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a b s t r a c t 

There is a documented shortage of reliable counting systems for the entrance of beehives. Movement at the 

entrance of a hive is a measure of hive health and abnormalities, in addition to an indicator of predators. To that 

end, two camera systems have been designed to provide a comparative analysis for a thermal camera system. 

The first, a visible spectrum camera, competed directly with the thermal camera. Machine learning is used to 

address the narrower field of view of the thermal camera, in addition to lost extracted tracks from both cameras. 

K-nearest-neighbour, support vector machine, random forest, and neural networks are used to classify flights as 

arriving, departing, or hovering bees. A hierarchical system is used to determine the nature of any flights where 

a clear label is not feasibly assigned based on the information from either test camera. A third camera at distance 

from the hive served as the end authority. After three iterations of training and validating, a test case is evaluated 

between both camera systems. Results from the test are compared to those from a human observer, showing that 

the thermal camera can perform with the same success as the visual camera despite a smaller field of view, fewer 

pixels and lower frame-rate, while both systems achieve greater than 96% accuracy and both camera systems 

are 93% successful at extracting flights. This is advantageous as a thermal camera will work in a wider range of 

environments, keeping the accuracy of an optical camera, and predicting based on movement characteristics will 

allow expanded uses such as predicting the presence of predators. 
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. Introduction 

Honeybee ( Apis Mellifera ) hive health is a targeted area of research

iven the recent decline in populations [1] . Insect pollinators are critical

or food security and there is a need to carefully monitor population re-

ilience to maintain them as a commercial pollinator [2] . Counting the

ncoming and outgoing traffic of beehives provides highly contextual in-

ormation regarding a colony’s health. Automated, remote technologies

an provide an early warning detection capacity. 

Proposed techniques to count bee activity at hive entrances work on

ptical sensors, radar, mechanical apparatus, and capacitive sensors [3–

] . Each of these technologies feature drawbacks that either affects the

ehaviour of the study organism or limit the range of environments they

an be placed. 

For example, optical cameras require good lighting and contrast to

ccurately count activity and are susceptible to shadows. During periods

f insufficient natural light bulbs can be used but the heat and light

enerated by these may impact bee behaviour [7] . Similarly, infrared

ensors require the modification of a hive entrance by adding an emitter

8] . 
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Radar has proven efficient in studies using machine learning to clas-

ify insect activity [9] . However, radar operates in frequencies that are

f concern for the welfare of the target species [10] . In addition, radar

evices have a narrow detection radius, which limits how they might be

eployed. 

Thermal cameras have the potential to overcome all of these draw-

acks. Capturing the body heat of the bees as a contrast image versus

 background, they will operate in any environment where the tem-

erature is lower or higher than that of the bee. As shown in Fig. 1 ,

he bee’s body is not uniform in temperature and they will appear con-

rasted against most backgrounds. The thorax of the bee is warmer than

he abdomen and legs, therefore should the environmental temperature

atch the thorax the abdomen and legs will still appear against nearby

bjects. 

Thermal cameras have been used to locate wild bumblebee nests

11] . In addition, they have been used to show that bees increase their

ody temperature before swarming, map where they sleep relative to

ive temperature, and measure the heat dissipation in hives after arti-

cial warming [12–14] . To date, no thermal camera has been used to

ount the incoming and outgoing activity at a hive entrance. 
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Fig. 1. Anatomy of a honeybee under thermal camera, flying in front of a warm sucrose solution feeder. The thorax was 21 ◦C ( ±1 ◦C). 
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Thermal cameras are expensive, have a narrow field of view, low

esolution, and low frame rate. Recording of bees leaving a hive re-

uires additional processing to overcome limitations. The cost increase

f thermal cameras versus optical is reducing as technology improves

nd demand for more capable, cheaper devices increases [15] . These

osts are expected to decrease further [16] . Fever detection is a re-

ent, high demand area where thermal cameras are being used more

requently [17,18] . 

Recent developments in uncooled microbolometer technology are

enerating higher resolution, faster frame rate, and cheaper thermal

ameras [19] . As such, this technology may provide a contender for

ccurate, reliable bee counting systems. 

We implemented a hierarchical camera system where a higher reso-

ution, wider field of view optical camera can provide information as

o whether a bee is leaving, entering, or hovering near the hive en-

rance. A third camera positioned at some distance handled ambiguous

ases. These are cases when the information from either test camera did

ot provide a clear flight category determinant. Similar to our previous

ork, machine learning is based upon the motion characteristics of the

ee, which is used to classify each flight [20] . The use of a camera rather

han radio-frequency technology, as in the previous study, allowed for

hape metrics to be extracted, increasing the depth of machine learning

sed. 

To summarise, this work is an investigation into whether machine

earning would allow a thermal camera, with lower base specifications

han a competing optical camera, to operate with the same efficiency

ounting beehive entrance activity. Showing that this is the case by us-

ng machine learning to boost the thermal camera, the work demon-
2 
trates the versatility of thermal cameras and is an argument for their

se considering that they do not rely on lighting conditions, suffer from

he effects of shadows, or need modification to hive entrances. The use

f movement characteristics for machine learning creates an opportu-

ity for future work to predict the presence of predators such as the

sian Hornet ( Vespa Velutina ) by using an expanded version of the sys-

em developed. 

. Materials and methods 

The thermal camera used was the HT-301 designed by HTI-

nstruments. It is a microbolometer camera with a resolution of 384

y 288 pixels, operating at 25 Hz with a field of view of 28.2 ◦ by 21.3 ◦.

he primary optical camera used was a GoPro Hero 7 Black model with

 resolution of 1920 by 1440 pixels, operating at 30Hz with a field of

iew of 94.4 ◦ by 72.2 ◦. 

The 25 Hz framerate on the thermal camera represents how fre-

uently the resistance is measured from the pixel sensors, which are

ffected by an increase in temperature caused by incoming infrared ra-

iation at the target frequencies. Larger, more sudden shifts in resistance

ake longer to dissipate resulting in variable data change rates within the

rame, causing fast-moving objects to appear as streaks. 

Finally, a Panasonic compact system camera (DC-GX800) using a

esolution of 1920 by 1080 pixels, 50 Hz framerate, and variable field

f view was used as the reference camera. This camera was used when

 flight could not be confidently labelled solely on the information of

he two test cameras. The two primary cameras were suspended above

he entrance of the hive facing downwards at a distance of one meter,
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Fig. 2. Cropped views from (a) Ambiguous decision camera (b) Thermal camera (c) Optical camera, and a diagram of the camera arrangement. 
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hereas the ambiguous decision camera was fixed to a tripod approxi-

ately 2.5 m from the hive directly facing, and parallel, to the hive en-

rance. Cropped views from each camera are shown by Fig. 2 , indicating

heir relative positions. Raw pixel values from the thermal camera are

nterpreted through a colour map embedded in the software provided by

he manufacturer. The particular colour map used made no difference

o the tracking software and was chosen to aid with the label correction

rocess. The thermal camera had the option to embed minimum, max-

mum, and centre-point temperatures as labels into the video frames.

he labels would act as moving objects within the frame and would in-

erfere with object tracking tools. Therefore, this overlay was disabled

esulting in only the contrast images being recovered. 

Videos were recorded across six days, between 10 am and 4 pm,

ith between 30 min and an hour of footage per day. Ambient temper-

ture varied between 12 ◦C and 16 ◦C. Bees were given warm sucrose

eed at least two hours before recording to encourage activity. Artifi-

ially increasing bee activity allowed an improved understanding of the

odel performances under high load. The feeder was placed more than

fty meters away from the hive to reduce unnecessary hovering activity.

vercast days were favoured to produce a neutral environment for the

ptical camera. In bright conditions, this camera would be susceptible

o bee shadows creating false detections that would impact the optical

rack extraction and labelling algorithms, but also required sufficient

ight to detect the bees. Techniques exist in literature to compensate for

ther conditions but thermal cameras do not need these, necessitating

eeping a fair environment for both cameras. 
3 
Flights were extracted from the raw video files using software writ-

en in MATLAB [21] . Gaussian mixture models generated a foreground

etector by comparing each frame in the raw videos with the learned

ackground model [22] . The parameters for this foreground detector

ere selected by hand for each video from each camera. The detected

hapes were analysed based on their size to determine eligibility for

eing considered bees, aiming to remove small shapes resulting from

inor movements such as blades of grass. 

Each eligible shape was assigned a Kalman filter unless otherwise

ttributed to an existing flight [23] . Between frames, assigning objects

o existing flights was handled by computing the costs as the pixel-wise

istance between the predicted locations generated by the Kalman filter

rom the previous frame’s objects and the new detections from the cur-

ent frame. The Munkres variant of the Hungarian algorithm was used

o minimise the total cost of assigning each object to an existing flight

24] . A base cost was used, and tuned much like the foreground de-

ector, to determine non-assignment. Unassigned objects could go on to

ecome new flights and flights that had no new object assignments in

hree frames were flagged as completed and no longer considered. 

At the end of processing, the video resulted in several flights consist-

ng of continued x and y pixel coordinates, the longest and shortest axis

f the extracted shapes per frame, the frame time of each detection, and

 unique ID. Predicted Kalman coordinates were not included. 

Initially, a simple naive filter was attempted. Similar in principle to

hat found in [25] it used a set of exit points around the edge of the cam-

ra frame. Flights that started nearest the hive point and ended nearest
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Fig. 3. Naive filter and visualised problematic flights. Squares represent camera frames and their borders. Flights (a) and (c) show flights that exited the frame border 

limit, and outgoing and incoming flights may not be the same individual. Trajectories (b) and (d) show how two flights may be fused if the end of the incoming flight 

occurs within the same frame as the outgoing second flight. 
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he exit point could be labelled as ”out ” whereas those that started near

n exit and entered could be labelled “in. ” Finally, null points were used

ear the centre of the frame to allow for labelling of invalid hover flights,

hose that neither started nor ended near the entrance to the hive. 

This filtering system is visualised in Fig. 3 , however, emergent is-

ues were impacting the quality of extracted flight information when

onsidering the field of view of the cameras. 

For example, flight (a) in Fig. 3 starts and ends near the entrance

f the hive. It should be discarded as an invalid flight as the bee did

ot leave the vicinity. However, it crosses the edge of the frame and

ppears as in (c). This means one exit and one entrance flight would be

ecorded. Bees were noted to fly out as far as 1.5 m only to return to the

ive, putting them out of view of both primary cameras. 

The filter produced issues not unique to the field of view. Flights in

b) are one valid ‘in’ flight and one valid ‘out’ flight. However, if the

wo flights overlapped it would be possible for the extraction algorithm

o fuse the flights, resulting in the flight present in (d) meaning one

over flight was recorded rather than one incoming and one outgoing

ight. 

One way to discern the difference between these cases was by

nalysing the dimensions of the extracted shapes. Fig. 4 shows four

ights captured by the camera systems. In (a) and (c) the bee is fly-

ng at speed in a straight line, whereas in (b) and (d) it is flying to the

ide at a slower speed. At the edge of the frame, this may be enough

o ascertain the difference between a bee leaving the area and one

oon to return as part of an invalid flight. However, this is much less

lear on the optical camera given the lower contrast and higher frame

ate. 

Also of concern was flights involving a loop where the bee turned

round shortly after leaving the hive to face the entrance before con-

inuing its flight as shown in Fig. 5 . As such, classifying these correctly

ould mean that some bees moving to the side were classifiable as out-

ard flights. This would be true where the flight was truncated by the

dge of the frame and a full loop was not captured. 
4 
To address these issues machine learning techniques were explored.

hese aimed to correctly label flights when the edge of the frame caused

runcated flights and where other issues with the flight extraction soft-

are emerged. Cases such as overlapping shapes breaking the tracking

f a flight between frames and fused flights were both examples of issues

ith the tracking system. 

Incoming flights were not subject to machine learning. This was be-

ause the naive filter was adequate for counting inward flights and valid

ncoming flights would have the same profile by being at the edge of the

rame and returning to the hive entrance. 

The machine learning was based on 43 features, typically focused

n the minimum, maximum, average, and last three measures of the

ollowing variables; 

• Shape longest and shortest axis 
• Shape ratio and growth 
• Track life in seconds 
• Distances of the first detection to the hive and the nearest exit 
• Distances of the last detection to the hive and the nearest exit 
• Closest distance to the hive and the nearest exit 
• Current angle versus average bearing angle 
• Current angle versus perpendicular to the hive entrance 
• Change in angle over time 
• Number of loops and loop lifespans 
• Duration and size of dropouts (frames where tracking failed) 
• Acceleration and speed 

Most of the more valuable information of a flight was encoded during

he last three measurements taken of the location of the bees, thus the

nclusion of minimum, maximum, and average of these ‘end’ variables

n addition to the general copies. 

Learning and testing took place in three stages. First, the naive fil-

er results were hand-corrected by a human observer. Second, machine

earning algorithms were trained on the labelled dataset. Finally, the al-

orithms were tested on a new video. This process was repeated multi-
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Fig. 4. Flights showing different exit strategies captured by the cameras. Images (a) and (c) show a bee flying straight ahead, whereas (b) and (d) show a bee flying 

more horizontally. Note the smudged nature of these high speed flights on the thermal camera, caused by the resistance change delay associated with microbolometer 

technology. 
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le times, with the learning algorithms taking place of the naive filter in

ubsequent iterations. This continuous process allowed for the monitor-

ng of test accuracy and identification of weaknesses in both the features

sed and the underlying flight extraction algorithm. 

Once the test accuracy for the algorithms began to plateau after three

raining and testing phases, a final test was arranged with a new record-

ng and the procedure assessed for veracity against a human counter. 

The algorithms used were K-nearest neighbour (KNN), neural net-

ork (NN), support vector machine (SVM), and random forest classi-

ers (RF) [26–28] . A Bayesian search was enacted to tune the hyper-

arameters for the KNN, SVM, and RF approaches choosing from the

ossibilities as follows [29] ; 
5 
• For KNN: Number of neighbours and nearest neighbour algorithm. 
• For SVM: Regularisation parameter, kernel, kernel degree, and ker-

nel coefficient. 
• For RF: Number of estimators, split criterion, and the number of

features to consider for a split. 

For the neural network, the model used composed of three hid-

en layers of 64 neurons each using the rectified linear unit activation

ReLU) function [30] . The shape of this network was chosen by manual

esting to find the best hyperparameters, investigating the width and

epth of the network compared to the final accuracy. Minor changes to

his structure did not yield significant change across either dataset. 
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Fig. 5. Two flights where the bee turned back 

to face the hive before flying away, behaviour 

associated with new foragers orientating them- 

selves with respect to the hive. Flight 1 went 

on to complete a second loop but this was not 

captured fully by the tracking algorithm. 

Fig. 6. Time cost per frame to extract flights from both 

thermal and visual camera systems, with a simple 3rd 

degree polynomial fit. 
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. Results and discussion 

Extraction times for both camera systems is shown in Fig. 6 , show-

ng that the thermal camera system demonstrated faster extraction

nd did not grow exponentially, explained by fewer pixels and clearer

hape extraction. The exponential growth in the visual camera sys-

em is attributed to visual clutter such as debris and raw computa-

ional complexity due to resolution and field of view. The greater

eld of view included more objects that require foreground extrac-

ion, filtering, and labelling. This includes undesirable extractions
6 
uch as blades of grass increasing the number of artefacts requiring

ttention. 

The labelling of individual flights encountered issues when tracks

plit. Fig. 7 (a) shows two flights where labelling could become ambigu-

us. In the Figure, a loop is formed as the bee flies away from the hive

ut it is broken by the edge of the frame. Deciding which section to label

s an outward flight and which to disregard is challenging when the sec-

nd section was missing for other flights. Labelling the first section as an

utward flight would add a flight into the learning pool that, by itself,

s not statistically clear as an outward flight because it is curving back
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Fig. 7. (a) Trajectory of an unclassifiable flight 

caused by the edge of the frame and (b) a 

screenshot illustrating an interrupted flight. 
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owards the hive. This would increase the residual error in the models

enerated. 

Similarly, in the screenshot flight Fig. 7 (b), the track has been inter-

upted when two bees passed close together. The yellow bounding box,

howing the predicted location of the first section as obtained by the

alman filter, has been correctly labelled as invalid. The white bound-

ng box has been correctly labelled as an out flight. In other cases, the

econd section of the flight may not be recovered and the remaining

rst section is unclassified. It could either be removed from the data

et, meaning that a flight is labelled as missing, or labelled as an out

ight and add error to the generated models. 

The first stage of the training process involved using the naive filter

o count outgoing flights. In the video recorded as a sample, using the

aive filter resulted in 3220 outgoing flights counted. Of these, 1687 vi-

ual out flights were extracted correctly with 1533 flights later rejected

y human expertise. This means that the naive filter achieved an ac-

uracy of 52.39% and almost doubled the true number of out flights

ounted. 

For the thermal video, 3735 outgoing flights were counted by the

aive filter. This was then corrected to 1685 outgoing flights and 2050

ncorrect flights, resulting in an accuracy of 45.11%. 
7 
As these two videos were aligned by hand, a comparison of flight

inks between systems was possible. The mode difference in time be-

ween thermal and visual extracted flights was 0 s, with an average dif-

erence of 0.0468 s. 75.1% of flights occurred across systems within 0.5 s

f each other. The larger differences can be explained by the fused, split,

nd frame-edge flights as discussed above. Fused flights may cause sig-

ificant time variance across systems as an outgoing flight may be fused

ith a longer hover flight due to extraction errors, and this hover flight

ay have been present for many frames before the outgoing flight. This

ncreases the discrepancy between the two systems. 

The machine learning models were trained from these initial results

 Table 1 ). With thermal data, the KNN and NN are equally efficient al-

orithms, followed by RF and SVM. Thermal data outperformed optical

ata by < 2%. 

The most accurate models from this training dataset were then used

o label a new video. For the thermal data, this is the neural network.

or the visual data, the RF was used with the hyperparameters chosen

y Bayesian search as entropy for the criterion, log 2 features considered

or a split and 1611 estimators used. 

Under test conditions, the optical results were that 4053 flights were

redicted as out, with only 1149 being correctly labelled. In addition,
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Table 1 

Results of the first training. Precision is measured as true positive count over 

true positive count plus false positive count. Recall is measured as true positive 

over true positive plus false negative. F1 score is a combination of recall and 

precision, known as the harmonic mean. 

Video Type Algorithm Accuracy Precision Recall F1-score 

NN 92.40% 0.912 0.904 0.908 

Thermal RF 89.93% 0.884 0.874 0.879 

SVM 90.55% 0.887 0.881 0.884 

KNN 92.40% 0.913 0.903 0.908 

NN 90.50% 0.892 0.891 0.891 

Optical RF 91.07% 0.894 0.893 0.893 

SVM 90.69% 0.900 0.901 0.900 

KNN 89.25% 0.871 0.897 0.884 

Table 2 

Results of the two following training iterations and the second test. 

Type Algorithm Accuracy Precision Recall F1-score 

Thermal NN 93.06% 0.907 0.905 0.906 

Train RF 93.02% 0.921 0.898 0.909 

2 SVM 93.02% 0.920 0.889 0.904 

KNN 91.72% 0.886 0.894 0.889 

Thermal Test 2 RF 95.56% 0.902 0.919 0.911 

Thermal NN 94.35% 0.931 0.887 0.909 

Train RF 94.70% 0.927 0.904 0.916 

3 SVM 94.41% 0.916 0.908 0.912 

KNN 93.89% 0.908 0.900 0.904 

Optical NN 92.29% 0.889 0.912 0.900 

Train RF 92.34% 0.896 0.899 0.898 

2 SVM 92.19% 0.894 0.899 0.897 

KNN 89.75% 0.865 0.875 0.870 

Optical Test 2 RF 95.93% 0.923 0.955 0.939 

Optical NN 94.23% 0.919 0.915 0.917 

Train RF 94.37% 0.926 0.917 0.922 

3 SVM 93.81% 0.917 0.912 0.915 

KNN 92.56% 0.893 0.909 0.901 
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471 flights were predicted as invalid flights with 221 of these be-

ng incorrectly labelled. The overall accuracy of these predictions was

7.19%, however, precision was 0.84 and recall 0.28. These results were

ecause the test dataset was several times larger than the training set, in-

reasing the possibility of flights that bore no resemblance to any flight

een prior, making classification more difficult. The wide field of view

f the optical camera meant many more variations of flights were possi-

le. Lastly, the removal of the naive filter meant many flights that were

reviously removed for consideration by this filter now needed classi-

cation by the trained model. This was because some outgoing flights

ere filtered out by the naive system as the underlying tracking algo-

ithm did not successfully track them to the edge of the frame. 

Results for the thermal camera showed 1727 flights were labelled

s outgoing of which 1328 were correctly labelled. 6647 flights were

redicted as invalid flights and 111 of these were incorrectly labelled.

his gave an accuracy of 93.91%, a precision of 0.77, and a recall of

.92. 

The data from this test was then added to the training set and further

rain/test iterations as in Table 2 . Iterations identified features likely

o aid in classification. The number and duration of loops were subse-

uently added, as was the nearest and furthest distance measure from

oth hive and closest exit. In addition, refinements were made to the

arameters controlling the track extraction in MATLAB, particularly as

he test results from the first optical test showed that flights were miss-

ng from the collected data. These refinements improved the selection

f control parameters for the Gaussian models used in flight extraction

ased on the observations of the human labeller. 

Accuracy started to plateau by the third training iteration. The more

omplex learning algorithms became noticeably more accurate and pre-

ise than the simpler KNN. In both cases, the algorithm selected for the
8 
econd test was random forest, which became the strongest model in the

nal training iteration. For thermal data, the RF used entropy as the cri-

erion, the square root of feature count to consider for splitting and 316

stimators. For optical data, the RF used the same parameters except

or 2500 estimators, significantly higher than the thermal data, owing

o the need to rely on more features to make decisions. The issues from

he first optical test were no longer present by the second test, explained

y the growth in the dataset covering more complex flights. 

.1. Feature importance 

To confirm that the need for more complex models to classify opti-

al data was due to the shape metrics, feature importance was extracted

rom the random forest and the support vector machine using a linear

ernel. For thermal data, max shape ratio, max shape length, and fi-

al growth were the most important features across both models. Max

hape ratio for SVM and max shape length for RF were the most valuable

ariables for classification and twice as important as any other variable.

For optical data, the smallest change in bearing and overall bearing

ersus exit angle was most important for the SVM and RF respectively.

nly two shape metrics appeared in the five most important features

or each algorithm and no metric was twice as predominant as the next.

his showed that, for optical data, learning was more nuanced, involving

reater use of the features available. 

.2. Wasp detection 

In addition to bee tracks, wasps ( Vespula Vulgaris ) were also detected.

here were too few of these detections for machine learning, at most four

etections in a 20 min period. The presence of wasps supports that future

evelopment of this technique could include models able to count and

onitor other insects that interact with a hive. For example, in Fig. 8 a

asp was observed to fly close to a hive and hover near the entrance,

efore finding an isolated bee on the hive platform. There, it flew in

roximity to the bee until that bee then fled off the frame. The wasp

hen returned to the entrance of the hive before flying away when it

as clear that there was no access to the hive. 

Other interactions were observed, such as wasps flying directly to

he entrance of the hive to be met by guard bees that then discouraged

urther investigation and tailed the wasp for a short distance as it left

he area. Wasps will probe honeybee hives to test whether ingress to

teal honey is feasible [31] . Thermal images of a wasp did not differ sig-

ificantly from those of bees, especially when moving and the signature

as blurred. Wasps appeared characteristically brighter than honeybees

ith optical cameras which will be useful for their identification. Their

ovement patterns are discernible from incoming, outgoing, and hov-

ring bees. Interactions between these two species create more possi-

le data permutations than just bee flights alone, which will necessitate

ore comprehensive data gathering. 

.3. Test stage 

Once the final training iteration was completed, a test was conducted

sing a final recording. For this recording, human expertise was used to

ttain the true number of in, out, and invalid flights working with a

ecording as demonstrated in Fig. 9 . Video times were cropped across

amera systems to be an exact match, beginning and ending in syn-

hronicity. Fused flights were identified and counted as lost flights,

s were any double-counted flights as per split flights. Flights lost to

ailings in the underlying track extraction algorithm were also counted

 Table 3 ). 

The underlying tracking algorithm was 95.08% effective at recover-

ng flights from optical recordings and 93.88% with thermal recordings.

hese are the useful flights (those that are not invalid.) The overall ac-

uracy of the algorithms was 96.16% for optical data and 97.92% for

hermal data, though the accuracy metrics were inflated by the greater
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Fig. 8. The flight of a wasp captured investi- 

gating the hive and harassing bees, including 

image of the wasp taken by thermal and opti- 

cal cameras compared with similar images of 

bees. 

Fig. 9. Cropped screenshot of each camera system during the test phase, showing (a) thermal camera results and (b) optical camera results. 
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Table 3 

Results of the test recording. 

Type 

Missed 

Flights 

Counted 

In 

Counted 

Out 

False 

Positives 

False 

Negatives 

True 

Negatives 

Visual 82 902 681 65 62 2562 

Thermal 102 907 668 64 55 4992 
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ize of the true negative (invalid/hovering flight) class. More useful mea-

ures would be a precision of 0.91 and recall of 0.90 for optical data.

or thermal, precision was 0.92 and recall 0.90. For completeness, the

riginal naive filter correctly labelled 549 flights with optical data and

86 with thermal data, far below the models created here. 

Both cameras performed well in classification and flight extraction,

owever, the thermal camera missed an additional 20 flights because

hey occurred outside of the frame. This is an unavoidable 24.39% in-

rease in missed flights over the optical camera system. The optical cam-

ra system achieved an accuracy of 95.53%, with precision of 0.92 and

ecall of 0.96, in its second to last test stage. This is a noticeably better

esult than the thermal camera at any of the test or train stages. The effi-

acy of each system will vary according to the environmental conditions

n the days that they are used. The thermal camera can function under a

ider range of lighting conditions compared to the optical system, mak-

ng them more responsive under variable environmental conditions. 

Further data is required to fully develop the dataset to account for

ll possibilities associated with seasonal changes affecting ambient tem-

erature, wind conditions, and particularly rain. Rain would appear as

 darker object moving within a frame before colliding with the hive

ntrance or ground and could be mistaken for bees. Wind will make

he flights of bees more erratic. These issues could be addressed in

uture work. During our study we noted that bees were quick to re-

urn to the hive and reduce activity when conditions became too windy

r wet. 

. Conclusion 

We have demonstrated that thermal cameras are a contender for bee

ounting applications. Their flexibility in deployment is greater than

hat of optical cameras, working in poorly lit conditions and without

isual aids. They require less modification of beehive entrances and are

assive devices that will not disturb bee behaviour. 

The results suggest that despite the smaller field of view, fewer pix-

ls, and lower frame rate the thermal camera is comparable to the opti-

al camera with the aid of machine learning. Both systems are at least

3% successful at extracting flights and 96% successful at classifying

hese flights. Recall and precision metrics demonstrate that the thermal

ystem is equal and often better for classification due to the improved

hape metrics gathered and the models are not as complex. Flights are

ore cost-efficient to recover from thermal footage due to fewer pix-

ls to consider. As thermal cameras continue to decrease in price and

ncrease in capabilities this advantage will grow. 

Expanding the dataset for this work will allow the inclusion of vari-

ble weather conditions and environmental temperatures. This would

reate a robust model for the system described to function in all weather

onditions. 

Further work in this developmental pathway could include a more

ntelligent flight extraction algorithm, able to reconstitute broken flights

rom frame-edge and collision losses. A reinforcement model, able to

une the extraction parameters, would increase the fidelity of the data

nd permit improved analyses. 

Consideration could also be made to spot other insects near the en-

rance of the hive and classify them based on shape and movement met-

ics similar to those here. An example would be the Asian Hornet which

s known for hawking behaviour at the entrance to beehives. 

Lastly, investigation to correlate flight behaviour with younger bees,

articularly investigating orientation loops, would allow for the moni-
10 
oring and counting of fresh foragers from a hive as a health metric for

anaged hives. 
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