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Abstract 

Alzheimer’s disease (AD) is a neurodegenerative disease with a mostly unknown aetiology, 

that is characterised by accumulation of the abnormal proteins, amyloid-beta and microtubule 

associated protein tau (tau). Tau is particularly interesting due its involvement in a range of 

neurodegenerative disorders collectively known as tauopathies. In recent years, our 

understanding of the mechanisms of tauopathies has greatly expanded due to two factors: 1) 

the use of model organisms like Drosophila melanogaster, C. elegans and mouse have 

provided powerful experimental platforms to analyse the cellular and molecular events of 

disease, and 2) genomic and transcriptomic methodologies have identified novel targets and 

molecular mechanisms that can then be further tested in model organisms. This thesis builds 

on these developments by undertaking an analysis of published transcriptomic and genomic 

studies to identify novel conserved pathways and proteins that play a key role in human 

disease and have clear orthologues in Drosophila. In this way my study seeks to identify 

novel approaches to using Drosophila to provide new insights into the mechanism of 

neurodegenerative disease. 

 

To do this, I analysed 52 published studies using genomic and/or transcriptomic methods to 

reveal the genetic changes that underlie AD. From this survey, I identified the most 

significant genes identified in each study for further detailed analysis and determined their 

human and Drosophila orthologues. The most frequently occurring genes were scored, 

ranked and placed into protein-protein interaction networks (PPIN) using Cytoscape. Using 

Gene Ontology (GO) enrichment analyses, functional annotations of both species’ whole 

networks were acquired and examined. Centrality analysis was used to identify potential 

candidate proteins conserved in both humans and Drosophila.  Using the Cytoscape plugin 

GASOLINE, conserved protein modules were identified and analysed. My results found 



  

significant enrichment of functions and genes/proteins primarily relating to vesicle 

processing, protein kinase processes, and RNA splicing. Individual proteins with high-degree, 

high-betweenness values in both species, such as SRC/Src64B and EGFR/Egfr, and protein 

complexes enriched in biological processes such as exocytosis, membrane dynamics, and 

RNA splicing are exciting potential candidates for further studies concerning tau-based 

pathology. Together, my work complements previous findings in the field while providing 

novel insights into the connections between disease-causing genes and mechanisms in 

tauopathies such as AD. 
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Introduction 

Dementia & Alzheimer’s Disease 

Dementia is an umbrella term referring to a group of neurological disorders primarily 

characterised by the progressive impairment and eventual loss of cognitive functions and 

neuronal deterioration (Ritchie & Lovestone, 2002). The global prevalence of dementia is 

estimated to be approximately 46.8 million people (Prince et al., 2015), and in Britain alone, 

this number is predicted to rise to 1,205,000 by 2040 (Ahmadi-Abhari et al., 2017). Dementia 

also bears a significant economic burden with costs estimated to increase from $818 billion 

(USD) to $1 trillion by 2018 (Wimo et al. 2016). As the world’s population ages, both the 

incidence and economic impact of dementia will inevitably increase.  

Of the dementias, Alzheimer’s disease (AD) is the most commonly diagnosed form. AD is a 

chronic neurodegenerative disease, and most cases are sporadic with a less well understood 

aetiology. Familial forms of Alzheimer’s Disease (FAD) are caused by mutation in one of 

three genes: PSEN1, located on chromosome 14; PSEN2, located on chromosome 1; and 

APP, located on the long arm of chromosome 21. Both sporadic and familial forms converge 

upon similar clinical systems, which are memory dysfunction and loss, beginning with 

declarative memory impairment in the early stages of the disease before eventually resulting 

in widespread amnesia and inability to store new information. As the disease progresses, 

impairments in language, judgement, attention and other executive functions become 

apparent. Psychological and behavioural sequelae also become more prominent and severe, 

and may include depression, delusions, hallucinations, and increased aggression. In late-stage 

AD, almost all cognitive functions have been lost, and individuals are completely dependent 

on caregivers. At this stage death occurs, though usually as a result of an infection or other 

physical morbidity rather than AD itself. 
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AD is a neurodegenerative disease, and its neuropathology is marked by profound alterations 

in neuronal structure and function. It is characterized by the progressive deterioration of 

neuronal subsets within specific brain regions, most severely affecting regions involved in 

memory first, before spreading to connected cortical regions. This progressive deterioration is 

correlated with neuronal aggregation of hyperphosphorylated microtubule associated protein 

tau, a protein required for microtubule assembly and stability, into tangles (Wood et al., 1986; 

Alonso et al., 1996) and extracellular aggregation of amyloid-beta (A) peptides into plaques 

(Sadigh-Eteghad et al., 2015).  It is now the general consensus that the pathophysiology of 

AD is primarily caused by pathogenic variants of these two biomolecules; however, recent 

research suggests tau is more responsible for the cognitive and clinical symptoms than A 

(Giannakopoulos et al., 2003; Cho et al., 2016).  

Amyloid-  

Aβ is a peptide formed via sequential cleavage of the transmembrane protein amyloid 

precursor protein (APP) by the proteases β- and γ-secretase (Lichtenthaler et al., 2011). 

Briefly, β-secretase cleaves APP at the N-terminus, resulting in the formation of two 

derivatives: soluble APP (sAPPβ) and β-C-terminal fragments (CTFβ); the former is released 

into the extracellular space, while the latter remains tethered to the cell membrane. CTFβ is 

then cleaved by γ-secretase, resulting in Aβ (Thinakaran & Koo, 2008; Chen et al., 2017). 

However, this process is imprecise, and depending on the site γ-secretase binds to, different 

Aβ isoforms are produced. Of these isoforms, Aβ40 and Aβ42 are the most abundant (Portelius 

et al., 2010), the latter considered to be the primary toxic variant (Pike et al., 1993; Vadukul 

et al., 2017). 

It is suggested that increased levels of Aβ are the primary cause of AD, and that deposition of 

this toxic Aβ into the extracellular space prompts a “chain reaction” leading to profound 
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pathological changes in AD; this is known as the amyloid cascade hypothesis (Hardy & 

Higgins, 1992). This idea was initially based on two observations: 1) Aβ forms the bulk of 

the extracellular depositions known as senile plaques (SP), a key histopathological feature of 

AD (Dickson, 1997); and 2) studies on familial AD (FAD) revealing that mutations in the 

APP and PSEN genes lead to increased levels of Aβ, particularly Aβ42 (Duff et al., 1996; 

Kumar-Singh et al., 2006). In recent years the hypothesis has been amended to emphasise 

soluble Aβ oligomers as the primary drivers of AD. Formed via the oligomerisation of Aβ 

isoforms (El-Agnaf et al., 2000), there is evidence to suggest that these oligomers exhibit 

significant synaptotoxicity, particularly at excitatory synapses (Lacor, 2004; Koffie et al., 

2009). 

 

Tau Protein   

Tau refers to a group of proteins encoded by the microtubule-associated tau protein gene 

(MAPT), located on chromosome 17q21 in humans (Wade-Martins, 2012). The primary 

physiological function of tau is to stabilise microtubules by binding to tubulin regions on the 

microtubule structure (Hirokawa et al., 1988; Makrides et al., 2004; Kadavath et al., 2015) 

via its MT-binding repeats (Cleveland et al., 1977; Gustke et al., 1994). Alternative mRNA 

splicing of exons 2, 3 and 10 in MAPT results in the production of six tau isoforms, the 

structures of which are dependent on the inclusion or exclusion of some or all of these exons 

during mRNA translation (Buée et al., 2000). Exons 2 and 3 are translated into N1 and N2 

regions of the N-terminus, respectively, while exon 10 translates into the R2 aspect of the C-

terminus microtubule-binding repeat domain (Liu & Gong, 2008). Figure 1 illustrates the 

different isoforms and their structures. 
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Figure 1. Human MAPT gene and the six tau isoforms. Alternative splicing of exons 2 (yellow), 3 (green) and 

10 (orange) results in the formation of the six tau isoforms. Exons 4a, 6, and 8 (grey) are not transcribed in the 

human brain. Dark blue bars represent microtubule-binding repeats and the yellow and green bars represent the 

N-terminal domains. Adapted from Hefti et al., (2018).  The six human tau isoforms differ in their primary 

structure in terms of the presence and absence of two N-terminal domains, and the three or four carboxy-

terminal microtubule binding domains. 

The isoforms are typically categorised by the number of MT-binding repeats, i.e., 3R or 4R. 

4R tau binds more strongly than 3R as a result of its larger number of MT-binding repeats 

(Panda et al., 2003). Tau also promotes the assembly of microtubules by affecting tubulin 

polymerisation (Weingarten et al., 1975; Drechsel et al., 1992; Li & Rhoades, 2017), and has 

been implicated in axonal development due to an increased presence at the distal ends of 

developing neurons (DiTella et al., 1994; Kempf et al., 1996). 

Tau function is regulated by post-translational modifications, and as a phosphoprotein it is 

particularly susceptible to phosphorylation. Phosphorylation of tau, typically by kinases and 

phosphatases such as GSK3β, affects its binding affinity for microtubules, allowing 

microtubules to remain dynamic and preventing inhibition of axonal transportation (Liu et al., 

2007; Cuchillo‐Ibanez et al., 2008; Rodríguez-Martín et al., 2013). Tau phosphorylation is 
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also elevated during embryonic development, possibly to promote axonogenesis and 

plasticity (Brion et al., 1994; Biernat & Mandelkow, 1999; Yu et al., 2009). Tau is modulated 

by other post-translational processes, such as glycation and nitration, but their significance is 

yet to be clarified (Ballatore et al., 2007). 

It is generally believed that tau becomes pathogenic as a result of hyperphosphorylation, 

where phosphoryl binding sites on its structure become saturated. More specifically, normal 

tau contains 2-3 mol phosphate/mol protein, whereas hyperphosphorylated tau contains 

approximately 6-8 mol phosphate/mol protein (Ksiezak-Reding et al., 1992; Köpke et al., 

1993). The cause of hyperphosphorylation is unclear, but amongst other proposals it has been 

suggested that aberrances in the activities of kinases and phosphatases, normally responsible 

for regulating tau phosphorylation, could be responsible (e.g. Nuydens et al., 1995; Sato et 

al., 2002). When hyperphosphorylated, tau assembles to form insoluble filaments, namely 

paired helical filaments (PHFs) and straight helical filaments (SHFs) (Crowther & Goedert, 

2000; Alonso et al., 2001). These filaments are composed of two protofilaments, with cross-

/-helix structures and cores consisting of the tau amino acids 306–378, i.e. R3, R4, and 10 

residues following R3 (Berriman et al., 2003; Fitzpatrick et al., 2017; Falcon et al., 2018). 

Both PH and SH filaments aggregate to form the bulk of NFTs, dense intracellular structures 

that typically occur within the axonal processes of neurons (Bancher et al., 1989). 

Tau Pathogenicity & Drosophila 

As examining the effects of tau in humans in vivo is both practically and ethically difficult, 

most of our knowledge on tau, both normal and abnormal, derives from animal models of 

AD. A wide variety of animal organisms can be used to simulate AD, including Mus 

musculus (house mouse; Elder, Sosa, & Gasperi, 2010), Danio rerio (zebrafish; Newman, 

Ebrahimie, & Lardelli, 2014), and Caenorhabditis elegans (nematode; Alexander, Marfil, & 

Li, 2014). In recent years, Drosophila melanogaster (fruit fly) has come to the fore as an AD 
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model, especially pertaining to tau-specific pathology. A review by Sivanantharajah, Mudher, 

& Shepherd (2019) highlights the advantages of Drosophila for modelling AD and other 

tauopathies, including its simplicity, cost-effectiveness (compared to other model organisms, 

particularly vertebrates) and genetic malleability. More importantly, its genome is 

evolutionarily well-conserved, with 60% of genes estimated to be conserved between it and 

humans. Interestingly, 75% of known human disease genes have a homologue in Drosophila, 

including tau (Reiter et al., 2001). 

This is important because, while abnormal tau’s pathogenicity is well-documented, the 

specific mechanisms behind its pathogenicity and subsequent propagation is still largely 

unknown. As previously stated, it is generally believed that hyperphosphorylation is 

responsible for tau pathogenicity, and wild-type Drosophila tau too undergoes both normal 

and abnormal phosphorylation by various protein kinases (Chatterjee, Sang, Lawless, & 

Jackson, 2009; Yeh et al., 2010). However, the questions of why it becomes 

hyperphosphorylated and whether hyperphosphorylation is the sole inducer of tau pathology 

remain largely unanswered. Hypothetically speaking, given that hyperphosphorylation of 

native tau is present in both species, the pathways or processes that satisfy the criteria of 

these questions should also be evolutionary conserved to some degree.  This is further 

emphasised by both the identification and characterisation of proteins and biological 

processes that have been found to exacerbate AD pathology, such as BIN1 and endocytosis 

(Cataldo et al., 1997; Cataldo et al., 2001), across various animal models, including 

Drosophila. Numerous genomic and transcriptomic studies have also demonstrated the 

expression patterns of dozens of proteins to be significantly altered in tauopathy models. 

However, a survey of the current literature indicates no prior across-species attempt to 

identify, examine, and underline the most significant proteins from these studies as both 

individual candidate proteins and indicators of wider biological pathways that may contribute 
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to AD pathology. In this study, I will attempt to achieve this objective by using the following 

methods: 

1. I will conduct a literature search and identify genomic and transcriptomic studies that meet 

the designated criteria, as further detailed in the “Methods” section. 

2. I will examine identified studies to identify the top ten (± n) most significant 

proteins/genes, determine their human and Drosophila orthologues, and compile them for 

further analysis. 

3.  I will create two protein-protein interaction networks for both species using the results 

from the previous step and conduct a Gene Ontology (GO) enrichment analysis to identify the 

most significant global functions amongst the proteins. 

4. Using various tools in Cytoscape, I will highlight the most topologically interesting 

individual proteins in both species using criteria set by Yu et al (2007). 

5. Using the Cytoscape plugin GASOLINE, I will search for and identify conserved protein 

modules/complexes that share similar biological functions. 

 

From this work, I hope to identify BOTH novel candidate proteins and biological processes 

and highlight proteins and pathways already known to be associated in AD that may be 

further explored in future studies.  
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Methods 

Literature Search 

All work presented in this thesis is based on studies found in a search of the primary literature 

in academic publication databases. The databases used were Google Scholar and Bangor 

University Library. Literature searches were made using the primary search term Alzheimer 

in combination with relevant key words, such as Drosophila, genomics, genes, microarray, 

and GWAS, to filter and specify the most relevant studies. The search period was from 

January 2000 to August 2020. Primary research articles were prioritised and reviews were 

excluded, although publications describing meta-analyses of relevant data and research were 

included. In total, 52 papers were selected and analysed in this study. Homo sapiens was the 

most prominent organism across all studies, followed by, in order, Drosophila melanogaster, 

Mus musculus, and Rattus norvegicus. For each organism, cited genes were converted to 

human and/or Drosophila orthologs using UniProt (Bateman et al., 2020) and the HUGO 

Gene Nomenclature Committee (Braschi et al., 2018). 

 

Identification of Most Significant Genes 

Data from selected papers and supplementary content (where available) were analysed to 

identify genes that appeared to have significant changes in expression profiles in association 

with AD or other tauopathies. The most significant genes in each paper were selected 

according to a number of criteria. For most articles, the key criterion for selecting a gene 

were those that showed the most significant differences in expression in AD compared to 

controls, i.e., genes with low p-values (<0.05), in the published statistical analyses. These 

genes were selected, ranked by level of significance, and entered into an Excel spreadsheet. 

Other conditions used to select genes for the study included fold differences (FD), i.e., genes 

whose expression changes were in excess of ±1.50, and q-values (adjusted p-values taking 



 9 

into account a false discovery rate (FDR)) equalling <0.05. It should be noted that these 

measures were primarily used if multiple genes either shared identical p-values or had no 

such values presented within the research. If a paper listed no quantitative measures of 

significance, then genes were selected based either on genes previously identified as 

significant or prominent and/or identified as important by the authors.  

 

Protein-Protein Interaction Networks Generation & Analysis 

To generate the protein-protein interaction networks (PPINs), the Search Tool for the 

Retrieval of Interacting Genes/Proteins database (STRING v11.0 (Szklarczyk et al., 2019) 

was employed. STRING is an online biological database containing information on known 

and theoretical protein-protein interactions. STRING imports protein interaction data from 

numerous sources, including experimental data, datamined literature, and computational 

predictions. This data is subsequently weighted and incorporated to calculate a confidence 

score for all protein interactions. For this project, genes identified from the literature searches 

were inputted as a list and two networks were constructed: one for Homo sapiens, and the 

other for Drosophila melanogaster.  

Putative orthologs of each gene were identified using the HGNC Comparison of Orthology 

Predictions search (HCOP; Eyre, Wright, Lush & Bruford, 2006), a freely available tool 

integrating ortholog predictions from several databases for human genes. As some genes 

from the literature search were derived from different organisms, each one was converted to 

its approximate human equivalent using HPOC. These results were then imported into Excel 

and filtered to ensure that orthologs with the strongest evidence (i.e., those with multiple 

concurring databases) were kept. Drosophila orthologs (if available) were identified and 

filtered via Excel. 
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Both networks used the same settings: edges were based on confidence scores, all options for 

interaction sources were selected, and the minimum required interaction score was set to 

“medium confidence (0.400)”. Once generated, these networks were imported into 

Cytoscape, a freely available bioinformatics application, using the stringApp plugin 

(Doncheva, Morris, Gorodkin & Jensen, 2018). 

 

Gene Set Enrichment Analysis 

To understand the overall relevance of identified genes to AD pathology, their functions must 

be described. To achieve this, gene set enrichment analyses (GSEA; Subramanian et al., 

2005) were conducted. GSEA, also known as functional enrichment, attempts to determine 

the presence of significantly over-represented sets of genes in a gene list, in comparison to 

background set of genes (in this case, an organism’s genome). These sets are typically, 

though not always, functionally related in a biological pathway. 

Briefly, GSEA consists of three primary steps: 

1. Calculation of an Enrichment Score (ES). The ES reflects the amount of 

overrepresentation in a gene set at the extremes (i.e., top and bottom) of the list. 

2. Estimation of statistical significance of ES. This is calculated via a phenotype-

based permutation test, where a null distribution for the ES is then generated. 

3. Adjustment for multiple hypothesis testing. Enrichment scores for each set are 

normalised and the false discovery rate (FDR) is computed. 

GSEA was undertaken for both networks using stringApp. Gene Ontology terms were 

retrieved as functional categories, namely molecular function, biological process, and cellular 

component. Enrichment results were then filtered to remove redundant terms (i.e., terms too 

similar to previous, higher-scoring terms) using a cut-off value of 0.5. 
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Network Centralities Analysis  

Given a large network containing multiple nodes with numerous interactions, identifying the 

most important of these nodes in regard to network structure and information flow is vital. 

Measuring a node’s centrality is one such method by which a node’s importance in a network 

can be estimated. Following Freeman’s (1978) three formalised centrality measures (degree, 

closeness, and betweenness), numerous centrality measures have been formulated in order to 

ascertain influential nodes. 

Within the context of protein interaction networks, there is a well-established relationship 

between connectivity and essentiality, whereby proteins with higher levels of connectivity are 

more essential than those with lower levels, and their removal lethal for an organism (Jeong, 

Mason, Barabási & Oltvai, 2001; Hahn & Kern, 2004). Therefore, characterising the most 

central proteins in a disease network may reveal which proteins are more likely to be 

causative factors in a pathological process.  

Analyses of centrality measures for each network were performed using the CentiScaPe 

plugin (Scardoni, Petterlini & Laudanna, 2009). A brief description of each measure (degree, 

betweenness, closeness, eccentricity, radiality, centroid value, stress) and their mathematical 

formulae follow.  

Degree 

The most basic topological index, the degree of a node, is determined by the number of direct 

connections to other nodes. Nodes with higher degrees are more central and are more likely 

to act as hubs for other nodes with lower degrees. In biological terms, degree can allow for an 

estimation of a protein’s importance within a protein-protein interaction network. 
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Closeness 

𝐶𝑐𝑙𝑜(𝑣) ∶=
1

Σ𝑤∈𝑉𝑑𝑖𝑠𝑡(𝑣, 𝑤)
 

The closeness centrality (𝐶𝑐𝑙𝑜(𝑣)) of a node is determined by calculating the shortest paths 

between the node and all other nodes, then assigning each node a score based on their 

average distance. Nodes with high closeness values are in close proximity to other nodes and 

are also more likely to be more central within a network. In contrast, nodes with low 

closeness values are more distant from other nodes, and less likely to be central within a 

network. 

 A protein with a high closeness value in a protein network can be interpreted as 

having functional relevance for other proteins, possibly regulating their activities. However, it 

may also be irrelevant for some proteins, with little to no influence on their functioning. 

S.-P. Betweenness 

𝐶𝑠𝑝𝑏(𝑣) ∶= ∑ ∑ 𝛿𝑠𝑡(𝑣)

𝑡≠𝑣∈𝑉𝑠≠𝑣∈𝑉

 

Where 

𝛿𝑠𝑡(𝑣) ∶=
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
 

The betweenness value of a node is calculated by considering couples of nodes (v1, v2) and 

counting the number of shortest paths linking v1 and v2 and passing through node n. Next the 

value is related to the total number of shortest paths linking v1 and v2. Then, the value is 

related to the total number of shortest paths linking v1 and v2. As a result, a node with a high 

betweenness score is essential in maintaining node connections for certain paths; removal of 

such a node would disrupt communication within a network. 
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In a biological context, betweenness can indicate the role of a protein in facilitating 

communication between other proteins. In signalling pathways, for example, proteins with 

high betweenness values are likely to maintain signalling mechanisms between distant 

proteins. 

Local Network Alignments 

The purpose of local network alignment (LNA) is to identify potentially similar subgraphs of 

between networks. Within a protein-protein interaction network, these subgraphs can be 

interpreted as evolutionary conserved protein complexes. Here I used the Cytoscape plugin 

GASOLINE (reference), which computes and visualises multiple local alignments using the 

eponymous algorithm (Greedy And Stochastic algorithm for Optimal Local alignment of 

Interaction Network; reference). 

The human and Drosophila orthologs obtained previously were used to retrieve protein 

sequences from UniProt and FlyBase, respectively. The sequences were then uploaded to the 

Basic Local Alignment Search Tool (BLAST; Johnson et al., 2008), an online application that 

searches for similar regions between biological sequences. For this study, BLASTP was used. 

Most algorithm settings were left as default, but low complexity regions were filtered. The 

results were downloaded and imported into Excel, where Ensembl and Flybase IDs and e-

values were extracted and placed in a separate sheet before being exported as a tab-separated 

text file. Protein interaction values from both networks were obtained from STRING, 

imported into Excel and exported as tab-separated text files. 

Data Visualisation  

Graphs displaying the GSEA results were created using Microsoft Excel. Images of the 

networks were downloaded directly from the STRING application. Tables for gene 
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frequencies, centrality measures, and protein complex conservation scores were created using 

Microsoft Word. 

 

Results 

Gene Frequency Across All Studies 

The initial screen of the literature identified 339 genes whose expression showed changes 

associated with AD pathology and were selected for study. Of these, 10 genes were found to 

be pseudogenes and were removed from further analyses, leaving a total of 329 genes from 

52 papers (see appendix A for the complete list of papers). 179 genes had annotated changes 

in expression profiles, as indicated by fold difference values or authors’ observations. Of 

these 179 genes, 93 were found to be upregulated in AD and 86 were downregulated. 

Expression patterns across genes with multiple instances were mostly consistent, with the 

exception of three genes: GRIA1 (downregulated in 2 studies, upregulated in 1), GRIA2 

(upregulated in 2 studies, downregulated in 1), and PTK2B (upregulated in 1 study, 

downregulated in 1) these genes were not part of this study. 

Following this analysis, the 10 most frequently identified genes with significant regulation 

changes, regardless of direction, in AD were selected for further study, and are shown in 

Table 1, along with selected functions of the proteins they encode. These functions were 

retrieved from the UniProt database. 

Table 1. Most frequently identified genes with significant regulation changes in AD across all 

studies. 

Rank Human Gene Dros. 

Ortholog 

Functions 

(GO:BP) 

Potential AD-Related 

Functions 

1 Myc box-dependent-

interacting protein 

1/Amphiphysin II 

Amph Cytoskeleton 

organization, 

endocytosis, membrane 

organization  

Tau protein binding, 

negative regulation of 

amyloid-beta function 
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(BIN1) 

 

 

2 Phosphatidylinositol 

binding clathrin 

assembly protein 

(PICALM) 

 

Lap Endocytosis, vesicle-

mediated transport, 

membrane organization 

 

Tau protein binding, 

negative regulation of 

amyloid-beta function 

3 ATP-binding cassette 

sub-family A member 

7 

(ABCA7) 

- Lipid transport, 

phagocytosis, 

cholesterol efflux 

 

Negative regulation of 

amyloid-beta function, 

positive regulation of 

amyloid-beta clearance 

4 Clusterin 

(CLU) 

- Chaperone binding, 

innate immune 

response, protein 

stabilization  

 

Tau protein binding, 

negative/positive 

regulation of amyloid-beta 

formation, positive 

regulation of 

neurofibrillary tangle 

assembly 

= 5 Complement receptor 

type 1 

(CR1) 

 

- Negative regulation of 

complement activation, 

complement activation, 

classical pathway, 

negative regulation of 

interferon-gamma 

production 

- 

= 5 Myeloid cell surface 

antigen CD33 

(CD33) 

 

- Cell-cell adhesion, 

regulation of immune 

response 

 

- 

= 5 MS4A6A - N/A – literature 

suggests involvement in 

signal transduction as 

part of multimeric 

receptor complex 
 

- 

= 6 Protein-tyrosine kinase 

2-beta 

(PTK2B) 

Fak Regulation of actin 

cytoskeleton 

reorganization, 

regulation of cell 

adhesion, regulation of 

cell population 

proliferation, regulation 

of synaptic plasticity 
 

Protein phosphorylation 

= 6 Ephrin type-A 

receptor 1 

(EPHA1) 

 

Eph Positive/negative 

regulation of cell 

migration, positive 

regulation of cell-matrix 

adhesion, cell surface 

receptor signalling 

pathway 

 

Positive/negative 

regulation of kinase 

activity 

= 6 Apolipoprotein E 

(APOE) 

 

- Cholesterol metabolic 

process, triglyceride 

metabolic process, 

lipoprotein biosynthetic 

process, 

Tau protein binding, 

amyloid precursor protein 

metabolic process, 

positive/negative 

regulation of amyloid-beta 
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positive/negative 

regulation of 

phospholipid efflux 

 

formation, positive 

regulation of 

neurofibrillary tangle 

assembly, amyloid-beta 

binding 

= 6 Sortilin-related 

receptor 

(SORL1) 

 

- Protein localization to 

Golgi apparatus, post-

Golgi vesicle-mediated 

transport, positive 

regulation of ER to 

Golgi vesicle-mediated 

transport 

Amyloid-beta binding, 

negative regulation of 

neurofibrillary tangle 

assembly, negative 

regulation of amyloid-beta 

formation 

 

Frequently Identified Genes with Confirmed Drosophila Orthologs 

To ascertain how these results can be applied to the development of Drosophila models 

expressing these genes, and subsequently determine how they relate to neurodegeneration, I 

identified the most frequently identified human genes with confirmed Drosophila orthologs. 

The 10 most frequently identified genes with Drosophila orthologs are shown in Table 2. 

Selected functions of their proteins are also presented; these annotations were retrieved from 

FlyBase and derived from the literature. 

Table 2. Most frequently identified genes with significant regulation changes in AD with 

orthologues in flies and humans  

 

Rank Human Gene(s) Dros. 

Ortholog 

Primary Functions 

(GO:BP) 

Expression 

Direction (▲/▼) 

1 BIN1/Amphiphysin II Amph Cytoskeleton 

organization, membrane 

organization† 

 

▼ (Dourlen et al., 

2016; Bin. et al., 

2019) 

2 PICALM 

 

Lap Chemical synaptic 

transmission, clathrin-

dependent synaptic 

vesicle endocytosis, 

synaptic vesicle transport 

 

▲ (Bin. et al. (2019) 

3 Glutamate receptors 1/2 

(GRIA1/GRIA2)* 

 

GluRIA Ionotropic glutamate 

neurotransmitter receptor 

† 

 

▲ (Aldred et al., 

2012; McKeever et 

al., 2017) & ▼ 

(Ginsberg et al., 2012; 

Annese et al., 2018) 
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4 EPHA1/EPHA4 Eph Axon guidance, 

regulation of cell 

population proliferation, 

pattern specification 

process † 

 

 ▲ (Dourlen et al., 

2016; McKeever et 

al., 2017) 

5 PTK2B Fak Cell adhesion, cell 

migration, negative 

regulation of kinase 

signalling † 

 

▲ (McKeever et al., 

2017) & ▼ (Dourlen 

et al., 2016) 

=6 Activity-regulated 

cytoskeleton-associated 

protein  

(ARC) 

 

Arc2 Long-term memory, 

regulation of synaptic 

plasticity † 

 

▲ (Aldred et al., 

2012; Annese et al., 

2018; Wes et al., 

2015) 
 

=6 Calcium/calmodulin-

dependent protein kinase 

types IV/1D 

CAMK4/CAMK1D  

 

CaMKI Protein phosphorylation † 

 

▼ (Annese et al., 

2018) 

=6 CD2-associated protein 

(CD2AP) 

Cindr Actin filament 

organization, receptor-

mediated endocytosis, 

cytokinesis, actin 

cytoskeleton organization 

† 

 

- 

=6 Cation-independent 

mannose-6-phosphate 

receptor 

(IGF2R) 

 

Lerp Lysosomal transport, 

post-Golgi vesicle-

mediated transport, 

lysosome organization † 

- 

=6 ATP-dependent 6-

phosphofructokinase 

(PFKM/PFKL/PFKP) 

Pfk Glycolysis 
 

▲ (Kelly et al., 2017) 

& ▼ (Puthiyedth et 

al. (2016) 

 

* Multiple instances of GRIA1 and GRIA2 were found in the literature search, and both share GluRIA as their 

closest confirmed Drosophila ortholog; thus, for the purposes of this analysis, they were considered identical, as 

were multiple other genes sharing one Drosophila ortholog. 

† See Appendix C for full list of references specific to this table. 

Table 2 shows that only four genes from Table 1 (BIN1, PICALM, EPHA1, and PTK2B) have 

known Drosophila orthologs. Of these four genes, 3 (PICALM, EPHA1, and PTK2B) share 

similar functions with their Drosophila orthologs, suggesting they are evolutionary 

conserved. BIN1 is also conserved although its ortholog Amph is involved in cytoskeleton and 
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membrane dynamics but apparently lacks its endocytic functions in Drosophila (Dräger et al., 

2017). 

 

Gene Frequency & Drosophila Orthologs - Discussion 

Most of the genes in Table 1 can be linked to multiple biological processes, so discerning 

their products’ absolute primary functions is not always feasible. Nevertheless, from Table 1 

it is evident that these genes’ proteins share similar functions, mainly in immunity, lipid 

metabolism, and endocytosis. Furthermore, 7 of the 10 genes are associated with processes 

related to AD pathology, particularly tau protein binding and amyloid-beta regulation.  

The prominence of innate immunity as a common pathway is consistent with current 

literature suggesting chronic neuroinflammation as a key factor in AD pathology (Heneka et 

al., 2015), and there is a particular focus on the role of microglia in this process (Regen et al., 

2017). One of the genes, CD33, encodes for a receptor protein expressed in microglia; 

increased expression of which is associated with greater AD pathology and reduced clearance 

of amyloid-beta 42 (Bradshaw et al., 2013; Walker et al., 2015). Furthermore, there is 

evidence that microglia may propagate tau pathology by phagocytosing tau aggregates and 

subsequently “seeding” them in other neurons via exosome secretion (Asai et al., 2015). 

Maphis et al. (2015) also observed increased tau pathology in CX3CR1-knockout mice, along 

with overexpression of IL-1B and CD68 proteins. This is significant because these three 

genes, though not included in this analysis, were identified as significant from the wider 

literature search (see Appendix B). 

Processes relating to lipid metabolism in relation to AD has mostly focused on APOE, of 

which the E4 allele is well-documented as a risk factor for developing AD (Michaelson et al., 

2014).  However, there is a growing body of research implicating lipid-related processes to 
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the development of NFTs, particularly in cholesterol metabolism and transport. This is 

exemplified by comparing AD with Niemann–Pick type C disease (NP-C), a rare genetic 

disorder characterised by impaired lipid transport and accumulation within neurons and 

subsequent neurodegeneration, including the formation of NFTs (Chang et al., 2005; Love, 

Bridges & Case, 1995). Immunohistochemistry experiments in Auer et al. (1995) found that 

NP-C NFTs were identical in composition to AD NFTs, while Sawamura et al. (2001) 

observed tau phosphorylation by mitogen-activated protein kinase (MAPK) activation, a 

protein noted for its role in phosphorylating tau in AD (Leugers, Koh, Hong & Lee, 2013). 

Interestingly, NFTs in NP-C have been noted to form closer to neurons containing high levels 

of cholesterol (Distl et al., 2003; Ghribi, Larsen, Schrag & Herman, 2006), suggesting that 

NFTs and tau phosphorylation may participate in a process reacting to the cholesterol. 

Aberrations in genes involved endocytosis and other vesicle-related processes also lead to 

AD pathophysiology, including abnormal tau aggregations. BIN1/Amphiphysin II, the most 

frequently identified gene from the analysis, has a documented effect on tau-specific 

pathology (Chapuis et al., 2013; Lasorsa et al., 2018). The link between BIN1, tau, and 

endocytosis is unclear, but evidence suggests that BIN1 may promote tau propagation by 

increasing endocytic flux, leading to internalisation of tau aggregates (Calafate, Flavin, 

Verstreken & Moechars, 2016), and subsequently releasing the tau via extracellular vesicles 

(Crotti et al., 2019). Additionally, underexpression of PICALM, the second most frequently 

identified genes and a crucial component of clathrin-mediated endocytosis, leads to increased 

levels of phosphorylated tau and NFTs (Ando et al., 2016; Ando et al., 2020).  

In summary, this analysis highlighted four biological pathways – immunity, lipid metabolism, 

cytoskeletal organization, and vesicle endocytosis - involved in, or at least relevant to, the 

pathology of AD; an observation further supported by current literature suggesting that 
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further AD studies should focus on genes or proteins associated with these processes, with an 

emphasis on how they interact with each other. 

Table 2 reveals that functions relating to immunity and lipid metabolism are virtually absent 

in the Drosophila orthologs. The absence of genes with immune-based functions might be 

expected, given the significant differences between mammalian and arthropod immune 

systems (Sheehan, Garvey, Croke, & Kavanagh, 2018). However, lipid metabolism is an 

important physiological process in Drosophila, and there is evidence of neurodegeneration in 

Drosophila resulting from the loss of the gene Npc1a, which is involved in cholesterol 

metabolism (Phillips, Woodruff, Liang, Patten & Broadie, 2008). Why more genes involved 

in lipid metabolism are not present is unclear. Nevertheless, functions relating to endocytosis 

and cytoskeletal dynamics are strongly represented in Table 2 and comparable to the 

mammalian homologues in Table 1. Another feature of the data from Drosophila is the 

significant incidence of genes with roles in synaptic processes and signalling pathways.  

There is evidence to suggest that these processes interact considerably, and that aberrations in 

one process has a knock-on effect on the others. Ojelade et al. (2019) found that cindr, one of 

the genes identified in this analysis, is localised to synaptic terminals, and absence of this 

protein impairs both synaptic vesicle recycling and synaptic plasticity by disrupting the 

ubiquitin-proteasome system (UPS); in turn, this increases the levels of plasma membrane 

calcium ATPase (PMCA) and synapsin, resulting in the observed dysfunctions. Additionally, 

disruptions in the Drosophila protein Futsch (an ortholog of the human gene MAP1B, 

identified in the literature search but not included in this analysis) led to microtubule and 

axonal transport defects, resulting in synaptic defects (da Cruz et al., 2005), while loss of the 

Drosophila gene Vps35 inhibited endocytic processes, caused synaptic signalling defects, and 

affected cytoskeleton organisation (Korolchuk et al., 2007). 
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This “cause and effect” also extends to Drosophila models of AD pathology. For example, 

Blard et al. (2007) found that four proteins (cheerio, Chd64, jaguar, and Paxillin), which 

interact with the cytoskeleton directly, modulated tau pathology in a mutant Drosophila 

model, consequently leading to synaptic dysfunction. Yu et al. (2020) observed the effects of 

the PICALM ortholog lap, another gene identified in this analysis, on Aβ42 toxicity in a 

Drosophila model of AD. Overexpression of lap ameliorated Aβ42 toxicity and reduced 

levels of presynaptic vesicular glutamate transporter (VGlut); this is important because 

accumulation of VGlut impairs synaptic transmission. Secondly, lap affected Amph 

localisation postsynaptically and Amph, in turn, regulated the localisation of GluRII receptors. 

Overall, it could be suggested that both proteins act in a cascading manner to prevent Aβ42-

induced dysfunctions in synaptic transmission and vesicle transportation, and that aberrances 

in either their levels or structures may enhance AD pathology. 

To conclude, this analysis has demonstrated that, in Drosophila, two processes – endocytosis 

and cytoskeletal organization – emerge as being particularly relevant to the pathology of AD 

in both humans and Drosophila, suggesting that further research should focus on the 

functions of the identified genes in relation to these biological pathways to determine how 

abnormalities in their encoded products contribute to neurodegenerative processes. 

 

Functional Enrichment Analysis 

To determine the roles of genes identified in the study, genes were subjected to gene ontology 

(GO) functional enrichment analyses. GO enrichment analyses use standardised annotations 

of gene products derived from manually curated databases and works by comparing the 

frequency of different annotation terms associated with listed inputs. This is a relatively 

powerful way of identifying the physiological roles most frequently associated with the genes 
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under analysis (Maleki et al., 2020). The analysis typically focuses on three aspect of gene 

product function: 

1) Molecular Function – activities undertaken by gene products at the molecular level, 

such as catalytic activity or protein binding. 

2) Biological Process – multiple, sequential molecular events that together form a larger 

process, such as DNA repair or synaptic signalling. 

3) Cellular Component – cellular or macromolecule locations where gene products 

perform their functions, such as the nucleus or the ribosome. 

I elected to undertake an analysis of the gene data for each GO category. For each term 

discussed in the text below, the number of genes associated with that term is represented by 

n, while significance of a term is represented by p.   

 

Molecular Function of Human Genes (GO:MF) 

The Top 20 outcomes of the GO:MF analysis of the human genes are shown in Figure 2. This 

shows that terms relating to “binding” are heavily represented, with “protein binding” being 

markedly more enriched compared to other terms (n = 194, p = 1.11×10-17), followed by 

“enzyme binding” (n = 79, p = 2.28×10-8), “protein-containing complex binding” (n = 43, p = 

2.80×10-6), “identical protein binding” (n = 61, p = 1.09×10-5), and “kinase binding” (n = 33, 

p = 1.47×10-5).  
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Figure 2. Top 20 enriched GO:MF annotations for human genes dataset. 

 

 

Biological Processes of Human Genes (GO:BP)  

Biological Process analysis demonstrates a more diverse number of GO:BP terms enriched in 

the human gene dataset (Fig 2), and may be more informative. The enriched terms mainly 

relate to synaptic physiology, endocytic functions, cellular organization, and regulatory 

processes. “Localization” is the most enriched term (n = 174, p = 9.19×10-20), followed by 

“regulation of transport” (n = 87, p = 4.39×10-17), “regulation of cellular component 

organization” (n = 101, p = 1.19×10-16), “modulation of chemical synaptic transmission” (n = 

37, p = 2.07×10-16), and “vesicle-mediated transport” (n = 84, p = 2.08×10-16). 
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Figure 3. Top 20 enriched GO:BP annotations for human genes dataset. 

  

 

Cellular Components of Human Genes (GO:CC) 

This analysis is perhaps the most straightforward and informative, with most terms relating to 

either neuronal substructures, cellular membranes, or endocytic macromolecules. As Figure 4 

shows, “synapse” is the most enriched term (n = 69, p = 4.98×10-24), followed by “neuron 

projection” (n = 74, p = 1.16×10-20), “whole membrane” (n = 78, p = 4.90×10-16), “cell 

periphery” (n = 161, p = 1.47×10-15), and “cell junction” (n = 56, p = 3.84×10-13). 
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Figure 4. Top 20 enriched GO:CC annotations for human genes dataset. 

 

Human Functional Enrichment Analysis - Discussion 

The term “protein binding” (GO:0005515) is defined by GO as “Interacting selectively and 

non-covalently with any protein or protein complex (a complex of two or more proteins that 

may include other nonprotein molecules)”. It is a broad category covering numerous, more 

specific terms related to binding (e.g. “clathrin binding”), so its significance may be biased, 

and too general to be meaningful. Nevertheless, binding functions are prevalent in this 

analysis, so its significance may simply reflect this. This also seems to be true for “enzyme 

binding” (GO:0019899), another term that covers functions relating to enzyme interactions 

(e.g. “lipase binding”).  

“Kinase binding” is the most enriched, specific term (n = 33, p = 1.47×10-5) and reflects the 

role of kinases in the pathophysiology of AD. Kinases are enzymes that catalyse the process 

of phosphorylation, proteins that bind to kinases therefore affect their activities, and 
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perturbations in these proteins can have wider biological consequences. For example, 

elevated levels of death-associated protein kinase (DAPK) aberrantly activate the kinases 

MARK1/2, which in turn destabilise microtubules by phosphorylating tau, subsequently 

leading to tau toxicity (Wu et al, 2011). Furthermore, deficiencies of the TREM2 protein 

exacerbates tau pathology by hyperactivation of tau kinases (Jiang et al., 2015; Bemiller et al, 

2017). 

Aberrations in kinases themselves also contribute significantly to AD pathology and is 

reflected by enrichment of the term “kinase activity”. Glycogen synthase kinase 3β (GSK3β) 

is a kinase heavily implicated in the development and progression of AD. Normally, GSK3β 

directly phosphorylates tau protein by binding phosphoryl groups to the amino acids serine 

and threonine (Flaherty, Soria, Tomasiewicz, and Wood, 2000; Cho and Johnson, 2004). 

However, in AD, GSK3β is overactivated leading to hyperphosphorylation of tau contributing 

to the pathology of AD (Rankin, Sun, and Gamblin, 2007; Wang, Grundke‐Iqbal, and Iqbal, 

2007). 

Like the GO:MF term “protein binding”, “localization” (GO:0051179) is an umbrella term 

covering many more specific terms (e.g. “macromolecule localization”), so its enrichment 

may be skewed; this also applies to the term “regulation of transport” (GO:0051049). Both 

these terms may be too general from which to form conclusions. 

However, there are more diverse terms than in GO:MF analysis, many of which relate to 

functions identified in the frequency analysis. For example, terms relating to synaptic 

processes (“modulation of chemical synaptic transmission”, “trans-synaptic signalling”, 

“regulation of neurotransmitter levels”) are significantly enriched, and there is evidence that 

demonstrates the effects of tau-mediated pathology in these areas. For example, in mice, 

Hoover et al (2010) found that mislocalised tau in dendritic spines disrupts synaptic function 
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via impairment of several AMPA and NMDA receptors, including GluR1 and GluR2 (the 

products of the genes GRIA1 and GRIA2, respectively).  Additionally, EAAC1, the product of 

the gene SLC1A1 and a glutamate transporter have abnormal accumulation in hippocampal 

CA2‐CA3 pyramidal neurons in AD patients that contained significant levels of abnormal tau 

(Duerson et al., 2009). 

The enrichment of terms relating to vesicle-related functions (“vesicle-mediated transport” 

and “regulation of endocytosis”) supports the results of the frequency analysis and is 

consistent with current literature. The propagation of tau by exosome secretion has been 

discussed and there is further evidence suggesting pathogenic tau species are internalised by 

endocytosis, leading to intracellular accumulation (Wu et al., 2013). Furthermore, pathogenic 

tau appears to bind to synaptic vesicles, resulting in various presynaptic impairments (Zhou et 

al., 2017). Regarding specific genes, polymorphisms in the vesicle-associated membrane 

protein 1 (VAMP1) gene, which mediates both Ca+-triggered synaptic-vesicle exocytosis and 

endocytosis (Deák et al., 2004; Deák, Shin, Kavalali, and Südhof, 2006), were associated 

with varying levels of AD pathology by affecting the secretion of Aβ (Sevlever et al., 2015). 

Synaptophysin (SYP) binds cholesterol in synaptic vesicles and suggested to contribute to the 

separation of microvesicles from the membrane (Thiele, Hannah, Fahrenholz, and Huttner, 

2000).  Syp expression in AD-affected tissues is markedly decreased (Heinonen et al., 1995; 

Callahan, Vaules, and Coleman, 2002), and has been correlated with clinical cognitive 

decline (Sze et al., 1997). 

 

As highlighted by the other analyses, numerous genes and their products are localised at the 

synapse, especially presynaptically, and there is a wide body of evidence that highlights 

synaptic dysfunction in AD pathophysiology. Synaptic loss is evident in most of the brain 
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over the course of AD, including in the frontal and temporal lobes (DeKosky and Scheff, 

1990; Scheff and Price, 1993), but is especially prevalent in the hippocampal region. In fact, 

synaptic loss appears to be an early feature of AD, correlating with cognitive decline (Scheff, 

Price, Schmitt, and Mufson, 2006; Scheff, et al., 2007). Synaptic density in the dentate gyrus 

in AD patients is particularly decreased compared to controls (Scheff, Sparks, and Price, 

1996; Scheff and Price, 1998). 

Other enriched terms in this analysis correlate to genes that encode for membrane receptors 

(for example, GRIA1) or genes that regulate and/or participate in endocytosis, exocytosis, 

and other vesicle-related functions.  

 

Drosophila GO:MF 

Figure 5 demonstrates that, like the human GO:MF analysis, terms related to binding are 

overrepresented in the Drosophila genes data, with the term “binding” itself more significant 

than any other term (n = 179, p = 3.65×10-21). This is followed by “ion binding” (n = 79, p = 

8.30×10-9), “calcium ion binding” (n = 20, p = 7.08×10-7), “purine protein binding” (n = 40, p 

= 2.11×10-6), and “kinase activity” (n = 23, p = 2.11×10-6). 
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Figure 5. Top 20 enriched GO:MF annotations for Drosophila genes dataset. 

 

 

Drosophila GO:BP 

Like to the GO:BP analysis for human genes, Figure 6 demonstrates a wide range of enriched 

terms for Drosophila. Both analyses also share terms linked to vesicle- and regulatory-related 

functions. However, terms covering development are the most enriched, with “developmental 

process” first (n = 128, p = 9.11×10-23), followed by “cell communication” (n = 83, p = 

1.77×10-17), “localization” (n = 100, p = 7.45×10-17), “regulation of biological quality” (n = 

71, p = 1.45×10-14), and “tissue development” and “nervous system development” (n = 62, p 

= 4.36×10-14 for both). 
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Figure 6.. Top 20 enriched GO:BP annotations for Drosophila genes dataset. 

 

 

Drosophila GO:CC 

Like the human gene analysis, this is arguably the most elementary, with many terms relating 

to nervous system structures and cellular membranes. Figure 7 shows, “cell” is the most 

enriched term (n = 203, p = 7.23×10-20), followed by “cell periphery” (n = 75, p = 8.85×10-

18), “synapse” (n = 33, p = 2.70×10-16), “vesicle” (n = 365, p = 2.08×10-9), and “plasma 

membrane protein complex” (n = 19, p = 1.41×10-8). 
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Figure 7. Top 20 enriched GO:BP annotations for Drosophila genes dataset. 

 

Drosophila Functional Enrichment Analysis - Discussion 

Like the term “protein binding” from the human GO:MF analysis, “binding” is a 

comprehensive term with numerous, more specific derivative terms, and may be far too broad 

in scope to draw any meaning conclusions. Conversely, and like “protein binding”, its 

significance may be interpreted as a general reflection of other enriched binding terms 

present in this analysis. 

“Calcium ion binding” is the most enriched specific term here, and research on Drosophila 

models of AD and other tauopathies have demonstrated the role of calcium in driving 

pathological processes. For example, overexpression of CamKII, the Drosophila ortholog of 

calcium/calmodulin-dependent protein kinase type II delta chain (CAMK2D) and a paralog of 

CamKI, promotes neurodegeneration caused by phosphorylated tau (Oka et al., 2017). Using 
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a transgenic Drosophila model, Michno et al. (2009) found that psn (Drosophila ortholog of 

presenilin 1 (PSEN1) caused deficits in intracellular calcium stores; these decrements were 

ameliorated by Cam, the ortholog of CALM3.  

“Kinase activity" another highly enriched term (n = 21, p = 6.54×10-6), and one of the few 

identified in both species’ GO:MF analyses, highlighting the crucial role kinases in the 

pathology of AD. Like its human ortholog GSK3β, overexpression of Shaggy (sgg) 

exacerbates tau pathology in vivo via abnormal tau phosphorylation (Jackson et al., 2002; 

Mudher et al., 2004). Conversely, sgg inhibition reduces both tau and Aβ pathology (Sofola 

et al., 2010; Sarkar, 2021). Par-1, an ortholog of MARK1, hyperphosphorylates tau when 

overexpressed (Ando et al., 2016), while its inhibition reduces tau phosphorylation (Iijima-

Ando et al., 2012). Interestingly, like their human orthologs, par-1 and sgg directly interact, 

with the former regulating the latter where reduced par-1 expression results in increased sgg 

(Ando et al., 2016). 

Considering AD is a neurodegenerative disorder typically occurring later in life, the 

significant enrichment of the term “developmental process” might seem unexpected, but there 

is evidence suggesting involvement of development genes and/or pathways in AD pathology. 

Studies have found a relationship between presenilins and Notch, a membrane receptor 

crucial in many developmental processes (Artavanis-Tsakonas et al., 1999). PSEN1 and 

PSEN2 mediate the release of the cytoplasmic domain of Notch and its subsequent 

localisation to the nucleus (Steiner et al., 1999; Stralh and Greenwald, 2001) and 

misexpression of presenilin negatively affect Notch signalling, and leads to AD-like 

pathology (Song et al., 1999; Ye, Lukinova, and Fortini, 1999) 

“Vesicle-mediated transport” (n = 35, p = 5.41×10-10) is enriched in both GO:BP analyses, 

supporting its significance in AD pathology across species. Both synaptic exo-/endo-cytosis 
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and axonal transportation are disrupted by overexpression of tau, (Chee et al., 2005; Talmat-

Amar, Arribat, and Parmentier, 2018). A loss-of-function mutation in the APP ortholog Appl 

results in endolysosomal dysfunction in neurons, eventually leading to cellular death and 

aggregation (Kessissoglou et al., 2020).  

“Cell” is too broad a term for any meaningful interpretation. The enrichment of the terms: 

“synapse”, “neuromuscular junction”, and “postsynapse” and “vesicle” and “secretory 

vesicle” lend further support to the notion of AD primarily affecting synaptic processes and 

vesicle-related functions, respectively. 

 

Protein-Protein Interaction Network (PPIN) Analysis 

The results presented above show that some proteins and biological pathways are more 

prominent than others in AD. More specifically, they have highlighted the prominence of 

BIN1/Amph and endocytic functions in both human and Drosophila models of AD. However, 

they have further illustrated AD as an intrinsically complex disease that cannot be reduced to 

a single protein or biological pathway; rather, it is a sum of molecular interactions that give 

rise to emergent biological processes, which in turn lead to the complex phenotype of AD. 

A protein-protein interaction network (PPIN) uses graph theory to illustrate these 

interactions, whereby proteins are represented by nodes and their interactions by edges. By 

rendering PPINs as discrete mathematical objects, various topological analyses can be 

performed on them, such as centrality analysis and clustering analysis. In turn, these methods 

can be used to infer wider biological properties of a system, such as identifying functionally 

related modules (Pereira‐Leal et al., 2003; Wu et al. 2009), elucidating disease mechanisms 

(Xu et al., 2006; Luo et al., 2015), and isolating conserved interactions between species 

(Sharan et al., 2005). The latter point is of particular interest here, as finding protein 
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interactions that occur in AD in both humans and Drosophila models would aid in clarifying 

possible, universal mechanisms of AD pathology. 

Identified genes were inputted into the STRING application to generate the human network. 

For Drosophila, genes were converted to their fly orthologs before being inputted into 

STRING. These networks were imported into Cytoscape for further analyses. 

 

Human Protein-Protein Interaction Network 

Due to its size, the image of the human network can be found in Appendix D336 genes were 

entered into STRING, and of these, 328 were recognised to have recorded proteins. Deletion 

of unconnected proteins left a total of 306 nodes, with 2007 edges (interactions). Table 3 

shows the average values of network-wide measures. 

 

Table 3. Average human network-wide statistics. 

Network Measure Average Value 

Average No. of Neighbours 13.118 

Network Diameter 7 

Network Radius 4 

Characteristic Path Length 2.824 

Clustering Coefficient 0.366 

Network Density 0.043 

Network Heterogeneity 0.976 
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Network Centralization 0.208 

 

Before continuing, a discussion on network-wide topological properties is warranted. Within 

network science literature, networks are claimed to be different from random networks if they 

meet the criteria of certain, universal “laws”: the scale-free law and the small-world law. 

Networks are scale-free if their degree distribution (the fraction of nodes with a specific 

degree value; 𝑃(𝑘)) follows a power law, and they are considered small world if they have 

high average clustering coefficients (the tendency of nodes to form highly connected 

modules) and low average path lengths (average number of steps required to connect every 

pair of nodes through their shortest paths). Both laws are ubiquitously present in network 

science research, where networks are considered valid only if they satisfy the laws. 

Recently the validity of these laws has been questioned on both theoretical and empirical 

grounds. Mendez and Helden (2009) provide a comprehensive review on the most common 

“myths” attributed to the two laws. Briefly, they find that power law interpretations stem 

from graphical misrepresentation, where the degree and probabilities of a real network are 

plotted using logarithmic scales while random networks are plotted linearly; that the term 

“scale-free” is often ill-defined in many papers; that small-worldliness may be falsely 

conferred to a network via irrelevant shortcuts; and that the small-world law may be more 

relevant to signalling pathway networks than PPINs. 

Of the two laws, scale-freeness has come under particular scrutiny. Employing various on a 

wide range of real-world networks, Broido and Clauset (2019) found that empirically scale-

free networks are rare, with only 6% of biological networks meeting their criteria, most of 

which are metabolic networks. Smith, Kim, and Walker (2021) repeat these results in 

biochemical networks, finding very few networks that are more than super-weakly scale-free. 
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There is less critical literature on the small-world property, but Telesford, Joyce, Hayasaka, 

Burdette, and Laurienti (2011) note that the criteria for small-wordliness is not strict, and that 

small-world networks are probably overestimated. 

Considering this research, it would be unproductive to determine whether the human and 

Drosophila networks follow these laws. However, for posterity and to demonstrate 

consistency with at least one law, I will determine whether the networks follow the small 

world property. 

 

Small World Property of Human AD Network 

The small-world property for the human AD network was calculated according to the 

equation proposed by Humphries, Gurney, and Prescott (2006): 

𝛾𝑖 =
𝐶𝑐

𝐶𝑟
, λ𝑖 =

𝐿𝑐

𝐿𝑟
 & 𝑆1 =

𝛾𝑖

λ𝑖
 

Cc and Cr represent the clustering coefficients of the real and random networks, respectively, 

while Lc and Lr represent the average path lengths of the real and random networks, 

respectively. To fulfil the small-world criteria, 𝛾𝑖 > 1 and 𝑆𝑖 > 1. The results show that 𝛾𝑖 =

8.5 and 𝑆𝑖 > 7.56; thus, the human AD network meets the criteria for the small-world law. 

 

Global Network Properties of Human Protein-Protein Interaction Network 

In global network analysis, the most important measures are arguably average number of 

neighbours, clustering coefficient, and characteristic path length. Average No. of Neighbours 

refers to the average connectivity of the nodes in the network, and as Table 3 shows this 

average is relatively high (13.118). In other words, proteins within the network have a higher-
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than-average number of interactions with one another. This high level of connectivity may 

reflect the complexity of AD as a pathology.  

Clustering coefficient, measures the tendency of nodes to form highly connected subgraphs, 

or modules. With a value of 0.366, it appears that proteins in this network do form modules, 

and a later analysis on protein complex conservation will demonstrate the significance of 

these modules.  

Characteristic path length (CPL) refers to the average number of steps required to connect 

every pair of nodes through their shortest paths. Using Xu, Bezakova, Bunimovich, & Yi 

(2011) as a reference point, this network has a relatively low CPL compared to the observed 

human average (4.39). This indicates that the network displays a small-world property.  

 

Comparison of AD Human Network to Random Networks 

In theory, the constructed AD network should be significantly different from a randomly 

generated network; however, there is a possibility this is not the case. Using the method of 

Sun & Zhaoo (2010), the human AD network was compared to random networks. Using the 

R programming language in RStudio (RStudio Team, 2020), specifically the igraph package 

(Csardi & Nepusz, 2006), 1000 Erdős–Rényi model networks were generated and subjected 

to the following analyses: degree (K), betweenness (BC), clustering coefficient (TRNS). 

From these analyses, 307 values (equal to the number of values from the human AD network) 

were randomly sampled and compared to the human AD network using the Wilcoxon signed-

rank test.  The full code can be found in Appendix E. 

Significant differences were found between the AD network centralities and the random 

network centralities. Both AD degree and betweenness centralities were significantly 

different (p < 0.01) from random, while clustering coefficient was exponentially different (p 
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< 2.2×10-16); when adjusted to account for calculation differences, the results were still 

significant (p < 0.01). Overall, this shows that the AD human network is distinct from 

random. 

 

Human AD Network Centrality Analyses 

To identify the proteins most central to the network, four measures of centrality were 

conducted with the Centiscape plugin: degree, closeness, betweenness, and eigenvector. 

Degree refers to the number of edges of a particular node. The higher the degree, the more 

central the node is to the network. Closeness centrality (CC) is the average shortest distance 

from one node to every other node within the network, and like degree, denotes how central a 

given node is in a network. Betweenness centrality (BC) measures the frequency in which a 

given node appears on the shortest pathways between two nodes; high betweenness nodes are 

regarded as highly influential because they can dictate the flow of information within a 

network. Eigenvector (EV) centrality measures the influence of a node within a network. 

Table 4 details the full results for degree, closeness, betweenness, and eigenvector for the top 

15 proteins, ordered by degree. 

 

Table 4. The fifteen proteins with consistently high values across all measures in network 

centrality analyses. Bold denotes proteins that are within the top five for two or more 

measures. 

Protein Degree (k) Closeness (CC)  Betweenness Eigenvector 

APP 76 0.001692 6408.640 0.2387 

SRC 73 0.001686 9257.077 0.1886 

APOE 63 0.001605 4045.472 0.2202 
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TNF 62 0.001623 6168.808 0.1650 

EGFR 61 0.001639 7529.401 0.1580 

BDNF 58 0.001587 5073.210 0.1579 

ACTB 46 0.001600 5557.391 0.1146 

CLU 45 0.001490 1541.986 0.1691 

GFAP 44 0.001517 2353.763 0.1392 

DLG4 44 0.001493 3108.462 0.1155 

PICALM 40 0.001433 1853.929 0.1481 

BIN1 40 0.001416 1012.724 0.1475 

SYP 40 0.001484 2158.747 0.1176 

GRIA1 40 0.001437 1911.741 0.0934 

PSEN1 39 0.001502 1452.863 0.1488 

 

As Table 4 demonstrates each measure consistently features the proteins APP, SRC, APOE, 

TNF, and EGFR; of these, APP and SRC always occupied the top five. The degree and 

betweenness centralities are of particular interest. Yu et al. (2007) classified proteins in a 

given network depending on their degree and betweenness, as illustrated by Table 5 below. 

Table 5. Classification of proteins according to their k/BC values. Adapted from Yu et al 

(2007). 

 Low Betweenness High Betweenness 

Low Degree Nonhub-nonbottleneck 

(NH-NB) 

Nonhub-bottleneck 

(NH-B) 

High Degree Hub-nonbottleneck  

(H-NB) 

Hub-bottleneck  

(HB) 
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To identify proteins from each category, the averages of the centralities plus one or two 

standard deviations of the mean were used as cutoff values. These values are displayed in 

Table 6 below. 

Table 6. Cutoff values for identifying proteins in each category. Degree values are rounded 

to their nearest whole number. 

 Degree Betweenness 

Mean (x̄) 13 557.857 

x̄ + 1 SD 26 1639.920 

x̄ + 2 SDs 39 2721.984 

 

Human Hub-Bottlenecks (HBs) 

Using the x̄ + 2 SDs cutoff values, the proteins APP, SRC, APOE, TNF, EGFR, BDNF, 

ACTB, and DLG4 from Table 4 can be categorised as hub-bottlenecks (HBs). Yu et al. (2007) 

found that HBs correspond to highly centralised proteins that constitute parts of signal 

transduction pathways, and that they act as connectors for protein complexes within a 

network. This sentiment is supported by Chandramohan, Kiran, and Nagarajaram (2021, 

preprint), who also found that mixed (MX)/HB proteins are enriched in GO processes relating 

to signalling and metabolic pathways compared to other protein types.  

Cursory GO analyses of these eight genes show significant enrichment of terms related to 

these pathways, particularly regarding protein kinases. Significantly enriched GO:BP terms 

relating to protein kinases include “regulation of protein kinase activity” (n = 8, p = 1.43×10-

8), “regulation of protein serine/threonine kinase activity” (n = 6, p = 1.13×10-6), “positive 

regulation of protein kinase activity” (n = 6, p = 1.38×10-6), “regulation of peptidyl-tyrosine 

phosphorylation” (n = 5, p = 1.74×10-6), and “regulation of MAP kinase activity” (n = 5, p = 

6.55×10-6). 
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Human Nonhub-Bottlenecks (NH-Bs) 

For this study, proteins are classed as NH-Bs if their degree and betweenness values are 

below and above the x̄ + 1 SD cutoff, respectively. Six proteins can be categorised as NH-Bs: 

elongation factor 1-alpha 1 (EEF1A1; k = 26, BC = 2372.6810), polypyrimidine tract-binding 

protein 1 (PTBP1; k = 18, BC = 2252.293), heterogeneous nuclear ribonucleoprotein K 

(HNRNPK; k = 20, BC = 2012.249), beclin-1 (BECN1; k = 20, BC = 1934.165), histone 

H2A.Z (H2AFZ; k = 15, BC = 1923.636), and superoxide dismutase 2, mitochondrial (SOD2; 

k = 23, BC = 1654.314).  

According to Yu et al. (2007), NH-Bs are important in maintaining overall network topology, 

with their removal resulting in network partitioning. They also control the flow of 

information within a network; however, this property mainly applies to directed regulatory 

networks, and has less relevance to an undirected interaction network such as this one. 

Regardless of network type, they appear to connect functionally similar protein complexes. 

Chandramohan and colleagues (2021, preprint) found that NH-Bs (referred to as PBs in their 

study) are enriched in GO:BP terms relating to immunity, transport, and metabolism, and are 

more likely to be involved in signal transduction pathways. 

This is supported by a GO analysis of the six cited proteins, though there is less consistency 

among the terms compared to those found for the MX proteins. A few terms that can be 

inferred as relating to immunity are significantly enriched, including “cellular response to 

endogenous stimulus” (n = 4, p = 0.0114), “cellular response to stimulus” (n = 6, p = 0.0244), 

and “cellular response to toxic substance” (n = 2, p = 0.0299). Interestingly, terms concerning 

RNA-specific processes are also significantly enriched, including “negative regulation of 

mRNA splicing, via spliceosome” (n = 2, p = 0.0112), “regulation of RNA metabolic 

process” (n = 5, p = 0.0302), and “mRNA splicing, via spliceosome” (n = 2, p = 0.0434). 

This is interesting because isoforms of tau are produced via the alternative mRNA splicing of 
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exons 2, 3, and 10 of the gene. Proteins involved in this process that are abnormally 

expressed in AD could lead to fundamental deficits in tau protein itself. Alternatively, they 

could affect other proteins produced by alternative splicing, which in turn interact with or 

influence tau.  

 

Human Hub-Nonbottlenecks (H-NBs) 

H-NBs are the opposite of NH-Bs, with high degree values but low betweenness values. 

Again, the x̄ + 1 SD cutoff was used to identify H-NBs, resulting in 24 proteins being 

identified as H-NBs. To discuss each protein individually would be time-consuming, and I 

focus on the most commonly enriched GO:BP terms. Interestingly, 7 of the 10 proteins in the 

most frequent genes in cited studies qualify as H-NBs; these proteins are BIN1, CLU, CD33, 

MS4A6A, PTK2B, EPHA1, and SORL1. The x̄ + 2 SD cutoff was used to identify the strictest 

N-HBs, leaving three proteins to be recognized as H-NBs: CLU (k = 45, BC = 1541.986), 

BIN1 (k = 40, BC = 1012.724), and PSEN1 (k = 39, BC = 1452.863). Earlier research 

supports the notion that proteins considered to be H-NBs (or simply “hubs”) follow the 

“centrality-lethality” rule proposed by Jeong et al. (2001) which states that proteins with high 

levels of connectivity (i.e. high degrees) are the most essential within a PPI network, and 

their removal is highly likely to be lethal. Originally established using the yeast 

Saccharomyces cerevisiae, it has been confirmed to be applicable to other eukaryotic 

organisms, including Drosophila (Hahn & Kern, 2004).  

 

Human Protein Network Centrality Analysis – Discussion 

Human Hub-Bottlenecks (HBs) 
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The study of proteins kinases is a substantial topic outside the scope of this thesis. Briefly, 

proteins kinases are enzymes that selectively modify other proteins via covalent 

phosphorylation (Adams, 2001; Wang & Cole, 2014). They are involved in a large number of 

signalling pathways vital to normal physiological functions (Cormier & Woodgett, 2016). 

Aberrances in individual or multiple protein kinases are associated with a considerable 

number of diseases, particularly cancer (Brognard & Hunter, 2011; Bhuller et al., 2018) but 

also cardiovascular disease (Antos et al., 2001; Dorn & Force, 2005) and kidney disease (Li 

& Gobe, 2006; Rajani, Pastor-Soler, & Hallows, 2017). Tau hyperphosphorylation is another 

such consequence of dysfunctional kinases. 

There is evidence that the eight proteins influence tau phosphorylation to varying degrees, 

either directly or indirectly. BDNF indirectly regulates tau phosphorylation via the 

PI3K/AKT signalling pathway by activating tropomyosin receptor kinase B (TRKB; Elliot, 

Atlas, Lange, & Ginzburg, 2005). Levels of BDNF are decreased in post-mortem AD patients 

and correlate with higher levels of phosphorylated Tau (Bharani et al., 2020); increasing 

BDNF expression attenuates the effects of tau-related pathology (Jiao et al., 2016). The link 

between tau phosphorylation and EGFR is less certain, but it is plausible that EGFR 

indirectly modifies tau via downstream activation of various pathways. The PI3K/AKT and 

MAPK pathways are particularly notable (Arcaro et al., 2000; Garay et al., 2015; Shi et al., 

2016), as both have been cited in the hyperphosphorylation of tau (Sheng et al., 2001; 

Sawamura et al., 2003; Wang et al., 2015).  

ACTB is arguably an “odd one out” of the eight proteins, as there is no clear evidence 

indicating it has a role in tau phosphorylation. However, it has been demonstrated to be 

involved in AD pathology. ACTB encodes for beta-actin, a protein that alongside other actins 

forms microfilaments known as F-actin. Tau binds directly to F-actin (He et al., 2009; Elie et 

al., 2015), and synergistic dysfunction in F-actin and phosphorylated tau result in tau-based 
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neurodegeneration (Fulga et al., 2007; DuBoff, Götz, & Feany, 2012; Bardai et al., 2018). 

Furthermore, actin seems to also be regulated by protein kinase phosphorylation (Prat, 

Bertorello, Ausiello, & Cantiello, 1998; Papakonstanti & Stournaras, 2002). The DLG4 

protein (referred to as PSD-95 in the literature) is similar: it lacks evidence suggesting a part 

in tau phosphorylation, but occurs alongside pathogenic tau (Leuba et al., 2008; Shao et al., 

2011) and its function is modulated by kinase-induced phosphorylation (Morabito, Sheng, & 

Tsai, 2004; Nelson et al., 2013). 

The SRC protein is the most influential protein here, as it affects tau and some of the HBs and 

other proteins within the network. It physically interacts with tau (Newman, Gard, Band, & 

Panchamoorthy, 1998; Reynolds et al., 2008) and possibly phosphorylates it (Derkinderen et 

al., 2005), while the closely related protein, FYN, phosphorylates tau and has been implicated 

in AD pathology (Lee et al., 2004; Li & Götz, 2017). SRC also phosphorylates EGFR 

(Stover, Becker, Liebetanz, & Lydon, 1995; Sato K.I., Sato A., Aoto, & Fukami, 1995; 

Biscardi et al., 1999), affecting downstream pathways such as STATs which are involved in 

cell proliferation and cell death (Xi et al., 2003; Sato et al., 2003). 

The relationship between BDNF and SRC is inverse compared to the previously described 

interactions, in that the former indirectly modulates the latter via TRKB activation (Huang & 

McNamara, 2010). This BDNF-TRKB-SRC pathway has been linked to a number of 

neurological processes, including cortical glutamate release (Zhang et al., 2012) and 

prevention of astrocytic cell death (Saba et al., 2018). Perhaps more interestingly, BDNF 

regulates axonal guidance and neurite outgrowth through this pathway (Yao et al., 2006; 

Gavaldà, Gutierrez, & Davies, 2009); specifically, BDNF signals SRC-dependent 

phosphorylation of zipcode binding protein 1 (ZBP1; Sasaki et al., 2010), which regulates 

beta-actin translation in dendrites and thus controls dendritic development (Perycz et al, 
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2011). It has been established that tau pathology occurs in neurites, particularly dendrites 

(Merino-Serrais et al., 2013; Hall et al., 2015; Kandimalla et al., 2018).  

Dysfunction in any of the proteins discussed above could potentially affect tau in vivo. 

However, given its centrality and previously described interactions with both tau and actin, it 

could be argued that SRC is the most important protein in this pathway. It could be 

hypothesised that aberrances in SRC lead to tau-induced dendritic abnormalities, either by 

abnormally phosphorylating other proteins involved in cytoskeletal dynamics, altering the 

signalling pathway, or even a combination of both. Several other proteins involved in protein 

kinase related processes are also present in the network, including DUSP1, CAMK4, and 

PRKCB. Given this and the literature, it could be hypothesised that protein kinases are the 

primary signalling mechanisms by which protein complexes communicate with one another 

in this AD network, regulated by these eight proteins to varying degrees. Perturbations in 

these proteins would consequently have an adverse effect on the larger network, leading to 

disruptions in other processes. 

Human Nonhub-Bottlenecks (NH-Bs) 

Of the six proteins listed, HNRNPK and PTBP1 are the most relevant to RNA processes. 

Both PBTP1 and HNRNPK interact physically (Kim et al., 2000), and form complexes along 

with other heterogeneous nuclear ribonucleoproteins (hnRNPs) that primarily process pre-

mRNA through transcription, translation, export, and localisation (Dreyfuss, Kim, & 

Kataoka, 2002). While both bind to pre-RNA, they appear to process it differently. PTBP1 is 

a splicing factor prominently found in alternative splicing, acting as a regulator that binds to 

intronic polypyrimidine tracts adjacent to target exons (Patton, Mayer, Tempst, & Nadal-

Ginard, 1991; Lin & Tarn, 2005), while HNRNPK is multifunctional and implicated in most 



 46 

major pre-RNA processes (Bomsztyk, Denisenko, & Ostrowski, 2004), including 

transcription activation (E.F. Michelotti, G.A. Michelotti, Aronsohn, & Levens, 1996). 

PTBP1 regulates normal tau splicing, and acts as a strong inclusion inhibitor for exons 2, 6, 

and 10, (Wei, Memmott, Screaton, & Andreadis, 2000; Li, Arikan, and Andreadis, 2003) 

while its effects on exon 3 are dependent on the latter’s splicing status (Arikan et al., 2002). 

More importantly, it has been linked directly to the formation of tau pathology by missplicing 

exon 10, resulting in the inherited tauopathy frontotemporal dementia (Wang et al., 2004). 

Yasojima et al.(1999) found that tau mRNAs containing exon 10 were heavily upregulated in 

AD brains with heavy burdens of NFTs, compared to mRNAs lacking exon 10. The 

relationship between HNRNPK and tau is less clear, but a study by Liu and Szaro (2011) 

suggests it co-regulates tau and other cytoskeletal proteins post-transcriptionally; knockdown 

of HNRNPK led to severe deficits in axon outgrowth and cytoskeleton organization. 

Furthermore, Hutchins and Szaro (2013) demonstrated that HNRNPK is phosphorylated by c-

Jun N-terminal kinase (JNK) and deficits in both genes led to the same dysfunctions 

described in Liu and Szaro’s study. Interestingly, HNRNPK is also phosphorylated by cyclin-

dependent kinase 2 (CDK2), which also phosphorylates tau (Moujalled et al., 2015). 

Other hnRNPs have been shown to be both involved in tau exon 10 splicing (Hartmann et al., 

2001; Wang et al., 2010; Liu et al., 2020) and localised to NFTs in post-mortem AD brains 

(Ishikawa et al., 2004; Mizukami et al., 2005). Given this, any potential pathogenicity of the 

PBTP1 and HNRNPK proteins in tau-specific pathology should be studied with other hnRNPs 

and splicing factors, as abnormal RNA processing is more likely to occur in a complex rather 

than from a singular product. 

The EEF1A1 protein’s is primarily involved in protein translation, namely by mediating the 

transporting aminoacyl-tRNA to the A site of the ribosome during protein synthesis (Browne 
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& Proud; 2002; Mateyak & Kinzy, 2010). It is also involved in cytoskeletal organization, 

bundling, binding, and regulating actin filaments (Murray et al., 1996; Gross & Kinzy, 2005; 

Bunai et al., 2006; Gillardon, 2009). However, research supporting a connection to tau is 

scarce: Malmqvist, Anthony, and Gallo (2013) found tau mRNA containing axonal granules 

is associated with EEF1A1, while Meier et al., (2016) detected an association between the 

two proteins in both normal and AD brains. The latter result is interesting because EEF1A1 

has been mostly associated with Aβ pathology in AD studies (Beckelman et al., 2016; 

Beckelman et al., 2016). Further study is required to elucidate whether EEF1A1 interacts with 

tau. Given its effects on actin and other cytoskeleton proteins, dysfunctional EEF1A1 could 

influence tau indirectly via abnormal cytoskeletal organisation. 

Given the three proteins above serve similar functions, SOD2 and BECN1 could be viewed as 

outlying NH-Bs. SOD2 encodes an enzyme that catalyses the transformation of superoxide 

(O2
•–), a byproduct of oxidative phosphorylation, to hydrogen peroxide (H2O2), preventing 

cellular damage caused by oxidative stress (Murphy, 2009). Oxidative stress has long been 

proposed as a causative factor of AD pathology (Smith et al., 2000; Wang et al., 2014), and 

research suggests dysfunctional SOD2 expression contributes to this. Both Massaad et al. 

(2010) and Melov et al. (2007) found that reduced SOD2 expression led to increased amyloid 

burden and hyperphosphorylated tau. Massaad et al. (2009) also showed that SOD2 

overexpression ameliorated AD-related pathology, as well as memory and learning deficits. 

How exactly SOD2 dysfunction affects tau phosphorylation, and by tau pathology, requires 

further research. 

BECN1 is central to autophagy, regulating it as part of phosphatidylinositol 3-kinase (PI3K-

III) complexes (Itakura et al., 2008; Matsunaga et al., 2009). It appears to have a role in AD, 

but it is more involved with amyloid-β than tau (Pickford et al., 2008; Lucin et al., 2013; 

Swaminathan et al., 2015). Nevertheless, a few studies have shown that BECN1 expression is 
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significantly decreased in tauopathies and in cells overexpressing pathogenic tau (Ando et al., 

2016; Mahendran et al., 2020). It is also important in neuronal development and 

differentiation acting as a repressor of transcription factors such as Pbx1 and its paralog 

PTBP2 in embryonic stem cells (Linares et al., 2015) and in neuronal differentiation, where 

PTBP1 expression is reduced by the microRNA miR-124 (Makeyev et al., 2007), increasing 

PTBP2 expression and initiating neuronal maturation (Licatalosi et al., 2012; Li et al., 2014; 

Vuong et al., 2016).  

Human Hub-Nonbottlenecks (H-NBs) 

The precise basis of the rule has been debated (He & Zhang, 2006; Zotenko et al., 2008), but 

this argument is outside the remit of this thesis. Chandramohan et al., (2021, preprint) also 

found this rule applies to the human interactome, finding 73% of H-NBs (referred to as “pure 

hubs” (PHs)) to be essential, compared to 23% of HBs/MX and 47% of NH-Bs/PBs. In their 

study, N-HBs/PHs are enriched in biological processes relating to nucleic acid and protein 

metabolism, transcription, and DNA repair. This is not the case with the 24 H-NBs here, with 

terms relating to immunity being the most significantly enriched. Such terms include 

“positive regulation of immune system process”, “regulation of immune response”, 

“leukocyte activation”, “immune effector process” (all n = 11, p = 2.66×10-6), and “regulation 

of immune response” (n = 13, p = 2.66×10-6). The link between AD and the immune system 

was examined in the GO enrichment analysis of the whole human network but since 

immunity was not highlighted in the Drosophila network. It is not worthwhile in this thesis to 

focus on a biological process not relevant to Drosophila. 

Again, no immune-related terms were enriched amongst the three identified x̄ + 2 SD H-NBs, 

with the following terms found to be significantly enriched instead: “positive regulation of 

amyloid fibril formation” (n = 2, p = 0.00021); “negative regulation of amyloid-beta 
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formation” (n = 2, p = 0.00036); and “positive regulation of supramolecular fiber 

organization” (n = 3, p = 0.00036). It is important to note that Chandramohan and colleagues 

(2021, preprint) conducted their analysis using identified NH-Bs/PHs from the whole human 

genome, so it is more than reasonable to assume that the discrepancy here is due to sample 

size. 

Of the strict H-NBs, BIN1 is the most interesting. PSEN1 has been extensively studied in AD, 

while CLU, though there is evidence suggesting it contributes to AD pathology, has no 

discernible Drosophila ortholog. The role of BIN1 in tau pathogenicity has been discussed 

previously and is involved in tau-specific pathology, (Chapuis et al., 2013; Lasorsa et al., 

2018), and while the specific interaction between its primary endocytic function and tau is 

unclear, it may promote tau pathology by increasing endocytic flux and internalisation of tau 

aggregates, (Calafate et al., 2016), before releasing tau via extracellular vesicles (Crotti et al., 

2019). The loss of BIN1 also results in synaptic tau accumulation, thus leading to dendritic 

abnormalities (Glennon et al, 2020). 

 

Drosophila Protein-Protein Interaction Network 

The full Drosophila network graphic can be found in Appendix F. 288 genes were entered in 

STRING, and 260 were recognised in the database. Deleting unconnected proteins results in a 

total of 224 nodes and 1080 edges. Table 7 displays the average values of network-wide 

measures. 

Table 7. Average Drosophila network-wide statistics. 

Network Measure Average Value 

Average No. of Neighbours 9.643 
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Network Diameter 7 

Network Radius 4 

Characteristic Path Length 2.919 

Clustering Coefficient 0.339 

Network Density 0.043 

Network Heterogeneity 0.953 

Network Centralization 0.196 

 

Small World Property 

The small-world property for the Drosophila AD network was calculated using the same 

equation for the AD human network, as proposed by Humphries, Gurney, and Prescott 

(2006). The results show that 𝛾𝑖 = 8.7 and 𝑆𝑖 > 7.8; thus, the Drosophila AD network meets 

the criteria for the small-world law. 

Global Network Properties of Drosophila Protein-Protein Interaction Network 

Like in the human PPIN, the most important global network properties are probably average 

no. of neighbours, CPL, and clustering coefficient. 

As Table 8 shows, the average no. of neighbours for the Drosophila network is 9.643. While 

smaller than the human network, it indicates a high level of connectivity between Drosophila 

proteins. The clustering coefficient is 0.339, suggesting that proteins in the network have a 

tendency to form modules. The significance of module in both networks will be discussed in 

the next analysis. The CPL is 2.919 which, according to Xu et al., (2011), is lower than the 

observed average for Drosophila.  
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Comparison of AD Drosophila Network to Random Networks 

Like the human AD network, the constructed Drosophila network should be significantly 

different from random. To confirm this, the method employed for the human AD network 

was reused. 1000 Erdős–Rényi model networks were generated and subjected to the 

following analyses: degree (K) and betweenness (BC). From these analyses, 224 values 

(equal to the number of values from the Drosophila AD network) were randomly sampled 

and compared to the Drosophila AD network using the Wilcoxon signed-rank test.  The full 

code can be found in Appendix G. 

Significant differences were found between the Drosophila AD network centralities and the 

random network centralities. Both AD degree and betweenness centralities were significantly 

different (p < 0.01 and p <00.4, respectively) from random, showing that the AD Drosophila 

network is distinct from random. 

 

Drosophila AD Network Centrality Analyses 

Table 9. The fifteen proteins with consistently high values across all measures. Bold denotes 

proteins that are within the top five for two or more measures. 

Protein Degree (k) Closeness  Betweenness Eigenvector 

CaMKI 54 0.002257336 6060.100345 0.24534941 

Egfr 51 0.002192982 4354.052268 0.24477025 

Src64B 46 0.002164502 3341.023768 0.234146833 

dlg1 44 0.002155172 3377.189903 0.227650864 

Src42A 41 0.002132196 1786.157172 0.227828207 

Rab5 40 0.002070393 2729.43903 0.2089885 

Appl 38 0.002114165 2918.660182 0.204685737 

Cam 33 0.002132196 2091.350067 0.19039358 

His2Av 31 0.002087683 4683.826798 0.135075231 
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Syb 29 0.001953125 880.2149527 0.159107441 

Psn 24 0.00203252 2183.149952 0.112835954 

Sgg 23 0.001945525 933.0215847 0.108647793 

Mys 23 0.001824818 609.6096298 0.11192283 

Gapdh1 22 0.001937984 2011.260184 0.087323844 

F1 22 0.001972387 1264.446853 0.088242871 

 

Table 9 shows that CaMKI, Egfr, Src64B, dlg1, and Src42A score highly across each 

measure. Egfr and Src64B are orthologs of the human genes EGFR and SRC, respectively, 

suggesting the importance of these gene products is conserved between the two networks. 

As in the human network, to identify proteins from the categories described by Yu et al. 

(2007), the averages of the centralities plus one or two standard deviations of the mean were 

used as cutoff values. These values are shown in Table 10. 

Table 10. Cutoff values for identifying proteins in each category. Degree values are rounded 

to their nearest whole number. 

 Degree Betweenness 

Mean (x̄) 10 427.4667 

x̄ + 1 SD 19 1229.4413 

x̄ + 2 SDs 28 2405.9238 

 

Drosophila Hub-Bottlenecks (HBs) 

Using the x̄ + 2 SDs cutoff values, CaMKI, His2Av, Egfr, dlg1, Src64B, Appl, and Rab5 can 

be categorised as HBs. According to Chandramohan et al., (2021, preprint) HBs (referred to 

as “mix proteins” (MX)) are more evolutionary conserved than the other protein categories. 

All the genes identified as HBs have human orthologs, four of which are also HBs in the 

human network (Egfr/EGFR, Src64B/SRC, Appl/APP, and dlg1/DLG4). In regards to GO 
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enrichment, Chandramohan et al. (2021, preprint) focused only on human genes, so terms 

that are enriched among human HBs may not be enriched in these Drosophila proteins.  

This appears to be the case, as GO:BP terms relating to development are the most enriched in 

these proteins, and include “dorsal closure” (n = 4, p = 9.63×10-5), “establishment or 

maintenance of apical/basal cell polarity” (n = 3, p = 0.00025), “morphogenesis of follicular 

epithelium” (n = 3, p = 0.00025), “regulation of cell population proliferation” (n = 4, p = 

0.00025), and “ovarian follicle cell development” (n = 4, p = 0.00025).  

 

Drosophila Nonhub-Bottlenecks (NH-Bs) 

Using the x̄ + 1 cutoff, four proteins can be categorised as NH-Bs in Drosophila: Sod2 (k = 

19, BC = 1733.243), CG17528 (k = 9, BC = 1352.871), Fs(2)Ket (k = 19, BC = 1349.684), 

and Vap33 (k = 14, BC = 1266.533). Only Sod2 has a human ortholog that is also an NH-B. 

A GO enrichment analysis could not be performed for these four proteins likely due to the 

lack of recorded or predicted interactions amongst them. 

 

Drosophila Hub-Nonbottlenecks (H-NBs) 

Employing the x̄ + 1 cutoff resulted in 18 proteins being identified as H-NBs. Again, 

examining each protein individually would be laborious, therefore they will be discussed 

within the context of their most significant GO:BP terms. Four proteins are H-NBs in both 

species’ networks (mys/ITGB1, Eph/EPHA1, cathD/CTSD, and Amph/BIN1). Using the x̄ + 2 

cutoff, only one protein could be categorised as a strict H-NB, namely Syb. Unlike the human 

H-HBs, most enriched GO:BP terms among the Drosophila H-NBs relate to development. 

However, terms relating to vesicle-based processes are also significantly enriched, including 

but not limited to “exocytosis” (n = 7, p = 2.12×10-8), “vesicle-mediated transport” (n = 8, p 
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= 4.78×10-6), and “establishment of vesicle localization” (n = 5, p = 6.12×10-6). As shown by 

a previous analysis, both species’ whole networks had at least one term relating to vesicle-

associated processes significantly enriched. Combined with the presence of a conserved 

protein module primarily enriched in endocytic processes (discussed in the next section), it is 

more than appropriate to hypothesise endocytosis as a conserved mechanism in AD 

pathology.  

 

Drosophila Network Centrality Analysis – Discussion 

 

Drosophila Hub-Bottlenecks (HBs) 

The question is whether these proteins have any interactions with Drosophila tau (dTau) in 

vivo, or if they at least share functions in processes that involve protein kinases. Evidence for 

the former, outside of the genetic screens cited for this project, is lacking. However, there are 

studies that support phosphorylation-related functions in a few of these proteins. For 

example, like human EGFR, Drosophila Egfr activates several kinase cascades that activates 

pathways such as MAPK (Cela & Llimargas, 2006; Moses, C. et al., 2011; Jiang et al., 2011), 

which phosphorylates a range of substrates (Peverali et al., 1996; Nir et al., 2012; Auer et al., 

2015). As previously stated, the MAPK pathway has been cited in the normal and abnormal 

phosphorylation of tau in humans; however, evidence of this occurring in Drosophila is 

lacking. 

CamkI, the ortholog of CAMK1D, is unusual in that most of its functions have been inferred 

via phylogenetic similarity and not experimentally confirmed, according to FlyBase. Its 

paralog CamkII has been shown to phosphorylate proteins (Wang et al., 2002; Yang et al., 

2010) and itself. Additionally, it is active in several neuronal processes, including synaptic 

transmission (Haghigi et al., 2003) and plasticity (Andersen et al., 2005). Why CamkI was 
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identified as a HB is unknown. Dlg1 appears to share the same neuronal functions as its 

human ortholog DLG4 (Karunanithi et al., 2002; Kumar et al., 2009) and is also regulated by 

kinase phosphorylation, including by CamkII (Koh et al., 1999; Zhang et al., 2007). Rab7 

forms part of a larger group this study has found to be conserved between both networks and 

will be discussed in the next section. 

Like its human counterpart, Src64B is the most central protein within its network. It regulates 

several pathways via protein phosphorylation, including MAPK (Xia et al., 2008), JNK, 

STAT, and PI3K (Read et al., 2004; Poon et al., 2018). Studies in other organisms strongly 

implicate these pathways in tau-specific pathology, either directly or indirectly (Atzori et al., 

2001; Sawamura et al, 2001; Baki et al, 2004; Yoshida et al., 2004; Vogel et al., 2009; 

Colodner & Feany, 2010; Ploia et al., 2011; Cai et al., 2011; Wang et al., 2015; Maphis et al., 

2016). Whether Src54B has a role in the pathogenesis and/or propagation of tau pathology in 

Drosophila through the modulation of these same pathways has not been established.  

There is a little evidence of the relationship between Src64B and tau, with only Feuillette et 

al. (2020) finding that loss-of-function of Src64B and its paralog Src42A enhances tau 

toxicity. Like its human counterpart Src64B modulates actin dynamics, primarily in ring 

canal morphogenesis (Dodson et al., 1998; Kelso et al., 2002). Furthermore, as previously 

mentioned SRC is involved in axonal guidance, also a function of Src64B (Nicolai et al., 

2003). However, both these processes are activated by BDNF signalling which has no 

recorded ortholog in Drosophila, so it remains unknown whether Src64B acts independently 

in these processes, or it is regulated by either another protein or as-yet unidentified species-

specific ortholog of BDNF. 

 

Drosophila Nonhub-Bottlenecks (N-HBs) 
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Sod2 is a conserved NH-B in both human and Drosophila networks, and its function is 

virtually the same in both species. It appears Sod2 expression has considerable biological 

consequences in Drosophila, with knockout resulting in early mortality in young adult flies 

(Kirby et al., 2002; Duttaroy et al., 2003). Downregulation of Sod2 also has detrimental 

effects in the fly nervous system, causing neuronal dysfunctions including neurodegeneration 

(Paul et al., 2007; Celotto et al., 2012; Oka et al., 2015). Sod2 has been linked directly to tau 

pathology as part of a wider, mediating group of proteins involved in oxidative stress (Dias-

Santagata et al., 2007). 

Fs(2)Ket is the ortholog of human importin-β, encoded by the gene KPNB1. Both proteins 

share similar functions, primarily acting as nuclear transport receptors (Lippai et al., 2000; He 

et al, 2017). The relationship between aberrant nuclear transport and tau has been reviewed 

by Diez and Wegmann (2020), but there is little evidence supporting any interactions 

between either Fs(2)Ket or importin-β and tau; however, Nuovo et al. (2018) did observe that 

the latter co-localised with hyperphosphorylated tau in post-mortem brains. Vap-33 and its 

human ortholog are both present in a conserved protein module, and will be discussed in the 

next section. According to FlyBase, CG17528’s closest ortholog is DLCK1/DLCK2, though 

for this study it was assumed to be the counterpart of CAMK4. Its functions have been 

inferred from structural or sequence similarity, and is predicted to be involved in processes 

relating to calmodulin binding and protein phosphorylation. 

 

Drosophila Hub-Nonbottlenecks (H-NBs)  

The product of mys, βPS, functions similar to its human ortholog, acting as a receptor for the 

extracellular protein laminin and regulating cellular adhesion (Gotwals et al., 1994; Zhang et 

al., 2010; Egoz-Matia et al., 2011). It also interacts with actin, affecting its assembly and 
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overall dynamics (D. Fristrom et al., 1993; Bateman et al., 2001; Delon & Brown, 2009). Eph 

protein is a receptor protein tyrosine kinase (PTK) with a number of roles in the Drosophila 

nervous system, particularly during axons guidance (Scully et al., 1999; Dearborn et al., 

2002; Boyle et al., 2006). Though direct evidence of its functions in pathological states is 

scant, cathD appears to be primarily involved in apoptosis via lysosome proteolysis (Kinser 

& Dolph, 2012; Zhang et al., 2020).  

Amph is the most confounding protein. Despite being strongly homologous with BIN1, Amph 

lacks its endocytic functions, the central domain in exon 8 which contains motifs that bind 

proteins crucial to endocytosis, such as clathrin and AP2 (Owen et al., 1998; Ramjaun & 

McPherson, 2002), is poorly conversed between BIN1 and Amph (Leventis et al., 2001). 

Amph proteins are absent from presynaptic terminals (Zelhof et al., 2001), where endocytosis 

primarily takes place (Royle & Lagnado, 2010), and synaptic transmission in Drosophila 

with Amph mutations is largely unaffected (Razzaq et al., 2001). In contrast, Drosophila 

expressing mutated endocytic proteins, such as Vps35, have noticeable defects in signalling 

and protein localisation (Korolchuk et al., 2007), as well as increased lethality (Olswang-

Kutz et al., 2009). 

Excluding Amph, cathD is the only one that directly interacts with tau in a pathological state. 

Khurana et al. (2010) found that upregulation of cathD significantly increased tau 

neurotoxicity in Drosophila. Though not concerning tau, Myllykangas et al. (2005) showed 

cathD mutations led to neurodegeneration in Drosophila, suggesting that cathD dysfunction 

is detrimental to the brain. Evidence of a relationship between tau and mys or Eph is virtually 

non-existent. Given the former interacts directly with the cytoskeleton and the latter 

influences neuronal development, it would be prudent to focus on these proteins and their 

possible roles in Drosophila models of AD. 
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Amph mediates tau toxicity in Drosophila (Chapuis et al., 2013). How this works is unclear, 

but Dräger et al. (2017) provided a potential mechanism, there is an association between tau 

neurodegeneration and F-actin accumulation. Dräger et al., found that BIN1 and Amph (dBin1 

in the paper) bind actin filaments via their BAR domains, stabilizing them affecting their 

bundling. More importantly, downregulation of Amph/dBin1 led to decreased levels of actin-

rich rods, particularly those induced by tau. The BAR domain is well-conserved between 

BIN1 and Amph, (Casal et al., 2006) as is their ability to regulate the formation and 

maintenance of muscle transverse tubules (Razzaq et al., 2001; Fugier et al., 2011; Safi et al., 

2016; Fu & Hong, 2016). It is possible that these proteins directly interact with elements of 

the cytoskeleton, and when dysfunctional either cause or contribute to pathophysiology 

relating to tau. This requires more research. 

 

Conserved Modules Between Human & Drosophila PPINs 

My analysis has identified the most important individual proteins in both the human and 

Drosophila networks, as well as their strongest interactions and likeliest functions. 

Furthermore, it has underlined conserved pathways between the species’ networks.  However, 

proteins rarely exert their effects without influencing or being influenced by other proteins. If 

one were to grossly simplify them, then it could be biological processes are sequential protein 

interactions that result in either local or global physiological outcomes; this could also be 

argued for diseases. These conserved modules or complexes represent potentially conserved 

processes or cellular machinery, respectively that could be considered more widely as 

potential avenues for developing strategies for understanding AD. These networks were 

selected based on their size, consistency, and accuracy across multiple executions of the 

GASOLINE software. Based on my analysis, I have identified 4 such networks that could be 
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pivotal to the progression of neurodegenerative diseases and provide a focus for future 

strategies for research into new therapeutic targets and novel disease mechanisms 

 

Conserved Module 1 – “Vesicle Processing Group” 

 

Figure 8. GASOLINE-generated network of conserved module 1. 

The Vesicle Processing Group consists of the proteins SEC22B, SNAP23, STX4, STX7, 

VAMP1, and VAPB (purple) in the human network and the proteins Sec22, Snap24, Syx1A, 

Syx7, Syb, and Vap33 (yellow) in the Drosophila network. These modules are named due to 

the significant enrichment of GO:BP terms concerning vesicle-related processes, as 

illustrated by Figures 9 & 10 
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Figure 9 & Figure 10. Bar graphs displaying the most significantly enriched GO:BP terms in 

both humans and Drosophila for CM1.  

 

Conserved Modules 2 – “Splicing Assemblies” 
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Figure 11. GASOLINE-generated network of conserved module 2. 

The Splicing Assemblies Modules consists of the proteins CWC25, HNRNPK, HNRNPL, 

PTBP1, SNRPC, and SNRPN in the human network (purple) and the proteins Cwc25, 

HnRNP-K, sm, heph, U1-C (shortened from snRNP-U1-C), and SmB in the Drosophila 

network (yellow). These modules are referred to “Splicing Assemblies” due to the 

enrichment of GO:BP terms relating to mRNA splicing, as depicted by Figures 12 & 13. 

 

Figure 12 & Figure 13. Bar graphs displaying the most significantly enriched GO:BP terms 

in both humans and Drosophila for CM2. 
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Conserved Modules 3 – “RAB Groups” 

 

Figure 14. GASOLINE-generated network of conserved module 3. 

“Conserved Module 3” consists of the proteins GDI1, RAB2A, RAB4A, RAB5A, RAB7A, 

RAB27A, and VPS41 in the human network (purple) and the proteins Gdi, Rab2, Rab4, 

Rab5, Rab7, RAB27, and lt in the Drosophila network (yellow). Unlike the previous 

modules, these modules are named after the RAB protein family, as most proteins in both 

modules belong to this family. The most significantly enriched GO:BP terms for each module 

are illustrated in Figures 15 and 16.  
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Figure 15 & Figure 16. Bar graphs displaying the most significantly enriched GO:BP terms 

in both humans and Drosophila for CM3. 

 

Conserved Module 4 – “Ribosomal Protein Complexes” 

 

Figure 17. GASOLINE-generated network of conserved module 4. 

“Conserved Modules 4” (CM4) are the largest conserved modules, and consist of the proteins 

ETF1, GSPT1, PPP2R1A, RPLP0, RPL13, RPL15, RPL23A, and RPS21 in the human 

network (purple) and the proteins eRF1, eRF3, Pp2A, RpLP0, RpL13, RpL15, RpL23A, and 

RpS21 in the Drosophila network (yellow). Like previous modules, these modules are named 
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after the most prevalent protein family, in this case the ribosomal proteins. These modules are 

enriched with GO:BP terms relating to protein translation, as shown in Figures 18 and 19. 

 

 

Figure 18 & Figure 19. Bar graphs displaying the most significantly enriched GO:BP terms 

in both humans and Drosophila for CM4. 

Discussion 

Vesicle Processing Group 

These modules support my previous analysis of GO:BP enrichment in both species’ whole 

networks. The Drosophila module also contains two proteins identified in the previous 

section as potential candidate proteins: Vap33 (an NH-B) and Syb (an H-NB). Most proteins 
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in both modules belong to the SNARE protein family. SNARE proteins primarily mediate the 

fusion of vesicles to the membrane and exocytosis (Wang et al., 2017). SNARE proteins are 

categorised as one of two subclasses: Q-SNAREs and R-SNARES (Fasshauer et al., 1998). 

Three Q-SNAREs and one R-SNARE form a four-helix bundle, the SNARE complex (Poirier 

et al., 1998; Chen et al., 2002), that is primarily responsible for fusing the vesicle membrane 

with the target membrane (Südhof & Rothman, 2009; Van Den Bogaart et al., 2010). 

Most of the individual proteins are involved in exocytosis and membrane fusion, namely the 

syntaxins STX4 and STX7, (Hammarlund et al., 2007; Woodbury & Rognlien, 2013; 

Nakamura et al., 2000; Mullock et al., 2017), SNAP23 (Ravichandran et al., 1996; Dong & 

Whiteheart, 1999; Chieregatti et al., 2004), VAMP1 (Rao et al., 2004; Ward et al., 2017), and 

SEC22B (Hay et al., 1997; Zhang et al., 2017). Interestingly, these proteins have significant 

roles in the nervous system relating to their primary functions. STX4 and STX7 act in 

hippocampal neurons, in recycling AMPA receptors and endosomal membrane fusion, 

respectively (Mohanasundaram & Shanmugam, 2010; Kennedy et al., 2010; Mori et al., 

2020).  

SNAP23, while not as widely expressed in the brain as closely related SNAP25 (Chen et al., 

1999; Hepp et al., 1999), is enriched in dendritic spines, colocalizing with NMDA receptors. 

Furthermore, SNAP23 can substitute for SNAP25 and perform its functions if the latter is 

knocked out or not expressed (Delgado-Martínez et al., 2007; Arora et al., 2017). VAMP1 

participates in neurotransmitter release (Trimble et al., 1988; Raptis et al., 2005) and 

optimises synaptic transmission at neuromuscular junctions (NMJ) (Liu, Sugiura, & Lin, 

2011); furthermore, it forms part of a SNARE complex with STX4 and SNAP25 that 

regulates the exocytosis of NMDA receptors (Gu & Huganir, 2016). SEC22B appears to aid 

neurite growth by contributing to plasma membrane expansion (Petkovic et al., 2014; Gallo 

et al., 2020).  
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VAPB is the only protein here not classed as a SNARE protein, belonging to the VAP protein 

family. VAP proteins share multiple functions, including exocytosis of neurotransmitters 

(Skehel et al., 1995), lipid transportation and metabolism (Kawano et al., 2006; Wakana et 

al., 2015), and ER-Golgi complex trafficking (Prosser et al., 2008; Peretti et al., 2008). While 

there is no evidence they are directly involved in vesicle fusion or exocytosis, VAP proteins 

do interact with SNARE complexes, especially VAMPs.VAPB mediates the unfolded protein 

response, an ER response to accumulated misfolded proteins (Kanekura, Nishimoto, Aiso, & 

Matsuoka, 2006; Gkogkas et al., 2008). 

The functions of the Drosophila proteins have mostly been inferred by phylogenetic 

similarity to human proteins, a common theme throughout this thesis. Nevertheless, there is 

experimental evidence from in vivo studies on Drosophila. Syx4, the ortholog of STX4, 

regulates neurotransmitter release (Harris et al., 2018) and synaptic plasticity, the latter by 

trafficking the proteins synaptotagmin 4 (Syt4) and neuroligin (Nlg1) (Harris et al., 2016). 

Syx7 is also known as Avalanche (avl), and is required for vesicle fusion, to form early 

endosomes (Lu & Bilder, 2005; Morrison et al., 2008).  

Evidence of the role of Snap24, the ortholog of SNAP23, is scarce, but Niemeyer, and 

Schwarz (2000) suggest it retains its exocytic role. It can also substitute for Snap25 if the 

latter is not present (Vilinsky et al., 2002). Sec22 maintains the ER-Golgi trafficking function 

of its human relative (Zhao et al., 2015; Lakatos et al., 2019). Syb’s functions are mostly 

inferred, but evidence suggests neuronal Syb is required for synaptic exocytosis 

(Bhattacharya et al., 2002; DeMill et al., 2014). Vap33 has more neuronal functions 

compared to VAPB, affecting synaptic morphology (Forrest et al., 2013), bouton formation 

(Pennetta et al., 2002), and trafficking to axons (Yang et al., 2012). 

Splicing Assemblies 



 67 

The relevance of these modules stems from their involvement in alternative splicing. As tau 

protein and its isoforms are formed by this process. Additionally, the human module contains 

two proteins (HNRNPK and PTBP1, both NH-Bs) identified as proteins for further study.  

Most, if not all, proteins in both modules are RNA-Binding Proteins (RBPs). RBPs bind to 

RNA via structural motifs such as RNA recognition motif (RRM), hnRNP K homology 

domain (KH), and zinc finger (ZF), and the vast majority are involved in protein synthesis, 

whether directly or indirectly (Lunde et al., 2007; Gerstberger et al., 2014). The interaction of 

RBPs with RNA typically forms dynamic complexes known as ribonucleoprotein particles 

(RNPs) (Mitchell & Parker, 2014). Most proteins in both modules form such complexes and 

can be divided into two categories: small nuclear ribonucleoproteins (snRNPs) and 

heterogeneous nuclear ribonucleoproteins (hnRNPs). SNRPC/snRNP-U1-C and SNRPN/SmB 

fall into the former category, while HNRNPK/HnRNP-K, HNRNPL/sm, and PTBP1/heph are 

classified as the latter. The status of CWC25 is uncertain. 

snRNPs are complexes consisting of proteins (such as SNPRC) and small nuclear RNAs 

(Kiss, 2004). The snRNPs combine with one another to form the spliceosome, a large RNP 

complex that catalyses pre-mRNA splicing (Matera & Wang, 2014). SNRPC encodes for a 

component of the U1 snRNP, also known as the U1-specific protein C, which selectively 

binds to the 5' of pre-mRNA and initiates spliceosome assembly (Mount et al., 1983; Ruby & 

Abelson, 1988; Seraphin & Rosbash, 1989). U1-specific protein C is crucial in initial pre-

mRNA 5' splice-site recognition and binding (Heinrichs et al., 1990; Rossi et al., 1996). It 

also seems to stimulate early splicing complex formation (Will et al., 1996). The exact 

function of SNRPN is less clear, but it does seem to be involved in pre-mRNA splicing 

(McAllister, Amara, & Lerner, 1988). However, it is tissue-specific, being predominantly 

expressed in the brain (Schmauss et al., 1992). Research on CWC25 is scarce, but what is 
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available suggests it acts as part of the spliceosome, specifically in the first catalytic reaction 

(Schneider et al., 2015; Tseng et al., 2017; Chiu et al., 2020). 

hnRNPs combine with heterogeneous nuclear RNAs (hnRNAs) to form heterogeneous 

nuclear ribonucleoprotein particles (Dreyfuss, Swanson, & Piñol-Roma, 1988). hnRNPs have 

a variety of functions relating to nucleic acid metabolism, such as transcriptional regulation 

and mRNA stabilization (Geuens, Bouhy, & Timmerman, 2016). More importantly, some 

mediate the splicing process. Both HNRNPK and PTBP1 have been discussed at length in the 

previous analysis for their roles in splicing, with the latter particularly noted for contributing 

to the alternative splicing of tau protein. Like other hnRNPs involved in splicing, HNRNPL 

binds to intronic or exonic sites in pre-mRNA, either activating or repressing exon inclusion 

(Rothrock, House, & Lynch, 2005; Loh et al., 2015). Interestingly, it seems to regulate the 

alternative splicing of potassium channels (Liu et al., 2012). Unlike the previously mentioned 

hnRNPs, there is no evidence signifying it has any interaction with tau.  

The Drosophila proteins seem to share the functions of their human orthologs. snRNP-U1-C 

(also known as U1C or CG5454) is required for mRNA splicing, including in alternative 

splicing (Park et al., 2004; Katzenberger et al., 2009). SmB’s function is mainly inferred 

(Mount & Sal, 2000), but it is present in evolutionarily conserved spliceosome complexes 

(Herold et al., 2009). There is virtually no information on Drosophila Cwc25, so its functions 

have also been inferred from information available for its human counterpart. HnRNP-K 

binds to active transcription sites (Hovemann et al., 2000) and both it and sm appear to 

regulate alternative splicing (Brooks et al., 2015). Finally, heph binds to 3′ untranslated 

regions and mediates the formation RNP complexes (Besse, de Quinto, Marchand, & Trucc, 

2009). 
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Is there a link between splicing and AD tau pathology? Regarding the hnRNPs, PBTP1 was 

previously highlighted as being involved in tau-based pathology, while HNRNPK may have a 

potential connection via cytoskeletal mechanics. Furthermore, while HNRNPL itself does not 

appear to affect tau, it and other hnRNPs interact with an intermediary protein called TAR 

DNA-binding protein 43 (TDP-43). TDP-43 inclusions have been found in several 

neurodegenerative disorders, including FLD and AD (Arai et al., 2009; Arai et al., 2010), and 

it appears to colocalise with pathogenic tau (Higashi et al., 2007), influencing the latter’s 

aggregation (Davis et al., 2017). According to Appocher et al. (2017), both human and 

Drosophila hnRNPs affect the function of TDP-43 if their expression levels are altered; 

furthermore, hnRNPs are overexpressed in FTLD-TDP-positive brains in response to loss-of-

function TDP-43 (Mohagheghi et al., 2016). Whether this interaction influences pathogenic 

tau is uncertain. 

The U1 snRNP and its components are involved in AD pathology. Bai et al. (2013) and Hales 

et al. (2014) observed that the protein and RNA components of U1 snRNP respectively 

accumulate in AD to form pathological aggregates. Additionally, knockdown of U1C 

increased levels of APP and GSK3B, though no pathogenic effects were observed (Zhu et al., 

2020). This interaction appears to be bidirectional. In Drosophila, abnormal expression of 

U1C and SmB enhanced tau neurotoxicity; however, soluble tau led to a loss of snRNP 

proteins, in turn disrupting spliceosome function (Hseih et al., 2019).  

RAB Groups  

RAB proteins are small monomeric GTPases/GTP-binding proteins that act as key regulators 

of intracellular transport processes, including endocytosis and exocytosis (Jordens, Marsman, 

Kuijl, & Neefjes, 2005; Bhuina & Roy, 2014). This is particularly informative when 

considered alongside CM1, where proteins involved in vesicle-related processes are also 
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conserved. Furthermore, there are interactions between proteins of both sets of modules, an 

aspect covered below. 

RAB proteins are not uniform in functions. RAB2A is required to transport proteins from the 

ER to the Golgi complex (Tisdale & Balch, 1996; Tisdale, 1999), as well as autolysosome 

formation and degradation (Lőrincz et al., 2017; Ding et al., 2019). RAB4A is localised to 

early endosomes (van der Sluij et al., 1991), and appears to be heavily involved in endosomal 

sorting and recycling (van der Sluijs, 1992; McCaffrey et al., 2001; Mohrmann et al., 2002). 

RAB5A is also localised to early endosomes, but in contrast to RAB4A it primarily mediates 

membrane fusion (Gorvel et al., 1991; Stenmark et al., 1994; Rybin et al., 1996). RAB7A 

mainly regulates endo-lysosomal transport (Vitelli et al., 1997; Lebrand et al., 2002; 

Vanlandingham & Ceresa, 2009), but it is also involved in lysosome (Bucci et al., 2000) and 

autophagic vacuole biogenesis (Jäger et al., 2004; Yamaguchi et al., 2009). Finally, RAB27A 

is involved in membrane trafficking (Wilson et al., 2000; Fukada, 2005) and appears to 

control exosome secretion (Ostrowski et al., 2009) across multiple systems, including the 

immune system (Stinchcombe et al., 2001; Haddad et al., 2001).  

GDI1 (Rab GDP dissociation inhibitor alpha) and VPS41 (vacuolar protein sorting-associated 

protein 41 homolog) and their Drosophila orthologs do not belong to the RAB protein family. 

GDI1 acts as a regulator of RAB proteins, mediating their GDP/GTP exchange reaction and 

their dissociation from the membrane (Sedlacek et al., 1994; Pfeffer, Dirac-Svejstrup, & 

Soldati, 1995). The product of VPS41 comprises a subunit of a protein complex known as the 

“Homotypic fusion and protein sorting” (HOPS) complex (Rieder & Emr, 1997; Bröcker et 

al., 2012). The HOPS complex primarily regulates membrane tethering in late endosomes 

(Balderhaar & Ungermann, 2013; Solinger & Spang, 2013), a step required before membrane 

fusion. Interestingly, the HOPS complex catalyses membrane fusion by assembling, binding 

and chaperoning the SNARE complex (Hickey & Wickner, 2010; Krämer & Ungermann, 
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2011; Zick & Wickner, 2013; Orr et al., 2017). Within the context of this study, this not only 

shows a common link between two modules, but also suggests a process ripe for further study 

in an AD context. 

Most of the Drosophila proteins share the same functions as their human orthologs; however, 

there is more emphasis placed on their roles in the nervous system. Like RAB2A, Rab2 is 

involved in ER-Golgi complex transport (Ke et al., 2018) and promotes autolysosome 

degradation (Lőrincz et al., 2017), but also drives endosome-lysosome fusion (Lund et al., 

2016). Additionally, it regulates presynaptic precursor vesicle biogenesis (Götz et al., 2021), 

NMJ organisation (Mallik et al., 2017), and axonal transport of dense core vesicles and 

endolysosomal organelles (Lund et al., 2021). Rab4’s roles in endocytosis are inferred from 

its structural similarity to the paralog Rab11, but some experimental evidence supports its 

recycling function in Drosophila (Walsh et al., 2021); in addition, Rab4 may also regulate 

synapse organization (Dey et al., 2017; White et al., 2020). Rab5 appears to function 

similarly to RAB5A, localising to early endosomes (Lőrincz et al., 2016) and involved in 

membrane fusion (Morrison et al., 2008), especially in the nervous system where it fuses 

synaptic vesicles to the endosome (Wucherpfennig et al., 2003). 

Rab7 retains its role as a regulator of endo-lysosomal transport (Entchev, Schwabedissen, & 

González-Gaitán, 2000; Wilkin et al., 2008), and in addition it appears to influence NMJ 

postsynaptic density and glutamatergic receptor levels (Patel et al., 2020; Basargekar et al., 

2020). The role of Rab27 is mostly inferred, but Corrigan et al. (2014) show it retains its 

function in exosome secretion, while Lien et al. (2020) found it localised to the α/β posterior 

neurons of the fly mushroom bodies. Gdi is virtually identical to GDI1, in that it dissociates 

RAB proteins from the membrane (Garrett et al., 1993; Ricard et al., 2001), though it does 

not appear to have any neuronal functions. Lastly, like its human counterpart VPS45, lt 
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encodes for a subunit that constitutes part of the Drosophila HOPS complex, which appears 

to work largely the same way (Takáts et al., 2014; Lőrincz et al., 2016). 

Ribosomal Protein Complexes 

Most proteins in these modules are constituents of the eukaryotic ribosome. More 

specifically, the RPL proteins are structural components of the large ribosomal subunit (60S). 

The sole RPS protein is part of the small ribosomal subunit (40S) (Anger et al., 2013).  

In terms of function, the 40S subunit reads and decodes mRNA, while the 60S subunit 

catalyses the formation of peptide bonds (Lafontaine & Tollervey, 2001). However, these 

functions are due to the rRNA core rather than the proteins (Cech, 2000; Steitz & Moore, 

2003), and so aside from RNA binding the exact role of ribosomal proteins in ribosome-led 

protein synthesis remains undetermined.Nevertheless, recent evidence has suggested that 

these proteins have extraribosomal functions. RPL23A has been linked to various biological 

processes outside of the ribosome, including activation of the p53 pathway (Dai et al., 2004; 

Jin et al., 2004) and inhibition of cell cycle arrest (Wanzel et al., 2008). 

The non-ribosomal proteins, both ETF1 and GSPT1 (alternatively known as ERF1 and ERF3, 

respectively) direct the termination of protein translation (Frolova et al., 1994; Zhouravleva et 

al., 1995; Salas-Marco & Bedwell, 2004). Their Drosophila orthologs, eRF1 and eRF3, also 

possess this function (Chao, Dierick, Addy, & Bejsovec, 2003). PPP2R1A encodes for a 

regulatory subunit of protein phosphatase 2A (PP2A), involved in numerous biological 

pathways (Zolnierowicz, 2000). PP2A appears to associate with ETF1, which targets it 

towards the ribosomal substrates (Lechward et al., 1999); evidence suggests it regulates 

phosphorylation of nuclear ribosomal proteins (Kim et al., 2009). As an individual 

component, PPP2R1A appears important for chromosome segregation (Tang et al., 2006). 
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The Drosophila ortholog of PPP2R1A, Pp2A-29B, is near-identical in function as a PP2A 

structural protein (Ribeiro et al., 2010) and chromosome segregation (Chen et al., 2007). 

 

General Discussion 

AD is undoubtedly a complex disease: its pathology is well-characterised, but its aetiology is 

still not largely understood. As this study illustrates, the progression of the disease involves 

numerous biological processes that become dysfunctional during the initiation and 

propagation of AD pathology.  This is especially true for tau-related pathology, and as my 

study shows no individual process stands out as the primary “trigger” in either humans or 

Drosophila. Comparing two species with an evolutionary divergence of approximately 797 

million years (according to TimeTree; Hedges, Dudley, & Kumar, 2006) is, however, 

informative with the number of biological processes and individual proteins involved in AD 

pathology conserved across both humans and Drosophila,  revealing that the progression of 

tau-induced neurodegeneration involves dysfunction in largely the same basic biological 

processes and suggesting that the progression of the disease involves the disruption of 

fundamental cellular processes. According to my results, vesicle-related and protein kinase 

processes are the most commonly disturbed in both human and Drosophila AD.  

Furthermore, it also suggests that animal models will remain in use as powerful tools in 

understanding AD and that increased use of omics technologies will continue to elucidate the 

mechanics of the disease. However, my study does also illustrate the importance of 

understanding the limitations and differences of the different model organisms. This is 

exemplified by the fact that the immune system plays a role in mammalian models of AD, but 

contributes little to nothing in Drosophila despite the fact that immune system processes play 

a key part in the progression of the disease in mammals. 
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In undertaking this study, I sought to analyse the published literature to further understand the 

biological processes involved in tauopathies. To do this, I drew on a large volume of 

published data that whilst of high quality did occasionally cause some complications in my 

study. 

To ensure a high-quality analysis my sourcing of data was consistent and analysed papers 

were selected on stringent criteria, as detailed in the methods section. The genomic and 

transcriptomic data from these studies were isolated used standardised experimental 

protocols, albeit with some minor variations. Whilst the studies used different species, these 

could easily be divided into being either “mammalian” or “arthropod” and finding 

orthologous genes in humans and Drosophila was significantly easier than if a wider range of 

organisms had been used (e.g. Danio rerio). Furthermore, the studies were all consistent in 

that most genes/proteins identified had annotated functions in biological databases such as 

UniProt and FlyBase, making the analyses, specifically the GO analysis, easier to complete.  

Whilst the core data in these studies was consistent, reporting of significantly changed 

genes/proteins between studies was occasionally inconsistent. In particular the description of 

fold differences values (i.e. whether a protein/gene was positively or negatively expressed) 

was variable. Some studies reported values in logarithmic format, whilst others reported them 

in raw or undiscernible formats. A few did not explicitly describe gene/protein expression 

levels, only emphasising significant genes/proteins descriptively within the text. As a result, a 

heuristic approach was required to highlight and extract genes/proteins of interest, as 

described in the methods. This resulted in a mixture of quantitively (i.e. significance values 

or fold differences) and qualitatively (i.e. descriptively significant) selected data; ideally, this 

data should have been identified and isolated by purely quantitative values but this would 
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have meant discarding key studies. There was also a lack of gene/protein name consistency, 

though this is a systemic problem given that gene/protein nomenclature is dynamic.  

Another issue was that the annotation of Drosophila genes is biased towards developmental 

processes, reflecting the use of Drosophila as a model for developmental biology, with most 

gene functions often observed within this context. Nevertheless it is likely they share similar 

functions to their human orthologues, but have not have been studied outside of 

developmental processes. Despite these minor issues, this study has revealed powerful and 

informative results that can provide further insight into the disease processes behind AD and 

other tauopathies.  The most striking outcome from my analyses is the number of biological 

processes and individual proteins involved in AD pathology conserved across both humans 

and Drosophila. 

Whilst the identification of conserved genes and proteins underlying the disease process is a 

powerful step forwards, one of the key messages to arise from my study is the realisation that 

diseases are not static processes, but dynamic ones that can change rapidly or slowly over a 

given amount of time and differ from species to species. This study has shown that many 

genes/proteins implicated in AD pathology operate within a network of protein interactions 

with impacts on an even wider array of networks. In my opinion, the biggest conclusion to 

draw from my study is that AD is a disease of multiple systems, all which function 

abnormally and in tandem to seemingly converge on tau protein.  

In this context the conserved module analyses especially strengthen this point, revealing 

conserved, highly connected subnetworks of proteins with specific functions that can be 

further studied within the context of AD. This supports the notion that the foremost approach 

to study AD might be to not to focus on single proteins, or even several individual proteins 

acting separately, but rather focus on methodologies to analyse the multiple interacting 
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pathways that converge and diverge as the disease progresses. For example, multiple kinases 

regulate the RNA splicing of tau (Hernández et al., 2004; Shi et al., 2011), which in turn is 

propagated by vesicle-traffic related processes (Wu et al., 2013; Zhou et al., 2017).  

My networks studies clearly point to processes that have been highlighted as particularly 

interesting. Processes relating to vesicles, for example, may prove fruitful avenues of 

research in future AD studies, considering their near ubiquity across all studies, albeit to 

varying degrees. There is also evidence that RNA splicing, both the core process and its 

regulation, is aberrantly affected during tau-specific pathology. Current knowledge regarding 

the normal functions of these subnetworks is lacking, especially in Drosophila where many 

proteins and their functions are assumed via phylogenetic similarity. Establishing how these 

proteins normally function would aid in understanding their role in AD. Further suggestions 

for further research conducted in this area should aim to elucidate the protein-protein 

interactions within and between these subnetworks, both as individual proteins and as whole 

systems, and it should be done in both Drosophila and humans to establish an empirical basis 

for the potential evolutionary link found in these analyses. 

Of course, this does not mean that studying individual proteins has no value, but they should 

ideally be studied within the context of a larger process. EGFR/Egfr, SRC/Src64B, 

DLG4/dlg1, SOD2/Sod2, ITGB1/mys, EPHA1/Eph, CTSD/cathD, and BIN1/Amph stand out 

as candidates for further tau-based pathology studies, owing to their significance in the 

centrality analyses of both species. EGFR/Egfr, SRC/Src64B, and EPHA1/Eph may be 

especially interesting for further analysis, considering the enrichment of GO functions 

relating to protein kinases in both species and the already-established role of protein kinases 

in tau pathogenesis. In future research, using the module conservation approach could also 

determine whether protein kinases form interspecies functional complexes.  



 77 

Regarding cellular location, many proteins in this study act in neuronal substructures, 

including the synapses and dendritic processes. This is perhaps the least surprising result, 

given that AD is exclusively neurological, but it does further confirm the presence of synaptic 

dysfunction in the disease. More intriguingly, proteins that act within or adjacent to 

ribosomes are conserved across humans and Drosophila, exemplified by the CM4 module. It 

may prove worthwhile to elucidate the role of ribosomes in tau pathology in the future, as 

well as the potential role of other organelles in AD. 

To conclude, I believe this study has successfully identified and emphasised potentially 

conserved mechanisms in AD that may serve as bases for future studies, especially those 

employing Drosophia as AD modes. The interaction of protein kinases with vesicle-related 

processes and RNA splicing may prove to be fruitful avenues for exploration. 
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Appendix B 

List of human genes and Drosophila orthologues identified as significant 

ABCA1/CG34120 

ABCA7/CG8908 

ABCC2/MRP 

ABCG1/Atet 

ACBD5/CG8814 

ACE/Ance 

ACOT1/Bem46 

ACTB/Act42A 

ADAM10/kuz 

ADAM33/Meltrin 

AGTPBP1/CG31019 

ALDH18A1/CG7470 

AMPH/Amph 

ANK1/Ank 

ANKEF1/CG30271 

ANKRD49/l(2)35Be 

AOX1/ry 

APOC1 

APOE 

APP/Appl 

AQP1/Prip 

ARC/Arc2 

ARV1/Arv1 

ATP5F1/ATPsynB 

ATP5H/ATPsynD 

ATP6V1F/Vha14-1 

B3GALT2/GalT1 

BACE1/CG31926 

BDNF 

BECN1/Atg6 

BHLHE22/Oli 

BIN1/Amph 

BMS1P7 

C4B/Mcr 

CACNA1B/cac 

CALM3/Cam 

CAMK1D/CaMKI 

CAMK2D/CaMKII 

CAMK2N1/ 

CAMK4/CG17528 

CAMKK2/CG17698 

CAPN1/CalpA 

CAPN2/CalpB 

CASS4/p130CAS 

CAST 

CCNE2/CycE 

CCT8/CCT8 

CD22/ed 

CD2AP/cindr 

CD33/hbs 

CD52 

CD68/Lamp1 

CDC20/fzy 

CDH23/ds 

CDH5/CadN2 

CDK17/Eip63E 

CELF1/bru1 

CELF2/bru1 

CENPE/cmet 

CHD2/Chd1 

CHD3/Mi-2 

CHRNB2/nAChRbeta1 

CLEC7A/CG14866 

CLU 

COL17A1 

CPLX3/cpx 

CR1/hasp 

CRH/fw 

CSDA 
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CST3/Cys 

CST7/CG31313 

CTSD/cathD 

CWC25/Cwc25 

CX3CR1/AstA-R1 

CYTC1 

DAPK2/CG31345 

DCHS2/ds 

DEX 

DIP2A/DIP2 

DLG4/dlg1 

DNAH17/Dhc93AB 

DNAJB5/CG5001 

DOCK2/mbc 

DPF3/d4 

DRAP1/NC2alpha 

DTNA/Dyb 

DUSP1/puc 

DUSP4/puc 

DYNC1LI1/Dlic 

EEF1A1/eEF1alpha1 

EGFR/Egfr 

EHD4/Past1 

EIF4BP9 

EPHA1/Eph 

EPHA4/Eph 

ERCC4/mei-9 

ESR1/ERR 

ETF1/eRF1 

FABP7/fabp 

FBP1/fbp 

FCER1G/ 

FERMT2/Fit1 

FOSB/kay 

FRK/Src42A 

FYN/Src64B 

GABBR1/GABA-B-R1 

GAPDHS/Gapdh1 

GCC2/GCC185 

GDI1/Gdi 

GFAP/LamC 

GLIS3/lmd 

GMNC/geminin 

GOLGA8A/GM130 

GOLGA8B/GM130 

GPHN/cin 

GPM6B/M6 

GPX1/CG15116 

GRB14/pico 

GRIA1/GluRIA 

GRIA2/GluRIA 

GRIK1/Ekar 

GRIK3/KaiR1D 

GRIPAP1 

GRM4/mGluR 

GRM6/mGluR 

GSK3B/sgg 

GSPT1/eRF3 

GSTA4/GstS1 

H2AFZ/His2Av 

HDLBP/Dp1 

HIP1/Hip1 

HLA-DRB1/tefu 

HLA-DRB5/ 

HMHA1 

HNRNPK/HnRNP-K 

HNRNPL/sm 

HNRPLL/sm 

ICA1/ICA69 

IDE/Ide 

IGF2R/Lerp 

IL1A 

IL1B 

IL1RAP/otk 

IL34 
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INPP5D/CG6805 

IQCK 

ITGA3/mew 

ITGA8/if 

ITGA9/ItgaPS5 

ITGAM/if 

ITGAX/if 

ITGB1/mys 

ITPKB/IP3K2 

KCNA2/Sh 

KCNAB1/Hk 

KCND2/Shal 

KIAA1522/ 

KIF11/Klp61F 

KIFAP3/Kap3 

KLK3/CG16749 

KMT2C/trr 

KPNB1/Fs(2)Ket 

KSR1/ksr 

L1CAM/Nrg 

LAMP1/Lamp1 

LEFTY1/daw 

LMAN1/ergic53 

LOC400891/CG7886 

LOC51231 

LPAR3 

LRP6/arr 

LY6H 

LYZ1 

LYZ2 

MAB21L2/CG4766 

MACROH2A1 

MADD/Rab3-GEF 

MAP1B/futsch 

MAP3K1/ 

MARK1/par-1 

MAST4/dop 

MDM2/Non2 

MEF2C/Mef2 

MFAP1/Mfap1 

MMP17/Mmp2 

MOSPD3/fan 

MPP4/metro 

MS4A4A 

MS4A4E 

MS4A6A 

MS4A7 

MTHFR/CG7560 

MTND4LP1 

MUM1 

MYO5C/didum 

NCSTN/Nct 

NEUROD1 

NEUROD6 

NFH 

NFIC 

NPAS4/dysf 

NPC2/Npc2a 

NR4A2/Hr38 

NR5A1/ftz-f1 

NRF1/ewg 

NRN1 

NTN1/NetB 

NTRK2 

NTRK3 

NUCKS 

NUP98/Nup98-96 

NVL/smid 

OPTN/key 

OR13G1 

OSMR 

OSTN 

PARD6G/par-6 

PCDH8 

PFKL/Pfk 
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PFKM/Pfk 

PFKP/Pfk 

PHYHD1/Phyhd1 

PICALM/lap 

PLCG2/sl 

PLOD3/Plod 

PPP1R3B/Gbs-70E 

PPP2R1A/Pp2A-29B 

PPP2R3C 

PPP3CA/CanA-14F 

PRDX3/Prx3 

PRKCB/Pkc53E 

PRKCG/Pkc53E 

PRNP 

PRSS12 

PRSS27 

PSEN1/Psn 

PSMB2/ProsÎ²5 

PSMB8/ProsÎ²5 

PSMC3IP 

PTBP1/heph 

PTGS2 

PTK2B/Fak 

PTMA 

PTPRD/Lar 

PTTG1 

PVALB 

PVR 

PVRL2 

RAB24 

RAB27/Rab27 

RAB2A/Rab2 

RAB4/Rab4 

RAB5/Rab5 

RAB7/Rab7 

RBM45/CG1316 

RBM6/CG4896 

RELN 

RGS4 

RHBDF2/rho-5 

RIMS2/Rim 

RIN3/spri 

RPH3A/Rph 

RPL13/RpL13 

RPL15/Rpl15 

RPL23A/RpL23A 

RPLP0/RpLP0 

RPN1/CG33303 

RPS21/RpS21 

RUNX1/lz 

RWDD2A/CG30338 

SAP18/Bin1 

SCN11A/para 

SCN2A2 

SCRIB/scrib 

SDE2/CG5986 

SDHA/SdhA 

SDHB/SdhB 

SEC22B/Sec22 

SEMA4C/Sema2a 

SERPINA1/Spn28Dc 

SERPINA3/Spn28Dc 

SERPINA3N/Spn28Dc 

SERPINA5/Spn28Dc 

SERPINF1/Spn42De 

SERPINF2/Spn75F 

SFN/14-3-3zeta 

SLC1A1/Eaat1 

SLC24A4/zyd 

SLC35D2/frc 

SLC38A2/mah 

SLC6A1/Gat 

SLC7A2/slif 

SLCO4A1/Oatp26F 

SNAP23/Snap24 
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SNCA 

SNRPC/snRNP-U1-C 

SNRPN/SmB 

SOD2/Sod1 

SORL1 

SPPL2A 

SRC/Src64B 

SST 

STIP1/Stip1 

STX4A/Syx4 

STX7/Syx7 

SYN3/Syn 

SYNJ1/Synj 

SYNPO/CG1674 

SYP 

SYTL5/btsz 

TAC1/Tk 

TECR/Sc2 

TESPA1 

TF/Tsf2 

TFAM/TFAM 

TFAP4/crp 

TIMELESS/timeout 

TJP1/pyd 

TJP2/pyd 

TNF 

TOMM40/tom40 

TP53AIP1 

TPBG/CG6959 

TRAK1/milt 

TREM2 

TREML2 

TRIL/haf 

TRMT2A/CG3808 

TYROBP/Galphaf 

UTRN/Dys 

VAMP1/Syb 

VAPB/Vap33 

VMP1/Tango5 

VPS41/lt 

WNK1/Wnk 

XYLT1/oxt 

ZCWPW1 

ZFP36/Tis11 

  



 142 

Appendix C 

Table of references used to approximate GO terms for specific gene/protein functions 

Gene Function Evidence 

Amph Cytoskeleton 

organization 

Dräger, N., Nachman, E., Winterhoff, M., 

Brühmann, S., Shah, P., & Katsinelos, T. 

et al. (2017). Bin1 directly remodels actin 

dynamics through its BAR domain. 

EMBO Reports, 18(11), 2051-2066. doi: 

10.15252/embr.201744137 

Amph Membrane organization Zelhof, A. C., Bao, H., Hardy, R. W., 

Razzaq, A., Zhang, B., & Doe, C. Q. 

(2001). Drosophila Amphiphysin is 

implicated in protein localization and 

membrane morphogenesis but not in 

synaptic vesicle endocytosis. 

Development (Cambridge, England), 

128(24), 5005–5015. 

Zhang, B., & Zelhof, A. (2002). 

Amphiphysins: Raising the BAR for 

Synaptic Vesicle Recycling and 

Membrane Dynamics. Traffic, 3(7), 452-

460. doi: 10.1034/j.1600-

0854.2002.30702.x 

Eph Axon guidance Boyle, M. (2006). Drosophila Eph 

receptor guides specific axon branches of 

mushroom body neurons. Development, 

133(9), 1845-1854. doi: 

10.1242/dev.02353 

Eph Regulation of cell 

population proliferation 

Franco, M., & Carmena, A. (2019). Eph 

signaling controls mitotic spindle 

orientation and cell proliferation in 

neuroepithelial cells. Journal Of Cell 

Biology, 218(4), 1200-1217. doi: 

10.1083/jcb.201807157 

Eph Pattern specification 

process 

Porazinski, S., de Navascués, J., Yako, Y., 

Hill, W., Jones, M., & Maddison, R. et al. 

(2016). EphA2 Drives the Segregation of 

Ras-Transformed Epithelial Cells from 

Normal Neighbors. Current Biology, 

26(23), 3220-3229. doi: 

10.1016/j.cub.2016.09.037 

Fak Cell adhesion  Ribeiro, S., D'Ambrosio, M., & Vale, R. 

(2014). Induction of focal adhesions and 

motility in Drosophila S2 cells. Molecular 

Biology Of The Cell, 25(24), 3861-3869. 

doi: 10.1091/mbc.e14-04-0863 

Fak Cell migration Fox, G., Rebay, I., & Hynes, R. (1999). 

Expression of DFak56, a Drosophila 

homolog of vertebrate focal adhesion 

kinase, supports a role in cell migration in 

vivo. Proceedings Of The National 

Academy Of Sciences, 96(26), 14978-

14983. doi: 10.1073/pnas.96.26.14978 

Fak Negative regulation of 

kinase activity 

Macagno, J., Diaz Vera, J., Yu, Y., 

MacPherson, I., Sandilands, E., & Palmer, 

R. et al. (2014). FAK Acts as a 

Suppressor of RTK-MAP Kinase 

Signalling in Drosophila melanogaster 

Epithelia and Human Cancer Cells. Plos 

Genetics, 10(3), e1004262. doi: 

10.1371/journal.pgen.1004262 
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Arc2 Long-term memory Awata, H., Takakura, M., Kimura, Y., 

Iwata, I., Masuda, T., & Hirano, Y. 

(2019). The neural circuit linking 

mushroom body parallel circuits induces 

memory consolidation in Drosophila. 

Proceedings Of The National Academy 

Of Sciences, 116(32), 16080-16085. doi: 

10.1073/pnas.1901292116 

Arc2 Regulation of synaptic 

plasticity 

Ashley, J., Cordy, B., Lucia, D., Fradkin, 

L., Budnik, V., & Thomson, T. (2018). 

Retrovirus-like Gag Protein Arc1 Binds 

RNA and Traffics across Synaptic 

Boutons. Cell, 172(1-2), 262-274.e11. 

doi: 10.1016/j.cell.2017.12.022 

CaMKI Protein phosphorylation Kahn, E., & Matsumoto, H. (2002). 

Calcium/Calmodulin-Dependent Kinase II 

Phosphorylates Drosophila Visual 

Arrestin. Journal Of Neurochemistry, 

68(1), 169-175. doi: 10.1046/j.1471-

4159.1997.68010169.x 

Cindr Actin cytoskeleton 

organization 

Johnson, R., Seppa, M., & Cagan, R. 

(2008). The Drosophila CD2AP/CIN85 

orthologue Cindr regulates junctions and 

cytoskeleton dynamics during tissue 

patterning. Journal Of Cell Biology, 

180(6), 1191-1204. doi: 

10.1083/jcb.200706108 

Lerp Lysosome organization Hasanagic, M., van Meel, E., Luan, S., 

Aurora, R., Kornfeld, S., & Eissenberg, J. 

(2015). The lysosomal enzyme receptor 

protein (LERP) is not essential, but is 

implicated in lysosomal function in 

Drosophila melanogaster. Biology Open, 

4(10), 1316-1325. doi: 

10.1242/bio.013334 

Pfk Glycolysis Currie, P., & Sullivan, D. (1994). 

Structure and expression of the gene 

encoding phosphofructokinase (PFK) in 

Drosophila melanogaster. Journal Of 

Biological Chemistry, 269(40), 24679-

24687. doi: 10.1016/s0021-

9258(17)31444-8 
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Appendix D 

Image of full-scale human AD network 
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Appendix E 

Code used to generate random networks and to compare with human AD centrality values 

 
#loading the relevant libraries/packages 

library(igraph) 

library(ggplot2) 

library(dplyr) 

 

#set seed for reproducibility 

set.seed(1110) 

 

#generation of multiple random graphs for human comparison 

er_graph_multiple <- sample_gnm(307,2007, directed = FALSE, loops = 

FALSE)*1000 

 

#calculate centralities for random networks 

er_k_value <- degree(er_graph_multiple) 

er_bc_value <- betweenness(er_graph_multiple) 

er_trans_value <- transitivity(er_graph_multiple,type = "local") 

 

#sample number of values from each centrality 

sample_er_k <- sample(er_k_value,307,replace = FALSE) 

sample_er_bc <- sample(er_bc_value,307,replace = FALSE) 

sample_er_trans <- sample(er_trans_value,307,replace = FALSE) 

 

#import centrality data for the AD human network 

ad_human_graph <- read.csv("ad_human_centralities.csv",header = TRUE) 

 

#create separate values for AD human centrality measures 

ad_human_k_value <- ad_human_graph$degree 

ad_human_bc_value <- ad_human_graph$betweenness 

ad_human_trans_value <- ad_human_graph$clust_coeff 

 

#different Wilcoxon rank sum tests 

wilcox.test(ad_human_k_value,sample_er_k,paired = TRUE) 

 

/Wilcoxon signed rank test with continuity correction 

 

data:  ad_human_k_value and sample_er_k 

V = 18776, p-value = 0.01149 

alternative hypothesis: true location shift is not equal to 0 

 

wilcox.test(ad_human_bc_value,sample_er_bc,paired = TRUE) 

 

/Wilcoxon signed rank test with continuity correction 

 

data:  ad_human_bc_value and sample_er_bc 

V = 28755, p-value = 0.001015 

alternative hypothesis: true location shift is not equal to 0 
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Appendix F 

Image of full-scale Drosophila AD network 
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Appendix G 

Code used to generate random networks and compare with Drosophila AD centrality values 

 

#loading the relevant libraries/packages 

library(igraph) 

library(ggplot2) 

library(dplyr) 

 

 

#generation of multiple random graphs for Drosophila comparison 

er_graph_multiple <- sample_gnm(307,2007, directed = FALSE, loops = 

FALSE)*1000 

 

#calculate centralities for random networks 

er_graph_multiple <- sample_gnm(224,1080, directed = FALSE, loops = 

FALSE)*1000 

er_k_value <- degree(er_graph_multiple) 

er_bc_value <- betweenness(er_graph_multiple) 

  

#sample number of values from each centrality 

sample_er_k <- sample(er_k_value,224,replace = FALSE) 

sample_er_bc <- sample(er_bc_value,224,replace = FALSE) 

 

#import centrality data for the AD Drosophila network 

ad_dros_graph <- read.csv("ad_Drosophila_centralities.csv",header = TRUE) 

 

#create separate values for AD Drosophila centrality measures 

ad_dros_graph <- read.csv("ad_Drosophila_centralities.csv",header = TRUE) 

ad_dros_k_value <- ad_dros_graph$Degree.unDir 

ad_dros_bc_value <- ad_dros_graph$Betweenness.unDir 

 

#different Wilcoxon rank sum tests 

wilcox.test(ad_dros_bc_value,sample_er_bc,paired = TRUE) 

 

/Wilcoxon signed rank test with continuity correction 

 

data:  ad_dros_bc_value and sample_er_bc 

V = 15032, p-value = 0.01228 

alternative hypothesis: true location shift is not equal to 0 

 

wilcox.test(ad_dros_k_value,sample_er_k,paired = TRUE) 

 

/Wilcoxon signed rank test with continuity correction 

 

data:  ad_dros_k_value and sample_er_k 

V = 10280, p-value = 0.04713 

alternative hypothesis: true location shift is not equal to 0 

 


