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1.  INTRODUCTION

A water mass is a body of water with distinctive
ranges of temperature, salinity, and other physical
and biogeochemical properties. These properties are

acquired at the ocean surface in particular formation
regions, where they are determined by the local cli-
mate (Pickard & Emery 1990, Tomczak 1999). Fol-
lowing formation, water masses sink and spread
along appropriate density surfaces, and can be
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ABSTRACT: Water masses are bodies of water with distinctive physical and biogeochemical prop-
erties. They impart vertical structure to the deep ocean, participate in circulation, and can be
traced over great distances, potentially influencing the distributions of deep-sea fauna. The clas-
sic potential temperature−salinity (θ−s) diagram was used to investigate deep-sea sponge (demo-
sponge genus Geodia) association with water masses over the North Atlantic Ocean and Nordic
Seas. A novel analysis was conducted, based on sampling the curvature of climatological mean
θ−s curves at sponge locations. Sponges were particularly associated with turning points in the
θ−s curves, indicative of intermediate and deep water masses. Arctic geodiid species (G.
hentscheli and G. parva) were associated with Arctic intermediate and deep waters in the Nordic
Seas, and with dense overflows into the northern North Atlantic. Boreal species (G. atlantica, G.
barretti, G. macandrewii, and G. phlegraei) were associated with upper and intermediate water
masses in the Northeast Atlantic and with upper, Atlantic-derived waters in the Nordic Seas.
Taken together with distributional patterns, a link with thermohaline currents was also inferred.
We conclude that water masses and major current pathways structure the distribution of a key
deep-sea benthic faunal group on an ocean basin scale. This is most likely because of a combina-
tion of the physical constraints they place on the dispersal of early life-history stages, ecophysio-
logical adaptation (evolved tolerances) to specific water masses, and the benefits to filter-feeders
of certain phenomena linked to water column structure (e.g. nepheloid layers, internal waves/
tides, density-driven currents).
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traced over great distances using their characteristic
combinations of water properties (e.g. temperatures,
salinities, dissolved oxygen concentrations, etc.)
(Pinet 2003). Away from formation regions, different
water masses interleave and can mix with each other
(Tomczak 1999). In many parts of the ocean, the
water mass structure is similar over large areas and
can be relatively unchanging over time (Emery &
Thomson 2004). The concepts of water masses and
mixing are also key to understanding deep-ocean
circulation (Pickard & Emery 1990, Stewart 2007). In
a global ocean that consists of distinct bodies of water
occupying finite volumes, mixing with each other,
and participating in circulation, it follows that water
masses are likely important to the biogeography of
deep-sea fauna.

The influence of water masses on the spatial and
bathymetric distributions of deep-sea biota has been
proposed for various regions and taxonomic groups:
pelagic microbial communities in the Nordic Seas
and Arctic Ocean (Monier et al. 2013, Le Moine
Bauer et al. 2018, Busch et al. 2020); benthic forami-
nifera in the South Atlantic Ocean off Africa
(Schmiedl et al. 1997) and the Pacific Ocean off South
America (Ingle et al. 1980); benthic ostracods in the
Southwest Pacific (Corrège 1993); benthic amphi -
pods near the Greenland−Iceland−Faroe Ridge of
the Northeast Atlantic (Weisshappel & Svavarsson
1998); demersal fish in the North Atlantic (Koslow
1993) and larval fish assemblages off south-western
Australia (Muhling et al. 2008); and benthic inverte-
brates generally, off the east coast of the USA (Rowe
& Menzies 1969) and in the Rockall−Porcupine
region of the Northeast Atlantic (Gage 1986, Tyler &
Zibrowius 1992, Howell et al. 2002, Eerkes-Medrano
et al. 2020).

The link between water masses and biogeographic
distribution is a recurring theme in the scientific liter-
ature on cold-water corals (CWCs) (e.g. Dullo et al.
2008, Rüggeberg et al. 2011, Radice et al. 2016,
Kenchington et al. 2017). As with sponges (Phylum
Porifera), the presently better-studied CWCs also
form deep-sea benthic ecosystems (e.g. reefs and
mounds) that are often hotspots of biodiversity and
biomass, and that provide numerous important eco-
system goods and services (Freiwald & Roberts 2005
and references therein, cf. Hogg et al. 2010 and Mal-
donado et al. 2017). Notably, Dullo et al. (2008) inves-
tigated the relationship between hydrography (in
this case, temperature, salinity, density, and dis-
solved oxygen) and the distribution of the scleractin-
ian coral Lophelia pertusa. Lophelia reefs were found
not to be randomly distributed with respect to water

column structure, but rather confined to a tempera-
ture−salinity field bounded by a distinct water den-
sity envelope (Dullo et al. 2008). This finding high-
lighted the importance of water mass boundaries to
the distribution of a deep-sea filter-feeder and eco-
system engineer, analogous to structure-forming
sponges in key respects.

The influence of water masses on the distribution
of deep-sea sponges has been suggested in a number
of studies. Most often, these relate to members of the
structure-forming demosponge genus Geodia and to
the North Atlantic sponge grounds in which they
play a key role, contributing to the provision of var-
ious ecosystem goods and services (e.g. habitat pro -
vision, benthic−pelagic coupling, biogeochemical
cycling, and biotechnological potential) (Hogg et al.
2010, Maldonado et al. 2017). Klitgaard & Tendal
(2004) considered the hydrographic conditions at
sponge grounds in the Northeast Atlantic and identi-
fied several water masses as being potentially impor-
tant. They also noted that sponge ground distribu-
tions appear to follow arcs defined by the main
branches of the North Atlantic Drift. In that work, the
terms ‘warm water (‘Atlantic’)’ (or, alternatively,
‘boreal’) and ‘cold water (‘Arctic’)’ were used to
describe 2 types of sponge assemblage, with the link
to water masses of different characteristics and ori-
gins implied. Cárdenas et al. (2013) acknowledged
the idea of species−water mass associations in their
taxonomic and biogeographic study of geodiid spe-
cies in the North Atlantic; they also revealed sites
where boreal and Arctic species are sympatric. Beaz -
ley et al. (2015) partially attributed the distribution of
structure-forming sponges, including Geodia bar-
retti, to water masses present in the Sackville Spur
area off Newfoundland, Canada. Knudby et al.
(2013) invoked differences in water mass structure to
explain the poor predictive performance of certain
species distribution models when extrapolated (i.e.
models trained on data from one area and used to
predict sponge presence in another, with different
oceanographic conditions, performed relatively
poorly).

In the deep-sea research community, a number of
accounts have recently come to light relating site-
specific sponge distributions (e.g. along depth gradi-
ents) to local water mass structure (e.g. Roberts et al.
2018, Eerkes-Medrano et al. 2020, and others as yet
unpublished). Furthermore, the potentially critical
role of water masses in the broader scale distribution
of ecosystem-engineering deep-sea organisms was
highlighted by Morato et al. (2020) and (with specific
reference to sponges) in a review article by Puerta et

76



Roberts et al.: Water masses and deep-sea sponges

al. (2020), which called for improved understanding
of the drivers of deep-sea biogeography in the face of
projected climate change. As yet, no rigorous
oceanographic study demonstrating associations
between deep-sea sponges and water masses at a
broad (e.g. ocean basin) scale exists. This is a key
knowledge gap, particularly as deep-sea sponges
may be very slow-growing (Leys & Lauzon 1998),
reproduce infrequently (Klitgaard & Tendal 2004),
and take millennia to form grounds (Murillo et al.
2016). Reflecting their perceived vulnerability to dis-
turbance and environmental change, deep-sea
sponge grounds have been classified as a ‘habitat
under immediate threat and/or decline’ by the
OSPAR Commission (OSPAR 2008), and a ‘vulnera-
ble marine ecosystem (VME)’ by the FAO (FAO
2009).

In the present study, the classic temperature−salin-
ity (T−s) diagram was used to identify water masses
throughout the water column at sites hosting deep-
sea sponges (members of the demosponge genus
Geodia) across the North Atlantic Ocean and Nordic
Seas. The potential association of sponges with water
masses was investigated by plotting sponge occur-
rences as points in T−s space on a diagram contain-
ing T−s curves for sites across the study area, and
conducting a novel analysis based on the curvature
of the relevant curves sampled at those points. This
new approach represents a methodological advance
for deep-sea biogeographical studies: so far, observa-
tions that species distributions correlate with particu-
lar physical, chemical, or biological properties of the
water column are confounded by strong collinearity
between parameters and also with depth/hydrostatic
pressure (see Puerta et al. 2020 and references
therein). On this basis, suggested associations with
water masses are largely qualitative, whereas here
we have developed a means of quantitatively assess-
ing associations with clear, accepted water mass sig-
natures (i.e. based on the curvature of T−s curves).

The purpose of this study was threefold: (1) to test
the hypothesis that deep-sea sponges are associated
with water masses over broad oceanographic regions
(e.g. ocean basins); (2) to test the traditionally held
view that boreal and Arctic sponge ground species
are associated with different water masses and major
current pathways; and (3) to reconcile sites where
boreal and Arctic species co-occur with the concept
of water-mass-influenced distribution patterns.

The approach adopted here cannot resolve causal
mechanisms (i.e. explain why water masses might
influence the distribution of deep-sea sponges), al -
though some possible mechanisms are considered in

Section 4. It is also not a primary objective of this
work to precisely map sponge occurrences onto spe-
cific water masses or current pathways, though perti-
nent observations of such linkages are presented
where appropriate. Rather, this paper presents a first
broad-scale, quantitative analysis to test the possible
association between deep-sea sponges and water
masses, and provides a basis upon which future bio-
physical and biogeographical studies can build.

2.  MATERIALS AND METHODS

2.1.  Overview

First proposed by Helland-Hansen (1916), the T−s
diagram is the archetypal ‘property versus property’
diagram in which subsurface temperatures are plot-
ted against corresponding salinities for a given
oceanographic station to produce a curve, the ‘T−s
curve’, useful for interpreting water mass structure
(Emery & Thomson 2004). In this work, in situ tem-
peratures were converted to potential temperatures
(at surface pressure), θ, to correct for the internal
heating caused by the compressive effect of hydro-
static pressure (Emery & Thomson 2004). Therefore,
we refer instead to θ−s (rather than T−s) diagrams
throughout.

Source water types, sampled close to their sites of
formation, are represented as points in θ−s space.
Temporal and spatial variability in sampling, or mix-
tures of 2 adjacent water masses, leads to straight
lines (or ‘mixing lines’) on θ−s diagrams, which are
sometimes identified as water masses in their own
right. When 3 or more water masses are present, the
resulting θ−s curve has turning points, where curva-
ture is relatively high, indicating the influence of
intermediate water masses (and deep water masses,
if so-called bottom waters are also present) (Fig. 1).
The exact degree of curvature is a function of the dif-
ferences in θ−s properties of the water masses pres-
ent at a given station and the extent to which the
water mass responsible for the turning point influ-
ences the water column structure at that station (e.g.
the volume/dilution of a source water type present in
a certain depth range). Note that a turning point rep-
resents the influence of the core of a water mass,
whereas boundaries between adjacent water masses
fall along the straight, mixing line segments of the
θ−s curves, which connect the influence of distinct
water masses in θ−s space.

A method was developed to infer mean water tem-
peratures and salinities at sponge localities across
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the North Atlantic Ocean and Nordic Seas from
 conductivity-temperature-depth (CTD) data. This
allowed sponge records to be plotted onto θ−s dia-
grams in order to assess possible water mass associa-
tions. Clustering of sponges about turning points in
the θ−s curves (indicating intermediate and/or deep
water masses) was tested for by comparing the fre-
quency distribution of θ−s curvature sampled at
sponge localities to that expected if the sponges were
randomly distributed with respect to the curves (and
thus water mass structure). Systematic differences
between these 2 distributions would demonstrate an
association between the sponges and water masses.
Specifically, sponges should occur more frequently at
higher curvatures, in such a case, than can be
expected due to chance.

An additional θ−s diagram-based analysis was
undertaken to explore near-bed water masses at sites
where both boreal and Arctic sponge fauna co-exist.
These sites experience high oceanographic variabil-
ity, and so a near-bed (rather than full water column)
focus was applied, with the aim of determining
whether multiple water masses influence the bed
over time and whether this could explain the occur-
rence of both assemblages. The key elements of
these analyses are addressed in turn below.

2.2.  A deep-sea sponge data set

A North Atlantic−Nordic Seas, deep-sea sponge
biogeographic data set was constructed for 6 species
of the demosponge genus Geodia Lamarck, 1815,
belonging to the Geodiidae family: G. atlantica
(Stephens, 1915); G. barretti Bowerbank, 1858; G.
macandrewii Bowerbank, 1858; G. phlegraei (Sollas,
1880); G. hentscheli Cárdenas et al., 2010; and G.
parva Hansen, 1885. These massive, subglobular
animals—specimens larger than 40 cm in length are
not uncommon—occur from shallow waters to the
lower bathyal zone (2000−3500 m). G. barretti, for
example, has been recorded from 31 to 2829 m water
depth (Cárdenas & Rapp 2013, Cárdenas & Moore
2019).

The data set consisted of the occurrence records
(Fig. 2) of Cárdenas et al. (2013; http://dx.doi.org/
10.5061/dryad.td8sb) and Cárdenas & Rapp (2015;
data available in the supplementary material of
that paper), supplemented with new records from
Davis Strait (Bedford Institute of Oceanography
unpubl. data), the Jan Mayen and Mohn Ridges
(University of Bergen unpubl. data), and Rosemary
Bank  (Eerkes-Medrano et al. 2020). The records
originate from a variety of sampling methods (e.g.
trawls, dredges, box cores, remotely operated vehi-
cle (ROV) observations and targeted sampling, etc.)
and include at least positional coordinates and
water depths. It is likely the most comprehensive
and best curated data set of its kind; hence its use
(in an earlier form) in the modelling study of
Howell et al. (2016). Species identifications have
been quality checked and agreed upon by the
authors (P.C. and H.T.R.). Identifications were made
based on morphology (external and, where possi-
ble, spicule morphology) and, in many cases, molec-
ular data (e.g. sequences of the Folmer fragment of
the mitochondrial cytochrome c oxidase subunit I
[COI] gene). Where there was ambiguity in species
identification (e.g. morphological distinction of G.
phlegraei and G. parva can be particularly chal-
lenging), the record in question was excluded. This
data set presents a befitting challenge for the ap -
proach adopted here, since it includes species
characteristic of boreal (G. atlantica, G. barretti, G.
macandrewii, and G. phlegraei) and Arctic sponge
grounds (G. hentscheli and G. parva). These are
species for which there exists a relatively high
 number of occurrence records (for deep-sea spe-
cies) with broad distribution (i.e. 567 records glob-
ally, across all 6 species; 551 records in the study
domain; Fig. 2).
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Fig. 1. Influence of intermediate and deep water masses on
the potential temperature−salinity (θ−s) curve of an oceano-
graphic station (black line). Blue symbols indicate the char-
acteristic θ−s properties of cores of source water types (SW,
IW, DW, and BW: surface, intermediate, deep, and bottom
water masses, respectively). The cores of IW and DW distort
the θ−s curve into turning points of relatively enhanced cur-
vature (dashed red lines). Dashed grey curves: isopycnals
included for illustrative purposes (density increasing from 

top left to bottom right)
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Potential uncertainty in the positions of these records
varies from approximately ±10 m (for ROV sampling)
to several km (for scientific trawls). Any associated
depth uncertainty is assumed to be small relative to
the vertical extent of major features in water column
structure. Where in situ measurements of environ-
mental parameters, such as temperature and salinity,
were available they were mostly single time-point
measurements, precluding their use in this study on
the basis that temporal variability had not been ac -
counted for. The new data set has been made avail-
able at https://doi.org/10.1594/PANGAEA.924531.

2.3.  Study site delimitation

Study site boundaries were defined according to
the grid cells of a 2° × 2° grid which encompassed
sponge occurrence records or clusters thereof (Fig. 2).
Major bathymetric features (e.g. straits, sea mounts,
ridges, fracture zones, gullies, etc.) were used to help
discriminate sites. The 2° × 2° grid cell size was
selected as a compromise between CTD data avail-
ability and the averaging of conditions over unac-
ceptably large areas (e.g. areas larger than oceano-
graphic sub-regions characterised by meso scale
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Fig. 2. The North Atlantic Ocean and Nordic Seas with sponge occurrence records and study sites shown. Ocean bathymetry 
and land topography data are from NOAA’s ETOPO1 Global Relief Model (Amante & Eakins 2009)
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horizontal extents on the order of 100s of km).
Smaller grid cell sizes yielded few to no CTD profiles
in less frequently sampled regions; larger ones
entailed integrating conditions over diverse hydrog-
raphy (and thus failing to characterise the site of
interest with sufficient precision).

Away from the ocean surface, temperature and
salinity behave as conservative properties: there are
no appreciable sources or sinks of heat and salt in the
interior of the ocean, and thus they can be consid-
ered to be changed only by mixing between water
masses. Near the surface, this is not the case and the
properties are non-conservative, being strongly
affected by meteorological conditions and associated
surface processes. The θ−s diagram approach
adopted here would not typically be applied in
waters shallower than ~200 m, and it is also conven-
tional to omit data relating to shallow depths (e.g.
<200 m) from constructed θ−s diagrams (Pickard &
Emery 1990). For this reason, several areas with
reported sponge occurrences were not defined as
study sites and were excluded from further analysis
(see Fig. 2). These were shallow continental shelf
areas (e.g. the southern part of the Western Barents
Sea) and the Mediterranean Sea (where all 4 G. bar-
retti records were shallower than 200 m).

The water column structure of inshore areas that
are nevertheless deep-water in nature (e.g. the Nor-
wegian fjords and Norwegian Trench) may not be
adequately characterised given the spatial resolution
of the current approach (i.e. relevant grid cells incor-
porate portions of the adjacent shelf). These areas
were also excluded from the analyses.

2.4.  Extracting and preparing CTD data

High-resolution CTD profile (downcast) data
were extracted for each site from NOAA’s World
Ocean Database (WOD18; Boyer et al. 2018). Data
were extracted for the period 1 January 1990 to
10 October 2018, which is contemporaneous with
the frequent use of instrumentation with high depth
resolution. CTD cast data had been interpolated
(during the extraction process) at the standard
depth levels recommended by the International
Association of Physical Oceanography and at addi-
tional depth levels as specified by WOD18 (i.e. 137
levels in total, spanning 0−9000 m water depth
range, with higher depth resolution closer to the
surface) (Boyer et al. 2018).

It should be noted that a small number of sponge
records in our data set pre-date the CTD data extrac-

tion period (having been collected in the late
1800s/early 1900s). A necessary assumption implicit
in our approach is that there has been no major re-
structuring of key water masses in the North Atlantic
and Nordic Seas over this period. An anomalously
weak Atlantic Meridional Overturning Circulation
(AMOC) has prevailed since approximately AD 1850
(Thornalley et al. 2018) and, superimposed on this
state, there is natural decadal and multidecadal vari-
ability, and evidence of continued AMOC weaken-
ing more recently (Caesar et al. 2018). Whilst our
assumption is likely fair for many sites, it may be less
so for those undergoing measurable change associ-
ated with trends and variability in the AMOC. Nev-
ertheless, we are currently limited to this assumption
by a focus in the scientific literature on temporal
changes to the properties of specific water masses
and to the strength of the AMOC, and an apparent
dearth of attention to any associated consequences
for water column (vertical) structure in particular
locations.

Extracted CTD data were loaded in Ocean Data
View (ODV v.5.1.5; Schlitzer 2018). ODV was used
to convert measured, in situ temperatures to poten-
tial temperatures at sea surface water pressure
(reference pressure = 0 dbar), and also for pre -
liminary visualisation and cleaning of the data.
Duplicate casts were removed (casts on grid cell
boundaries were occasionally duplicated when am -
al gamating data across several grid cells; duplicates
represented 0.8% of the originally extracted casts
[average value over all sites]). Casts with erroneous
positional coordinates (e.g. placing them on land)
were removed (this was extremely rare; 2 casts
were removed across the entire data set on this
basis). Casts containing obviously spurious temper-
ature and salinity data were removed (this was
rare; <5.0% of the originally extracted casts were
identified as spurious and removed [average value
over all sites]).

Each site-specific CTD data set was filtered to
remove casts conducted in water shallower than
200 m (see Section 2.3). This filtering excluded more
casts for sites at the continental shelf edge and slope
(where site boundaries incorporated some shallow
shelf areas) than for sites that were truly deep water
(e.g. seamounts, ridges, and fracture zones). For
example, 78.9% of originally extracted CTD casts
were filtered out of the Shetland Islands (SHET) data
set, on the basis that they were conducted in water
shallower than 200 m, whereas 0 casts were removed
from the Chaucer and Minia Seamount sites (CHAU
and MIN, respectively) on the same basis (NB: aver-
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age percentage filtered out across all sites was
27.1%). An assumption implicit in this filtering is that
the typical water column structure determined just
off-shelf applies at adjacent sponge localities on the
shelf edge or upper slope. This is a reasonable first-
order approximation for most sites, particularly as
those with the most complex hydrography are
excluded from the principal (θ−s curvature-based)
analysis (as explained in Section 2.5 below).

2.5.  Depth envelopes of potential temperature 
and salinity

Envelopes of θ and s versus depth, z, were con-
structed for all sites shown in Fig. 2, and are pre-
sented in Fig. S1 in the Supplement at www.int-
res.com/articles/suppl/m659p075_supp.pdf. For each
site, climatological means (i.e. mean averages of all
data available for the extraction period), θ‾ and s‾,
were calculated at each depth level present. Stan-
dard deviations (SD) of the means were also deter-
mined. The depth profiles of θ‾ and s‾ were linearly
interpolated to 1 m depth resolution and smoothed
using a 100 m moving average. Climatological mean
potential temperatures and salinities at sponge local-
ities (i.e. θ‾Sp and s‾Sp, respectively) could then be
inferred based on their reported depths (Fig. 3, upper
panels). The 1 m depth resolution achieved by inter-
polation simplified this process, since the depths of
sponges are often reported to the nearest metre.

The moving average window size applied above
(100 m) was selected to remove noise from the clima-
tological θ−s curves constructed later (Section 2.6)
whilst preserving persistent features of the water col-
umn structure, ahead of curvature analysis (Section
2.7). Near to the ocean surface, this window size is
coarse relative to the vertical gradients in θ and s, but
these data are not used in further analysis (Section
2.6) and are shown in Fig. S1 and Fig. 3 for complete-
ness only. The number of CTD casts used for each
site is shown in Table 1.

The choice to work with climatological (and spa-
tial) mean data necessarily represents some loss of
information on temporal (and spatial) variations that
could be relevant to sponge distribution. However,
away from the ocean surface, the observed variabil-
ity in the temperature and salinity profiles was very
low for most sites (Fig. S1), with little deviation from
‘typical’ profile shapes (justifying the use of climato-
logical means). The envelopes for Denmark Strait
(DEN), Davis Strait (DAV), and the Faroe Islands (FAR)
study sites (coloured grey in Fig. 2) indicated higher

temperature and salinity variability over much of
their depth ranges. Given that these sites require the
averaging of data over large areas with diverse
hydrography, the climatological mean curves gener-
ated were deemed uninstructive and the sites were
not in cluded in the primary θ−s curvature analysis
which follows.

A separate analysis was designed for and applied
to the DEN and DAV sites on the basis that species
characteristic of both boreal and Arctic sponge
grounds occur together or in close proximity over rel-
atively narrow depth ranges. We outline the ration-
ale and methods for this additional analysis in Sec-
tion 2.8. The occurrence data presently available for
FAR does not indicate extensive areas where boreal
and Arctic species may be sympatric, and thus the
site was not investigated further.

2.6.  θ−s diagrams

θ−s scatterplots were constructed for each site
(Fig. S2) using the CTD data sets described above
(Sections 2.4 and 2.5). Typical, or climatological, θ−s
curves were estimated and superimposed (see also
the θ−s diagram in Fig. 3) using corresponding θ‾ and
s‾ value pairs determined from the depth envelopes
(Section 2.5). All data relating to the top 200 m of the
water column were omitted for reasons explained in
Section 2.3.

A ‘master’ θ−s diagram (see Fig. 4a) was populated
with the climatological curves for every site, except
DEN, DAV, and FAR (as explained above). This was
overlaid with sponge occurrences plotted in θ−s
space using θ‾Sp and s‾Sp values inferred as described
in Section 2.5 and illustrated in Fig. 3. For consis-
tency with the removal of temperature and salinity
data from near the ocean surface, any sponge
records shallower than 200 m were also excluded
from the diagram and subsequent analyses. They
were similarly excluded from site-specific θ−s dia-
grams presented (e.g. see Fig. 4b−d & Fig. A1 in the
Appendix).

2.7.  θ−s curvature analysis

Curvature values were calculated at frequent,
equally spaced (with respect to arc length) intervals
along each site-specific, climatological θ−s curve.
θ−s diagrams are often presented similarly to that
shown in Fig. 4a (in particular, being limited to the
upper range of seawater salinity) for the purposes of
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interpreting water mass structure. For consistency
with this convention, and for simplicity ahead of the
curvature calculations, the data were first transformed
such that they were mapped from their approximate
θ−s domain (i.e. θ [°C]: [−2, 15]; s [psu]: [34.0, 36.5])
to fall instead in the range [0, 1] on both horizontal and
vertical axes (denoted x- and y-axes, respectively).

The equation of curvature, κ, at any point (x, y) on a
plane curve parameterised by arc length, t, is given by:

(1)

where x = x(t) and y = y(t) (representing transformed
salinity and potential temperature values, respectively)
and primes denote first and second derivatives with
respect to t.

Parameterising the curves by arc length has the
benefit that, since t is monotonically increasing, x(t)
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Fig. 3. Method for plotting a sponge in θ−s space. Mean potential temperature and salinity at the sponge locality (θ‾Sp and s‾Sp,
respectively) are inferred based on its reported depth, zSp (upper panels). θ‾Sp and s‾Sp are then plotted pairwise onto a θ−s dia-
gram for the site in question (lower panel). Dashed grey curves: isopycnals, labelled with potential density anomaly, σθ, values
in kg m−3; black, dash-dotted lines: climatological means. Depth envelope bounds (solid black lines; upper panels) are mean 

values ±2 SDs (and thus incorporate ~95% of the available data at each depth)
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and y(t) are single-valued functions, the first and sec-
ond derivatives of which can be evaluated with rela-
tive ease. Arc length, t, from one end of each curve to
every x, y data point along that curve, was approxi-
mated by cumulative chordal distance (i.e. summa-
tion of the lengths of linear segments, determined
using Pythagoras’ Theorem). Cubic spline interpola-
tion of x versus t and y versus t was then used to
determine x and y values at frequent, equal intervals
of t (i.e. at 100 positions along the longest curve and
proportionately fewer for shorter curves). Using these
values, derivatives were evaluated numerically, and
curvatures calculated along each curve according
to Eq. (1).

Standardising the arc length interval for these cal-
culations, in the way described, ensured all curva-
ture values were directly comparable both within
and between curves. Normalisation of the data dur-

ing its transformation to x−y coordinates had the
effect of making the variables in Eq. (1) dimension-
less, and all curvatures calculated were therefore
likewise dimensionless.

The curvature value assigned to each sponge record
was that falling closest (along the relevant site’s
curve) to the sponge in x−y space. Multiple records
of the same species occurring at similar depths
(±200 m) at any given site were removed (leaving a
single record) to mitigate the possibility of spatial
sampling bias inflating the frequency of certain cur-
vature values. Unusually high curvature values had
been assigned to a small number of sponges, reflect-
ing the occasional presence of some high-curvature
noise in the curves despite smoothing (Section 2.5).
These values were spurious, in that they did not rep-
resent persistent water column features, and were
removed from the analysis. The final histogram char-
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Site name Abbreviation Total no. of No. of wintera

CTD casts casts (% of total)

Berthois Spur BER 56 2      (3.6)
Bill Bailey Bank BBB 75 6      (8.0)
Central Mohn’s Ridge MOHN 196 2      (1.0)
Chaucer Seamount CHAU 20 1        (5)
East Greenland Shelf EGRN 72 0      (0.0)
Flemish Cap FLEM 3013 178    (5.9)
Gulf of Cadiz GoC 113 56    (49.6)
Gully Canyon GUL 190 4      (2.1)
Icelandic Plateau ICEP 517 118   (22.8)
Jan Mayen Fracture Zone JMFZ 466 8      (1.7)
Jan Mayen Ridge JMR 86 11    (12.8)
Minia Seamount / Charlie-Gibbs Fracture Zone MIN 111 0      (0.0)
Newfoundland-Labrador Slope NEW 620 40     (6.5)
North Labrador Sea NLAB 244 2      (0.8)
North Norwegian Shelf NNOR 3677 205    (5.6)
North of Svalbard NSVAL 158 0      (0.0)
Northeast Iceland Shelf NEIS 579 126   (21.8)
Porcupine Bank / Malin Slope POR 1561 279   (17.9)
Reykjanes Ridge REYK 375 2      (0.5)
Rockall Bank ROCK 418 24     (5.7)
Rosemary Bank ROSE 359 10     (2.8)
Schulz Bank SHLZ 87 0      (0.0)
Shetland Islands SHET 1056 171   (16.2)
South of Greenland SGRN 107 0      (0.0)
South of Svalbard SSVAL 471 7      (1.5)
West Labrador Sea WLAB 335 0      (0.0)
West of Svalbard WSVAL 357 7      (2.0)
Western Barents Sea WBAR 2432 401   (16.5)

Davis Strait DAV 385 0      (0.0)
Denmark Strait DEN 1687 133    (7.9)
Faroe Islands FAR 5587 663   (11.9)

aMeteorological winter in the Northern Hemisphere: 1 Dec to 28 Feb

Table 1. Numbers of CTD casts used to construct potential temperature (θ) and salinity (s) against depth (z) envelopes, and for
the θ−s curvature analysis. Proportions capturing winter conditions are indicated. Sites below the dashed line were not 

included in the curvature analysis (see Sections 2.5–2.7)
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acterising curvature at sponge localities was con-
structed from 151 remaining curvature values/ sponge
records (n = 151).

The frequency distribution of curvature expected if
sponges were distributed randomly with respect to
the curves—equivalent to the ‘background’ curvature
distribution—was determined by repeated random
sampling; 151 sample curvatures (corresponding to
the number of values in the ‘sponge localities’ case)
were drawn at random (and with replacement) from
the entire set of calculated curvature values across
all curves. This procedure was repeated 10 000 times.
The histogram characterising the ‘background’ case
was constructed from the mean averages, over all
repetitions, of frequencies for each curvature bin
(hence, error bars could be determined for this case;
see Fig. 5). The few incidences of very high curva-
ture relating to noise, as identified above, were also
removed from the full curvature data set before this
repeated sampling was conducted.

2.8.  Special-case sites: Denmark Strait 
and Davis Strait

DEN and DAV are special-case sites in that species
characteristic of both boreal and Arctic sponge
grounds occur together or in close proximity over rel-
atively narrow depth ranges. In a regime whereby
sponges are associated with water masses, these
groups of species would more usually be separated
geographically and/or by depth, and therefore this
situation must be investigated with respect to the
main hypothesis of the study. Both sites have com-
plex hydrography, hosting water exchanges between
major ocean basins and being places where ocean
currents interact. Depth envelopes of θ and s (Section
2.5; Fig. S1) confirmed that these sites exhibit high
oceanographic variability over much of their water
columns. As a result, DEN and DAV were necessarily
excluded from the main analyses described above
(Sections 2.2−2.7) and (in order to reconcile their
boreo-Arctic species mix with the dichotomous situa-
tion elsewhere) they were accorded their own dis-
tinct physical analysis of near-seabed conditions, as
follows.

Near-seabed conditions in specific sub-areas and
depth ranges where boreal and Arctic Geodia spe-
cies co-exist were characterised using subsets of the
CTD data described above (see Table 2 for details).
Near-bed measurements from CTD casts in these
areas were used to populate θ−s diagrams (see Fig. 6).
These characterise bottom conditions directly, rather

than inferring them based on the adjacent water col-
umn structure (as was necessary and appropriate for
other sites in this study based on the limited available
data at many, and their lower apparent variability at
depth). Key water types were indicated on the dia-
grams to visualise the influence of different water
masses at the bed. So-called ‘mixing triangles’ were
outlined to guide interpretation of data points repre-
senting mixtures of 2 or more water masses. The cor-
ners of each mixing triangle were defined by the 3
major water masses prevalent at that site; any mix-
ture of these water masses will have θ and s values
lying within the triangle. The relative proportion of
each water mass in the mixture can be estimated (not
shown) based on its position within the triangle (see
Thomas & Bowers 2012).

3.  RESULTS

3.1.  Sponge associations with water masses

Some separation of boreal and Arctic Geodia spe-
cies is apparent in Fig. 4a. G. atlantica, G. barretti, G.
macandrewii, and G. phlegraei are largely associ-
ated with water less dense than approximately 27.9
kg m−3 (potential density anomaly, σθ), whereas G.
hentscheli and G. parva are found principally in
waters more dense than this. There are few excep-
tions to this thresholding; notably, a number of G.
parva and G. hentscheli records from the Northwest
Atlantic (at REYK, SGRN, NLAB, and FLEM) occur-
ring in waters less dense than is typical and a single,
deep G. barretti record off the Shetland Islands in
water denser than appears typical for this species.

Closer inspection of the data shown in Fig. 4a (e.g.
Figs. 4b,c,d & A1) reveals an apparent clustering of
sponge records about turning points in their respec-
tive θ−s curves. A conservative estimate suggests 18
(out of 28) sites have sponge records occurring at or
very near turning points, and 13 of these have clus-
ters of records (i.e. 2 or more) at the turning points.

Apparent associations between sponges and water
masses, consistent across several sites (in Fig. A1),
reveal likely broad-scale patterns. Water mass defi-
nitions are given in Fig. A1 with details in Table S1,
and literature sources consulted when interpreting
site-specific water mass structures in Fig. A1 are
given in Table S2. Strikingly, G. hentscheli and G.
parva are associated largely with Arctic Intermediate
Water (ArIW) and Arctic Ocean Deep Water  (ArODW)
in the Nordic Seas (see the JMFZ, JMR, MOHN,
SHLZ, SSVAL, and ICEP sites in Fig. A1). In the
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Northwest Atlantic, these species are also found
associated with water masses derived from dense
overflows from the Nordic Seas over the Green-
land−Scotland Ridge (i.e. with Gibbs Fracture Zone
Water [GFZW] and Denmark Strait Overflow Water
[DSOW] at FLEM, and with DSOW at SGRN).

The remaining species (G. atlantica, G. barretti, G.
macandrewii, and G. phlegraei) are generally associ-
ated with upper and intermediate water masses in
the Northeast Atlantic and with upper, Atlantic-
derived waters in the Nordic Seas (see POR, ROCK,
ROSE, and BBB [for the Northeast Atlantic] and
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Fig. 4. (a) Climatological mean θ−s curves for sites across the North Atlantic Ocean and Nordic Seas with sponge occurrences
overlaid. Insets in (a) show zoomed views of the 2 densest clusters of occurrence datapoints; (b−d) are examples of sites
demonstrating sponge clustering about turning points in the curves. In (a), dashed grey curves are isopycnals, labelled with
potential density anomaly, σθ, in kg m−3. Some water masses of likely importance are indicated (abbreviations defined in 

Fig. A1). Full site names are given in Fig. 2 and Table 1
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SHET, NNOR, WBAR, SSVAL, WSVAL, and NSVAL
[for the Nordic Seas/Arctic Ocean] in Fig. A1). Boreal
species are found over a greater depth range in the
Northeast Atlantic (e.g. 200−2000 m for the sites
mentioned above) compared to the Nordic Seas
(201−643 m). In the Northwest and Central North
Atlantic Ocean, they are found in association with so-
called deep water masses, such as Northeast Atlantic
Deep Water (NEADW) and GFZW (comprising Ice-
land−Scotland Overflow Water [ISOW] and NEADW)
(see CHAU, MIN, NLAB, WLAB, NEW, FLEM, and
GUL).

For both Arctic and boreal species, the observed
sponge associations with water masses north and
south of the Greenland−Scotland Ridge are consis-
tent with the major current pathways of the Atlantic/
Nordic Seas’ thermohaline circulation, particularly
when considered together with sponge geographi-
cal distributions along shelf-edges, slopes, and other
major deep bathymetric features hosting boundary
currents (see schematics presented in Mauritzen
1996, Curry & Mauritzen 2005, Rudels et al. 2005,
Våge et al. 2013, Yashayaev et al. 2015, and others).
We return to this point in Section 4.1.

Fig. 5 shows the results of the θ−s curvature analy-
sis (see Section 2.7), which quantitatively demon-
strates the clustering of sponges about high-curva-
ture turning points (i.e. intermediate and deep water
masses) on an ocean basin scale. The frequency dis-
tribution of the θ−s curvature sampled at sponge
localities has less counts at low curvature compared
to the power law distribution representing the ran-
domly sampled ‘background’ case. It also shows a
secondary peak at higher curvature values, which is

not present in the ‘background’ case, indicating that
more sponges are found at high-curvature turning
points than would be expected if they were distrib-
uted randomly with respect to the curves (and thus
the water mass structure).

3.2.  Special-case sites: Denmark Strait 
and Davis Strait

Fig. 6 shows the results of the distinct θ−s analysis
designed to investigate the occurrence of both boreal
and Arctic sponge ground species in close proxim-
ity/together at these 2 high-variability, dynamic sites.
Despite the CTD data for the sub-areas of interest
(i.e. those hosting boreal and Arctic sponge ground
species; Table 2) within these sites being irregularly
distributed spatially and temporally, they demon-
strate the influence of both Atlantic- and Arctic-
derived water masses at the seabed over time and
relatively small spatial scales.

For the sub-area within DEN (Fig. 6a), the influ-
ence of Irminger Atlantic Water carried by the
Irminger Current ([IC]IrAW) and Arctic Water origi-
nating in the basins of the Nordic Seas ([NS]ArW) is
clear. A number of bottom temperature and salinity
value pairs approach values reported for these water
types in the scientific literature (e.g. Harden et al.
2016 and references therein). The influence on ben-
thic fauna of Polar Water (PW), originating in the
Arctic Ocean and commonly constrained to the East
Greenland Shelf (Harden et al. 2016), cannot be
excluded. The majority of data points fall more or less
centrally within a proposed mixing triangle for these
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Fig. 5. The frequency distribution of θ−s
curvature sampled at sponge localities (n =
151) compared with that from repeated ran-
dom sampling (with replacement) of the
set of climatological mean θ−s curves (n =
151, 10000 repetitions). Sponges occur less
frequently at lower curvature and more fre-
quently at higher curvature segments (i.e.
the turning points associated with distinct
water masses) than would be expected
if they were randomly distributed with
respect to the curves. Grey ‘background’
bars re present mean frequencies deter-
mined over 10000 repetitions of random
sampling; error bars are ±1 SD, calculated
according to the Poisson distribution of
the underlying data for each bin (i.e. 

± )mean freq.
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water masses, suggesting that mixtures might be
commonplace near the bed at this dynamic and
hydrographically complex site. The relative impor-
tance of Re-circulating Atlantic Water (RAW) (sensu
Mauritzen 1996) cannot be discerned, but it may con-
tribute to the influence of Atlantic-derived water
masses in the region.

The equivalent data set for the sub-area of interest
in DAV is more sparse (Fig. 6b). The majority of data
points indicate the primary influence on the bed is

Irminger Atlantic Water, though in this case sup-
plied instead by the West Greenland Current (i.e.
[WG]IrAW) (Tang et al. 2004, Azetsu-Scott et al.
2012). Mixtures of (WG)IrAW with other water
masses are also indicated: namely, mixtures with
colder, fresher Arctic Water, derived from Arctic
Ocean outflow through the Canadian Arctic Archi-
pelago (i.e. [C]ArW), and with Baffin Bay Deep
Water (BBDW), the origin of which is yet to be settled
unequivocally (Tang et al. 2004).
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Fig. 6. θ−s diagrams constructed from near-seabed data for sub-areas where boreal and Arctic Geodia species co-occur within
(a) Denmark Strait and (b) Davis Strait (see Sections 2.8 and 3.2). The influence at the bed of Atlantic- and Arctic-derived
water masses (red/pink and green/blue, respectively) is apparent. Water mass abbreviations are defined in Fig. A1, and their
θ and s ranges were taken from Harden et al. (2016), Azetsu-Scott et al. (2012), and Tang et al. (2004). Suggested mixing tri-

angles are shown in grey. Isopycnals are labelled with potential density anomaly, σθ, in kg m−3

Site                                               Area                        Depth range      Geodia species          No. of                     No. of 
                                                                                             (m)                     present             CTD casts            wintera casts 
                                                                                                                                                                       (% of those available)

Davis Strait              66° N, 60° W to 68° N, 56° W        400−600 G. barretti                   47                         0 (0.0)
(DAV)                                                                                      G. macandrewii
                                                                                                G. hentscheli
                                                                                                G. parva

Denmark Strait       66° N, 32° W to 68° N, 26° W        250−450 G. barretti                  174                        9 (5.2)
(DEN)                                                                                      G. macandrewii
                                                                                                G. phlegraei
                                                                                                G. hentscheli
                                                                                                G. parva

aMeteorological winter in the Northern Hemisphere: 1 Dec to 28 Feb

Table 2. Details of the analysis to characterise water masses influencing the bed at sites where boreal and Arctic Geodia spe-
cies co-occur. Sub-areas of interest are specified using the opposite corners (southwestern-most to northeastern-most) of rec-
tangular bounding boxes. The number of CTD casts includes only those that terminated in the depth range of interest, from 

which bottom values of temperature and salinity were extracted for the analysis
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4.  DISCUSSION

4.1.  Deep-sea geodiid sponges constrained by
water masses and currents

In this study, a novel analysis was applied to a data
set incorporating hydrographic data for 28 sites
across the North Atlantic Ocean and Nordic Seas
(capturing many different water masses) and occur-
rence records for 6 species of deep-sea geodiid
sponge. The records for some species spanned tem-
perature and salinity envelopes almost as broad as
those characterising the whole study region. Over
the entire data set, there was a statistical relationship
between deep-sea sponges and high-curvature turn-
ing points in θ−s curves, which indicate the influence
of intermediate and deep water masses on water col-
umn structure. Sponges are not uniformly distributed
over their temperature and salinity ranges, but are
instead clustered at points where there are clear
water mass intrusions affecting the water column.
The results suggest that, within the broader temper-
ature and salinity envelopes/tolerances of these spe-
cies, there is a role for water masses in structuring
sponge biogeography. Whilst it remains difficult to
disentangle which environmental factors are most
important to the sponges, our findings highlight the
need to consider deep-sea sponge distributions as
being constrained by water masses (and current
pathways), albeit potentially through a plethora of
associated mechanisms (of which ecophysiological
adaptation to factors such as temperature, which has
received much attention historically, is but one — see
Section 4.2).

So-called Arctic geodiid species (Geodia hent -
scheli and G. parva) are indeed associated with Arc-
tic intermediate and deep waters in the Nordic Seas,
and with dense water overflows into the North
Atlantic Ocean over the Greenland−Scotland Ridge.
In contrast, boreal species (G. atlantica, G. barretti,
G. macandrewii, and G. phlegraei) are generally as -
sociated with upper and intermediate water masses
in the Northeast Atlantic and with upper, Atlantic-
derived waters in the Nordic Seas. In the Northwest
and Central North Atlantic Ocean, they are also
found in possible association with so-called deep
water masses.

The observed sponge associations with water
masses north and south of the Greenland−Scotland
Ridge (taken together with sponge geographical dis-
tributions along shelf-edges, slopes and other major
deep bathymetric features) reflect the major current
pathways of the Atlantic/Nordic Seas’ thermohaline

circulation (Mauritzen 1996, Curry & Mauritzen
2005, Rudels et al. 2005, Våge et al. 2013, Yashayaev
et al. 2015). Boreal geodiid types in the Northeast
Atlantic and Nordic Seas appear to correspond to the
various branches of the North Atlantic and Norwe-
gian Atlantic Currents. Arctic types in the Nordic
Seas correspond approximately to the East Green-
land, Jan Mayen, and East Icelandic Currents, and in
the Northwest Atlantic both boreal and Arctic spe-
cies appear associated with deep slope/boundary
currents (in particular, the Deep Western Boundary
Current off the eastern Canadian margin). Questions
remain, however, over the existence and nature (e.g.
direction) of mechanisms connecting boreal geodiid
species at depth in the eastern, central, and western
regions of the North Atlantic. Rigorous genetic and
physical connectivity studies will be required to
resolve such questions.

Where Arctic and boreal species co-occur, the
regions are invariably ones of complex hydrography,
hosting water masses of both Atlantic and Arctic ori-
gin and being characterised by turbulent mixing/
entrainment (e.g. DEN and DAV). On this basis we
predict that, other conditions being favourable (e.g.
substrate, sedimentation, etc.), a number of other
areas may support currently unknown or additional
aggregations of sponges incorporating both Arctic
and boreal geodiid species: the Faroe−Shetland
Channel/Faroe Bank Channel/Wyville Thomson
Ridge area; the North and Northeast Iceland Shelf;
the Fram Strait (particularly where Re-circulating
Atlantic Water or the West Spitsbergen Current
interact with Arctic Ocean outflow); the Barents Sea
(in the vicinity of the Polar Front and between Sval-
bard, Franz Josef Land, and Novaya Zemlya); and
east Baffin Bay (along the pathway of Atlantic-
derived water penetrating into the bay).

4.2.  Causal mechanisms and directions 
for future work

Why then are sponges associated with specific
water masses and currents? North Atlantic Geodia
species are known to be gonochoristic and oviparous
(Spetland et al. 2007, Koutsouveli et al. 2020). Unfor-
tunately, Geodia larvae have never been observed
and their characteristics are unknown—the larvae in
the whole Astrophorina suborder are unknown—
making it difficult to estimate dispersal capabilities.
G. parva and G. hentscheli are also known to repro-
duce asexually by budding (Cárdenas et al. 2013),
with buds (fragments of the parent sponge) of diam-
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eter ~1 cm or less being observed. The authors have
observed Geodia juveniles, with diameters on the
order of 1 mm, free-living in sediment samples from
within sponge grounds in the Nordic Seas and Arctic
Ocean (authors’ unpubl. obs.), although it is un -
known whether these juveniles result predominantly
from local sexual or asexual reproduction. It seems
likely that the larvae (or resuspended juveniles) are
constrained within water masses and/or major ocean
currents by regions of density stratification or current
shear. The implication is that the main agents of Geo-
dia dispersal are close to neutrally buoyant and pas-
sive, or have weak swimming capability (in the case
of larvae), and thus their distribution is dominated by
physical oceanographic processes and settings.
Alternatively, larvae may possess the ability to move
away from such gradients (in order to remain within
optimal conditions), and are thus likewise bound to
water masses and/or currents. McManus & Woodson
(2012) and Gary et al. (2020) highlighted the poten-
tial of larval characteristics (behavioural and buoy-
ancy) to determine patterns of distribution across
large areas of ocean. Based on the results presented
here, we concur, and note that studies of deep-sea
sponge larvae are required if we are to further refine
our understanding of the link between water masses,
currents, and deep-sea sponge biogeography.

The physiological tolerances of early and adult life-
history stages with respect to temperature, salinity,
pressure, pH, oxygen, nutrient, and food availabili-
ties have also been implicated in structuring the geo-
graphic and bathymetric ranges of certain deep-sea
taxa (Young et al. 1996, Arellano & Young 2011,
Brooke et al. 2013). Deep-sea sponges may become
adapted to environmental conditions prevailing
within given water masses, their products and deriv-
atives, and given current systems, experiencing
these conditions as optimal, with larval stages realis-
ing enhanced recruitment success and/or adult
stages thriving. Conditions in adjacent water masses
may be experienced as sub-optimal, with potentially
lethal or sub-lethal adverse consequences (e.g. Tyler
et al. 2000, Strand et al. 2017). The long-term persist-
ence of deep-sea sponge grounds in the face of envi-
ronmental change will likely depend on how that
change compares to the levels of ‘typical’ or natural
variability the sponges may have adapted to tolerate
(e.g. the enhanced temperature variability tolerated
by a dense aggregation of sponges in the Faroe−
Shetland Channel, as reported by Davison et al. 2019).
We return to this point in Section 4.3 below.

A further consideration is that aggregations of ben-
thic filter-feeders benefit from a supply of food and

recruits, and (generally) from enhanced currents
(Genin et al. 1986, Rice et al. 1990, White 2003).
Nepheloid layers, turbid layers containing elevated
concentrations of suspended matter, provide a feasi-
ble source of food and larvae/very small juveniles.
They are primarily the result of resuspension of bot-
tom sediments by strong currents, for example those
associated with ‘critically incident’ internal waves
and tides at the continental slope/shelf-edge (Dick-
son & McCave 1986, McCave 1986, Thorpe & White
1988). Intermediate nepheloid layers (INLs) (i.e.
those detached from the seabed and extending from
the slope into the adjacent water column), in particu-
lar, are known to act as vehicles for episodic larval
transport (Ryan et al. 2010). Such layers tend to
spread laterally along isopycnal surfaces and to be
carried by large-scale current systems (sometimes
achieving considerable spatial extents). Thus, their
distribution patterns are intimately linked with the
density structure of the deep ocean and with its cir-
culation (Dickson & McCave 1986, McCave 1986,
Thorpe & White 1988). Our study cannot resolve
whether sponges are associated with the core of a
water mass or with a water mass boundary support-
ing internal waves and nepheloid layers. However, it
seems likely that mechanisms (e.g. internal waves or
density-driven currents, plus nepheloid layers) that
can transport larvae (or very small juveniles), supply
food, and enhance currents locally will structure the
distribution of certain benthic invertebrates (includ-
ing sponges; see Davison et al. 2019) in a way that
reflects water column structure and other oceano-
graphic processes.

In reality, the observed association between deep-
sea sponges and water masses is likely the result
of a combination of the factors mentioned above. Di-
rections for future research should aim to populate
analyses, such as those presented here, with more
sponge records, and to establish whether sponge
presence/absence observations, known sponge ground
locations, or sponge density data correlate with the
following: levels of stratification in the water column
(buoyancy frequency measurements);  persistent or
recurring INLs (optical turbidity measurements); pat-
terns of internal wave/tidal energy dissipation (turbu-
lent kinetic energy dissipation measurements and
models); and major thermohaline current pathways
(velocity measurements and hydrodynamic models).
Targeted sampling of nepheloid layers is required to
assess food quality and to check for early life-history
stages amongst any associated zooplankton, perhaps
using modern, high-technology sampling methods
(see Ryan et al. 2010). Efforts to investigate the physi-
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ological tolerances of deep-sea sponges should con-
tinue (e.g. after Maldonado & Young 1998), as should
those to improve understanding of interactions be-
tween sponges and flow regimes over various spatial
and temporal scales (e.g. after the numerical model-
ling work of Culwick et al. 2020). In particular, we
echo the sentiments of Maldonado (2006) in stating
that our understanding of sponge larval ecology is still
lacking generally. Whilst it may be possible to draw
inferences based on shallow-water studies, dedicated
research on deep-sea sponge larval characteristics is
preferable and should be prioritised.

4.3.  Biogeographic implications 
under climate change

Observations and model predictions of the vari-
ability of water masses and thermohaline circulation
reflect both natural, multidecadal oscillations (Bry-
den et al. 2003, Latif et al. 2006) and trends poten-
tially attributable to anthropogenic climate change
(Böning et al. 2008). Subsurface temperature and
salinity are likely sensitive to anthropogenic change
(Banks & Wood 2002), though Banks et al. (2000) con-
cluded that, in Northern Hemisphere oceans where
climate variability is inherently large, the signals of
anthropogenic climate change were not readily
detectable above natural variations. With a further
2 decades passing since the publication of that
work, it seems likely that the conclusion is no longer
valid (see Thornalley et al. 2018, Bilbao et al. 2019,
Spooner et al. 2020). Although model predictions
diverge on the response of the thermohaline circula-
tion to global warming (Schweckendiek & Wille-
brand 2005), we note that the distributions of our tar-
get sponge species overlap with the major sites of
water mass formation in the Nordic Seas and sub -
polar North Atlantic. Convection and water mass
 formation/transformation in these areas is under -
going change (Dickson et al. 1996, Schweckendiek &
Willebrand 2005, Brakstad et al. 2019) and could be
responding to anthropogenic warming (Yang et al.
2016 and references therein). In agreement with
Kazanidis et al. (2019) and Puerta et al. (2020), our
results suggest that changes to water mass proper-
ties, distributions, and transport under climate
change will likely affect present-day sponge popula-
tions and influence their future distributions. The
capacity of deep-sea sponges to respond to such
environmental change is largely unknown. However,
recent work from the Northwest Atlantic has shown
that geodiid sponge grounds on the slopes of the

Flemish Cap and Grand Bank (Murillo et al. 2016)
and aggregations of the glass sponge Vazella pour-
talesi on the Scotian Shelf, off Canada (Beazley et al.
2018), have persisted in the face of considerable
environmental variability (since at least 130 ka BP, in
the case of the geodiid grounds).

4.4.  Ecological significance and utility 
in palaeoceanography and conservation

Dullo et al. (2008) proposed using an envelope of
potential density, associated with the occurrence of
CWC reefs in the Northeast Atlantic and Norwegian
Sea, as a tool to help locate other reefs at less explored
sites. Our findings suggest that turning points in θ−s
curves (and the presence of major current pathways)
could be used in a similar way for aggregations of
deep-sea sponges. Furthermore, an Arctic or boreal
sponge assemblage may be predicted based on the
nature and origin of the intermediate or deep water
mass responsible for a given turning point.

This concept could be extended to use in species
distribution (or habitat suitability) models (SDMs),
whereby basin-scale predictive mapping of potential
niches could be achieved using θ−s curvatures calcu-
lated from widely available temperature and salinity
profile data. Ideally, however, this would be pre-
ceded by work to establish the environmental factors
and mechanisms associated with water masses that
are of direct ecological relevance to the sponges (as
discussed in Section 4.2), and the choice of predictor
variables (environmental layers) for modelling would
be informed by this work. For example, if internal
waves/tides were found to be important generally,
buoyancy frequency could be included as a predictor
in SDMs, or a ‘bed slope criticalness factor’ (a meas-
ure of likely bottom current intensification) could be
used, relating the bed slope to internal wave ray
slopes (after Frederiksen et al. 1992). If nepheloid
layers were determined to be key, environmental
layers characterising near-bed turbidity or sus-
pended sediment concentration could be employed
as predictor variables, and so on for the other poten-
tially important factors identified in Section 4.2.

We also propose an inversion of the above concept,
whereby the presence of particular deep-sea sponges
has utility in providing information on water masses
or boundary current systems influencing the seabed.
By extension, the sponge spicule record from seabed
cores could be examined to reconstruct palaeoenvi-
ronmental conditions within, and spatial adjustments
of, specific water masses and current systems. A ten-
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dency of deep-sea sponges to have distributions
which track particular water masses or currents
increases their value as palaeoceanographic archives
(e.g. Ellwood et al. 2006, Hendry et al. 2010, 2011,
Jochum et al. 2012, and others) because they allow
the study of specific components of the global
ocean’s density structure and thermohaline circula-
tion over time. The same tendency, and its potential
for validation into the past, makes deep-sea sponges
good candidates for the prediction of future range
shifts under climate change scenarios.

Finally, deep-sea sponge association with water
masses, their products and derivatives over large
geographical ranges and relatively narrow depth
ranges implies that barriers to dispersal in the deep
sea may be as significant (if not more so) in the verti-
cal (e.g. because of density or current stratification)
as they are in the horizontal (e.g. because of topo-
graphic obstruction and prevailing current direc-
tion). This is in agreement with the findings of sev-
eral other authors (Zardus et al. 2006, Miller et al.
2011, Decker et al. 2012, Jennings et al. 2013, van
Soest & de Voogd 2015), employing different
methodologies. Areas where several different water
masses are brought into close proximity by topo-
graphic constrictions and oceanographic processes
(e.g. at sea straits, ridges, and sills), and which sup-
port turbulent mixing and entrainment, likely have
special ecological significance in terms of diversity
and genetic exchange, and may warrant interna-
tional conservation effort.

5. CONCLUSIONS

In the North Atlantic Ocean and Nordic Seas,
deep-sea sponges are particularly associated with
turning points in θ−s curves indicating the influence
of intermediate and deep water masses. The ob -
served water mass associations (taken together with
sponge distribution patterns) indicate a probable link
with the major current pathways of the Atlantic
Ocean’s thermohaline circulation. Where Arctic and
boreal species co-occur, the regions are invariably
ones of complex hydrography, hosting water masses
of both Atlantic and Arctic origin (e.g. DEN and
DAV). The causal mechanism is proposed to be a
combination of the following: (1) sponge larvae (or
small juveniles) are constrained within water masses
and/or major ocean currents by density stratification
or current shear; (2) sponges have become adapted
to tolerate/thrive in the prevailing environmental
conditions within given water masses and current

systems; and (3) aggregations of benthic filter-feed-
ers benefit from a supply of food and recruits, and
from enhanced currents, and thus persist at depths
hosting internal waves/tides, density-driven cur-
rents, and nepheloid layers (phenomena intimately
linked to the density [water mass] structure of the
deep ocean).

Our results imply that present-day sponge popula-
tions and their future distributions will be affected by
changes in water mass properties, distributions, and
transport under climate change. We note that turning
points in θ−s curves could be used to identify cur-
rently unknown sites of deep-sea sponge aggrega-
tions and, conversely, that deep-sea sponges and
spicule deposits have utility in studying water
masses or boundary current systems influencing the
seabed now and in the past. The broadest implication
of this work is that barriers to dispersal in the deep
sea may be as significant (if not more so) in the verti-
cal (e.g. because of density or current stratification)
as they are in the horizontal (e.g. because of topo-
graphic obstruction and prevailing current direc-
tion). Highly dynamic areas, where several water
masses are brought into close proximity (e.g. at sea
straits, ridges, and sills) and the constraints on dis-
persal are somewhat mitigated by mixing, likely rep-
resent important hotspots of genetic exchange and
diversity in the deep sea.
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Appendix.

Fig. A1. (see next page for legend)
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Fig. A1. Potential temperature–salinity (θ−s) diagrams showing climatological mean curves for sites across the North Atlantic
Ocean and Nordic Seas, with sponge occurrences overlaid. Site name abbreviations are defined in Fig. 2 and Table 1. Key
water masses have been labelled where possible, and their full names can be found in the key, which defines water mass
abbreviations used throughout this article. Water mass descriptions are provided in Table S1. Water mass names could not be
assigned to the upper water column in ICEP and NEIS because of variability at these depths. Note the different θ and s axes 

scales applied from panel to panel

Abbreviation Full name

(C)ArW (Canadian) Arctic Water
(IC)IrAW (Irminger Current) Irminger Atlantic Water
(NS)ArW (Nordic Seas) Arctic Water
(WG)IrAW (West Greenland) Irminger Atlantic Water
ArIW Arctic Intermediate Water
ArODW Arctic Ocean Deep Water
ArSW Arctic Surface Water
BBDW Baffin Bay Deep Water
CBDW Canadian Basin Deep Water
DSOW Denmark Strait Overflow Water
EBDW Eurasian Basin Deep Water
ENACW East North Atlantic Central Water
FSAW Fram Strait Atlantic Water
GDW Greenland Sea Deep Water
GFZW Gibbs Fracture Zone Water

Abbreviation Full name

ISOW Iceland-Scotland Overflow Water
IW Intermediate Water
LDW(AABW) Lower Deep Water (Antarctic Bottom Water)
LSLW Labrador Slope Water
LSW Labrador Sea Water
MW Mediterranean Water
NEADW Northeast Atlantic Deep Water 
NwArIW Norwegian Sea Arctic Intermediate Water
NwAW Norwegian Sea Atlantic Water
NwDW Norwegian Sea Deep Water
PW Polar Water
RAW Re-circulating Atlantic Water
SPMW Subpolar Mode Water
UPDW Upper Polar Deep Water
WSW Warm Slope Water

Key to water masses
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