficients:

β̂Ridge = arg min
β∈Rp

{ 1
2N

‖y− Xβ‖2
2 +λ‖β‖2

2

}
, (3.5)
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where, when λ= 0 we have a typical MLR approach.

It is important to note that Ridge regression allows us to control, in a way, the bias-variance

trade-off since, as λ increases, the regression fit flexibility decreases, yielding a model with

decreased variance but increased bias. In this case, the tuning parameter serves as shrinkage

factor on the penalty term, minimising the estimated association of all predictors (variables) with

the response vector.

Since we will obtain a different fit each time we vary the tuning parameter λ in Ridge

regression, we will make use of CV as a resampling method. This will let us evaluate multiple

values of λ in order to obtain a fit with the minimum error.

3.2.3 Least Absolute Shrinkage and Selection Operator (LASSO)

Whenever we work on a linear model that fits a large data set, considering several potentially

explanatory variables, it is convenient for us to try to minimise issues such as lack of inter-

pretability, overfitting, among others. This section explores the LASSO method, a penalised

approach introduced in 1996 by Robert Tibshirani [16]. We will also use cross-validation (as

resampling method) in order to deal with those problems.

Robert Tibshirani [16] first introduced the Least Absolute Shrinkage and Selection Operator

(LASSO) in 1994. It is a method that takes the same inspiration as the Ridge Regression proposed

by Hoerl and Kennard [27], adopting an optimisation approach by implementing penalisations

to the design of the problem: while Ridge regression penalises the parameters with an `2 norm

(i.e. the Euclidean norm of vectors; see equation (3.5)), the LASSO uses an `1 norm (the sum of

absolute values of the components of a vector; see equation (3.7)).

The idea behind an `q-penalised method is that it promotes shrinkage of the values of co-

efficients in our model. Ridge regression shrinks the coefficients but does not perform variable

selection, while the LASSO takes advantage of both, subset-selection and shrinkage so that it

provides an interpretable model with the advantage that an `1-penalisation induces a sparse

model by shrinking or even setting some coefficients to zero.

We will consider a linear regression approach to our data. Let y = β01+ Xβ be the matrix

representation of our setting where y ∈ RN is a vector of responses, β0 ∈ R is the intercept

coefficient, 1 is the vector of N ones, β= (
β1, . . . ,βp

)> is the vector of coefficients that best fit the

model to the collected observations and X = [
X1 . . . X p

]
is the design matrix which columns are

X1, . . . , X p ∈RN , i.e., the variables of the model. We aim to describe a quantitative response vector
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y from the matrix X consisting of predictors. The LASSO problem can be written as the following

convex optimisation problem:

minimise
β0,β

{ 1
2N

‖y−β01− Xβ‖2
2

}
subject to ‖β‖1 ≤ t,

(3.6)

where ‖ ·‖2 is the Euclidean norm of vectors and ‖β‖1 =∑p
j=1 |β j|.

Typically, when the features are expressed in different units, we standardise the columns (i.e.

X̄ i = 0 and with unit variance 1
N ‖X i‖2

2 = 1). We also center the values yi (i.e. 1
N yi = 0) so that we

can omit the intercept term β0 since, once we get an optimal solution for β̂ on the centralised data,

we can recover those for the uncentralised setting by maintaining β̂ the same, and computing

β̂0 = ȳ−
p∑

j=1
X̄ jβ̂ j,

where ȳ and {X̄ j}
p
1 are the arithmetic means.

For convenience purposes, we will rewrite the LASSO problem (3.6) in its Lagrangian form

[18, 26]:

β̂LASSO = arg min
β∈Rp

{ 1
2N

‖y− Xβ‖2
2 +λ‖β‖1

}
. (3.7)

Lagrangian duality [28] guarantees a bijection between the constraint t in (3.6) and λ in (3.7).

We will call λ ≥ 0 the tuning parameter of the model. When λ = 0, we have an ordinary least

squares fit; and for a λ sufficiently large, this method yields a model where all coefficients are null.

In order to select an ideal tuning parameter which does not fall into any extreme case (where

the estimation error might be inflated), we will use Cross-validation (CV) as the resampling

method.

3.2.4 Elastic net

One of the biggest drawbacks of the LASSO is that it does not perform very well when there are

highly correlated variables in the design matrix. Even though it still promotes shrinkage and

performs variable selection, the LASSO tends to disregard correlated variables indistinctly. The

Elastic net [29] arises as a method that takes the best out of the Ridge and LASSO penalties by

finding solutions to the next expression:
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arg min
β∈Rp

{1
2
‖y− Xβ‖2

2 +λ
[

1
2N

(1−α)‖β‖2
2 +α‖β‖1

]}
, (3.8)

where α ∈ [0,1] is a varying parameter. When α = 1, we have an `1-norm penalty or LASSO

approach, whereas with α= 0, we obtain an `2-norm penalty corresponding to Ridge regression.

Once again, we will use CV to evaluate multiple values for λ as well as for α.
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3.3 Summary of chapter

We will now highlight some remarkable results from this chapter:

• k−fold Cross-validation (CV) is a resampling method that splits N samples into

k different randomly selected subsets (of roughly equal size). All but one of these

subsets are used to train the fitting model and the remaining subset is used to test

the accuracy of the model. The same process is repeated k times, until all subsets

have been used as testing sets. Common values for k are 5 and 10.

• Ridge regression is a regularised method that promotes shrinkage of the values of

the coefficients of β by adding an `2−norm penalty to the least squares approach

(which reduces variance by adding some bias). Ridge regression seeks to solve the

next optimisation problem:

β̂Ridge = arg min
β∈Rp

{ 1
2N

‖y− Xβ‖2
2 +λ‖β‖2

2

}
,

where ‖ ·‖2
2 is the Euclidean norm.

• Least Absolute Shrinkage and Selection Operator (LASSO) is a regularised method

that promotes both, shrinkage and variable selection, by adding an `1−norm penalty

term to the least squares approach. The LASSO approach solves the following

optimisation problem:

β̂LASSO = arg min
β∈Rp

{ 1
2N

‖y− Xβ‖2
2 +λ‖β‖1

}
,

where ‖β‖1 =∑p
j=1 |β j|.

• The Elastic net is a regularised method that decides which penalisation is best for

fitting by adding another parameter α ∈ [0,1] to the penalty function:

arg min
β∈Rp

{1
2
‖y− Xβ‖2

2 +λ
[

1
2N

(1−α)‖β‖2
2 +α‖β‖1

]}
,

such parameter can be tuned by CV as well. When α = 1, we have the LASSO

approach, whereas with α= 0, we have Ridge regression.
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4
FALSE DISCOVERY RATE (FDR) CONTROL METHODS

Another approach to perform variable selection is through a statistical inference point of

view. Given that we can estimate the respective p−value associated to the hypothesis of

having a null variable (i.e., a variable that has no relevant effect on the response), one of

the further methods followed by researchers was to execute tests of significance for each one of

the variables.

In the procedure proposed by Holm [30], the p−values corresponding to their respective

testing hypotheses are ordered and compared to a critical value f (α) (where 0<α< 1 is a fixed

bound), to reject one hypothesis at a time until it is impossible to do further rejections. Hochberg

[31] presented a modified method that rejects all hypotheses with p−value lower or equal than a

certain critical value and introduced the family-wise error rate (FWER), which is the probability

that at least one rejection was made by error among p (number of variables) simultaneous

hypothesis tests [25].

4.1 Introduction to the False Discovery Rate (FDR)

In 1995, Benjamini and Hochberg [32] proposed a different point of view for the same problem:

they thought that it was also important to take into account the number of hypotheses falsely

rejected among all the rejected hypotheses. The authors considered the generalised event il-

lustrated in Table 4.1 [32], where m null hypotheses were simultaneously tested, of which m0

represents the amount of true null hypotheses, and R is the number of null hypotheses rejected.
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Declared non-significant Declared significant Total
True null hypothesis U V m0

Non-true null hypothesis T S m−m0
m−R R m

Table 4.1: Number of errors committed when testing m null hypotheses.

We define the False Discovery Proportion (FDP) of a testing rule D as the proportion of

hypothesis declared non-null (or significant) by error (false discoveries) among all the hypotheses

declared significant. In other terms,

FDP(D)= V
R

(4.1)

(we define the FDP to be 0 if R = 0).

Although we cannot determine which null hypotheses are true or not (and therefore we cannot

compute the FDP), what we can do is to control its expectation. We define the False Discovery

Rate (FDR) as the expectation of the FDP:

FDR(D)= E [FDP(D)] (4.2)

The testing rule proposed by Benjamini and Hochbergh [32] (BHq) yields the following

theorem, which indicates that FDR(BHq) is controlled [25] at a level 0< q < 1 (i.e. FDR(BHq)≤
q):

Theorem 1 (Benjamini-Hochberg). For independent test statistics and for any configuration of

false null hypotheses, the FDR is controlled at level q under the following procedure:

1. Let P(1) ≤ P(2) ≤ ·· · ≤ P(m) be the ordered p−values and let H(i) denote their respective null

hypothesis.

2. Let k be the largest i for which P(i) ≤ i
m q.

3. Reject all H(i), with i ≤ k.

The connection between significance test and variable selection is that we can obtain a set of

variables from a linear setting that represents a good fit by controlling the FDR of the variables.

Under this perspective, we define the FDR of a variable selection procedure that returns a subset

Ŝ ⊂ {1, . . . , p} as

FDR = E
[

#{ j :β j = 0 and j ∈ Ŝ}

#{ j : j ∈ Ŝ}∨1

]
, (4.3)

where a∨ b denotes max{a,b} [11] and β= (
β1, . . . ,βp

)
is the vector of estimated coefficients as

indicated before.
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Further main studies on the control of the FDR were published by Storey [33], Verhoeven,

Simonsen and McIntyre [34] and by Su, Bogdan and Candès [35].

For this work, we have chosen to use an FDR control method given that we require to assess

the certainty of having selected the most relevant features. Particularly, the technique we will

use in this project is called the knockoffs filter.

4.2 Knockoffs filter

We will now give details about the Knockoffs filter approach, which tackles the problem of

choosing true explanatory features on a model, through techniques such as the LASSO regression

and hypothesis-testing.

Barber and Candès [11] introduced this method, which controls the FDR at a desired level

q, appearing to perform better than the method proposed by Benjamini and Hochberg [32], and

showing more statistical power (i.e., the probability of correctly rejecting a null hypothesis given

that the alternative hypothesis). In other words, it is a method that selects the features that best

fit the data (true signals) and omit those variables that are not meaningful in the model.

Suppose a setting y = Xβ+ ε as before, where X = [
X1 . . . X p

]
is the design matrix with p

columns X i ∈ RN . The idea behind this approach is to try to imitate the same correlation be-

haviour of the p original features, by creating knockoff copies X̃ j for each variable X j and

extending the design matrix X by adding the columns X̃ j, so that, through a variable selection

method one can select those variables that perform better than their respective knockoff copy.

Different variations have been made to the original proposal from Barber and Candès [11],

depending on the restrictions of the design and the nature of the data set. Weinstein, Barber and

Candès [36] provide a version of knockoffs filter using proper LASSO statistics and considering

an independent and identically distributed Gaussian design. Furthermore, Dan and Barber [37]

published a study that utilises the group LASSO [38], a technique that respects grouped sets of

variables. In their study, they propose a version of knockoffs filter that selects relevant groups of

variables that have a null influence on the response, obtaining satisfactory results on the same

data set used by Barber and Candès [11]. On the other hand, Barber and Candès [39] present a

study of the case p > N (i.e. we have more variables than observations) for knockoffs, applying

their analysis to a genome-wide association study (GWAS). More interesting applications of the

knockoffs filter to GWAS can be found in the studies by Katsevich and Sabatti [40] and Sesia,

Sabatti and Candès [20].

29



CHAPTER 4. FALSE DISCOVERY RATE (FDR) CONTROL METHODS

Finally, a new interpretation of knockoffs also worth to mention is the Model-X Knockoffs

[41], which implements a conditional randomisation test to the knockoffs model that allows the

knockoffs filter to be applied to settings where p >> N. However, one of the biggest limitations of

the randomisation is that it is computationally quite expensive as it must compute numerous

test statistics, while in the original knockoffs filter only one test statistic is computed.

The procedure we will follow in this project, as described by Dai and Barber [37], consists of

two main steps: construction of knockoffs and filtration of the results.

4.2.1 Constructing the knockoffs

In the initial setting X = [X1 . . . X p] (supposing each feature X i is centered and normalised),

we look for knockoff copies X̃ i for each X i, such that the matrix X̃ = [
X̃1 . . . X̃ p

]
holds the next

properties:

X̃> X̃ = Σ (4.4)

X̃>X = Σ−diag{s}, (4.5)

for some 04 s ∈Rp, where Σ= X>X is the Gram matrix of the original columns, after normalising

each one of original features (i.e., Σii = ‖X i‖2
2 = 1).

We will now perform the LASSO on the augmented matrix [X X̃ ] = [X1, . . . , X p, X̃1, . . . , X̃ p],

with response vector y, varying the parameter λ from a large value and towards 0:

β̂(λ)= arg min
b∈R2p

{
1

2N
‖y− [X X̃ ]b‖2

2 +λ‖β‖1}. (4.6)

If X j is a true signal, then X j should enter the LASSO earlier than its knockoff copy X̃ j, for

a sufficiently large λ. It is important to note that, if X j is null (i.e., X j has no real effect on the

response vector y), then it is equally likely to enter the model after or before its knockoff copy X̃ j.

4.2.2 Filtering the results

We will construct statistics Z j and Z̃ j (for each j = 1, . . . , p) that measure the relevance of each

feature X j and X̃ j respectively, in the response vector:

Z j = |β̂ j(λ)|,
Z̃ j = |β̂ j+p(λ)|.
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The knockoff filter compares the Z j ’s to the Z̃ j ’s and selects only those variables that are

better than their knockoff copy. This is possible because of the construction of the knockoff copies:

the copies of null variables hold the pairwise exchangeability property, that is, it is possible to

interchange the position of the statistics corresponding to null variables without producing any

change in the joint distribution (Z1, . . . , Zp, Z̃1, . . . , Z̃p).

In order to compare the statistics, we require an anti-symmetric function h to compute the

symmetrised knockoff statistics

Wj = h(Z j, Z̃ j)=−h(Z̃ j, Z j),∀ j (4.7)

such that Wj > 0 means that X j seems to be better (i.e. more important) than its knockoff copy.

We will take Wj = Z j − Z̃ j.

The final step is to select only those features with large, positive values of Wj, considering an

adaptive threshold. In this case, we will use a threshold defined as

T =min
{

t ∈W :
1+#{ j : Wj ≤−t}
#{ j : Wj > t}∨1

≤ q
}

, (4.8)

where q is the desired FDR bound and W = {|Wj| : j = 1, . . . , p}\{0} is the set of unique nonzero

values attained by the |Wj|’s. In their paper, Barber and Candès [11] propose this threshold

demonstrating that it is a stopping time for selection, assuming, without loss of generality, that

|W1| ≥ · · · ≥ |Wp|. Then, the process tests from t = |Wp| onward, until a value of t is found such

that it is the smallest possible value of T satisfying �FDP(t) := #{ j:Wj≤−t}
#{ j:Wj>t}∨1 ≤ q.

The resulting theorem from this procedure is stated below:

Theorem 2 (Knockoffs+ filter [11]). Let Ŝ = { j : Wj ≥ T} be selection model for indexed

parameters from 1, . . . , p. For any q ∈ [0,1], the knockoff method satisfies

FDR = E
[

#{ j :β j = 0 and j ∈ Ŝ}

#{ j : j ∈ Ŝ}∨1

]
≤ q,

where the expectation is taken over the Gaussian noise ε, while treating X and X̃ as fixed.

This theorem guarantees that, under the constructions described above, the false discovery

rate can be controlled significantly, resulting in a good alternative for variable selection.

It is important to note that, although the knockoff filter proposed by Barber and Candès [11]

uses the LASSO, this method is not restricted to it. In particular settings, it is only required
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that the method from which the statistics Z j and Z̃ j satisfy the antisymmetry and sufficiency

requirements; that is, swapping X j with X̃ j has the same effect of swapping Z j with Z̃ j (anti-

symmetry) and that Wj depends only on the Gram matrix of the augmented setting
[
X X̃

]
and on

feature-response inner products
[
X X̃

]> y (sufficiency). In the LASSO coefficients, computed with

a fixed λ, we satisfy both, fairness and sufficiency requirements, however, computing the LASSO

coefficients through cross-validation fails to meet the sufficiency requirement since it does not

consider a fixed X . This is why in the knockoffs filter we cannot use cross-validation to tune an

optimal λ.
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4.3 Summary of chapter

We will now highlight some remarkable results from this chapter:

• The Knockoffs filter is a False Discovery Rate (FDR) control technique that performs

hypothesis testing to select meaningful variables in a model. This method creates a

matrix X̃ which columns are knockoff copies of the columns of X , satisfying X̃> X̃ =Σ
and X̃>X =Σ−diag(s), for some 04 s ∈Rp, where Σ= X>X is the Gram matrix of the

original columns, after normalising each one of original features (i.e., Σii = ‖X i‖2
2 = 1).

Then LASSO is performed on the augmented matrix
[
X X̃

]= [
X1, . . . , X p, X̃1, . . . , X̃ p

]
to solve

β̂(λ)= arg min
b∈R2p

{
1

2N
‖y− [X X̃ ]b‖2

2 +λ‖β‖1}.

- All the entry times of every variable into the LASSO path are registered and

compared, yieding a statistic Wj, which indicates whether a column X j is ’better’

or not that its knockoff copy X̃ j. If Wj > 0, it means that X j seems to be a better

candidate than X̃ j to enter into the model.

- In this work we will use the adaptive threshold T proposed by Barber and

Candès [11]:

T =min
{

t :
1+#{ j : Wj ≤−t}
#{ j : Wj > t}∨1

≤ q
}

,

where q is the desired FDR bound.

- This threshold yields the following theorem [11] that guarantees FDR control:

Let Ŝ = { j : Wj ≥ T} be selection model for indexed parameters from 1,. . . , p. For

any q ∈ [0,1], the knockoff method satisfies

FDR = E
[

#{ j :β j = 0 and j ∈ Ŝ}

#{ j : j ∈ Ŝ}∨1

]
≤ q,

where the expectation is taken over the Gaussian noise ε, while treating X and

X̃ as fixed.
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5
PARSING AND DESCRIPTION OF DATA SETS

Having a clear structure of the data we were working with was a key factor for the success

of this project. Therefore, we required to manipulate the main data set, so that we could

dispose of those transactions with unclear or incomplete information or that were not

meaningful for the purpose of the investigation.

Throughout this chapter, we will describe all the data sets used to develop this research

project. We will start by describing the main data set, which contains information about EV

charging transactions in public and semi-public charging stations in the Netherlands, during

the period 2012-2016. Additionally, we will construct new data settings by adding information

from other two public sources containing information on the demographics of the Netherlands as

well as the number of places of interest (schools, hospitals, etc.) surrounding each charging station.

5.1 EV Charging Transactions data set

In this section we will give details about the data set Transactions.Rda provided by the ElaadNL.

This data set is available upon request for non-commercial purposes and therefore, cannot be

publicly shared. It consists of 1,060,763 transactions comprising 17 features which are described

below. We used version 3.4.3 of R [42] on RStudio [43] to parse this data set.

The following list is a description of the variables in the Transactions.Rda data set:
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1. TransactionId. Transaction identifiers (since these IDs were not unique, the column

Index was created. Only 960,438 unique IDs).

2. Index. Transaction IDs. 1’060,763 unique Transaction IDs.

3. ChargePoint. ID of the charging station. 1,747 unique IDs.

4. Connector. ID of the outlet were the vehicle was connected. Values: 1, 2, 3, 13, 14.

5. UTCTransactionStart. Local time when the transaction started.

6. UTCTransactionStop. Local time when the transaction stopped.

7. MeterStart. Readings of energy of the vehicle at the beginning of the transaction

(Wh).

8. MeterStop. Readings of energy of the vehicle at the end of the transaction (Wh).

9. StartCard. Radio Frequency Identification (RFID) card used at the beginning of the

transaction. 53,850 unique cards.

10. StopCard. RFID card used at the end of the transaction. 53,256 unique cards.

11. ConnectedTime. Amount of time that the vehicle was connected to the charging

station.

12. ChargeTime. Amount of time on which the vehicle was charging (an effective energy

transfer took place).

13. IdleTime. Difference between ConnectedTime and ChargeTime.

14. TotalEnergy. Total energy acquired during the charging transaction.

15. MaxPower. No description provided.

16. lat. Latitude of the charging station. 1,725 unique coordinates (along with lon).

17. lon. Longitude of the charging station. 1,725 unique coordinates (along with lat).

5.1.1 Data set parsing

In order for us to make progress with this project, we needed to filter the Transactions.Rda

data set, discarding some transactions and variables that were not specific or meaningful to the

purpose of this investigation. We will now describe the filtering process that led us to a cleaner

configuration.

Initially we had 1,747 many different charging stations, however, only 1,725 of them had

unique coordinates. This happens since duplicated coordinates (for two or more different IDs in

the variable ChargePoint) correspond to multiple charging stations at the same premise (Figure

5.1 [44]). To facilitate the geographical analysis, we renamed these charging stations with shared

coordinates, choosing the name of the first element from an alphabetically sorted list of their

names for each coordinate (see Table 5.1).
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Table 5.1: Charge points with shared coordinates (the names in bold letters were chosen to
represent all the charging stations with their same coordinate).

Coordinate (lat, lon) ChargePoint

(50.894937, 6.059926)
1. AL194
2. AL462

(51.431825, 5.428635)

3. AL268
4. AL269
5. AL602
6. AL603
7. AL604

(52.016245, 5.040206)
8. AL427
9. AL547

(52.439989, 4.81851)
10. AL91
11. AL92

(52.158933, 4.478506)
12. DB0351
13. DB0353

(52.550007, 4.661949)
14. EV0034
15. EV0037

(52.544901, 4.660249)
16. EV0035
17. EV0038

(52.645705, 4.749776)
18. EV0121
19. EV0132

(51.807006, 5.729469)
20. EV0178
21. EV0182

Coordinate (lat, lon) ChargePoint

(52.300911, 4.47821)
22. REE520
23. REE521

(51.813498, 4.657108)
24. REE651
25. REE652

(51.484048, 3.962978)
26. RWE003
27. RWE004

(51.486397, 3.955032)
28. RWE005
29. RWE006

(51.263731, 3.907549)
30. RWE007
31. RWE008

(51.515495, 3.995568)
32. RWE011
33. RWE012

(51.335689, 3.838085)
34. RWE013
35. RWE014

(51.228606, 3.801977)
36. RWE015
37. RWE016

(51.334748, 3.821503)
38. RWE017
39. RWE018

(51.400989, 3.534943)
40. RWE019
41. RWE020

Figure 5.1: Charging stations located at the coordinate (51.431825, 5.428635).
Here, 5 charging stations are located at the same premise (yellow ovals).
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Figure 5.2: Frequency distribution with intervals of 30 min of transactions with charge time
shorter than 10 hours.

The number of transactions with a charging time longer than 10 hours is 5,388, which is less

than 0.51% of the total amount of transactions. The frequency distribution of the transactions

with a charge time shorter than 10 hours is illustrated in Figure 5.2.

As to the cards used in the data set, 481 records had null values in either StartCard or

StopCard, whereas the number of transactions with a StartCard different from the StopCard is

35,244, including the transactions with null values in their cards. This leaves a total of 53,245

unique cards in the data set where StartCard is identical to its StopCard. Within this remaining

subset, 796 transactions have their StartCard and StopCard equal to “00000000". Additionally,

there are 494 rows such that the difference between ConnectedTime and the sum of IdleTime

plus ChargeTime is greater than 0.0002777778 hrs (i.e. 1 second).

Finally, if we consider a data set filtered under the next conditions:

1. ChargeTime is shorter than 10 hours;

2. StopCard is identical to its StartCard and both different from “00000000";

3. The difference between ConnectedTime and the sum of IdleTime plus ChargeTime is less

than 0.0002777778 hrs (1 second);

4. Consolidate the names of duplicated coordinates per location (according to Table 5.1).
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and disregard the following variables:

• index (not meaningful for regression),

• TransactionId (substituted by index),

• UTCTransactionStop (to avoid correlated variables, keeping UTCTransactionStart and

ChargeTime),

• MeterStart (we will keep TotalEnergy),

• MeterStop (we will keep TotalEnergy),

• StopCard (we are keeping StartCard),

• IdleTime (we are keeping ConnectedTime and ChargeTime),

• MaxPower (no description provided),

we obtain a cleaner data set consisting of 1,019,091 transactions and 9 variables. We will call

this resulting data set Transactions_filtered.Rda, which will serve as the main source of

information to describe the behaviour of users and the performance of charging stations.

Due to the nature of the variable UTCTransactionStart, we will also create a subset of

the Transactions_filtered.Rda data set called df.Rda, which consists of the same 1,019,091

transactions, but with the next 9 variables:

• ChargePoint.

• ConnectedTime.

• ChargeTime.

• TotalEnergy.

• Weekday. Categorical variable with 7 character-class values, from Monday to Sunday.

• Month. Categorical variable with 12 character-class values, from January to December.

• Time. Categorical variable with 4 character-class values: After-midnight (from 12am to

6am), Morning (from 6am to 12pm), Afternoon (from 12pm to 6pm) and Evening (from 6pm

to 12am).

• Season. Categorical variabe with 4 character-class values: Winter (from January to March),

Spring (from April to June), Summer (from July to September) and Autumn (from October

to December).

• Year. Categorical variable with 5 character-class values, from 2012 to 2016.

5.2 Netherlands demographic and geographic data

Along with the Transactions_filtered.Rda data set, we will consider the information provided

by the Central Bureau of Statistics of Netherlands [45] through the shapefile contained in [46].

In this file, the Netherlands map is sectioned into squares of 100 meters by 100 meters each

(Figure 5.3), containing information on population, housing, social security, among others, on
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which at least 5 inhabitants or 5 dwellings were counted (for the year 2016).

In this project, we created a Voronoi diagram generated by the 1,725 different coordinates,

in order to facilitate the geographical analysis of the network as well as the spatial coverage of

each charging point (Figure 5.4). We have extracted the information on the population contained

in each 100m×100m square and summed up all the population values of the squares which

centroid is contained inside each Voronoi cell (e.g. see Figure 5.5).

Figure 5.3: Visualisation of the Netherlands map sectioned into 100m×100m squares. The
amplified area indicates the Amsterdam city centre.

Finally, we obtained the number of places of interest (schools, hospitals, restaurants, etc.)

that are located within the area covered by each Voronoi polygon by extracting the information

from the plugin Quick OSM included in QGIS [47] version 2.8.4. The resulting data set was called

chrg_spatial.Rda, consisting of 1,725 observations (one per Vovonoi polygon) and 61 variables:

charge point ID, population, and 59 types of places of interest (see Appendix A.1 for full list of

variables).
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Figure 5.4: Voronoi diagram generated by the 1,725 different coordinates.

Figure 5.5: Amplified visualisation of the Voronoi diagram overlapping the sectioned map of the
Netherlands. The red polygon corresponds to the surrounding area of the charging point REE065.
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5.3 Summary of chapter

We will now provide a brief summary of the data sets obtained in this chapter:

• Transactions_filtered.Rda. Data set consisting of 1,019,091 observations (each

one containing information of a single charging transaction) and 9 variables:

- ChargePoint.

- Connector.

- UTCTransactionStart.

- StartCard.

- ConnectedTime.

- ChargeTime.

- TotalEnergy.

- lat.

- lon.

• df.Rda. Data set consisting of 1,019,091 rows (each row describes a single charging

transaction) and 9 variables:

- ChargePoint.

- ConnectedTime.

- ChargeTime.

- TotalEnergy.

- Weekday.

- Month.

- Time.

- Season.

- Year.

• chrg_spatial.Rda. Data set consisting of 1,725 rows (each row describes the popu-

lation covered by each charging station as well as the number of places of interest

(schools, hospitals, etc.) that are nearest to every charge point. A full list of the

variables of this data set can be consulted in Appendix A.1.
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6
ANALYSIS

We will show now how the methodology was applied onto the data sets described in

Chapter 5. All the analyses were made using Tableau [48] (to visualise the data sets)

and R [42, 43] mainly making use of the built-in functions from the packages dplyr

[49] (for data manipulation), glmnet [50] (for linear regression methods) and knockoff [51] (for

knockoffs filter).

6.1 Data sets overview

Throughout this section, we will explore the structure of df.Rda by analysing some results that

arise from the data set only.

In Figure 6.1 we can see the behaviour of TotalEnergy with respect of ChargeTime for all

transactions in the df.Rda data set. We have identified two clusters of points that seem to obey

certain linear rule. In Figure 6.2, a yellow line was drawn, dividing these two clusters.

(6.1)

43



CHAPTER 6. ANALYSIS

Figure 6.1: Comparison between variables ChargeTime and TotalEnergy.

Figure 6.2: Dividing line (in yellow) of the two main clusters of points of Figure 6.1

Even though we had no further information from the data sets on what could be the reason

for this effect, we can assume that it reflects the charging capacity and needs of PHEVs (Plug-in
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Figure 6.3: Amount of transactions made in 2012, every season, and distinguishing time of the
day.

Figure 6.4: Amount of transactions made in 2013, every season, and distinguishing time of the
day.

Hybrid Electric Vehicles) vs. BEVs (Battery electric vehicles) [52].

We can also notice that most of the transactions were made during the afternoons throughout

the years, and that the day less utilised by the users to charge their vehicles is on Sunday, as

shown in Figures from 6.3 to 6.7 and from 6.8 to 6.12.

45



CHAPTER 6. ANALYSIS

Figure 6.5: Amount of transactions made in 2014, every season, and distinguishing time of the
day.

Figure 6.6: Amount of transactions made in 2015, every season, and distinguishing time of the
day.

46



6.1. DATA SETS OVERVIEW

Figure 6.7: Amount of transactions made in 2016, every season, and distinguishing time of the
day.

Figure 6.8: Amount of transactions made in 2012, every season, and separating by weekday.
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Figure 6.9: Amount of transactions made in 2013, every season, and separating by weekday.

Figure 6.10: Amount of transactions made in 2014, every season, and separating by weekday.
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Figure 6.11: Amount of transactions made in 2015, every season, and separating by weekday.

Figure 6.12: Amount of transactions made in 2016, every season, and separating by weekday.
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6.2 Application of methodology

Now with the data sets cleaned and parsed, we can address each one of the research questions

posed in Chapter 1.

6.2.1 Spatial and temporal behaviour of users

Research question 1: Are there any spatial and temporal patterns in how users utilise the

network of charging stations?

In order for us to address the first research question of this project, we ran Ridge regression,

LASSO, Elastic Net and the Knockoffs filter over the chrg_spatial.Rda data set, taking as

the dependent variable the total sum of the time in which every charging station had a plug

connected (i.e. ConnectedTime, from the df.Rda data set), varying only the year.

We used an α= 40/99 for the Elastic Net, which was chosen via 5-fold Cross Validation after

100 iterations. This procedure led to the selected features shown in Table 6.1, which were the

variables selected by the Elastic Net and LASSO models (the results of these two approaches

coincided completely in all years, but in 2015, where the features BBQ, Bicycle Rental, Bus

station and Social Centre were selected by the Elastic Net, but not by the LASSO). Full disclosure

of the results of each model ran over the df.Rda data set filtered by year is shown in Figures 6.13

to 6.17. We can notice the disparity between the results from the Ridge and the LASSO-Elastic

Net (the former with more variables selected than the later).

On the other hand, after performing the Knockoffs filter over the df.Rda data set (filtered by

year), at the standard FDR = 0.1, we only obtained results for the 2016 setting (Table 6.2). This is

why we continued increasing the FDR in steps of 0.05, obtaining the results shown in Tables 6.3

and 6.4, meaning that we are allowing up to a maximum of 20% of selected variables to be false

discoveries (more variables were selected with higher False Discovery Rates, however we consid-

ered that such values were significantly high for us to be able to draw any kind of valid conclusion).

The results of this approach showed an almost perfect match between the coefficients of

the selected variables by the Elastic Net and the LASSO, being the gambling places the most

significant from 2013 through 2015; in 2012, planetariums were selected as the most significant

amenity whereas, in 2016, 4 type of amenities were barely selected (positive coefficients: car

sharing, dentist, and kindergarten; negative coefficients: fuel).
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Figure 6.13: Amenities (features) coefficient comparison between the models Ridge, Elastic Net
and LASSO. Year 2012.

Figure 6.14: Amenities (features) coefficient comparison between the models Ridge, Elastic Net
and LASSO. Year 2013.
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Figure 6.15: Amenities (features) coefficient comparison between the models Ridge, Elastic Net
and LASSO. Year 2014.

Figure 6.16: Amenities (features) coefficient comparison between the models Ridge, Elastic Net
and LASSO. Year 2015.

52



6.2. APPLICATION OF METHODOLOGY

2012 2013 2014 2015 2016
Bicycle Rental Arts Centre ATM Arts Centre Car Sharing

Biergarten Bicycle Rental BBQ Car Sharing Dentist
Car Rental Casino Bicycle Rental Casino Fuel

Clinic Clinic Biergarten Clinic Kindergarten
Fuel Dentist Bus Station Dentist

Grave yard Fuel Car Sharing Fountain
Kindergarten Gambling Casino Fuel

Library Grave Yard Clinic Gambling
Place of worship Kindergarten Coworking place Grave yard

Planetarium Police Dentist Kindergarten
Police Taxi Fountain

Recycling Fuel
Toilets Gambling

Townhall Grave yard
Vending machine Hospital

Kindergarten
Marketplace

Nightclub
Place of worship

Planetarium
Police
Prison
Shower

Social centre
Taxi

Theatre
Vending machine

Table 6.1: Selected features per year, through models LASSO and Elastic Net.

6.2.2 Performance of charging stations

Research question 2: Can we identify some factors influencing the performance of charging

stations?

We have addressed this question by first creating and adding another column to the data set

df.Rda, called efficiency, and which entries are obtained by dividing the values of the features

TotalEnergy over ChargeTime for each transaction. Of course, the higher the value, the higher

the charging efficiency level as it measures the charging speed. By doing so, we can now analyse

the charging performance throughout the time having the efficiency feature as the dependent

variable.

We ran the LASSO built-in method, included in the package glmnet in RStudio over the
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Figure 6.17: Amenities (features) coefficient comparison between the models Ridge, Elastic Net
and LASSO. Year 2016.

2012 2013 2014 2015 2016
Bicycle Rental

Bus station
Car Sharing

Coworking place
Dentist

Fountain
Gambling

Kindergarten
School

Theatre
Vending machine

Table 6.2: Selected features per year. Model: Knockoffs filter (FDR=0.1).

aforementioned configuration, filtering by each temporal type of feature (weekdays, months, time

and season). The results of these compilations are shown in Table 6.5.

On the other hand, in order to compare the above results with an FDR method, we also

applied the Knockoffs filter to the same configuration (i.e., with the efficiency feature added to

the df.Rda data set). We set the FDR at 0.15 as lower rates would not select any variables at all,

and higher rates would be too high to draw valid conclusions. Results of the selected variables

after running the Knockoffs filter are also shown in Table 6.5.
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2012 2013 2014 2015 2016
Arts centre Bus station
Car Sharing Car Sharing

Casino Dentist
Clinic Fuel

Dentist Kindergarten
Fountain School

Fuel Theatre
Gambling Toilets

Grave yard Vending machine
Kindergarten

Recycling
Vending machine

Table 6.3: Selected features per year. Model: Knockoffs filter (FDR=0.15).

2012 2013 2014 2015 2016
Car Sharing Arts centre Car Sharing

Clinic Bench Dentist
Fuel Bicycle Rental Fuel

Gambling Car Sharing Gambling
Grave yard Casino Kindergarten

Kindergarten Clinic Vending machine
Vending machine Dentist

Fountain
Fuel

Gambling
Grave yard

Kindergarten
Recycling

Toilets
Vending machine

Table 6.4: Selected features per year. Model: Knockoffs filter (FDR=0.2).

We found that every variable not selected by the LASSO was not chosen by the Knockoffs

filter either (in contraposition, every chosen variable by the Knockoffs filter was also selected

by the LASSO); this reflects the correspondence between these two methods and brings certain

reliability to the Knockoffs filter. Among the selected variables by the Knockoffs filter, we find

that the sign of their respective LASSO coefficient is positive, which indicates a direct relation-

ship between the variable and the efficiency. Additionally, every selected variable is related to

non-busy temporal variables (say, Summer; weekends: Friday, Saturday and Sunday; school

vacation months: July and December and non-operational hours: After midnight).
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Weekdays
Variable LASSO Knockoffs Filter
Monday -0.01916 Not selected
Tuesday -0.01465 Not selected

Wednesday Not selected Not selected
Thursday -0.00800 Not selected

Friday 0.04095 X
Saturday 0.12343 X
Sunday 0.13866 X

Months
January -0.00595 Not selected
February Not selected Not selected

March -0.01713 Not selected
April -0.01630 Not selected
May -0.00721 Not selected
June Not selected Not selected
July 0.02857 X

August 0.03510 Not selected
September Not selected Not selected

October 0.01574 Not selected
November Not selected Not selected
December 0.04235 X

Time
Morning -0.11353 Not selected

Afternoon Not selected Not selected
Evening 0.10818 Not selected

After midnight 0.19800 X
Season

Spring Not selected Not selected
Summer 0.02083 X
Autumn 0.03124 Not selected
Winter -0.00953 Not selected

Table 6.5: Describing efficiency. List of coefficients of the selected values per group of temporal
variables by the LASSO approach and selected values by the Knockoffs filter (FDR=0.15).

6.3 Interpretation of results

After comparing the features selected by the LASSO-Elastic Net and the Knockoffs filter, we

noticed that most of the variables from the Knockoffs filter are included in the ones obtained from

the LASSO and Elastic Net. Additionally, the amenities Kindergarten and Fuel were selected

in all years by the LASSO, Elastic net and the Knockoffs filter (all but in 2016, where Fuel was

not selected with FDR=0.1, as shown in Table 6.2). These amenities are followed by Car sharing

(selected in all but two scenarios), Vending machine, Dentist and Gambling (selected in all but

three scenarios).
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The above findings suggest that charge points located close to facilities such as Fuel stations,

Kindergartens and Car sharing points are more likely to be utilised by EV users than other type

of public amenities.

Furthermore, after running the LASSO and Knockoffs Filter approaches to decide what

temporal variables influence the performance of the charging stations, we could notice that the

values of the variables that were not selected by the LASSO were not chosen by the Knockoffs

filter either. Also, those values selected by the Knockoffs filter for each variable include the

weekends (Friday to Sunday), July and December (which coincide with the Summer and Winter

holidays), After midnight and the Summer; this makes, for instance, a transaction made on a

July weekend in the after midnight, more likely to be an efficient transaction (probably because

of a less-congested charging network caused by a lower demand).
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7.1 Conclusions

Electric Vehicles have gained popularity among the general society as they represent an in-

novative mean of transport that aims to decrease the CO2 emissions. It is, therefore, of high

importance, to recognise the necessity of the development and generation of knowledge on EV

infrastructures and their different settings. In this work we have made an effort to contribute

with the application of some statistical and geographic tools and analysis that can be used to

understand and describe usage trends in EV charging networks (in this case, from the Nether-

lands).

The main results obtained from this study are listed below:

• We have determined, through the implementation of variable selection and false discovery

rate control linear methods that charging stations located close to kindergartens, car

sharing spots and fuel stations are more likely to be used more frequently and for the

longest time.

• Likewise, we found that those charging transactions made during the weekends, the months

of July and December, in the summer or between 12AM and 6AM, had the most efficient

performance (meaning that they charged the highest amount of energy in the shortest time).

These findings can be taken into account when deciding where to install new charging stations

and provide information to private and public organisations regarding the usage and performance
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of such charging points based on the moment they are intended to be used (e. g. to design and

implement incentives and strategies of usage at certain hours, to avoid network congestion and

promote charging efficiency).

Overall, we found that FDR techniques such as the Knockoffs filter here implemented become

helpful to identify the variables that truly affect the dynamics of a certain network, avoiding the

appearance of false positives (Type I errors) as much as possible. This certainly provides a new

approach to the modelling and description of EV networks.

Moreover, even though this study was conducted for a specific type of EV network (the

Netherlands), we believe the methodology can also be helpful and applicable to other scenarios

and places. The approaches here implemented provide a new combination of tools (Voronoi

diagrams, regularisation and a fairly novel FDR control method such as the Knockoffs filter) that

can be used to study the impact and description of other geographical phenomena.

7.2 Limitations and further research

Throughout the development of this study, we encountered various limitations that represent

important points to take into account. Some of them were derived from the deployment of the

LASSO as a variable selection method, which is known to operate indistinctly among highly

correlated variables (such as some of the variables we used in this work); however, the LASSO

resulted to be the approach that provided the best fit for this study so we had to run various

scenarios with and without highly correlated variables. Another important limitation was found

at the time of applying the Knockoffs filter at standard levels (FDR, alphas, CV folds, etc.) as we

were not obtaining any results at all with them. In order to obtain a significant outcome from their

implementation and be able to draw valid conclusions, we had to perform a remarkable amount

of different scenarios in order to find the best possible configuration without compromising the

reliability of the results. Further research could be focused on the characteristics the data set

feeding the Knockoffs filter should have in order to ease their study.

We also suggest a time series analysis in order to find more significant and interesting

patterns in how users utilise the EV network (e. g., tracking how often and in which charging

stations a particular card was used during the time frame of the data set).
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A.1 chrg_spatial’s features names

Feature name Feature name Feature name
1 Charge Point 22 Clock 43 Police
2 Population 23 Commercial centre 44 Post box
3 Animal boarding 24 Coworking place 45 Post office
4 Animal shelter 25 Crematorium 46 Prison
5 Arts centre 26 Dentist 47 Pub
6 ATM 27 Doctors 48 Recycling
7 Bank 28 Drinking water 49 Restaurant
8 Bar 29 Embassy 50 School
9 BBQ 30 Fast food 51 Shower

10 Bench 31 Fountain 52 Social centre
11 Bicycle Parking 32 Fuel 53 Social facilities
12 Bicycle Rental 33 Gambling 54 Swingerclub
13 Biergarten 34 Grave yard 55 Taxi
14 Bus station 35 Hospital 56 Theatre
15 Cafe 36 Kindergarden 57 Toilets
16 Car Rental 37 Library 58 Townhall
17 Car Sharing 38 Marketplace 59 University
18 Car wash 39 Nightclub 60 Vending machine
19 Casino 40 Pharmacy 61 Veterinary
20 Cinema 41 Place of worship
21 Clinic 42 Planetarium

Table A.1: chrg_spatial’s features names
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